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Chapter 1

Introduction

Nonlinearity invokes interactions among different scales and produces various struc-

tures from order to chaos. A typical example, in which order and chaos coexist, is

the wave in the theory of fields. Especially, in plasma physics, collective motions

and electromagnetic fields produce waves. Particles composing plasmas interact via

microscopic electromagnetic forces, but the forces reach to long ranges and pro-

duce collective motions of plasmas. Simultaneously, the collective motions produce

macroscopic electromagnetic fields. Thus collective motions of plasma cause “strong”

nonlinearities.

The Ion acoustic wave is a longitudinal wave produced by the collective electric

fields. In the ion acoustic waves, the combination of the nonlinearity (by fluid

convection) and the dispersion (by non-local electric interactions) produces both

aspects of nonlinear structures—order and chaos.

In this dissertation, we focus on two nonlinear ordered structures in ion acoustic

waves—soliton and electrostatic sheath.1) The soliton is a solitary wave which prop-

agates without changing its shape and velocity during collisions with other solitons.

The solitons are also featured by that the evolution equations are integrable. The

electrostatic sheath is a steady steep structure of electrostatic potential. It may also
1) We do not include the terms of magnetic fields, but it does not mean that we ignore magnetic

fields. We may consider that waves propagate along the magnetic fields and the Lorenz force
v × B disappears.



be seen as a standing shock of the ion acoustic wave.

In this chapter, we review studies of ion acoustic waves—focusing on soliton and

electrostatic sheath—and state the objective of the dissertation. In Section 1.1,

we review works on ion acoustic solitons, especially focusing on derivations of soli-

ton equations. In Section 1.2, we describe mathematical theories of solitons. We

also elucidate that the Kadomtsev–Petviashvili equation, a two-dimensional soliton

equation, is an archetype of soliton equations. When the integrability disappears,

chaos may occur. We review studies of non-integrability and transition from soliton

to chaos in Section 1.3. In Section 1.4, we introduce a recently formulated equation,

a generalized Kadomtsev–Petviashvili equation, that takes into account vortex. The

analysis of the equation is the first objective of the dissertation. We move to in-

troduce the studies of the electrostatic sheath. In Section 1.5, we review the first

theoretical treatment of the sheath by Bohm and related works. In Section 1.6, we

propose an idea to associate sheath structure with a thermodynamical context and

review some related works. Finally, we will describe the plan of the dissertation in

Section 1.7.

1.1 Nonlinear ion acoustic waves and soliton equations: KdV equation and

KP equation

Theoretical studies of ion acoustic solitons started by the derivation of the Korteweg–

de Vries (KdV) equation (the one-dimensional soliton equation)

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3 = 0, (1.1)

which Washimi and Taniuti [81] found. They derived the equation from ion acoustic

wave equations by the reductive perturbation method. This foundation indicates that

small amplitude ion acoustic waves become solitons in the one-dimensional flat geom-

etry. The second term of the KdV equation (1.1)—a nonlinear convection—produces

wave steepening, and the third term—a third-order derivative—brings about disper-
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Figure 1.1: Comparison of wave steepening and dispersion; these effects balance in
the KdV equation (horizontal locations adjusted for visibility)

sion. The reductive perturbation method deriving the KdV equation consider a scale

where these effects balance [86] and a solitary wave propagates without changing its

shape (see Figure 1.1).

After this work, several directions of generalizations have been studied. For exam-

ple, Tappert [73] and Tagare [70] derived the KdV equation with modified coefficients

α, β from the ion acoustic wave system including an ion temperature. The effects of

multi-ions [79] and dust plasmas [75] were also studied. The modified KdV equation,

including a third-order nonlinear term as

∂u

∂t
+ αu2∂u

∂x
+ β

∂3u

∂x3 = 0, (1.2)

is also a soliton equation. For ion acoustic waves, these equations are derived con-

sidering trapped electrons [66], three-waves interaction [39], and negative ions [33].

Another direction of generalization, increasing the spatial dimension, was studied

by Kako and Rowlands [32]. They obtained three types of equations, including the

two-dimensional Kadomtsev–Petviashvili (KP) equation

∂

∂x

(
∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3

)
+ γ

∂2u

∂y2 = 0. (1.3)
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Figure 1.2: A line-soliton solution of the KP equation

The two-dimensional KP equation is also a soliton equation, and its soliton solution

is called line soliton (Figure 1.2). In Section 2.1.1 we remember the derivation of

the KdV and KP equations. Generalizations of the KP equation including effects

of multi-ions [80], dust plasma [21], and multi-temperature [25, 45], are also investi-

gated. The modified KP equation including a third-order term such as the modified

KdV equation (1.2) was also derived [59].

Effects of higher-order terms in the reductive perturbation method have also been

widely studied (see, e.g., Refs. [27, 40, 75] and references therein). The lowest order

soliton is called a core part, higher order perturbations are called clouds, and the

core solitons with clouds are called dressed solitons. Since the equations for clouds

include inhomogeneous terms composed of the core, clouds arise from the zero initial

condition.

Here we have introduced theoretical studies on ion acoustic soliton equations. We

remark that ion acoustic (KdV and KP) solitons are experimentally observed (see

review articles such as Refs. [47, 53, 78]). We also briefly address the discovery of the

KdV equation and the KP equation. Boussinesq [9] firstly derived the KdV equation

from the equation of shallow water waves. Korteweg and de Vries [41] re-derived

the equation and obtained cnoidal wave solutions including solitary wave solutions.

Kadomtsev and Petviashvili [31] constructed the two-dimensional KP equation by

4



considering a perturbation for the KdV equation. Their aim was to investigate

the stability of the soliton solution of the KdV equation. The KP equation with

α > 0, β > 0, γ > 0 is called the KP-II equation, and that with α > 0, β > 0, γ < 0

is called the KP-I equation.2) They showed that the soliton is stable in the KP-II

equation and unstable in the KP-I equation.

1.2 Infinite-dimensional integrable system

In general, nonlinear partial differential equations are not integrable (solvable). The

KdV equation and the two-dimensional KP equation belong to a special class, soliton

equations, and they are integrable. There are some common properties of integrable

systems, e.g., they have an infinite number of independent conserved quantities,

they can be solved by the inverse scattering transform (IST) method, and they

have the Painlevé property. In this section, we briefly review the IST method and

see that the two-dimensional KP equation is an “archetype” of infinite-dimensional

integrable systems. The method also may clarify the existence of an infinite number

of independent conserved quantities. The Painlevé property is important in another

sense since we can verify whether a given equation has Painlevé property or not

by a certain procedure. (We will review the Painlevé property in Section 3.1 as a

preparation for the application in Section 3.2.)

Soliton of the KdV equation was discovered and named by Zabusky and Kruskal

[91]. They analyzed the KdV equation numerically and found that an initially

sinusoidal wave splits into an array of solitary pulses and return to the initial state.

Moreover, they found that each pulse propagates without changing its shape during

collisions. Considering this property like a particle, they referred to the solitary

waves as solitons.

A significant work of soliton theory was achieved by Gardner, Greene, Kruskal,

2) Here we consider that the signs of α and β are positive. We can change the signs by applying
the transformation u 7→ −u, x 7→ −x, t 7→ −t.

5



and Miura (GGKM) [24]—they discovered a solving method of the KdV equation.

They found that when u obeys the KdV equation ∂tu−6u∂xu+∂3
xu = 0, eigenvalues

λ of the steady Schrödinger operator −∂2
x + u are conserved. Then, instead of

considering the evolution of u (the KdV equation), we may consider the evolution

of a “wave function” ψ. It was already known that u can be reconstructed from the

scattering date of ψ (solving an inverse scattering problem). GGKM found that the

evolution of ψ is easy to solve.

After the work of GGKM, Lax [44] formulated the IST method with the usage

of linear operators. He introduced a pair of linear operators L = −∂2
x + u and

A = −4∂3
z +6u∂x +3(∂xu) (called Lax pair) and expressed the eigenvalue problem as

Lψ = λψ and the evolution of ψ as ∂tψ = Aψ. Since this system is overdetermined,

the compatibility condition must be satisfied. The condition is ∂tL = [A,L], called

the Lax equation, which is identical to the KdV equation. Lax’s formulation opened

the way to apply the IST method for other equations. For example, Dryuma [20]

introduced the Lax pair for the two-dimensional KP equation, and Zakharov and

Shabat [94] solved the equation by the IST method. We note that the L operator for

the two-dimensional KP equation is not the two-dimensional Schrödinger operator,

but the non-steady Schrödinger operator, where y is the “time.”

Soliton equations, such as the KdV equation and the two-dimensional KP equa-

tion, are solved with the IST method. The IST method also provides action-angle

pairs for soliton equations. In the theory of finite-dimensional system, an integrable

system (in the sense of Liouville) has a canonical transformation to an action-angle

pair [6]. Zakharov and Faddeev [92] proved that the scattering data configures an

action-angle pair of the KdV equation. Lipovskii [46] found that a similar relation

is also valid for the two-dimensional KP-II equation.

A breakthrough in soliton theory—geometrical structures of the two-dimensional

KP equation—was discovered by Sato [65] and his pupils, called “Kyoto School.” In

the Sato theory, we consider the Lax pair with the pseudo-differential operator and

6



construct a hierarchy of an infinite number of functions and variables. We obtain

the two-dimensional KP equation as the simplest nontrivial equation, and thus the

hierarchy is called the KP hierarchy. Many soliton equations, such as the KdV

equation, the Boussinesq equation, and the coupled KdV equation, are obtained

from the KP hierarchy. Thus, we can view the two-dimensional KP equation as

an archetype of soliton equations. We give a brief introduction to Sato theory in

Appendix A.2. For details of the Sato theory, see review articles [17, 58] or books

[19, 50].

1.3 Non-integrable system: transition from soliton to chaos

Integrability is built upon a delicate balance of terms in an evolution equation. As

described in Section 1.1, the integrability of the KdV equation is due to the balance

between wave steepening by the nonlinear convective term and wave dispersion by

the third-order differential term. In many cases, additional effects, such as forces

and variable coefficients, disrupt the balances. For example, although both of the

KdV equation (1.1) and the viscous Burgers equation

∂u

∂t
+ αu

∂u

∂x
+ ν

∂2u

∂x2 = 0 (1.4)

are integrable, the KdV–Burgers equation

∂u

∂t
+ αu

∂u

∂x
+ ν

∂2u

∂x2 + β
∂3u

∂x3 = 0 (1.5)

is not integrable [26]. We give another example; a generalized two-dimensional KP

equation with variable coefficients

∂

∂x

[
∂u

∂t
+ h1(y, t)∂

3u

∂x3 + h2(y, t)u∂u
∂x

]

+ h3(y, t)∂
2u

∂x2 + h4(y, t) ∂
2u

∂x∂y
+ h5(y, t)∂

2u

∂y2 + h6(y, t)∂u
∂x

+ h7(y, t)∂u
∂y

= 0 (1.6)

7



is integrable only when the constraints for coefficients

h2 = αh1 exp
(∫

h6 dt
)
,

∂h4
∂y

= h6 + ∂

∂t
ln(h1/h2),

h5 = 3β2h1,
∂h1
∂y

= ∂h2
∂y

= h7 = 0 (α, β = const.).
(1.7)

are satisfied [74].

Another generalization bringing about a non-integrability is increasing the spatial

dimension. In fact, there are few integrable equations in the three-dimensional space.

For example, the three-dimensional KP equation

∂

∂x

(
∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3

)
+ γ

∂2u

∂y2 + δ
∂2u

∂z2 = 0 (1.8)

is not integrable [11, 48, 63]. Although Ruan, Low, and Chen [63] produced in-

tegrable three-dimensional systems from the three-dimensional KP equation, the

obtained models represent only approximations of the original KP equation.

When an integrability disappears, we consider that chaos may occur. For finite-

dimensional slightly perturbed Hamiltonian systems, a well-known theory called

Kolmogorov–Arnold–Moser (KAM) theory [6, 10] guarantees the stability (the ex-

istence of invariant tori). Perturbations on infinite-dimensional integrable systems

have also been studied. For example, Nozaki and Bekki [56] analyzed the nonlinear

Schrödinger (NLS) equation3)

i∂q
∂t

+ ∂2q

∂x2 + 2|q|2q = 0, (1.9)

including periodic external forces and dissipation terms (q is a complex function and

i is the imaginary unit). They derived a finite-dimensional system by considering

perturbations in parameters of soliton solutions. They showed that the transition

from soliton to chaos occurs depending on strengths of the external forces in both

of the original infinite-dimensional system and reduced finite-dimensional system.

Subsequently, Nozaki [55] analyzed a perturbed NLS equation (slightly different from

that of Ref. [56]) and showed that stabilities of perturbed solitons are explained in

terms of the KAM theory.
3) The NLS equation is a soliton equation (the Lax pair was found by Zakharov and Shabat [93]).
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1.4 Ion acoustic wave propagating in vortex: Kadomtsev–Petviashvili–

Yoshida equation

As referred in Section 1.1, many studies have generalized the KdV equation and

KP equation for ion acoustic waves including physical effects. However, few works

have focused on vortex. From the perspective of topological constraints of fluid

dynamics, fluid flows without vorticities reside in a singular manifold embedded in

a larger phase space [89] (see also Appendix A.3).

Recently, Yoshida proposed a generalization of the KP equation including vortex:

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
+ 1

2
∂3u

∂x3 + [u, ψ]
)

+ 1
2∆⊥u = 0, (1.10)

∂

∂t
∆⊥ψ + [∆ψ,ψ] = 0. (1.11)

The first equation is a generalization of the three-dimensional KP equation with

the convective term [u, ψ] = ∂yu∂zψ − ∂zu∂yψ. The second equation is the two-

dimensional Euler vorticity equation for the additional field ψ. We call the system

of equations Kadomtsev–Petviashvili–Yoshida (KPY) equations. As written in Sec-

tion 1.2, the KP equation is an archetype of soliton equations. The KPY equation

describes a minimal departure from the equation to including vortex.

