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§1. Introduction

The Bairstow-McAuley type formulas [1, 2] are iterative methods for
solving a real polynomial equation by improving approximate quadratic fac-
tors of the polynomial on the basis of Newton procedure. Therefore, how to
choose the first approximate quadratic factor is in practical very important
from the viewpoint of convergence and error analysis.

In the present paper we propose the geometric method which produce
systematically the first approximations of all the quadratic factors. If a
quadratic factor has been obtained after finite iterations starting from a
first approximation, in the Bairstow-McAuley type method, the polynomial
is divided by the factor and the same algorithm is then applied to the reduced
polynomial. Accordingly the accumulated errors of dividing out the inaccu-
rate factors are propagated to the later factors. To avoid this disadvantage
we consider the original polynomial only and do not divide out the obtained
approximate quadratic factors. Hence our method serves also for correction
of the results obtained by the Bairstow-McAuley type method.

Lastly, we construct a generalized Bairstow method for calculating
multiple roots or close roots which produces m-th order factors x”+ pix”*
+p2x” 2t pro1 &t poe

The author expresses his hearty gratitude to Professor Urabe for his
kind guidance and constant advice.

§2. Geometric method for two variables

We consider the real polynomial
2.1 P(x)=x"4+a 2" '+ +ap1x+a,=0 (a,>x0)

and put



20 Yoshitane SHINOHARA

(2.2) P(x)=(x"+px+q)Q(x)+ Ry x* 1+ Ryx*~? 2<ZE<n),
where

Ri=Ri(p, ),

R:=R:3(p, q).

Hence our problem is to find p and ¢ so that

(2.3) Ri(p, =0,
(2.4) R:(p, ¢) =0.
Let M be the maximum value of */|a,| (k=1, 2, ..., n), then it is well known

that all the zeros of P(x) satisfy the inequality
| x| <2M.
Since w=2M>0, the zeros of the polynomial
Plwx)/w"=x"+a1 x"  +ayx" 2+ 4 d,_1 2+ dp,
where
ar=a/w (k=1,2, ..., n),

lie inside the unit circle | x| =1.

Hence for simplicity, we may suppose that all the roots of (2.1) lie
inside the unit circle |x| =1 and that all the solutions of the simultaneous
equations (2.3)~(2.4) exist in the rectangular region R={(p, ¢):|p|<2,
lq| <1}.

In the previous paper [4], the author proposed a new method for nume-
rical solution of a system of nonlinear equations. We shall again apply the
method to determine the solutions of the simultaneous equations (2.3) ~ (2.4)
in the rectangular region R. In geometrically, the method is to calculate
all the intersection points of two plane curves (2.3) ~ (2.4) in the region R.
That is to say, we take a point (p,, g,) on the curve

C; p=p(s), g=q(s) .

which is determined by R;(p, ¢)=0, and then we compute the curve integrat-
ing numerically the initial value problem :
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OR
g oW
ds /<0£)1>+<0£1>
(2.5)
0R;
0
’ZZTZ:J?/ 3R, - Tk
< op > +< 0q )

P (0) =pPo> 4 (0) ={os

by a step-by-step method.

Let (p;, 1) (1=1,2, ...) be an approximate value of (p(s), ¢(s)) obtained
at the /-th step by the numerical integration. Then we may have R;(p,, qo)
‘Ry(p1, q1) =<0. Otherwise we continue the numerical integration of (2.5)
until we have

(2.6) Ro(pi-1, qi-1) Re(p1, q1) =0.

Once we have had (2.6) for some [/, we check if |Ry(p;_1, ¢i-1)| or |R:(p1, q1) |

is smaller than a specified positive number e. If this is not satisfied, we
multiply the step-size of the numerical integration by 27?(p>1) and repeat
the numerical integration starting from the point (p;_1, g;—1). If we repeat
this process, then after a finite number of repetitions we shall have

JRz(pz—b gi-1)*Ra(p1, ) =0,

2.7 and

| [ R2(pi—1, qi—1) | or | Ra(pi, q) | <5,

provided on the curve C there is a simple solution of the simultaneous equa-
tions (2.3) ~ (2.4), that is, a solution of (2.3)~(2.4) for which the Jacobian
0(R1, R;)/0(p, q) does not vanish. The values p=p;_1, g=g;-1 Of p=p;, g=q;
satisfying (2.7) give an approximate solution of (2.3) ~(2.4).

