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Chapter 1

Introduction

1.1 Ubiquity of collective motion

Among countless fascinating dynamical patterns the nature present, the most
familiar one to us may be the phenomena that arise from flocking of biological
objects. Most of us may have seen, either with our own eyes or in video
images, a group of animals moving together: for example, birds such as pigeons,
starlings, and geese fly together in the sky; farm animals such as sheep and
horse and wild mammals such as zebras, buffalos, and reindeers migrate in
herd; fish such as herrings and tuna swim in school; insects such as ants,
termites, and mosquitos aggregate to form swarms; locusts are also known to
migrate in vast swarms, which sometimes cause a severe damage to crops.

Animals are not exceptional beings in the living world that posses ability
to move collectively. Some microorganisms, which inhabit typically in spa-
tial scale of micrometers, display collective behaviors too. Motile bacteria
such as Escherichia coli and Bacillus subtilis propel themselves by rotating
helix-shaped flagella, and swim within colonies in a coordinated manner[1, 2].
Eukaryotic cells are also prone to collective migration. Their modes of loco-
motion are quite diverse: In hydrodynamic environment, a sperm cell propels
itself using a flagellum at the back[3], while a Chlamydomonas reinhardtii
swims by breaststroke-like beating of two flagella at the front[4]; on the other
hand, crawling motion on a substrate, referred to as amoeboid movement, is
achieved by protrusion of cellular structures called blebs and lamellipodia[5, 6].
In multicellular animals, collective cell migration plays a crucial role in em-
bryonic development, tissue regeneration, immunity, and tumor invasion and
metastasis[7, 8]. A migration mode specific to aggregated cells can be seen
in a tightly adhered epithelial monolayer, which maintain their contacts with
neighbors as they moves as a coherent sheet[9, 10].
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10 CHAPTER 1. INTRODUCTION

Another animal that displays characteristic collective motion is us—the hu-
mans. Human crowds exhibit a variety of self-organized dynamic patterns in
urban streets, in stadiums, in hallways, and in rooms. Several well-known phe-
nomena from empirical findings include lane formation in bidirectional flows,
oscillations of passing direction at bottlenecks, arch-like clogging around exits,
and stripe formation in two intersecting streams[11, 12]. Recently, video anal-
ysis of scenes from a crowd accident revealed emergence of stop-and-go waves
and crowd turbulence at high densities[13].

These far-from-exhaustive examples are already convincing enough that
collective motion is abundant and ubiquitous in wide range of length scales
that span from tens of micrometers up to tens of kilometers. The question
for physicists is what, if at all, is the universality that dominates the various
phenomena.

1.1.1 What is flock?

Before going any further, I would like to clarify the definition of the word
flock. What is the flock, whose behavior we are trying to understand? First
of all, a flock is definitely not a single individual; two or three would not be
enough either. It refers to a group that consist of a number of animals moving
and staying together. Reynolds[14] added a further explanation to specify
the phenomena: a flock is “a group of objects that exhibits this general class
of polarized, noncolliding, aggregate motion.” This is a plain definition that
fits well with our interest in collective motion; it also provides principles for
modeling the phenomena, as we will see in the next section.

Interestingly, English is full of terms synonymous with flock, all being col-
lective nouns that describe a group of animals, but each specialized to what
the subject is; for example, school is for fish, swarm for insects, herd for hoofed
mammals, crowd for people, etc. In Japanese, however, they are all described
in a single word “mure.”

1.2 Mathematical modeling

1.2.1 Reynolds boid model

The first attempts at constructing a mathematical model that reproduce the
flocking behavior of animals appeared in 1980’s[15, 16, 14, 17]. These mod-
els basically employ a somewhat similar strategy, but the one proposed by
Reynolds[14] became most well-known. In the so-called “boid” model, the
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individuals’ motion is simulated by taking into account three rules: collision
avoidance, velocity matching, and cohesion (or, according to Reynolds’ origi-
nal terminology, “flock centering”). These three rules can be implemented as
repulsive, ferromagnetic, and attractive interactions, respectively, with other
individuals that are within spherical zones, centered at the boid, with some
radii, which can be different between the interaction types. Using this model,
Reynolds showed that plausible flocking behaviors are reproduced; however,
he did not apply much quantitative analysis because his primary intention was
to construct a model for computer animation.

A systematic investigation of the boid model was carried out by Couzin et
al.[18]. Their formulation of the behavioral rules are described in the following
difference equations with discrete time steps and synchronous updates. At
each time steps, each individual determines a desired direction of motion d̂i(t)
by evaluating position and velocity of neighbors within three non-overlapping
zones Sr, So, and Sa. If others are found in “zone of repulsion” Sr, a sphere of
radius rr centered on the position ri of the individual i, the desired direction
at next time step is chosen as

d̂i(t+∆t) = −n̂

⎛

⎜⎜⎝
∑

j∈Sr
j ̸=i

rij
|rij|

⎞

⎟⎟⎠ , (1.1)

where n̂(x) = x/ |x| is a vector normalization function and rij = rj − ri is the
relative position between particle i and j. If no other individuals are present
in Sr, then neighbors in “zone of orientation” So and “zone of attraction” Sa,
spherical ranges of rr ≤ rij < ro and ro ≤ rij < ra, respectively, are considered:

d̂i(t+∆t) = n̂

⎛

⎜⎜⎝
∑

j∈So

vj

|vj|
+
∑

j∈Sa
j ̸=i

rij
|rij|

⎞

⎟⎟⎠ , (1.2)

where vi denotes the velocity of particle i. In the case that the sum of the
vectors yields zero vector, or that no neighbors are in the range, then d̂i(t +
∆t) = d̂i(t). After incorporating the error effect, realized by a random rotation
of d̂i(t + ∆t) by an angle taken from Gaussian distribution, the velocity is
updated in such a way that the speed is constant and the direction rotates
itself towards d̂i(t+∆t) with a constant turning rate.

