
Supporting Planning and Refactoring of Refinement Structure

of Event-B Models

Event-Bモデルの詳細化構造の計画とリファクタリングの

支援手法

by

Tsutomu Kobayashi

小林 努

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 9, 2016

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and Technology

in Computer Science

Thesis Supervisor: Shinichi Honiden 本位田 真一

Professor of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTokyo Repository

https://core.ac.uk/display/197128119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Systematic construction of highly reliable software systems is crucial. Constructing
formal specification is one of the most rigorous ways to that end since it enables developers
to thoroughly verify target systems from early phases of development. Event-B as one
such method, has been attracting much interest from academia and industry because it
supports a flexible refinement mechanism that mitigates the complexity of constructing
and verifying models of complex target systems by considering multiple abstraction layers
of models. Moreover, the refinement mechanism of Event-B enables developers to flexibly
select what elements of the target system are introduced in each step of refinement
(refinement structure).

Although the refinement mechanism supports comprehensible yet rigorous verifica-
tion, there are difficulties in exploiting it in software development. First, although most
existing studies on Event-B currently focus on reducing the complexity of constructing
models, models are used even after being constructed. Constructed models should be
maintained, and there is a strong demand to reuse a part of existing models to construct
other models. In the area of program code maintenance, highly automated methods and
tools to support refactoring have been leveraged. Similar methods should be provided
for models of Event-B. Second, in order to construct models, developers need to plan the
structure of refinement before constructing models. Although this activity is advanced
due to lack of rigorous representation of the specification, it is worth investigating how
we can support it. The space of reasonable plans is too large to grasp, and models
constructed by following an intuition tend to cause inconsistencies and ineffective use
of the refinement mechanism. Therefore, helping analysis of design spaces of reasonable
refinement plans is important. However, these problems are currently solved partially or
only in specific domains, and there is no generic and systematic approach.

To address the problems above, we focus on the refinement structure and propose
methods to explicitly handle the refinement structure from engineering perspective.

As a preliminary work, we propose a generic and systematic view of the refinement
of Event-B models. The problems above are generalized on the basis of the generic view
and we provide a generic approach to handle the problem.

On the basis of this view, we provide methods to improve the maintainability and
reusability of existing Event-B models as an instantiation of the generic approach. The
method supports reconstructing the refinement structure of existing models by support-
ing the construction of models about different sets of variables than those of original
models, but that keep consistencies defined in original models. The core of the method
supports the decomposition of a refinement step by finding certain model properties from
existing models and helping developers to find additional properties from proof for ex-
isting models to make new models consistent with the original ones. By combining the
decomposing of refinements with the composing of refinements, we provide a method to
help developers restructure a refinement chain according to given sets of variables to be
considered in each step.

We also tackle the problem of planning the refinement structure for a target system
before constructing its models. We view this problem as another instance of the generic
problem and propose methods to effectively search reasonable refinement plans and show
comprehensible views of the solution space. We define rationales of the refinement struc-
ture to avoid invalid refinement and follow common refinement strategies in practice. On
the basis of the rationales, we propose a search method that effectively removes invalid
and ineffective refinement plans and comprehensibly shows solutions.

In our case studies to evaluate the proposed methods, we succeeded in decompos-
ing large refinement steps in existing models, restructuring existing models to extract
reusable parts for construction of other models, and planning reasonable and effective
refinement plans from informal but structured descriptions of target systems. Consider-
ing the results and discussion on ways to elicit information necessary for our methods,
we conclude that our methods can help developers to utilize Event-B and its refinement
mechanism in software development.

論文要旨

高信頼なソフトウェアシステムの体系的な構築はきわめて重要である．形式的な表現の

仕様を構築する手法を用いると開発の早期の段階から対象システムを徹底的に検証するこ

とが可能になる．そのため，このような手法は特に厳密に高信頼なシステムの構築を可能

にする手法の 1つであると言える．Event-B という形式仕様記述手法を用いると，その柔

軟な詳細化機構により，複雑なシステムについて複数の抽象度を厳密に考慮することでそ

の構築と検証の複雑さを軽減することができる．そのため， Event-B は近年学術界と産業

界の両者からの注目を浴びている．その上， Event-B の柔軟な詳細化機構により，開発者

は詳細化の各段階で対象システムのどの要素に着目するか（詳細化構造）を柔軟に選択す

ることができる．

この詳細化機構は厳密で包括的な検証を支援するが， Event-B をソフトウェア開発に導

入する際には難しさが存在する．第 1に，現在多くの Event-B に関する研究はモデルの

構築の複雑さを軽減することを主眼においているが，モデルは構築された後にも利用され

る．構築されたモデルは保守されるべきであり，また他のモデルの構築のために既存のモ

デルを再利用する需要も高い．プログラムコードの保守の分野においては，自動化の程度

の大きいリファクタリングの支援ツールが利用されている．我々は Event-B のモデルに対

しても同様の手法が必要であると考える．第 2に，開発者はモデルの構築の前に詳細化構

造に関する計画を立てる必要がある．モデルの構築の前には厳密な仕様の表現がないため

この問題はより難しく，自動で支援できることは限られるが，どれだけの支援ができるか

を考察する価値があると思われる．問題のない詳細化計画の可能性は大量に存在する一方

で，直観に従って立てた計画に沿ってモデルを構築すると整合性のないモデルが構築され

たり詳細化機構を活かし切れないモデルが構築されかねないという問題がある．そのため

問題のない詳細化のデザインの可能性の分析の支援は重要である．しかし，既存手法では

この問題は部分的に解かれているのみであるかドメイン依存の手法で解かれており，一般

的で体系的なアプローチは提案されていない．

上記の問題に対処するために我々は詳細化の構造に着目し，詳細化構造を明示的・工学

的に取り扱う手法を提案する．

まず準備として， Event-B モデルの詳細化の一般的・体系的な捉え方を提案する．我々

は上記の問題をこの視点から一般化し，一般的なアプローチを提供する．

我々はこの視点に基づき，上記の一般化したアプローチの具体化として，既存の Event-B

モデルの保守性と再利用性を向上させる手法を提供する．この手法は既存の Event-B モデ

ルで定義された整合性を保ち，かつ元のモデルで記述されている変数の集合とは異なる変

数の集合に関する記述のなされたモデルの構築を補助することによって詳細化構造の再構

築を補助する．この手法の核となるのは既存のモデルから，また既存のモデルに関する証

明から適切な記述を開発者が探し出すことを補助し，それらをもとに新しいモデルを構築

することで，詳細化ステップの分割を補助する手法である．我々は，この詳細化ステップ

の分割手法と，詳細化ステップの結合手法とを提案し，それらを組み合わせることによっ

て，与えられた詳細化構造に従って開発者によるモデルの詳細化の再構築を補助する手法

を提案する．

我々はモデルの構築前に詳細化構造を計画する問題にも取り組む．我々はこの問題を上

記の一般化された問題の別の具体化として捉えて，効果的に問題のない詳細化計画を探索

し，結果の理解しやすいビューを出力する手法を提案する．本提案ではまず問題のある詳

細化計画を除き，よく採用される詳細化の戦略に従った出力を得るための理論的な根拠を

定義した．上記の根拠に基づき，問題のある詳細化計画や効果的でない詳細化計画を取り

除き，結果を分かりやすく一望できるような出力を与える手法を構築した．

提案手法の評価のためのケーススタディにおいて，我々は既存のモデルの大規模な詳細

化ステップを分割すること，新しいモデルを構築するために既存のモデルの部品を再利用

するために詳細化構造を再構築すること，そして対象システムに関する構造化されている

が非形式的な情報をもとに問題がなく効果的な詳細化計画を出力することに成功した．こ

れらの結果の考察に加えて提案手法のために必要な情報の獲得に関する議論を行った結果，

我々の提案手法は開発者がソフトウェア開発において Event-B とその詳細化機構を利用す

ることを支援できると結論づけた．

Acknowledgements

First and foremost, I would like to express the deepest gratitude to my super-
visor, Professor Shinichi Honiden, who has cultivated my fundamental attitude
toward research activity and given essential advice to me through frequent dis-
cussions. In addition, he provided me with an excellent research environment and
many quality opportunities to advance my research ability. Without his unfail-
ing and continuous support and encouragement, I would not have been able to
achieve my challenging goal.

I would also like to sincerely thank the thesis committee members — Associate
Professor Ichiro Hasuo as a chair and Professor Shigeru Chiba, Professor Akihiko
Takano, Professor Naoki Kobayashi, and Professor Masami Hagiya — for giving
detailed, constructive, and important feedback.

In addition, my heartfelt gratitude extends to Associate Professor Fuyuki
Ishikawa, who has guided me and provided lots of insightful feedback through
long and detailed discussions. He also connected me with many enthusiastic re-
searchers and students at various opportunities. With his help, I was able to
tackle various challenging problems.

I would also like to show my deep appreciation to Professor Alexander Ro-
manovsky for his kind help during my visits at the Centre for Software Reliability
of Newcastle University. My appreciation is extended to the researchers and citi-
zens at Newcastle upon Tyne who welcomed and guided me, including Dr. Alexei
Iliasov, Dr. Ilya Lopatkin, Dr. Carl Gamble, Dr. Budi Arief, Dr. Minh Tran, Dr.
Zoe Andrews, Dr. Richard Payne, Duncan Bennett, and Sarah Bennett. I am
indebted to them for interesting and comfortable experiences there, which greatly
improved my research and broadened my perspective.

Moreover, I am grateful to prominent researchers who I had discussions with
at our laboratory and conferences and who provided me with valuable feedback on
my work, including Professor Jean-Raymond Abrial, Professor John Fitzgerald,
Professor Cliff B Jones, Dr. Hironobu Kuruma, Dr. Thai Son Hoang, Profes-
sor Bashar Nuseibeh, Dr. Yijun Yu, Associate Professor Kenji Tei, Dr. Ryuichi
Takahashi, Dr. Kazunori Sakamoto, Dr. Takuo Doi, Dr. Yuta Maezawa, Pro-
fessor Nobukazu Yoshioka, Professor Yoshinori Tanabe, Dr. Shunichiro Suenaga,
Professor Zhenjiang Hu, Professor Fumihiro Kumeno, and Associate Professor
Hiroyuki Nakagawa. Research occasions with them have always been inspiring,
and I am fortunate to have met and interacted with them.

In addition, I would like to thank all members and visitors of Honiden Lab-
oratory at National Institute of Informatics. Through many memorable shared
experiences, I have been helped, amused, comforted, stimulated, and grown. I
would like to express special gratitude to former visitors Aivar Kripsaar and Dr.
Inna Pereverzeva, who helped me with intensive discussions and software imple-
mentation on my work. Their help was indispensable to achieving important
results. I am also particularly grateful to members and visitors of the formal
methods group and the software engineering group who have discussed our re-

search, including Dr. Taku Inoue, Dr. Johan Nyström-Persson, Fan Jiang, Fer-
nando Tarín, Lasse Berglund, Ksenia Nasedkina, Maxime Chereau, Bui Phi Diep,
Nguyen Hoang Anh, Massimo Bortolamei, Hadrien Luttiau, Katsuhiko Ikeshita,
Takaya Saeki, Shinnosuke Saruwatari, and Daichi Morita. I would like to extend
my gratitude to other colleagues as well, including Soramichi Akiyama, Shouichi
Kamiya, Shingo Horiuchi, Naoki Tsurumi, Kohsuke Yatoh, Susumu Tokumoto,
Kazuki Nishiura, Keiichiro Hoshi, Hiroki Sawano, Kiichi Ueta, Tomoya Katagi,
Ryo Shimizu, Atsushi Watanabe, Yukino Baba, Daisuke Fukuchi, Susumu Tori-
umi, Hirotaka Moriguchi, Katsushige Hino, Yusaku Kimura, Atsushi Suyama,
Nobuaki Hiratsuka, Satoshi Katafuchi, Valentina Balijak, Adrian Klein, Flo-
rian Wagner, Yoshiyuki Nakamura, Koichi Fujikawa, Yuki Inoue, Shengbo Xu,
Fernando Tarin Morales, Takayuki Suzuki, Shun Lee, Junto Nakaoka, Natsumi
Asahara, Yuta Tokitake, Kazuya Aizawa, Miki Yagita, Yasuhiro Sezaki, Kat-
suhiko Ikeshita, Masaki Katae, Moeka Tanabe, Yasuo Tsurugai, Paul Harvey,
Aurélien Vialon, Kazuyuki Honda, Zhen Cui, Ziyuan Wang, Takahiro Sugiura,
Keita Tsukamoto, Yetian Mao, Koki Kato, Shunpei Ito, Virginia Brassesco, and
Daniel Millevik.

I am grateful to staff at the University of Tokyo and National Institute of
Informatics who kindly supported my academic life, including Dr. Masayuki
Nii, Masaru Nagaku, Nao Kaneko, Kyoko Oda, Saki Narimatsu, Kazue Kusama,
Masaomi Soga, Yuko Yumoto, Kimiko Otani, and Akiko Shimada.

Furthermore, I wish to thank the friends I met in Nada High School, the
University of Tokyo, the Shoshikan dormitory, and meet-ups on my hobbies. They
have always stimulated my curiosity and broadened my perspective. During my
academic life, I shared interesting, relaxing, and refreshing moments with them
outside the laboratory. It has been a great pleasure spending time with them.

Lastly and mostly, I would like to express deep gratitude to my father Souichi-
rou, mother Satomi, and sister Natsuko, who have always supported me with love
throughout my life.

vi

Contents

List of algorithms . xii

1 Introduction 1
1.1 Background . 1
1.2 Problem and Motivation . 2

1.2.1 Refactoring . 2
1.2.2 Planning . 3

1.3 Contributions . 4
1.4 Organization . 5

2 Background on Event-B 7
2.1 Event-B . 7

2.1.1 Classical Approaches for Software Reliability 7
2.1.2 Features of Event-B . 8
2.1.3 Modeling in Event-B . 9

2.2 Structure of Event-B Specifications 10
2.3 Consistency of a Machine . 12
2.4 Refinement . 12
2.5 Consistency of Refinements . 13

3 Approach 15
3.1 Refinement Structure . 15
3.2 Explicit Predicates and Implicit Predicates 15
3.3 Problem and Approach . 17

3.3.1 General Problem and Approach 17
3.3.2 Refactoring . 18
3.3.3 Planning . 19

4 Refinement Refactoring 23
4.1 Approach . 23
4.2 Overview . 24
4.3 Symbols, Definitions, and Assumptions 24

4.3.1 Symbols about Given Input Information 24
4.3.2 Symbols about Output of Decomposition Method 24
4.3.3 Definitions of Terms in This Chapter 24
4.3.4 Assumption . 25

4.4 Decomposition . 25
4.4.1 Step 1 of Decomposing Refinement: Slicing 25
4.4.2 Step 2 of Decomposing Refinement: Complementing 29

4.5 Restructuring . 36
4.6 Feasibility of Finding CPs as Craig Interpolant 37

vii

5 Refinement Planning 41
5.1 Approach . 41
5.2 Rationales . 42

5.2.1 Core Rationale for Refinement Planning: Avoiding Mean-
ingless Refinements . 42

5.2.2 Rationales for Common Refinement Strategies 43
5.3 Planning Method . 44

5.3.1 Overview . 44
5.3.2 Preparing the Input . 45
5.3.3 Generating Refinement Plans 46
5.3.4 Simplification of Result View 49
5.3.5 Further Filtering with Heuristics 50

6 Case Studies 51
6.1 Evaluation of Refactoring . 51

6.1.1 Decomposing Large Refinement Steps 51
6.1.2 Extracting Reusable Parts of Machines 56

6.2 Evaluation of Planning . 58
6.2.1 Analysis of Refinement Design Space Exploration 59
6.2.2 Analysis of Generated Plans 61
6.2.3 Analysis of Input Robustness 62

7 Preliminary Analysis for Finding Information on Abstraction 63
7.1 Problem and Motivation . 63
7.2 Background on Problem Analysis 63
7.3 Requirements Information for Refinement 64

7.3.1 Gluing Properties . 64
7.3.2 Abstract Elements . 65
7.3.3 Abstract Properties . 65
7.3.4 Abstraction Fragment . 65

7.4 Abstraction of Problem Diagrams Using Patterns 66
7.4.1 Temporal Grouping . 68
7.4.2 Access Cheating . 68
7.4.3 State Transition Limiters 69
7.4.4 Realization of Properties . 69
7.4.5 Other Patterns . 69

7.5 Preliminary Experiment on Finding Abstraction Fragments 70

8 Discussion 72
8.1 Discussion on Refactoring . 72

8.1.1 Discussion on Refactoring Methods 72
8.1.2 Discussion on Application of Refactoring 74

8.2 Discussion on Refinement Planning 76
8.2.1 What Roles in Refinement Design Can the Planning Method

Play? . 76
8.2.2 Can the Planning Method Serve as a Foundation for Prac-

tical Tool Support on Refinement? 77
8.3 Discussion on Preliminary Phases 78

8.3.1 Does the Elicitation Method Facilitate Systematic Elicita-
tion of Abstractions to Mitigate the Complexity? 78

8.3.2 Do the Refinement Plans Derived by the Elicitation Method
Facilitate Valid Formalization in Each Refinement Step? . . 79

viii

8.3.3 Do the Refinement Plans Derived by the Elicitation Method
Facilitate a Smooth Process through the Refinement Steps? 79

8.4 Summary of Evaluation and Discussion 80

9 Related Work 82
9.1 Support of Modeling in Event-B . 82
9.2 Support of Refinement of Event-B Models 82
9.3 Arrangement and Refactoring of Formal Specification 83
9.4 Arrangement and Refactoring of Proof 83
9.5 Arrangement of Requirements and Informal Models 84
9.6 Bridging Informal Artifacts and Formal Artifacts 84
9.7 Application of Craig Interpolation 85

10 Conclusion 86
10.1 Summary . 86
10.2 Foresight . 87

10.2.1 Systematization of Elicitation Method 87
10.2.2 Thorough Experiments Including User Studies 87
10.2.3 Comparison of Multiple Specifications Constructed with

Refinement Restructuring 87
10.2.4 Various Applications of Refinement Refactoring 87

References 89

ix

List of Figures

2.1 Example: Cars on an island and bridge 10
2.2 Structure of Event-B context . 11
2.3 Abstract machine ma . 11
2.4 Invariant preservation of typ_a by evt_a in ma 12
2.5 Concrete machine mc . 13
2.6 Invariant preservation of inv_c1 by evt_c in mc (provable) 14

3.1 Part of concrete machine (about {a, b, c,ml_tl , il_tl}) of traffic
example . 16

3.2 Part of abstract machine (about {a, b, c,ml_tl}) of traffic example 16
3.3 Explicit predicates and implicit predicates of abstract machine and

concrete machine. Implicit predicates of models are placed in areas
with hatching. 17

3.4 Refactoring approach . 20
3.5 Planning approach . 22

4.1 Arbitrary variables of MB (invalid case) 25
4.2 Valid variables of MB . 26
4.3 mb0: machine obtained with slicing from ma and mc 27
4.4 Interpolation of refinement structure of events 30
4.5 Screenshot of SliceAndMerge 31
4.6 Invariant preservation of inv_c1 by evt_b in mb0 (unprovable) . . 31
4.7 Proof of mc/evt_c/inv_c1/INV 33
4.8 Proof of mb/evt_b/inv_c1/INV 33

5.1 Difference between two refinement plans 42
5.2 Overview of using our planning method 45
5.3 Example of search tree generated by planner 49
5.4 Refinement plans view (introduced elements so far) for island example 49
5.5 Refinement plans view for island example with scores of edges . . . 50

6.1 Specification related to proof of m3/LeavePhase1/inv40/INV . . . 53
6.2 PO m3/LeavePhase1/inv40/INV 54
6.3 Proof tree of m3/LeavePhase1/inv40/INV 54
6.4 A sequent inferred from PO m3/LeavePhase1/inv40/INV 55
6.5 Aspects introduced in each step of original model MO

1 56
6.6 Aspects of new model MN

3 . 56
6.7 Synchronization of events of MO. Events of the controller are

named in lower case, whereas events of the environment are named
in upper case. 59

6.8 Synchronization of events of MN 60

7.1 Problem diagram of traffic example 64
7.2 Overview of our elicitation method 66

x

7.3 Stepwise abstraction of problem diagram 67

xi

List of Tables

4.1 Types of POs newly generated by adding CPs 32

6.1 Results of case study 1 of refactoring method 52
6.2 Results of case study of planning. Numbers of properties, elements,

relationships between elements, generated plans, and simplified plans 59

7.1 Target systems in user experiment 70
7.2 Refinement plans comparison . 71
7.3 Number of requirement clauses and elements in Experiment 2 of

elicitation method . 71

xii

List of Algorithms

1 Slicing invariants . 27
2 Slicing events . 28
3 Merging of machines . 36
4 Core of our planner tool . 47

xiii

Citations to Printed Publications

Parts of this thesis have appeared in the following publications.

Proceedings

1. Tsutomu Kobayashi and Shinichi Honiden, “Towards Refinement Strategy
Planning for Event-B,” In Proceedings of Workshop on the Experience of
and Advances in Developing Dependable Systems in Event-B (DS-Event-B
2012), pp. 72–81, October 2012.

2. Tsutomu Kobayashi, Fuyuki Ishikawa, and Shinichi Honiden, “Understand-
ing and Planning Event-B Refinement through Primitive Rationales,” In
Proceedings of The 4th International Conference on Abstract State Ma-
chines, Alloy, B, TLA, VDM, and Z (ABZ 2014), pp. 277–283, June 2014.

3. Tsutomu Kobayashi, Fuyuki Ishikawa, and Shinichi Honiden, “Refactoring
Refinement Structures of Event-B Machines,” In Proceedings of The 21st
International Symposium on Formal Methods (FM 2016), pp. 444–459,
November 2016.

4. Tsutomu Kobayashi, Fuyuki Ishikawa, and Shinichi Honiden, “Stepwise Re-
finement of Software Development Problem Analysis,” In Proceedings of
The 35th International Conference on Conceptual Modeling (ER 2016), pp.
488–495, November 2016.

xiv

Chapter 1

Introduction

1.1 Background

Software is a vital infrastructure of society, and systematic construction of highly
reliable software systems is crucial. Formal methods, namely constructing the
specifications of target systems with formal notations and verifying them, have
been studied and practiced to increase the reliability of software systems. In
particular, some formal specification methods support the stepwise refinement
approach, which gradually converts initial specifications to make specifications
closer to implementation, have been considered to be useful. Program code (or
other kinds of concrete software artifacts) obtained with stepwise refinement is
considered to be correct by construction, meaning it is guaranteed to be a concrete
version of the initial specification by a systematic refinement mechanism.

Nowadays, a few decades after the proposal of classical formal methods, both
the scale and the application area of software have become significantly large. As
a result, today’s software is expected to interact with various components of an
environment and form highly complex systems as a whole. Therefore, a complex
process of inspecting the interaction between software and its environment is
important. However, the starting point of that process, namely constructing an
initial specification of such systems, is difficult due to its complexity. Thus, there
have been demands for a rigorous method for constructing initial specifications of
target systems that satisfy requirements.

Event-B [2] has been proposed to address this problem and has been gaining
much attention from academia and industry [68, 6]. It aims at modeling sys-
tems and reasoning on models to construct a comprehensive initial specification
that is correct by construction. To this end, Event-B supports a flexible stepwise
refinement mechanism (horizontal refinement) for rigorous and evolutional mod-
eling. In Event-B, developers can construct a simple and abstract model first,
then construct a concrete model that includes more aspects of the target system,
and then check both the consistency of models themselves and the consistency
between the abstract model and the concrete one. Developers can check such con-
sistencies with theorem proving in a set-theoretic mathematical language. Proof
obligations are systematically generated by the tool platform of Event-B so that
developers can concentrate on proofs. By repeating this process, a comprehen-
sive specification can be constructed in a stepwise and flexible manner, and thus,
the method mitigates the complexity of modeling and the verification of complex
system models.

Because of its advantages, Event-B has been used in various industrial projects.
In Japan, six major software vendors and a research institute formed Depend-

able Software Forum (DSF) [35], which is a joint research forum that aims to

1

apply advanced methods to reduce failures of software systems. A working group
of DSF chose Event-B as the primary method to be applied to its projects, includ-
ing complex enterprise systems, and published resulting idioms and a guideline
[7]. In addition, researchers in Japanese industry have been studying applications
and extensions of Event-B, such as crossed-project reference of Event-B models
[50].

A large 4-year project in the EU, named Deploy [30, 68] and involving 15 or-
ganizations from academia and industry, intended to apply Event-B to large-scale
industrial software systems. Applications of the project include many challenging
and interesting projects in various areas. Researchers in SAP AG applied Event-
B to model business software that involves complex configuration options and
business processes. A team with Space Systems Finland Ltd. constructed models
of satellite systems from Ada code as a document. A Project with Robert Bosch
GmbH applied Event-B to model automotive systems and dealt with problems
with requirements analysis and timed systems. A team of XMOS modeled the
ISA of XCore, a commercial microprocessor made by the company. The model of
XCore [75] consists of 97 components, and it is one of the largest publicly available
Event-B models. The Deploy project produced highly successful results as not
only products and documents but also methodologies and their tool implementa-
tions.

1.2 Problem and Motivation

The unique refinement mechanism of Event-B allows developers to flexibly choose
what elements and aspects are introduced in each step of refinement. We focus on
this point, refinement structure, and address problems in exploiting Event-B in
systems development. To this end, we formalize the general problem of selecting
refinement structure and provide concrete solutions based on the general problem.
The remainder of this section describes the concrete problems and motivations of
our work.

1.2.1 Refactoring

Maintenance of system artifacts — including eliminating faults, dealing with
changes of environment and requirements, and extending functionality — is neces-
sary in software development. Thus, improving maintainability of system artifacts
is crucial both during and after development. Although maintenance of Event-B
models has not yet been actively studied, it is obviously important to improve
their maintainability.

In fact, the experiences from Deploy project [68] highlight the importance
of improving the maintainability of Event-B models. Reports on development
of satellite systems and automotive systems describe challenges of dealing with
changing requirements and evolving models. In addition, many deliverables re-
ported the development of Event-B models driven by teams, where understand-
ability of Event-B models is considered crucial.

Improving reusability is another important activity in software develop-
ment. To improve reusability of program code, various approaches — including
modularization, object-oriented development, aspect-oriented development, and
component-based development — have been proposed. Event-B and its exten-
sions also facilitate reuse of artifacts (i.e., models). In modeling in Event-B, an
abstract model of a target system tends to be generic enough to be used as an

2

abstract model of another target system. Thus, Event-B’s refinement mechanism
encourages reusing models.

Reusing Event-B models is considered important since formal modeling and
verification cost. Researchers involved in industrial projects have stressed this
importance because of the cost of modeling and verification in Event-B [68]. For
example, reports on the development of satellite systems and automotive systems
describe the importance of reuse and evolution of Event-B models. Extensions of
Event-B with patterns [46], abstract data structure [73], and the decomposition/-
composition of models [5, 18, 38] have been proposed from such experiences.

There have been many studies on restructuring and modularizing program
code. In particular, refactoring [36], namely reformation of the structure of ar-
tifacts that preserves their behavior, is considered an effective approach for im-
proving maintainability and reusability, and thus, it has been widely studied and
practiced for program code. Its benefits include improvement of extensibility,
modularity, reusability, understandability, and maintainability of source code.
Refactoring formal specifications has also been studied, including inlining, move,
transformation, and parameterization of expressions in formal specifications.

The refinement structure of Event-B models highly affects their maintainabil-
ity and reusability, because it reflects aspects that are considered in each abstrac-
tion level. For example, despite the refinement mechanism, introducing too many
aspects in one refinement step is common in practice due to dependencies be-
tween requirements and elements of target systems. Models constructed in such
a way tend to be difficult to comprehend and thus lack maintainability. Another
common situation is that a developer who plans to reuse existing Event-B models
finds that reusable aspects were introduced in later steps of refinement (concrete
models), and therefore, it is difficult to separate them from non-reusable aspects
in the same steps. Thus, although the refinement mechanism facilitates the reuse
of Event-B models, it is not straightforward.

Despite refinement structure being important for maintainability and reusabil-
ity, the refactoring refinement structure has not been studied. The existing refac-
toring method for Event-B models is only for renaming identifiers in models.

As a foundation to support refinement restructuring, we propose a method
for decomposing refinements. In particular, for given consistent (i.e., proven)
machines MA and MC such that MC refines MA, our method automatically
constructs a part of an intermediate machine MB and helps developers to manually
complement it so that MB is consistent with given machines, namely MC refines
MB and MB refines MA. This enables users to decompose a refinement step into
several substeps. The decomposition method can be combined with the merging
of refinements, which is simpler than decomposition, to restructure refinements.

We show the usefulness of refinement restructuring through two case studies.
The first shows how decomposing large-scale refinements can improve the main-
tainability of existing machines. The second shows how to extract parts of existing
machines and reuse them for constructing new machines of another system that,
at first glance, looks different from the original system.

1.2.2 Planning

Because of the flexibility of the refinement mechanism of Event-B, it is necessary
for developers to plan the refinement structure of Event-B models. The planning
should be done before the construction of models because changing the refinement
structure causes changes of the model description, and thus, a developer needs to
redo the construction and verification of a model.

