On the Betti Series of Local Rings

By

Motoyoshi Sakuma and Hiroshi Okuyama

(Received September 30, 1967)

Let R be a commutative Noetherian ring and let a be an ideal in R. In [6], Tate has shown that it is always possible to construct a free resolution of R/a which, at the same time, is a skew commutative differential graded algebra over R, and he successfully applied his "R-algebra resolutions" to the study of the homology theory of Noetherian rings. In the case when R is a local ring with maximal ideal m, it would be more desirable, however, to construct a "minimal" R-algebra resolution if it is possible.

In § 1, we prove, first of all, that such a resolution always exists. In fact, an R-algebra resolution X of the residue field K, which is constructed in theorem 1 in $\lceil 6 \rceil$, is actually minimal.

For any integer $p \ge 0$, the *p*-th Betti number B_p of R is defined to be the dimension of the vecter space $\operatorname{Tor}_p^R(K, K)$ over K. The power series $\mathscr{B}(R) = \sum B_p Z^p$ is called the Betti series of R. Based on the existence of a minimal R-algebra resolution, we can express $\mathscr{B}(R)$ as a quotient of two power series:

$$(*) \hspace{1cm} \mathscr{B}(R) = \frac{(1+Z)^n}{(1-Z^2)^{\varepsilon_1}} \cdot \frac{(1+Z^3)^{\varepsilon_2}}{(1-Z^4)^{\varepsilon_3}} \cdot \frac{(1+Z^5)^{\varepsilon_4}}{(1-Z^6)^{\varepsilon_5}} \cdot \cdot \cdot ,$$

where n is the embedding dimension of $R(=\dim_K \mathfrak{m}/\mathfrak{m}^2)$ and ε_i 's are non negative integers. In the case when K is of characteristic 0, as was pointed out by Scheja [3], this formula is also obtained by applying the Hopf-Borel structure theorem to the Hopf algebra $\operatorname{Tor}^R(K, K)$ [1], but the formula is true in general as we mentioned above.

In the following sections 2 and 3, we will give alternating proofs of the theorems, due to Scheja [3], by the systematic use of the R-algebra method which would simplify the original arguments in some points. By making use of the formula (*), we investigate in § 2 the relationship between $\mathcal{B}(R)$ and $\mathcal{B}(\overline{R})$, where \overline{R} is the residue ring of R by a non zero divisor of R. In § 3, we represent $\mathcal{B}(R)$ as a rational function in the case $n \leq 2$, and show that the multiplicative property of the Koszul complex of R gives us an information about the classification of the possible types of $\mathcal{B}(R)$.

Throughout, the terminology and notations are the same as those of [6]. We shall use freely the R-algebra techniques, all of which can be found in

[1] and [6]. By a local ring (R, \mathfrak{m}) we mean R is a commutative Noetherian local ring and \mathfrak{m} its maximal ideal.

1. Let (R, \mathfrak{m}) be a local ring of embedding dimension n and let K be the residue field R/\mathfrak{m} . First, we recall that the limit of the following ascending sequence of R-algebras $X^{(k)}$ $(k=0, 1, 2, \cdots)$ gives us an R-algebra resolution X of K [6].

We take $X^{(0)} = R$ and fix a minimal system of generators t_1, \dots, t_n of m. Viewing t_i 's as 0-cycles, we adjoin variables T_1, \dots, T_n of degree 1 to R which kill t_1, \dots, t_n and put

$$X^{(1)} = R < T_1, \dots, T_n > ; dT_i = t_i.$$

Then, $H_0(X^{(1)}) = K$. Denote by ε_1 the dimension of $H_1(X^{(1)})$ over K and choose 1-cycles $s_1, \dots, s_{\varepsilon_1} \in Z_1(X^{(1)})$ such that whose homology classes generate $H_1(X^{(1)})$, and adjoin variables S_i ($1 \le i \le \varepsilon_1$) of degree 2 to $X^{(1)}$ which kill the cycles s_i . Then we get the next R-algebra

$$X^{(2)} = X^{(1)} \langle S_1, ..., S_{\varepsilon_1} \rangle; dS_i = s_i.$$

Continuing in this way we get a sequence of R-algebras $X^{(k)}$ (k=0, 1, 2, ...).