By changing the width of the behavioral zones, Couzin and coworkers found
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transitions between four distinct modes of flocking, which they labeled as
swarm, torus, dynamic parallel group, and highly parallel group. These modes
are characterized by two order parameters: group polarization,

M(t) =
1

N

∣∣∣∣∣

N∑

i=1

vi(t)

∣∣∣∣∣ , (1.3)

and group angular momentum,

L(t) =
1

N

∣∣∣∣∣

N∑

i=1

rci (t)× vi(t)

∣∣∣∣∣ , (1.4)

where rci = ri−
∑N

j=1 rj is the relative position to the center of mass. The sharp
transition and hysteresis phenomena are discussed with possible connection to
the collective response and collective memory of fish school behavior.

Recently, Mototake and Ikegami[19] performed large scale simulations of
the boid model using GPGPU based parallelization method. While the previ-
ous results are based on the numerical simulation with N = 100, qualitatively
different behaviors are observed when the population size is increased up to
the order of N = 105. The system does not end up in one of the four dy-
namical modes, but spontaneously forms a complex dynamic structure where
a dozen of large swarming clusters are interconnected by filamentous streams.
The origin of this “more is different” phenomenon has not be fully understood.

1.2.2 Vicsek model

Although the boid model displays rich collective behaviors, it is difficult to
develop a quantitative understanding on the simulation results, because of the
complexity of interactions and too many control parameters. Even if we keep
the model minimum as possible, one has to adjust strength and range of three
different interactions, determine the self-propelling speed and, possibly, the
noise strength too. Variables can be made dimensionless by adopting one of
interaction ranges as the unit of length and one of the interaction strengths
or the self-propelling speed as unit of velocity, but the rescaled equations still
have five or six parameters to be tuned.

The model proposed by Vicsek et al.[20], which assumes only the alignment
with nearby individuals, can be regarded as the simplified version of the boid
model. In the Vicsek model, individuals are modeled with point particles that
drive themselves with a constant speed v0 while interacting with other particles
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in the spherical proximity Si. The dynamics is described as follows:

ri(t+∆t) = ri(t) + vi(t+∆t)∆t, (1.5)

vi(t+∆t) = v0Rηn̂

(
∑

j∈Si

vj(t)

)
. (1.6)

where Rη denotes a rotation matrix that rotates vectors by a random angle
chosen from a uniform distribution of amplitude 2πη (for 2D) or 4πη (for 3D).

A slightly modified version of the Vicsek model was proposed by Grégoire
and Chaté[21]. The model employs a different manner to incorporate the noise
to the dynamics, namely replacing Eq. 1.6 by

vi(t+∆t) = v0n̂

(
∑

j∈Si

vj(t) + ηNiξ

)
, (1.7)

where ξ denotes a random unit vector and Ni is the number of particles in Si.
This modification reflects two different perspectives on where the errors stem
from: the standard model assumes errors arise when the individual decides
its next move from the perception of other individuals, while the modified
model is based on the idea that the individual makes errors in the process of
cognition and assessment of others. The treatment of the noise in the modified
version is referred to as “vectorial” noise, contrasted with “angular” noise in
the standard model.

Many-particle simulations indicate the Vicsek model presents some char-
acteristic properties. First, ordered motion, in which particles moves into the
coherent direction, emerges at high densities with small noise amplitude. The
discovery of true long-range order in the two-dimensional Vicsek model was
surprising to the physicists, because the Mermin-Wagner (MW) theorem for-
bids any long range order in two-dimensional equilibrium systems breaking a
continuous symmetry at finite temperatures (which is equivalent to the exis-
tence of noise). Therefore, the violation of the MW theorem is thought to be
due to the nonequilibrium nature of the model. The order-disorder transition
as a function of density and noise amplitude is characterized by polar order
parameter (Eq. 1.3). It was first thought that the transition is continuous[20];
however, a careful inspection with larger systems revealed that the transition
is of first-order[21, 22]. To be more precise, there is a third phase, between
the disordered phase and the full-order phase, that involves a long wavelength
instability and phase separation[23]. In this regime, particles form dense and
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ordered traveling bands (or, in three-dimensional case, sheets) that span ver-
tically to the direction of motion. Outside the band, the particles are sparse
and not aligned. The fact that this instability becomes noticeable only in sys-
tems sufficiently larger than the wavelength have brought a controversy over
the nature of transition, but it is now a common understanding that finite-size
effects and boundary conditions has a critical effect. One may say that this is
another example of “more is different.”

Another self-emerging property of the Vicsek model is anomalous density
fluctuations in the system, which was theoretically predicted from symmetry
arguments in pioneering works by Toner and Tu[24, 25]. Consider a box of
volume V in the system. The number of particles inside the box at time t
is denoted by N(t). In a thermal equilibrium system off the phase transition,
the time average ⟨N⟩ = 1

T

∫ T

0 N(t)dt and the variance ∆N2 =
〈
(N(t)− ⟨N⟩)2

〉

should scale as∆N2 ∼ ⟨N⟩ in the limit ofN → ∞. For Vicsek model, however,
the fluctuation is greater than that, namely, ∆N2 ∼ ⟨N⟩α with α ≃ 1.6 in
both two and three dimensions. This so-called giant number fluctuations is
observed for the broader class of active particle numerical models such as
active nematics[26, 27] and self-propelled rods[28], as well as experimentally
in bacterial systems[29] and vibrated grains[30, 31]. It is now considered to be
a shared feature of active systems in Vicsek class[32].