3

However, planning a refinement structure is difficult. Unless developers have
experience constructing models of a system that is similar to the target system,
planning is not straightforward, and thus, they need to repeat trial and error.
Although developers have many choices of model elements in each step, too many
choices can lead to difficulty in deciding plans and a failure of proving. When
an unstructured requirements document of the target system is given, developers
are usually unsure of what to do to even start planning. Moreover, due to consis-
tency checking, a naive plan, following the intuitive “from abstract to concrete”
prescription, may fail and cause rollback (e.g., when possible state changes are
unspecified in a previous step). If developers fail to do sufficient proving, they
may need to subsequently undertake a demanding task, namely reconstruction
and proving the models. Although the number of developers using Event-B is
increasing, experienced developers tend to rely on their artisanship and repeat
trial and error to plan refinement structures.

Reports about industrial experiences show that planning is one of the most
difficult and important parts in modeling in Event-B. The importance and diffi-
culty of planning refinement have been reported from experiences of developing
satellite systems, developing systems on military aircraft [68], and providing lec-
ture courses on Event-B [7]. A report from DSF [7] describes that the skill of
planning refinement is difficult to acquire, and engineers who attended a lecture
by DSF tried to learn the artisanship of refinement planning by reading a text-
book about Event-B [2]. The report also mentions the large cost of rework from
an experience of a team who constructed a model by following an inappropriate
plan.

To the best of our knowledge, most of the existing studies have never tried to
solve the problem. There are teaching materials for Event-B, such as the book by
the founder of the method [2], as well as a number of application studies. However,
they only report successful experiences of modeling and do not discuss how they
developed the refinement plans or how good the plans are compared with other
possible plans. Other studies provide methods for constructing Event-B models,
but some only provide one way [62], while others provide only domain-specific
knowledge [86] and thus lack generality. Moreover, they do not discuss how and
why the methods and guidelines derive good refinement plans. Therefore, there
is a demand to provide a generic method to support planning and analyzing
refinement structure.

We propose a method to derive good refinement plans by analyzing the sys-
tem’s elements, functionalities, and dependencies. Moreover, we implemented a
tool as a proof of concept and applied the tool to several systems with different
properties and analyzed the relationships between properties of the systems and
the results (Section 5.3). We describe how our method supports planning and
comparison of possible refinement plans of several target systems through a case
study.

1.3 Contributions

In this section, we summarize our contributions in this study.
To address challenges in development using Event-B, we explicitly manipu-

late refinement structure — that is, what aspects are introduced in each step
of refinement — from the engineering perspective. Our proposals below help
developers to plan and reconstruct refinement structure by considering the de-
pendency and consistency to control usability, comprehensibility, and complexity
of Event-B models.

4

• Definitions of refinement structure as means to explicitly handle differences
between an abstract model and its concrete model.

• Methods for helping developers to refactor the refinement structure of ex-
isting Event-B models.

• Methods for helping developers to explore possible refinement structures.

In addition, we discuss case studies we conducted as follows:

• Case studies demonstrating that refactoring method can improve maintain-
ability and reusability of existing Event-B machines.

• A case study to analyze possible refinement structure of various target sys-
tems and their characteristics.

Finally, we also discuss a possible preliminary phase for our methods.

• Discussion on a method to elicit information on refinement by analyzing
problem structures of target systems.

1.4 Organization

The rest of this thesis is organized as follows.

Chapter 2 We provide background on modeling and verification in Event-B
with an example to explain our methods.

Chapter 3 We describe basic notions that are important for our approach, such
as refinement structure and implicit predicates, in Sections 3.1 and 3.2. We
then explain problems we tackle and our approaches in Section 3.3.

Chapter 4 We propose a method for supporting refactoring of the refinement
structure of existing Event-B machines. In Section 4.4, we describe a method
to decompose a refinement step into two refinement steps by choosing a valid
set of variables and slicing from the existing machines, and to help devel-
opers manually complement the model under construction to have consis-
tencies with the original models. To realize restructuring of the refinement
structure, we then extend the decomposition method by combining it with
a merging of two refinement steps into a single step in Section 4.5. We also
explain the feasibility of automating our methods in Section 4.6.

Chapter 5 We tackle an advanced problem, namely planning the refinement
structure before construction of actual modeling. In Section 5.2, we define
rationales for planning so that our method eliminates obviously meaningless
refinement plans and reflects common refinement strategies in practice. We
then, in Section 5.3, explain our method for constructing plans of refinement
and generating a simple view of them.

Chapter 6 We conduct case studies to evaluate the usefulness of our meth-
ods. Case studies of our refactoring method and our planning method are
explained in Sections 6.1 and 6.2, respectively.

5

Chapter 7 We describe a possible approach to analyze problem structures
of target systems for finding information that strongly affects refinement
strategies. We explain the problem and motivation in Section 7.1. In Sec-
tion 7.2, we give a brief description of the problem diagram, which we use as
informal representation of target problems. Then we describe various kinds
of information of refinement in Section 7.3. We show our method to find
such information in Section 7.4. A preliminary experiment on the method
is explained in Section 7.5.

Chapter 8 We discuss on our methods and the results of case studies. In Sec-
tions 8.1 and 8.2, discussions from the results of case studies (Chapter 6)
are described. Discussions on preliminary phases (Chapter 7) are described
in Section 8.3. The discussions are summarized in Section 8.4.

Chapter 9 We present related work to our methods in the areas of support of
modeling and refinement in Event-B, arrangement and refactoring of formal
specification and proof, arrangement of requirements and informal models,
bridging informal artifacts and formal artifacts, and application of Craig
interpolation.

Chapter 10 Finally, we conclude this study and give directions for future work.

6

Chapter 2

Background on Event-B

2.1 Event-B

2.1.1 Classical Approaches for Software Reliability

Studies on verification methods and validation methods for enhanced software
reliability have a long history and a large variety of approaches.

Software testing is one of the dynamic verification methods and has been one
of the most active areas of software engineering research. In software development
projects in industry, testing is indispensable. However, although testing effectively
reveals the existence of faults, it is not enough for the safety critical systems
because it is not exhaustive [31].

Formal methods have been proposed to improve the reliability of software.
Representing target systems in a formal manner has the following merits: First, it
helps developers to find faults in an early phase of development, thus significantly
reducing the cost of repairing them. A study [80] reports that the cost to repair
a defect in the beta-testing phase is around 15 times the cost of dealing with the
same defect in the requirements gathering analysis/architectural design phase.
Second, formal specifications can be implemented in various ways because they
are usually independent of implementation details. Finally, rigorous expressions
facilitate scientific analysis and verification on the basis of mathematical logic.

Model checking is a major formal method approach that inspects the speci-
fication of state transition of particular behavior of software. A model checker
thoroughly and automatically searches the state space of target specification and
checks whether the specification satisfies requirements. It gives a counterexample
in cases where specification does not satisfy given requirements. It is especially
effective for inspecting the complex path and order of program executions. Many
model checkers — such as SPIN [48], SMV [21], and Java PathFinder [43] — have
been proposed and widely used in practice.

Another family of major formal method approaches relies on mathematical
deduction for reasoning. A typical method of such approaches involves theorem
proving on the formal description of data structure and operations of the whole
target system. Although such methods require that users are experienced in
mathematical reasoning, they are effective for reasoning on data structure and
each operation.

Some of such methods support an approach called stepwise refinement [84].
Stepwise refinement aims at correctly refining the correct specifications to obtain
the correct program code and realizes the code development concept that is correct
by construction. Such methods are based on mathematical foundation for stepwise
refinement that has long been studied [47, 10].

Notable methods that facilitate stepwise refinement include several methods

7

proposed by Jean-Raymond Abrial. Z notation [74], which represents specifica-
tions of program with set-theoretic notation and first-order logic, was proposed
in 1977. It has been standardized as ISO/IEC 13568:2002 and applied to various
projects including large-scale industrial ones [44].

In the early 1990s, Abrial proposed B method [1], which can be considered
a successor of Z notation. With influence from another famous formal speci-
fication method, VDM [54], specifications of B method are based on notation
of abstract machines with operations and have clearer correspondence with pro-
grams. The refinement mechanism of B method enables rigorous construction of
implementation specification from initial specification by considering the weakest
precondition of operations. Tool implementation, such as Atelier B [23], supports
generation of proof obligations for correctness of refinement and discharging some
proof obligations using automatic provers. The B method has been applied to
many large-scale industrial projects, including ones for developing the auto-pilot
system of a Paris metro line (Météor project) [13] and shuttles in an airport [11].

Nowadays, the scale and complexity of software systems have significantly
grown. The primary causes of the complexity of software systems include interac-
tions of software and its environment [52] because the application area of software
has widened. Such interactions are key properties in recent remarkable system
paradigms, such as cyber physical systems, system of systems, and systems of
engagement.

Although the correct by construction approaches described above can be used
to derive programs in such complex systems in theory, they rely on the validity
of the initial specification. Because it is difficult to check whether the initial
specification of such complex systems is valid, this complexity prevents developers
from applying classical correct by construction approaches in practice. This is a
problem of complexity in systems engineering. In other words, developers need to
face the complexity of systems including developed software and its environment,
in the design phase before constructing programs.

Therefore, it is important to analyze the whole system and problems that
should be solved by constructing programs so that developers can construct spec-
ification that satisfies requirements on applications. To this end, developers need
to discuss the whole system by reasoning on models about functionalities of a
software system and assumptions on its environment.

This approach—validation of problems—is different from validation of pro-
grams, which checks whether programs satisfy software properties such as no
access to null pointer. In Abrial’s book [2], he explained this as follows:

In doing this as engineers, we are not supposed to instruct a computer;
rather, we are supposed to instruct ourselves.

B method and other verification methods — such as testing, abstract interpreta-
tion, and model checking — are usually used to validate not initial specifications
but programs.

2.1.2 Features of Event-B

To address this problem, Abrial proposed a successor of B method named Event-
B [2]. The refinement mechanism of B method aims to design programs with a
fixed interface, and it does not allow changing extensional elements of the target
system, such as components and input/output of them. This restriction prevents
the construction of complex initial specification of the whole system. Conversely,

8

refinement in Event-B is designed to allow the addition of components and func-
tionalities to facilitate flexible and rigorous construction of complex initial speci-
fication, including that of the target system’s interfaces.

In addition, the refinement of B method consists of simple steps, such as trans-
lating set operations into array operations, and thus can be automated (BART
tool [67]). In contrast, by using refinement in Event-B, developers can choose
what aspects are to be handled in which order in each step, as well as what
elements (e.g., variables) are introduced to specify each aspect.

Event-B has been applied to various large-scale projects, such as the Deploy
project [30] and Advance project [6] of the EU. Moreover, there has been a pro-
posal to apply Event-B to advanced systems, such as enterprise systems [16] and
hybrid systems [77, 12].

Formalism of Event-B is influenced by those of Action Systems [9, 20], TLA+
[56], and UNITY [65]. The behavior of target systems is represented with guarded
commands as events, and thus, Event-B models are considered descriptions of
observed phenomena of target systems rather than a high-level programming lan-
guage.

The refinement mechanism of Event-B supports horizontal refinement that
allows evolutionary modeling based on refinement (i.e., gradual addition of el-
ements of the target system through refinement). Horizontal refinement helps
developers to do rigorous modeling while mitigating the complexity of modeling
and verification by distributing it amidst multiple steps. Contrary to refinement
in B method (vertical refinement), which has an inherent order of refinement, re-
finement of Event-B has many possible orders. This flexibility enables complexity
mitigation, but it poses unique difficulties, as described in Section 1.2.

2.1.3 Modeling in Event-B

In modeling in Event-B, developers construct specifications with a set of ma-
chines. After constructing an abstract machine, they introduce more aspects of
the target system by constructing a new machine with more details and verifying
the consistency between the new machine and the abstract one.

In modeling in Event-B, developers first construct a simple abstract model
and then iteratively construct concrete models by gradually introducing various
elements of the system. For example, in the first example in a book [2] by the
founder of Event-B, models are constructed, as illustrated in Figure 2.1. The
target system is a controller of traffic lights that regulate the movements of cars
that enter and leave a bridge from the mainland to an island. The regulations
include the capacity of the whole bridge and island, and the fact that the bridge
is one way. In the initial model (illustrated on the left), the bridge and the island
are abstracted to being outside the mainland by combining them. The model
specifies the properties as invariants (e.g., number of cars outside the mainland
is less than or equal to its capacity) and behaviors as events (e.g., number of
cars outside the mainland increases) of cars leaving and entering the mainland.
The second model treats the bridge and island separately and incorporates new
properties, such as the one-way property. The third model considers properties
of traffic lights that are consistent with the properties discussed in the previous
models. After that, more elements, such as car sensors and detailed functionalities
of the controller, are introduced through further refinement.

Once a model is constructed, it is verified in terms of its own self-consistency
and its consistency with previous models. The consistency properties include the
application constraints described above and rules imposed by Event-B. In addi-

9

Outside mainland

out

in

Island Bridge

out

in
regulate

regulate

(# cars is constrained by capacity)
Mainland

(one-way)
Signals represent

regulations

Figure 2.1: Example: Cars on an island and bridge

tion to consistency as a specification, developers want to prove that an application
satisfies requirements. Refinement enables them to do this in multiple steps in-
stead of proving in one shot. Although application constraints are basically about
safety (i.e., something bad never occurs), because they are expressed as invariants,
recent studies [45] propose methods to prove liveness properties (i.e., something
good ultimately occurs) by expressing them as multiple lemmas in Event-B nota-
tion. Valid refinement guarantees that behaviors of the concrete model simulate
those of its abstract model, and properties that hold for an abstract model also
hold for its concrete model. Therefore, the refinement mechanism decomposes
a task for proving that a property holds for a concrete model into two smaller
tasks, namely proving that the property holds for an abstract machine and prov-
ing the consistency of refinement. Thus, refinement helps developers mitigate the
complexity of verification.

The Rodin platform [3], which is the development environment of Event-B,
automatically generates proof obligations for consistencies and helps developers
discharge them by providing automatic provers and an interface for manual proof.
Thus, developers can use automatic provers to discharge simple proof obligations
and try to manually discharge proof obligations that cannot be discharged au-
tomatically. Proof obligations that cannot be discharged indicate that there are
inconsistencies in models and that a developer needs to modify models. Rodin
can be extended by providing plugins, and various extensions have been proposed
and implemented [33].

2.2 Structure of Event-B Specifications

A model in Event-B is composed of contexts and machines. Static properties of the
target system are specified in contexts, whereas the system’s dynamic properties
are specified in machines as predicates of invariants and events.

Figure 2.2 shows the structure of a context.
In the sets clause, user-defined data types are declared as carrier sets. All

constants and variables in Event-B must be typed using carrier sets or primitive
types such as Boolean values and natural numbers. In the constants clause,
constants of the target system are declared. In the axioms clause, properties of
carrier sets and constants are described. Carrier sets are often declared as a set of
multiple constants, as shown in Figure 2.2. Types of constants are also described
in this clause. A context can be defined as an extension of another context. If
context C extends another context D, carrier sets, constants, and axioms defined
in D can be referred in C.

Machines can refer to specifications in contexts. The main part of a specifi-
cation of events consists of guards and actions. Guards of an event describe the
necessary condition for executing the state transitions of the event. Actions de-
scribe the state transitions of an event with before-after predicates (BAPs), which

10

<context_identifier >

extends extended_context

sets
TRAFFIC_LIGHTS_COLOR

constants
red
green

axioms
axm_1:

TRAFFIC_LIGHTS_COLOR = {red , green}
axm_2: red ̸= green

Figure 2.2: Structure of Event-B context

variables : a, b

Event evt_a

when
grd_a1: 0 ≤ a

then
act_a1: a :| a′ = a+ 1
act_a2: b :| b′ = b+ 2

end

typ_a: {a, b} ⊂ N

Event initialisation

begin
init_a1: a :| a′ = 0
init_a2: b :| b′ = 0

end

Figure 2.3: Abstract machine ma

are relationships between the pre and post states of variables.
For example, a machine ma (Figure 2.3) has specifications of variables a and b,

invariant typ_a, and events initialisation and evt_a. An action is composed
of the variables that are changed by the action and a BAP. In BAPs, the after
states of variables are expressed using variables with primes, such as a′. In Figure
2.3, event evt_a increases the values of a and b by 1 and 2, respectively, and it
can be executed if 0 ≤ a.

In an invariants clause, invariants not only about variables of the current
machine but also variables of the refined machine can be specified, while guards
can only use variables of the current machine. If an invariant has both variables
of abstract machine and those of concrete machine, the invariant is called a gluing
invariant. Thus, gluing invariants semantically “glue” together the state spaces
of two specifications. For instance, in the island example, the first refinement (a
specification depicted in the middle of Figure 2.1) has a gluing invariant such that
“the number of cars outside the mainland is equal to the sum of number of cars
on the bridge and number of cars on the island.” This gluing invariant describes
semantic relationships between a variable of the initial specification (number of
cars outside the mainland) and variables of the first refinement (the number of
cars on the bridge and the number of cars on the island). Gluing invariants are
very important for considering and planning refinements in Event-B. Without
gluing invariants, it is impossible to reason about the consistency of refinements
(Section 2.5).

11

typ_a

BAPof act_a1

BAPof act_a2

. . .
⊢
Modified typ_a

{a, b} ⊂ N
a′ = a+ 1
b′ = b+ 2
. . .
⊢
{a′, b′} ⊂ N

Figure 2.4: Invariant preservation of typ_a by evt_a in ma

2.3 Consistency of a Machine

The Rodin platform [3] generates sequents as proof obligations (POs) based on
specifications on a machine. Consistency of a machine is guaranteed by proving
POs. When POs cannot be discharged, developers need to modify the specifica-
tion.

There are several POs to guarantee a machine’s consistency. A primary kind
of such POs is invariant preservation (INV), which is generated for each pair of an
event and an invariant that contains variables affected by the event. INV about
an event e and an invariant i (called e/i/INV) means that i still holds after an
occurrence of e. The formal notation of e/i/INV is as follows:

A ∧ I ∧G ∧ BA1 ⇒ i[v′/v],

where A, I, G, BA1 , and i[v′/v] respectively denote axioms of the referred con-
text, invariants of the machine, guards of e, before-after predicates in actions of
e, and a substitution of all free occurrences of variables v in i by after-states of v
(v′).

For example, the PO evt_a/typ_a/INV of ma is as shown in Figure 2.4.

2.4 Refinement

In modeling in Event-B, new aspects and details are gradually introduced to a
machine through a refinement mechanism. A machine MC can be defined as a
refinement of another machine MA. Here, MC and MA are called a concrete
machine and an abstract machine, respectively.

We use the symbols VA and VC to denote MA’s variables and MC’s variables,
respectively. The invariants in a concrete machine MC can refer to VA in addition
to VC, whereas events of a concrete machine must not be written with variables
in VA \ VC. Those that refer to both variables in VA and those in VC are called
gluing invariants, because they connect the state spaces of two machines.

VC does not need to be a superset of VA. If VA ̸⊆ VC, some of the variables in
VA are replaced with some of the variables in VC. In such a replacement, developers
also need to provide gluing invariants that refer to the replaced variables (in VA)
and replacing variables (in VC), in order to prove consistency between an abstract
machine and a concrete machine.

Moreover, events in MC may refine events in MA. Concrete events, which
refine events in the abstract machine (abstract events), need to have guards that
are stronger than the guards of abstract events. Also, the actions of concrete
events should simulate the actions of their abstract events.

For instance, suppose that machine mc (Figure 2.5) 1 is defined as a refinement
of ma (Figure 2.3). In mc, a variable a is inherited from ma; variables c, d, e, and f

1Assume that a function mod2(n) that returns nmodulo 2 is defined in a context.

12

variables : a, c, d, e, f

Event evt_c

ref ines evt_a

when
grd_c1: 0 ≤ a ∧ 0 ≤ c
grd_c2: mod2(a+ f) = 0

then
act_c1: a :| a′ = a+ 1
act_c3: c :| c′ = c+ 1
act_c4: d :| d′ = d+ 1
act_c5: e :| e′ = f + 2
act_c6: f :|

f ′ = f + 3
end

typ_c: {a, c, d, e, f} ⊂ N
gluinv_c1: b = c+ d
inv_c1: mod2(a+ e) = 0 ⇒ a < 1
inv_c2: mod2(e+ f) = 1

Event initialisation

begin
init_c1: a :| a′ = 0
init_c3: c :| c′ = 0
init_c4: d :| d′ = 0
init_c5: e :| e′ = 1
init_c6: f :| f ′ = 2

end

Figure 2.5: Concrete machine mc

are newly introduced; and a variable b, which is specified in ma, has disappeared.
The gluing invariant gluinv_c1 describes the relationship among b, c, and d.
Event evt_c is defined as a concrete event of evt_a of ma.

The refinement mechanism enables two styles of refinement, namely, grad-
ual addition of concrete elements (horizontal refinement) and transformation of
expressions to make them closer to the implementation (vertical refinement).

2.5 Consistency of Refinements

POs are generated not only for a machine’s self-consistency but also for consis-
tency of a machine with its abstract machine.

One of the primary kinds of POs for consistency of a refinement is called guard
strengthening (GRD), which is generated for each refinement of an event. GRD
about a guard g of an abstract event eA that is refined by a concrete event eC
means that eC is only enabled if g holds. The formal notation of eA/g/GRD is
as follows:

A ∧ I ∧ J ∧H ∧W ⇒ g,

where J , H, and W respectively, denote invariants of the concrete machine, guards
of the concrete event, and witnesses of the concrete event. Note that I here
denotes the conjunction of invariants of not only a machine directly refined by
the concrete machine but also machines that are recursively refined.

Another important PO is called action simulation (SIM), which is generated
for each refinement of an event. SIM about an action a of an abstract event eA
that is refined by a concrete event eC means that state transitions of eC are not
contradictory with eA’s state transitions. The formal notation of eA/a/SIM is as
follows:

A ∧ I ∧ J ∧H ∧W ∧ BA2 ⇒ a,

where BA2 denotes before-after predicates of the concrete event.
Moreover, PO of invariant preservation is also generated for a refinement with

an extended form as follows:

A ∧ I ∧ J ∧H ∧W ∧ BA2 ⇒ i[v′/v].

For example, the PO mc/evt_c/inv_c1/INV is shown in Figure 2.6.

13

grd_c2

BAPof act_c1

BAPof act_c5

. . .
⊢
Modified inv_c1

mod2(a+ f) = 0
a′ = a+ 1
e′ = f + 2
. . .
⊢
mod2(a′ + e′) = 0 ⇒ a′ < 1

Figure 2.6: Invariant preservation of inv_c1 by evt_c in mc (provable)

14

Chapter 3

Approach

3.1 Refinement Structure

The main objective of modeling in Event-B is verification of certain model prop-
erties concerned with functionalities of the state space and state transitions. Such
properties are expressed as predicates, such as invariants, guards, and before-after
predicates. Consistencies of models are verified by discharging POs, which are
generated as instances of PO patterns (such as INV, GRD, and SIM) with pred-
icates in the models. To specify predicates, developers need to declare variables
of predicates in models. We treat variables and predicates as primary objects of
our approach.

The refinement mechanism of Event-B is designed for gradual addition of as-
pects of target systems to models while keeping properties of abstract models.
Thus, a refinement in Event-B involves gradual addition of variables and predi-
cates to models. One of the most important features of Event-B is the flexibility
of the refinement mechanism. Developers have many choices of what variables
are added to models in each step.

In this thesis, we are interested in what variables are declared in each step of
refinement. We call a sequence of sets of variables declared in each refinement step
refinement structure. For example, a possible refinement structure for modeling
a target system about aspects that correspond to variables v1, v2, v3, and v4
is [{v1}, {v1, v2, v3}, {v1, v2, v3, v4}]. This structure denotes that there are three
steps of refinement, and sets of variables {v1}, {v2, v3}, and {v4} are introduced
in the first, second, and third step, respectively.

Refinement structures dominate Event-B models because predicates in each
refinement step are specified as a projection of properties of the target system
onto state spaces of variables of the step. Moreover, as we discuss later, refine-
ment structures affect effectiveness of Event-B’s refinement mechanism, such as
effectiveness for improving understandability, maintainability, and reusability of
models and effectiveness for mitigating complexity of modeling and verification.
Therefore, it is important to study refinement structure.

3.2 Explicit Predicates and Implicit Predicates

Obviously, some predicates that are not explicitly specified in a model can be
inferred from the model. For instance, a part of a concrete machine of traffic
example (described in Section 2.1.3) is shown in Figure 3.1. It indicates that a
predicate ml_tl = red , which is not directly written in the model, holds in an
event IL_out_red_concrete, since grd_c1 (il_tl = green) and inv_c7 (ml_tl =
red ∨ il_tl = red) imply it.

15

variables : a, b, c,ml_tl , il_tl

inv_c1: ml_tl ∈ {red , green}
inv_c2: il_tl ∈ {red , green}
inv_c3: ml_tl = green ⇒ c = 0
inv_c4:

ml_tl = green ⇒ a+ b+ c < d
inv_c5: il_tl = green ⇒ a = 0
inv_c6: il_tl = green ⇒ b > 0
inv_c7: ml_tl = red ∨ il_tl = red

Event IL_out_red_concrete

ref ines . . .
when

grd_c1: il_tl = green
grd_c2: b = 1

then
bap_c1: b :| b′ = b− 1
bap_c2: il_tl :|

il_tl ′ = red
bap_c3: c :| c′ = c+ 1

end

Figure 3.1: Part of concrete machine (about {a, b, c,ml_tl , il_tl}) of traffic ex-
ample

variables : a, b, c,ml_tl

inv_c1: ml_tl ∈ {red , green}
inv_c3: ml_tl = green ⇒ c = 0
inv_c4:

ml_tl = green ⇒ a+ b+ c < d

Event IL_out_red_abstract

ref ines . . .
when

grd_x: ml_tl = red
grd_c2: b = 1

then
bap_c1: b :| b′ = b− 1
bap_c3: c :| c′ = c+ 1

end

Figure 3.2: Part of abstract machine (about {a, b, c,ml_tl}) of traffic example

Although such predicates are not always directly written for the sake of sim-
plicity, developers can use them as hypotheses for proof of consistency of models.
We call such predicates implicit predicates and predicates that are directly written
in models explicit predicates.

In this thesis, we study refinement structure, namely the order of introducing
elements and aspects to construct a model of a target system through refinement.
Thus, we are interested in the difference between models of a target system with
different sets of variables.

Whether a predicate is explicit, can be implicit, or is unspecifiable differs ac-
cording to variables of models. For example, Figure 3.2 shows an abstract version
of the machine shown in Figure 3.1. All invariants, guards, and before-after pred-
icates in the abstract machine except a predicate of guard grd_x (ml_tl = red)
are also specified in the concrete machine. grd_c1 (il_tl = green) and inv_c7

(ml_tl = red ∨ il_tl = red) imply grd_x is unspecifiable in the abstract ma-
chine,since the variable il_tl in the predicates is not declared in the abstract
machine. Thus, grd_x is implicit in the concrete machine, but it is explicitly
written in the abstract machine.

Figure 3.3 shows explicit predicates and implicit predicates of the abstract
machine and the concrete machine. Predicates such as grd_c2, bap_c1, and
bap_c3 are explicit in both the abstract machine and the concrete machine. Some
predicates — such as inv_c7, inv_c2, and inv_c5 — are explicitly specified in
the concrete machine but unspecifiable in the abstract machine. grd_x is implicit
in the concrete machine but explicitly specified in the abstract machine.

In other words, predicates that are explicitly written in an abstract model are
inherited through refinement, but they may become implicit in concrete models.

16

IL_out_red_abstract
(Event in abstract event
about {a, b, c, ml_tl})

IL_out_red_concrete
(Event in concrete model

about {a, b, c, ml_tl, il_tl})

(Explicit predicates
of concrete event)

(Implicit predicates
of concrete event)

(Explicit predicates
of abstract event)

(Implicit predicates
of abstract event)

inv_c1: ml_tl {red, green}∈

inv_c2: il_tl {red, green}∈

inv_c3: ml_tl = green c = 0⇒

inv_c4: ml_tl = green a+b+c < d⇒

inv_c5: il_tl = green a = 0⇒

inv_c6: il_tl = green b > 0⇒

inv_c7: ml_tl = red il_tl = red∨

grd_c1: il_tl = green

grd_c2: b = 1
bap_c1: b’ = b - 1

bap_c2: il_tl’ = red

bap_c3: c’ = c + 1

il_tl ≠ il_tl'

…

grd_x: ml_tl = red

b’ < b

c’ < c …

Figure 3.3: Explicit predicates and implicit predicates of abstract machine and
concrete machine. Implicit predicates of models are placed in areas with hatching.

Not only predicates but also variables may disappear from specification
through a refinement. The refinement mechanism also enables modelers to add
gluing invariants with concrete variables and convert expressions in an abstract
model into a concrete form that uses concrete variables. For example, the first
refinement in an example described in Section 2.1.3 converts a variable and predi-
cates about cars outside the mainland into those about cars on the bridge and cars
on the island. A gluing invariant in this example is “#cars outside the mainland
= #cars on the island + #cars on the bridge.” Thus, abstract variables disappear
and are replaced with concrete variables through such a refinement. This style of
refinement is called vertical refinement, and refinement without disappearance of
variables is called horizontal refinement.

However, even with vertical refinement, predicates specified in abstract models
are preserved because gluing invariants relate state spaces of abstract models and
concrete models.

