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Let R be a commutative Noetherian ring and let a be an ideal in R. In
(6], Tate has shown that it is always possible to construct a free resolution
of R/a which, at the same time, is a skew commutative differential graded
algebra over R, and he successfully applied his “R-algebra resolutions” to the
study of the homology theory of Noetherian rings. In the case when R is a
local ring with maximal ideal m, it would be more desirable, however, to
construct a “minimal” R-algebra resolution if it is possible.

In § 1, we prove, first of all, that such a resolution always exists. In
fact, an R-algebra resolution X of the residue field K, which is constructed in
theorem 1 in [ 67, is actually minimal.

For any integer p =0, the p-th Betti number B, of R is defined to be the
dimension of the vecter space TorZ (K, K) over K. The power series Z(R) =
> B,Z" is called the Betti series of R. Based on the existence of a minimal
R-algebra resolution, we can express Z(R) as a quotient of two power series:

(A+2)y QA+25% A+Z)%

(*) B(R)= (1_Z2)51 ) (1_Z4)63 : (1_26)55 R

where n is the embedding dimension of R(=dimgm/m?) and ¢,’s are non
negative integers. In the case when K is of characteristic 0, as was pointed
out by Scheja [ 3], this formula is also obtained by applying the Hopf-Borel
structure theorem to the Hopf algebra Tor®(K, K) [1], but the formula is
true in general as we mentioned above. '

In the following sections 2 and 3, we will give alternating proofs of the
theorems, due to Scheja [ 3], by the systematic use of the R-algebra method
which would simplify the original arguments in some points. By making use
of the formula (%), we investigate in § 2 the relationship between % (R) and
%#(R), where R is the residue ring of R by a non zero divisor of R. In § 3, we
represent #(R) as a rational function in the case n <2 and show that the
multipleative property of the Koszul complex of R gives us an information
about the classification of the possible types of #(R).

Throughout, the terminology and notations are the same as those of [6].
We shall use freely the R-algebra techniques, all of which can be found in
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[17and [6]. By a local ring (R, m) we mean R is a commutative Noetherian
local ring and m its maximal ideal.

1. Let (R, m) be a local ring of embedding dimension » and let K be the
residue field R/m. First, we recall that the limit of the following ascending
sequence of R-algebras X® (£=0, 1, 2,...) gives us an R-algebra resolution X
of K[67].

We take X“=R and fix a minimal system of generators ¢y,..., ¢, of m.
Viewing ¢;’s as 0-cycles, we adjoin variables Ti,..., T, of degree 1 to R which
kill ¢y,..., ¢, and put

XP=R< T,y Tw>; dTi=t;.

Then, H,(X")=K. Denote by e, the dimension of H;(X™) over K and choose
1-cycles si,- -, se, € Z)(X™) such that whose homology classes generate H,(X™),
and adjoin variables S; (1 <{i <le;) of degree 2 to XV which kill the cycles s;.
Then we get the next R-algebra

X®=xW Sy, -, Sfl>; dS;=s;.

Continuing in this way we get a sequence of R-algebras X (k=0), 1,2,.).
We remark that X (£=0, 1, 2,...) enjoy the following properties:
(1) XEDSXB and X§+D=XP if 1< b+ 1.
(2) Hy(X™=K and H,(X*)=0 for 1< 1<Fk.

(8) XY is a direct sum of X¢{*’; and e,-copies of R, where ¢, is a num-
ber of variables adjointed to X® which is equal to the dimension of the veec-
tor space H;(X®) over K. XV is nothing but the Koszul complex of R and
will be denoted by E. We remark further that ¢; is independent of the choice
of the cycles in Z;(X”) so that e; and, consequently, X are the homological
invariants of R. We call ¢; the i-th deflection of R since ¢/’s give us an infor-
mation about the degree of irregularity of R.V

A projective resolution P of K is called minimal if it satisfies the condi-
tion, dPCmP, where d is the differential operator defined on the complex P.
Now, we shall prove that the R-algebra resolution X of K, constructed above,
has this additional property. For this we need the following lemma which
provides us with the basis of an inductive argument.

Lemma 1. Let X be an R-algebra and assume X satisfies the following two

1) It is well known that ¢;=0 if and only if R is regular, and ¢,=0 if and only if R isa complete
intersection [17, [3], [7].