1.2.3 Social force model

Developing mathematical models that describe pedestrian movement has long
been considered to be of great importance for urban planners, architectural
designers, and local administrators, who want to ensure the public safety while
improving the efficiency of urban traffic. Since the first formulation of such
model, which is inspired by fluid dynamics[33], continuum-based approaches
have been improved and are still employed[34]. Although continuum modeling
offers a certain advantage in simulating high-density flows, it has difficulties
in addressing the motion of individual pedestrians because the details of the
interaction between them are neglected. This is the reason microscopic models
are called for.

Two classes of microscopic pedestrian models have attracted attention of
physicists. In cellular automata (CA) models, time and space are discretized.
Each pedestrian occupies a single site in a grid at each time step and hops to
one of the neighboring sites at the next time step with certain probabilities.
For this properties, CA models are often referred to as “rule-based.” On the
other hand, there are a group of “force-based” models, which assume that the
space is continuous and describe individual’s motion by a set of differential
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equations. Readers may notice at this point that the force based models are
constructed in the similar spirit with the boid model and the Vicsek model.

One of the most popular force-based models is introduced by Helbing and
Molnár[35], assumes that the behavior of pedestrians is influenced by socio-
psychological forces and governed by Newtonian dynamics. Each pedestrian i
move towards the destination point oi; the heading vector (desired direction)
is given by the difference from the current position,

d̂i =
oi − ri
|oi − ri|

. (1.8)

While being self-propelled toward the direction of d̂i, the agent is influenced by
socio-psychological forces fij from other individuals j, and follows a Newtonian
dynamics, which is,

dri
dt

= vi(t), (1.9)

dvi

dt
= αd̂i(t)− βvi(t) +

∑

j ̸=i

fij. (1.10)

Here, α is the intrinsic self-propulsion force and β represents the quickness of
relaxation to the individual’s “natural” walking speed α/β. We assume that
these coefficients take the same value for all the individuals, but they can differ
from person to person with an appropriate distribution. Specific forms of the
interaction force are slightly different between the literatures, but the most
simple one is expressed by the form of exponential decaying function against
the distance of two individuals,

fij = A exp

[
− |rij|

B

]
rij
|rij|

. (1.11)

It is also possible to reflect other effects that arise from psychological and
physical constraints, such as collision avoidance with obstacles and walls, the
tendency of pedestrians to react more strongly to what happens in front of
them, the tendency to give way more quickly to those approaching at a high
rate of speed, and the repulsion between individuals at physical contact in
dense crowd[36, 37].

One can test the validity of the models or calibrate their parameter values
by the degree of agreement between the simulation results and the empiri-
cal data. The comparison can be made in three different levels. One can
either look into (i) the microscopic quantities, namely, trajectory of single hu-
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man movement and paths of two people takes when they are passing each
other; (ii) the macroscopic quantities such as flow rate, density profile, and the
fundamental diagram, which expresses the relationship between the flow and
the density. (iii) The ability to reproduce qualitative traits, especially the self-
organized patterns introduced in the previous section, is also often emphasized.
The social force model, along with its variants and other force-based models,
is successful in describing the single pedestrian movement, as well as repro-
ducing some of the collective phenomena such as lane formation, clogging and
intermittent oscillatory flow at bottlenecks. However, the stop-and-go waves
and crowd turbulence observed at high densities are not derived from the social
force model, and there has been a claim that underdamped dynamics described
by second order differential equations leads to unrealistic oscillatory behaviors
and therefore fails to account for the emergent phenomena[38].

1.3 Scope of the thesis

We briefly introduced in the previous sections the examples of collective motion
observed in the real world, as well as the three basic mathematical models, all
of which employ the idea of self-propelled particles, regardless of whether their
advocates referred to the concept at the time of proposal. It has become
a common belief among the researchers in the field in the past two decades
that the conceptual framework of collective motion of self-propelled particles is
based not merely on the apparent similarities between various phenomena, but
on the universality that does not depend on the details of the systems. This
justifies to study the properties of simplified models, like the Vicsek model,
which does not directly provide an exact expression of the microscopic elements
of any physical, biological or social systems and therefore does not lead to
precise prediction on the behavior of the systems, and to still think that the
analysis of such models can contribute to the understanding of the emergent
phenomena.

In the past two decades, the Vicsek model and its variants have been con-
sidered to be one of the minimal self-propelled particle models, and subjected
to the intensive investigation. As stated above, it resulted in the understanding
of the features shared in the so-called Vicsek universality class, which is defined
by the local alignment between particles, or ferromagnetic interactions. Nev-
ertheless, empirical findings suggest that the Vicsek-type interaction is hardly
found in its pure form in real systems:

• Fish. From the observation of fish school in a shallow pools, Gautrais et
al.[39] concluded that fish follow a set of behavioral rules that resembles
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the boid model. However, the implementation detail is different from
Couzin et al.[18]: The force acts not on the position or heading but on
the angular velocity of each particles.

• Birds. Ballerini et al.[40] analyzed 3D reconstructed image of starling
flocks to find that the birds interact with others in topological neighbor-
hood, i.e., n nearest neighbors, rather than those in metric neighborhood
(within a sphere of radius r).