3.3 Problem and Approach

3.3.1 General Problem and Approach

During construction or modification of Event-B models, modelers have an idea
(maybe incomplete) of the most concrete model. The idea consists of explicit
elements, explicit properties, implicit elements, and implicit properties of the
model.

Before constructing Event-B models, developers usually have the whole idea
of the most concrete model as informal documents. During construction of such
informal documents, multiple abstraction layers are usually not considered. That
is, the idea of the most concrete model is constructed on a single abstraction layer.
Although the idea usually describes all parts of the target system, consistency of
the idea is not yet verified. On the other hand, after constructing Event-B models,

17

the idea is the most concrete model itself.
In the beginning of modeling, modelers construct abstract models that de-

scribe the most concrete model with only abstract vocabulary. After constructing
models, modelers may want to modify abstract models for maintenance.

Because of the functionality of refinement, how to determine what elements
and properties are included in each refinement step is important. However, mod-
elers currently rely on complex and unsystematic artisanship to determine this.
We found this process includes a part that can be treated in a rational way and
propose a systematic method to treat it.

We aim to handle the following general problem.

General problem For given information of properties and elements of the most
concrete model, including implied ones, find an appropriate allocation of
them to several refinement steps.

In order to tackle the problem, we pay attention to the dependencies of ele-
ments and properties.

The relationships of dependency are as follows:

Elements occurrence (Relationship between a property and elements.) In
order to specify a property, elements that appear in the property need to
be specified in the model.

Invariants for typing (Relationship between an element and a property.) In
order to introduce an element v into a model M , a typing invariant for v
should also be introduced in M .

Replacement with gluing invariants (Relationship between elements and
properties.) Let IV be the set of given invariants that are about a set
of variables V . In order to replace variables V in an abstract machine MA

through refinement by a concrete machine MC, all invariants in IV that are
not specified in MA should be specified in MC.

Static elements for typing (Relationship between elements.) For typing of
elements, some elements require other elements to be included in the model.

Abstract before concrete (Relationship between elements.) If an element e
is considered to be an abstract version of another element f , then e should
not be introduced later than f .

Conceptually similar properties (Relationship between a property and prop-
erties.) If elements that are required to introduce property p in a model M
allow specifying other properties p′, then p′ should also be introduced to M .

In actual development, collecting appropriate information on dependencies,
abstract elements, and abstract properties before constructing models is not
straightforward. We discuss the feasibility of this process in Chapter 7.

Defining this generic problem and approach enables us to deal with multiple
problems that developers face during actual development.

3.3.2 Refactoring

The refinement structure of Event-B machines reflects aspects that are considered
in each refinement step. Therefore, refinement structure is important for under-
standability and maintainability of the machines. In particular, decomposing one

18

refinement step into some steps is useful, because modelers tend to construct a
large refinement step in actual development. In addition, although refinement
mechanism of Event-B is effective for reuse of existing machines, in actual devel-
opment, existing machines are usually mixtures of reusable parts and non-reusable
parts.

Therefore, there is a strong demand for refactoring refinements of existing
models. Thus, by analyzing consistent models (i.e., POs of them have already
been discharged), we aim to construct new models that focus on particular sets
of variables and are consistent with given models.

This goal is achieved by extracting predicates in given models that are written
with particular variables. A straightforward approach is syntactic slicing, namely
finding predicates that are written with the variables. However, this approach
does not find implicit predicates, which are necessary for consistency of the new
model in most cases. Thus, for the sake of consistency, we need a method to find
appropriate implicit predicates from given models.

To this end, we analyze the proofs of POs of given models and find implicit
predicates of given models that are necessary for consistency of new models.

Thus, our refactoring method can be illustrated as Figure 3.4. In this exam-
ple, our refactoring method analyzes predicates of original model (IL_out_red_
concrete) and finds predicates that become explicit predicates of new model
(IL_out_red_abstract). It finds not only explicit predicates of original model
that can be written with variables {a, b, c,ml_tl} such as grd_c2 and bap_c1 but
also implicit predicates of original model that should be explicitly written in new
model such as grd_x.

We describe this approach in Chapter 4.
There has been a tool support for refactoring of Event-B machines [32]. Al-

though the functionalities of the tool, such as global renaming of identifiers, are
useful, this tool does not support our goal, namely consistent refactoring of refine-
ment structure. Supports for helping developers to understand Event-B models
— such as model checking tool [57], animator tool [64], and a method for animat-
ing refinement [42] — have been proposed. They provide an appropriate view for
understanding without changing models, while our refactoring approach aims at
changing the refinement structure of a model to improve its inherent understand-
ability.

Tools and methods effective for improving reusability of Event-B have also
been proposed. Generic instantiation [73] enables Event-B modelers to use ab-
stract data types to enhance reusability of static parts of Event-B models. Meth-
ods for machine decomposition [5, 18] have been used to cut a machine into
sub-machines of the same abstraction level to reduce complexity. Design pattern
management mechanism [46] provides a functionality that applies predicate-level
patterns to automate certain forms of refinement. In contrast, our method aims
to enhance reusability of dynamic parts of Event-B models by extracting actual
predicates of specific aspects that range multiple abstraction layers. Thus, we
consider the tools and methods above as complementary to ours.

3.3.3 Planning

Developers need to have a plan of refinement structure before they construct
Event-B models. However, by following an arbitrary plan, they tend to construct
invalid models or models that do not effectively use the refinement mechanism.
In such cases, developers suffer from rework of constructing and verifying models.
In addition, the space of reasonable refinement plans is usually too large for

19

IL_out_red_concrete
(Event in concrete model

about {a, b, c, ml_tl, il_tl})

(Explicit predicates
of concrete event)

(Implicit predicates
of concrete event)

inv_c1: ml_tl {red, green}∈

inv_c2: il_tl {red, green}∈

inv_c3: ml_tl = green c = 0⇒

inv_c4: ml_tl = green a+b+c < d⇒

inv_c5: il_tl = green a = 0⇒

inv_c6: il_tl = green b > 0⇒

inv_c7: ml_tl = red il_tl = red∨

grd_c1: il_tl = green

grd_c2: b = 1
bap_c1: b’ = b - 1

bap_c2: il_tl’ = red

bap_c3: c’ = c + 1

il_tl ≠ il_tl'

…

grd_x: ml_tl = red

b’ < b

c’ < c …

IL_out_red_abstract
(Event in abstract event
about {a, b, c, ml_tl})

IL_out_red_concrete
(Event in concrete model

about {a, b, c, ml_tl, il_tl})

(Explicit predicates
of concrete event)

(Implicit predicates
of concrete event)

(Explicit predicates
of abstract event)

(Implicit predicates
of abstract event)

inv_c1: ml_tl {red, green}∈

inv_c2: il_tl {red, green}∈

inv_c3: ml_tl = green c = 0⇒

inv_c4: ml_tl = green a+b+c < d⇒

inv_c5: il_tl = green a = 0⇒

inv_c6: il_tl = green b > 0⇒

inv_c7: ml_tl = red il_tl = red∨

grd_c1: il_tl = green

grd_c2: b = 1
bap_c1: b’ = b - 1

bap_c2: il_tl’ = red

bap_c3: c’ = c + 1

il_tl ≠ il_tl'

…

grd_x: ml_tl = red

b’ < b

c’ < c …

Figure 3.4: Refactoring approach

developers to manually grasp and explore.
Therefore, it is important to help developers understand the possibilities of

refinement plans so that they can examine the complexity of each refinement step
and the consistency of models constructed by following the plans.

However, there has not been any criterion of desirable refinement plans. More-
over, dependencies of variables and predicates should be handled to find reason-
able plans.

To address these problems, we provide rationales of refinement structure to
find structures that facilitate effective use of the refinement mechanism. In addi-
tion, we also provide a method that searches plans by considering the rationales

20

and analyzing dependencies of variables and predicates.
Before modeling, the idea of the most concrete machine is usually described

as informal documents instead of formal expression of predicates. Although pred-
icates are not given, we assume that developers can identify what variables are
necessary to specify the predicates in this phase. Therefore, we assume that a list
of predicate symbols and their variables are provided. It should be noted that we
need to not only consider predicate symbols of the most concrete model but also
those of abstract models because we need to plan the introduction of predicates
through multiple steps of refinement. Thus, the planning method also requires
some symbols of predicates that are implicit in the concrete model.

As we explained in Section 3.2, predicates in abstract models (often speci-
fied with abstract variables that are replaced through vertical refinements) may
become implicit in specification of concrete models, but they are inherited by
concrete models. Whether they are implicit is a problem about expressions of
specification. Because the planning approach does not handle expressions of
specifications, we do not consider the hiding of variables and predicates through
refinement in this approach. In other words, we focus on the accumulation of
variables and predicate symbols through refinement.

Our planning method can be illustrated as Figure 3.5. In this example,
a list of predicate symbols and their variables, such as inv_c7(ml_tl, il_tl),
are given. The list includes predicate symbols of abstract predicates, such as
grd_x(ml_tl). Our planning method generates multiple plans of refinement
structure. Plan 1 in Figure 3.5 shows a plan that corresponds to refinement
structure [{a, b, c}, {a, b, c,ml_tl}, {a, b, c,ml_tl, il_tl}]. Plan 2 corresponds to
another refinement strategy: [{a, b, c}, {a, b, c, il_tl}, {a, b, c, il_tl,ml_tl}]. The
user can select and examine a plan from generated candidates.

We describe this approach in Chapter 5.
Various methods that help refinement have been proposed. Studies of [70,

55, 17] generate Event-B models from informal models in popular forms, such
as UML diagrams, SysML models, or BPMN models. However, such approaches
are not suitable for refinement planning because multiple abstraction layers are
not considered in such informal models. The ProR approach [53] is useful to
reason about a relationship between requirements and models because it provides
traceability between informal requirements document and Event-B models, but
it does not support handling refinement structure. In contrast, our planning
approach aims at explicitly handling refinement structure. The design pattern
management mechanism [46] also guides refinement because the pattern applied
to a machine is instantiated as another machine that refines the existing one.
However, it does not support our goal, namely planning the whole refinement
structure before the start of modeling. Therefore, it is important to provide a
method that aims at our goal.

21

Predicate symbols of
the most concrete model

(about {a, b, c, ml_tl, il_tl})

inv_c7(ml_tl, il_tl)
inv_c2(il_tl)
inv_c5(il_tl, a)
inv_c6(il_tl, b) bap_c2(il_tl’)

grd_c1(il_tl)

grd_c2(b)
bap_c1(b, b’)
bap_c3(c, c’)

inv_c1(ml_tl)
inv_c3(ml_tl, c)
inv_c4(ml_tl, a, b, c)

grd_x(ml_tl)

Predicate symbols of
the most concrete model

(about {a, b, c, ml_tl, il_tl})

inv_c7(ml_tl, il_tl)
inv_c2(il_tl)
inv_c5(il_tl, a)
inv_c6(il_tl, b) bap_c2(il_tl’)

grd_c1(il_tl)

grd_c2(b)
bap_c1(b, b’)
bap_c3(c, c’)

inv_c1(ml_tl)
inv_c3(ml_tl, c)
inv_c4(ml_tl, a, b, c)

grd_x(ml_tl)

1

3

2

Predicate symbols of
2nd abstract model

(about {a, b, c, ml_tl})

Predicate symbols of
the most abstract model

(about {a, b, c})

Predicate symbols of
the most concrete model

(about {a, b, c, ml_tl, il_tl})

inv_c7(ml_tl, il_tl)
inv_c2(il_tl)
inv_c5(il_tl, a)
inv_c6(il_tl, b) bap_c2(il_tl’)

grd_c1(il_tl)

grd_c2(b)
bap_c1(b, b’)
bap_c3(c, c’)

inv_c1(ml_tl)
inv_c3(ml_tl, c)
inv_c4(ml_tl, a, b, c)

grd_x(ml_tl)

1

2

3

Predicate symbols of
2nd abstract model

(about {a, b, c, il_tl})

Predicate symbols of
the most abstract model

(about {a, b, c})

Plan 1 Plan 2

Planning
method

Figure 3.5: Planning approach

22

Chapter 4

Refinement Refactoring

4.1 Approach

Our view of the refactoring problem and an approach to solve it are as follows.
We treat variables of machines as elements. Properties we treat are written

in machines as invariants, guards, and before-after predicates of actions.
Actual machines that form a refinement chain [Mn,Mn+1, . . . ,Mm] are

given. In other words, elements and properties that are explicitly specified in
Mn,Mn+1, . . . ,Mm are given.

Our goal is to restructure the refinement structure of given machines. Thus,
when a sequence of sets of elements E′s, E

′
s+1, . . . , E

′
t such that

• E′s is equal to the set of elements of Mn

• E′t is equal to the set of elements of Mm

• Other conditions described in Section 4.5

is given, our method constructs machines M ′s,M
′
s+1, . . . ,M

′
t such that

• variables of M ′i are equal to E′i

• M ′i+1 refines M ′i

by finding elements and actual expressions of properties for every M ′i .
For the sake of simplicity, in this thesis we omit parameters of each event,

with which we can construct a similar argument.
The relationships of dependencies we pay attention to are as follows:

Elements occurrence (Relationship between a property and elements.) In
order to specify a property, elements that appear in the property need to
be specified in the model.

Invariants for typing (Relationship between an element and a property.) In
order to introduce an element e into a model M , a typing invariant for e
should also be introduced in M .

Replacement with gluing invariants (Relationship between elements and
properties.) Let IV be the set of given invariants that are about a set
of variables V . In order to replace variables in V in an abstract machine
MA through refinement by a concrete machine MC, all invariants in IV that
are not specified in MA should be specified in MC. We elaborate on this
relationship in Section 4.4.1.

23

4.2 Overview

We assume that we have given consistent (proved) machines MA and MC such
that MC refines MA. The goal of our decomposition method is to construct an
intermediate machine MB such that MC refines MB and MB refines MA by using
as much of the original specifications as possible.

For this purpose, users give a slicing criterion as a set of variables VB0, which
actually may be given by selecting variables in VC.

The first step is to use this criterion for syntactic slicing from MA and MC

to construct the initial base MB0. The actual criterion for slicing VB is extended
from VB0 because of consistency constraints. In general, the result of this first
step MB0 may have POs that are not provable.

Thus, the second step helps developers to manually add additional predicates
to MB0 to make a consistent intermediate machine MB. By handling replacement
of variables through refinement and proof obligations, our decomposition method
deals with both horizontal refinement and vertical refinement.

Combined with merging of refinements, the decomposition method is extended
as a restructuring method (Section 4.5).

4.3 Symbols, Definitions, and Assumptions

In this chapter, we use the following symbols:

4.3.1 Symbols about Given Input Information

MA,MC Abstract machine and concrete machine. We assume that both are
proved and that MC refines MA.

VA, VC Variables declared in MA and MC, respectively.

IA The set of all invariants of MA such that var(IA) ⊆ VA, where var(P)
represents the variables that occur in set of predicates P .

IC Invariants specified in MC. var(IC) ⊆ VA ∪ VC.

GA, GC Guards specified in events of MA and MC, respectively. Because guards
can only use variables in current machine, var(GA) ⊆ VA and var(GC) ⊆ VC.

VB0 Slicing criterion. It is a subset of VC.

4.3.2 Symbols about Output of Decomposition Method

MB Intermediate machine.

VB Variables declared in MB. It is found by adding elements to VB0.

4.3.3 Definitions of Terms in This Chapter

Gluing invariant An invariant i written in MC such that var({i})∩(VA\VC) ̸=
∅ and var({i}) ∩ (VC \ VA) ̸= ∅.

Replacement of variables by gluing invariants Through a vertical refine-
ment, variables V of the abstract machine may disappear. In such a case,
a developer needs to provide the concrete machine with gluing invariants
I, and V ⊆ var(I) should hold; otherwise, it is impossible to verify the

24

VA

VB

VC

V ′

V ′′

Figure 4.1: Arbitrary variables of MB (invalid case)

consistency between two machines because events of abstract machine are
written with V , but those of concrete machine are not. We refer to such a
situation by stating that V has been replaced with I.

4.3.4 Assumption

Assumption 4.3.1 Variables VC\VA occur in all invariants of concrete machine.
In other words, there are no invariants of concrete machine that are written only
with variables of VA.

We consider this assumption as reasonable since invariants that are written
only with variables of VA are properties that can be specified in the abstract
machine.

4.4 Decomposition

4.4.1 Step 1 of Decomposing Refinement: Slicing

Finding Additional Variables

If MC refines MA, then MC inherits variables VA ∩ VC from MA. The remaining
variables of MA — that is, VA \ VC — are replaced with some of the variables in
VC \ VA, as described in Section 2.4.

As shown in Figure 4.1, if VA ∩ VC ̸⊆ VB, then the variables in (VA ∩ VC) \ VB

(V ′ in Figure 4.1), which is a subset of VA \ VB, are declared in MC.
The variables in VA \ VB are, however, replaced with other variables in MB.

This means that some variables disappear through refinement of “MB refines
MA” and then revive through refinement of “MC refines MB”. Such refinements
are invalid. Therefore, VB must satisfy VA ∩ VC ⊆ VB.

In addition, to take advantage of predicates in existing machines to construct
MB, VB should satisfy VB ⊆ VA ∪ VC; otherwise, a user needs to design new
variables (VB \ (VA ∪ VC))(V

′′ in Figure 4.1) and predicates of them. Thus, VB

should be as depicted in Figure 4.2.
Hereinafter, we will use the symbols ṼA, VAB, VABC, VBC, and ṼC to represent

VA \ VB, VB \ VC, VA ∩ VC, VB \ VA, and VC \ VB, respectively.
Our refactoring method assumes that VB0 = VABC ∪ VBC, which is a subset

of VC, is given as an input. This is because it is easy for a user to select the
criterion from VC, without considering which variables in VA must be replaced.
To construct MB, the remaining variables VB \ VB0(= VAB) need to be identified.
The remainder of this section describes a heuristic for automatically finding VAB.

25

ṼA

VA

VAB

VB

VABC VBC

VC

ṼC

Figure 4.2: Valid variables of MB

To replace abstract variables with concrete ones in a concrete machine, a
user needs to provide gluing invariants about the relationships between the two
sets of variables. In the case of constructing MB as a machine that refines MA,
the set of newly introduced variables VBC is a subset of VC \ VA. Therefore,
some of the gluing invariants in MC may not be specified in MB. MB’s gluing
invariants can describe the relationship between ṼA and VBC, but cannot describe
the relationship between VAB and VBC. Hence, VAB can be obtained as

VAB = {v ∈ VA \ VC | ∃i ∈ ginv(MC) . v ∈ (var(i) ∩ VA) ∧ var(i) ∩ ṼC ̸= ∅},
(4.1)

where ginv(M) represents the gluing invariants in a machine M .
In other words, ṼA = ((VA \ VC) \ VAB) can be obtained as

ṼA = {v ∈ VA \ VC | ∀i ∈ ginv(MC) . v ∈ (var(i) ∩ VA)⇒ var(i) ∩ ṼC = ∅}.
(4.2)

For example, let us assume that a and e are selected to be specified in MB

(VB0 = VB∩VC = {a, e}). In MC, a gluing invariant gluinv1: b = c+d describes
replacement of b (of MA) with c and d (of MC). By contrast, in MB, gluinv1
cannot describe replacement of b since neither c nor d is selected to be specified
in MB. Therefore, VAB = {b}; namely, MB should specify b in addition to a and
e.

Finding Certain Specifications through Slicing

For a predicate p and a set of variables V , we say p is expressible by V if and only
if var(p) ⊆ V . The procedure described in this section finds predicates that are
expressible by VB.

Hereinafter, we use the following symbols:

IAB Members of IA that are expressible by VB (i.e., variables of ṼA do not appear
in IAB). Thus, IAB = {iA ∈ IA | var({iA}) ⊆ VAB ∪ VABC}.

ĨA IA \ IAB. Variables of ṼA appear in all members of ĨA. Thus, ĨA = {iA ∈
IA | var({iA}) ∩ ṼA ̸= ∅}.

IBC Members of IC that are expressible by VB (i.e., variables of ṼC do not appear
in IBC). Thus, IBC = {iC ∈ IC | var({iC}) ⊆ VABC ∪ VBC}.

ĨC IC \ IBC. Variables of ṼC appear in all members of ĨC. Thus, ĨC = {iC ∈
IC | var({iC}) ∩ ṼC ̸= ∅}.

26

variables : a, b, e

Event evt_b

ref ines evt_a

begin
act_c1: a :| a′ = a+ 1
act_a2: b :| b′ = b+ 2

end

typ_b: {a, b, e} ⊂ N
inv_c1: mod2(a+ e) = 0 ⇒ a < 1

Event initialisation

begin
init_c1: a :| a′ = 0
init_a2: b :| b′ = 0
init_c5: e :| e′ = 1

end

Figure 4.3: mb0: machine obtained with slicing from ma and mc

IB IAB ∪ IBC. Invariants of the given machines that are expressible by VB. It
becomes invariants of MB.

GAB, G̃A, GBC, and G̃C denote sliced guards in the same manner.
Moreover, since guards of the intermediate machine are augmented in Step 2

(Section 4.4.2), we denote the base of guards of intermediate machine as follows:

GB0 GAB ∪GBC. Final set of guards is constructed by augmenting GB0.

Predicates in MA and MC that are expressible by VB certainly express the
properties of VB, which should be consistent with MA and MC. Therefore, in this
step, invariants, guards, and BAPs in MA and MC that are expressible by VB

are specified in MB. 1 For example, mb0 (Figure 4.3) is constructed by collecting
predicates that are expressible by VB = {a, b, e} from ma and mc.

Note that an action mc/evt_c/act_c5, which assigns a value to e(∈ VB), is
not specified in mb0 because f(∈ ṼC) occurs in its BAP.

The algorithm for slicing invariants is shown in Algorithm 1.

Algorithm 1 Slicing invariants
1: IB0 ← ∅
2: for all iA ∈ IA do
3: if var(iA) ⊆ (VA ∪ VB) then
4: if var(iA) ∩ VB ̸= ∅ then
5: IB0 ← IB0 ∪ {iA}
6: end if
7: end if
8: end for
9: for all iC ∈ IC do

10: if var(iC) ⊆ (VA ∪ VB) then
11: if var(iC) ∩ VB ̸= ∅ then
12: IB0 ← IB0 ∪ {iC}
13: end if
14: end if
15: end for

The procedure tries to find some of the invariants in the abstract machine
(Lines 2–7) and the concrete machine (Lines 9–15). As the invariants of interme-
diate machine should be specified with variables of VA∪VB, the procedure collects

1BAPs that are expressible by VB ∪ V ′
B are also specified, where V ′

B represents the set of
after-state variables of VB.

27

invariants that can be expressible with VA ∪ VB (Lines 3 and 10). In addition,
because invariants of MB should describe properties of VB, the procedure collects
invariants that are related to VB (Lines 4 and 11). The slicing procedure collects
typing invariants of all variables in VB.

The algorithm for slicing events is shown in Algorithm 2.

Algorithm 2 Slicing events
1: EB0 ← ∅
2: for all eC ∈ EC do
3: eB0 ← (empty event)
4: EB0 ← EB0 ∪ {eB0}
5: refines(eB0)← refines(eC)
6: for all geC ∈ guards(eC) do
7: if var(geC) ⊆ VB then
8: guards(eB0)← guards(eB0) ∪ {geC}
9: end if

10: end for
11: for all aeC ∈ actions(aeC) do
12: if var(aeC) ⊆ VB ∪ V ′B then
13: actions(eB0)← actions(eB0) ∪ {aeC}
14: end if
15: end for
16: for all eA ∈ refines(eB0) do
17: for all geA ∈ guards(eA) do
18: if var(geA) ⊆ VB then
19: guards(eB0)← guards(eB0) ∪ {geA}
20: end if
21: end for
22: for all aeA ∈ actions(aeA) do
23: if var(aeA) ⊆ VB ∪ V ′B then
24: actions(eB0)← actions(eB0) ∪ {aeA}
25: end if
26: end for
27: end for
28: unique ← true
29: for all fB0 ∈ (EB0 \ {eB0}) do
30: if fB0 = eB0 then
31: refines(eC)← fB0

32: unique ← false
33: end if
34: end for
35: if unique = false ∨ eB0 = (empty event) then
36: EB0 ← EB0 \ eB0

37: else
38: refines(eC)← eB0

39: end if
40: end for

The procedure constructs an empty event eB0 of MB0 for each event eC of MC

first (Lines 2–3). eB0 refines events that are refined by eC (Line 5). Then, because
events of eB0 should be specified with VB, guards of eC that are expressible with
VB and actions of eC that are expressible with VB∪V ′B are collected as specification

28

of eB0 (Lines 6–10 and 11–15). The same procedure is also applied to every eA
that is refined by eB0 (Lines 17–21 and 22–26). This procedure may construct an
empty event as eB0 or multiple events with the same specification. Therefore, the
procedure checks whether there is another event that has the same specification
as eB0’s (Lines 28–34) and eliminates such an event (Line 36). If the eB0 is a
unique and non-empty event, it is added as an event of MB0 (Line 38).

As a result of slicing of events (Algorithm 2), the refinement structure of events
becomes as shown in Figure 4.4. Basically, one event of the intermediate machine
is constructed for an event of the concrete machine (Figure 4.4a). Constructed
intermediate events refine abstract events that are refined by corresponding orig-
inal concrete events (Figures 4.4b and 4.4c). In the case of slicing constructed
multiple identical intermediate events, duplicated events are eliminated (Line 36
of Algorithm 2, Figure 4.4d).

We implemented these steps as a plugin tool of Event-B’s IDE, named Slice-
AndMerge. 2 Users of the tool can select VB0 with checkboxes and obtain a
sliced machine MB0 (Figure 4.5). The tool also supports analysis of dependen-
cies between invariants and variables, and merging of refinements (described in
Section 4.5).

4.4.2 Step 2 of Decomposing Refinement: Complementing

In this section, we describe complementing of the base of intermediate machine
MB0. We explain that the machine MB0 may not be consistent or may not
be consistent with given machines (i.e., MA and MC). Next, we show proper-
ties of predicates that should be added to MB0 (complementary predicates). We
then describe how to manually find complementary predicates and show possible
heuristics that make the process automatic in specific situations.

Possible Lack of Consistency in MB0

Although all POs of MA and MC are discharged, MB0, which is constructed from
fragments of the machines, is not ensured to be consistent. For example, some
invariants in MB0 (from MA and MC) may not be preserved by events in MB0

because the specification of MB0’s events may be only part of the specification of
MA’s and MC’s events.

For instance, the PO shown in Figure 2.6 (mc/evt_c/inv_c1/INV), which
has a succedent specified with the after-states of a and e, is provable because
predicates, including grd_c2 and act_c5, are in the antecedent.

Although the preservation of the same invariant inv_c1 by the event evt_b

in mb0 (mb0/evt_b/inv_c1/INV) should also hold, this is not provable because
predicates grd_c2 and act_c5, which are essential for proving that inv_c1 is
preserved, are not included in the antecedent (Figure 4.6) as they are predicates
about variable f (∈ ṼC).

Complementary Predicates for Consistency

Since MA and MC are consistent, they have predicates that are essential for the
consistency.

When such predicates are expressible by VB, the consistency of MB can be
guaranteed by including such predicates in MB. Obviously in simple cases, this
can be realized by slicing (Section 4.4.1).

2Available at http://tkoba.jp/software/slice_and_merge/

29

http://tkoba.jp/software/slice_and_merge/

eA

eC

Refines

eA

eB
Refines

eC
Refines

(a) Simple case

eA

eC1

Refines

eC2

Refines

eA

eB1

Refines

eB2

Refines

eC1
Refines

eC2
Refines

(b) Interpolation of multiple events that refine single abstract event

eC

eA1

Refines

eA2

Refines

eC

Refines Refines

eA1

Refines

eA2

eB

(c) Interpolation of single event that refines multiple abstract events (merging of events
through refinement)

eA

eC1

Refines

eC2

Refines

eA

eB

Refines

eB

Refines

eC1
Refines

eC2
Refines

eA
Refines

eB

eC1

Refines

eC2

Refines

(d) Special case of Figure 4.4b: intermediate events become identical

Figure 4.4: Interpolation of refinement structure of events

30

Figure 4.5: Screenshot of SliceAndMerge

BAPof act_c1

. . .
⊢
Modified inv_c1

a′ = a+ 1
. . .
⊢
mod2(a′ + e′) = 0 ⇒ a′ < 1

Figure 4.6: Invariant preservation of inv_c1 by evt_b in mb0 (unprovable)

However, as described above, sometimes MB0 is inconsistent because MB0,
which is obtained by a syntactic predicate-level slicing, sometimes lacks some
of these predicates. In such cases, predicates that are essential for discharging
POs need to be added to MB0 so that the resulting MB is consistent. Moreover,
such predicates need to be expressible by VB. We call such additional predicates
complementary predicates (CPs).

Predicates that are essential for the consistency of original machines can often
be found from the specifications or the proofs of consistency of MA and MC, and
they can often be “translated” into VB as CPs. We discuss how often CPs are
required and how hard finding them is in Section 8.1.