On the Betti Series of Local Rings 3

conditions:
1) Z.(X)CmX,(A>1).
(2) If x€ X, and dx € m*X,_,, then x € mX, (A1=>1).

Now, let t € Z,_1(X) be a cycle of degree p—1(0>0) and let Y=X<T>; dT=1.
Then, (1) and (2) also hold in Y.

Proor. We treat the cases of odd and even o separately.

oodd: In this case, Y=X+ XT7T. Let mw=xrtx,.,T be an element of
Z,(Y). Since d =0, we have dx,+(—1)"x,_,t=0 and dx,_,=0. From (1),
we have x,_,emX,_,. Hence, dx, € (mX,_,)(mX,_;) Cm?X,_;. Whence x, € mX,
by virtue of (2). Consequently, nE€mY,. Next, we assume d y, € m*Y, _;. Then,
dx,+(=1))""x,_,tem*X,_; and dxy_,€m*X,_, ;. Hence, by the similar argu-
ment as above, we can easily verify that y, € mY,.

o even: In this case, Y=X+XT+XT®+.... Let y=x,+x, T+
wr-2, TP+ ...+ 2,_,, T™ be an element of Z,(Y). Then, we see at once that
d2r—npe =0, dar_n_1yp+(—1) 2, _,,t=0,..., dxy+(—1)*x,_,t=0. Therefore, we
can prove, step by step, each x,_;,(i=n, n—1,..., 2, 1) is contained in mX,_i,,
which shows that y, emY,. As for the proof of (2), we will leave it to the
reader.

Observe that X”(=R) trivially satisfies the condition (1) and (2). There-
fore, by the successive applications of lemma 1 to each step of the adjoining
variables in the construction of X, we get our following important theorem.

Turorem 1. A minimal R-algebra resolution of K always exists.

Another consequence of the particular construction of the minimal reso-
lution X of K is stated in

TueoreMm 2. The Betti series Z(R) of R is given by the following formula:

(I4+2y  A+2% A+Z9
A=2z%%  (1—2Y%  (1A— 2% ’

B(R)=

where n 18 the embedding dimension of R and e; the i-th deflection of R. In
particular,

Blzn’ B2:<g>+€1) B3:<g>+<¥>81+82)

B4=<Z>+<g>sl+e%—<§1)+(f)sz+as,
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B=(3)+(5)at (D)(F)+(3)e (3 )erreieor(Dosren - -

Proor. Since X is minimal, we have Tor®(K, K)=HXQK)=XXK.
Therefore the p-th Betti number B, and the number of generators of the free
module X, are exactly the same. Hence, counting the number of generators
of X,, we obtain the desired result.

We point out here that, in view of theorem 2, we see our ¢; coincides
with that of Scheja [837] and of Uehara [ 7] for : <3.

2. In this section, as an application of theorem 2, we shall see how the
Betti series of R is affected if we pass to its residue ring by a non zero
divisor. We begin with the following lemma which has the general character.

Levma 2. Let R and R be Noetherian rings and let X and X be R- and
R-algebras such that there exists an R-homomorphism ¢ from X to X which in-
duces an isomorphism ¢y of H(X) onto H(X ). Suppose t and ¢ are (0—1)-cycles
in X and X such that ¢(t)=I and let Y=X<T>; dT=t and Y=X<T>; dT
=1. Then, ¢ can be extended to an R-homomorphism (again denoted by ¢) from
Y to Y and it induces an isomorphism of H(Y) onto H(Y).

Proor. We again treat the cases of odd and even p separately.
o odd: In this case, Y=X+ X7. Consider the exact sequence

0—>X—>YV—-L5X—0,

where i is injective and j is defined by j(x1+x:T)=x2. Then, i and j com-
mute with d and ¢. Hence, we have the following commutative diagram

0—>X— >V, X, ,—0
AR
0—>X,—>Y,— X, ,—0

with exact rows. From this we get a commutative diagram

> Hy i (X))~ H (X )—"> H (Y )-25 Hy (X)) H, 1 (X)—> -

i Hy 1 (X)—>H (X)——>H(Y)—>H,_,(X)—>H, 1(X)—> -,

where both rows are exact. Therefore H\,(Y)~ H,(Y) (A=1, 2, 3,...) by the
“five lemma” [ 27].
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o even: In this case, Y=X+XT+XT®P+ ..., and we have an exact se-
quence