• Bacteria. In spite of recent experimental developments on bacterial col-
lective dynamics, the specification of interaction remains elusive. Many
model bacteria such as E. Coli and B. subtilis has an elongated shape,
which makes the interaction anisotropic. The excluded volume effect of-
ten results in the effective nematic interactions, and the flagellar bundling
and long-range hydrodynamic forces are believed to govern their dynam-
ics too[2, 41].

• Eukaryotic cells. Eukaryotic cells are mechanically connected to each
other through junctions mediated by receptors called as cadherins. This
cell-cell adhesion facilitates the collective cell migration and position
rearrangements[8, 42].

• Human pedestrians. Aside from the social force model, several force-
based models for pedestrian movement have been proposed, including
the centrifugal force model[43, 44], which incorporates dependence of
the interaction on velocity. Recently, Karamouzas et al.[45] found from
an analysis of crowd data sets that interaction between pedestrians are
governed by an “anticipatory” force: People are subject to repulsive
forces which have a power-law dependence on the length of time until
the moment they expect to collide with each other.

One can easily see from the above examples that the interactions between
components in biological systems are diverse, complex, situation dependent,
and sometimes hard to identify by observational methods. The difficulties can
arise either from the process of obtaining data or from the process of interpret-
ing it. Birds and large mammals must be studied in the field, and therefore re-
construction of individuals’ three dimensional positions in large groups can be
demanding. Recent developments in video tracking technology[40, 46, 47, 48]
and biologging devices using GPS and acceleration sensors[49] are helping re-
searchers to make use of the data with high resolution in time and space. Fish
schools are studied in natural environment using sonar and echosounder[50],
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as well as in the laboratory tanks[51, 52, 53, 54]. The former has limitation
in tracking the individual movement, while the latter suffers difficulties in
handling a large population and in getting rid of the effects of tank shapes
and boundary walls. Compared to other animals, the empirical data of hu-
man pedestrian dynamics are much more accessible, because it is possible to
perform controlled experiments in various environments[11, 12], except for ex-
treme situations where the crowd density are high enough to cause a mass
disaster[13]. However, the fact that there are a number of mathematical mod-
els that seem to have similar ability to explain the empirical results implies
that inferring the hidden structure of interactions and constructing a proper
model is not a straightforward task, even if we are provided with abundant
data.

In this regard, the universality of the collective motion should be pursued
both by empirical approach and by the means of abstract modeling. It is
particularly important to understand how the difference in interaction types
leads to the difference in collective behaviors of the system, and what details are
relevant for assessing whether two different models fall into a same universality
class or not.

The Vicsek model can be considered as a subversion of the Reynolds’ boid
model that assumes only one of the three interaction rules—the alignment—
while ignoring the other two, the repulsion and the attraction. This perspective
naturally leads to the following questions: What if we assume purely repulsive
or purely attractive SPPs? Do those systems exhibit a different behavior from
the collective motion of the Vicsek particles? What are the roles of the two
types of interactions in the flocking phenomena?

Purely repulsive SPP is of particularly interest because there are strong
empirical evidences supporting that repulsion plays an important role: The
social force model[35] and the anticipatory power-law model[45] assume that
the human behavior is governed by repulsion; the collective motion of kerato-
cyte cells is described by repulsive dynamics; apart from biological systems,
vibrated grains[30, 55] and active colloidal particles[56] interact with others
through excluded volume. Pure attraction, on the other hand, is not found
in the real systems, although a purely attractive SPP model is studied by
Strömbom[57].

Repulsive SPP Models are studied in previous literatures[58, 59, 60, 61],
although they focus on the collective motion under particular conditions; there-
fore a systematic understanding on the behavior of the system has been lacking.
The work by Hanke et al.[62] was the first example to scrutinize the collec-
tive behavior of a repulsive SPP model, but this model has a certain limit
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in explaining the collective motion seen in real systems, as explained in the
next Chapter. In order to overcome these points, we construct a simple and
general repulsive SPP model which aims to bridge or expand some of the pre-
vious approaches. By performing an extensive investigation on the dynamic
properties the model displays, we try to set a much broader perspective on the
universality behind the flocking systems.

1.4 Outline

This thesis is organized as follows.
Chapter 2 introduces the two-dimensional repulsive SPP model. By imple-

menting particle dynamics simulations, we numerically explore the behaviors
of the multi-partice systems. The transition from disordered state to ordered
state is studied by investigating the properties of the order parameter dynamics
and density fluctuations.

Chapter 3 discusses the microscopic origins of the ordering behavior. The
Boltzmann formalism is introduced to derive the mesoscopic description of
the dynamics. We demonstrate that binary collision and scattering process is
responsible for the emergence of the coordinated motion. We verify the validity
of the theory for a dilute limit and for finite densities.

Chapter 4 turns to the collective motion of repulsive SPPs in the geome-
tries different from the system with periodic boundary conditions. Three ge-
ometries are particularly considered: the “pipe” geometry, where system is
bounded in one direction while periodic in the other, and the “box” and the
“disk” geometries, where the system is enclosed by reflecting walls. Particular
attention is paid for the lane formation phenomenon in a pipe. We study how
the spontaneously formed lane structure is affected by the finite memory of
pedestrians.

Chapter 5 reports the main conclusions and discussion for future works.