We remark that $X^{(k)}$ $(k=0, 1, 2, \dots)$ enjoy the following properties:

- (1) $X^{(k+1)} \supset X^{(k)}$, and $X_{\lambda}^{(k+1)} = X_{\lambda}^{(k)}$ if $\lambda < k+1$.
- (2) $H_0(X^{(k)}) = K \text{ and } H_{\lambda}(X^{(k)}) = 0 \text{ for } 1 \leq \lambda < k.$
- (3) $X_{k+1}^{(k+1)}$ is a direct sum of $X_{k+1}^{(k)}$ and ε_k -copies of R, where ε_k is a number of variables adjointed to $X^{(k)}$ which is equal to the dimension of the vector space $H_k(X^{(k)})$ over K. $X^{(1)}$ is nothing but the Koszul complex of R and will be denoted by E. We remark further that ε_i is independent of the choice of the cycles in $Z_i(X^{(i)})$ so that ε_i and, consequently, X are the homological invariants of R. We call ε_i the i-th deflection of R since ε_i 's give us an information about the degree of irregularity of R.

A projective resolution P of K is called minimal if it satisfies the condition, $dP \subset mP$, where d is the differential operator defined on the complex P. Now, we shall prove that the R-algebra resolution X of K, constructed above, has this additional property. For this we need the following lemma which provides us with the basis of an inductive argument.

Lemma 1. Let X be an R-algebra and assume X satisfies the following two

¹⁾ It is well known that $\varepsilon_1 = 0$ if and only if R is regular, and $\varepsilon_2 = 0$ if and only if R is a complete intersection [1], [3], [7].

conditions:

- (1) $Z_{\lambda}(X) \subset \mathfrak{m}X_{\lambda}(\lambda > 1)$.
- (2) If $x \in X_{\lambda}$ and $dx \in \mathfrak{m}^2 X_{\lambda-1}$, then $x \in \mathfrak{m} X_{\lambda} (\lambda \ge 1)$.

Now, let $t \in Z_{\rho-1}(X)$ be a cycle of degree $\rho-1(\rho>0)$ and let Y=X < T>; dT=t. Then, (1) and (2) also hold in Y.

Proof. We treat the cases of odd and even ϱ separately.

 ρ odd: In this case, Y=X+XT. Let $y_{\lambda}=x_{\lambda}+x_{\lambda-\rho}T$ be an element of $Z_{\lambda}(Y)$. Since $dy_{\lambda}=0$, we have $dx_{\lambda}+(-1)^{\lambda-\rho}x_{\lambda-\rho}t=0$ and $dx_{\lambda-\rho}=0$. From (1), we have $x_{\lambda-\rho}\in \mathfrak{m} X_{\lambda-\rho}$. Hence, $dx_{\lambda}\in (\mathfrak{m} X_{\lambda-\rho})(\mathfrak{m} X_{\rho-1})\subset \mathfrak{m}^2 X_{\lambda-1}$. Whence $x_{\lambda}\in \mathfrak{m} X_{\lambda}$ by virtue of (2). Consequently, $y_{\lambda}\in \mathfrak{m} Y_{\lambda}$. Next, we assume $dy_{\lambda}\in \mathfrak{m}^2 Y_{\lambda-1}$. Then, $dx_{\lambda}+(-1)^{\lambda-\rho}x_{\lambda-\rho}t\in \mathfrak{m}^2 X_{\lambda-1}$ and $dx_{\lambda-\rho}\in \mathfrak{m}^2 X_{\lambda-\rho-1}$. Hence, by the similar argument as above, we can easily verify that $y_{\lambda}\in \mathfrak{m} Y_{\lambda}$.

ho even: In this case, $Y=X+XT+XT^{(2)}+\cdots$. Let $y_{\lambda}=x_{\lambda}+x_{\lambda-\rho}T+x_{\lambda-2\rho}T^{(2)}+\cdots+x_{\lambda-n\rho}T^{(n)}$ be an element of $Z_{\lambda}(Y)$. Then, we see at once that $dx_{\lambda-n\rho}=0,\ dx_{\lambda-(n-1)\rho}+(-1)^{\lambda}x_{\lambda-n\rho}t=0,\cdots,\ dx_{\lambda}+(-1)^{\lambda}x_{\lambda-\rho}t=0$. Therefore, we can prove, step by step, each $x_{\lambda-i\rho}(i=n,\ n-1,\cdots,2,1)$ is contained in $mX_{\lambda-i\rho}$, which shows that $y_{\lambda}\in mY_{\lambda}$. As for the proof of (2), we will leave it to the reader.