Applying Helmholtz’s theorem, we may decompose a three-dimensional vector

field vanishing at infinity into two components: compressible (rotation-free) and

vortical (divergence-free) ones.4) The compressible component is rotation-free and

produces longitudinal waves, and the vortical component is divergence-free and pro-

duces transverse waves. In many cases, we consider one of these components—typical

example of the former is the ion acoustic wave, and the latter is the Euler equation.

The KPY equations describe a coupling of the two components (Table 1.1).

Analyzing the properties of the KPY equation is the first objective of the disser-

tation. We will also review the derivation in Section 2.2 with a detailed explanation
4) If we consider an unbounded region or a field non-vanishing at infinity, we have to add a harmonic

field (divergence-free and rotation-free) component. This decomposition is called the Helmholtz–
Hodge decomposition.
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Table 1.1: Classification of velocity component and characterization of a new system
(KPY equation). The compressible part is rotation-free and its wave
is longitudinal, and the vortical part is divergence-free and its wave is
transverse. A typical example of the former is the ion acoustic wave,
and that of the latter is the Euler equation. The KPY equations are the
coupling of the KP equation (ion acoustic wave) and the Euler vorticity
equation.

compressible vortical
divergence ∇ · u 6= 0 ∇ · u = 0
rotation ∇ × u = 0 ∇ × u 6= 0

wave
longitudinal transverse
k × u = 0 k · u = 0

example
ion acoustic wave Euler

(KdV/KP)
→ KPY

of the meaning of generalization.

1.5 Electrostatic sheath: steady structure created between plasma and wall

Now we move to reviewing works on electrostatic sheaths. The sheath arises around

a wall. The phenomenological explanation of sheath is as following [12]. Ions and

electrons in plasmas hit the wall and disappear by recombination. Since electrons

have larger thermal velocity than ions, electrons disappear rapidly. Thus the ion

density is greater than the electron density around the wall, and the plasma has a

positive electrostatic potential compared to the wall. This potential gradient cannot

become thicker than several times of the Debye length λD =
√
ε0Te/n0e2 because of

the Debye shielding.

The pioneer work of sheath is that by Langmuir [43]. He observed that the ion

velocity passing the sheath region have to be a certain value. Bohm [8] studied the

10



sheath theoretically and obtained the equation called Bohm equation:

d2ϕ

dx2 = eϕ −
(

1 − 2ϕ
M2

)−1/2
, (1.12)

where M = u0/
√
Te/m is the ion velocity at the entrance of the sheath normalized

with the ion sound speed
√
Te/m. This equation is nothing but the Poisson equation

for the electrostatic potential ϕ with ion and electron densities expressed in terms

of ϕ. We remember the derivation in Section 4.1 as a preparation for generalization.

We also introduce the Sagdeev potential, whose derivative is the right-hand-side of

the equation (1.12). The usage of the Sagdeev potential helps us to analyze the

Bohm equation.

Bohm analyzed the equation and showed that the condition M ≥ 1 (u0 ≥
√
Te/m)

must be satisfied to produce a monotony-decreasing electric potential. This con-

dition is called Bohm’s criterion. In actual plasma systems, a region before the

entrance of the sheath, in which ions are accelerated by electric fields to satisfy

Bohm’s criterion, is considered to be self-organized. Such region is called presheath.

We note that the formations of sheath and presheath are observed in particle simu-

lations [71, 72].

Generalization of Bohm’s criterion to include physical effects such as thermal

effects and plasma species has been studied, same as the KdV and KP equations.

For example, including the effect of ion temperature, this condition is modified as

u0 ≥
√

(Te + γTi)/m corresponding to the modification of the ion sound speed (γ

is the ion heat ratio). See Refs. [5, 23, 62] for reviews of the sheath and Bohm’s

criterion.

Bohm [8] also explained the relationship between Bohm’s criterion and the cre-

ation of the sheath (see also Ref. [12]). Bohm’s criterion corresponds to ∂(ni −

ne)/∂ϕ ≤ 0, where ni and ne are the ion and electron densities. When the electro-

static potential ϕ drops, both of the ion and electron densities decreases since ions

gain speed and electrons are reflected. Bohm’s criterion indicates that the decrease
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rate of the electron density is larger than that of the ion density. The excess negative

charge promotes the drop of the electrostatic potential, and the sheath is formed.

We note that mathematical proofs of the relationship between Bohm’s criterion and

the stability condition of electrostatic potentials are also studied (see Ref. [54] and

references therein).

1.6 Thermal effect and self-organization in plasma

The sheaths arise where plasmas hit walls—such as divertors of tokamaks. In such

regions, we cannot ignore the effect of a heat flux coming from hot plasmas. Few

studies consider the problems of coexistence of sheath and heat flux. Some studies

on the scrape-off layer (SOL) region, which indicates the outside of the separatrix in

a tokamak, emphasis thermal effects. However, they do not solve the inside of the

sheath region but use boundary conditions at the sheath entrance, such as Bohm’s

criterion, obtained from sheath theories [68] or particle simulations [71, 72]. Some

other works consider whole of the SOL region (e.g., Refs. [76, 77]), but they do not

consider electrostatic fields.

Recently, Yoshida and Mahajan [87] considered a thermodynamical model of

plasma boundary layers. They abstracted thermodynamical effects of self-organized

structures in plasmas, such as zonal flow, and expressed as a parallel connected

impedance. A parallel connected impedance means that the structure blocks heat

fluxes. They showed that the bifurcation from a small temperature contrast to

a larger one occurs when the heat flux entering the system exceeds a threshold.

Kawazura and Yoshida [35, 36] extended the above work and found that the bifur-

cation feature, change of the temperature contrast, is reversed depending on the

thermodynamical properties of self-organized plasma (blocking or promoting heat

transport) and the controlled parameter (flux or temperature). Their works are

abstract ones and thus valid for general systems. However, they assumed thermody-

namical properties of plasmas and did not solve the equation of motion for plasmas.

12



To consider actual mechanisms of plasmas, we should solve the equations of plasma

dynamics.

These surroundings motivate us to consider a problem in which the heat transport

and the sheath coexists. That is the second objective of the dissertation.

1.7 Plan of dissertation

We have reviewed works on nonlinear ion acoustic waves—soliton and sheath. Most

soliton equations obtained by reductive perturbation methods are vortex-free, and

Yoshida formulated a minimal generalized system with finite vorticity. In Chapter 2,

we show a proof of the fact that reductive perturbation method for the KP equation

eliminates vorticity. We also give a detailed explanation for the derivation of the

KPY equations. Subsequently, Chapter 3 is devoted to analyzing the integrability of

the KPY equation. The Painlevé analysis shows that the equation is not integrable

due to the three-dimensionality caused by the vortex field. Then we elucidate how

a transition from soliton to chaos occurs by numerical simulation. These chapters

are based on the published article [57] but contain some explanations, remarks, and

numerical results are added. In Chapter 4, we solve a problem of thermal effects on

the sheath. First, we assume the adiabatic ion temperature and obtain a set of two

Bohm equations (Sagdeev potentials). The singularity of those potentials enables

us to construct bifurcated solutions. Next, we include a heat diffusion which makes

the usage of Sagdeev potentials impossible. We will see that both of the controlled

parameter (heat flux or temperature) and the ion Mach number change the ther-

modynamical property (amounts of temperature contrast or heat flux). Finally, we

summarize the obtained results in Chapter 5.
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Chapter 2

Reductive Perturbation Methods and Vortex

In this chapter, we investigate the relation between reductive perturbation method

and vortex.

Washimi and Taniuti [81] derived the KdV equation

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3 = 0, (2.1)

and Kako and Rowlands [32] derived the two-dimensional KP equation

∂

∂x

(
∂u

∂t
+ α

∂u

∂x
+ β

∂3u

∂x3

)
+ γ

∂2u

∂y2 = 0. (2.2)

(In Section 2.1.1 we remember the derivation of the KdV and KP equations.) As

referred in Section 1.1, various directions of generalizations have been studied. Most

of them are directed to include many physical effects, such as thermal effects, multi-

species, and higher-order effects.

However, these models do not have vorticities, and there have been few studies

regarding this point, as far as we know. The KdV-type equation is a one-dimensional

flat system, and thus it does not have enough freedom to have a vorticity. The KP-

type equation also does not have a vorticity, although it is a multi-dimensional

system. See Appendix A.3 for a significant role of vorticity in the hierarchy of fluid

flows.

In Section 2.1, we show that the KP equation is derived by eliminating vorticity



at every order of the reductive perturbation. We also show that the reductive per-

turbation succeeds only if the entropy is homogeneous; hence the baroclinic effect, a

creation mechanism of vorticity, must be absent. In Section 2.2, we follow the new

ordering of velocity field proposed by Yoshida and derive a finite-vorticity system,

the KPY equations. The new system is composed of a generalized three-dimensional

KP equation and a two-dimensional vorticity equation. The former describes “scat-

tering” of vortex-free waves by ambient vortexes that are determined by the latter.

We say that the vortexes are “ambient” because they do not receive reciprocal re-

actions from the waves. Finally, we add some remarks about the new model in

Section 2.3.

2.1 Reductive perturbation method for Kadomtsev–Petviashvili equation

and vorticity

2.1.1 Korteweg–de Vries equation and Kadomtsev–Petviashvili equation

We start by remembering the derivation of the KdV and KP equations by the re-

ductive perturbation method. The basic equations for nonlinear ion acoustic waves

[12] are expressed as

∂n

∂t
+ ∇ · (nu) = 0, (2.3)

∂u

∂t
+ (u · ∇)u = −∇ϕ, (2.4)

− ∆ϕ = n− eϕ, (2.5)

where n is the ion number density, u = (u, v, w)> is the ion velocity, ϕ is the electro-

static potential, and ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian. We consider

cold ions (except Section 2.1.4) and adiabatic electrons with a constant tempera-

ture Te. We normalize the variables as followings: the density n by a representative

density n0, the velocity u by the ion sound speed cs =
√
Te/m (where m is the ion

mass), the electrostatic potential ϕ by the characteristic potential Te/e, the coordi-
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nate variable x by the Debye length λD =
√
ε0Te/n0e2, and the time variable t by

the ion plasma frequency ωpi =
√
n0e2/ε0m.

Firstly, we derive the KdV equation. We consider ion acoustic waves propagating

in the one-dimensional space (x). We introduce a set of stretched variables

x̃ = ε(x− t), t̃ = ε3t, (2.6)

with a small parameter ε, and expand the dependent variables n, ϕ, and u as

n = 1 + ε2n1 + ε4n2 + · · · ,

u = 0 + ε2u1 + ε4u2 + · · · ,

ϕ = 0 + ε2ϕ1 + ε4ϕ2 + · · · .

(2.7)

Now we substitute the expansion to the equations (2.3)–(2.5) and evaluate each

order terms. From the terms of orders ε2 and ε3, we obtain n1 = ϕ1 and ∂n1/∂x̃ =

∂u1/∂x̃ = ∂ϕ1/∂x̃. Assuming the boundary conditions n1, ϕ1, u1 → 0 (x → ±∞),

we put

n1 = u1 = ϕ1. (2.8)

From the terms of order ε4, we obtain

n2 = ϕ2 + ϕ2
1

2 − ∂2ϕ1
∂x̃2 . (2.9)

Then, from the terms of order ε5 we obtain the KdV equation:

∂u1
∂t̃

+ u1
∂u1
∂x̃

+ 1
2
∂3u1
∂x̃3 = 0. (2.10)

Next, we drive the KP equation by considering ion acoustic waves propagating in

the three-dimensional space (x, y, z). We assume that waves primarily propagate in

the direction of x, and introduce stretched variables as

ỹ = ε2y, z̃ = ε2z, (2.11)
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in addition to the equation (2.6). The expansion of n, ϕ, and u are same as the

equation (2.7), and we expand v and w as
v = 0 + ε3v1 + ε5v2 + · · · ,

w = 0 + ε3w1 + ε5w2 + · · · .
(2.12)

From the terms of orders ε2 and ε3, we obtain n1 = u1 = ϕ1 same as the equation

(2.8). From the terms of order ε4, we obtain

∂v1
∂x̃

= ∂ϕ1
∂ỹ

, (2.13)

∂w1
∂x̃

= ∂ϕ1
∂z̃

, (2.14)

and the equation (2.9). From the terms of order ε5, we obtain the three-dimensional

KP equation:
∂

∂x̃

(
∂u1
∂t̃

+ u1
∂u1
∂x̃

+ 1
2
∂3u1
∂x̃3

)
+ 1

2∆⊥u1 = 0, (2.15)

where ∆⊥ = ∂2/∂ỹ2 + ∂2/∂z̃2 is the Laplacian operator perpendicular to the pri-

mal propagating direction (x). Ignoring the velocity w and the z-dependence, the

equation (2.15) reduces to the two-dimensional KP equation

∂

∂x̃

(
∂u1
∂t̃

+ u1
∂u1
∂x̃

+ 1
2
∂3u1
∂x̃3

)
+ 1

2
∂2u1
∂ỹ2 = 0. (2.16)

2.1.2 Vorticity of Kadomtsev–Petviashvili equation

Strikingly absent in the KP equation is the vorticity. The expansion of the z-

component of the vorticity ωz = ∂v/∂x− ∂u/∂y is

ωz = ε4
(
∂v1
∂x̃

− ∂u1
∂ỹ

)
+ ε6

(
∂v2
∂x̃

− ∂u2
∂ỹ

)
+ · · · . (2.17)

The leading-order term turns out to be zero from equations (2.8) and (2.13). The

same ordering applies to the y-component of the vorticity ωy = ∂u/∂z − ∂w/∂x;

hence the leading-order vorticity vanishes by the demand of equations (2.8) and

(2.14). The expansion of the x-component of the vorticity ωx = ∂w/∂y − ∂v/∂z is

ωx = ε5
(
∂w1
∂ỹ

− ∂v1
∂z̃

)
+ ε7

(
∂w2
∂ỹ

− ∂v2
∂z̃

)
+ · · · . (2.18)
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The ordering is slightly different from those of ωy and ωz. However, x-derivative

of the leading-order term is forced to vanish by equations (2.8), (2.13), (2.14), and

the boundary condition ∂w1/∂ỹ − ∂v1/∂z̃ → 0 (x → ±∞). Thus, the KP system is

vortex-free.