0—> X5V I 570,

where i is injective and j is defined by j(xo+x1 T+ 2. TP+ .. )=w1+ 2, T+
x3T®+.... Asin the first case, i and j commute with d and ¢, and

0—>X,— > Y, > ¥,_,——0

EE

0—>X— 5 V257, _,—>0

is a commutative diagram with exact rows. This yields the following com-
mutative homology diagram

e (V) Hy ()5 Hy (V)% Ho(Y )5 H, 1 (X) "5 Hy 1 (V)0

S S A A

> i (V)= H,(X)——>H,(Y)——>Hy(Y)—H, «(X)—>H, (Y)—>0

where both rows are exact. Since Hy(Y)=~ H,(Y)~ K, we can easily see that
H, ,(Y)=~ H, ,(Y). On the other hand, from the construction of ¥ and ¥, we
have H;(Y)=~ H;(Y) for i<p—1. Thus, applying the five lemma, we have
H,(Y)~ H,(Y) and similarly H,(Y)= H,(Y) for all .

Let again (R, m) be a local ring and let ¢y,..., ¢, be a minimal system of
generotors of m. Suppose ¢, is a non zero divisor in R and not in m®. Let R=
R/t,R and let ; be the residue class of ¢; (i=1, 2, 3,...). We consider two R-
and R-algebras

E=R<K Tl,---, Tn>, dT,':t,' and F:R< Tl,---, Tn_1>; dT,:i,

If x is a homogeneous element of degree p in E, then x can be written as x=
x1+ %2 Ty, where x; and x, are homogeneous elements in E'=R< T4,.-., T,,_1 >
of degree p and p—1 respectively. Then, the canonical map ¢: E— F defined
by ¢(x)=2%; induces a homomorphism ¢, : H(E)— H(F).

Lemma 8. In the sttuation just described, ¢, is an isomorphism and ¢ =
&, where &, 1s the first deflection of R.

Proor. First we show that ¢ induces an R-homomorphism of Z,(E) onto
Z,(F). Take %, € Z,(F). Since dz;=0, we can write dx,= yit,+ y. T, with y,
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and y, in E'. From the relation
0= dle‘—‘(dyl) tnt(dy) T+ (— 1)”_2yzt,,,

we get dy1=(—1)""'y, and dy,=0 since ¢, is a non zero divisor. Now, by a
direct calculation, we easily see that the element x =x;+(—1)"y, T, belongs
to Z,(E) such that ¢(x)=z%,. By the similar argument we can show ¢~'(B,(F))
=B,(E). Therefore ¢, is an isomorphism of H(E) onto H(F) as we asserted.

Turorem 3.  Let (R, m) be a local ring and let x be an element of m, which
18 not a zero divisor in R. Put R=R/xR and denote by %#(R) and &; the Bett:
series and the i-th deflection of R respectively. Then:

(i) If x&m?®, we have &;=¢; =1, 2,...) and 2(R)=2(R)(1+2) [3].
(i) If xem?® we have&1=e,+1,8=¢; (i=2,3,...) and B(R)=B(R)1—Z?).

Proor. (i) If x&m? we can take x as a member of a minimal generat-
ing system of m. Observe that dim R¥=dim R—1. Hence, by lemma 2 and 3,
combining with the formula of Betti series in theorem 2, we have our asser-
tion.

(i) We remark first that F=E/xE is the Koszul complex of R since
xem’. Write x=Ya;t;, Then, s=> a;T; is in E; and satisfies ds=x. The
residue class 5 (mod xE) is a 1-cycle in £, whose homology class we denote
by 0. The canonical map j: E—~FE induces an isomorphism j, of H(E) into
H(E) and H(E)=(j«H(E))<c> [6, theorem 37. Hence, & =¢;+1.

We adjoin a variable S of degree 2 to £ which kills 5 and obtain

E=E<S>; dS=s.
Since ¢ is a skew non zero divisor in j.(H(E)), we have
H(E)~ H(E)/cH(E)~ H(E)

by theorem 2 in [ 6 ]. Now, we can conclude our proof by applying lemma 2 to
the R-algebra E and the R-algebra E'.