Observe that $X^{(0)}(=R)$ trivially satisfies the condition (1) and (2). Therefore, by the successive applications of lemma 1 to each step of the adjoining variables in the construction of X, we get our following important theorem.

Theorem 1. A minimal R-algebra resolution of K always exists.

Another consequence of the particular construction of the minimal resolution X of K is stated in

Theorem 2. The Betti series $\mathscr{B}(R)$ of R is given by the following formula:

$$\mathscr{B}(R) = \frac{(1+Z)^n}{(1-Z^2)^{\epsilon_1}} \cdot \frac{(1+Z^3)^{\epsilon_2}}{(1-Z^4)^{\epsilon_3}} \cdot \frac{(1+Z^5)^{\epsilon_4}}{(1-Z^6)^{\epsilon_5}} \cdot \cdot \cdot ,$$

where n is the embedding dimension of R and ε_i the i-th deflection of R. In particular,

$$B_1 = n, \ B_2 = \binom{n}{2} + \varepsilon_1, \ B_3 = \binom{n}{3} + \binom{n}{1} \varepsilon_1 + \varepsilon_2,$$

$$B_4\!=\!\binom{n}{4}\!+\!\binom{n}{2}\varepsilon_1\!+\!\varepsilon_1^2\!-\!\binom{\varepsilon_1}{2}\!+\!\binom{n}{1}\varepsilon_2\!+\!\varepsilon_3,$$

$$B_5\!=\!\binom{n}{5}\!+\!\binom{n}{3}arepsilon_1\!+\!\binom{n}{1}\!\binom{arepsilon_1}{2}\!+\!\binom{n}{1}arepsilon_1\!+\!\binom{n}{2}arepsilon_2\!+\!arepsilon_1arepsilon_2\!+\!arepsi$$

PROOF. Since X is minimal, we have $\operatorname{Tor}^R(K, K) = H(X \otimes K) = X \otimes K$. Therefore the p-th Betti number B_p and the number of generators of the free module X_p are exactly the same. Hence, counting the number of generators of X_p , we obtain the desired result.

We point out here that, in view of theorem 2, we see our ε_i coincides with that of Scheja [3] and of Uehara [7] for $i \leq 3$.

2. In this section, as an application of theorem 2, we shall see how the Betti series of R is affected if we pass to its residue ring by a non zero divisor. We begin with the following lemma which has the general character.

Lemma 2. Let R and \bar{R} be Noetherian rings and let X and \bar{X} be R- and \bar{R} -algebras such that there exists an R-homomorphism φ from X to \bar{X} which induces an isomorphism φ_* of H(X) onto $H(\bar{X})$. Suppose t and \bar{t} are $(\varrho-1)$ -cycles in X and \bar{X} such that $\varphi(t)=\bar{t}$ and let Y=X< T>; dT=t and $\bar{Y}=\bar{X}<\bar{T}>$; $d\bar{T}=\bar{t}$. Then, φ can be extended to an R-homomorphism (again denoted by φ) from Y to \bar{Y} and it induces an isomorphism of H(Y) onto $H(\bar{Y})$.

PROOF. We again treat the cases of odd and even ρ separately. ρ odd: In this case, Y = X + XT. Consider the exact sequence

$$0 \longrightarrow X \xrightarrow{i} Y \xrightarrow{j} X \longrightarrow 0.$$

where i is injective and j is defined by $j(x_1+x_2T)=x_2$. Then, i and j commute with d and φ . Hence, we have the following commutative diagram

$$0 \longrightarrow X_{\lambda} \xrightarrow{i} Y_{\lambda} \xrightarrow{j} X_{\lambda-\rho} \longrightarrow 0$$

$$\downarrow^{\varphi} \qquad \downarrow^{\varphi} \qquad \downarrow^{\varphi}$$

$$0 \longrightarrow \overline{X}_{\lambda} \xrightarrow{\overline{i}} \overline{Y}_{\lambda} \xrightarrow{\overline{j}} \overline{X}_{\lambda-\rho} \longrightarrow 0$$