Chapter 2

Repulsive self-propelled
particles

2.1 Introduction

Following the seminal works by Vicsek et al.[20] and Toner and Tu[24, 25],
the interest of physicists in collective motion of self-propelled particle (SPP)
systems has been growing in past two decades. A well established approach in
the field is the Vicsek-type SPP model[20, 21, 22], as introduced in Chapter
1. It assumes the particles drive themselves with a constant speed while ad-
justing their direction of motion parallel to their neighbors’ velocities. It has
been shown that the non-equilibrium character of the systems leads to devel-
opment of long-range order and giant density fluctuations, which are unusual
in equilibrium systems[24, 25, 26, 27].

Experiments using vibrated grains and driven colloids[30, 31, 55, 63, 56, 64]
suggest that the similar properties can also be found in non-living systems.
However, the Vicsek model is not likely to illustrate the microscopic nature of
these systems, where particles do not “compute” the average of their neigh-
bors’ velocities. It is rather natural to assume that the elements interact with
repulsion through excluded volume.

Previously, Hanke et al.[62] proposed a model of soft, repulsive active par-
ticles, explored its collective behavior over parameters, and found that a po-
larized state emerges at a certain parameter region. However, their model has
some inconsistencies at the microscopic level when compared to actual granu-
lar or colloidal matter. First, the particles are not always as soft and strongly
overdamped as the model requires them to be in order to achieve the collective
motion. Second, the origin of the noise is unclear, since thermal fluctuation is
not relevant in the length scale we deal with.

21
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In this Chapter, we first construct a simple repulsive self-propelled particle
model. The periodic boundary conditions are employed to investigate the bulk
properties.

2.2 Model

2.2.1 Principles

First, let us discuss about what are the key elements to construct the self-
propelled particle model.

• Order of dynamics. By definition, the SPPs must present self-propulsion,
which can be treated in many different ways depending on the model.
It can be incorporated as a self-propelling velocity in a continuous-time
first-order differential equation, i.e., ṙ = Fs + . . . , or in a discrete-time
first-order difference equation, r(t+1) = r(t)+Fs+ . . . . From the view-
point where the connection with the conventional Newtonian dynamics is
emphasized, the self-propulsion is described as a force in a second-order
differential equation, v̇ = r̈ = Fs + . . . . The first-order dynamics, some-
times referred to as “Aristotelian,” can be regarded as an overdamped
limit of the second-order Newtonian dynamics, where the self-propulsion
and the dissipation are almost always balanced and the inertia can be
neglected. Obviously the Vicsek model is an example of Aristotelian dy-
namics, while the boid model and the social force model are normally
implemented to posses the Newtonian character.

• Polarity. Another classification can be made by whether the self-propulsion
Fs is defined by an internal degree of freedom or is exerted in a random
manner. Usually, the biological agents have an preferred orientation of
motion and drive themselves into that direction: we call it “polarity”,
following the terminology of cell biology. A simple implementation is
to assume that the polarity is defined in the direction of motion, as in
the Vicsek model. At the other extreme, the polarity can be a vector
always pointing at a fixed spatial point in the system, or always pointing
to the same direction (fixed vector); the assumption of the social force
model that every pedestrian has a desired direction into their own desti-
nation makes the model fall into this class. A natural generalization that
bridges these two extremes is to assume that the polarity does not neces-
sary agree with the velocity nor is it fixed to a pre-defined direction, but
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evolves with an “in-between” dynamics, where it has a tendency to align
with the velocity while keeping a finite memory of its past headings.

• Dry or wet? One of the characteristics of the Vicsek model is that it
assumes no momentum conservation for the inter-particle interaction.
However, by considering that the particles are suspended in a fluid me-
dia, one can suppose that total momentum of the SPPs and the solvent
is conserved. In this case the hydrodynamic interactions must be taken
into account in the dynamics of model. These two classes—dynamics
with and without momentum conservation—are referred to as “dry” and
“wet”, respectively[65]. In our study, we restrict ourselves to a dry model,
where hydrodynamic flows can be neglected compared to the character-
istic length scale of the system.

• Repulsion. The repulsive interaction between particles can be in various
forms, depending on the model. For example, an implementation of the
boid model assumes that the sum of repulsive forces from other particles
located within a range is normalized when acting on the particle[18]. The
social force model adopts the exponentially decaying potential, which
is asymmetric towards the desired direction and possibly has elliptical
shape elongated in the direction of motion[35]. In both cases, Newton’s
third law is violated. If one is interested more in physical interactions
than in social ones, the excluded volume will play an important role,
as in Refs.[59, 60, 62]. Although a hard-core potential is the simplest
(requires no parameter) form to model the excluded volume effect, it
is not algorithmically compatible with nonlinear equations of motion.
Therefore, we employ a soft-core potential with relatively large stiffness.

• Stochastic or deterministic? Almost all the mathematical SPP models
incorporate some kind of noise in the dynamics. In many cases, the
noise level plays the role of the temperature in equilibrium systems and
becomes the control parameter to induce a phase transition. Still, the
origin of the noise in SPP systems is unclear. In traditional equilib-
rium systems, the noise stems from thermal fluctuations. In most SPP
systems, however, thermal fluctuations are hardly significant compared
to the characteristic length scale of the system. Hydrodynamic origin
is another candidate, but its effect is negligible in low fields. The most
probable hypothesis is that intrinsic errors and uncertainties of biological
agents during their perception and decision making process lead to the
stochastic behavior. Plausible as it may seem, the problem is that we
know little about the nature of the noise: whether it follows an uniform
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distribution or Gaussian, whether it is additive or multiplicative, scalar
or vectorial as has been discussed for the Vicsek model, if it is correlated
in time and space or not, etc. These differences can drastically change
the behavior of the system. For example, assuming time-correlated noise
leads to the formation of vortex observed in microtubule assay[66]. Since
our primary motivation is not on exploring the effect of noise, we would
rather employ deterministic dynamics.