2.1.3 Vorticity of general order

The absence of vorticity is not only on the order of the KP equation but also on

all orders of perturbations. Let us examine higher order equations. The second-

order equation is linear with respect to the second-order variables and includes an

inhomogeneous term depending on u1 [27, 40, 75]. The higher order perturbations

are called clouds surrounding the core, i.e., the first-order perturbation; a soliton

with clouds is referred to as a dressed soliton. As proved in the previous section, the

core is vortex-free. Moreover, we find that all of the clouds are vortex-free.

We obtain the vorticity equation by taking the curl ∇× of the equation of motion

(2.4):
∂ω

∂t
= ∇ × (u × ω). (2.19)

There are no source terms since we consider only the potential force −∇ϕ. After

the Galilean boost in the x-direction (see the equation (2.6)), the equation (2.19)

reads as
∂ω

∂t
− ∂ω

∂x
= ∇ × (u × ω). (2.20)

Inserting the expressions (2.6) and (2.7), and using equations (2.11), (2.12), (2.17),

and (2.18), let us see the orders of each term in equation (2.20); in the x-component

∂ωx

∂t
− ∂ωx

∂x
= ∂

∂y
(uωy − vωx) − ∂

∂z
(wωx − uωz), (2.21)

the order of the second term on the left-hand-side is ε6, while all other terms are of

order ε8. Thus, the lowest order vorticity ωx1 must satisfy

∂ωx1
∂x

= 0. (2.22)
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Assuming the boundary condition ωx1 → 0 (x → ±∞), we obtain ωx1 = 0. In the y-

and z-components of the equation (2.20) the orders of all terms decrease by ε1; hence

we obtain ωy1 = ωz1 = 0 under the boundary conditions ωy1, ωz1 → 0 (x → ±∞).

Eliminating ω1, the equation (2.20) reads as the equation for the second-order

part of ω (ω2). By the same argument of ordering, we obtain ω2 = 0, and the

equation (2.20) dominates the next order. Continuing the induction, we conclude

that ωj = 0 for all order j.

2.1.4 Finite ion temperature effect

In the vorticity equation (2.20), the boost term ∂ω/∂x causes unbalance of ordering

and forces the vorticity to vanish, when we invoke the standard expansion, equations

(2.7) and (2.12). This ordering is tailor-made to match n(∇ · v) and ∇ϕ with the

boost terms in the continuity equation and the equation of motion.

In this section, we examine the effect of finite ion temperature Ti. It introduces

a non-potential force −n−1∇p to the equation of motion (2.4) and a source term

∇Ti × ∇s to the vorticity equation (2.19), where p is the ion pressure and s is the

ion entropy. This production mechanism of vorticity is called the baroclinic effect

[18, 60]. We show that the baroclinic effect must be absent for the success of the

reductive perturbation method.

We apply the reductive perturbation method for the KP equation (Section 2.1.1).

We assume that the ion pressure obeys the adiabatic equation

∂p

∂t
+ u · ∇p+ γp(∇ · u) = 0, (2.23)

where γ is the ion heat ratio. We normalize the ion pressure by the representative

pressure n0Te. We expand p as p = σ + ε2p1 + ε4p2 + · · · , where σ = Ti0/Te is the

normalized representative temperature. It should be noted that the speed of Galilean

boost must be modified from 1 to λ =
√

1 + γσ (normalized with cs =
√
Te/m) [70].

This modification is due to the change of ion sound speed. The relations (2.8),
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(2.13), and (2.14) are modified as

λn1 = λϕ1 = u1 = ϕ1 + p1
λ

,

∂v1
∂x̃

= 1
λ

∂

∂ỹ
(ϕ1 + p1),

∂w1
∂x̃

= 1
λ

∂

∂z̃
(ϕ1 + p1),

(2.24)

and we obtain the KP equation

∂

∂x̃

[
∂u1
∂t̃

+
(

1 + γ + 1
2 γσ

)
u1
∂u1
∂x̃

+ 1
2λ
∂3u1
∂x̃3

]
+ λ

2 ∆⊥u1 = 0, (2.25)

which reduces to equation (2.15) in the limit Ti = 0 (σ = 0, λ = 1).

From the equation (2.24), we find that the lowest order vorticity is zero: ωx1 =

ωy1 = ωz1 = 0, same as the case of cold ions (Ti = 0). Furthermore, we show that

entropy must be homogeneous and thus baroclinic term must vanish for the success

of the reductive perturbation method. We use the same procedure of Section 2.1.3.

Let us consider the adiabatic evolution equation for entropy

∂s

∂t
+ u · ∇s = 0, (2.26)

which is equivalent to the pressure equation (2.23). The Galilean boost in the x-

direction modifies the equation (2.26) as

∂s

∂t
− λ

∂s

∂x
+ u · ∇s = 0. (2.27)

Now we evaluate the orders of operators ∂/∂t, λ∂/∂x, and u ·∇ = u∂/∂x+v∂/∂y+

w∂/∂z with equations (2.6), (2.7), (2.11), and (2.12). The order of the second

operator is ε1, and the lowest order of others is ε3. Thus, the leading order term of

the entropy s0 must satisfy ∂s0/∂x = 0. This results in s0 = c (constant) under the

boundary condition s0 → c (x → ±∞), which is a natural choice because s0 is not a

perturbation part. Eliminating s0, equation (2.27) reads as the equation for s1. The

same discussion requires s1 to satisfy ∂s1/∂x = 0. Since s1 is a perturbation part,

it is natural to use the boundary condition s1 → 0 (x → ∞). These relations lead
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to s1 = 0. Repeating this procedure, we find that entropy must be homogeneous:

s = s0 = c. Thus, the baroclinic effect must vanish under the reductive perturbation

method. (We do not consider the ion temperature effect in the rest of this chapter

and the next chapter except in one of the comments on the end of this chapter.)

2.2 Generalized system with finite vorticity

In this section, we give a detailed explanation for the derivation of the KPY equa-

tions, a minimal generalization of KP equation with finite vorticity. The keys of the

derivation are: (i) a certain order vorticity appears only in higher order dynami-

cal equations; (ii) the vanishment of vorticities depends on the boundary condition

ω → 0 (x → ±∞). We begin by explaining these points. (i) We may rewrite the

equation of motion (2.4) in the following form:

∂u

∂t
− u × ω = ∇

(
ϕ− 1

2 |u|2
)
. (2.28)

Let us consider the x-component. The order of n-th perturbation velocity un is ε2n,

and those of corresponding vorticities ωyn and ωzn are ε2n+2 (see equation (2.17)).

Hence the order of ∂un/∂t is ε2n+3, and the lowest order of the second term with

ωyn and ωzn v1ωzn − w1ωyn is ε2n+5. One finds that ωyn and ωzn do not appear in

the dynamics of un but in higher order dynamics. In the y- and z-components, each

order increases by ε, and we obtain the same result. (ii) The boundary condition

ωn → 0 (x → ±∞; n = 1, 2, . . . ) is natural because perturbation parts should vanish

at infinity. However, as shown in Sections 2.1.2 and 2.1.3, the combination of this

boundary condition and ∂ωjn/∂x = 0 forbids the existences of vorticities.

The point (i) induces us to add a lower order velocity. Addition of a lower order

(ε0) velocity in the x-direction is equivalent to a Galilean boosting, and it is improper

because the boosting speed must be 1 (normalized with cs) to make the reductive

perturbation consistent. Therefore we introduce a velocity v0 = (0, v0, w0)> of order
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ε in the y- and z-directions:
v = εv0 + ε3v1 + ε5v2 + · · · ,

w = εw0 + ε3w1 + ε5w2 + · · · .
(2.29)

Next, considering the point (ii), we assume that the additional velocity is homoge-

neous in the x-direction: ∂v0/∂x = 0. Moreover, to maintain the relation (2.8),

we assume that v0 is incompressible: ∇ · v0 = 0. The two-dimensionality and the

incompressibility lead us to write v0 in the Clebsch form [85]

v0 = ∇⊥ψ(ỹ, z̃) × ex, (2.30)

where ex = ∇x is the unit vector in the x-direction, ψ is the stream function, and

∇⊥ = (0, ∂/∂ỹ, ∂/∂z̃).

From the lowest order terms, we obtain the well-known two-dimensional Euler

vorticity equation
∂

∂t̃
∆⊥ψ + [∆ψ,ψ] = 0, (2.31)

where ∆⊥ψ denotes the vorticity and [f, g] = ex ·(∇⊥f×∇⊥g) = (∂f/∂ỹ)(∂g/∂z̃)−

(∂f/∂z̃)(∂g/∂ỹ) is the convective term. From the terms of order ε5, we obtain a

three-dimensional wave equation:

∂

∂x̃

(
∂u1
∂t̃

+ u1
∂u1
∂x̃

+ 1
2
∂3u1
∂x̃3 + [u1, ψ]

)
+ 1

2∆⊥u1 = 0. (2.32)

We refer to the system of equations (2.31)–(2.32) as the Kadomtsev–Petviashvili–

Yoshida (KPY) equations and compare it with the KP equation. In what follows,

the subscript 1 and the tilde ˜ will be omitted for simplicity.

The vortex field ψ (−∆⊥ψ is the vorticity) affects the ion acoustic wave field u

through equation (2.32) while it does not receive any reciprocal reaction from u

(notice that the vortex equation (2.31) is independent of u). This is because the

order of ψ is lower than that of u. We may treat ψ as an “ambient” field for u (see

Figure 2.1).
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primal propagationprimal propagation

vortex fieldvortex field

Figure 2.1: Conceptual diagram of the KPY equations (2.31)–(2.32). The solitary
ion acoustic waves propagate in the ambient vortex field. The vortex field
is perpendicular to the primal propagating direction of solitary waves.

In the next chapter, which is devoted to analyzing of the KPY equation, we assume

that the vortex field ψ is stationary. For example, ψ = a sin(ky) − a cos(kz) is a

stationary solution of the Euler equation (2.31), which satisfies ∆⊥ψ ∝ ψ. Then,

only the equation (2.32), to be called the KPY equation, will be the objective of the

analysis.

2.3 Additional remarks

The challenge of imparting vorticity to ion acoustic wave has been overcome by

modifying the perturbative expansion of the velocity field. We close this chapter

with some remarks.

(1) The KP equation (2.15) derived in Section 2.1 is the KP-II equation. (The

equation with the sign of ∆⊥u reversed is called the KP-I equation.) Although both

of KP-I and KP-II equations are soliton equation, the shapes of soliton solution are

completely different. The stable line soliton of the KP-II equation becomes unstable

in the KP-I equation and changes its shape to other soliton solution, which is called

the lump soliton [28, 29, 67].

(2) As we have shown in Section 2.1.3, the absence of vorticity is a strong imprint

made by the ordering that characterizes the KP system. This constraint is ubiquitous
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among the families including a finite-temperature model (see Section 2.1.4), trapped

electron model, and multi-component models. It is because the former only increases

the number of equations and the latter only changes the Poisson equation, they do

not modify the structure of the equation of motion.

(3) We note that baroclinic effect vanishes even in the KPY equations. This is

because the discussion of Section 2.1.4 is valid even if we introduce the additional

velocity v0 as the equation (2.29). Finite ion temperature modifies the KPY equation

(2.32) as

∂

∂x̃

[
∂u1
∂t̃

+
(

1 + γ + 1
2 γσ

)
u1
∂u1
∂x̃

+ 1
2λ
∂3u1
∂x̃3 + [u1, ψ]

]
+ λ

2 ∆⊥u1 = 0, (2.33)

without changing the Euler vorticity equation (2.31).

(4) The new ordering of the velocity field enables us to study the neighborhood

of the integrable KP hierarchy. At the lowest order, i.e., the KPY system, however,

the range of dynamics is still rather narrow—the helicity
∫

u · ω d3x is zero. We can

prove this fact with the constraint

∫
∆⊥udx = 0, (2.34)

which is derived by integrating the KPY equation (2.32) in the x-direction and

assuming the periodic boundary condition. We note that this constraint is also

valid for the KP equation and requires careful attentions (see Ref. [38] and references

therein). Since ψ is independent of x and ∆⊥ is a self-adjoint operator, we obtain

∫
u∆⊥ψ d3x =

∫
ψ∆⊥ud3x =

∫
ψ

(∫
∆⊥udx

)
dy dz = 0. (2.35)

Instead of the helicity, the generalized enstrophy
∫
g(∆⊥ψ) d2x has a finite value

and is conserved (g is an arbitrary function). This constancy of the integral is

due to the geometrical constraints that the velocity of KP equation is vortex-free

(uKP can be expressed as ∇χ) and that of two-dimensional Euler equation is locally

helicity-free (uEuler can be expressed as α∇β). The summation of such two velocity
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fields is called the epi-two-dimensional flow [88] (see also Appendix A.3.2). When

one more velocity field α′∇β′ is added to uKP + uEuler, the enstrophy is freed to

increase, and the helicity has a finite value. This is the Clebsch representation of a

three-dimensional flow [85] and describes a full development of turbulence.
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Chapter 3

Non-Integrability of Ion Acoustic Waves Scattered
by Vortexes

In the previous chapter, we prove that the reductive perturbation method used

for deriving the KP equation eliminates vorticity, and derive the KPY equation

(2.31)–(2.32) with finite vorticity. We may view the ordered system of solitons as a

singular submanifold (leaf) embedded in a larger phase space of finite-vorticity per-

turbations [89]. The departure from the zero-vorticity leaf will produce complexity

and, finally, generate turbulence. The aim of this generalization is to probe into the

“neighborhood” of the KP hierarchy and elucidate how chaos starts to develop.