with exact rows. From this we get a commutative diagram

$$\cdots \longrightarrow H_{\lambda-\rho+1}(X) \xrightarrow{d_*} H_{\lambda}(X) \xrightarrow{i_*} H_{\lambda}(Y) \xrightarrow{j_*} H_{\lambda-\rho}(X) \xrightarrow{d_*} H_{\lambda-1}(X) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow H_{\lambda-\rho+1}(\bar{X}) \longrightarrow H_{\lambda}(\bar{X}) \longrightarrow H_{\lambda}(\bar{Y}) \longrightarrow H_{\lambda-\rho}(\bar{X}) \longrightarrow H_{\lambda-1}(\bar{X}) \longrightarrow \cdots,$$

where both rows are exact. Therefore $H_{\lambda}(Y) \approx H_{\lambda}(\bar{Y})$ ($\lambda = 1, 2, 3, ...$) by the "five lemma" [2].

 ρ even: In this case, $Y = X + XT + XT^{(2)} + \cdots$, and we have an exact sequence

$$0 \longrightarrow X \xrightarrow{i} Y \xrightarrow{j} Y \longrightarrow 0$$

where *i* is injective and *j* is defined by $j(x_0 + x_1T + x_2T^{(2)} + \cdots) = x_1 + x_2T + x_3T^{(2)} + \cdots$. As in the first case, *i* and *j* commute with *d* and φ , and

$$0 \longrightarrow X_{\lambda} \xrightarrow{i} Y_{\lambda} \xrightarrow{j} Y_{\lambda-\rho} \longrightarrow 0$$

$$\downarrow^{\varphi} \qquad \downarrow^{\varphi} \qquad \downarrow^{\varphi}$$

$$0 \longrightarrow \bar{X}_{\lambda} \xrightarrow{\bar{i}} \bar{Y}_{\lambda} \xrightarrow{\bar{j}} \bar{Y}_{\lambda-\rho} \longrightarrow 0$$

is a commutative diagram with exact rows. This yields the following commutative homology diagram

where both rows are exact. Since $H_0(Y) \approx H_0(\bar{Y}) \approx K$, we can easily see that $H_{\rho-1}(Y) \approx H_{\rho-1}(\bar{Y})$. On the other hand, from the construction of Y and \bar{Y} , we have $H_i(Y) \approx H_i(\bar{Y})$ for $i < \rho - 1$. Thus, applying the five lemma, we have $H_{\rho}(Y) \approx H_{\rho}(\bar{Y})$ and similarly $H_{\lambda}(Y) \approx H_{\lambda}(\bar{Y})$ for all λ .

Let again (R, \mathfrak{m}) be a local ring and let t_1, \dots, t_n be a minimal system of generotors of \mathfrak{m} . Suppose t_n is a non zero divisor in R and not in \mathfrak{m}^2 . Let $\overline{R} = R/t_nR$ and let \overline{t}_i be the residue class of t_i $(i=1, 2, 3, \dots)$. We consider two R-and \overline{R} -algebras

$$E = R < T_1, \dots, T_n > ; dT_i = t_i \text{ and } F = \bar{R} < \bar{T}_1, \dots, \bar{T}_{n-1} > ; d\bar{T}_i = \bar{t}_i.$$

If x is a homogeneous element of degree ρ in E, then x can be written as $x = x_1 + x_2 T_n$, where x_1 and x_2 are homogeneous elements in $E' = R < T_1, \dots, T_{n-1} >$ of degree ρ and $\rho - 1$ respectively. Then, the canonical map $\varphi \colon E \to F$ defined by $\varphi(x) = \bar{x}_1$ induces a homomorphism $\varphi_* \colon H(E) \to H(F)$.

Lemma 3. In the situation just described, φ_* is an isomorphism and $\varepsilon_1 = \bar{\varepsilon}_1$ where $\bar{\varepsilon}_1$ is the first deflection of \bar{R} .

PROOF. First we show that φ induces an R-homomorphism of $Z_{\rho}(E)$ onto $Z_{\rho}(F)$. Take $\bar{x}_1 \in Z_{\rho}(F)$. Since $d\bar{x}_1 = 0$, we can write $dx_1 = y_1t_n + y_2T_n$, with y_1

and y_2 in E'. From the relation

$$0 = d^2x_1 = (dy_1)t_n + (dy_2)T_n + (-1)^{\rho-2}y_2t_n,$$

we get $dy_1 = (-1)^{\rho-1}y_2$ and $dy_2 = 0$ since t_n is a non zero divisor. Now, by a direct calculation, we easily see that the element $x = x_1 + (-1)^{\rho}y_1T_n$ belongs to $Z_{\rho}(E)$ such that $\varphi(x) = \bar{x}_1$. By the similar argument we can show $\varphi^{-1}(B_{\rho}(F)) = B_{\rho}(E)$. Therefore φ_* is an isomorphism of H(E) onto H(F) as we asserted.