Finding CPs essentially corresponds to Craig interpolation [26]. Thus, this
process is feasible only for specific logics, such as first-order logic, since only such
logics have interpolation property. For instance, an extension of first logic with a

31

Table 4.1: Types of POs newly generated by adding CPs

Discharged PO CP is added to Newly generated PO

eB/gAi/GRD (gAi ∈ G̃A) GB eC/CP/GRD

eB/tAi/SIM (tAi ∈ T̃A) TB eC/CP/SIM
eB/iAi/INV (iAi ∈ IAB) TB eC/CP/SIM
eB/iCi/INV (iCi ∈ IBC) TB eC/CP/SIM

quantifier “there exists uncountably many” does not have interpolation property
[49].

As we described in Sections 2.3 and 2.5, proof obligations we treat in this
thesis — namely, invariant preservation (INV), guard strengthening (GRD), and
action simulation (SIM) — are denoted as follows:

INV A ∧ I ∧G ∧ BA1 ⇒ i[v′/v]

GRD A ∧ I ∧ J ∧H ∧W ⇒ g

SIM A ∧ I ∧ J ∧H ∧W ∧ BA2 ⇒ a,

where G, H, BA1 , and BA2 , respectively, denote guards of the abstract event,
guards of the concrete event, before-after predicates of the abstract event, and
before-after predicates of the concrete event.

After slicing, POs (of INV, GRD, and SIM) in MB0 are classified as follows:

• eB/iB/INV, where eB is an event of MB0 and iB is an invariant of MB0

• eB/gA/GRD, where eB is an event of MB0 and gA is a guard of an abstract
event of eB in MA

• eC/gB/GRD, where eC is an event of MC and gB is a guard of an abstract
event of eC in MB0

• eB/aA/SIM, where eB is an event of MB0 and aA is a before-after predicate
of an abstract event of eB in MA

• eC/aB/SIM, where eC is an event of MC and aB is a before-after predicate
of an abstract event of eC in MB0

Among these, eC/gB/GRD and eC/aB/SIM can be trivially discharged, since gB
and aB are obtained through slicing, and thus they are either specified in eC
(i.e., they are included in H or BA2 in the hypothesis of POs) or specified in
an abstract event of eC in MA (i.e., the POs are the same as eC/gA/GRD and
eC/aA/SIM, which are already proved in MC).

Some of POs of the other three types may require adding CPs to MB0 for
proving them. For instance, if gA is expressible by VB, eB/gA/GRD can be trivially
proved, since gA is included in GB0 (which corresponds to H in the PO) through
slicing. Otherwise, the PO eB/gA/GRD may be unprovable.

It is important to note that new POs about consistency of CPs are generated
by adding CPs. The types of such POs are shown in Table 4.1. For example, the
first row of Table 4.1 shows that when CP is added to MB, it is added as a guard
of the intermediate machine and a new PO eC/CP/GRD is generated because of

32

GLc0: mod2 (a′ + e′)=0 ⇒ a′ < 1 (modified inv_c1)

GLc1: mod2 (a′ + e′) 6= 0

GLc2: mod2 ((a+ 1) + (f + 2)) 6= 0 (by act_c{1,5})

GLc3: mod2 (a+ f + 1) 6= 0

GLc4: mod2 (a+ f)=0

GLc5: > (by grd_c2)

Figure 4.7: Proof of mc/evt_c/inv_c1/INV

GLb0: mod2 (a′ + e′)=0 ⇒ a′ < 1 (modified inv_c1)

GLb1: mod2 (a′ + e′) 6= 0

GLb2: mod2 ((a+ 1) + e′) 6= 0 (by act_c1)

GLb3: mod2 (a+ e′)=0

GLb4: > (by act_NEW)

Figure 4.8: Proof of mb/evt_b/inv_c1/INV

the addition. Therefore, developers need to find appropriate CPs such that such
newly generated POs are provable.

The rest of this section describes ways to find CPs.
First, we describe a way to manually find CPs by analyzing proofs of given

machines. Our decomposition method relies on this manual process, and thus it
is used in case studies described in Section 6.1. Next, we show a possibility of
heuristic for automation of this process with a rule-based analysis. Finally, we
give another possible heuristic for automation that uses Craig interpolation.

Although our implementation SliceAndMerge currently does not support
the heuristics described below, we are planning to implement partial support of
them in the future.

Manually Finding CPs from Existing Proofs

The essence of the consistency of MA and MC can be found by examining the
proof of consistency and making an inference.

For example, the proof of mc/evt_c/inv_c1/INV can be summarized in
terms of goals (succedent), as shown in Figure 4.7. The initial goal GLc0:
mod2(a′ + e′) = 0⇒ a′ < 1 can be derived because GLc1: mod2(a′ + e′) ̸= 0 can
be derived from hypotheses including a guard grd_c2.

A proof with the same root goal is possible using the vocabulary of mb if
the goal GLb1: mod2(a′ + e′) ̸= 0 can be derived from an event-local predicate
(guard or BAP) p that is expressible by VB. GLb1 can be transformed into GLb3:
mod2(a + e′) = 0 by act_c1. We need to find p such that GLb3 can be derived
from p because there is no predicate about e′ in mb0. A solution is to view GLb3
itself as p and add an action, such as act_NEW : e :| mod2(a + e′) = 0 to mb0

(Figure 4.8).

33

Heuristic for Finding CPs Using Rule-based Analysis

In some cases, part of a predicate is expressible by VB, but the remainder of
it is not; thus, the predicate cannot be obtained through predicate-level slicing.
Simple heuristics can be used to find parts of such predicates that are expressible
by VB. For instance, a predicate 0 ≤ a can be found by extracting a part that
is expressible by VB from mc/evt_c/grd_c1 (0 ≤ a ∧ 0 ≤ c). A possible
implementation of this is to convert predicates into conjunctive normal form and
extract clauses that are expressible by VB.

Heuristic for Finding CPs as Craig Interpolant

In this section, we describe a heuristic to deal with a difficult problem of finding
CPs by using Craig interpolation [26].

The goal of this heuristic is to find a formula ϕ such that an interpolant of ϕ
will function as a CP, namely, adding ϕ to the specification of the intermediate
machine discharges POs of the machine. Algorithms to obtain interpolant are not
included in this thesis, and thus, this heuristic is not evaluated in the case studies
(Section 6.1).

Because the applicability of the interpolation theorem is limited, this heuristic
is applicable only to specific classes of expression of Event-B models. We discuss
the applicability of this heuristic in Section 8.1.1.

We describe a general method to find CPs as Craig interpolants below.
One possible pattern of lack of consistency is about guard strengthening

(GRD) PO. Let us consider a guard gAi that is specified in an event eA in MA.
From the assumption on consistency of “MC refines MA,” a PO MC/eC/gAi/GRD
has been successfully discharged, where eC is an event that refines eA.

The formula of the PO MC/eC/gAi/GRD is as follows:

IA ∧ IC ∧GC ⇒ gAi. (4.3)

Formula 4.3 is equivalent to the following (Formula 4.4):

ĨA ∧ IAB ∧ IBC ∧ ĨC ∧GBC ∧ G̃C ⇒ gAi, (4.4)

and thus, it is also equivalent to the following (Formula 4.5):

IAB ∧ ĨC ∧ G̃C ⇒ gAi ∨ ¬ĨA ∨ ¬IBC ∨ ¬GBC. (4.5)

Let IeC/gAi/GRD be the interpolant of Formula 4.5.
The problem is that the guard strengthening PO of the same guard by MB

(MB/eB/gAi/GRD) may not be provable due to lack of necessary predicates.
Here, IeC/gAi/GRD works as a CP for the PO MB/eB/gAi/GRD. In other

words, IeC/gAi/GRD obtained as the interpolant of Formula 4.5 is expressible by
VB (we show this as Theorem 4.6.1 in Section 4.6), and thus, it can be added to
the event eB as a guard.

If I is a Craig interpolant of a formula A ⇒ B, then A ⇒ I, I ⇒ B, and
var(I) ⊆ var(A)∩var(B). Hence, if JeC/gAi/GRD is a Craig interpolant of Formula
4.3, then var(JeC/gAi/GRD) ⊆ var(IA∧IC∧GC)∩var(gAi). As we described above,
gAi cannot be expressible by VB (i.e., var(gAi) ∩ ṼA ̸= ∅) when we need to find a
CP to discharge the PO. Moreover, var(IC) ∩ ṼA ̸= ∅ because IC includes gluing
invariants of ṼA. Thus, in this case, var(JeC/gAi/GRD) ∩ ṼA ̸= ∅ may hold (i.e.,
the interpolant JeC/gAi/GRD may be inexpressible by VB). Therefore, converting
Formula 4.3 into Formula 4.5 before interpolating is necessary to make sure that

34

the interpolants are expressible by VB, and thus they work as CPs to discharge
GRD POs 3.

Moreover, as we show as Theorems 4.4.1 and 4.4.2, IeC/gAi/GRD satisfies the
following conditions:

• The PO MB/eB/gAi/GRD becomes provable by adding IeC/gAi/GRD as an
additional guard of eB

• A GRD PO (MC/eC/IeC/gAi/GRD/GRD) that is generated (as shown in the
first row of Table 4.1) by adding IeC/gAi/GRD as a guard of MB0 is provable

Theorem 4.4.1 By adding a predicate IeC/gAi/GRD, which is obtained as a
Craig interpolant of Formula 4.5, to an intermediate machine MB, the PO
MB/eB/gAi/GRD becomes dischargeable.

Proof Because IeC/gAi/GRD is an interpolant of Formula 4.5, the following is true:

IeC/gAi/GRD ⇒ gAi ∨ ¬ĨA ∨ ¬IBC ∨ ¬GBC. (4.6)

From Formula 4.6, the following is true:

IAB ∧GAB ∧ IeC/gAi/GRD ⇒ gAi ∨ ¬ĨA ∨ ¬IBC ∨ ¬GBC. (4.7)

Formula 4.7 is equivalent to the following formula (Formula 4.8):

ĨA ∧ IAB ∧ IBC ∧GAB ∧GBC ∧ IeC/gAi/GRD ⇒ gAi. (4.8)

Thus, it is also equivalent to the following formula (Formula 4.9):

IA ∧ IB ∧GB0 ∧ IeC/gAi/GRD ⇒ gAi. (4.9)

This formula (Formula 4.9) is nothing but the PO MB/eB/gAi/GRD after
adding IeC/gAi/GRD as an additional guard of event eB in MB. Thus, the PO
becomes dischargeable by adding IeC/gAi/GRD as an additional guard of event eB
in MB. □

Theorem 4.4.2 The event eC in MC strengthens the additional guard IeC/gAi/GRD

in eB in MB.

Proof Because IeC/gAi/GRD is an interpolant of Formula 4.5, the following is true:

IAB ∧ ĨC ∧ G̃C ⇒ IeC/gAi/GRD. (4.10)

From Formula 4.10, the following is true:

(ĨA ∧ IBC ∧GBC) ∧ IAB ∧ ĨC ∧ G̃C ⇒ IeC/gAi/GRD. (4.11)

Formula 4.11 is equivalent to the following formula (Formula 4.12):

IA ∧ IB ∧ IC ∧GC ⇒ IeC/gAi/GRD. (4.12)

This formula (Formula 4.12) is nothing but the PO MC/eC/IeC/gAi/GRD/GRD.
Thus, the PO is dischargeable. □

Similar ways to obtain interpolants can be used for action simulation (SIM)
POs and invariant preservation (INV) POs.

In addition, all newly generated POs (Table 4.1) by adding CPs obtained by
the heuristic are provable.

3Conversion in the same manner is also necessary for SIM POs but not necessary for INV
POs.

35

4.5 Restructuring

We call a sequence of machines [Mn,Mn+1, . . .Mm−1,Mm] a refinement chain
(RC) if Mi+1 refines Mi for every natural number i such that n ≤ i < m.

In addition to decomposing, we can merge refinements as follows: When there
is an RC [M0,M1,M2], merging M1 and M2 constructs a new machine M12 such
that M12 refines M0. M12’s variables, invariants, and events are composed of the
unions of the variables, invariants, and events of M1 and M2.

Suppose that an RC [MA,MB,MC] is provided. The algorithm of merging the
RC to construct a machine MD such that an RC [MA,MD] is formed is shown in
Algorithm 3.

Algorithm 3 Merging of machines
1: VD ← VB ∪ VC

2: ID ← IB ∪ IC
3: ED ← ∅
4: for all eA ∈ EA do
5: for all eB ∈ EB s.t. eA ∈ refines(eB) do
6: for all eC ∈ EC s.t. eB ∈ refines(eC) do
7: eD ← (empty event)
8: refines(eD)← {eA}
9: guards(eD)← guards(eB) ∪ guards(eC)

10: actions(eD)← actions(eB) ∪ actions(eC)
11: ED ← ED ∪ {eD}
12: end for
13: end for
14: end for
15: for all eD ∈ ED do
16: for all fD ∈ (ED \ eD) do
17: if guards(eD) = guards(fD) ∧ actions(eD) = actions(fD) then
18: refines(eD)← refines(eD) ∪ refines(fD)
19: ED ← ED \ fD
20: end if
21: end for
22: end for

All variables and invariants of MB and MC are collected to be specified in
MD (Lines 1 and 2). In order to preserve refinement structures of events in the
original RC [MA,MB,MC], an event of MD is created for each pair of eB and eC
such that eC refines eB (Lines 5–13). Each event in MD that is created from a pair
of events (eB, eC) refines events of MA that are refined by eB (Line 8) and have all
guards and actions of eB and eC (Lines 9–10). This procedure may create events
E with different ‘refines’ clauses and the same guards and the same actions. Such
events are combined into an event that refines all events of MA that are refined
by E (Lines 17–20).

Refinements can be restructured by merging and decomposing refinements.
Suppose that an RC [Mn, · · · ,Mm] is given. First, machines (Mi)

m
i=n+1 are

merged as M ′m, which directly refines Mn. Then, an RC [Mn,M
′
m] is decom-

posed by constructing new machines (M̃i)
l
i=k+1 that reflect the user’s preference

of aspects in terms of VB0. As a result, the refinement is restructured into an
RC [Mn = M̃k, M̃k+1, . . . , M̃l−1, M̃l = M ′m]. Then, as a result of restructuring
refinements, the understandability of a specification increases because the mean-

36

ing of each refinement step can be changed as the user likes. In Section 6.1.2, we
describe an application of the restructuring method to extract parts of an existing
model for reuse.

In addition, refinement restructuring enables us to reuse models. Suppose that
a user has a system S, an RC [MS0,MS1, . . . ,MS(n−1),MSn] for S, and another
system S̃ such that S and S̃ has several states and properties in common. In this
case, several abstract machines for S may be reused to construct machines for S̃
such that an RC [MS0,MS1, . . . ,MSl,MS̃(l+1), . . . ,MS̃m] exists. Our refinement
restructuring method increases the reusable parts of machines, regardless of the
original refinement structure, by extracting platform-independent machines (or
S̃-related aspects of S’s machines) as abstract machines.

4.6 Feasibility of Finding CPs as Craig Interpolant

In this section, we show that Craig interpolants obtained by the heuristic described
in Section 4.4.2 are always expressible by VB as Theorem 4.6.1. To this end, we
first investigate the possibility of occurrences of variable in each symbol of 4.5 as
lemmas and then use them to show the theorem.

As we discuss in Section 8.1.1, the heuristic is applicable only if Craig’s in-
terpolation theorem is applicable to the predicates in proofs of given Event-B
models. For instance, the heuristic is applicable if predicates in the proofs are
reducible to first-order ones. Therefore, in this section, we assume that the given
models are expressed only with predicates of such classes.

Lemma 4.6.1 var(ĨA) ⊆ ṼA ∪ VAB ∪ VABC.

Proof Because ĨA is a subset of IA,

var(ĨA) ⊆ var(IA) ⊆ ṼA ∪ VAB ∪ VABC.

□

Lemma 4.6.2 var(IAB) ⊆ VAB ∪ VABC.

Proof Because IAB is a subset of IA,

var(IAB) ⊆ var(IA) ⊆ ṼA ∪ VAB ∪ VABC. (4.13)

By definition, variables of ṼA do not appear in IAB. Thus,

var(IAB) ∩ ṼA = ∅. (4.14)

From 4.13 and 4.14,

var(IAB) ⊆ VAB ∪ VABC.

□

Lemma 4.6.3 ∀iC ∈ IC . var({iC}) ∩ VAB ̸= ∅ ⇒ var({iC}) ∩ ṼC ̸= ∅.

Proof From Assumption 4.3.1, all invariants in MC that include variables in VAB

are gluing invariants. Thus,

∀iC ∈ IC . var({iC}) ∩ VAB ̸= ∅ ⇒ var({iC}) ∩ (VBC ∪ ṼC) ̸= ∅. (4.15)

From the definition of VAB (Formula 4.1), gluing invariants that include vari-
ables in VAB also include variables in ṼC. Therefore, from 4.1 and 4.15,

∀iC ∈ IC . var({iC}) ∩ VAB ̸= ∅ ⇒ var({iC}) ∩ ṼC ̸= ∅.

□

37

Lemma 4.6.4 var(IBC) ⊆ ṼA ∪ VABC ∪ VBC.

Proof Because IBC is a subset of IC,

var(IBC) ⊆ var(IC) ⊆ ṼA ∪ VAB ∪ VABC ∪ VBC ∪ ṼC. (4.16)

From Lemma 4.6.3 (variables of VAB can appear only in gluing invariants of
MC such that the gluing invariants replace VAB with ṼC),

∀iC ∈ IC . var({iC}) ∩ VAB ̸= ∅ ⇒ var({iC}) ∩ ṼC ̸= ∅,

and thus,

∀iC ∈ IC . var({iC}) ∩ ṼC = ∅ ⇒ var({iC}) ∩ VAB = ∅. (4.17)

In addition, by definition, variables of ṼC do not appear in IBC. Thus,

var(IBC) ∩ ṼC = ∅. (4.18)

Because IBC ⊆ IC, from 4.17 and 4.18,

var(IBC) ∩ VAB = ∅. (4.19)

From 4.16, 4.18, and 4.19,

var(IBC) ⊆ ṼA ∪ VABC ∪ VBC.

□

Lemma 4.6.5 ∀iC ∈ IC . var({iC}) ∩ ṼA ̸= ∅ ⇒ var({iC}) ∩ VBC ̸= ∅.

Proof From Assumption 4.3.1, all invariants in MC that include variables in ṼA

are gluing invariants. Thus,

∀iC ∈ IC . var({iC}) ∩ ṼA ̸= ∅ ⇒ var({iC}) ∩ (VBC ∪ ṼC) ̸= ∅. (4.20)

From the definition of ṼA (Formula 4.2), every gluing invariant that includes
variables in ṼA does not include variables in ṼC. Therefore, from 4.2 and 4.20,

∀iC ∈ IC . var({iC}) ∩ ṼA ̸= ∅ ⇒ var({iC}) ∩ VBC ̸= ∅.

□

Lemma 4.6.6 var(ĨC) ⊆ VAB ∪ VABC ∪ VBC ∪ ṼC.

Proof Because ĨC is a subset of IC,

var(ĨC) ⊆ var(IC) ⊆ ṼA ∪ VAB ∪ VABC ∪ VBC ∪ ṼC. (4.21)

From Lemma 4.6.5 (in MC, variables of ṼA can appear only in gluing invariants
of MC such that the gluing invariants replace ṼA with VBC),

ṼA = {ṽA ∈ (VA \ VC) | ∀iC ∈ IC . ṽA ∈ var({iC})⇒ var({iC}) ⊆ (VA ∪ VB)}.

Therefore,

∀iC ∈ IC . var({iC}) ∩ ṼA ̸= ∅ ⇒ iC ∈ IBC. (4.22)

38

Because VBC ∩ ṼC = ∅ and 4.22,

∀iC ∈ IC . var({iC}) ∩ ṼA ̸= ∅ ⇒ iC ̸∈ ĨC.

Thus,

var(ĨC) ∩ ṼA = ∅. (4.23)

From 4.21 and 4.23,

var(ĨC) ⊆ VAB ∪ VABC ∪ VBC ∪ ṼC.

□

Lemma 4.6.7 var(G̃A) ⊆ ṼA ∪ VAB ∪ VABC.

Proof Because G̃A is a subset of GA,

var(G̃A) ⊆ var(GA) ⊆ ṼA ∪ VAB ∪ VABC. (4.24)

□

Lemma 4.6.8 var(GAB) ⊆ VAB ∪ VABC.

Proof Because GAB is a subset of GA,

var(GAB) ⊆ var(GA) ⊆ ṼA ∪ VAB ∪ VABC. (4.25)

By definition, variables of ṼA do not appear in GAB. Thus,

var(GAB) ∩ ṼA = ∅. (4.26)

From 4.25 and 4.26,

var(GAB) ⊆ VAB ∪ VABC.

□

Lemma 4.6.9 var(GBC) ⊆ VABC ∪ VBC.

Proof Because GBC is a subset of GC,

var(GBC) ⊆ var(GC) ⊆ VABC ∪ VBC ∪ ṼC. (4.27)

In addition, by definition, variables of ṼC do not appear in GBC. Thus,

var(GBC) ∩ ṼC = ∅. (4.28)

From 4.27 and 4.28,

var(GBC) ⊆ VABC ∪ VBC.

□

Lemma 4.6.10 var(G̃C) ⊆ VABC ∪ VBC ∪ ṼC.

39

Proof Because G̃C is a subset of GC,

var(G̃C) ⊆ var(GC) ⊆ VABC ∪ VBC ∪ ṼC.

□

Theorem 4.6.1 Let WB be the set of variables that occur before “⇒” in Formula
4.5 (which is equivalent to formula of PO MC/eC/gAi/INV) and WA be the set
of variables that occur after “⇒” in Formula 4.5. Then, the intersection of WB

and WA is a subset of VB. Thus, a Craig interpolant IeC/gAi/GRD can always be
expressible by VB.

Proof Let α be the part before “⇒” of Formula 4.5 and β be the part after “⇒”
of the formula. Thus,

α = IAB ∧ ĨC ∧ G̃C,

β = gAi ∨ ¬ĨA ∨ ¬IBC ∨ ¬GBC.

gAi is an arbitrary member of G̃A, and thus,

var({gAi}) ⊆ var(G̃A) ⊆ ṼA ∪ VAB ∪ VABC.

From Lemmas 4.6.2, 4.6.6, and 4.6.10,

var(α) ⊆ var(IAB) ∪ var(ĨC) ∪ var(G̃C) (4.29)

⊆ VAB ∪ VABC ∪ VBC ∪ ṼC. (4.30)

Moreover, from Lemmas 4.6.7, 4.6.1, 4.6.4, and 4.6.9,

var(β) ⊆ var(G̃A) ∪ var(ĨA) ∪ var(IBC) ∪ var(GBC) (4.31)

⊆ ṼA ∪ VAB ∪ VABC ∪ VBC. (4.32)

From 4.30 and 4.32,

var({IeC/gAi/GRD}) ⊆ var(α) ∩ var(β)

⊆ VAB ∪ VABC ∪ VBC

⊆ VB.

□

40

Chapter 5

Refinement Planning

5.1 Approach

Our view of the planning problem and an approach to solve it are as follows.
Although our planning method is applicable to plan events in refinement steps,

since we aim to search in solution spaces of high-layered sketches of models,
we focus on essential information of Event-B models, namely context-wide and
machine-wide elements and properties. Thus, we treat variables and constants as
elements. Properties we treat are written as axioms and invariants.

Because our planning approach is intended to be used before actual modeling,
given information about the target system is poorer than the information for
refactoring. Given information (dependencies) are as follows:

• List of properties (a subset of direct and implied properties of the most
concrete model) without actual expressions of them

• Elements that appear in expressions of each property

• Dependencies between elements such as lists of carrier sets and constants
that are required for typing variables

• Specifications about introduction order of elements such as an order to intro-
duce element of a composed system earlier than elements of its subsystems

The feasibility of obtaining the information above is discussed in Chapter 7.
Our goal is to show possible ways to introduce elements and properties (refine-

ment plans) through refinement. Thus, according to the input information, our
method calculates possibilities of sequences [(E0, P0), (E1, P1), . . . , (En, Pn)] such
that Ei and Pi, respectively, denote the sets of elements and properties of the i’th
refinement step. In other words, our method eliminates obviously meaningless
sequences according to the input.

The relationships of dependencies we pay attention to are as follows:

Elements occurrence (Relationship between a property and elements.) In
order to specify a property, elements that appear in the property need to
be specified in the model.

Static elements for typing (Relationship between an element and elements.)
For typing of elements, some elements require other elements to be included
in the model.

Abstract before concrete (Relationship between an element and an ele-
ment.) If an element e is considered to be an abstract version of another
element f , then e should not be introduced later than f .

41

a

p q

b

p q r s

b

p q r s

a

p q

Refinement plan 1 Refinement plan 2

Step 1

Step 2

Step 1

Step 2

✓ ✓ ✓ ✓
✓

: Property

: Element introduced
 in current step

: Element introduced
 in previous steps

: Dependency

Figure 5.1: Difference between two refinement plans

Conceptually similar properties (Relationship between a property and prop-
erties.) If elements that are required to introduce property p in a model M
allow specifying other properties P , then P should also be introduced to M .

5.2 Rationales

5.2.1 Core Rationale for Refinement Planning: Avoiding Meaningless
Refinements

This section describes a general rationale for deriving “good” refinement strategies.
The rationale is important for mitigating complexity without relying on knowledge
of experienced developers. It is also important for avoiding failures to discharge
proof obligations.

Suppose a simple system is composed of two properties, p and q, as illustrated
in Figure 5.1. Sets of elements are necessary to specify and verify the properties,
as the arrows in Figure 5.1 shows. There are also dependencies between elements.
Refinement plan 1 shows one refinement plan in which a is introduced in the first
step and b in the second step. The first step introduces elements p and q according
to the dependencies. The second step introduces (only) r and s (enclosed by
bold lines) under the dependencies and the fact that p and q have already been
introduced (with the check mark). Refinement plan 2 has the opposite order of
plan 1. In this case, the second step becomes meaningless since the first one
introduces all the elements. The second step only requires one to verify p without
extending the previous model (the verification can actually be done in the first
step at the same time). Plan 2, thus, fails to mitigate complexity.

In order to pass type checking of Event-B, state variables and constants
need the carrier sets used to type them. For example, a variable that repre-
sents the state of a traffic light requires a carrier set of “colors of traffic lights.”
The carrier set is specified by the constants of green and red . These are de-
pendencies between elements, i.e., between the state variable and the typing
carrier set (typed_using(e)), as well as between the carrier set and constants
(contained_by(e)).

Given the dependencies, a property p depends on elements dep(p), introduced
in the same step, such that
dep(p) =

∪
e∈inc(p)(typed_using(e) ∪ contained_by(e)), where inc(p) denotes el-

42

ements that directly appear in p. A set of properties P depends on elements
DEP(P) =

∪
p∈P dep(p).

In the refinement plan PL = [P1, P2, · · · , Pn, · · ·], the elements introduced
in step n are intro(PL, n) = DEP(Pn) −

∪
i=1···n−1DEP(Pi). This is the set of

elements required for the properties Pn that have not yet been introduced.
As a result, some plans include meaningless steps that do not introduce any

elements when the required ones have already been introduced in the previous
steps. Such plans are considered meaningless, failing to mitigate complexity.
In the case of Figure 5.1, intro([{q}, {p}], 2) = DEP({p}) − DEP({q}) = ∅ as
DEP({p}) ⊂ DEP({q}). Suppose now a different situation where DEP({p}) =
DEP({q}). In this case, intro([{p}, {q}], 2) = intro([{q}, {p}], 2) = ∅; thus, only
the choice of plan [{p, q}] remains valid.

By using the information of dep(p), our method avoids generating mean-
ingless steps as follows: Suppose there is a set of properties Q such that
DEP(Q) ⊂

∪
i=1···nDEP(Pi). This means a step that introduces Q later

than the nth step ([P1, · · · , Pn, · · · , Q, · · ·]) makes the (n + 1)th step meaning-
less. Such a situation can be avoided by introducing Q with other properties
not included in Q, namely by taking plans such as (1) [P1, · · · , (Pn ∪ Q), · · ·]
(where DEP(Q) ⊂

∪
i=1···nDEP(Pi) and DEP(Q) ̸⊂

∪
i=1···n−1DEP(Pi)) or (2)

[P1, · · · , Pn, · · · , (Q ∪ R), · · ·]. However, case (2) becomes meaningless since Q
has nothing to do with R. In contrast, by merging in case (1)’s way, properties
are introduced as soon as all elements required for them are introduced, and thus,
all steps introduce elements.

Elimination based on the above rationale leads to refinement plans that

• introduce abstract properties (depend on fewer elements) earlier and con-
crete properties (depend on more elements) later, and

• introduce conceptually similar properties (i.e., ones depending on the same
set of elements) together.

Thus, although the rules themselves may seem to be artificial, they derive
intuitively “good” plans.

5.2.2 Rationales for Common Refinement Strategies

Further rationales are presented here to eliminate “meaningless” plans in terms
of common refinement intentions. These rationales are represented as merging
or ordering rules of elements or properties. An ordering rule “x no later than
y” eliminates plans that introduce y earlier than x. A merging rule “x and y
together” eliminates plans that introduce them in different steps.

Merging of Constrained and Constraining Elements

If an element represents a state (variable) and has a specific domain or constraint,
the element should be introduced together with the elements that represent the
domain. In the island example, the number of cars on the bridge and island
should be introduced together with their upper bound (capacity). If this merging
is not used, the refinement steps seem to be too granular to delay introducing
constraints on one variable. This rule is concrete enough so as not to require
suggestions from experienced persons; it only requires a systematic check of state
elements and the domains or constraints on each of them. On the other hand,
it might be acceptable to introduce the state first, by constructing an abstract
model in which the state changes freely (more freely than the actual case), then

43

introduce the constraint later. The other ordering is meaningless as the first
model would include constraining elements (capacity) not used for anything.