This chapter is devoted to investigating the integrability of the KPY equation

(2.32) (as described in the last of Section 2.2, we assume that the vortex field ψ

is stationary). We use Painlevé test, which is well-known as a useful method for

evaluating the integrability, and numerical analysis.

In Section 3.1 we briefly review the Painlevé test for partial differential equation

(PDE) proposed by Weiss, Tabor, and Carnevale (WTC) [83]. The original WTC

method produces complicated calculation, and improved methods reducing calcula-

tions has been proposed. We introduce two methods: Kruskal’s one [30, 83] and

Conte’s one [14]. In Section 3.2, we invoke the Painlevé test with the WTC–Conte

method to study whether the KPY equation (2.32) is integrable or not. The result



is negative. By this analysis, we elucidate that the scattering by the vorticity intro-

duces an essential three-dimensionality to the ion acoustic wave fields, by which the

integrability condition (in the sense of the Painlevé test) is broken. In Section 3.3,

we perform numerical simulations to visualize how chaos occurs, which cannot be

predicted by the Painlevé test. In Section 3.4, we conclude our investigations.

3.1 Brief review of Painlevé analysis for partial differential equation

When a nonlinear ordinary differential equation (ODE) has no movable critical

points, the ODE is said to have the Painlevé property. Singularities of linear ODEs

do not move; for example, du/dx = −u/x2 has a solution u = u0e1/x (u0 is the inte-

gral constant) whose singularity x = 0 is fixed. On the other hand, singularities of

nonlinear ODEs may move; for example, du/dx = −u2 has a solution u = 1/(x−x0)

(x0 is the integral constant) whose singularity x = x0 is movable. A singularity of

nonlinear ODE which is expressed as u ∼ (z − z0)−p with a positive integer p is

called the pole, and a singularity which is not a pole is called the critical point. The

Painlevé property is considered to be equivalent to the integrability.

As an extension of the Painlevé analysis for PDEs, Ablowitz, Ramani, and Segur

(ARS) [1, 2] proposed the conjecture that every ODE derived from an integrable

PDE by a reduction has the Painlevé property. If this conjecture is true, it provides

a necessary condition to verify whether a given PDE is integrable or not. However,

it is rarely useful since we cannot check all of ODEs derived from a PDE, and ODEs

obtained from a non-integrable PDE may have the Painlevé property.

Weiss, Tabor, and Carnevale (WTC) [83] proposed another procedure to verify the

integrability of PDEs by simply extending the definition of the Painlevé property

for ODE. Their definition is as following: a nonlinear PDE is said to have the

Painlevé property when the solutions are represented in terms of a Laurent series in

a neighborhood of a movable singularity manifold (to be identified as a set of points

satisfying ϕ(x, y, z, t) = 0). The Painlevé property is tested by assuming that the
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solution u(x, y, z, t) of a PDE can be written, in the neighborhood of the singularity

manifold, as

u(x, y, z, t) = χ−q
∞∑

j=0
uj(x, y, z, t)χj (3.1)

with analytic functions uj and an expansion function χ which vanishes as ϕ → 0, and

verifying whether q is a positive integer and all uj ’s can be determined consistently.

This procedure is called the Painlevé test. If a given PDE passes the test, we may

obtain some outgrowths such as Lax pair [82].

There are various choices of the expansion function χ. The simplest one is χ = ϕ

used by WTC [83], but this choice makes uj complicated. For example, as the

result of the Painlevé test for the KdV equation ∂tu + u∂xu + ∂3
xu = 0, we obtain

u0 = −12(ϕx)2, u1 = 12ϕxx, u2 = −[ϕxϕt + 4ϕxϕxxx − 3(ϕxx)2]/(ϕx)2 = 0, u3 =

(ϕxt + ϕxxu2 + ϕxxxx)/(ϕx)2, and so on (subscripts denote derivatives, e.g., ϕx =

∂ϕ/∂x). The complexity comes from the derivatives of the expansion function χ.

Kruskal proposed the expression ϕ(x, t) = x−f(t) [30, 83]. This choice significantly

reduces calculation, e.g., for the KdV equation ∂tu + u∂xu + ∂3
xu = 0 we obtain

u0 = −12, u1 = 0, u2 = ψ′, u3 = 0, and so on. Some computer programs of Painlevé

analysis with Kruskal’s choice are developed (e.g. Ref. [84]). However, this choice

loses outgrowths of the analysis such as Lax pair.

Conte [14] showed that the best choice for reducing the calculation without any

constraints on ϕ is

χ =
(
ϕx

ϕ
− ϕxx

2ϕx

)−1
. (3.2)

(A constraint ϕx = 0 is required, but this is also necessary for WTC and other

choices.) The reason why the choice reduces calculation is that the derivatives of

the expansion function χ can be written as polynomials of χ:

χx = 1 + S

2 χ
2, χt = −A+Axχ− 1

2(Axx +AS)χ2 (3.3)

with A = −ϕt/ϕx and S = ϕxxx/ϕx − (3/2)(ϕxx/ϕx)2. Applying this choice for the

KdV equation ∂tu + u∂xu + ∂3
xu = 0, we obtain u0 = −12, u1 = 0, u2 = A − 4S,
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u3 = −Ax + Sx, and so on.

WTC’s Painlevé property is considered to be equivalent to the integrability of a

PDE, and indeed many integrable equations (e.g., the Burgers equation, the KdV

equation, and the two-dimensional KP equation) pass the Painlevé test [83]. How-

ever, the three-dimensional KP equation does not pass the test [11, 63, 84], and it is

not integrable (see, e.g., Ref. [48] for another explanation of its non-integrability).

See, e.g., Refs. [15, 42, 52] for details of the Painlevé analysis.

3.2 Painlevé test of Kadomtsev–Petviashvili–Yoshida equation

Now we execute the Painlevé test for the KPY equation (2.32) and show that the

KPY equation passes the Painlevé test only under some special conditions.

In order to elucidate when the equation is integrable or not, we use a generalized

form

uxt + (uux)x + αu4x + βuyy + γuzz + a(y, z)uxy + b(y, z)uxz = 0, (3.4)

where subscripts denote derivatives, α, β, γ are constants with α 6= 0, and a, b are

functions of y, z. In the original form (2.32), coefficients are chosen as α = 1,

β = γ = 1/2, a(y, z) = ∂ψ/∂z, and b(y, z) = −∂ψ/∂y.

We apply Conte’s choice (3.2) in the test. Since the system is three-dimensional,

in addition to the equations (3.3) for χx and χt, we use the expressions for χy and

χz:

χy = −B +Bxχ− 1
2(Bxx +BS)χ2, χz = −C + Cxχ− 1

2(Cxx + CS)χ2 (3.5)

with B = −ϕy/ϕx and C = −ϕz/ϕx. We also use relations for the derivatives of S:

St +Axxx + 2AxS +ASx = 0, (3.6)

Sy +Bxxx + 2BxS +BSx = 0, (3.7)

Sz + Cxxx + 2CxS + CSx = 0. (3.8)
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The leading-order analysis (substituting u = u0χ
−q and comparing leading-order

terms) determines the values of q and u0 as q = 2 and u0 = −12α. From general

order terms, we obtain recursion relations

(j + 1)(j − 4)(j − 5)(j − 6)αuj = Fj(u0, . . . , uj−1) (3.9)

for j = 1, 2, . . . , where Fj ’s are complicated functions of u0, . . . , uj−1, ϕ, and their

derivatives. u1, u2, and u3 are determined by the equation (3.9) as

u1 = 0, (3.10)

u2 = A− 4αS − βB2 − γC2 + aB + bC, (3.11)

u3 = −Ax + αSx + β(BBx −By) + γ(CCx − Cz) − aBx − bCx (3.12)

If F4 = F5 = F6 = 0 (called the resonance condition) is satisfied without putting

constraints on ϕ, we can determine all uj ’s consistently with arbitrary functions u4,

u5, and u6. However, we find F4 = F5 = 0 but F6 6= 0—the KPY equation does not

pass the test and is not integrable. The expression for F6 is as following:

F6 = βγE1(ϕ) + βE2(ay, ayy, by, byy;ϕ) + γE3(az, azz, bz, bzz;ϕ), (3.13)

E1 = 4
ϕ4

x

[
ϕ2

x(ϕyyϕyz − ϕ2
yz) + 2ϕxϕy(ϕxzϕyz − ϕxyϕzz) + 	x,y,z

]
, (3.14)

E2 = 1
ϕ3

x

[
−ayyϕ

2
xϕy − byyϕ

2
xϕz − 2ayϕ

2
xϕyy − 2byϕ

2
xϕyz

+ 2(2ay + by)ϕxϕzϕxy + 2byϕxϕyϕxz − 2byϕxxϕyϕz − 2ayϕxxϕ
2
y

]
, (3.15)

E3 = 1
ϕ3

x

[
−azzϕ

2
xϕy − bzzϕ

2
xϕz − 2azϕ

2
xϕyz − 2bzϕ

2
xϕzz

+ 2(az + 2bz)ϕxϕyϕxz + 2azϕxϕzϕxy − 2azϕxxϕyϕz − 2bzϕxxϕ
2
z

]
, (3.16)

where 	x,y,z denotes the summation over cyclic permutation of x, y, z.

Since the additional vortex field is perpendicular to the primal direction of prop-

agation, it brings about an essential three-dimensionality. Thus, it is expected that

the KPY equation (2.32) is not integrable. The resonance condition F6 = 0 is sat-

isfied only in the following special cases: (i) β = γ = 0; (ii) γ = 0, ay = by = 0;
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(iii) β = 0, az = bz = 0. In the case (i), the KPY equation (3.4) is reduced to the

one-dimensional (x) KdV equation with convection terms in the independent direc-

tions (y, z). In the case (ii), the KPY equation is reduced to the two-dimensional

(x, y) KP equation with boosting in the z-direction (whose speed is homogeneous in

x- and y-directions). The case (iii) is same as the case (ii), with y and z exchanged.

The cases (ii) and (iii) are consistent with integrable conditions (1.7) of generalized

variable-coefficient two-dimensional KP equations (1.6) [74].

From the above result, we find that the KPY equation is integrable only if it can be

reduced to a lower dimensional integrable system (the one-dimensional KdV equation

or the two-dimensional KP equation). Therefore, the transition from soliton (of the

two-dimensional KP equation) to chaos is expected to occur. In the next section,

we demonstrate chaotic behaviors of ion acoustic wave by numerical solutions of the

KPY equation.

3.3 Numerical analysis

3.3.1 Numerical scheme

We perform numerical simulation by the following setting. We consider a domain

(x, y, z) ∈ [0, 20] × [−5, 5] × [−5, 5] with the periodic boundary condition.

We split the KPY equation (2.32) as the following form:

∂u

∂t
= Lu+ N (u), (3.17)

Lu = −1
2
∂3u

∂x3 − 1
2∂

−1
x ∆⊥u, (3.18)

N (u) = −1
2
∂

∂x
(u2) − [u, ψ], (3.19)

where ∂−1
x is the inverse of differential operator ∂/∂x called the anti-derivative.

The linear operator L contains the third-order differential operator ∂3u/∂x3 which

restricts the time step to a small value in explicit schemes (Courant–Friedrichs–Lewy

condition [61]). Here we solve the linear part implicitly with the Fourier transform.
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On the other hand, we cannot easily approximate the nonlinear term with an

implicit scheme. Here we use the second-order Strang splitting method [69]

un+1 = exp
(
h

2 L
)

exp(hN ) exp
(
h

2 L
)
un, (3.20)

where h is the time step size, and applying different schemes to L and N . Each

factor on the right-hand side of the equation (3.20) must be approximated by a

second or higher order scheme. The linear part exp(hL) is solved implicitly with

the Fourier transformation, and the nonlinear part exp(hN ) is approximated by the

second-order explicit Runge–Kutta method with finite-difference approximations.

Since we use an exact solution of the two-dimensional Euler vortex equation for ψ,

we may approximate the term [u, ψ] with the ordinary central difference method.

A serious problem in the numerical calculation is the anti-derivative ∂−1
x in the

linear operator L. We may evaluate this operator with a multiplier 1/(ikx) in the

Fourier space.1) In order to regularize the singularity at kx = 0, this multiplier

is modified as −i/(kx + iδ), with a small real number δ [22, 37, 38]. We use the

machine epsilon of the double precision floating point number 2−52 ∼ 2.2 × 10−16,

which is seen as almost zero in the numerical calculation. It should be noted that

when the sign before ∂−1
x ∆⊥u is reversed, the sign of +iδ must also be reversed.

This reversal occurs not only in the KP-I equation but also applying higher-order

splitting schemes [49] to the KP-II equation.

We note that there are some developments of numerical schemes for the KP equa-

tion, such as the window method for non-periodic boundary conditions [7, 34] and

the characteristics method for the nonlinear term u∂xu [22]. However, we cannot

apply them for the KPY equation due to the term [u, ψ].