Starting from p=p;_1, g=¢;_1 Or p=p;, g=¢q;, We can compute two roots
of the polynomial equation (2.1) by Bairstow method or McAuley method.
However, if ¢ is very small, the quadratic factor x*+p;, 12 +¢; 1 or x*+pix+q;
will produce sufficiently accurate two roots of the polynomial equation (2.1).

In the rectangular region R the curve R;(p, ¢)=0 may generally consist
of some different disconnected curves. Hence we separate the region R into
some subregions D;:
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R=D,+Dy+---+ D, 1 (Fig. 1).
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Fig. 1

In order to calculate systematically all the intersection points of the two
plane curves (2.3)~(2.4) in the region R, at first, we calculate all the in-
tersection points siV, s, si’ of the curve Ri(p,¢)=0 and the straight line
p=p". Starting from these intersection points s (i=1, 2, 3) we trace the
curve R;(p, ¢)=0 numerically until we reach the boundary of D;, and store
the end points s{¥, s{?, s{? of the curve intersecting with the straight line
p=p®. Next, taking account of the above stored points, we calculate all the
intersection points s{* (i=1, 2, 3, 4) of the curve R,(p, ¢)=0 and the straight
line p=p® and starting from these points s (i=1,2,3,4) we trace the
curve R;(p, ¢)=0 numerically until we reach the boundary of D,.

Note that starting from the new point 52 we have to trace the curve in
two directions (Fig. 1). During this procedure we of course compute each
intersection point of the two curves R:(p, ¢)=0 and R.(p, g)=0 accurately.
We repeat the above process.

Thus we obtain all the roots of the real polynomial equation (2.1). When
the coeflicients a; (i=1, 2, ..., n) of (2.1) are complex numbers, we also have
the simultaneous equations with real coefficients:

{f(p’ 9)203
g(p, 9)=0,

(2.8)

where P(x=p-+iq)=f(p,q)+ig(p, q).

§3. Convergence of the Bairstow-McAuley type formulas and
a generalized Bairstow method

We consider, at first, the convergence of the Bairstow-McAuley type
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formulas and then study a generalized Bairstow method for computing mul-
tiple roots or close roots.

We differentiate the identity (2.2) with respect to p or ¢. Since P(x)
does not depend on p or g, we have

OR, 11, OR;
op % +—~6p

x4 xG(x) + (x2+px+g)%§—:0,

ORy -1, ORy

oG _
0q 0q Bg

224G (x) + (5P +px+q) 5q

Let x2+ax+ B be the exact quadratic factor of the polynomial P(x) cor-
responding to the approximate quadratic factor x*+px+g, and let z;, z, be
two roots of x*+ax+p=0. Setting p=a, ¢=8, x=2z; Gi=G6(z;) (=1, 2),
we obtain

(3.1) a£71 Z?_l+%%zlf_2: —2;G; (i=1,2),
(3.2) iglz?1+2£%2?“=—4% =1, 2).

If z; ¢ 23, we have from (3.1), (3.2),

%%L: (2§26, —257361)/((z122)* (21— 22)),

601;2 =(2572G1—z726G,) /(21 22)* (21— 22)),
aal‘} = (242G, — 257261 /(21 22)" 2 (21— 22)),
OR;

) =216 — 281 Gy) /(2 20) 72 (21— 22)).
q

Hence we obtain

1

Z122

a(IEI) RZ) —
(3.3) O @ &=

If z,=2z,, we use the identity

k-2
> Gl'Gz.

P'(x)=2x+p)G(x)+ (x*+px+¢) G (x)+(k—1) Ryx**
+(k—2) Ryx* 3.
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Since P’(x) does not depend on p or g, we have

(k—1) x*- 20R1+(k 2) 5k~ 30§2+(xz+px+g)—~—

+xG'(x)+(2x+p) ——i—G(x) 0,

_2 OR _3 0R 0G
—1 k-2 1 —2 k-3 2 2
(k—1) x T +(k—2)x K3 + (% +px+q)——8

+6'(@)+ @x+p) € =
Setting p=a, ¢=4, x=2=—a/2, we have

OR; OR,

k 1 k—2__
@p + o =—2G(2),
(k—1) 01;1 4 (k—2) aRZ 273 =—G(2)—zG'(2)
and
ORy p-1, OR; E-2__
g * - dg ° ¢
(k—l)i&—zk—2+(k_2) OR: 2= G/ ().
0q 0
Hence we obtain
Ry, Rs) G
(3.4) : (p, 9 (@, B)= pohd

From (3.3) and (8.4), if G(z1)-G(25)2c0, a sequence of quadratic polynomial
x’+pwyx+qu (k=1,2,..) converges quadratically to x*+ax+8, starting
from pay=pi, gay=q:, which satisfy (2.7). Proof above is a generalization of
the result given by Henrici [1].