Ordering by Subsystem Decomposition

If some elements represent states or behaviors inside a subsystem, they should be
introduced no earlier than those about the states or behaviors of the enclosing sys-
tem. In the island example, the element “the number of cars on the island” should
be introduced later than the element “the number of cars outside the mainland.”
If this ordering is not used (and the opposite order is used instead), a mean-
ingless step appears where the internal states of a subsystem can change freely
without considering the global constraints. The subsequent steps for introducing
the global constraints also become complex because the details of the subsystems
have already been introduced. This rule can be identified with a systematic check
if the specification calls for a decomposition of the system into subsystems, as is
common in various specification and modeling formats.

Ordering by Controlled and Controlling Elements

If some of the elements represent the “controlling” states of specific means, such
as sensors or actuators, they should be introduced no earlier than those about
the “controlled” states that directly appear in the top-level requirements (often
invariants). In the island example, “traffic light on the mainland side” controls
“the number of cars outside the mainland.” Thus, the former should be introduced
no earlier than the latter. If this ordering is not used (and the opposite order
is used instead), application constraints, usually about controlled elements, will
be introduced after the details of the controlling elements. This will increase the
complexity. This rule can also be identified by making a systematic check because
developers find it easy to spot means-end relationships.

Merging for Proof

It may be necessary to examine certain properties at the same time in order to
discharge application-specific proof obligations about invariants. Obvious cases
include a guard condition to ensure an invariant. In the island example, the guard
condition of “the number of cars is incremented only if it is less than the capacity”
is obviously necessary to prove the invariant “the number of cars is no more than
the capacity” This guard-invariant merging is easy for developers to spot (as it is
the intention of the guard), and it can be identified in a systematic and manual
check. Without this merging, the developer will fail to discharge some of the proof
obligations on the constructed models. However, the above case is only one part
of the application-specific proof logic. The next section discusses how to handle
unobvious cases.

5.3 Planning Method

This section describes our method (refinement planner tool and refinement view
generator tool) as proof of concept of the rationales presented in Section 5.2.

5.3.1 Overview

The overview of our planning method is shown in Figure 5.2.

44

Modeling with planning method

(Discussed in Chapter 7)
Manually preparing
input information

for planner

(Step 1) Planning refinement

(Step 2) Generating
refinement plans view

Manually
modeling and

verifying

(Section 5.3.3)

(Section 5.3.2)

(Section 5.3.4)

Successfully
modeled and

verified?

Documents or
informal models

Input information for planner
(properties, elements, and
elements’ dependencies)

Refinement plans

Graph of
refinement plans

Event-B model
End

A refinement plan

Manually select a plan

Yes

No

Figure 5.2: Overview of using our planning method

Our method requests developers prepare input information of a list of proper-
ties, elements that appear in each property, dependencies about static elements
for typing, and specification. The feasibility of this non-straightforward process
is discussed in Chapter 7.

The refinement planner analyzes the input information and generates possible
refinement plans as a list.

Then, the refinement view generator constructs a simplified view of generated
refinement plans so that users can easily compare possible refinement plans.

If users are not satisfied with the refinement plans, they may modify the input
information, rerun the planner, and rerun view generator again.

Users can follow one of refinement plans shown by the view generator to try
constructing models. Although our planner does not guarantee that users can
construct valid models by following generated plans, it helps developers to ex-
plore the space of possible refinement plans in a systematic and semi-automated
manner.

5.3.2 Preparing the Input

For refinement planning, the following information is necessary: (1) properties
(correspond to invariants), (2) elements, and (3) dependency relationships be-
tween elements. To elicit information of properties corresponding to invariants
(1), developers need to know what events (i.e., their necessary conditions and

45

effects) change the system’s state since invariants are properties that hold before
and after an event’s occurrence. For elements (2) and dependency relationships
between elements (3), developers need to know the elements. Consequently, the
process of elicitation is twofold: First, developers acquire general information,
namely the events (and their necessary conditions and effects), invariants, and
some of the elements. Second, developers consider Event-B specific information,
namely the dependency relationships and properties/elements that do not ex-
plicitly appear in the normal requirements analysis. This may be facilitated by
assuming specific semi-formal specifications, such as constrained natural language,
Problem Frames, or UML. However, this thesis does not pick any specific one.

5.3.3 Generating Refinement Plans

The previous foundations urge developers to only consider essential rationales for
refinement planning. In contrast, actually, there are often high-level, intuitive
guidelines that developers have established through experience, as described in
[86]. Developers may intuitively merge or order sets of properties. For example,
the elements “traffic light on the mainland side” and “one on the island side” seem
to be conceptually the same and may suggest a merging rule.

It is also necessary to remind developers of the necessity of merging proper-
ties in order to discharge application-specific proof obligations (about invariants).
“Merging for Proof” in Section 5.2.2 only showed one of the concrete rules that can
be obviously introduced and checked. However, it is a very application-dependent
issue as to which set of properties composes a completed proof. This aspect also
requires good suggestions from people with experience.

It is desirable but very difficult for developers to give helpful suggestions before
the actual modeling and proof trials. As a result, it is necessary to consider an
iterative procedure for developers to modify their suggestions after looking at the
derived plans or even after trying modeling and proofs. This point also holds
for the input properties and elements, which may be wrong or missing. Below,
we present a method for refinement planning, especially a search algorithm as
it would be if it were a waterfall process. Actually, various modifications are
made that may be reflected by rolling back and replanning or by modifying the
constructed models (this point will be discussed in the case study).

To realize the core rationale presented in Section 5.2.1 in an efficient way, we
implemented a search method that derives only valid plans by constructing a tree
of refinement plans. That is, we treat the possibilities of a refinement plan as a
tree. The tree has a root node that corresponds to the plan without any steps and
leaves that correspond to completed refinement plans (i.e., all of the properties
have been introduced). A parent node may have children that correspond to plans
with an additional refinement step introducing properties. The method is based
on a depth-first search of the tree.

Algorithm 4 describes the core of the search method. The function Next-
Plans generates the next steps of a plan. This corresponds to generating the
child nodes of a node in a search tree. Let Pall be the set of all properties and
P be the set of currently introduced properties. First, an unintroduced property
p ∈ Pall \P is selected (Line 3 in NextPlans) to be introduced in the next step.

Policy 1: Continue to introduce properties as long as they do not
increase the complexity of the model. If there is another unintroduced prop-
erty q ∈ Pall \ (P ∪{p}) such that dep(q) ⊆

∪
x∈(P∪{p}) dep(x), introducing q after

p does not cause new elements. As we described in Section 5.2.1, a step such as
this is “meaningless.” Therefore, after selecting an unintroduced property p (Line

46

Algorithm 4 Core of our planner tool
1: function NextPlans(plan)
2: next_plans ← ∅
3: for all property p not introduced do
4: next_step ← {p}∪ PropsTogether(plan, p)
5: next_plan ← plan ++[next_step]
6: if next_plan does not violate any specified ordering rules then
7: Add next_plan to next_plans
8: end if
9: end for

10: return next_plans
11: end function
12:
13: function PropsTogether(plan, property)
14: together ← ∅
15: new_plan ← plan ++[{property}]
16: for all property p not introduced s.t. p ̸= property do
17: new_plan ′ ← plan ++[{property , p}]
18: if Elements(new_plan) = Elements(new_plan ′) then
19: Add p to together
20: end if
21: end for
22: return together
23: end function

3 in NextPlans), our method selects unintroduced properties Q such that any
property in Q does not lead to new elements when it is introduced after p (Lines
16 – 21 in PropsTogether). Accordingly, the method prevents a meaningless
refinement step by introducing Q together with p (Line 4 in NextPlans). The el-
ements that arise by following a plan are determined using a function Elements
. This function determines not only dep(p) (for all properties p in the plan),
but also the elements that should be introduced with it (Policy 2: Consider
elements grouping specifications).

After deciding the properties to be introduced in the next step (Line 4 in
NextPlans), the child nodes of the current node in the search tree are gener-
ated only if the elements introduced by following the plan are in a desirable order
(Line 6 in NextPlans) (Policy 3: Search considering the order of intro-
duction of elements) Specifically, the method checks whether (1) the elements
of the systems are introduced before their subsystems and whether (2) controlled
elements are introduced before or together with their controller elements.

The policies described above are able to decrease the search space and narrow
down the results. Policy 1 decreases the number of properties introduced sepa-
rately, whereas Policy 2 increases the number of properties introduced by Policy
1. Thus, both policies decrease the depth of the search tree. Policy 3 decreases
the width of the search tree since it causes pruning.

In this way, the search proceeds efficiently by generating only plans complying
with the core rationale and rules. The search procedure and the checking of the
result (Section 5.3.4) can be executed iteratively one after another.

47

For instance, assume that properties p1, p2, . . . , p7 such that

dep(p1) = {nOutside,Cap},
dep(p2) = {n←, nIsland, n→,Cap},
dep(p3) = {ml_tl , green, n←, nIsland, n→,Cap},
dep(p4) = {n←, n→},
dep(p5) = {ml_tl , green, n→},
dep(p6) = {ml_tl , green, nOutside,Cap},
dep(p7) = {nOutside, n←, nIsland, n→},

and the following ordering rules

rule1 nOutside should be introduced earlier than n←, nIsland, and n→;

rule2 nOutside should be introduced together with Cap;

rule3 nOutside should be introduced no later than ml_tl ; and

rule4 green depends on red .

are given.
The generated search tree is shown in Figure 5.3.
The root node of the search tree is the plan with no step ([]). NextPlans([])

is calculated as follows. First, one of properties that is not yet introduced is se-
lected (p), and the planner sees what the next step will be if p will be introduced in
the next step (Lines 3–9 of Algorithm 4). In this example, PropsTogether([],
p1) = ∅, because elements that are required to express properties in the new plan
({Elements}([{p1}])) are {nOutside,Cap}, and there are no properties that can
be expressed with {nOutside,Cap} other than p1. Thus, next_plan is [{p1}], and
this plan does not violate the ordering rules. PropsTogether([], p2) is {p4} be-
cause {Elements}([{p2}]) = {n←, nIsland, n→,Cap}, and p4 is also expressible with
{Elements}([{p2}]) since dep(p4) = {n←, n→}. However, next_plan, in this case,
violates order rules 1 and 2 because nOutside will be introduced after n←, nIsland,
n→ and Cap by following the plan. Therefore, this plan is removed from the stack
for search. PropsTogether([], p3) is {p2, p4, p5} because {Elements}([{p3}]) =
{ml_tl , green, n←, nIsland, n→,Cap} (green requires red because of ordering rule
4), and p2, p4, and p5 are also expressible with {Elements}([{p3}]). However,
next_plan, in this case, is also removed from the stack since it violates order
rules 1, 2, and 3.

By repeating such a procedure, the planner finds that NextPlans([]) =
{[{p1}]]}. Thus, the root node of the search tree [] has only one child node
([{p1}]).

Next, the planner calculates NextPlans([{p1}]).
PropsTogether([{p1}], p2) is {p4, p7}, so next_plan is [{p1}, {p2, p4, p7}]

and valid if a = p2. PropsTogether([{p1}], p3) is {p2, p4, p5, p6, p7}, so
next_plan is [{p1}, {p3, p2, p4, p5, p6, p7}] and valid if p = p3. This plan becomes
a leaf node of the search tree since this plan has all properties. By repeating
such a procedure, the planner finds that NextPlans([p1]) = {[{p1}, {p2, p4, p7}],
[{p1}, {p3, p2, p4, p5, p6, p7}], [{p1}, {p4}], [{p1}, {p5, p6}], [{p1}, {p6}],
[{p1}, {p7, p2, p4}] }.

48

[]

[{p1}]

[{p1},
{p2, p4, p7}]

[{p1},
{p2, p4, p7},
{p3, p5, p6}]

[{p1},
{p3, p2, p4, p5, p6, p7}]

[{p1},
{p4}]

[{p1},
{p4},

{p2, p7}]

[{p1},
{p4},

{p2, p7},
{p3, p5, p6}]

[{p1},
{p4},

{p3, p2, p5, p6, p7}]

[{p1},
{p4},

{p5, p6}]

[{p1},
{p4},

{p5, p6},
{p2, p3, p7}]

[{p1},
{p5, p6}]

...

[{p1},
{p7, p2, p4}]

...

Figure 5.3: Example of search tree generated by planner

DN

+{DN}

A, B, C, DN

+{A, B, C}

A, DN

+{A}

A, B, C, COLOR, DN, IL

A, B, C, COLOR, DN, IL, ML

+{ML}

A, B, C, COLOR, DN, ML

+{IL}

+{COLOR ∪ IL} +{COLOR ∪ ML} +{COLOR ∪ ML, B, C}

#

"

!

Figure 5.4: Refinement plans view (introduced elements so far) for island example

5.3.4 Simplification of Result View

Although the raw result of the search method is composed of sequences of sets
of properties, the plans also define elements introduced in each step. The result
is shown to users in the elements-introduction order using terms of constituents
of the target system The result is shown this way because this form is easier for
users to comprehend the model to be constructed, compared to the property-
introduction order using terms of properties of the target system. Specifically,
the elements are introduced as a directed graph, such as Figure 5.4. The vertices
of the graph denote elements introduced so far, and labels on the arcs denote
the specific element sets introduced in each step. Thus, the graph has a source
that corresponds to no elements and a sink that corresponds to all elements.
Moreover, as right-hand side of Figure 5.4 illustrates, the view is presented with
a simplification such that the elements are introduced in arbitrary order.

49

DN

{2}
+{DN}

A, B, C, DN

{1,1,1}
+{A, B, C}

A, DN

{1}
+{A}

A, B, C, COLOR, DN, IL

A, B, C, COLOR, DN, IL, ML

{1}
+{ML}

A, B, C, COLOR, DN, ML

{1}
+{IL}

{4}
+{COLOR ∪ IL}

{4}
+{COLOR ∪ ML}

{4,1,1}
+{COLOR ∪ ML, B, C}

Figure 5.5: Refinement plans view for island example with scores of edges

5.3.5 Further Filtering with Heuristics

It is also possible to narrow down generated plans by using heuristics.
One effective heuristic focuses on a primary purpose of the refinement mech-

anism, namely distributing the complexity of modeling. The heuristic views the
number of introduced elements in each step as the complexity of the step.

Heuristics can be used to find “the best” plan in the generated set. For example,
in general, modelers want to avoid large refinement steps by effectively using
refinement. Therefore, when a set of plans (pi)(0 ≤ i ≤ n) is given, it may be
helpful to find a plan pm(0 ≤ m ≤ n) that minimizes the maximum number of
introduced elements in steps of pm.

The index m can be obtained as follows:

m = argmin
0≤i≤n

(max
1≤j<nsteps(pi)

|intro(pi, j)|),

where nsteps(p) is the number of steps of plan p.
Another usage of heuristics is to score a plan or some steps of a plan. For

instance, Figure 5.5 shows a result view of traffic examples (Figure 5.4) with
scores of complexity for every step. Labels on an edge of the diagram show the
number of elements introduced in the step. Although reducing complexity is an
important aim of using the refinement mechanism, considering only complexity
(i.e. finding “the best” plan using the heuristic) may show a too fine-grained
plan. Not only reducing complexity but also other points, such as conceptual
integrity, are important for refinement planning. Figure 5.5 shows that a modeler
may introduce elements of A, B, and C at the same time in the second step.
Because A, B, and C are separated but closely related elements, a modeler may
find this plan better than the most complexity-reducing plan. Thus, adding this
information to the result view is considered helpful.

50

Chapter 6

Case Studies

6.1 Evaluation of Refactoring

In this section, we describe two case studies to evaluate our refactoring method
described in Chapter 4. In the first case study, we decomposed large refinement
steps by using our decomposition method (Section 4.4) to evaluate whether the
method is effective for improving maintainability. In the second case study, we
aimed to evaluate whether our refactoring method improves reusability of existing
models. We first refactored the refinement structure of given machines by using
our restructuring method (Section 4.5) and extracted predicates of reusable parts
as an abstract machine. We then constructed Event-B machines for another target
system as a refinement of the extracted machine.

6.1.1 Decomposing Large Refinement Steps

Aims and Settings

This case study tried to determine whether we can improve maintainability of
existing machines by decomposing refinements.

The author of this thesis decomposed refinements in a large-scale Event-B
model with several intermediate machines by following our decomposition method
and verified their consistency. The implementation SliceAndMerge was used
for slicing (described in Section 4.4.1) in this case study, but it should be noted
that SliceAndMerge does not support complementing. Thus, the author used
the manual method of finding CPs (described in Section 4.4.2) for complementing
intermediate machines.

The target model was a specification about an autonomous satellite flight for-
mation system [78], and it was constructed by a computer scientist who had over
four years of experience in modeling in Event-B. The target system was a con-
troller for two spacecraft (leader and follower), which run autonomously while
maintaining two-layered communication, namely a higher-layer mode communi-
cation and a lower-layer phase communication.

The model has an RC of five steps [m0, m1, . . . , m5]. The second refinement
([m1, m2]) and the third refinement ([m2, m3]) were selected to be decomposed,
because they were larger than the other steps. The row of m2 in Table 6.1a and
the row of m3 in Table 6.1b show statistics of m2 and m3, respectively. The NV

and NI
1 in Table 6.1, respectively, list the number of variables and invariants of

the models. In m2, seven variables and 46 invariants were introduced to specify
mode transitions and communications in the spacecraft. In m3, two variables have

1For the sake of simplicity, we did not count invariants for typing.

51

Table 6.1: Results of case study 1 of refactoring method

(a) Decomposition of second refinement

NV NI NCP NUCP NPO NMPO

m2 +7 46 – – 454 53

m2_1 +4 12 21 5 112 12
m2_2 +1 9 10 6 87 0
m2_3 +1 8 12 6 80 5
m2_4 +1 17 0 0 218 33

Sum of
m2_*

+7 46 43 17 497 50

(b) Decomposition of third refinement

NV NI NCP NUCP NPO NMPO

m3 −2 + 10 72 – – 1127 175

m3_1 −1 + 3 7 17 4 112 6
m3_2 −1 + 3 17 17 8 261 30
m3_3 +2 14 3 2 202 30
m3_4 +2 34 0 0 584 81

Sum of
m3_*

−2 + 10 72 37 14 1159 147

disappeared, 10 variables were introduced (NV is “−2 + 10”), and 72 invariants
were introduced to specify the phase transitions in modes of spacecraft.

Results

We selected slicing criteria VB0 to obtain the sliced machines. After that, we
found CPs with the approach described in Section 4.4.2. Both of the refinements
were decomposed with four intermediate machines (m2_1, . . ., m2_4, m3_1, . . ., and
m3_4). Thus, the machines form an RC [m1, m2_1, . . ., m2_4, m3_1, . . ., m3_4]. The
most concrete intermediate machines, m2_4 and m3_4, were semantically the same
2 as the corresponding original machines, m2 and m3. We selected slicing criteria
so that the slicing would distribute aspects in the original machines into small and
meaningful sets of concepts. For example, the properties and behavior regarding
communication failures, the follower’s incoming buffer for mode messages, the
leader’s outgoing buffer, and the acknowledgement message were specified and
verified in m2_1, m2_2, m2_3, and m2_4, respectively.

The results of decomposition are shown in Table 6.1. The number of intro-
duced invariants was reduced significantly through the decomposition, and the
intermediate machines were more comprehensible than the originals. The re-
placement of the variables in m3 was also split into two steps. In both m3_1 and
m3_2, one variable has disappeared (NV of both machines is “-1+3”).

2There were differences in the actual specifications because several invariants were moved in
order to abstract the intermediate machines, and the refinement structures of the events were
changed.

52

variables : cur_mode_leader , cur_mode_follower ,modeDeliveryReport ,
cur_phase_leader , cur_phase_follower ,
phaseOutgoingLeader , phaseIncomingLeader ,
phaseOutgoingFollower , phaseIncomingFollower

inv22: phaseOutgoingFollower ̸= ∅ ∧ cur_mode_leader = cur_mode_follower
⇒ phaseIncomingLeader = ∅

inv29: cur_phase_leader = cur_phase_follower ∧ cur_phase_leader ̸= PHASE0
⇒ cur_mode_leader = cur_mode_follower

inv40: phaseOutgoingLeader ̸= ∅ ⇒ phaseOutgoingFollower = ∅
inv74: phaseIncomingLeader = {P1} ∧modeDeliveryReport = ∅

⇒ cur_phase_follower = PHASE1
. . .

Event LeavePhase1

ref ines RemainCurrentModeLeader

when
grd1: cur_phase_leader = PHASE1
grd3: modeDeliveryReport = ∅
grd5: phaseIncomingLeader = {P1}
. . .

then
act1: phaseOutgoingLeader := {P2}
act2: phaseIncomingLeader := ∅

end

Figure 6.1: Specification related to proof of m3/LeavePhase1/inv40/INV

We needed to manually find CPs and add them to the intermediate ma-
chines except the most concrete ones. Although the author was not familiar with
the target model at first, he became familiar with it through finding CPs because
the process made implicit properties in concrete machines explicit in simpler vo-
cabularies. The NCP in Table 6.1 lists the numbers of added CPs. Similar events
in MB0 — such as the events of entering phase 1, phase 2, and phase 3 — often
had the same kind of inconsistency and thus required the same kind of CPs. The
numbers of unique CPs (NUCP) show the actual burden of finding CPs.

The procedure for finding CPs was as follows:

1. We examined original proofs. For instance, Figure 6.1 shows part of the
specification of m3 that is related to a PO LeavePhase1/inv40/INV (Figure
6.2). We examined the proof log of the original machine (m3) and found
that several predicates (inv22, inv29, inv74, grd1, grd3, grd5, and BAP
of act2) work as hypotheses (Figure 6.3).

2. We found predicates of hypotheses that cannot be written in the inter-
mediate machine. Variables cur_phase_leader and cur_phase_follower ,
which are specified in m3, were not specified in intermediate machine
m3_2. Therefore, predicates about the variables are dropped through slic-
ing. inv29, inv74, and grd1, which work as hypotheses in the proof
of LeavePhase1/inv40/INV, were not specifiable in intermediate machine
m3_2.

3. We found lemmas in the original proof that are consequences of dropped
hypotheses. Figure 6.3 shows that a predicate of a goal GL5
(cur_mode_leader = cur_mode_follower) is a consequence of inv29,

53

inv22

inv29

inv74

grd1

grd3

grd5

BAPof act2

. . .
⊢
Modified inv40

phaseOutgoingFollower ̸= ∅
∧cur_mode_leader = cur_mode_follower

⇒ phaseIncomingLeader = ∅
cur_phase_leader = cur_phase_follower
∧cur_phase_leader ̸= PHASE0

⇒ cur_mode_leader = cur_mode_follower
phaseIncomingLeader = {P1} ∧modeDeliveryReport = ∅

⇒ cur_phase_follower = PHASE1
cur_phase_leader = PHASE1
modeDeliveryReport = ∅
phaseIncomingLeader = {P1}
phaseOutgoingLeader ′ = {P2}
. . .
⊢
phaseOutgoingLeader ′ ̸= ∅ ⇒ phaseOutgoingFollower = ∅

Figure 6.2: PO m3/LeavePhase1/inv40/INV

GL0: phaseOutgoingLeader ′ 6= ∅ ⇒ phaseOutgoingFollower=∅ (modified inv40)

GL1: phaseOutgoingLeader ′ 6= ∅

GL2: phaseOutgoingLeader ′={P2} (BAP of act2)

GL3: phaseOutgoingFollower=∅

GL4: phaseOutgoingFollower 6= ∅
∧cur_mode_leader=cur_mode_follower
⇒ phaseIncomingLeader=∅ (inv22)

GL5: cur_mode_leader=cur_mode_follower

GL6: cur_phase_leader=cur_phase_follower
∧cur_phase_leader 6= PHASE0
⇒ cur_mode_leader=cur_mode_follower (inv29)

GL7: cur_phase_leader=cur_phase_follower=PHASE1

GL8: cur_phase_leader=PHASE1 (grd1)

GL9: cur_phase_follower=PHASE1

GL10: phaseIncomingLeader={P1} ∧modeDeliveryReport=∅
⇒ cur_phase_follower=PHASE1 (inv74)

GL11: phaseIncomingLeader={P1} (grd5)

GL12: modeDeliveryReport=∅ (grd3)

GL13: phaseIncomingLeader 6= ∅

GL14: phaseIncomingLeader={P1} (grd5)

Figure 6.3: Proof tree of m3/LeavePhase1/inv40/INV

54

inv29

inv74

grd1

grd3

grd5

. . .
⊢
¬ inv22

¬ BAPof act2

Modified inv40

cur_phase_leader = cur_phase_follower
∧cur_phase_leader ̸= PHASE0

⇒ cur_mode_leader = cur_mode_follower
phaseIncomingLeader = {P1} ∧modeDeliveryReport = ∅

⇒ cur_phase_follower = PHASE1
cur_phase_leader = PHASE1
modeDeliveryReport = ∅
phaseIncomingLeader = {P1}
. . .
⊢
¬ (phaseOutgoingFollower ̸= ∅

∧cur_mode_leader = cur_mode_follower
⇒ phaseIncomingLeader = ∅)

¬ phaseOutgoingLeader ′ = {P2}
phaseOutgoingLeader ′ ̸= ∅ ⇒ phaseOutgoingFollower = ∅

Figure 6.4: A sequent inferred from PO m3/LeavePhase1/inv40/INV

inv74, and grd1 in the original proof. The predicate is expressible with
variables of m3_2.

4. We added those lemmas to the machine constructed through slicing.
cur_mode_leader = cur_mode_follower is added to guard of LeavePhase1
in m3_2. We succeeded in discharging m3_2/LeavePhase1/inv40/INV with
the addition.

This process is just a slight extension of what developers usually do when they
try to understand proofs in original machines (step 1). Although we needed to
find which expressions of the original machine correspond to particular hypotheses
due to lack of traceability support in the proof tree, this process can be easily
automated. Thus, we found that this process is easy for modelers, and they need
to carry out similar processes in maintenance of the specification, even if they do
not use our refactoring method.

We found that CPs could be inferred using Craig’s interpolation. We applied
inference rules to the sequent of original PO so that the intersection of variables
in the antecedent and those in the succedent is a subset of variables in the in-
termediate machine. A Craig interpolant of such a sequent can be expressed
only with variables that are common between the succedent and the antecedent.
Although such interpolants are not always minimal, one can be added to the in-
termediate machine. For example, we applied inference rules to the sequent of
m3/LeavePhase1/inv40/INV (Figure 6.2) to obtain m3_2(e.g., Figure 6.4). In
this case, inv22 and the BAP of act2 are removed from antecedent and, ¬ inv22

and ¬ BAP of act2 are added to the succedent through the inference. A predicate

cur_mode_leader = cur_mode_follower ∧ phaseIncomingLeader ̸= ∅

was obtained as an interpolant of the inferred sequent. We added the interpolant
as a guard of LeavePhase1 in m3_2 to successfully discharge
m3_2/LeavePhase1/inv40/INV.
Because the event has a guard phaseIncomingLeader = {P1},
a weaker predicate cur_mode_leader = cur_mode_follower can be added in-
stead of the interpolant.

The NPO and NMPO in Table 6.1 respectively list the numbers of all POs
and the numbers of POs that were manually discharged, including those POs

55

Step 1 (MO1): Persons somehow move between locations according to the authoriza-
tion of persons to locations.

Step 2 (MO2): Physical connections between locations are introduced. Persons move
between physically connected locations.

Step 3 (MO3): Doors with red/green lights are introduced. Doors somehow
authenticate persons.

Step 4 (MO4): ID cards are introduced. Doors read cards and communicate with a
controller by messages to authenticate.

Step 5 (MO5): Physical movements of doors, persons, and lights are considered.
Communication is a reaction to a physical event.

Figure 6.5: Aspects introduced in each step of original model MO
3

• Persons are in locations but do not move to other locations.

• Locations have monitors and consoles with card readers.

• Authenticated persons log in to the server by inserting their ID cards in a reader.

• A red light indicates an authentication failure.

• The controller tries to find an unoccupied monitor in the room.

• Consoles communicate with a controller by sending messages.

Figure 6.6: Aspects of new model MN
3

related to CPs. Most of POs are usually discharged by automatic provers of the
IDE for Event-B. Thus, the number of manually discharged POs (NMPO in Table
6.1) corresponds to the actual amount of effort for verification. The results show
that our decomposition method decreased the labor of verification. For example,
rows of m3 and “sum of m3_*” in Table 6.1b show that the number of manually
discharged POs decreased from 175 to 147 through decomposition, despite that
the number of all POs increased from 1127 to 1159. This appears to be because
direct inclusion of CPs added lemmas to the set of hypotheses. Our future work
includes a detailed analysis of this effect.

We discuss the possibility of having large-scale refinements and the meaning
of the results in Section 8.1.

6.1.2 Extracting Reusable Parts of Machines

Aims and Settings

This case study tried to determine whether we can extract reusable parts of ex-
isting machines by using restructuring (Section 4.5).