We give an initial condition by modifying a line-soliton solution of the two-
1) When the boundary condition is not periodic, we cannot use Fourier transformation. In such

situation, we must calculate the anti-derivative with direct integration. Assuming the domain
of x-direction is (−∞, ∞), simple forms are ∂−1

x u =
∫ x

−∞ u(x′) dx′ or ∂−1
x u = −

∫∞
x

u(x′) dx′.
Another form is ∂−1

x u = 1
2 (
∫ x

−∞ u(x′) dx′ −
∫∞

x
u(x′) dx′). The last form is an anti-symmetric

operator and often used (see, e.g., Ref. [3]).
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Figure 3.1: Cross-sections of u at t = 0 (a line-soliton with the periodic bound-
ary condition, which is homogeneous in the z-direction). (a) (z = 0)-
cross-section, (b) (y = 0)-cross-section.

dimensional KP equation:

u0(x, y, z) = 3A sech2

√A

2 (x−By − C)

 , (3.21)

where A, B, and C are arbitrary constants (we choose A = 1, B = 2, and C = 10).

To put the waves in the periodic domain, x and y are, respectively, modulo 20 and

10 (box sizes). Furthermore, u must satisfy the constraint

∫
∆⊥udx = 0. (3.22)

By subtracting the Fourier components with kx = 0 (kx is the wavenumber in the x

direction), excepting the kx = ky = kz = 0 component, from u0(x, y, z), we obtain

the hoped-for initial condition (Figure 3.1). The KP equation (i.e., ψ = 0), starting

from this initial condition, propagates with conserving the wave shape.
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As described at the end of Section 2.2, we assume that ψ is stationary. We use

ψ(y, z) = a sin
(2πκy

L

)
− a cos

(2πκz
L

)
, (3.23)

where L is the length of the domain in the y- and z-directions (L = 10). a and κ

denote the intensity and the wavenumber of the vortex field. κ must be an integer

due to the periodic boundary condition.

3.3.2 Numerical results

When a = 0 (vortex-free), a line-soliton propagates without changing its shape. We

change the value and observe how line-solitons are “scattered” by the vortex.

Figures 3.2 and 3.3 show y- and z-cross-sections of u with a = 0.06 and κ = 2.

In Figure 3.2, we observe deformations in the y-cross-sections: (i) to the right side

(Figure 3.2(a)); (ii) to both sides (Figure 3.2(b)); (iii) to the left side (Figure 3.2(c));

(iv) after (i)–(iii), u returns to the initial shape, homogeneous in the z-direction

(Figure 3.2(d)). We find that the deformations (i)–(iv) are repeated periodically. In

the z-cross-section, compared to the y-cross-section, noticeable deformations are not

found (Figure 3.3). From these results, we can say that line-solitons (homogeneous

in the z-direction) are “stable” against “weak” vortexes.

This stability is considered as due to the property of the KP-II equation. As

described in Section 2.3, for the three-dimensional KP-I equation, it is known that

perturbed line-solitons break up to lump solutions [28, 29, 67].

Figures 3.4 and 3.5 show y- and z-cross-sections of u with a larger value of a

(a = 0.30). In the y-cross-section (Figure 3.4), we observe divided structures without

returning to the initial shape. Furthermore, differently from the result of a = 0.06,

deformations in the z-cross-section is also observed (Figure 3.5). When a is further

large, u breaks up into small structures and spreads, as found in Figure 3.6. These

results show scatterings of line-solitons due to the ambient vortex fields, and they

can be regarded as effects of the non-integrability.
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Figure 3.2: (y = 0)-cross-sections of u with a = 0.06 and κ = 2 at (a) t = 25, (b)
t = 32, (c) t = 40, and (d) t = 60. (a)–(c): the direction of deformation is
changed with time. (d): after the deformation, u becomes homogeneous
in z-direction, as in the initial state (Figure 3.1(b)).
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Figure 3.3: (z = 0)-cross-section of u with a = 0.06 and κ = 2 at t = 32. We do not
find noticeable deformations compared to the y-cross-section (Figure 3.2)
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Figure 3.4: (y = 0)-cross-sections of u with a = 0.30 and κ = 2 at (a) t = 20 and
(b) t = 40. A line structure is divided.

0 5 10 15 20
x

−4

−2

0

2

4

y

−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Figure 3.5: (z = 0)-cross-section of u with a = 0.30 and κ = 2 at t = 40. Compared
to the case of a = 0.06 (Figure 3.2), z-cross section is clearly twisted.
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Figure 3.6: Cross-sections of u at t = 40 with a = 1.0 and κ = 2: (a) (z = 0)-
cross-section, (b) (y = 0)-cross-section. The wave field breaks up into
small structures and spreads into the whole of space.
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In order to evaluate the above observations quantitatively, we calculate the average

wavenumber

〈kj〉 =
∑

k kj |ûk|2∑
k |ûk|2

(j = x, y, z), (3.24)

where ûk’s are Fourier coefficients of u. Figure 3.7 shows the evolution of the average

wavenumber 〈ky〉 with a = 0.02, 0.04, 0.06, and 0.08 (κ = 2 is fixed). We can

find that the evolution looks like periodic and the period becomes short when a

becomes large. Figure 3.8 shows the evolution of 〈ky〉 with a = 0.08, 0.09, and

0.10. A transition from the periodic behavior (a = 0.08) to the increasing behavior

(a = 0.09, 0.10) is found. As shown in Figure 3.9, the average wavenumber has a large

value when a is further large. In this stage, periodic behaviors are not observed. We

also find that the value of the average wavenumber is not clearly different between

in the case of a = 0.8 and in that of a = 1.0. When κ has a large value, the average

wavenumber is found to grow larger (Figure 3.10). Thus, we can say that scattering

scales of line-solitons depend on the intensity and the spatial scales of the ambient

vortex fields.

In the transition from soliton to chaos, we observe periodic behaviors. Addition-

ally, we also find periodic behavior with two frequencies as Figure 3.11. We plot the

frequencies of these calculations in Figure 3.12. The frequencies increase linearly

with the amplitude a of the vortex field ψ. We should note that there are many

high-frequency oscillation components and we pick out major part. The emergence

of two frequencies indicates that the second major part grows.

We summarize the result of transitions from periodic behavior to growing behavior

in Table 3.1. The values of amplitude a when the transitions occur are different with

respect to the value of spatial scale of the vortex field κ.
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Figure 3.7: Evolution of average wavenumber 〈ky〉 with a = 0.02, 0.04, 0.06, 0.08 (κ =
2). We observe periodic evolution and the period becomes shorter with
the value of a increasing.
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Figure 3.8: Evolution of average wavenumber 〈ky〉 with a = 0.08, 0.09, 0.10 (κ = 2).
The evolution transits from periodic one (a = 0.08) to growing ones
(a = 0.09, 0.10).
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Figure 3.9: Evolution of average wavenumber 〈ky〉 with a = 0.3, 0.5, 0.8, 1.0 (κ =
2). The average wavenumber has a large value when a is further large
compared to Figure 3.8.
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Figure 3.10: Evolution of average wavenumber 〈ky〉 with (a, κ) = (0.8, 2), (1.0, 2),
(0.8, 8), (1.0, 8). Although the values of the average wavenumbers are
rarely different between in the case of a = 0.8 and in that of a = 1.0
with κ = 2, they grow greater with a large κ.
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Figure 3.11: Multi-frequency behavior in the evolution of average wavenumbers. (a)
From a = 0.01 to a = 0.06: we observe periodic behaviors in a ≤ 0.02
and double-periodic behaviors in a ≥ 0.04. (b) From a = 0.06 to
a = 0.12: we observe double-periodic behavior in a ≤ 0.10 and increase
in a = 0.12.
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Figure 3.12: Relation between frequency ω of the averaged-wavenumber evolution
and the amplitude of the vortex field a. The frequencies increase linearly
with the amplitude.

Table 3.1: Transition in the evolution of average wavenumbers. “P” indicate the
periodic evolution, “T” indicates the evolution with two frequencies, and
“G” indicate that the wavenumber grows.

κ \ a 0.02 0.04 0.08 0.09 0.10 0.11
2 P P P G G G
3 P P P P G G
4 P T T T T G
6 T T T G G G
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Now we study what happens in the transitions. First, we consider the transition

from periodic behaviors to that of increasing wavenumbers. In order to see what

occurs at the transition, we show the spectrum of |ukz |2 in Figure 3.13. In the case

of a = 0.02, the component kz = 2 is greater then other components. When a

becomes larger, the cases of a = 0.06 and a = 0.08, amplitudes of all components

increase. However, higher wavenumber (kz ≥ 4) components increase more than

kz = 2 component. Thus, we can say that larger a produces amplification of small-

scale structures. Next, we see what occurs when a becomes further large (u breaks

up into small structures and spreads). In Figure 3.14, we show time evolution of

the maximum values of ∆y := |∂−1
x ∂2

yu/2|, ∆z := |∂−1
x ∂2

zu/2|, Ωy := |∂yu∂zψ|, and

Ωz := |∂zu∂yψ|, terms of the KPY equation. In the KP equation (a = 0), we

obtain ∆z = Ωy = Ωz = 0 since the initial condition does not depend on z. In

Figure 3.14(a) (a = 0.1), we observe ∆y > ∆z and Ωy > Ωz (∂zu does not have a

large value compared to ∂yu). In Figure 3.14(b) (a = 0.5), we observe that values of

∆z, Ωy, Ωz get close to that of ∆y, although values of all components increase. In

Figure 3.14(c) (a = 0.8), we observe that all of components have comparable values.
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Figure 3.13: Spectrum |ukz |2 for a = 0.02, 0.06, 0.10 (κ = 2 is fixed). The lowest
Fourier component kz = 2 has the largest value in the case of a =
0.02, but when the amplitude of the vortex field a increases, higher
wavenumber components kz ≥ 4 increase greater than kz = 0.02.
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Figure 3.14: Time evolution of terms in the KPY equation. (a) When the amplitude
of the vortex field is small, the maximum values of the terms ∆z =
|∂−1

x ∂2
zu/2| and Ωz = |∂zu∂yψ| are lower than those of ∆y = |∂−1

x ∂2
yu/2|

and Ωy := |∂yu∂zψ|. (b) When the value of a increases, ∆z and Ωz

increase greater than ∆y and Ωy, and (c) these terms have comparable
amounts.
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3.4 Conclusion

The newly formulated nonlinear system, derive in Chapter 2, describes the scattering

of ion acoustic waves propagating in the ambient vortex field. In this chapter, we

have investigated its integrability with theoretical and numerical analyses. First, we

have executed the Painlevé test and elucidated that the vorticity introduces essential

three-dimensionality to the wave, by which the integrability of the two-dimensional

KP system is destroyed. Only in some strictly limited situation, the equation may

be reduced to one- or two-dimensional integrable equations and passes the test.

Next, we have executed numerical simulation and observed effects of amplitudes

and spatial scales of vortexes. When the amplitude is small, a two-dimensional

line-soliton is deformed periodically but keep its solitary-wave structure. This result

indicates that a two-dimensional line-soliton is stable near the zero-vorticity state,

even though the evolution equation is non-integrable. The non-integrability (chaos)

appears when the ambient vortex is strong; line-solitons break up into small scattered

waves. We have clarified that growths of small-scale structures occur in the transition

from periodic state to breaking state, and the amplitudes of y-dependent terms and

z-dependent terms become comparable in the turbulent state.
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Chapter 4

Bifurcation of Sheath Structures by Thermal Effects

In this chapter, we study the bifurcation of electrostatic sheath structures in the

one-dimensional system due to thermal effects. We show the conceptual diagram

of the system in Figure 4.1. We will start with a brief review of Bohm’s equation

without thermal effects. In Section 4.2, we include the adiabatic ion temperature and

investigate changes in shapes of Sagdeev potentials and structures of electrostatic

potentials (dashed arrows in Figure 4.1). We will find that the ion temperature

suppresses the divergences of the first-order derivatives of Sagdeev potentials and

brings about the possibility of bifurcation. In Section 4.3, we extend the system to

include heat flux (wavy allows in Figure 4.1). This effect breaks the explicit relation

between the ion temperature and the ion density, and we cannot write down the

Sagdeev potential. We will find that the boundary condition of thermal transport

equation (fixing the heat flux) controls the system and the temperature contrast

changes depending on the ion Mach number and the value of the heat flux.

4.1 Brief review of Bohm’s equation for cold ion

The basic equations are same as Chapter 2—the equation of continuity, the equation

of motion, and the Poisson equation. We consider the one-dimensional system and

steady state (ignoring time-derivatives). Then, we obtain the mass conservation law
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Figure 4.1: Conceptual diagram of the system. We include ion thermal energy
(dashed arrows) in Section 4.2 and heat flux (wavy arrows) in Section 4.3.
Thermal energy changes the sheath structure via the enthalpy term, and
simultaneously ion flow transports thermal energy and increases it by
compression heating.

nu = n0u0 (4.1)

from the equation of continuity and Bernoulli’s law

1
2mu

2 + eϕ = 1
2mu

2
0 + ϕ0 (4.2)

from the equation of motion. The Poisson equation does not contain time-derivative:

−ε0
d2ϕ

dx2 = e(n− ne). (4.3)

In these equations, symbols with subscript 0 denote the values at a reference point.

We put the point on the boundary between sheath and plasma. Thus u0 is the

inflow ion velocity from the plasma to the wall and n0 is the ion density of plasmas.

We assume that the electron density obeys Boltzmann distribution with a constant

temperature Te and that quasi-neutrality is satisfied at the boundary. Thus we

obtain ne = n0 exp[e(ϕ− ϕ0)/Te].

We use the ion sound speed without ion temperature cs =
√
Te/m and the Debye
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length λD =
√
ε0Te/n0e2 as the normalizing constants. The variables are normalized

as followings: x̂ = x/λD, n̂ = n/n0, û = u/cs, ϕ̂ = e(ϕ − ϕ0)/Te. The normalized

ion velocity at the boundary M = u0/cs is a significant parameter in the following

discussion. The mass conservation law and Bernoulli’s law read as n̂û = M and

û2/2 + ϕ̂ = M2/2. From these equations, we obtain the relation between the ion

density and the electrostatic potential as

n̂ =
(

1 − 2ϕ̂
M2

)−1/2
(4.4)

under the condition ϕ̂ ≤ M2/2. Substituting the equation into the Poisson equation,

we obtain the Bohm equation:

d2ϕ̂

dx̂2 = eϕ̂ −
(

1 − 2ϕ̂
M2

)−1/2
. (4.5)

We may write the right-hand-side of the Bohm equation (4.5) as −∂V (ϕ̂)/∂ϕ̂ with

a potential function V (ϕ̂).