Cororrary. (i) If R s a regular local ring of dimension n, then #(R)
=1+2)y [3],[4]
(i) If R is a complete intersection of embedding dimension n, B(R)=

—(1(—1};))—(1 where d=dim R [67].

8. As we stated in the introduction, the results concerning the struec-

2) We denote by dim R the dimension of R’in the sense of Krull.
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ture of Betti series in this section were originally obtained by Scheja [37]. He
used the Syzygy theory of modules and his method was rather ideal theo-
retic. We shall present here a simplified proof which is based on the theory
of R-algebras.

We shall use the same notations as in §1 and the Koszul complex of R
will be denoted by E. For the obvious reason we treat only non regular case.

Tueorem 4. If (R, m) is a local ring of embedding dimension 1 and if
H,(E)=~0, then we have

1+7

e1=1, =0 (i>>2)and #(R)= 1

Proor. In this case, we have Hy(E)=K, H;(E)=(0: m)T and H;(E)=0
for i>>2. And, moreover, R is a principal ideal ring. Hence our hypothesis
implies that there is an element a=~0 in R such that 0: m=aR.

Now, we adjoin a variable S of degree 2 which kills 1-cycle ¢ 7, and ob-
tain an R-algebra X=E<S>; dS=aT. Consider the exact sequence

0 »>E5>XI 53X 0,

where i is the injective map and ;j is defined by j(wo+x1S+228P+ .. )=x,+
%28+ ... 7 and j commute with 4 and we get the following exact sequence:

o> Hy (E)—> Hy (X —> Hy (X )— Hy (E)—> Hy (X )— K
2y Hi (E)—> Hy (X)=0.

Since H,(E)=~K, do4 is an isomorphism. Hence, H,(X)=0 by virtue of H,(E)
=0. In the same way, the relations H;(E)=0 and H,(X)=0 imply that H;(X)
=0. Thus, step by step, we have H;(X)=0 for i=1, 2, 3,..., and hence ¢, =1
1+7

and ;=0 for ;i >2. Consequently, %(R)z—ij

in view of theorem 2.

Taeorem 6. Let (R, m) be a local ring of embedding dimension 2 and sup-
pose that R 1s not regular. Then:

; 2_ 1 enf(C1 _ Q+zy
() If Hi(EP=0, then 6,1, ey—g,—1, sg—<2>and FR=1 =" .
A+Zz)*

(ii) If Hi(E)*=~0, then &;=2, ¢,=0 and #(R)= A—zy

Proor. First we remark that the vector space 0 : m over K has dimen-
sion ¢;—1. In fact, since dim R<2, the Euler-Poincaré characteristic of the
Koszul complex E is equal to zero [5], i.e.,
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dianJQE(l;)g‘dianlyﬂlg)%*dian}yb<lg)::0.

Since H,(E)=~0: m, dimg H,(E)=¢, and dimg Hy(E)=1, we have our assertion.
From this remark and from the facts Hy(X®)~ H,(E)/H,(E)* [1, Pro-
position 2.57 and e;=dimg H;(X®), we find e;=¢,—1 if H,(E)*=0, and &, <
e1—2if H (E)* 0.
Now we consider the first case, H,(E)*=0. Let X be a minimal R-algebra
resolution of K constructed in §1: ‘

X: o — XX, > Xo—> Xi—> X5 K—0

where X,=R and ¢ is the augmentation homomorphism. Then, by the cons-
truction of X, X; has the following form:

&1 &2
2&3: Z%(]{]H-F}%]E)S}ﬁ—Z]]?LQ,
j= k=1

where S;(1<j<{e;) and U,(1 <k <¢,) are variables of degree 2 and 3 which
kill cycles s; and u; respectively. We remark that, since 0 : m~ H,(E)~
H;(X®), we can take ¢;T1T, (i=1,..., &) as u;, where c,,.-, cs, is a minimal
generating system of the ideal 0: m.