We used a model of a “location access controller” (from [2, Chapter 16]) as
the original model MO with an RC [MO1, . . . ,MO5] (Figure 6.5). The model is
about a controller of doors between locations according to persons’ permission to
enter.

We constructed a new model MN by reusing parts of MO. Aspects shown in
Figure 6.6 are specified in MN.

3 Aspects that should be extracted from MO to construct MN are underlined and those that
should be omitted from MO are slanted.

56

First, we constructed a machine Mmrg by merging all the machines of MO.
Next, by slicing Mmrg, we extracted aspects that were common to MO and MN.
Thus, we extracted specifications related to authentication using communication
between card readers and a controller (from MO4 and MO5), persons (from MO1),
locations (from MO1), and red lights (from MO3 and MO5). In other words,
we omitted aspects that would not be included in MN. That is, we omitted
authorization of persons to locations (from MO1), physical connection of locations
(from MO2), doors (from MO3), and green lights (from MO3 and MO5), in addition
to movement of persons (from MO1), which is the primary aspect of MO.

Results

As a result, we succeeded in automatically extracting the reusable parts from
Mmrg because the reusable machine constructed by slicing was consistent, and
thus, we did not need to manually find CPs to make the reusable parts consistent.
After that, we successfully augmented the reusable parts with specifications that
were unique to MN. We also succeeded in discharging all POs.

The extracted machine Mmrg describes aspects that are common in MO and
MN (depicted as underlined parts in Figures 6.5 and 6.6). The RC [Mmrg] was
decomposed into [Mmrg1,Mmrg2] first.

Mmrg1 has the following aspects:

• Location of persons

• Card readers that accepted a person

• List of card readers that did not accept a person

• Blocked card readers (card readers in operation of authentication)

• Messages sent from card readers to the controller when a card is inserted

• Messages sent from the controller to card readers after all operations (ac-
knowledgement messages)

Through refinement, the following aspects were introduced to Mmrg1 as Mmrg2:

• Messages sent from the controller to card readers if authentication was suc-
cessful

• Messages sent from the controller to card readers if authentication was not
successful

• Card readers that emit red light

• Messages sent from card readers to the controller after red light is turned
off

We augmented Mmrg1 by adding the following specifications as MN1:

• The controller refers to authentication data of server (specified as a constant
relationship) for authentication

• After a successful authentication, the controller eventually sends an ac-
knowledgement message to a card reader

As a refinement of MN1, we constructed another machine MN2. The following
aspects related to finding available monitors in the room are introduced through
this refinement:

57

• Persons who are accepted by authorization are in one of the following states:

– The controller has not yet checked whether there is an available mon-
itor for the person

– The controller successfully found an available monitor for the person

– The controller failed to find an available monitor for the person

• If the person’s current location has a monitor that is not used by anyone, it
is registered to be used by the person

• If an available monitor is found, the person eventually finishes using it

• If no available monitor is found, the process is aborted

Next, as a refinement of MN2, we constructed the most concrete machine
MN3 by augmenting Mmrg2. The following aspects related to messages displayed
on a terminal, and messages sent between card readers and the controller are
introduced through this refinement:

• A terminal shows messages (“accepted,” “closed,” “not found”) according to
messages from the controller

• A terminal and the controller communicate by sending messages about find-
ing monitors, finishing, and aborting

Figures 6.7 and 6.8 show synchronizations of events in MO and MN, respec-
tively. An event sequence begins when a person inserts a card (CARD event) and
ends when a device with a card reader (a door or a terminal) receives an acknowl-
edgement message from the controller (ACKN event). Most of the events involve
communication between a device and the controller. As Figures 6.7 and 6.8 show,
we succeeded in extracting common parts of events — namely authentication us-
ing ID cards, communication between a device and the controller, and an entire
event sequence for the case of refusal — by using our restructuring method.

Note that not only omitted aspects in MO but also extracted aspects were
scattered over several refinement steps in the original specification. Therefore,
simply copying a single step, such as MO3, and modifying it is not an effective
way of reusing such aspects. In contrast, we succeeded in extracting aspects in a
cross-refinement manner by slicing after merging refinement steps.

We discuss the importance of systematic extraction and the feasibility of au-
tomatic extraction in Section 8.1.

6.2 Evaluation of Planning

In this section, we describe a case study to evaluate our planning method de-
scribed in Chapter 5. We applied our planning method to four systems (Island,
FTP, Location Access Controller, and Storage). The Island example is the exam-
ple we described in Section 2.1.3. FTP [2] is an example of file transfer protocol
with functionalities of re-transmission on error. Location Access Controller [2] is
an example of controller that regulates movements of people according to per-
missions. Storage is an example from industry that controls management, data
migration, and load-balancing of a data storage system. We elicited properties,
elements, and relationships between elements. Then we examined refinement
plans generated by the planner and simplified by the view constructor. Finally
we constructed Event-B models according to the plans.

58

CARD
(Card is inserted into a reader; card reader is locked)

accept
(Controller accepts

the person)

OFF_GRN
(Door turns of

green light
(timeout))

of_grn
(Controller knows

timeout)

ACKN
(Card reader is unlocked)

ACCEPT
(Door shows that

person has been accepted
(turns on green light))

PASS
(Person passes
through door)

pass
(Controller knows
person has passed)

refuse
(Controller refuses

the person)

REFUSE
(Door shows

that person has
 been refused

(turns on red light))

OFF_RED
(Door turns of

red light
(timeout))

of_red
(Controller knows

timeout)

Figure 6.7: Synchronization of events of MO. Events of the controller are named
in lower case, whereas events of the environment are named in upper case.

Table 6.2: Results of case study of planning. Numbers of properties, elements,
relationships between elements, generated plans, and simplified plans

Example |P | |E| |P |/|E| |Rels| |PLraw| |PLsimplified|

Island 16 9 1.78 4, 1, 1 63 2
FTP 19 18 1.06 1, 2, 1 7206 7
LAC 19 23 0.83 10, 0, 7 9564 9

Storage 8 14 0.57 2, 2, 2 165 54

6.2.1 Analysis of Refinement Design Space Exploration

The first analysis targeted theoretical understanding of how the planning method
explores the design space of refinement. In other words, this trial does not consider
realistic situations or practical usages but purely focuses on the characteristics of
the planning method. This is done by considering an extreme situation where no
smart or experienced human suggestions are given.

By invoking the refinement planner tool, the following data is acquired.
In Table 6.2, Column |P | shows numbers of properties. Columns |E| and |Rels|

show the numbers of elements and relationships between elements (corresponding
to optional rationales described in Section 5.2.2). By running the search algo-
rithm, 63, 7206, 9564, and 165 plan candidates are derived, respectively (Column

59

CARD
(Card is inserted into a reader; card reader is locked)

accept
(Controller accepts

the person)

not_found
(Controller failed
to find monitor)

NOT_FOUND
(Terminal shows
that it failed to
find monitor)

ABORT
(Terminal

aborts process)

abort
(Controller knows

process has aborted)

ACKN
(Card reader is unlocked)

ACCEPT
(Terminal shows that

person has been accepted)

FIND_MONITOR
(Terminal requests

controller to find monitor)

found
(Controller found

monitor)

START_USING
(Person starts

using terminal)

FINISH_USING
(Person finishes
using terminal)

finish
(Controller knows

process has finished)

refuse
(Controller refuses

the person)

REFUSE
(Terminal shows
that person has
 been refused

(turns on red light))

OFF_RED
(Terminal turns

off red light
(timeout))

off_red
(Controller knows

red light has
turned off)

Figure 6.8: Synchronization of events of MN

|PLraw|). This number is not so large given the fact that it includes some arbitrary
ordering. Actually, the view generator simplified them into 2, 7, 9, and 54 results,
respectively (Column |PLsimplified|). The number of simplified plans for the Stor-
age example is larger than others. We estimated this has to do with the ratio of
the number of properties and number of elements (Column |P |/|E|). Since our
planning method follows the dependency between properties and elements, when
the dependencies are dense (e.g., Island), the introduction of properties tends to
introduce many elements at once. Thus, introduced elements tend to be similar.
In contrast, when the dependencies are sparse (e.g., Storage), introduced elements
tend to have larger variations.

60

6.2.2 Analysis of Generated Plans

The second analysis looked at the details of generated plans in each system. The
results on the Island example show that the space is limited and that the results
are similar. Figure 5.4 shows the simplified elements view of the result for the
Island example. Figure 5.4 is also simplified by labels to denote a meaningful set
of elements, as follows. N denotes a set that includes an element corresponding
to the variable of the number of cars outside the mainland. D denotes elements
related to constants for a bound of N . A and C denote elements related to cars
on the bridge heading to the island and to the mainland, respectively. B denotes
elements related to cars on the island. IL and ML denote elements related to
traffic lights at the island side and the mainland side, respectively. COLOR
denotes elements related to the colors of traffic lights.

Figure 5.4 illustrates choices already decided and to be decided. There are
some arbitrary choices about merging and ordering of A,B,C and (COLOR ∪
ML), B,C. Anyway, N is introduced first with D constraining it, as N is a
controlled variable used for the global constraint. Regarding traffic lights, either
ML or IL, the first time it is necessary to talk about COLOR. Another point is
that the controlling traffic light IL does not precede the controlled A,B,C, thus
appearing at later steps. The controlling traffic light ML does not precede the
controlled A and N .

The last point explains the choices of the second step, ordering of B,C and
ML (with COLOR). The probably natural choice (for human developers) is to
consider A,B,C earlier than ML as A,B,C are all about the conceptually same
“number of cars” and also compose a complete decomposition of the state of global
system N . This choice appears in the left-hand side of the second step, which
then leaves arbitrary ordering of IL and ML in the remaining steps. Finally, the
ordering and merging of A,B,C and IL,ML (with COLOR) are up to human de-
velopers, which depends on feelings on granularity. It may be natural to consider
A,B,C at the same step as IL,ML if not too complex as these two sets represent
the same concepts of “number of cars” and “signals.” The obtained plan is two
steps of A,B,C and IL,ML, which is actually the same as the one explained in a
textbook of Event-B [2] (Figure 2.1).

The other choices are also possible and valid, expect for the above feeling of
“natural.” For example, a choice of A and COLOR ∪ML first may be explained
as “first refine the interface with the external part while keeping the inside as
a blackbox.” Though this time the strategy is not natural as the external part
(mainland) does not have any state or control. If so, such a strategy allows
for multitasking of two parts after first refining the boundary. In this way, the
generated plans could be interpreted as different design choices of refinement in
the system.

In order to derive plans of the FTP example, we invoked the planner several
times while modifying input data iteratively according to the result of previous
runs. We tried iterative invocation of the planner by incrementally introducing
the rationales while checking that the derived plans (i.e., narrowed design space)
were convincing. Even though only the default rationales are used in the case
studies, the potentials were demonstrated for interactive and iterative support to
make a design choice and see the narrowed design space.

Thus, it was possible to systematically derive refinement plans only with
general, primitive rationales to some extent and, to enough extent, with some
somewhat-easy human suggestions.

61

6.2.3 Analysis of Input Robustness

There were also trials to delete some of the input properties, elements, or depen-
dencies to represent actual situations where some of the input may be missing.
It is difficult to generalize the results clearly, but in many cases, the results are
not affected very much. If some dependencies or rules are missing, more plans are
derived by the search algorithm. This does not increase the complexity of the re-
sult view because the view simplification works well with more arbitrary choices.
Thus, an iterative process is practical by finding “strange” plans and thus missing
rules. If models are constructed with a meaningless plan derived by incomplete
input, at some point, the problem of the input will be found and modified. At
this point, replanning may be tried to see what the effect of correction is or just
modeling may be continued. The latter is possible as partial correction by adding
something to a previous step (if ordering is missing) or merging steps (if merging
is missing).

62

Chapter 7

Preliminary Analysis for Finding Information
on Abstraction

7.1 Problem and Motivation

In Chapter 5, we proposed a method for planning the refinement structure of
a target system. The planning method can be used to explore design spaces
of a target system in terms of refinement, after documentation or analysis of the
target system and before constructing actual models. In Section 6.2, we confirmed
that our planning method supports refinement planning for complex problems by
analyzing information on dependency, which is given as input.

However, it is not straightforward to prepare input information of our plan-
ning method. Although the list of properties, list of elements, and dependency
between properties and elements can be easily obtained by documentation or
requirements analysis, it requires a special way of thinking to find information
related to refinement, such as abstract properties, abstract elements, and gluing
invariants.

Most existing methods for requirements analysis, such as analysis on natural
language document [34] and object-oriented requirements analysis [24], basically
analyze target systems in a single abstraction layer and thus are not applicable for
our goal. Although goal-oriented requirements analysis methods such as KAOS
[27] consider multiple abstractions of goals with and/or decomposition of goals,
they do not deal with our target, namely additional information and division of
goals for comprehensive abstraction.

In order to discuss the feasibility of finding refinement-specific information,
we constructed a preliminary method for elicitation of such information from
diagrams of the problem structure of the target system.

Our elicitation method aims to find refinement-specific information by an-
alyzing a diagram for a widely used problem analysis method named Problem
Frames [51]. To this end, we defined patterns of common refinements and infor-
mation related to them by analyzing existing models of Event-B. Our elicitation
method helps developers to find refinement-specific information through iterative
abstraction of a diagram based on our patterns.

7.2 Background on Problem Analysis

Problem Frames [51] is one of the most trusted methods for requirements analysis.
In the beginning of the software development process, the approach supports
careful analysis of problems about software and its environment. Concretely,
phenomena related to a problem are identified and arranged as a problem diagram.
The problem diagram is then decomposed into subproblem diagrams, which are

63

Controller

Traffic lights
(mainland)

Traffic lights
(island)

Cars on the
mainland

Cars on the
bridge

Cars on the
island

a

b
c

d

e

f

g

h

TL Red
when full

&
One-way

bridge
c

d

e

f

a: CT!{PulseMTL}
b: CT!{PulseITL}
c: CI!{#I}
d: CB!{#L, #R}

e: TM!{MLRed, MLGreen}
f: TI!{ILRed, ILGreen}
g: CB!{EnterML}, CM!{LeaveML}
h: CB!{EnterIL}, CI!{LeaveIL}

Figure 7.1: Problem diagram of traffic example

viewed as instances of problem classes (problem frames) and analyzed through
argumentation for corresponding problem frames.

A problem diagram of the traffic example is shown in Figure 7.1. The diagram
describes the relationship between a machine domain (Controller) that represents
implementation, problem domains (other rectangles) that represent related parts
of the world, and problem requirements (oval). Labeled lines between domains
represent interfaces, which are phenomena shared between domains. A prefix with
an exclamation mark of an interface shows a domain that controls the interface.
The goal of the analysis is to construct a specification of the machine that satisfies
the requirements.

In the Problem Frames approach, the constructed problem diagram is decom-
posed into subproblem diagrams, which are matched to well-known diagram forms
(problem frames) and analyzed through arguments for the matched frames. Our
elicitation method requires a problem diagram as an input, but it does not require
the decomposition of it nor argumentation on it.

7.3 Requirements Information for Refinement

In this section, we describe refinement-specific information we want to obtain.

7.3.1 Gluing Properties

We call some properties gluing properties. Gluing properties have both abstract
specification elements and concrete specification elements. Thus, gluing properties
semantically “glue” together the state spaces of two specifications. For instance,
in the traffic example, a specification for the second step (a specification depicted
in the middle of Figure 2.1) has a gluing property, such that “the number of cars
outside the mainland equals to the sum of the number of cars on the bridge, and
the number of cars on the island.” This gluing property describes the semantic
relationship between elements of the first step (the number of cars outside the
mainland) and elements of the second step (the number of cars on the bridge and

64

the number of cars on the island). Gluing properties are important for considering
and planning refinements of formal specifications.

7.3.2 Abstract Elements

An abstraction of a concept is expressed as a gluing property — namely, as a
relationship between the abstract elements and the concrete elements.

Several elements that are not in the concrete natural language document can
be introduced for abstraction. For instance, in the traffic example, when elements
(“the number of cars on the bridge” and “the number of cars on the island”) and
a property (“the sum of the number of cars on the bridge and the number of cars
on the island is less than or equal to the capacity of outside”) are provided in the
original document, the developer can design a new element (“the number of cars
outside the mainland”) for abstraction of the elements (“the number of cars on
the bridge” and “the number of cars on the island”). This allows the developer to
verify the property in a simple manner.

Additionally, when considering abstraction, a developer can distinguish ab-
stract elements from concrete ones by deciding the introduction order of ele-
ments. Because abstract elements are simpler than concrete ones, abstract el-
ements should be introduced earlier for simplicity of modeling and verification.
For example, “the number of cars outside the mainland” should be introduced
earlier than “the number of cars on the bridge” and “the number of cars on the
island” since “the number of cars outside the mainland” is an abstraction of the
two elements.

7.3.3 Abstract Properties

Non-gluing properties in a concrete specification may be rephrased or weakened
to their abstract versions by using abstract elements in an abstract specification.
For instance, in the traffic example, the property p (“the sum of the number of
cars on the bridge and the number of cars on the island is less than or equal to the
capacity of outside”) is equivalent to its abstract version p′ (“the number of cars
outside the mainland is less than or equal to the capacity of outside”), according
to the gluing property pg (“the sum of the number of cars on the bridge and the
number of cars on the island is equal to the number of cars outside the mainland”).
By rephrasing p to an equivalent or weakened property p′, the developer can verify
p in an abstract specification by using only abstract elements.

7.3.4 Abstraction Fragment

We call a pair consisting of a gluing property and the ordering rules of elements an
abstraction pair. For instance, a pair PA ⟨ “The sum of the number of cars on the
bridge and the number of cars on the island is equal to the number of cars outside
the mainland,” “the number of cars outside the mainland” should be introduced
earlier than “the number of cars on the bridge” and “the number of cars on the
island” ⟩ is an abstraction pair. In our elicitation methods, an abstraction pair
can be obtained as an instance of information in patterns.

A refinement chain of formal specification is planned by arranging several
abstraction pairs. In other words, the order of consideration of the abstraction
pairs decides the refinement chain.

Given these facts, to consider refinement of a specification from flat descrip-
tions of the concrete properties of a target system, developers need to consider
the possible abstractions of the given properties. Our approach uses abstraction

65

Abstracted
problem diagram
of target system

Problem diagram
of target system

(Step 1) Finding a part of diagram
that matches a pattern

(Step 2) Abstracting
according to the pattern

(Step 3) Finding abstraction
fragment according to the pattern

Elicitation method

End

Found?

Abstraction
fragments

Problem diagram
abstraction patterns

Load a
problem diagram

Load an abstracted
problem diagram

No

Yes

Figure 7.2: Overview of our elicitation method

pairs for this process. For example, assume that we can elicit the property “when
the traffic light is green, the number of cars on the island is greater than zero” in
the concrete document. This property can be rephrased to “when the traffic light
is green, the number of cars outside the mainland is greater than zero.” using the
abstraction pair PA. When creating a specification using refinement, abstract
properties should be specified in an abstract specification. Therefore, after get-
ting concrete properties and abstraction pairs, a developer needs to acquire their
abstract properties.

We call a pair of information described in Section 7.3 abstraction fragment.
Namely, an abstraction fragment consists of an abstraction pair, abstract prop-
erties, and abstract elements (acquired through finding the introduction order of
elements).

7.4 Abstraction of Problem Diagrams Using Patterns

The process of our elicitation method is shown in Figure 7.2.
First, developers need to construct a problem diagram of Problem Frames.

In this analysis process, developers can elicit properties and elements of target
systems.

This elicitation method stepwisely constructs abstract versions of a given di-
agram by using patterns of modification on problem diagrams. New information
related to an abstraction is obtained in this process.

This step should be repeated until there is no part of the diagram that can be
a target of abstraction. An example of stepwise abstraction is shown in Figure 7.3.
The concrete diagram is identical to one shown in Section 7.1. The intermediate
diagram shows that the controller directly informs cars about the number of cars
in every area in the intermediate problem. In the abstract diagram, nIsland, n←,
and n→ are grouped as “the number of cars outside the mainland” (nOutside).

66

Controller

Cars on the
mainland

Cars on the
bridge

Cars on the
island

d

g

h
c: CI!{#I}
d: CB!{#L, #R}
g: CB!{EnterML},
 CM!{LeaveML}
h: CB!{EnterIL},
 CI!{LeaveIL}

Access
cheating

Spatial
grouping

Concrete
problem diagram

Intermediate
problem diagram

Abstract
problem diagram

Controller

Traffic lights
(mainland)

Traffic lights
(island)

Cars on the
mainland

Cars on the
bridge

Cars on the
island

a

b
c

d

e

f

g

h

a: CT!{PulseMTL}
b: CT!{PulseITL}
c: CI!{#I}
d: CB!{#L, #R}

e: TM!{MLRed, MLGreen}
f: TI!{ILRed, ILGreen}
g: CB!{EnterML}, CM!{LeaveML}
h: CB!{EnterIL}, CI!{LeaveIL}

TL Red
when full

&
One-way

bridge
c

d

e

f

c Don't
leave ML
when full

&
One-way

bridge

c g

d

Controller

Cars on the
mainland

Cars outside
the mainland

g

d: CO!{#O}
g: CB!{EnterML},
 CM!{LeaveML}

Don't
leave ML
when full

d g

d

Figure 7.3: Stepwise abstraction of problem diagram

A pattern comprises a target, concrete elements, abstract elements, gluing con-
cerns, and diagram modifications. Target describes parts in a concrete problem
diagram that can be changed through an abstraction using the pattern. Modi-
fications on a problem diagram using the pattern are described in terms of ele-
ments, namely domains and interfaces. Through the abstraction, developers omit
concrete elements and add abstract elements. Relationships between abstract el-
ements and concrete elements are described in gluing concerns, which are instan-
tiated as gluing descriptions. Modifications on a problem diagram through the
abstraction are described in diagram modifications. Developers need to convert
requirements that refer to concrete elements into abstract requirements by con-
sidering gluing descriptions. Abstract requirements can be equivalent or weaker
than the concrete versions, but cannot be stronger than the concrete versions.

For example, a pattern named spatial grouping is defined as follows:

Target Several domains of the same class.

Concrete elements Domains in the target and their interfaces.

Abstract elements A domain that represents a combination of the domains
and interfaces that represent combinations of concrete interfaces of the same
class.

Gluing concerns For every abstract element a that represents combinations
of concrete element (ci), the value of a is equal to the (numerical, set-
theoretical, etc.) sum of values of (ci).

Diagram modifications Concrete elements are replaced with abstract ele-
ments. Domains that have interfaces with concrete domains come to have
interfaces with the abstract domain.

An example of applying the spatial grouping pattern is illustrated as abstrac-
tion of the intermediate problem diagram in Figure 7.3. In this case, first, the
domains “Cars on the bridge”and “Cars on the island”are found as the target be-
cause they are about the same class. Then, the target domains are replaced with

67

an abstract domain (“Cars outside the mainland”). Moreover, concrete elements of
the same class nIsland, n←, and n→ are grouped as an abstract element (nOutside).
As an instantiation of a gluing concern, developers obtain a gluing description
(nOutside = nIsland + n← + n→). Concrete elements EnterIL and LeaveIL are
just omitted because they are shared within the target domains. Requirement
nIsland + n← + n→ ≤ Cap is changed to its abstract version (nOutside ≤ Cap) by
considering the gluing description. As a result, an abstract element, an abstract
property, and a gluing property are obtained.

We analyzed 14 problems that comprise safety properties as their key proper-
ties and defined five patterns. We describe the other patterns in the rest of this
section.

7.4.1 Temporal Grouping

This pattern is for grouping multiple sequential event elements as a single event
element. Assuming that a problem is related to a sequence of consecutive
events (e0, . . . , en+1) , events {e1, e2, . . . , en} are considered as concrete elements
and replaced with an abstract event element (e′). Thus the sequence becomes
(e0, e

′, en+1). Gluing concerns are (1) e′’s guard is equivalent to the guard of e1,
and (2) e′’s state change is equivalent to state change by a sequence of events
(e1, . . . , en). States that are changed only by event e1, e2, . . ., and en are omitted
in the abstract problem.

For instance, a possible scenario of cars’ movement in the example is as follows:

1. The controller sends a pulse to a traffic light on the mainland (MPulseG).

2. The traffic light turns green (MTLColor := green).

3. Cars on the mainland go on the bridge (LeaveMainland / #L++).

4. The cars on the bridge (going left) eventually enter the island because the
bridge is controlled to be one way (EnterIsland / #L - -; #I++).

5. Steps 3 and 4 are repeated until #L becomes zero.

6. To allow cars on the island returning, the controller sends a pulse to the
traffic light on the mainland to turn it red (MPulseR).

Developers can design an event (EnterIslandDirectly / #I becomes positive; #L
becomes zero) by applying the temporal grouping pattern to a concrete problem
with this scenario. Thus, in the abstract problem, the scenario is represented by
a consecutive sequence of events (MPulseG, EnterIslandDirectly, MPulseR). In
this way, the pattern makes argumentation simpler.

7.4.2 Access Cheating

In problem analysis, developers frequently need to analyze a domain C that con-
nects other domains A and B. Typical examples are sensors and actuators that
connect the machine and the world. Such a domain C is called connection domain
and considered important since it may be related to requirements and effects, in-
cluding delay, unreliability, and conversion of data [51].

The access cheating pattern aims to construct an abstract problem without
a connection domain and arguments over properties of connection domains later
(i.e., in concrete problems). Thus, in an abstract problem, permission of logical
access or physical access is intentionally violated, and developers concentrate on

68

effect without considering means. The gluing concern of this pattern is “Property
of means ⇒ effect” or “Property of means ⇔ effect.” For example, the intermedi-
ate problem in Figure 7.3 can be abstracted from a concrete problem using this
pattern.

For instance, in our example, the controller of the concrete problem needs to
regulate cars’ traffic by controlling traffic lights. Controlling traffic lights corre-
sponds to informing a number of cars in all areas because the color of traffic lights
depends on the number of cars (e.g., a green traffic light on the mainland means
that n→ = 0 ∧ nIsland < Cap). By applying this pattern to the example, devel-
opers can construct an abstract problem such that the controller directly informs
cars about the number of cars. In this case, the gluing concern is “traffic light is
green ⇔ n→ =0 ∧ nIsland < Cap.”

7.4.3 State Transition Limiters

In this pattern, developers find additional elements that limit the transitions of
some states. If an element represents a state (variable) and has a specific domain
or constraint, the element should be introduced together with the elements that
represent the domain. In the traffic system, “the number of cars on the bridge”
and “the number of cars on the island” should be introduced together with its
upper bound (“capacity”). If this merging is not used, the refinement steps seem
to be too fine-grained to delay introducing constraints on one variable. This rule
is sufficiently concrete so that it does not require suggestions from experienced
persons. It only requires a systematic check of state elements, and the domains
or constraints on each of them. Although it might be acceptable to introduce
the state first, constructing an abstract specification that the state changes freely
(more than the actual), then later the constraint, is introduced. The other order-
ing is meaningless as then the first specification includes the constraining elements
(capacity) not used for anything. For instance, in the traffic system, the transi-
tion of state “the number of cars outside the mainland” is limited by a constant
“capacity outside the mainland.”

7.4.4 Realization of Properties

Another common strategy is to start from specifications of the logical proper-
ties and behaviors of the system and to introduce specifications of the means
afterward. In the traffic system example, the specifications of the properties and
behaviors of the system are only about the number of cars in the abstract model.
The concrete models introduce the properties and behaviors of traffic lights, and
they introduce sensors. One of the gluing properties for the number of cars and
the state of the traffic light is as follows: “If traffic light is green, the number of
cars outside is less than capacity.” Gluing properties for this pattern have the
form “(property of means implies (logical property)” or “(property of means) iff
(logical property).”

7.4.5 Other Patterns

In addition to generic patterns provided by us, a developer can reflect ad-hoc
guidelines from experiences in this elicitation method. For instance, assume that
there is a guideline that recommends developers introduce sensors earlier than
actuators. That guideline can be reflected as a pattern for the elimination of
actuators from a problem diagram that includes sensors and actuators.

69

Table 7.1: Target systems in user experiment

Target system #properties #elements #orders

Traffic 16 10 15
LAC 19 23 54

Storage 8 19 22

7.5 Preliminary Experiment on Finding Abstraction Fragments

In this section, experiments to evaluate our research questions are described.
Problems used in experiments are Traffic (described in Section 1.1), LAC [2, Sec-
tion 16] (a hardware/software system to regulate movement of people between
rooms considering authorization), and Storage (from an industrial project, a con-
troller of storage systems considering load balancing and virtual storage), as Table
7.1 shows.

We carried out a user experiment with the following settings.
In the first experiment, we let users elicit abstraction fragments by using

our elicitation method of pattern-based analysis. This experiment serves as a
preliminary phase of the experiment of refinement planning (Section 6.2).

We briefly described our elicitation methods and target systems to partici-
pants, and we gave participants concrete problem diagrams of the target systems.
The concrete problem diagrams were constructed by us so that participants could
concentrate on our elicitation methods without being perplexed by details of the
Problem Frames approach. Participants followed our elicitation method (Section
7.4) to derive abstract problem diagrams until they derived the most abstract
problem diagram. They also found gluing descriptions as instantiations of gluing
concerns during the derivation.

The participants were four computer science students without knowledge of
Problem Frames. We assumed they could not supplement our elicitation methods
with their insights because of their lack of experience.