V (ϕ̂) = 1 − eϕ̂ + M2
[
1 −

(
1 − 2ϕ̂

M2

)1/2
]
, (4.6)

where the integral constant is chosen as V (0) = 0. Thus, we may view the Bohm

equation as the equation of motion for a pseudo-particle in the potential field V (ϕ̂):

d2ϕ̂/dx̂2 = −∂V (ϕ̂)/∂ϕ̂ with the “position” ϕ̂ and the “time” x̂. The first usage

of the pseudo-potential representation was by Sagdeev [64], and it is called the

Sagdeev potential. We show two examples of the Sagdeev potential in Figure 4.2.

The Sagdeev potential with M > 1 has a local maximum value at ϕ̂ = 0 and that

with M < 1 has a minimum at the point.

The usage of Sagdeev potential helps us to solve the problem. For example, in

the case of M > 1, we see that electrostatic potential ϕ̂ starts from the origin with

a small gradient ∂ϕ̂/∂x and monotonically drops. On the other hand, in the case

of M < 1, we see that electrostatic potential ϕ̂ oscillates around the origin if that

has a small gradient. The latter case is nothing but the linear ion acoustic waves.
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Figure 4.2: Examples of Sagdeev potential V (ϕ). (b) The Sagdeev potential with
M > 1 has a local maximum value at ϕ = 0, and (b) that with M < 1
has a minimum at the point.

Moreover, in the case of M > 1, we can obtain a solution which starts from ϕ̂ = 0 to

ϕ̂ > 0, bounces at a point with V (ϕ̂) = 0, and goes back to ϕ̂ = 0. This is a solitary

wave solution. Although we derive the Bohm equation with the assumption of steady

states, we may boost the frame and obtain wave and soliton solutions. In fact, we

also obtain Bohm’s equation and the Sagdeev potential from the KdV equation (1.1)

with assuming propagating waves (u = u(x− vt)), and the potential is identical to

the one obtained by the perturbative expansion of the equation (4.6). Thus we

may say that the Sagdeev potential connects analyses of solitons and electrostatic

sheaths. We note that the first-order derivatives of Sagdeev potentials diverse at

ϕ̂ = M2/2. This is caused by the fact that ions with initial velocity u0 stop at the

electrostatic potential with the value ϕ = mu2
0/2 + ϕ0 (see Bernoulli’s law (4.2)).

4.2 New branches of electrostatic potentials created by thermal energy

4.2.1 Sagdeev potentials including adiabatic ion temperature

We include the ion thermal effect to Bernoulli’s law (4.2):

1
2mu

2 + eϕ+ h = 1
2mu

2
0 + eϕ0 + h0, (4.7)
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where h is the ion enthalpy (h0 is the ion enthalpy at the entrance of the sheath).

Assuming that ion is an ideal gas, we write the enthalpy by the temperature as

h = cpT = (cv + 1)T , where cv is the heat capacity at constant volume and Meyer’s

relation cp = cv + 1 is used. We also assume that the heat capacity is that of a

monatomic gas in a one-dimensional system: cv = 1/2.

We consider the governing equation of the ion temperature T . Here, we assume

the adiabatic relation

Tn−1/cv = T0n0
−1/cv . (4.8)

We define normalized quantities as

T̂ = T

Te
, T̂0 = T0

Te
. (4.9)

Not only the inflow velocity M, but also the inside temperature T̂0 is a significant

parameter in the following analysis.

From Bernoulli’s law (4.7) and the adiabatic relation (4.8), we obtain

û4 − M2
(

1 + 3T̂0
M2 − 2ϕ̂

M2

)
û2 + 3T̂0M4 = 0. (4.10)

Under the condition

ϕ̂ ≤ ϕ̂∗ = M2

2

1 −

√
3T̂0

M

2

, (4.11)

the equation (4.10) has two real solutions of û:

û±(ϕ̂) = M
2

√A2
+ − 2ϕ̂

M2 ±

√
A2

− − 2ϕ̂
M2

 (4.12)

with

A± = 1 ±

√
3T̂0

M
. (4.13)

Then, the Bohm equation becomes

d2ϕ̂

dx̂2 = eϕ̂ − M
û±(ϕ̂) (4.14)

and its right-hand-side may be expressed with the Sagdeev potential

V±(ϕ̂) = −eϕ̂ + M3

6
√

3T̂0

[
−
(
A2

+ − 2ϕ̂
M2

)3/2
±
(
A2

− − 2ϕ̂
M2

)3/2
]

+ C±. (4.15)
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We find that the values of two solutions û±(ϕ̂) (and the values of V±) coin-

cide at the point ϕ̂ = ϕ̂∗ = (M2/2)A2
−. However, V ′

± is not Lipschitz continu-

ous at the point. Thus, the solution of the equation (4.14) loses its uniqueness

(see Appendix A.4), and the solution can bifurcate from one of the Sagdeev poten-

tials V± to the other. We define the integral constants to satisfy V+(0) = 0 and

V+(ϕ̂∗) = V−(ϕ̂∗).

We note that the existence of multiple Sagdeev potentials is already known, e.g. in

Ref. [4]. However, it must be highlighted because it is difficult to construct solutions

without generalizing boundary condition and using Lipschitz discontinuity. Here,

we show one possibility of constructing an asymptotic solution without using these

tools later (Class (F) of Section 4.2.2).

4.2.2 Solutions of Bohm’s equation

In this section, we solve the Bohm equation (4.14) on the one-dimensional space

x̂ ∈ (−∞, 0]. We consider that the wall is placed at x = 0 and x → −∞ is the

plasma region, and set the boundary condition as

ϕ̂(0) = −P, lim
n→∞

ϕ̂(x̂n) = 0, (4.16)

where P is the normalized value of the electric potential difference between the

plasma and the wall, and {x̂n} is a certain sequence satisfying limn→∞ x̂n → −∞.

Without normalizing (remembering ϕ̂ = e(ϕ − ϕ0)/Te), this boundary condition

reads as

ϕ(0) = 0, lim
n→∞

ϕ(xn) = ϕ0 = Te
e
P. (4.17)

The second boundary condition is “weak” one proposed by Yoshida and Yamada [90],

which indicates that the value of the electrostatic potential ϕ may oscillate around

the limit value P but should not deviate from it. This generalization, including the

asymptotic boundary condition limx→−∞ ϕ̂(x̂) = 0, enables us to obtain a variety of

solutions.
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Bohm’s criterion is necessary for the existence of asymptotic solutions, and con-

ditions of the “height” of the Sagdeev potential is required for the existence of

oscillatory solutions. However, even if we cannot construct the solution satisfying

boundary conditions only in one of the potentials V±, we may construct the solution

by using the bifurcation due to the Lipschitz discontinuity. According to the values

of M and T̂0, the shape of Sagdeev potential V±(ϕ) changes.

We classify them and show as Figure 4.3. (In the rest of the section, we omit the

hat ˆ for simplicity.) The separations expressed by dashed lines are determined by

M ≷
√

1 + 3T0 and M ≷
√

3T0. The former corresponds to nothing but Bohm’s

criterion defined by V ′′
+(0) ≤ 0, and the latter switches between V ′

+(0) = 0 and

V ′
−(0) = 0. The colored separations are defined by heights of the Sagdeev potentials.

We also consider two important points of ϕ. One is ϕ = ϕ∗ defined in the equation

(4.11). This is the edge points of the Sagdeev potentials and may be the bifurcation

point. The other is defined by V ′
+(ϕ) = 0 and V ′′

+(ϕ) < 0, and we denote by ϕ∗∗.

Its value changes according to the condition M ≷
√

1 + 3T0; M >
√

1 + 3T0 leads

to ϕ∗∗ = 0 and M <
√

1 + 3T0 leads to ϕ∗∗ < 0. (The latter is expressed by the

Lambert W function, which is not an elementary function [16].) These rules are

summarized in Table 4.1.

We now describe the Sagdeev potentials and solutions in each class.
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Figure 4.3: Classification of the Sagdeev potentials with respect to the values of the
normalized ion velocity M and the normalized ion temperature T0.

Table 4.1: Classification rules of the Sagdeev potentials in Figure 4.3 and con-
structible solutions (a: asymptotic ones, o: oscillatory ones, b: oscillatory
ones bifurcated from V− to V+; * denotes that a constraint for the value
of P is required).

V ′(0) = 0 V ′′(0) ≷ 0 V (ϕ∗) ≷ V (ϕ∗∗) solution

(A) V ′
+(0) = 0 V ′′

+(0) < 0 V+(ϕ∗) < V+(0) a

(B) V ′
+(0) = 0 V ′′

+(0) < 0 V+(ϕ∗) > V+(0) a/o

(C) V ′
+(0) = 0 V ′′

+(0) < 0 V+(ϕ∗) = V+(0) a/o/b

(D) V ′
+(0) = 0 V ′′

+(0) = 0 —— a

(E) V ′
+(0) = 0 V ′′

+(0) > 0 V+(ϕ∗) > V+(ϕ∗∗) o

(F) V ′
+(0) = 0 V ′′

+(0) > 0 V+(ϕ∗) < V+(ϕ∗∗) o*/b

(G) V ′
+(0) = 0 V ′′

+(0) > 0 V+(ϕ∗) = V+(ϕ∗∗) o/b

(H) V ′
−(0) = 0 V ′′

−(0) < 0 —— a
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Class A: V ′
+(0) = 0, V ′′

+(0) < 0, V+(ϕ∗) < V+(0). We show an example of Sagdeev

potential for the class (A) in Figure 4.4(a). We can construct asymptotic solutions

in V+ as Figure 4.4(b). We cannot construct oscillatory solutions because V+(0) >

V+(ϕ∗) = V−(ϕ∗) is satisfied.
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Figure 4.4: (a) Sagdeev potential and (b) an example of solutions for class (A). We
can construct only asymptotic solutions.
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Class (B): V ′
+(0) = 0, V ′′

+(0) < 0, V+(ϕ∗) > V+(0). We show an example of Sagdeev

potential for the class (B) in Figure 4.5(a). In addition to asymptotic solutions

like Figure 4.4(b), we can also obtain oscillatory solutions in V+ as Figure 4.5(b).

Solutions bifurcated from V− to V+ cannot exist because of V+(ϕ∗) = V−(ϕ∗) >

V+(0)
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Figure 4.5: (a) Sagdeev potential and (b) an example of solutions for class (B). We
can construct both of asymptotic and oscillatory solutions.
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Class (C): V ′
+(0) = 0, V ′′

+(0) < 0, V+(ϕ∗) = V+(0). We show an example of Sagdeev

potential for the class (C) in Figure 4.6(a). This class is on the boundary between

class (A) and (B). We can construct both of asymptotic and oscillatory solutions in

V+ such as Figures 4.4(b) and 4.5(b), and we also can construct oscillatory solutions

bifurcated from V− to V+ as Figure 4.6(b).
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Figure 4.6: (a) Sagdeev potential and (b) an example of solutions for class (C). We
can construct both of asymptotic and oscillatory solutions on V+, and
also oscillatory solutions bifurcated from V− to V+.
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Class (D): V ′
+(0) = 0, V ′′

+(0) = 0. We show an example of Sagdeev potential for

the class (D) in Figure 4.7. In this class, M =
√

1 + 3T0 is satisfied and V ′′
+(0) = 0.

Since there are no points with V ′′
+(ϕ) < 0, we can only construct an asymptotic

solution like Figure 4.4(b).
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Figure 4.7: Sagdeev potential for class (D). There are no points with V ′′
+(ϕ) < 0,

and we can only construct asymptotic solutions.
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Class (E): V ′
+(0) = 0, V ′′

+(0) > 0, V+(ϕ∗) > V+(ϕ∗∗). We show an example of

Sagdeev potential for the case (E) in Figure 4.8(a). The top of V+(ϕ) is lower

than that of V−(ϕ). In this class, we can only construct oscillatory solutions in the

Sagdeev potential V+ as Figure 4.8(b). It should be noted that some dissipative

mechanisms are necessary.
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Figure 4.8: (a) Sagdeev potential and (b) an example of solutions for class (E). We
can only construct oscillatory solutions in the Sagdeev potential V+.
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Class (F): V ′
+(0) = 0, V ′′

+(0) > 0, V+(ϕ∗) < V+(ϕ∗∗). We show an example of

Sagdeev potential for the case (F) in Figure 4.9(a). The top of V−(ϕ) is higher than

that of V−(ϕ). Thus we cannot construct the solution only in V+ unless we choose a

proper value of P [90], but we can construct oscillatory solutions bifurcated from V−

to V+ as Figure 4.9(b). In this case, any dissipative mechanisms are not necessary.

Class (G): V ′
+(0) = 0, V ′′

+(0) > 0, V+(ϕ∗) = V+(ϕ∗∗). Class (G) is the boundary

between classes (E) and (F). Both of oscillatory solutions on V+ (Figure 4.8(b)) and

ones bifurcated from V− to V+ (Figure 4.9(b)) may exist.
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Figure 4.9: (a) Sagdeev potential and (b) an example of solutions for class (F). We
can only construct oscillatory solutions bifurcated from V− to V+.
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Class (H): V ′
−(0) = 0, V ′′

−(0) < 0. We show an example of Sagdeev potential for

the class (H) in Figure 4.10(a). This is the only one possibility to obtain asymptotic

solutions as Figure 4.10(b) in V− without using weak boundary conditions.
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Figure 4.10: (a) Sagdeev potential and (b) an example of solutions for class (H). We
can construct asymptotic solutions in V−.