THEOREM 3. Let (R, \mathfrak{m}) be a local ring and let x be an element of \mathfrak{m} , which is not a zero divisor in R. Put $\overline{R} = R/xR$ and denote by $\mathscr{B}(\overline{R})$ and $\overline{\varepsilon}_i$ the Betti series and the i-th deflection of \overline{R} respectively. Then:

- (i) If $x \in \mathbb{M}^2$, we have $\bar{\varepsilon}_i = \varepsilon_i$ $(i = 1, 2, \dots)$ and $\mathscr{B}(R) = \mathscr{B}(\bar{R})(1 + Z)$ [3].
- (ii) If $x \in \mathbb{N}^2$, we have $\bar{\varepsilon}_1 = \varepsilon_1 + 1$, $\bar{\varepsilon}_i = \varepsilon_i$ (i = 2, 3, ...) and $\mathcal{B}(R) = \mathcal{B}(\bar{R})(1 Z^2)$.

PROOF. (i) If $x
otin m^2$, we can take x as a member of a minimal generating system of m. Observe that dim $\overline{R}^{2)} = \dim R - 1$. Hence, by lemma 2 and 3, combining with the formula of Betti series in theorem 2, we have our assertion.

(ii) We remark first that $\bar{E}=E/xE$ is the Koszul complex of \bar{R} since $x \in \mathbb{m}^2$. Write $x = \sum a_i t_i$. Then, $s = \sum a_i T_i$ is in E_1 and satisfies ds = x. The residue class $\bar{s} \pmod{xE}$ is a 1-cycle in \bar{E} , whose homology class we denote by σ . The canonical map $j \colon E \to \bar{E}$ induces an isomorphism j_* of H(E) into $H(\bar{E})$ and $H(\bar{E}) = (j_*H(E)) < \sigma > [6$, theorem 3]. Hence, $\bar{\varepsilon}_1 = \varepsilon_1 + 1$.

We adjoin a variable S of degree 2 to \bar{E} which kills \bar{s} and obtain

$$E' = \overline{E} < S >$$
; $dS = \overline{s}$.

Since σ is a skew non zero divisor in $j_*(H(E))$, we have

$$H(E') \approx H(\bar{E})/\sigma H(\bar{E}) \approx H(E)$$

by theorem 2 in [6]. Now, we can conclude our proof by applying lemma 2 to the R-algebra E and the \overline{R} -algebra E'.

COROLLARY. (i) If R is a regular local ring of dimension n, then $\mathcal{B}(R) = (1+Z)^n \lceil 3 \rceil, \lceil 4 \rceil$.

- (ii) If R is a complete intersection of embedding dimension n, $\mathscr{B}(R) = \frac{(1+Z)^n}{(1-Z^2)^{n-d}}$, where $d = \dim R$ [6].
 - 3. As we stated in the introduction, the results concerning the struc-

²⁾ We denote by dim R the dimension of R in the sense of Krull.

ture of Betti series in this section were originally obtained by Scheja [3]. He used the Syzygy theory of modules and his method was rather ideal theoretic. We shall present here a simplified proof which is based on the theory of *R*-algebras.

We shall use the same notations as in 1 and the Koszul complex of R will be denoted by E. For the obvious reason we treat only non regular case.

Theorem 4. If (R, m) is a local ring of embedding dimension 1 and if $H_1(E) \neq 0$, then we have

$$\varepsilon_1 = 1$$
, $\varepsilon_i = 0$ $(i \ge 2)$ and $\mathscr{B}(R) = \frac{1+Z}{1-Z^2}$.

PROOF. In this case, we have $H_0(E)=K$, $H_1(E)=(0:\mathfrak{m})T$ and $H_i(E)=0$ for $i\geq 2$. And, moreover, R is a principal ideal ring. Hence our hypothesis implies that there is an element $a\neq 0$ in R such that $0:\mathfrak{m}=aR$.