2.2.2 Formulation

We consider N disk particles of equal radius a in a two-dimensional continuous
surface. The dynamics is governed by the following deterministic equations:

dvi

dt
= αê(ψi)− βvi +

∑

j

fij, (2.1)

dψi

dt
= γ(θi − ψi). (2.2)

Eq. (2.1) describes the Newtonian equation of motion with velocity vi =
dri/dt. The first term of the right-hand side is the self-propelling force of
fixed magnitude α along the direction of the polarity, an internal degree of
freedom defined by an unit vector ê(ψi) ≡ cosψix̂+ sinψiŷ. The second term
is dissipation proportional to vi, whose strength is determined by β. This
term represents the friction from the environment, so β should be determined
based upon the viscosity of the surrounding media. The stationary speed of
the particle is given by α/β.

The interaction force is given by binary, short-ranged repulsion: Here we
assume Hookean contact with stiffness k,

fij =

⎧
⎨

⎩
−k (2a− |rij|)

rij
|rij|

(|rij| < 2a)

0 (otherwise),
(2.3)

where rij = ri − rj.

Eq. (2.2) describes the time evolution of the polarity ψi. When ψi deviates
from the direction θi of the velocity, it is rotated by a torque proportional to
the deviation θi−ψi with a coefficient γ. Thus the equations include damping
term for both translational and rotational degrees of freedom. The former is
underdamped, while the latter is overdamped.
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Note that each parameter gives a different characteristic time: τα = 2aβα−1

is the time scale that a particle at the stationary speed takes to run its own
diameter; τβ = β−1 is the relaxation time of speed; τk = k−1/2 is the charac-
teristic time during which two colliding particles are in contact; and τγ = γ−1

is the relaxation time of polarity. Without loss of generality, we set unit of
length and time as 2a = 1 and β−1 = 1, and obtain rescaled equations.

2.3 Implementation methods and parameter

choices

We perform particle dynamics simulations of a system consist of N particles
in a square box of size L × L with periodic boundaries. Initial position and
polarity of each particle are randomly assigned from uniform distributions.
The random choice of the spacial configuration can result in large overlaps
between particles. In order to avoid this unphysical situation, the position
of the particles are adjusted, prior to each run, in such a way that dynamics
assuming only the repulsive interaction potential reduces the overlaps. In this
short time interval (usually t ≃ 10), the self-propelling forces are switched off,
i.e., α = 0.

Unless otherwise specified, we discuss the results for α = 1 and k = 100.
The maximum overlap ξ between particles is given by the balance between
the self-propulsion α and the repulsion kξ, in the case that we can ignore
interaction with other particles. Under the present choice of parameter values,
overlaps are less than 1% of the diameter, so the elasticity is large enough to
avoid unphysical situations where particles in contact pass through each other.

A fourth-order Runge-Kutta method is employed for the numerical inte-
gration. The time step size is chosen to be sufficiently small (20 times smaller)
compared to both τk and τγ, either of which defines the shortest time scale of
the dynamics in the system.

One of the difficulties in the implementation of the molecular dynamics
method is that a naive calculation of the interaction forces is computationally
expensive. The force needs to be calculated for every particle pair, but the
total number of pair grows as O(N2). For short-ranged interaction, a simple
solution to this problem is to divide the system into small cells with a mesh size
equal to (or larger than) the interaction radius, so that we only need to consider
interactions between particles that belong to the same cell and adjacent cells
(eight neighboring cells in 2D). This method accelerates the calculation up to
the order of O(N) for a fixed density, making large scale simulations possible.
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2.4 Results

2.4.1 Ordering behavior

As shown in Fig. 2.1, the system exhibits polar ordering and large density
fluctuation, the two characteristics also seen in the Vicsek model. The polar
order is characterized by the average normalized velocity,

M =
1

N

N∑

i=1

ê(θi). (2.4)

If the system is in random state M = |M| ≃ 0, while M = 1 for a perfectly
ordered state. In order to quantify the density fluctuation, we divide the
system into Nc small cells of size 2× 2 and take the standard deviation of the
local packing fraction,

∆φ =

√√√√ 1

Nc

Nc∑

j=1

(φj)
2 −

(
1

Nc

Nc∑

j=1

φj

)2

, (2.5)

where φj denotes the local packing fraction in the cell j.
Fig. 2.1 shows a typical ordering behavior. Initially, the system is random-

ized in position and in polarity, so both M and ∆φ have small values. When
the ordering starts, relatively dense and locally ordered regions appear and
grow to form several clusters. The clusters eventually merge with each other
until all the particles move into an identical direction. The time series of M
and that of ∆φ display a simultaneous increase. Fig. 2.2 – Fig. 2.5 shows the
development of order parameter M and of density fluctuation (the variance
∆N2 of the number of particles contained in subcells of different sizes). In
ordered state, ∆N2 scales as ⟨N⟩δ with δ ≃ 1.9, showing that the repulsive
SPP model also exhibits giant number fluctuations. Exceptions can be found
for the cases that γ ≪ 1, where δ is significantly small.