Participants applied patterns to problem diagrams without being puzzled and
acquired abstract problem diagrams and gluing descriptions of all target systems
in less than one hour in total. For each of the analysis results by the four partici-
pants, a refinement plan was derived by using the planner. Table 7.2 summarizes
how the complexity is mitigated into multiple steps. #steps and #maxphen
denote the number of steps and the maximum number of introduced elements,
respectively, in each step. All the participants succeeded in mitigating the com-
plexity at a similar level of granularity of the steps.

As a second experiment, we succeeded in constructing Event-B models in
multiple abstraction levels in all cases by using the information acquired in the first
experiment. Table 7.3 shows the number of invariants and number of variables
in every step of every case. We also successfully showed that arguments over
each model are consistent and that concrete arguments are consistent with their
abstract versions.

70

Table 7.2: Refinement plans comparison

Plan P P1 P2 P3 P4

#steps (Traffic) 3 3 3 3 3
#steps (LAC) 5 6 5 3 4
#steps (Storage) 3 3 2 3 2
#maxphen (Traffic) 3 3 3 4 3
#maxphen (LAC) 5 5 5 7 6
#maxphen (Storage) 4 4 5 4 4

Table 7.3: Number of requirement clauses and elements in Experiment 2 of elici-
tation method

Target Traffic

Sort req phen
Participant p1 p2 p3 p4 p1 p2 p3 p4

Abst. problem 1 1 3 1 3 3 4 3
1st refinement 4 4 7 4 7 7 6 7
2nd refinement 7 7 7 7 11 11 10 11
3rd refinement - - 7 - - - 11 -

Target LAC

Sort req phen
Participant p1 p2 p3 p4 p1 p2 p3 p4

Abst. problem 2 2 5 1 3 3 8 5
1st refinement 3 3 5 5 6 6 10 10
2nd refinement 5 7 7 7 10 18 18 18
3rd refinement 7 - - - 18 - - -

Target Storage

Sort req phen
Participant p1 p2 p3 p4 p1 p2 p3 p4

Abst. problem 4 4 4 1 8 7 8 3
1st refinement 9 7 9 7 17 12 17 12
2nd refinement - 9 - 9 - 17 - 17
3rd refinement - - - - - - - -

71

Chapter 8

Discussion

8.1 Discussion on Refactoring

In this section, we discuss our refactoring method (Chapter 4) and application
of the method considering the results of the case study for the method (Section
6.1).

8.1.1 Discussion on Refactoring Methods

Deriving CPs

All POs originate from specifications. Hypotheses essential to discharging POs
are also inferred from specifications. We call predicates that raise a PO ϕ raisers
of ϕ and predicates that provide hypotheses for discharging ϕ hypothesis providers
of ϕ.

Suppose that ϕ is a PO in a concrete machine. If the raisers of ϕ are express-
ible by VB, the hypotheses required to discharge ϕ should also be expressible by
VB. However, hypotheses providers are not always specified with vocabulary of
VB. Sometimes, a PO ϕ that is expressible by VB is discharged with hypotheses
including a hypothesis h that is expressible by VB, and h is implied by hypotheses
providers P that are expressible by VC but not expressible by VB. In other words,
in this case, h is not directly specified in the machine but rather implicitly speci-
fied by P . In such cases, ϕ is raised but cannot be discharged in the intermediate
machine since the intermediate machine lacks some of the hypotheses providers
for ϕ. Thus, users need to add CPs that are expressible by VB and able to imply
hypothesis h.

However, developers tend to directly specify hypotheses in practice, because
hypotheses raisers for POs are usually important properties of a target system;
thus, directly specifying hypotheses to discharge the POs is usually a meaningful
way of describing the system. Therefore, users do not need to add CPs frequently.
For instance, we did not need to add CPs in the second case study (Section 6.1.2),
because all of the hypotheses providers were specified in VB for all of the POs that
were expressible by VB.

Specifying a hypothesis provider in the form h∧predicate to imply hypothesis
h is another common case. Although users need to add CPs, they can be found
with simple rules. In other cases, CPs can be found by reviewing the proofs for
the original machines, as described in Section 4.4.2. This task is easy for users
who are familiar with Event-B. In our first case study (Section 6.1.1), all of the
CPs were found by conducting a rule-based analysis of the concrete machine or
analyzing the proof of the machine’s consistency.

Therefore, we conclude that finding CPs is neither frequently required nor

72

difficult. As a primary part of our future work, however, we are planning to
construct systematic and complete methods for deriving CPs so that developers
can easily derive consistent intermediate machines. We will further investigate
relationships between CPs and Craig interpolation of the completed proof.

Selecting Slicing Criteria

Users of our decomposition method can select a slicing criterion, namely variables
that are specified in the intermediate machine. Users may consider aspects of the
intermediate machine and select some of the variables of the concrete machine, or
they may consider properties that should be verified in the intermediate machine
and select some of the invariants of the concrete machine. In the latter case, the
slicing criterion is a set of variables required to specify selected invariants. Users
can select an arbitrary VB0 so long as VA ∩ VC ⊆ VB ⊆ VA ∪ VC.

Feasibility of Consistent Decomposition of Refinement

In Section 4.4.2, we described a heuristic for mending consistency by finding CPs
as Craig interpolants of formulas that are equivalent to POs in given machines MA

and MC. Obviously, the applicability of this heuristic depends on the applicability
of interpolation to formulas of POs.

From the point of view of languages used in expressions, we cannot claim that
the heuristic is applicable to arbitrary predicates in Event-B models. The mathe-
matical language of Event-B has a high expressive power because it is first-order
logic extended with set theoretic notation that enables advanced expressions,
such as quantification over all subsets of a set [4]. In addition, the language can
be further extended with additional operators and proof rules by using the the-
ory extension mechanism [19]. The theory extension has been used to support
advanced mathematical theories, such as those of real numbers and graphs, on
Event-B models. Considering these facts, we cannot guarantee that the heuristic
is applicable to every Event-B model.

However, the heuristic is applicable to predicates if they are reducible to
first-order ones because the interpolation theorem holds for first-order logic, and
such a class of predicates is expressive enough for most practical use. For ex-
ample, as we described in Section 6.1.1, the expressions of the models used in
case studies of refactoring were in such a class. Most of the set-theoretic no-
tations used in the models are basic ones, such as phaseOutgoingFollower ̸= ∅
and phaseIncomingLeader = {P1}. In the models, there is also a predicate with
quantification over subsets of sets. It is a predicate of an invariant that states
several variables are singletons, as follows:

∀S ∀s .
S ∈ {phaseOutgoingLeader , phaseOutgoingFollower ,

phaseIncomingLeader , phaseIncomingFollower ,

phaseDeliveryReportLeader , phaseDeliveryReportFollower}
∧ S ̸= ∅ ∧ s ∈ S

⇒ S = {s},

where phaseOutgoingLeader and other variables about phases are a subset of a

73

finite set of constants. However, it is equivalent to the following:

∀s .phaseOutgoingLeader ̸= ∅ ∧ s ∈ phaseOutgoingLeader

⇒ phaseOutgoingLeader = {s}
∧
∀s .phaseOutgoingFollower ̸= ∅ ∧ s ∈ phaseOutgoingFollower

⇒ phaseOutgoingFollower = {s}
∧
. . .

∧
∀s .phaseDeliveryReportFollower ̸= ∅ ∧ s ∈ phaseDeliveryReportFollower

⇒ phaseDeliveryReportFollower = {s}

Thus, it is reducible to a first-order expression.
Therefore, although developers can specify highly mathematical predicates for

developments, the heuristic is considered to be applicable for most practical uses
of Event-B.

Adding New Concepts of Abstraction

A user can add new concepts of abstraction to the machines, by decomposing
refinement after adding new specifications for abstraction to the concrete machine.

One way is adding new variables. For example, in Figure 2.5, by creating an
intermediate machine that has {g} as VB0 after adding a variable g, an invariant
g = a+ e, and other predicates, a user can construct an intermediate machine for
specification of variables b and g instead of variables b, a, and e.

The other way is adding new events. Assume that a concrete machine has
several events E that have common guards and actions. By selecting variables
that occur in common predicates in E as VB0, a user can construct an intermediate
machine with an abstract event, which is refined by all events of E.

These appear to be useful for restructuring refinement of existing models.

8.1.2 Discussion on Application of Refactoring

Further Elaboration of Intermediate Machines

After slicing and complementing, users may want to add properties to a consistent
intermediate machine, in order to make it richer. In this case, users need to find
concrete machine properties and abstract them so that they are expressible by
VB.

Improvement of Maintainability by Decomposition

In our first case study (Section 6.1.1), we decomposed large refinements into
smaller ones. The primary benefit of reducing the size of specifications is the sup-
port of maintaining machines. According to a study conducted in industries [76],
activities for formal specifications’ maintenance include impact analysis, refac-
toring identification, and validation. Our decomposition method makes such
activities easier because it shrinks the size of the state space and the number
of predicates, and reveals implicit properties of concrete machines as CPs. In
particular, reducing the size of specifications can significantly reduce the cost of
verification [61] in maintenance. The study [76] also reports that refactoring steps

74

should be small. This becomes easier with smaller refinement steps. Thus, our
decomposition method improves maintainability of each single refinement step.
Our future work will include evaluation of the trade-off between this and the
maintainability of the whole model.

It should be noted that the improvement of understandability and the reduc-
tion of the cost of manual proofs confirmed in the case study is a result of finding
CPs with a manual analysis by the author. Thus, we did not confirm whether our
refactoring method with the heuristic with interpolation is effective for improving
the maintainability. Confirmation of this will be included in our primary future
work.

Large Refinement Steps

Large refinement steps such as ones used in our first case study (Section 6.1.1),
are common. Developers design refinements on the basis of properties that should
be verified or subjects that should be considered in each step. Usually, such prop-
erties or subjects are about multiple aspects of the target system. Therefore,
including many aspects in one refinement step may seem natural for developers
when they construct machines and are in fact common, despite that smaller re-
finements are easier to comprehend. Thus, we believe our decomposition method
is effective for most existing Event-B machines.

Effectiveness of Systematic Extraction of Reusable Parts

In our second case study (Section 6.1.2), we automatically extracted reusable parts
of an existing model. Manually extracting such parts without using our refactor-
ing method is not impossible — namely, developers can extract such parts by
examining several machines of the original model and copying and pasting. How-
ever, the number of predicates that should be examined is large. In addition, such
predicates are usually scattered over several machines. Therefore, manual exam-
ination is tedious and error-prone. Our refactoring method makes this process
more systematic. Moreover, if a machine constructed with slicing is consistent
(i.e., there is no need to find CPs), it is possible to automatically extract reusable
parts. If the implementation of heuristics described in Section 4.4.2 is possible, it
will further help this process of extracting reusable parts.

It should be noted that even if heuristics for finding CPs (Section 4.4.2) can be
implemented, CPs that are found by such heuristics may not be suitable for reuse
because they may not be natural for humans. We need to check whether such
heuristics are effective to obtain comprehensible and reusable parts of machines
by implementing them. It will be interesting to exploit sophisticated interpolation
algorithms tailored to obtain simple interpolants, such as one proposed in [8].

Feasibility of Automatic Extraction of Reusable Parts

In our second case study (Section 6.1.2), we extracted aspects of “authentication
using communication between card readers and a controller” as reusable parts
of the original machines. In the original machines, these aspects were introduced
through several refinement steps, and it seemed that they were dependent on other
parts. However, they were actually independent of other parts, and we succeeded
in automatically extracting them. We often see this kind of independence of parts
embedded in machines. Our refactoring method provides an automatic extraction
of such parts. Although users sometimes need to add CPs, most of the predicates
can be found with rules, as we described in this section.

75

8.2 Discussion on Refinement Planning

In this section, we discuss the capability and potential of our planning method
(Chapter 5). On the basis of the results of the case study for the method (Section
6.2), we discuss the contribution to the activity of refinement design and whether
our planning method can be a foundation of tools for planning refinement in
Event-B.

8.2.1 What Roles in Refinement Design Can the Planning Method
Play?

As the planning method offers a kind of filtering function, primary concerns are
about what and how much the planning method excludes. Regarding this point,
the approach in this thesis adopted only part of essential and general rationales
to eliminate plans that seem absolutely meaningless. In other words, this thesis
avoided using more high-level, intuitive guidelines, which is possibly controversial,
without logical validation.

Does the Planner Eliminate Only Meaningless Refinement Plans?

We defined “validity” of the refinement structure and took an approach to elim-
inate clearly meaningless plans from possibilities of arbitrary refinement plans.
Thus, we consider this question as equivalent to whether our definition of validity
is valid.

As described in Section 5.2, our definition of validity is in a broad sense;
we consider not only mathematical correctness and consistency but also generic
refinement strategies based on the intention of refinement. For example, as de-
scribed in Section 5.2.2, our planning method considers that controlling elements
(e.g., elements of traffic lights) are more concrete than controlled elements (e.g.,
number of cars). Therefore, arguing validity of the refinement structure is contro-
versial. Although we consider our rationale as not strange based on discussions
with experts of Event-B modeling and comments from reviewers, empirical study
should be conducted for thorough validation.

Does the Planner Eliminate All the Meaningless Refinement Plans?

This is expected to be true, for validity defined by the primary rules of Event-B
(see Section 5.2). The case studies showed that more definitions are necessary in
order to eliminate meaningless plans not excluded by the Event-B rules. In addi-
tion, there are inevitable limitations that make it necessary to modify refinement
plans later (e.g., merging properties for proofs).

Do Derived Plans Deal with Various Kinds of Refinement?

The main kinds of refinement in Event-B are horizontal (superposition) refinement
and vertical (data) refinement. Our view of refinement as incremental addition
of properties and elements naturally corresponds to horizontal refinement. In ad-
dition, our planning method can handle vertical refinement by considering gluing
invariants (i.e., invariants that semantically “glue” together state spaces over mul-
tiple abstraction levels) as properties. In fact, we were able to derive refinement
plans that consider vertical refinements. There are also purely operational refine-
ments, which are sometimes useful for proof localization, but they are outside our
scope.

76

Does the Planning Method Derive a Small Enough Number of Refine-
ment Plans?

The essential rationales, as well as the view simplification, worked well enough in
the case studies. The Storage example is an exceptional case, but we estimate that
examples with a low ratio of #properties/#elements are not difficult-to-derive
plans since they tend to allow refinement plans with a large amount of freedom.
In other words, we found that our planning method is effective, especially for
complicated examples (i.e., examples with a high ratio of #properties/#elements)
that are difficult to derive plans intuitively. We need to note, however, that it
is not likely that the rationales presented in this thesis are actually sufficient for
ensuring a positive answer to this question in general. Good suggestions from
various corners will be necessary in many cases. In particular, developers can
apply their intuition and knowledge in specific ways, e.g., by merging A, B, and C.
Nonetheless, the approach in this thesis can potentially apply to a variety of other
rationales and high-level guidelines, possibly domain-specific ones. Moreover, very
large systems are inevitably handled by dividing them into subsystems or sub-
layers and having developers focus on these parts (this is also done in modeling
and analysis). The last point is that an iterative process is facilitated if the plans
are too large, as discussed in Section 6.2. Therefore, we think that we should
not overlook the experience of developers or the proper decomposition of large
systems.

It is also possible to sort derived plans and propose the best plan to devel-
opers. A simple but promising criterion for sorting is minimizing the maximum
number of introduced elements in each step. For example, a plan PLA where
mini=1···n|intro(PLA, i)| = 3 is preferable to PLB where
mini=1···n|intro(PLB, i)| = 5. By sorting in this way, developers can easily find
plans that effectively distribute the complexity of modeling.

Summary

The planning method does not mean full automated support of all the aspects
in refinement planning. It can support the minimum tasks to extract plans that
can be judged as valid with confidence by common rationales. This point means
the planning method can eliminate simple but bothersome, error-prone human
tasks (e.g., collecting a set of necessary properties and elements that should be
introduced together). In addition, the planning method allows for more aggressive
planning by incorporating human design choices or specific high-level rationales.
This can be done through interaction with the developers, as well as through
incorporating more aggressive automated decisions.

8.2.2 Can the Planning Method Serve as a Foundation for Practical
Tool Support on Refinement?

Is the Cost of the Planning Method Acceptable?

The large cost of modeling and proving Event-B models is a primary problem. Al-
though our planning method prevents refinement-plan-level rollback, our planning
method may not optimize the actual cost. However, our experience has taught us
that enabling a comparison of several refinement plans reduces the overall cost.
Our future work will include a user test that involves a measurement of the actual
costs in terms of the time and/or the number of proofs discharged for validation.

77

Is the Cost Required to Prepare the Input to the Planning Method
Acceptable?

Input preparation of our planning method is not a trivial task. We need to
consider the cost of following our elicitation process in our future work. However,
some form of requirements analysis is necessary for the modeling tasks, though
maybe implicitly, but should be explicitly for sharing and tracking in actual use.
Moreover, as discussed in Section 6.2, developers do not need to analyze the
system completely the first time because the planning method can be applied
iteratively. In the future, it would also be interesting to integrate our planning
method with object-oriented domain modeling. A practical tool with a good
interface would also be helpful for supporting specific workflows and interactions.
Further experiments with developers are also necessary.

Can the Planning Method Assume Good Input and Guarantee Good
Output?

In the case studies, we carried out the input creation process and evaluated the
derived plans ourselves. Although we did not use any knowledge other than
generic patterns provided by our planning method, if other developers were to
follow our planning method, they could fail to find properties that do not explicitly
appear in the normal requirements analysis. However, as discussed in Section
6.2.3, the planning method is still effective even if the input is incomplete or
wrong. It is possible that some developers might feel that some of the output is
meaningless.

Summary

At the current point, there are no obvious obstacles that prevent elaborating the
planning method into a practical tool. Our future work will include a user exper-
iment involving people of different backgrounds and different Event-B modeling
abilities. Establishing a requirements analysis method and concrete evaluation
criteria for plans will also be important.

8.3 Discussion on Preliminary Phases

In this section, we discuss our preliminary method for elicitation of informa-
tion on abstraction described in Chapter 7. We focus on whether our elicita-
tion method facilitates systematic elicitation of information, valid construction of
Event-B models, and smooth refinement in constructing models.

8.3.1 Does the Elicitation Method Facilitate Systematic Elicitation of
Abstractions to Mitigate the Complexity?

In the first experiment, the participants could successfully elicit the abstractions
by using the elicitation method for pattern-based analysis. This was systematic,
without depending on their expertise or previous experience on formal specifica-
tion methods or Problem Frames. There was also no significant difference in the
results in terms of how the derived abstractions mitigate the complexity. The
time they used for the three systems (at most one hour) was short enough. Thus,
we believe that the elicitation method is effective for facilitating the elicitation of
abstractions.

78

Although none of the participants of the first experiment had any experience in
problem analysis in Problem Frames, they successfully derived abstract diagrams
and gluing descriptions in a short enough time (less than an hour for three prob-
lems). Derived information reflected natural abstraction for each participant and
thus varied with participants, but all information was successfully used to con-
struct Event-B models over multiple abstraction levels in the second experiment.
Thus, we believe that our elicitation method is so systematic that it helps even
non-experts of problem analysis to derive information of abstraction of problems.

Notably, in the first experiment, the problem diagrams are given by us to
purely focus on the elicitation method. We believe this preliminary part does
not limit the applicability of the elicitation method as it is supported by the
trusted method of Problem Frames, or more generally, the essential task to identify
properties and elements is general in requirements analysis.

8.3.2 Do the Refinement Plans Derived by the Elicitation Method
Facilitate Valid Formalization in Each Refinement Step?

In the second experiment, we succeeded in formalizing each of the steps in the
refinement plan. Our approach focuses on the dependencies of properties and
elements so that the specification of each step is comprehensive. The patterns
and the planner are responsible for this point, and developers do not need to face
this complex or at least bothersome issue. This advantage held in the experiment
as well.

In the sense discussed above, the refinement plans derived by the elicitation
method can support valid formalization of each refinement step. Developers who
work on the target formal specification method are responsible for the other as-
pects of valid formalization.

For example, our elicitation method does not include any mechanism to sup-
port validity in terms of syntax correctness specific to each formal specification
method. In the first experiment, the participants were experienced enough to have
responsibility for this point. It is notable that this point is often supported by
mechanisms for model translation or generation, which may be added as plug-ins
to our elicitation method to be tailored for specific formal specification methods.

Another notable point is that we cannot ensure the constructed model is valid
in the sense that the application logic passes verification (testing, theorem proving,
etc.). Developers could need to modify the models to add assumptions in a certain
step to pass tests or complete proofs. We cannot avoid this possibility beforehand
as investigating this possibility is what we want to do after formalization.

8.3.3 Do the Refinement Plans Derived by the Elicitation Method
Facilitate a Smooth Process through the Refinement Steps?

In the second experiment, we succeeded in completing a stepwise refinement pro-
cess just by following the plan derived by the approach.

The refinement planner can suggest the most granular plans by considering
the dependencies. Thus it is easy for human developers to reflect their preferences
on the granularity of steps by merging the granular steps. This does not break
the comprehensiveness of each step discussed in the previous discussion. This
is the difficulty that our approach resolves. The difficulty otherwise comes to
the surface as dividing large steps by intuitive preferences can easily break the
comprehensiveness in terms of dependencies.

79

In this thesis, we have focused on a generic method applicable regardless of
formal specification methods to be used. It is attractive to support and exem-
plify plugin extensions to be tailored for specific formal specification methods.
The starting point is, for example, to integrate method-specific, expression-level
support, such as patterns to generate specification templates (e.g., [81]).

In the first experiment, we prepared problem diagrams and metadata for ab-
straction. Although it is possible that he created arbitrary diagrams with prior
knowledge of possible refinement of the system, we are confident the diagrams can
be prepared by usual analysis in problem frames. This issue should be examined
in our future work through another user experiment.

We believe effectiveness of the method for the abstraction of problems is con-
firmed through our experiments. Although the set of three patterns we provided
is not our main contribution, all of them were used by every participant; thus,
we estimate that we found important patterns. Finding other patterns through
more experiments will be included in our future work.

The patterns we provided may be polished through analyzing more formal
specifications. However, our user experiments showed that the patterns were
effective for planning refinement. In addition, although our elicitation method
helped participants to easily construct specifications, our elicitation method may
not optimize the actual cost of construction.

We need to consider the cost of applying our elicitation methods. However,
some analysis of the target system is needed before constructing formal specifica-
tions. Moreover, by using refinement planners, users can prevent refinement that
obviously causes reworking of constructing specifications. Future work will also
include measurement of the actual cost in terms of time or the number of proofs
discharged for validation through user experiments.

8.4 Summary of Evaluation and Discussion

On the basis of our definition of refinement structure, we constructed methods that
systematically manipulate dependency of properties and consistency of models.
Through case studies of applying our methods, we confirmed that our methods
support difficult processes of constructing and reconstructing refinement struc-
ture, which have been handled with artisanship and trial-and-errors up to now.

In the evaluation of refactoring methods (Section 6.1), we showed that our
refactoring method can improve maintainability by decomposing large refinement
steps into meaningful small refinement steps. We also showed that our refactor-
ing methods can improve reusability of existing models by extracting reusable
elements and properties without being confined to existing refinement structure.

In the evaluation of planning methods (Section 6.2), we succeeded in showing
expression of possible refinement plans by using our refinement planner. Refine-
ment steps of obtained plans were conceptually united, and the expression of plans
for three out of four problems were small enough to be comprehensible. Moreover,
by analyzing characteristics of problems and obtained plans, we found that our
planning method is particularly effective for complicated problems, for which it
is difficult to intuitively construct valid plans.

Even with our planning method, it is still necessary to design essential infor-
mation on abstraction such as gluing invariants and abstract variables. In order
to discuss feasibility of this process, we constructed a preliminary method for
elicitation of such information on abstraction and carried out a preliminary case
study (Chapter 7). From the result of the case study, participants, who were not
experienced in modeling in Event-B successfully found information on refinement.

80

There are various future works of evaluation. First, in Section 4.4.2, we
showed a possibility of obtaining CPs as Craig interpolants from proofs of consis-
tency of given machines. In order to confirm this, we are planning to implement it
with existing algorithms for interpolation. We also should carry out case studies
to evaluate the effectiveness of our refactoring method with the heuristic using
Craig interpolation and compare the results with those obtained by manually
found CPs. Second, for a thorough evaluation of maintainability and reusabil-
ity, we need to carry out additional evaluations, including user studies. Next,
our planning method has inherent weakness of state explosion because it is based
on exhaustive search. We are planning to extend the planning method to sup-
port partial search. Finally, for thorough evaluation of early-phase processes, we
should carry out holistic case studies, such as user studies of eliciting abstraction
information, planning, and constructing specification.

81

Chapter 9

Related Work

9.1 Support of Modeling in Event-B

Decomposition of Event-B machines (in “shared variable” style [5] and “shared
event” style [18]) is one of the primary mechanisms to deal with complexity of
modeling in Event-B. The aim of these methods is decomposing a large single ma-
chine into several components. In contrast, our goal is decomposing and merging
the refinement structure of multiple machines.

Generic instantiation [73] is also considered to be a central method to deal
with complexity in Event-B. This feature facilitates reuse of Event-B contexts
by supporting the definition of abstract data types and instantiation of them
as specifications in contexts. Our refactoring method takes a different approach
to facilitate reuse of Event-B by extracting specifications about a certain set of
elements. Our method can be used together with a generic instantiation approach.

9.2 Support of Refinement of Event-B Models

The way of refinement follows the informal system description. The studies in
[70, 55, 17] generated Event-B specifications from UML diagrams, SysML models,
or BPMN models. The way of refinement was described in these notations or
originally embedded in the notation language (in the case of BPMN). All the
above studies relied on the developers’ intuitions about the refinements given in
the preceding semi-formal models and did not explain how well they work in
Event-B. In contrast, our approach proposes a systematic method to derive good
refinement plans without relying on developer intuition.

The study in [86] provides domain-specific guidelines for control problem sys-
tems. However, they are not general and do not have primitive rationales that
allow for general explanation.

The case studies in [15] presented six different modeling attempts in Event-B
for one example. Although they describe different refinement plans and some of
them even describe their replanning, they do not provide systematic methods for
planning refinements.

This thesis has shown a different objective and approach that focuses on es-
sential rationales and a viewpoint of potentially possible plans, rather than an
approach that relies on intuitions that are often domain-specific or difficult to
justify logically. On the other hand, this work would be complemented by such
high-level intuitions, as well as by usable notations for the preceding phase.

Problem Frames [51] is a reliable method for analysis of problems that are
solved by software systems. In the process, the location of the problem in the
world, the structure of problem, and decomposition of the problem are analyzed.

82

Problem Frames is also combined with Event-B in several studies. In the study
[59], the decomposition structure was defined (intuitively) and connected to re-
finement and shared-variable decomposition [5] of Event-B.

The study described in [41] used the WRSPM reference model [39] to describe
requirements as properties.

KAOS and Event-B have been combined to provide mapping patterns between
behaviors specified in an Event-B model and a KAOS goal model [62], and to
provide templates of Event-B specifications [81]. These studies provide good
candidates for representation of refinement plans, but do not discuss how to make
decisions on the plans.

Hoang et al. proposed an approach and a tool to use patterns to facilitate
systematic and modular modeling in Event-B [46]. This study can be viewed as
support for modeling and reuse of Event-B models since the approach effectively
uses refinement mechanism to integrate reusable patterns into Event-B models.
Moreover, this approach also partially guides refinement because patterns pre-
scribe part of refinement strategies and thus help developers to intuitively narrow
down appropriate refinement strategies. Our planning method can systematically
construct plans of whole refinement considering usage of such patterns by giving
input information that corresponds to patterns. In addition, as we show in Sec-
tion 6.1.2, our interpolation method can be used to extract patterns from existing
machines. Thus, our methods are considered to be compatible with Hoang et al.’s
approach and complementary to it.

In [71], Sato et al. proposed a method to plan refinement structure before
constructing Event-B models. Their goal is similar to our planning method’s,
but their approach differs from ours. They define a tree of evidence about re-
quirements, properties, and behaviors, which are derived through an analysis.
Our planning method also accepts information from such analyses, and thus, we
consider this approach as complementary to ours.

9.3 Arrangement and Refactoring of Formal Specification

There have been many studies on refactoring software models for the purpose of
organizing and understanding them. Refactoring rules for UML/OCL [25, 60],
ASM [85], Alloy [37], and Object-Z [76, 63] have been proposed. Most of them
provide rules that are similar to Fowler’s popular rules [36]. Most of these rules
are similar to popular refactoring rules, such as move and modification, as well
as rules for parameterization of expressions and introduction of inheritance and
polymorphism. The goal of our work is similar to theirs, but we take a different
approach based on refinement — namely by manipulating refinement structure
according to criteria of the vocabulary of a machine.

9.4 Arrangement and Refactoring of Proof

From the point of view of refactoring of verifications, a study by Whiteside [83]
has a similar goal to ours. The study manipulates proofs in proof assistants
by providing a proof script framework that handles proof trees in a hierarchical
way. One of the study’s primary contributions is refactoring of proof scripts,
including manipulating expressions of proof scripts, changing styles of proof, and
generalizing tactics. Our approach, namely refinement refactoring considering the
vocabulary of a module, is different from Whiteside’s study.

83

9.5 Arrangement of Requirements and Informal Models

Russo et al. [69] introduced a method for restructuring requirements specifications
to find inconsistencies and other useful insights about them. The study provides
several viewpoints on restructuring that are tailored for various usages. However,
its target is natural language specifications.