Now, we adjoin a variable S of degree 2 which kills 1-cycle aT, and obtain an R-algebra X=E < S >; dS=aT. Consider the exact sequence

$$0 \longrightarrow E \xrightarrow{i} X \xrightarrow{j} X \longrightarrow 0$$

where *i* is the injective map and *j* is defined by $j(x_0 + x_1S + x_2S^{(2)} + \cdots) = x_1 + x_2S + \cdots$ *i* and *j* commute with *d* and we get the following exact sequence:

$$\cdots \longrightarrow H_3(E) \longrightarrow H_3(X) \longrightarrow H_1(X) \longrightarrow H_2(E) \longrightarrow H_2(X) \longrightarrow K$$

$$\xrightarrow{d_{0*}} H_1(E) \longrightarrow H_1(X) = 0.$$

Since $H_1(E) \approx K$, d_{0*} is an isomorphism. Hence, $H_2(X) = 0$ by virtue of $H_2(E) = 0$. In the same way, the relations $H_3(E) = 0$ and $H_1(X) = 0$ imply that $H_3(X) = 0$. Thus, step by step, we have $H_i(X) = 0$ for $i = 1, 2, 3, \dots$, and hence $\varepsilon_1 = 1$ and $\varepsilon_i = 0$ for $i \geq 2$. Consequently, $\mathcal{B}(R) = \frac{1+Z}{1-Z^2}$ in view of theorem 2.

THEOREM 5. Let (R, \mathfrak{m}) be a local ring of embedding dimension 2 and suppose that R is not regular. Then:

$$(i) \quad \textit{If $H_1(E)^2$} = 0, \textit{ then } \varepsilon_1 \geq 1, \ \varepsilon_2 = \varepsilon_1 - 1, \ \varepsilon_3 = \left(\frac{\varepsilon_1}{2}\right) \textit{ and } \mathscr{B}(R) = \frac{(1+Z)^2}{1 - \varepsilon_1 Z^2 - \varepsilon_2 Z^3}.$$

(ii) If
$$H_1(E)^2 \neq 0$$
, then $\varepsilon_1 = 2$, $\varepsilon_2 = 0$ and $\mathscr{B}(R) = \frac{(1+Z)^2}{(1-Z^2)^2}$.

PROOF. First we remark that the vector space 0 : m over K has dimension $\varepsilon_1 - 1$. In fact, since dim R < 2, the Euler-Poincaré characteristic of the Koszul complex E is equal to zero [5], i.e.,

$$\dim_K H_2(E) - \dim_K H_1(E) + \dim_K H_0(E) = 0.$$

Since $H_2(E) \approx 0$: m, $\dim_K H_1(E) = \varepsilon_1$ and $\dim_K H_0(E) = 1$, we have our assertion.

From this remark and from the facts $H_2(X^{(2)}) \approx H_2(E)/H_1(E)^2$ [1, Proposition 2.5] and $\varepsilon_2 = \dim_K H_2(X^{(2)})$, we find $\varepsilon_2 = \varepsilon_1 - 1$ if $H_1(E)^2 = 0$, and $\varepsilon_2 \le \varepsilon_1 - 2$ if $H_1(E)^2 \ne 0$.

Now we consider the first case, $H_1(E)^2 = 0$. Let X be a minimal R-algebra resolution of K constructed in §1:

$$X: \cdots \longrightarrow X_p \longrightarrow X_{p-1} \longrightarrow \cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow X_0 \xrightarrow{\varepsilon} K \longrightarrow 0$$

where $X_0 = R$ and ε is the augmentation homomorphism. Then, by the construction of X, X_3 has the following form:

$$X_3 = \sum_{j=1}^{\varepsilon_1} (R T_1 + R T_2) S_j + \sum_{k=1}^{\varepsilon_2} R U_k,$$

where $S_j(1 \le j \le \varepsilon_1)$ and $U_k(1 \le k \le \varepsilon_2)$ are variables of degree 2 and 3 which kill cycles s_j and u_k respectively. We remark that, since $0: m \approx H_2(E) \approx H_2(X^{(2)})$, we can take $c_i T_1 T_2$ $(i=1,\dots,\varepsilon_1)$ as u_i , where $c_1,\dots,c_{\varepsilon_1}$ is a minimal generating system of the ideal 0: m.