2.4.2 Phase transition

We explore the behavior of the model by implementing a set of simulations with
different packing fractions Φ = Na2π/L2 and rotational damping parameter
γ. We find that the globally aligned state emerges in the regime where system
is dense and rotational damping is weak, while the disordered, isotropic state
persists if we set the packing fraction small and the damping parameter large.
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Figure 2.1: Ordering process observed in a representative run for Φ = 0.2, γ =
15.2, a parameter set which is close to the phase boundary. (a–d) Snapshots of
the system at different times. At each times, the whole system (L = 198.2) is
on the left; enlarged image of boxed area of size 15×15 on the right. The arrows
and the colors denote the direction of each particle’s velocity. (a) t = 3600;
the system is in isotropic, disordered state. (b) t = 3980; dense areas appear
and local polar order grows within them. (c) t = 4120; several locally ordered
clusters are formed. (d) t = 4800; the clusters eventually merge with each
other until the whole system moves coherently. (e) Time development of the
global polarization M(t) and fluctuation in local volume fraction ∆φ(t) from
t = 3100 to t = 5300. Arrows correspond to the times in the top figure.
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Figure 2.2: Instantaneous snapshots, development of order parameter and in-
stantaneous density fluctuations in a representative run for Φ = 0.2, γ = 0.01.
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Figure 2.3: Instantaneous snapshots, development of order parameter and in-
stantaneous density fluctuations in a representative run for Φ = 0.2, γ = 1.
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Figure 2.4: Instantaneous snapshots, development of order parameter and in-
stantaneous density fluctuations in a representative run for Φ = 0.2, γ = 14.5.
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Figure 2.5: Instantaneous snapshots, development of order parameter and in-
stantaneous density fluctuations in a representative run for Φ = 0.2, γ = 20.
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Figure 2.6: Representative time series of the global polarization M(t) for var-
ious values of γ. As γ is increased, the order growth becomes faster for the
regime of γ < 1; the waiting time until ordering becomes larger for γ > 1,
especially near the transition point, and finally the system does not exhibit
ordering behavior within the simulation time. The parameters are N = 10000
and Φ = 0.2.

For γ = 0, where polarities are never rotated from initial randomized condition,
the system maintains a trivial disordered state; however, a small but finite
value of γ leads to a slow ordering. Representative time developments of the
global polarization are shown in Fig. 2.6.

We construct the phase diagram by performing a set of runs (typically 8
to 16) with different initial configurations for a certain simulation time T . If
polar order, namely M > 0.8, is established for one run or more, then the
parameter set is classified as a part of ordered region; otherwise, it is in the
disordered phase. We choose N = 10000 and T = 5000 (Fig. 2.7).

In the ordered region near the phase boundary, the system maintains the
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Figure 2.7: Phase diagram as a function of packing fraction Φ and damping
parameter γ. Orange circles indicate parameter sets where ordered final state
is observed at least for one run; blue squares are where the system remained
disordered throughout the simulation time in all the realizations. Orange and
blue dashed lines connect the uppermost points in ordered region and the low-
ermost points in disordered region, respectively, confirmed by a finer parameter
search. Red crosses with solid line denote the zero-crossing points from the
binary scattering analysis.

disordered state (small M) until it suddenly transits to the ordered state (M =
1). The lifetime tw of the disordered state, which we refer to as the waiting
time, varies depending on the initial configuration. As we increase γ, tw tends
to be longer and, eventually, ordering behavior does not take place within the
simulation time for any realizations.

We look into the distribution that tw follows for each parameter set (N,Φ, γ).
In Fig. 2.8, the second central moment µ2 = ⟨(tw − ⟨tw⟩)2⟩ and third cen-
tral moment µ3 = ⟨(tw − ⟨tw⟩)3⟩ are plotted against the average ⟨tw⟩. In the
large waiting time regime, namely where ⟨tw⟩ > 5000, two moments satisfy
µ2 = ⟨tw⟩2 and µ3 = 2⟨tw⟩3, which is expected for exponential distributions.
The fact that the waiting time follows an exponential distribution implies that
ordering events occur as Poisson processes involving nucleation phenomena.

Next we discuss how the phase diagram would be changed if we choose other
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Figure 2.8: Average waiting time ⟨tw⟩ versus the variance (left) and ⟨tw⟩ versus
the third central moment (right). The straight lines represent the expected
relations between the moments for exponential distributions.

system sizes and time scales. Finite-size effects are investigated by changing
the number of particles N while keeping the volume fraction Φ fixed. In
small systems, ⟨tw⟩ strongly depends on N ; in larger systems, however, the
increase becomes insignificant (Fig. 2.9, inset). We confirm that N = 3, 000 is
sufficiently large to avoid the finite-size effects for the time scale that we deal
with.

⟨tw⟩ displays a rapid increase as a function of γ (Fig. 2.9). It is difficult to
identify the function that fits the growth, but a phenomenological double-well
potential picture, which will be described in the next subsection, implies that
the ordering behavior can occur in any parameter region if we wait long enough.
If this is the case, the phase classification inevitably depends on the observation
time. Fortunately, the rapid increase, which seems to be exponential or faster,
also ensures that the results with an moderately long simulation time provide a
good approximation of the results with longer time scales. In other words, the
phase diagram would be changed only slightly even if an order of magnitude
longer observation time is employed.
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Figure 2.9: ⟨tw⟩ for system of volume fraction Φ = 0.2. The error bars represent
the standard error. Main figure: Increase as a function of rotational damping
parameter γ. The number of particles N = 3000. The onset of rapid increase
is prominent around γ ∼ 14.5. Inset: System size dependence for different
values of γ.