It will be observed from the above analysis that if z, (or z,) has multi-
plicity m which is three at least the Bairstow-McAuley type methods will
not converge quadratically.

In order to achieve quadratic convergence, we consider the following
algorithm:
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(B5)  Pla)=(x"+p1a"™ - pax” i+ A pur %+ pu) (6" by £
=+ bn—m—lx + bn—m) + Ry x™ ! + szm—z +-+Rpu_12+ Ry

The quantities by, b2, ---, by_m, R1, Rz, ---, R, can be found recursively. Con-
veniently, we introduce the other quantities b,_1, 6,2, ---, by_m+1 and define:

br=0ar—p1bsr_1—p2br_2— - —pubi-m k=1,2, ..., n),
with
bo=1,b_1=b_s=--=b_(n_1,=0.
Then we get
Ri=by m:1,
Ro=bn-mizt+p1bums1,
(3.6) If?z= bymitprbomeig-ryt -+ pibu-mia-pn+ -

+Pl—1bn—m+1)

R, = bn+p1 bn—l + - +Pm—1 bn—m-{-l-

Differentiating &, with p;, we have

0by

0[)};_1 _ . abk—m
Op, )

ap, Pm ap;

=—bra—p1

Putting 0b,/0p;= — ci-1, we obtain easily

Cro1— bk*l”“pl Cr_i-1— """ " PmCh—I-ms
with
co=1, c.1=c_2="=c_(m-1y=0.
Hence we have
3.7) %‘%‘:[bn—M+(l—j)_Cn—m+(l—j)]—igpicn—mu—ifj-

Our problem is then to find pi, ps, -, pn-1 and py, so that
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Ri(p1, pzs -5 pn) =0,

RZ(P1, P25 - pm):Oa
(3.8) E :
Rl (}71, P2y oo Pm):())

Ru(p1, p2s--- pm) =0.

Using (3.6) and (3.7), we apply the Newton method to these equations (3.8).
The starting values of p; (I=1, 2, ..., m) may be chosen as follows:

Plz{ﬁl}l'mclzi (l:17 2> ) m)

If we choose m such that the two factors x”+pia™ '+ +pu 1 %+ pm,
2" "+ by " by %+ by, have no common zeros when Ri=R,=---
=R,,=0, then the convergence of this method is quadratic [3]. The multi-
plicity m can be computed easily from the following procedure.

Let L be a simple closed curve in the complex plane and P(z)==0 on L.
Let the point z march along L in the counterclockwise direction and we put
P(z)=¢+i¢. Then the number of zeros of P(z) inside L is equal to

1
2

m=

22 %

where x takes the following value whenever ¢ =0.
x=-—1  when the sign of ¢-¢ tends from negative to positive,

x=-+1  when the sign of ¢-¢ tends from positive to negative,

x=0 when the sign of ¢-¢ does not change before and after of ¢=0.

For the proof, see [ 5], pp. 99-102.

In general, the algorithm (3.5) produces m-th order factors. Specially,
when m is equal to three or four, we obtain the exact roots of (2.1) by
Cardano’s formula or Ferrari’s formula.

§4. Numerical examples

1. As a first example, let us consider the polynomial equation
(4.1) x°—2x*4+10x%—9x+3=0.

Setting
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x=p-+ig,
we have the following simultaneous equations

f(p, =0,
g(p,9)=0,

(4.2)

where
F(p, ) =p°—10p*q> + 5pg*—2p* +12p%g* — 24"+ 10p* — 30pg*—9p+3,
and
g(p, ) =¢°—10p*¢* +5p*q—8p’q+8pg® 4 30pqg—10¢° —9g.

Hence, we apply the geometric method to find all the roots of the equations
(4.2).

The graph obtained by plotting of the numerical results is shown in
Fig. 2. On the computer TOSBAC 3400, we have five approximations:

T~
L_—_g—:-g__-u———t— 4 .1_.__5____:6... P
// \\
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A4(—0.9691573277, 0),
B (0.3997906784, 0),

€ (0.7374430457, 0),
D(0.9159618018, 3.108125866),
E(0.9159618019, —3.108125866).