Let $M=dX_3$ and write $M=M_1+M_2$, where M_1 (resp. M_2) is an R-module generated by $t_1S_j-T_1s_j$ and $t_2S_j-T_2s_j$ $(1 \le j \le \varepsilon_1)$ (resp. $c_kT_1T_2$ $(1 \le k \le \varepsilon_2)$). We contend first that M_1 is isomorphic to the direct sum of ε_1 -copies of m. To see this, it is enough to prove that the projection $\varphi \colon M_1 \to \sum (Rt_1 + Rt_2) S_j = \sum mS_j$ defined by

$$\varphi\left(\sum \lambda_j(t_1S_j-T_1S_j)+\sum \mu_j(t_2S_j-T_2S_j)\right)=\sum (\lambda_jt_1+\mu_jt_2)S_j$$

is an isomorphism. Assume $\alpha = \sum \lambda_j (t_1 S_j - T_1 s_j) + \sum \mu_j (t_2 S_j - T_2 s_j) \in \text{Ker } \varphi$. Then, we have $\lambda_j t_1 + \mu_j t_2 = 0$ and hence $\lambda_j T_1 + \mu_j T_2 \in Z_1(E)$ for $j = 1, \dots, \varepsilon_1$. Therefore

$$\alpha = -(\sum \lambda_j s_j T_1 + \sum \mu_j s_j T_2) = -\sum (\lambda_j T_1 + \mu_j T_2) s_j = 0$$

in view of $H_1(E)^2 = 0$. Hence φ is injective, and whence bijective because clearly it is surjective. By a similar argument, M_2 is isomorphic to the direct sum of ε_2 -copies of K. In this case, we consider the free module $RZ_1 + \cdots + RZ_{\varepsilon_2}$ and consider the map $\psi \colon RZ_1 + \cdots + RZ_{\varepsilon_2} \to 0$: in defined by

$$\phi(\sum \nu_i Z_i) = \sum \nu_i c_i.$$

Then, ϕ induces, obviously, an isomorphism between $\stackrel{\varepsilon_2}{\oplus} K$ and 0:m, since $c_1, \dots, c_{\varepsilon_2}$ is a minimal generating system of 0:m. Finally, we mention that

M is actually the direct sum of M_1 and M_2 in view of $H_1(E)^2 = 0$. Summarizing, we obtain

$$M \approx (\bigoplus^{\varepsilon_1} \mathfrak{m}) \oplus (\bigoplus^{\varepsilon_2} K).$$

Now, since the torsion functor has an additive property, we have

$$\operatorname{Tor}_{b}^{R}(M, K) = (\bigoplus^{\varepsilon_{1}} \operatorname{Tor}_{b}^{R}(m, K)) \oplus (\bigoplus^{\varepsilon_{2}} \operatorname{Tor}_{b}^{R}(K, K))$$

for $p \ge 0$. But, clearly $\operatorname{Tor}_{p}^{R}(M, K) = \operatorname{Tor}_{p+3}^{R}(K, K)$ and $\operatorname{Tor}_{p}^{R}(\mathfrak{m}, K) = \operatorname{Tor}_{p+1}^{R}(K, K)$. Hence, we obtain the following recurrence relation of Betti numbers:

$$B_{p+3} = \varepsilon_1 B_{p+1} + \varepsilon_2 B_p \ (p \geq 0).$$

Combining this with the fact $B_0=1$, $B_1=2$ and $B_2=1+\varepsilon_1$, we obtain

$$\mathscr{B}(R) = rac{(1+Z)^2}{1-arepsilon_1 Z^2 - arepsilon_2 Z^3}.$$

The fact $\varepsilon_3 = \binom{\varepsilon_1}{2}$ follows from theorem 2 by a direct computation.

Next we consider the case when $H_1(E)^2 \neq 0$. In this case, $0 \leq \varepsilon_2 \leq \varepsilon_1 - 2$, as we already mentioned, and hence we shall have $\varepsilon_2 = 0$ if we show $\varepsilon_1 \leq 2$.