Stepwise refinement can be seen as a kind of evolution of software models.
Although many researchers have proposed methods related to the evolution of
software models [82], most of them focus only on the evolution of object models
and metamodels. There is a study related to the evolution of object models
and constraints on them (in OCL) [29], but it aimed to realize co-evolution of
constraints and object models according to evolution of each other. In our method,
we provide property-centric methods for planning the evolution and constructing
specifications by starting from an abstract specification — and making it more
and more concrete.

In [40], a notion of problem transformation is proposed in a formal way. Prob-
lem transformation is an operation to derive a problem P1 from another problem
P2, such that P1 describes solution of P2 in a more detailed way. It corresponds to
ascending a “proof tree” of an argument over a problem. On the basis of problem
transformation, an approach for deriving specification from requirements (problem
progression [51, p.103]) has been proposed [66]. This process is important because
requirements are not necessarily controlled or observed by the machine, and thus
not easy for developers to interpret from the point of view of implementation.
Moreover, in [72], another progression technique (requirement progression) also
produces descriptions of relationships between before and after a step of progres-
sion (breadcrumbs). These approaches are similar to ours. Our methods can
be classified as a problem transformation, and the concept of gluing descriptions
and breadcrumbs are similar. However, these methods are for reduction and
simplification of the problem in a single level of abstraction. Our methods are
complementary to these progression techniques. Integrating our methods into the
foundation of these techniques will be included in our future work.

Goal-oriented requirements analysis methods, such as KAOS [27], have been
widely used to consider multiple levels of abstraction in arranging and analyzing
requirements. In KAOS, a goal of the target system is decomposed through and/or
decomposition, and allocated to agents to connect them with the implementation.
Formal analysis of goal models has also been performed for a long time. Although
studies on the KAOS method consider and/or decomposition of goals, they do
not deal with our target, namely additional information and division of goals for
comprehensive abstraction.

9.6 Bridging Informal Artifacts and Formal Artifacts

The ProR approach [53] proposed by Jastram helps developers to systematically
handle informal requirements so that developers have traceability of requirements
and system descriptions, such as formal specifications. With this approach, con-
sistent system descriptions are constructed from a set of requirements through
formal and informal reasoning. The approach has been integrated with Event-B
and supports incremental elaboration of system descriptions by using refinement.
Integrating our planning method, which aims to examine strategies for refinement,
with ProR approach and its tool implementation will be interesting. Moreover,
enhancing our refactoring method with ProR’s feature for traceability will help

84

developers to carry out more comprehensible refactoring of existing Event-B mod-
els.

Liu proposed a method named SOFL [58], which orchestrates specification
language, method, and software process to bridge requirements analysis, design,
and coding. In the process, informal specification, semi-formal specification, for-
mal specification of abstract design, formal specification of detailed design, and
program code are created sequentially. Conversely, our elicitation method and
planning method are intended to facilitate the construction of comprehensive and
rigorous initial specification.

9.7 Application of Craig Interpolation

A number of significant studies on formal methods have used Craig interpolation
of logic formulas, which we found to be important for finding CPs. One of the
primary applications of interpolation is counterexample-guided abstraction refine-
ment [22] in model checking, which constructs a series of interpolants from the
spurious behaviors of an abstract model and uses them to refine the model. One
study [28] used interpolation to automatically construct a behavior model of a
system from its goal model. The approach described therein updates a behavior
model by using interpolants of counterexamples and goals. In the future, we be-
lieve we can use Craig interpolation in a similar way to systematically find CPs
from models expressed in certain classes of expressions.

85

Chapter 10

Conclusion

10.1 Summary

Our goal was solving various problems related to the application of Event-B by
explicitly manipulating the refinement structure of models, namely what aspects
are introduced in each step of refinement. Based on our view on the refinement
structure of Event-B models, we designed our approach so that it controls us-
ability, comprehensibility, and complexity of Event-B models by considering the
consistency of models and the dependency of properties and elements.

We aimed to improve maintainability and reusability of Event-B models by
refactoring the refinement structure of them. We proposed a method to restruc-
ture the refinements of Event-B models according to refactoring criterion in terms
of the vocabulary of a new model. Our main method finds necessary variables and
predicates from the original models and helps to manually find complementary
predicates to make the new model consistent with original models. This helps
users to construct an abstraction of an existing model that focuses on certain
aspects of the original model. In case studies, we used our method to split up
refinements in large-scale Event-B models and succeeded in constructing small
and consistent models. Moreover, we succeeded in extracting predicates of an
existing model that are about reusable aspects to construct a new model.

We also tackled an advanced problem of refinement planning before construc-
tion of models, which is very essential among mixed activities to make effective
and efficient use of Event-B. The challenge here was finding valid refinement plans
from limited information from documents of the target system, before rigorous
modeling and verification in Event-B. In order to address the challenge, we de-
fined general rationales to determine whether a refinement structure is meaningful
and it follows common refinement strategies. The rationales enable us to explic-
itly argue desirability of a plan. A planner tool for the problem of refinement
planning has also been presented on the basis of the fundamentals. In addition,
we discussed the feasibility of finding information of possible abstractions from
informal analysis on the target problem, by showing a preliminary method and a
case study using the method. That case study and discussions on the planning
method have demonstrated how the method works effectively and helps tackle the
essential difficulties, directly or potentially.

Therefore, we conclude that our proposed methods support developers in plan-
ning and refactoring the refinement structure of Event-B models.

Our primary future work will be thorough user experiments on eliciting ab-
straction information, planning, and constructing models.

86

10.2 Foresight

10.2.1 Systematization of Elicitation Method

We are interested in making our information elicitation method more systematic
by using metadata on problem diagrams and by integrating the method into the
foundation of Problem Frames. Currently, our information elicitation method
uses only notation of Problem Frames. We also want to use the argumentation
method of Problem Frames to elicit information on abstraction.

10.2.2 Thorough Experiments Including User Studies

As we argued in Section 8.4, one of our primary future works will be to perform
thorough experiments, in particular for methods related to early phases of devel-
opment, such as elicitation of information on abstraction and planning refinement
structure. We would like to conduct user experiments for the whole process of
eliciting information, planning, modeling, and verification.

10.2.3 Comparison of Multiple Specifications Constructed with Re-
finement Restructuring

Now that our method for refinement refactoring enables systematic restructuring,
restructuring refinement structure of a single model by following various refine-
ment structures and comparing the results will be an interesting future work.

We anticipate that the findings from this experiment will also be insightful
from the point of view of refinement planning.

10.2.4 Various Applications of Refinement Refactoring

We expect that our refactoring method will have various potential applications.

Porting Specifications from Another Formal Method to Event-B

There are various formal specification methods that have state-based notation
similar to Event-B’s, such as VDM. Porting specifications from such other meth-
ods to Event-B is expected to be useful because it will enable developers to lever-
age the refinement mechanism of Event-B to do verification.

Because specifications for such methods usually do not consider multiple ab-
stractions, developers need to introduce abstraction layers of target systems. To
this end, developers can use our planning method and refactoring method to
systematically introduce abstraction layers in a comprehensible manner.

Decomposing Refinement for Specific Purposes

Extracting special aspects of the Event-B model to analyze it with other methods
will be interesting. For example, there have been various proposals to integrate
Event-B with model checkers, including a probabilistic one [57, 79]. Extracting
aspects that should be investigated with such model checkers will help developers
to focus on essential parts of model and shrink state space.

Prepare for Arbitrary Restructuring towards Flexible Use

Although our current approach for restructuring employs a “slice-and-complement”
strategy, it is also possible to compute all possible ways of restructuring and then

87

flexibly restructure. This approach will be effective to facilitate use of Event-B
models in the models@run.time approach [14], which aims to leverage models of
target systems for monitoring environment, analyzing monitored data, and chang-
ing behavior at runtime. We consider that using Event-B models with many pos-
sibilities of multiple abstraction layers is useful in various ways, such as reducing
costs for monitoring and reasoning.

88

References

[1] Jean-Raymond Abrial. The B-book: Assigning Programs to Meanings. Cam-
bridge University Press, 2005.

[2] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineer-
ing. Cambridge University Press, New York, 2010.

[3] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an Open Toolset for Modelling
and Reasoning in Event-B. International Journal on Software Tools for Tech-
nology Transfer, 12(6):447–466, 2010.

[4] Jean-Raymond Abrial, Dominique Cansell, and Guy Laffitte. “Higher-Order”
Mathematics in B. In Didier Bert, Jonathan P. Bowen, Martin C. Henson,
and Ken Robinson, editors, ZB 2002:Formal Specification and Development
in Z and B: 2nd International Conference of B and Z Users Grenoble, France,
January 23–25, 2002 Proceedings, pages 370–393. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002.

[5] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition,
and Instantiation of Discrete Models: Application to Event-B. Fundamenta
Informaticae, 77(1-2):1–28, 2007.

[6] Advance Project. Advanced Design and Verification Environment for Cyber-
physical System Engineering. http://www.advance-ict.eu/. [Online; ac-
cessed 06-December-2016].

[7] Information Promotion Agency. Report on Application of Formal Methods
to Real-World Information Systems (in Japanese). http://www.ipa.go.jp/
sec/softwareengineering/reports/20120420.html. [Online; accessed 10-
February-2017].

[8] Aws Albarghouthi and Kenneth L. McMillan. Beautiful Interpolants. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification:
25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings, pages 313–329. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[9] R. J. R. Back and R. Kurki-Suonio. Decentralization of Process Nets with
Centralized Control. Distributed Computing, 3(2):73–87, 1989.

[10] Ralph-Johan Back and Joakim Wright. Refinement Calculus: a Systematic
Introduction. Springer Science & Business Media, 2012.

[11] Frédéric Badeau and Arnaud Amelot. Using B as a High Level Program-
ming Language in an Industrial Project: Roissy VAL. In Helen Treharne,
Steve King, Martin Henson, and Steve Schneider, editors, ZB 2005: Formal

89

http://www.advance-ict.eu/
http://www.ipa.go.jp/sec/softwareengineering/reports/20120420.html
http://www.ipa.go.jp/sec/softwareengineering/reports/20120420.html

Specification and Development in Z and B: 4th International Conference of B
and Z Users, Guildford, UK, April 13-15, 2005. Proceedings, pages 334–354.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[12] Richard Banach and Michael Butler. Cruise Control in Hybrid Event-B. In
Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theoretical Aspects of
Computing – ICTAC 2013: 10th International Colloquium, Shanghai, China,
September 4-6, 2013. Proceedings, pages 76–93. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[13] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Météor:
A Successful Application of B in a Large Project. In Jeannette M. Wing,
Jim Woodcock, and Jim Davies, editors, FM’99 — Formal Methods: World
Congress on Formal Methods in the Development of Computing Systems
Toulouse, France, September 20–24, 1999 Proceedings, Volume I, pages 369–
387. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[14] G. Blair, N. Bencomo, and R. B. France. Models@run.time. Computer,
42(10):22–27, Oct 2009.

[15] Frédéric Boniol and Virginie Wiels. The Landing Gear System Case Study.
In Frédéric Boniol, Virginie Wiels, Yamine Ait Ameur, and Klaus-Dieter
Schewe, editors, ABZ 2014: The Landing Gear Case Study: Case Study
Track, Held at the 4th International Conference on Abstract State Machines,
Alloy, B, TLA, VDM, and Z, Toulouse, France, June 2-6, 2014. Proceedings,
pages 1–18. Springer International Publishing, 2014.

[16] J. W. Bryans, J. S. Fitzgerald, A. Romanovsky, and A. Roth. Patterns for
Modelling Time and Consistency in Business Information Systems. In 2010
15th IEEE International Conference on Engineering of Complex Computer
Systems, pages 105–114, March 2010.

[17] Jeremy Bryans and Wei Wei. Formal Analysis of BPMN Models Using Event-
B. Formal Methods for Industrial Critical Systems, pages 33–49, 2010.

[18] Michael Butler. Decomposition Structures for Event-B. In Michael Leuschel
and Heike Wehrheim, editors, IFM 2009, volume 5423 of LNCS, pages 20–38.
Springer, Heidelberg, 2009.

[19] Michael Butler and Issam Maamria. Practical Theory Extension in Event-
B. In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of
Programming and Formal Methods: Essays Dedicated to Jifeng He on the Oc-
casion of His 70th Birthday, pages 67–81. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[20] Michael J. Butler. Stepwise Refinement of Communicating Systems. Sci.
Comput. Program., 27(2):139–173, September 1996.

[21] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tac-
chella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In
Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Verifica-
tion: 14th International Conference, CAV 2002 Copenhagen, Denmark, July
27–31, 2002 Proceedings, pages 359–364. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002.

90

[22] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-Guided Abstraction Refinement. In E.Allen Emerson and
AravindaPrasad Sistla, editors, CAV 2000, volume 1855 of LNCS, pages 154–
169. Springer, Heidelberg, 2000.

[23] ClearSy. Atelier B: the Industrial Tool to Efficiently Deploy the B Method.
http://www.atelierb.eu/. [Online; accessed 06-December-2016].

[24] Peter Coad and Edward Yourdon. Object-oriented Design. Yourdon Press
computing series. Yourdon, 1991.

[25] Alexandre Correa, Cláudia Werner, and Márcio Barros. An Empirical Study
of the Impact of OCL Smells and Refactorings on the Understandability of
OCL Specifications. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt,
and Frank Weil, editors, MoDELS 2007, volume 4735 of LNCS, pages 76–90.
Springer, Heidelberg, 2007.

[26] William Craig. Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory. The Journal of Symbolic Logic, 22(3):269–
285, 1957.

[27] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde.
GRAIL/KAOS: an Environment for Goal-driven Requirements Engineering.
In Proceedings of the 19th international conference on Software engineering,
pages 612–613. ACM, 1997.

[28] Renzo Degiovanni, Dalal Alrajeh, Nazareno Aguirre, and Sebastian Uchi-
tel. Automated Goal Operationalisation Based on Interpolation and SAT
Solving. In Proceedings of the 36th International Conference on Software
Engineering, pages 129–139, New York, 2014. ACM.

[29] Andreas Demuth, Roberto E Lopez-Herrejon, and Alexander Egyed. Sup-
porting the Co-evolution of Metamodels and Constraints through Incremen-
tal Constraint Management. In Model-Driven Engineering Languages and
Systems, pages 287–303. Springer, 2013.

[30] Deploy Project. Deploy Project. http://www.deploy-project.eu/. [Online;
accessed 06-December-2016].

[31] Edsger W. Dijkstra. The Humble Programmer. Commun. ACM, 15(10):859–
866, October 1972.

[32] Rodin User Documentation. Refactoring Framework. http://wiki.

event-b.org/index.php/Refactoring_Framework. [Online; accessed 10-
February-2017].

[33] Event-B.org. Event-B.org. http://www.event-b.org/. [Online; accessed
06-December-2016].

[34] J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs for Object-oriented Systems. Springer London, 2005.

[35] Dependable Software Forum. Dependable Software Forum (in Japanese).
http://www.nttdata.com/jp/ja/news/release/2010/112400.html. [On-
line; accessed 10-February-2017].

91

http://www.atelierb.eu/
http://www.deploy-project.eu/
http://wiki.event-b.org/index.php/Refactoring_Framework
http://wiki.event-b.org/index.php/Refactoring_Framework
http://www.event-b.org/
http://www.nttdata.com/jp/ja/news/release/2010/112400.html

[36] Martin Fowler. Refactoring: Improving the Design of Existing Code. Pearson
Education India, 1999.

[37] Rohit Gheyi and Paulo Borba. Refactoring Alloy Specifications. Electronic
Notes in Theoretical Computer Science, 95:227–243, 2004.

[38] Ali Gondal, Michael Poppleton, and Michael Butler. Composing Event-B
Specifications - Case-Study Experience. In Sven Apel and Ethan Jackson, edi-
tors, Software Composition: 10th International Conference, SC 2011, Zurich,
Switzerland, June 30 - July 1, 2011. Proceedings, pages 100–115. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[39] C.A. Gunter, E.L. Gunter, M. Jackson, and P. Zave. A Reference Model for
Requirements and Specifications. Software, IEEE, 17(3):37–43, 2000.

[40] Jon G Hall, Lucia Rapanotti, and Michael Jackson. Problem Oriented Soft-
ware Engineering. Technical Report 2010/03, Department of Computing,
The Open University, January 2010.

[41] S. Hallerstede, M. Jastram, and L. Ladenberger. A Method and Tool for
Tracing Requirements into Specifications. in Electronic Communications of
the EASST, 2012.

[42] Stefan Hallerstede, Michael Leuschel, and Daniel Plagge. Refinement-
Animation for Event-B — Towards a Method of Validation. In Marc Frappier,
Uwe Glässer, Sarfraz Khurshid, Régine Laleau, and Steve Reeves, editors,
Abstract State Machines, Alloy, B and Z: Second International Conference,
ABZ 2010, Orford, QC, Canada, February 22-25, 2010. Proceedings, pages
287–301. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[43] Klaus Havelund and Thomas Pressburger. Model checking JAVA programs
using JAVA PathFinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4):366–381, 2000.

[44] Ian Hayes and Bill Flinn. Specification Case Studies. Prentice-Hall Interna-
tional London, 1987.

[45] Thai Son Hoang and Jean-Raymond Abrial. Reasoning about Liveness Prop-
erties in Event-B. In Shengchao Qin and Zongyan Qiu, editors, Formal
Methods and Software Engineering: 13th International Conference on For-
mal Engineering Methods, ICFEM 2011, Durham, UK, October 26-28, 2011.
Proceedings, pages 456–471. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[46] Thai Son Hoang, Andreas Fürst, and Jean-Raymond Abrial. Event-B Pat-
terns and Their Tool Support. Software & Systems Modeling, 12(2):229–244,
2013.

[47] C. A. R. Hoare. Proof of Correctness of Data Representations. Acta Infor-
matica, 1(4):271–281, 1972.

[48] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng.,
23(5):279–295, May 1997.

[49] John E. Hutchinson. Model Theory via Set Theory. Israel Journal of Math-
ematics, 24(3):286–304, 1976.

92

[50] Fuyuki Ishikawa, Alexander Romanovsky, and Elena Troubitsyna. Event-
B Day. National Institute of Informatics Tokyo, Japan. Technical report,
School of Computing Science, University of Newcastle upon Tyne, 2016.

[51] M. Jackson. Problem Frames: Analysing and Structuring Software Develop-
ment Problems. Addison-Wesley, 2001.

[52] Michael Jackson. The Role of Formalism in Method. In Jeannette M.
Wing, Jim Woodcock, and Jim Davies, editors, FM’99 — Formal Meth-
ods: World Congress on Formal Methods in the Development of Computing
Systems Toulouse, France, September 20–24, 1999 Proceedings, Volume I,
pages 56–56. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[53] Michael Jastram. The ProR Approach: Traceability of Requirements and
System Descriptions. PhD thesis, Heinrich Heine University Düsseldorf, 2012.

[54] Cliff B Jones. Systematic Software Development Using VDM, volume 2.
Citeseer, 1986.

[55] Régine Laleau, Farida Semmak, Abderrahman Matoussi, Dorian Petit,
Ahmed Hammad, and Bruno Tatibouet. A First Attempt to Combine SysML
Requirements Diagrams and B. Innovations in Systems and Software Engi-
neering, 6(1-2):47–54, 2010.

[56] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[57] Michael Leuschel and Michael Butler. ProB: A Model Checker for B. In Kei-
jiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal
Methods: International Symposium of Formal Methods Europe, Pisa, Italy,
September 8-14, 2003. Proceedings, pages 855–874. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2003.

[58] Shaoying Liu. Formal Engineering for Industrial Software Development: Us-
ing the SOFL Method. Springer Science & Business Media, 2013.

[59] F. Loesch, R. Gmehlich, K. Grau, C. Jones, and M. Mazzara. Report on
Pilot Deployment in Automotive Sector. A Deliverable of Deploy Project,
2010.

[60] Slaviša Marković and Thomas Baar. Refactoring OCL Annotated UML Class
Diagrams. In Lionel Briand and Clay Williams, editors, MoDELS 2005,
volume 3713 of LNCS, pages 280–294. Springer, Heidelberg, 2005.

[61] Daniel Matichuk, Toby Murray, June Andronick, Ross Jeffery, Gerwin Klein,
and Mark Staples. Empirical Study Towards a Leading Indicator for Cost
of Formal Software Verification. In Proceedings of the 37th International
Conference on Software Engineering, pages 722–732, New York, 2015. ACM.

[62] A. Matoussi, F. Gervais, and R. Laleau. A Goal-Based Approach to Guide
the Design of an Abstract Event-B Specification. In 16th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS), pages
139–148. IEEE, 2011.

93

[63] Tim McComb and Graeme Smith. A Minimal Set of Refactoring Rules for
Object-Z. In Gilles Barthe and FrankS. de Boer, editors, FMOODS 2008,
volume 5051 of LNCS, pages 170–184. Springer, Heidelberg, 2008.

[64] C Métayer. AnimB Homepage. http://animb.org/. [Online; accessed 10-
February-2017].

[65] Jayadev Misra. A Logic for Concurrent Programming. University of Texas
at Austin, 1994.

[66] L. Rapanotti, J. G. Hall, and Z. Li. Deriving Specifications from Require-
ments through Problem Reduction. IEE Proceedings - Software, 153(5):183–
198, October 2006.

[67] Antoine Requet. BART: A Tool for Automatic Refinement. In Egon Börger,
Michael Butler, Jonathan P. Bowen, and Paul Boca, editors, Abstract State
Machines, B and Z: First International Conference, ABZ 2008, London, UK,
September 16-18, 2008. Proceedings, pages 345–345. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2008.

[68] Alexander Romanovsky and Martyn Thomas. Industrial Deployment of Sys-
tem Engineering Methods. Springer Publishing Company, Incorporated, 2013.

[69] A. Russo, B. Nuseibeh, and J. Kramer. Restructuring Requirements Specifi-
cations for Managing Inconsistency and Change: A Case Study. In Require-
ments Engineering, 1998. Proceedings. 1998 Third International Conference
on, pages 51–60, 1998.

[70] Mar Yah Said, Michael Butler, and Colin Snook. Language and Tool Sup-
port for Class and State Machine Refinement in UML-B. In Ana Cavalcanti
and Dennis R. Dams, editors, FM 2009: Formal Methods: Second World
Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings,
pages 579–595. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[71] Naoto Sato and Fuyuki Ishikawa. Separation of Considerations in Event-B
Refinement toward Industrial Use. Formal Methods in Software Engineering
Education and Training 2015, 2015.

[72] Robert Seater, Daniel Jackson, and Rohit Gheyi. Requirement Progression in
Problem Frames: Deriving Specifications from Requirements. Requirements
Engineering, 12(2):77–102, 2007.

[73] Renato Silva and Michael Butler. Supporting Reuse of Event-B Develop-
ments through Generic Instantiation. In Karin Breitman and Ana Caval-
canti, editors, Formal Methods and Software Engineering: 11th International
Conference on Formal Engineering Methods ICFEM 2009, Rio de Janeiro,
Brazil, December 9-12, 2009. Proceedings, pages 466–484. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[74] J Michael Spivey and JR Abrial. The Z Notation. Prentice Hall Hemel
Hempstead, 1992.

[75] Stephen Wright. A Formally Constructed Instruction Set Architecture Def-
inition of the XCore Microprocessor. http://deploy-eprints.ecs.soton.

ac.uk/346/. [Online; accessed 09-February-2017].

94

http://animb.org/
http://deploy-eprints.ecs.soton.ac.uk/346/
http://deploy-eprints.ecs.soton.ac.uk/346/

[76] Susan Stepney, Fiona Polack, and Ian Toyn. Refactoring in Maintenance and
Development of Z Specifications and Proofs. ENTCS, 70(3):50 – 69, 2002.

[77] Wen Su, Jean-Raymond Abrial, and Huibiao Zhu. Formalizing Hybrid Sys-
tems with Event-B and the Rodin Platform. Science of Computer Program-
ming, 94, Part 2:164 – 202, 2014.

[78] Anton Tarasyuk, Inna Pereverzeva, Elena Troubitsyna, and Timo Latvala.
The Formal Derivation of Mode Logic for Autonomous Satellite Flight For-
mation. In SAFECOMP 2015, volume 9337 of LNCS, pages 29–43. Springer,
Heidelberg, 2015.

[79] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Integrating Stochas-
tic Reasoning into Event-B Development. Formal Aspects of Computing,
27(1):53–77, 2015.

[80] Gregory Tassey. The Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing. National Institute of Standards and Technology, RTI Project,
7007(011), 2002.

[81] Kriangkrai Traichaiyaporn and Toshiaki Aoki. Refinement Tree and Its Pat-
terns: A Graphical Approach for Event-B Modeling. In Cyrille Artho and Pe-
ter Csaba Ölveczky, editors, Formal Techniques for Safety-Critical Systems:
Second International Workshop, FTSCS 2013, Queenstown, New Zealand,
October 29–30, 2013. Revised Selected Papers, pages 246–261. Springer In-
ternational Publishing, Cham, 2014.

[82] Guido Wachsmuth. Metamodel Adaptation and Model Co-adaptation. In
ECOOP 2007–Object-Oriented Programming, pages 600–624. Springer, 2007.

[83] Iain Johnston Whiteside. Refactoring Proofs. PhD thesis, The University of
Edinburgh, 2013.

[84] Niklaus Wirth. Program Development by Stepwise Refinement. Commun.
ACM, 14(4):221–227, April 1971.

[85] Hamed Yaghoubi Shahir, Roozbeh Farahbod, and Uwe Glässer. Refactoring
Abstract State Machine Models. In John Derrick, John Fitzgerald, Stefania
Gnesi, Sarfraz Khurshid, Michael Leuschel, Steve Reeves, and Elvinia Ric-
cobene, editors, ABZ 2012, volume 7316 of LNCS, pages 345–348. Springer,
Heidelberg, 2012.

[86] Sanaz Yeganefard, Michael Butler, and Abdolbaghi Rezazadeh. Evaluation
of a Guideline by Formal Modelling of Cruise Control System in Event-B. In
Proceedings of the Second NASA Formal Methods Symposium (NFM 2010),
pages 182–191. NASA, April 2010.

95

	List of algorithms
	Introduction
	Background
	Problem and Motivation
	Refactoring
	Planning

	Contributions
	Organization

	Background on Event-B
	Event-B
	Classical Approaches for Software Reliability
	Features of Event-B
	Modeling in Event-B

	Structure of Event-B Specifications
	Consistency of a Machine
	Refinement
	Consistency of Refinements

	Approach
	Refinement Structure
	Explicit Predicates and Implicit Predicates
	Problem and Approach
	General Problem and Approach
	Refactoring
	Planning

	Refinement Refactoring
	Approach
	Overview
	Symbols, Definitions, and Assumptions
	Symbols about Given Input Information
	Symbols about Output of Decomposition Method
	Definitions of Terms in This Chapter
	Assumption

	Decomposition
	Step 1 of Decomposing Refinement: Slicing
	Step 2 of Decomposing Refinement: Complementing

	Restructuring
	Feasibility of Finding CPs as Craig Interpolant

	Refinement Planning
	Approach
	Rationales
	Core Rationale for Refinement Planning: Avoiding Meaningless Refinements
	Rationales for Common Refinement Strategies

	Planning Method
	Overview
	Preparing the Input
	Generating Refinement Plans
	Simplification of Result View
	Further Filtering with Heuristics

	Case Studies
	Evaluation of Refactoring
	Decomposing Large Refinement Steps
	Extracting Reusable Parts of Machines

	Evaluation of Planning
	Analysis of Refinement Design Space Exploration
	Analysis of Generated Plans
	Analysis of Input Robustness

	Preliminary Analysis for Finding Information on Abstraction
	Problem and Motivation
	Background on Problem Analysis
	Requirements Information for Refinement
	Gluing Properties
	Abstract Elements
	Abstract Properties
	Abstraction Fragment

	Abstraction of Problem Diagrams Using Patterns
	Temporal Grouping
	Access Cheating
	State Transition Limiters
	Realization of Properties
	Other Patterns

	Preliminary Experiment on Finding Abstraction Fragments

	Discussion
	Discussion on Refactoring
	Discussion on Refactoring Methods
	Discussion on Application of Refactoring

	Discussion on Refinement Planning
	What Roles in Refinement Design Can the Planning Method Play?
	Can the Planning Method Serve as a Foundation for Practical Tool Support on Refinement?

	Discussion on Preliminary Phases
	Does the Elicitation Method Facilitate Systematic Elicitation of Abstractions to Mitigate the Complexity?
	Do the Refinement Plans Derived by the Elicitation Method Facilitate Valid Formalization in Each Refinement Step?
	Do the Refinement Plans Derived by the Elicitation Method Facilitate a Smooth Process through the Refinement Steps?

	Summary of Evaluation and Discussion

	Related Work
	Support of Modeling in Event-B
	Support of Refinement of Event-B Models
	Arrangement and Refactoring of Formal Specification
	Arrangement and Refactoring of Proof
	Arrangement of Requirements and Informal Models
	Bridging Informal Artifacts and Formal Artifacts
	Application of Craig Interpolation

	Conclusion
	Summary
	Foresight
	Systematization of Elicitation Method
	Thorough Experiments Including User Studies
	Comparison of Multiple Specifications Constructed with Refinement Restructuring
	Various Applications of Refinement Refactoring

	References