In order to get an error bound for the approximate solution
(4.3) £=1{p, g} = 10.3997906784, 0.0000000000}
we apply Urabe’s proposition [4, 6] to the equation (4.2) using the Euclidean
norms. Put
(4.4) x=1p, g5, F®)={f(p, 9, g(ps P},
then from

F(p, 9)=0.2910383046 x 10-*°,
g (p, §)=0.8795507282 x 10-22,

readily follows
(4.5) [|[F(%)]] <0.292 x V2% 10719« r=0.292 % 1.415 3 10~1°.
Put

fpse)  fup, q)}

o]
gp<P> ) gq(P> q)

then for x==%, we have

_ [[—0.4588486751 10" 0.0000000000
M):[ 0.0000000000 —0.4588486751 x 101]
and hence
(4.6) T @) < M=0.309.

Let 2 be the region such that
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L={x=(p,q:lp—p|l=H [¢q—§I=H}

where H=0.0625. Then, computing the values of ||J(x)—J(&)| for grid
points

e=xy=(py ) =(ptg L gty j) =0 L., 28),
we see that
(4.7) 1] () —J (®)||=2.883
for any x ¢ 2. Put
(4.8) 0=0.0625
then evidently
(4.9) 020 9,={x: ||x—&|| <=0},

and we have (4.7) for any x ¢ £;. Hence by (4.5), (4.6), (4.7) and (4.8), we
see that the conditions (ii) and (iii) in Urabe’s proposition [4, 6 ] are fulfilled
if there is a positive number £ <1 satisfying the following inequalities:

.

883 F__
2883= 509 >
(4.10) {
N N ¢ -10
1 0.309 x o.zgfii 1.415 X101 0695,

These inequalities are equivalent to the inequality

0.309 < 0.292 x 1.415 %101

2.883x0.309<r=1— 0.06%5 )

that is,
(4.11) 0.890847 < £ <<0.9999999997.....

Hence, indeed, there is a positive number £ <1 satisfying (4.10). This proves
that all the conditions of Urabe’s proposition are fulfilled by the approximate
solution x=4. Thus we see that the equation (4.2) posseses one and only
one exact solution x==% in £; and that

0.309 % 0.292 x 1.415x 10~'°

(412) 4 - ,

A
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where « is an arbitrary number satisfying (4.11). From (4.11) and (4.12),
we then see that

(4.13) 12— 5] 0-309:0.202 1415 x 1019

N -10
1—0.890847 <1710

which gives an error bound for the approximate solution x=4= ip> G} given
by (4.3).

2. As a second example, we choose the polynomial equation
% —8x°— 2"+ x*+4x°+ 6227+ 965 +40=0,

whose exact roots are 3+i, +2i and —1 (triple).

On the computer TOSBAC 8400, our geometric method gave the first
approximations as

p1=—0.6000000000 x 10",
{ p2=0.1000000000 x 102,
p1=0.5156141518 x 1011,
{ p2=0.4000000000 x 10",

and
z1=—0.9985308960,
pr=—3zy,
p2=3z%,
ps=—zi.

Starting from these approximations, the generalized Bairstow method gave
the roots as

0.3000000000 < 10* —0.1000000000 x 10* 4,
0.3000000000 x 10* +0.1000000000 x 10! 7,
—0.2578070759 < 10~'*  —0.2000000000 < 10" ,
—0.2578070759 x 10~'* 4 0.2000000000 x 10" i,
—0.10000000000 < 10"  +40.0000000000 > 10° ;,
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—0.1000000000 x 10* —0.6301164131 x 107! 4,
—0.1000000000 x 10* +0.6301164131 x 10! 4.

The McAuley method and the Bairstow method gave very different results
according to the different starting values. Starting from a first approxima-
tion p;=1.0, p,=1.0, the McAuley method gave the roots as

0.3000000000 x 10* +0.9999999999 x 10° i,

0.3000000000 x 10* —0.9999999999 x 10° i,
—0.9997102440 x 10° +0.0000000000 x 10° 7,
—0.1000389817 x 10! +0.0000000000 x 10° 7,
—0.1474190788 < 10°°  40.1999999803 x 10* i,
—0.1474190788 % 10°°  —0.1999999803 < 10" i,
—0.9999002584 x 10° +0.0000000000 x 10° 7,

and the Bairstow method gave the roots as

[1]
(2]

(3]
[4]

—0.1000107275 x 10" +0.1858270563 < 102 4,
—0.1000107275 x 10* —0.1858270563 x 1073 4,
0.3713741546 x 10" +0.0000000000 x 10° 4,

—0.9997854486 < 10° +0.0000000000 < 10° z,
0.7321240536 x 10° +0.1941595805 x 10* 4,
0.7321240536 % 10° —0.1941595805 < 10" i,
0.8220103452 < 10° +0.0000000000 < 10° ;.

Technical College
of Tokushima University
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