Observe that everything is unchanged when we pass to the completion of R. Therefore, we can assume R is complete. By the structure theorem of Cohen, there exists a minimal embedding of R, that is, there exists a regular local ring \tilde{R} of dimension 2 and an ideal $\tilde{\alpha}$ of \tilde{R} such that $R = \tilde{R}/\tilde{\alpha}$, $\tilde{\alpha} \subset \tilde{\mathfrak{m}}^2$, where $\tilde{\mathfrak{m}}$ is the maximal ideal of \tilde{R} . Denote by $h \colon \tilde{R} \to R$ the canonical map and let \tilde{t}_i be an element of \tilde{R} such that $h(\tilde{t}_i) = t_i$. Then, obviously $\tilde{\mathfrak{m}} = (\tilde{t}_1, \tilde{t}_2)\tilde{R}$. Let $\tilde{a}_1, \dots, \tilde{a}_r$ be a minimal system of generators of $\tilde{\alpha}$ and write $\tilde{a}_i = \tilde{\lambda}_i \tilde{t}_1 + \tilde{\mu}_i \tilde{t}_2$. Then, $s_i = \lambda_i T_1 + \mu_i T_2$ $(1 \le i \le r)$ constitutes a minimal generating system of $Z_1(E)$ modulo $B_1(E) [1, p. 196]$ where $\lambda_i = h(\tilde{\lambda}_i)$ and $\mu_i = h(\tilde{\mu}_i)$. Since $H_1(E)^2 \neq 0$, there exist at least two elements, say \tilde{a}_1 and \tilde{a}_2 , in $\tilde{a}_1, \dots, \tilde{a}_r$ such that $(\lambda_1 \mu_2 - \lambda_2 \mu_1) T_1 T_2 \neq 0$.

Let $\alpha_1 = (\tilde{a}_1, \tilde{a}_2)\tilde{R}$, $\bar{R} = \tilde{R}/\alpha_1$ and $\bar{m} = \tilde{m}/\alpha_1$. Since \tilde{a}_1, \tilde{a}_2 is a minimal system of generators of α_1 , we have $\dim_K H_1(\bar{E}) = 2$, where \bar{E} is the Koszul complex of \bar{R} . Hence, by the remark at the first paragraph of the proof, we have $\dim_K 0: \bar{m} = 1$, since \bar{R} is not regular. Therefore, it follows that $0: \bar{m} = (\bar{\lambda}_1 \bar{\mu}_2 - \bar{\lambda}_2 \bar{\mu}_1)\bar{R}$, where $\bar{\lambda}_i$ and $\bar{\mu}_i$ are the residue classes of $\tilde{\lambda}_i$ and $\tilde{\mu}_i$ in \bar{R} respectively. Thus $H_2(\bar{E}) = H_1(\bar{E})^2$ and \bar{R} is a complete intersection and of dimension 0 [1, theorem 2.7]. Hence the zero ideal of \bar{R} is irreducible [8, IV theorem 34].

Suppose $\epsilon_1>2$, then $\tilde{\alpha} \supseteq \alpha_1$. Hence $0: \overline{\mathfrak{m}} \subset \tilde{\alpha}/\alpha_1$ [8, IV theorem 34] and

therefore $\lambda_1\mu_2-\lambda_2\mu_1=0$. But, this contradicts the choice of \tilde{a}_1 and \tilde{a}_2 .

As for the Betti series of R, it is enough to mention that $\tilde{a} = a_1$ is generated by an \tilde{R} -sequence and hence coroll. of theorem 3 can be applied to R.

COROLLARY. Let (R, m) be a local ring of embedding dimension 2, and assume that R is not regular. If m contains at least one non zero divisor, then we have $\mathscr{B}(R) = \frac{(1+Z)^2}{1-Z^2}$.

PROOF. Our hypothesis implies that $H_2(E) \approx 0$: $\mathfrak{m} = 0$. Therefore $H_1(E)^2 = 0$. Hence, we have the corollary in view of theorem 5.

Faculty of Education
Tokushima University

References

- [1] E. F. Assmus, Jr, On the homology of local rings, Illinois J. Math., 3 (1959), 187-199.
- [2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, (1956).
- [3] G. Scheja, Über die Bettizahlen lokaler Ringe, Math. Ann., 155 (1964), 155-172.
- [4] J.-P. Serre, Sur la dimension homologique des anneaux et des modules noethériens, Proc. Int. Symp. on Algebraic Number Theory, Tokyo, (1955), 175-189.
- [5] ______, Algèbre Locale-Multiplicités, mimeographed notes by P. Gabriel, Collège de France, second edition, 1965.
- [6] J. Tate, Homology of noetherian rings and local rings, Illinois J. Math., 1 (1957), 14-27.
- [7] H. Uehara, Homological invariants of local rings, Nagoya Math. J., 22 (1963), 219-227.
- [8] O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Van Nostrand, Princeton, (1958).