Let M=dX; and write M= M,-+ M,, where M, (resp. M) is an R-module
generated by ¢,.S;— Tis; and ¢,S;— Tos; (1<<j <ley) (resp. ¢, T1 Ty (1 <k <sy)).
We contend first that M, is isomorphic to the direct sum of e;-copies of m. To
see this, it is enough to prove that the projection ¢: M;— > (Rt1+ Rty) S;=
> mS; defined by

o (224018, — Tis)+ 215 (t2S;— Tas))= 2 (Ait1 + 1it2) S;

is an isomorphism. Assume a= > 2;(t;S;— T1s;)+ 2 ¢;(t2S;— T.s;) € Ker ¢. Then,
we have ;¢4 #t2=0 and hence 4, T1+¢; T. € Z,(E) for j=1,..., &1. Therefore

a=—(D4si Ti+ DpysiToy=— 24 T1+ 1 T2)s;=0

in view of H,(E)*=0. Hence ¢ is injective, and whence bijective because
clearly it is surjective. By a similar argument, M, is isomorphic to the direct
sum of e;-copies of K. In this case, we consider the free module RZ; + ... +
RZ., and consider the map ¢: RZ,+ .. +RZ;,— 0 : m defined by

G(vidi)= D vici.

&2 '
Then, ¢ induces, obviously, an isomorphism between @ K and 0 : 1, since
c1,--+5 Cs, i @ minimal generating system of 0 : m. Finally, we mention that
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M is actually the direct sum of M; and M, in view of H,(E)*=0. Summariz-
ing, we obtain

M=~ @m)B @ K).

Now, since the torsion functer has an additive property, we have

Tor(M, K)=(&) TorE(m, K))@ (& Tork(K, K))

for p>0. But, clearly Tor®(M, K)=Tor,%,(K, K) and Tork(m, K)=Tor, %,
(K, K). Hence, we obtain the following recurrence relation of Betti numbers:

Bpﬁ,gzsprJrl—{—EzBp (PZO)
Combining this with the fact B,=1, B,=2 and B,=1+¢;, we obtain

1+2)

B(R)=
( ) 1—8122—8223

The fact sg-——@l) follows from theorem 2 by a direct computation.

Next we consider the case when H;(E)*=0. In this case, 0 <le;<le;—2,
as we already mentioned, and hence we shall have ¢, = 0 if we show ¢, <2.

Observe that everything is unchanged when we pass to the completion
of R. Therefore, we can assume R is complete. By the structure theorem of
Cohen, there exists a minimal embedding of R, that is, there exists a regular
local ring R of dimension 2 and an ideal @ of R such that R=R/a, a Cnt%,
where 11t is the maximal ideal of R. Denote by h: R—R the canonical map
and let #; be an element of R such that A(Z;)=t,;. Then, obviously m=(#, 7,) R.
Let ai,..., a, be a minimal system of generators of d and write a;= N;7; + /.
Then, s;=2;T1+#;T; (1 <i<r) constitutes a minimal generating system of
Z,(E) modulo B,(E) [1, p. 196 ] where 2;=h{\;) and x;=h(/;). Since H,(E)*=
0, there exist at least two elements, say a; and a,, in 4,,---, @, such that (1,4
—12ﬂ1> T, T,%0.

Let a,=(a,, a;) R, R=R/a; and m=11/a,. Since 4;, a; is a minimal system
of generators of a;, we have dimgH,(F)=2, where E is the Koszul complex
of R. Hence, by the remark at the first paragraph of the proof, we have
dimg 0: m=1, since R is not regular. Therefore, it follows that 0: m=ON\,p2—
\2f1) R, where )\; and g; are the residue classes of X; and 4; in R respectively.
Thus Hx(E)=H,(E)* and R is a complete intersection and of dimension 0 [1,
theorem 2.7]. Hence the zero ideal of R is irreducible [ 8, IV theorem 34].

Suppose ¢;>2, then a=2q;. Hence 0 : mCd/q [8, IV theorem 34 ] and
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therefore 2,4, — 4,11 =0. But, this contradicts the choice of 4, and a..
As for the Betti series of R, it is enough to mention that d=aq; is gen-
erated by an R-sequence and hence coroll. of theorem 3 can be applied to R.

Cororrary. Let (R, m) be a local ring of embedding dimension 2, and
assume that R is not regular. If m contains at least one non zero divisor, then

2
we have #(R)= %i—gz— .

Proor. Our hypothesis implies that H,(E)=~0: m=0. Therefore H, (E)*
=0. Hence, we have the corollary in view of theorem 5.
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