61



We remark on the determination of the difference of electrostatic potential P

between plasma and wall. In this section, we have focused on structures of solutions

created in each parameter regions, and we have assumed P = 1 for simplicity. In

addition, if we choose a proper value of P , we can obtain a special oscillatory solution

for classes (E) and (F). However, we cannot determine the value of P arbitrarily in

practice—it is self-regulated by interactions between plasmas and walls. In the

analysis of the next section, we will use a relation between potential difference and

ion velocity known as the floating potential.

4.3 Thermal diffusion in sheath structure

The analysis of the previous section, we assume the adiabatic property for the ion

temperature (4.8). In this section, we generalize the relation and introduce a thermal

diffusion effect. This generalization breaks the explicit relation between the ion

temperature and the ion density, and we cannot express a Sagdeev potential in the

Poisson equation (Bohm equation).

4.3.1 Non-adiabatic ion temperature effect

We write down a differential equation for ion temperature and compose a system of

equations. The equation of temperature is derived from the first law of thermody-

namics dE = −p dV + δQ = p/n2 dn+ δQ. Let us assume the relation for ideal gas

E = cvT , then the first law reads to

cvn
dT
dt + p(∇ · u) = nQ̇,

where we use the equation of continuity dn/dt = −n(∇·u). The heat Q̇ may contain

any irreversible effects. Here we put nQ̇ = −∇ · F with a heat flux F and assume

that F obeys Fourier’s law F = −k∇T (k: thermal conductivity).

Considering the one-dimensional system and steady states, we obtain

nu
∂T

∂x
+ nT

cv

∂u

∂x
= − 1

cv

∂F

∂x
(4.18)
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The normalization of the ion temperature is same as previous section (4.9): T̂ =

T/Te. Then we obtain

n̂û
∂T̂

∂x̂
+ n̂T̂

cv

∂û

∂x̂
= − 1

cv

∂

∂x̂

(
F

csn0Te

)
, (4.19)

and normalize the heat flux as

F̂ = F

n0csTe
= − ∂

∂x̂

(
k

λDn0cs

T

Te

)
. (4.20)

We define the thermal diffusivity χ as χ = k/cvn0, and normalize it as χ̂ = χ/csλD.

We may express the normalization of heat flux as F̂ = −cvχ̂∂T̂ /∂x̂.

Now we write the system of equations, omitting the hat ˆ for simplicity. The

differential equation for the ion temperature (4.19) reads as

χ
∂2T

∂x2 − M∂T

∂x
− M
cv

∂(ln u)
∂x

T = 0, (4.21)

where the mass conservation law nu = M is used. From Bernoulli’s law, we ob-

tain the relation among the ion velocity, the electrostatic potential, and the ion

temperature as

u = M
[
1 − 2ϕ

M2 − 2cp
M2 (T − T0)

]1/2
. (4.22)

Finally, the Poisson equation is

∂2ϕ

∂x2 = eϕ −
[
1 − 2ϕ

M2 − 2cp
M2 (T − T0)

]−1/2
, (4.23)

where the mass conservation law nu = M and the equation (4.22) are used.

In the limit to the pure thermal diffusion, ignoring the ion velocity in equation

(4.21), we obtain ∂xF = 0 and F = −cvχ∂xT leads to the linear distribution

∂xT = const. In next section, we solve the system (4.21)–(4.23) and compare re-

sults of temperature to the linear distribution (for pure thermal diffusion without

ion velocity).

In the opposite limit to k → 0, the equation (4.21) leads to cvu∂xT + T∂xu = 0,

and we obtain the adiabatic relation Tn−1/cv = T0n
−1/cv
0 using the mass conserva-

tion law nu = M. It should be noted that this limit causes problems of the singular
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perturbation, since the order of differential equation is changed. We must set two

boundary conditions for equation (4.21), but we can apply only one boundary con-

dition to the equation ∂x ln(Tu1/cv) = 0.

4.3.2 Numerical analysis

We execute numerical analysis of the equations (4.21)–(4.23) on the one-dimensional

space x ∈ [0, L]. We consider that the wall is placed at x = L = 10 and x = 0 is the

inside edge of the sheath.

4.3.2.1 Boundary condition

We put the boundary conditions of the ion temperature as followings. At the wall

boundary x = L (= 10), we assume that the ion temperature is fixed to a value

Tw. Here we put Tw = 0.1. We use two types of boundary conditions at the inside

boundary x = 0 and compare them. One is to control the heat flux into the system

Fin (we call flux-driven condition), and the other is to control the ion temperature

Tin (we call temperature-driven condition). Since we use Fourier’s law for the heat

flux, the former is the Neumann boundary condition, and the latter is the Dirichlet

boundary condition.

We set the basis of ϕ at the inside edge of sheath region (ϕ(0) = 0), and consider

the boundary value at the wall side ϕw as following, which is called floating potential

[68]. We assume that the wall is floating and the electrical current at its surface is

zero. The ion current is expressed as Ji = en0u0, where we use the mass conservation

law (4.1), and the electron current is expressed as Je = −en0
√
Te/2πmee−eϕw/Te (we

use non-normalized symbols). Then, the condition Ji + Je = 0 leads to

eϕw
Te

= −1
2 ln

(
m

2πme

)
+ ln

(
u0
cs

)
(non-normalized form),

ϕw = −1
2 ln

(
m

2πme

)
+ ln M (normalized form).

(4.24)

We use m = 1.67 × 10−27 kg (proton mass) and me = 9.11 × 10−31 kg, and plot the
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Figure 4.11: Relation between the ion velocity M and the floating potential ϕw

(4.24)

relation (4.24) in Figure 4.11.

For comparison, we show the solution of the Bohm equation (4.5) without ion

temperature effects under the boundary condition defined by the floating potential

(4.24) in Figure 4.12. Compared to the result of M = 1 (Bohm’s criterion), that

M = 0.85 has a larger gradient. The former corresponds to the asymptotic solution,

and the latter corresponds to the oscillatory solution.

4.3.2.2 Numerical procedure

The system of equations (4.21)–(4.23) are solved as following: (i) we solve the Poisson

equation (4.23) with the initial condition T = T0; (ii) we express the ion velocity

with equation (4.22) and solve the temperature equation (4.21); (iii) we solve the

Poisson equation (4.23) with updated temperature T ; (iv) we return to (ii) unless

the difference between old and updated profiles is small. We show the diagram in

Figure 4.13.

We have two control parameters. One is the boundary value of heat flux or

temperature and the other is the ion inflow velocity. In order to investigate the
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Figure 4.12: Comparison between electrostatic potentials for M = 1 and M = 0.85.
The latter has a large gradient compared to the former.

relation between the electrostatic potential structures and the thermal diffusion, we

use a Mach number with a finite ion temperature

M̃ = M√
1 + 3T0

(4.25)

as a control parameter instead of M (Bohm’s criterion is M̃ = 1). In the following

numerical analysis, the values of the inside ion temperature T0 is controlled by the

boundary condition. Especially, in the analysis of the flux-driven condition, the

value of T0 may change in the iteration process. We fix the value of M̃ and modify

the value of M according to the relation (4.25). We note that this modification also

affects the value of floating potential (4.24).

4.3.2.3 Numerical results

We show the results of the flux-driven condition in Figure 4.14. Figure 4.14(a) is the

temperature distribution with M̃ = 1 and Fin = 0.14. We observe that the tempera-

ture contrast between boundaries is larger than that of the linear distribution (pure

diffusion without ion velocity). Figure 4.14(b) is the temperature distribution with

M̃ = 0.85 and Fin = 0.08. In this case, we observe that the temperature contrast
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Initial condition: T = T0

Poisson equation (4.23)
with boundary condition (4.24)

Temperature equation (4.21)
with expression of velocity (4.22)

Iterate
Update M

(4.25)

Figure 4.13: A diagram of the numerical procedure. The Poisson equation (4.23)
and the temperature equation (4.21) are solved iteratively. The value
of M is changed according to the equation (4.25) with fixing the value
of M̃.

between boundaries is smaller than that of the linear distribution.

Next, we show the results of the temperature-driven condition in Figure 4.15.

Figure 4.15(a) is the temperature distribution with M̃ = 1 and Tin = 0.5. We

observe that temperature distributes above that of the linear distribution. We also

observe that the heat flux (the temperature gradient) at the sheath edge (x = 0)

is smaller than that of the linear distribution. In the result with M̃ = 0.85 and

Fin = 0.3, shown in Figure 4.15(b), the above results are reversed.

Since we cannot express the relation between ion temperature and ion density, the

exact condition of sheath criterion is unclear. We show the results of electrostatic

potential in Figure 4.16. Comparing them to Figure 4.12—the solution of Bohm’s

equation without ion temperature under the same boundary condition—we can say

that M̃ = 1 corresponds to an asymptotic solution and M̃ = 0.85 corresponds to

an oscillatory solution.

From these results, we can say that potential structures with M̃ = 1 increase

temperature contrast in the flux-driven system and reduce flux in the temperature-

driven system. On the other hand, potential structures with M̃ = 0.85 decrease

temperature contrast in the flux-driven system and increase flux in the temperature-
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(a) M̃ = 1, Fin = 0.14: the temperature contrast is larger than
that of the linear distribution
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(b) M̃ = 0.85, Fin = 0.08: the temperature contrast is smaller
than that of the linear distribution

Figure 4.14: Temperature distribution in the flux-driven system with χ = 10, com-
pared to the linear distribution.
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(a) M̃ = 1, Tin = 0.5: the inside temperature gradient is smaller
than that of the linear distribution
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(b) M̃ = 0.85, Tin = 0.3: the inside temperature gradient is larger
than that of the linear distribution

Figure 4.15: Temperature distribution in the temperature-driven system with χ =
10, compared to the linear distribution.
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(a) Flux-driven systems
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(b) Temperature-driven systems

Figure 4.16: The distribution of electrostatic potentials. In both of flux-driven and
temperature-driven systems, the gradient takes a large value in the case
of M̃ = 0.85 compared to M̃ = 1. The distributions are rarely different
from those in Figure 4.12 (without ion temperature effect).
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driven system.

In order to clarify the condition of these transitions occurs, we show the differ-

ences between the flux [temperature] at the inside edge Fin [Tin] and those of the

linear distribution (thermal diffusion without ion flow) Fdiff [Tdiff ] with changing the

values of control parameters in Figure 4.17. Dashed lines indicate points where they

coincide. In the flux-driven case, we observe ∆T < 0 under the line and ∆T > 0 over

the line. On the other hand, in the temperature-driven case, we observe ∆F > 0

under the line and ∆F < 0 over the line.

It is widely believed that presheath region, existing between the sheath edge and

the plasma, ions are accelerated to satisfy Bohm’s criterion. In that situation, con-

sidering the horizontal line of M̃ = 1 in Figure 4.17, the transition occurs according

to the boundary values of the flux or the temperature. In the flux-driven system,

this transition is from smaller temperature-contrast states to larger states. In the

temperature-driven system, it is from larger flux states to lower flux states.

Finally, we execute similar calculations for different values of the thermal diffusiv-

ity χ (χ = 1 and χ = 100) and show the results in Figures 4.18 and 4.19. Although

the parameters where transitions occur (dashed lines) differ depending on the value

of the χ, the features described above paragraphs are not changed.
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(a) Difference between the inside temperature T in and that of lin-
ear diffusion case Tdiff for the flux-driven system
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(b) Difference between the input flux F in and that of linear diffu-
sion case Fdiff for the temperature-driven system

Figure 4.17: Comparison between sheath-diffusion coupling system and linear dif-
fusion system with χ = 10 (dashed lines: ∆F = 0 or ∆T = 0). In
the flux-driven system, the transition from ∆T < 0 to ∆T > 0 occurs
when Fin exceeds a threshold; and in the temperature-driven system,
the transition from ∆F > 0 to ∆F < 0 occurs when Tin exceeds a
threshold. Thresholds are determined by the value of M̃.
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(a) Difference between the inside temperature T in and that of lin-
ear diffusion case Tdiff for the flux-driven system.
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(b) Difference between the input flux F in and that of linear diffu-
sion case Fdiff for the temperature-driven system

Figure 4.18: Comparison between sheath-diffusion coupling system and linear diffu-
sion system with χ = 1 (dashed lines: ∆F = 0 or ∆T = 0). Compared
to Figure 4.17, the threshold lines move, but the features (∆T ≷ 0,
∆F ≷ 0) do not change.
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ear diffusion case Tdiff for the flux-driven system.

0.1 0.3 0.5 0.7 0.9
Tin

0.80

0.85

0.90

0.95

1.00

1.05

M̃

∆F = Fin − Fdiff

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

(b) Difference between the input flux F in and that of linear diffu-
sion case Fdiff for the temperature-driven system

Figure 4.19: Comparison between sheath-diffusion coupling system and linear diffu-
sion system with χ = 100 (dashed lines: ∆F = 0 or ∆T = 0) Compared
to Figure 4.17, the threshold lines move, but the features (∆T ≷ 0,
∆F ≷ 0) do not change.
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4.4 Conclusion

In this chapter, we have studied the thermal effect in sheath structures. At first, we

have clarified that adiabatic ion temperature brings about two Sagdeev potentials

and solution of Bohm’s equation may bifurcate from one of them to the other.

This bifurcation occurs at the singular point where the first-order derivatives of the

Sagdeev potentials lose their Lipschitz continuities. We have classified the type of

solutions based on the control parameters—the ion velocity and the temperature.

Next, we have investigated a non-adiabatic thermal effect. We have derived a

second-order differential equation for the ion temperature including a thermal dif-

fusion. There are two types of boundary conditions—flux-driven and temperature-

driven systems. The self-organized presheath region accelerates ions, and its Mach

number becomes one. Then, when the value of heat flux exceeds a threshold deter-

mined by the value of thermal diffusivity, the transition from smaller temperature-

contrast states to larger states. In the temperature-driven system, the value of

the boundary temperature exceeds a threshold, the transition from larger heat flux

states to smaller states. This observation has an analogy to the result of a thermo-

dynamical model of zonal flow [35, 87].
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Chapter 5

Summary

We elucidated new aspects of ion acoustic waves by extending the classical model

to larger systems including vortex and thermal effect. We were motivated by the

facts that vortex characterizes dynamics of fluid motion and that we may view a

self-organized structure in plasmas as a thermodynamical system.

In Chapter 2, we studied the vortex in ion acoustic wave equations. Since the

KdV equation is one-dimensional systems, it does not have enough freedom for the

existence of vorticity. Although the KP equation is two- or three-dimensional system,

we showed that there are no vorticities. Moreover, we proved that not only the KP

equation, the first-order terms of the reductive perturbation expansion, but also all

of higher order terms are vortex-free. We also showed that thermal effect cannot

produce vortexes. These facts indicate that the reductive perturbation method for

the KP equation eliminates vortex. Then we focused on a minimal generalization

of the KP equation with finite vorticity—the KPY equation. We showed that how

the modification of reductive perturbation method avoids problems and allows the

existence of vorticity.

We investigated the integrability of the KPY equation in Chapter 3. First, we

proved that the system is non-integrable by the Painlevé test. This is because vor-

texes bring about an essential three-dimensionality. Next, we showed how the non-



integrability occurs by numerical simulation. The vortexes with small amplitudes

twist the soliton periodically. Its frequency increases with increasing amplitude.

When the amplitude of vortexes takes a large value, solitons do not get back to the

initial state and break up into small structures. The transition is described by in-

creasing Fourier components with high wave numbers and growing the vortex terms

in the KPY equation.

In Chapter 4, we analyzed thermal effects in the electrostatic sheath. First, we

found that the Bohm equation with the adiabatic ion temperature has two Sagdeev

potentials. The first-order derivatives of them take the same value at the edge,

and they lose the Lipschitz continuity at the point. Thus we may obtain solutions

bifurcated from one of the Sagdeev potentials to the other one. We classified the

type of solutions according to the values of the ion velocity and the ion temperature.

Next, we included a non-adiabatic effect on the ion temperature—a heat flux. We

solved a system composed of two differential equations for the ion temperature and

the electrostatic potential. We took two types of boundary condition for the ion

temperature equation; one is to control the heat flux, and the other is to control the

temperature. In actual systems, the ion Mach number is fixed by the self-organized

presheath, and the heat flux (not temperature) is controlled. In that condition, the

temperature contrast takes a larger value than the linear diffusion state when the

heat flux exceeds a threshold. This result indicates that the electrostatic sheath

works as a barrier to a heat transport.

78



Appendix

A.1 Propagating solutions of KdV equation and KP equation

We derive propagating solutions of the KdV equation and the KP equation. We

substitute u(x, t) = f(x− vt) = f(ξ) into the KdV equation

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3 = 0 (A.1)

where α and β are constants, and obtain

−vf ′ + αff ′ + βf ′′′ = 0 (A.2)

with denoting f ′ = ∂f/∂ξ. Integrating the equation we obtain

−vf + α

2 f
2 + βf ′′ = c1 (A.3)

with the integral constant c1. Multiplying f ′, we can integrate the equation once

more and obtain −(v/2)f2 + (α/6)f3 + (β/2)(f ′)2 = c1f + c2 with the integral

constant c2. Assuming c1 = c2 = 0, this equation leads to√
β

v

∫ df
f
√

1 − (α/3v)f
=
∫

dξ (A.4)

Calculating the integral, we obtain a solitary wave solution

u(x, t) = f(x− vt) = 3v
α

sech2
[
−1

2

√
v

β
(x− vt+ c)

]
, (A.5)

where c is the integral constant. Without assuming c1 = c2 = 0, we obtain cnoidal

solutions (Jacobi elliptic functions), firstly derived by Korteweg and de Vries [41].



Next we calculate propagating solution of the two-dimensional KP equation

∂

∂x

(
∂u

∂t
+ α

∂u

∂x
+ β

∂3u

∂x3

)
+ γ

∂2u

∂y2 = 0. (A.6)

Substituting the expression u(x, y, t) = f(x + ky − vt) = f(ξ), we obtain (−vf ′ +

αff ′ +βf ′′′)′ +γk2f ′′ = 0. The integration leads to (−v+γk2)f ′ +αff ′ +βf ′′′ = c0

with the integral constant c0. Assuming c0 = 0 and putting ṽ = v − γk2, we obtain

−ṽf ′ + αff ′ + βf ′′′ = 0, which is identified with the equation (A.2). Thus we may

follow the calculation and obtain a solution

u(x, y, t) = 3(v − γk2)
α

sech2

−1
2

√
v − γk2

β
(x+ ky − vt+ c)

 . (A.7)

We remark that a propagating solution also exists for the three-dimensional KP

equation
∂

∂x

(
∂u

∂t
+ α

∂u

∂x
+ β

∂3u

∂x3

)
+ γ

∂2u

∂y2 + δ
∂2u

∂z2 = 0. (A.8)

Calculating same as the two-dimensional KP equation, we obtain

u(x, y, z, t) = 3(v − γk2 − δl2)
α

sech2

−1
2

√
v − γk2 − δl2

β
(x+ ky + lz − vt+ c)

 ,
(A.9)

However, that is not a soliton solution, since the three-dimensional KP equation is

not integrable.

The difference between three-dimensional KP equation and the former two equa-

tions is in the existence of multiple soliton solutions. The KdV equation and

the two-dimensional KP equation have N -soliton solutions which are expressed by

eigenvalues in the inverse scattering transform (IST) method. However, the three-

dimensional KP equation does not have three-soliton solutions [48].
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A.2 Brief introduction to Sato theory and the KP hierarchy

As described in Section 1.2, Lax’s formulation expand the IST method for the KdV

equation to other equations. Lax’s formulation also reveals “symmetries” of soliton

equations. We may find an infinite number of linear operators An (n = 1, 2, . . .)

which conserves eigenvalues of L (λ satisfying Lψ = λψ) under the time-evolution

∂t′ψ = A′ψ. For the KdV equation, An can be defined with pseudo-differential

operators ∂j
x (j may be negative) as An = (Ln/2)+. Here, Ln/2 satisfy (Ln/2)2 =

Ln = (−∂2
x + u)n and (Ln/2)+ is the non-negative part of Ln/2. Thus, the operator

L of the KdV equation has an infinite number of “times” tn and operators An.

Moreover, ∂tn∂tmL = ∂tm∂tnL is satisfied, and thus the KdV equation has an infinite

number of symmetries (momentum maps associated with the times). We obtain

∂t1L = [A1, L] = ∂xL and A = A3, thus t1 is nothing but the coordinate x, and t3 is

the time of the original KdV equation. The set of Lax equations for tn, ∂tL = [An, L],

is called the KdV hierarchy.

Sato [65] used a pseudo-differential operator W = ∂x +
∑∞

j=1wj∂
−j
x and de-

fined L = W∂xW
−1 = ∂x + u2∂

−1 + u3∂
−2 + · · · . This procedure makes solv-

ing the scattering problem Lψ = λψ and calculation of An = (Ln)+ easily as

∂x(W−1ψ) = λ(W−1ψ) and An = (W∂n
xW

−1)−1. Lax equations ∂tnL = [An, L],

which are equivalent to the Sato equation ∂tnW = AnW − W∂n
x , is a set of equa-

tions with an infinite number of functions uj (or wj) and variables tn. From the

terms of n = 1, we obtain ∂t1L = ∂xL, and thus we may consider t1 = x same as

the KdV hierarchy. Adjusting the terms of n = 2, 3, we obtain the equation for u2,

∂

∂x

(
4∂u2
∂t3

− 12u2
∂u2
∂x

− ∂3u2
∂x3

)
− 3∂

2u2
∂t22

= 0. (A.10)

This is nothing but the KP equation (t2 = y, t3 = t). Thus, the set of Lax equations

(Sato equations) is called the KP hierarchy. We can obtain the KdV hierarchy and

some of the hierarchies of soliton equations (such as the Boussinesq equation and

the coupled KdV equation) by a procedure called reduction.
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A.3 Hierarchy of three-dimensional fluid flow

We give a brief review of a significant role of vorticity in the context of noncanonical

Hamiltonian formalism [51] and Clebsch representation [85] for ideal fluids.

A.3.1 Noncanonical Poisson structure and Casimir invariant

A generalized Hamiltonian equation of motion is written as

∂F (u)
∂t

= {F,H}, (A.11)

where F is a functional of a state vector u ∈ X (X is a Hilbert space and we call

phase space), H is a Hamiltonian, and { , } is a Poisson bracket. A Poisson bracket

is a anti-symmetric bilinear operator satisfying the Jacobi identity {{E,F}, G} +

{{F,G}, E}+{{G,E}, F} = 0. When a Poisson bracket may be written as {F,G} =

〈∂uF,J ∂uG〉, where 〈 , 〉 is the inner product of X and ∂uF is the gradient of F , we

call J a Poisson operator. A simple example is the Hamiltonian equation of motion

for a particle; X is the space of position q and momentum p and the Poisson bracket

is {F,G} = ∂qF∂pG− ∂pF∂qG.

A Poisson bracket { , } (or a Poisson operator J ) is called noncanonical if it

has nontrivial kernels (a bracket without nontrivial kernels is called canonical). If

a nontrivial kernel can be written by ∂uC ({C, } = 0, J ∂uC = 0) with a certain

functional C, C is a constant of motion: ∂C/∂t = {C,H} = 0. Such functional is

called Casimir invariant. The significant feature of Casimir invariants is that they

are conserved with arbitrary Hamiltonian. Thus Casimir invariants foliate phase

spaces X and restrict the dynamical orbits to super-surfaces determined by values

of Casimir invariants (called Casimir leaves) [89].

The Poisson operator for ideal fluids is written as

J =

 0 −∇ ·

−∇ −ρ−1(∇ × u)×

 , (A.12)
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where the state vector is u = (ρ,u). The Hamiltonian is the sum of the kinetic

and internal energies: H =
∫

(ρ|u|2/2 +ρE(ρ)) d3x. In the three-dimensional system

(x, y, z), this bracket has two independent Casimir invariants; one is the total mass∫
ρd3x and the other is the helicity∫

u · (∇ × u) d3x. (A.13)

In the two-dimensional system (x, y), since u · (∇×u) = 0, the helicity is trivialized.

Instead of the helicity, the generalized enstrophy∫
ρf(ω/ρ) d2x (A.14)

(ω = (∇ × u) · ez) is conserved as a Casimir invariant.

When the value of vorticity is (globally) zero, both of the helicity and the gener-

alized enstrophy become trivial. In that case, a new Casimir invariant∫
u · c dnx, (A.15)

where n = 1, 2, 3 is the spatial dimension and c is an arbitrary divergence-free vector,

emerges due to the change of the Poisson bracket structure [89]:

J ′ =

 0 −∇ ·

−∇ 0

 . (A.16)

Thus, we can say that a system without vorticity—including the KdV equation and

the KP equation—resides on a “singular” Casimir leaf.

A.3.2 Clebsch representation and epi-two-dimensional flow

A (generalized) Clebsch representation for an n-dimensional vector field u is given

by

u = ∇φ+
n−1∑
i=1

αi∇βi, (A.17)

where φ, αi, βi are scalar function [85]. In the context of generalized Hamiltonian

formalism, the Clebsch representation gives a transformation from noncanonical

variables (ρ,u) to canonical variables.
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Let us consider the three-dimensional space and that u is a rotation-free vector

field (∇ × u = 0) and v is a vector field satisfying the condition v · ∇ × v =

0. Therefore the helicity of the field u + v vanishes under a boundary condition

eliminating boundary terms (such as the periodic boundary condition):

∫
(u + v) · ∇ × (u + v) d3x =

∫
u · ∇ × v d3x =

∫
(∇ × u) · v d3x = 0. (A.18)

From the knowledge of differential geometry, we can (locally) express these fields as

u = ∇φ and v = α∇β. Compared with the equation (A.17), u+v = ∇φ+α∇β is the

Clebsch representation of a two-dimensional vector field. However, we may see the

field in the three-dimensional system. Such field is called epi-two-dimensional flow

[88]. Epi-two-dimensional flow is certainly three-dimensional, whereas it conserves

the generalized enstrophy and does not have a finite value of helicity. It is a class

standing between the vortex-free flows ∇φ and the general three-dimensional flows

∇φ+ α1∇β2 + α2∇β2.

A.4 Lipschitz continuity and uniqueness of differential equation

We start by considering a nonlinear ordinary differential equation

dx
dt =

√
x, x(0) = 0. (A.19)

Since this is a separable equation, we can solve easily and obtain a solution x = t2/4.

This solution is only valid for t ≥ 0. On the other hand, x ≡ 0 is also a solution

of the equation (A.19). Thus, we can say that the solution bifurcates at the point

t = 0.

This is because the right-hand-side of the equation (A.19) is not Lipschitz contin-

uous at x = 0. We say that a function f(x, t) is Lipschitz continuous on a region S,

if there is a positive constant M such that |f(x1, t) − f(x2, t)| ≤ M |x1 − x2| for all

(x1, t), (x2, t) ∈ S.
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If f(x, t) is a Lipschitz continuous function on a region S and (x0, t0) ∈ S, the

initial value problem
dx
dt = f(x(t), t), x(t0) = x0 (A.20)

has an unique solution x(t) in the region S. For a proof, see e.g., Ref. [13]

Since f(x) =
√
x is not Lipschitz continuous at x = 0, the uniqueness of solution

is lost and two bifurcated solutions x = t2/4 and x = 0 can exist.
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