2.5 Phenomenological theory on dynamics of

order parameter

In this section, we show that the dynamics of the order parameter is described
as a motion in a double-well potential. This phenomenological picture is con-
sistent with the Poissonian character of the ordering process. It also provides
a possible explanation for the divergence of the waiting time: In the ordered
regime far from the boundary, the system quickly evolves from an unstable dis-
ordered state to an ordered state; near the boundary, however, the disordered
state becomes metastable and a nucleation process is necessary to escape from
it.

When the system is in the disordered state, the global polarization vector
M fluctuates around 0. The microscopic origin of the fluctuation is change in
polarity of the particles caused by collisions to their neighbors. We expect that
the collision events are uncorrelated to each other, and the time development
of M can be treated as Brownian motion in the potential. Assuming that
the potential is harmonic around M = 0, we expect that M(t) constitutes a
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Figure 2.10: Schematic illustration of phenomenological potential landscape
in the global polarization space. The disordered state is metastable; the pa-
rameter fluctuates in the potential with the amplitude σ. Stochastic crossing
of the potential barrier drives the system into the absorbing ordered state.

two-dimensional Ornstein-Uhlenbeck process[67]. The stationary distribution
of the radial component M(t) should be given by a Rayleigh distribution,

f(M) =
M

σ2
M

exp

(
− M2

2σ2
M

)
, (2.6)

where the scale parameter σM is the characteristic amplitude of the fluctua-
tion. In fact, the observed distribution can be fitted reasonably by a Rayleigh
distribution (Fig. 2.11(a)), providing an estimate of σM as

σ2
M =

1

2t

∫ t

0

(M(t′))2 dt′. (2.7)

Aside from the fluctuation amplitude, the escape rate is determined by the
“position” of the barrier in order parameter space, which can be estimated
by preparing a system in which a fraction of particles are given an identical
polarity so that initial polarization M(0) has a finite value. The initial posi-
tions are uniformly distributed both for aligned and unaligned particles. The
double-well potential picture suggests that the time development of the system
depends on which side of the barrier the initial state is situated: Systems with
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M(0) smaller than a certain value relax to the disordered state and those with
M(0) larger than the same threshold goes to the ordered state. The threshold
M∗ indicates the position of the barrier (Fig. 2.11(b)).

Decreasing γ in the disorder region towards the transition point, the thresh-
old M∗ decreases (Fig. 2.11(c)) and the fluctuation amplitude σM increases
(Fig. 2.11(d)). These results imply that the escape rate increases and the
average time until spontaneous polarization occurs will be shorter.

Due to the absence of noise, a fully-ordered system does not evolve back
to a disordered state; the ordered state is an absorbing state. We also study
the stability of the ordered state numerically. The initial polarities are set to
be aligned except for a small fraction (5 to 20% of all particles) with random
directions. The initial positions are, again, uniformly distributed both for
aligned and unaligned particles. In all the realizations, the system quickly
relaxes to a fully ordered state, even if we choose a parameter set deep in
the disordered phase, such as Φ = 0.2, γ = 50. This result suggests that the
ordered state is stable against perturbation.

2.6 Summary

In this Chapter, we constructed a repulsive self-propelled particle model by
following several principles. We emphasize that this model is consistent with
some other models presented in previous studies.

• Soft particle models for epithelial cell migration developed in Refs. [58,
60] has a first order equation of motion instead of Eq. (2.1), namely
ṙi = v0ê(ψi) +

∑
j fij, where v0 is a constant speed. This model is

equivalent to ours when we take the overdamped limit, β → ∞ with
α/β = const.

• The model mentioned in Ref. [68] and explored in Ref. [62] does not
have the polarity degree of freedom and employs the following equation
of motion: v̇i = v0v̂i−vi+

∑
j fij, which means self-propulsion is always

directed towards the direction of motion. This model corresponds to
another limit in our model, γ → ∞.

• The social force model[36] is given by the following dynamics: v̇i =
v0d̂i − vi +

∑
j fij, where d̂i denotes the individual’s desired direction.

This equation of motion is analogous to γ = 0 case in our model, where
the polarity of particles are never changed, although the particular form
of short-range repulsive interaction differs.
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Hence, our model can be regarded as a generalization that bridges the above
three models. While these previous models incorporate noise as a control pa-
rameter, we show that the phase transition is realized even in the absence of
noise. Close to the critical point, the dynamics of the system is characterized
by a long waiting time followed by a rapid transition from the disordered state
to the ordered state. By focusing on the waiting time distribution, we find the
Poissonian character of the ordering process. A phenomenological picture of
double-well potential that aims to explain the stochastic state transition con-
forms to the results from many-particle simulations. Moreover, the change in
the shape of the potential landscape alters the metastability of the disordered
state, inducing a phase transition.



2.6. SUMMARY 39

 0

 10

 20

 30

 40

 0  0.02  0.04  0.06

σM (a)

PD
F

M

 0

 0.2

 0.4

 0.6

 0.8

 0  200  400  600  800

M*

(b)

M

t

 0.15

 0.2

 0.25

 0.3

 0.35

 0.2

 0.3
(c)

M
*

 0.015

 0.02
(d)

σ
M

 10

 15

 20

 25

15.5 16 16.5 17

(e)

M
*  / 
σ
M

γ

Figure 2.11: All the figures represent the data for N = 10000,Φ = 0.2. (a)
Normalized distribution of M in a disordered state, obtained from four in-
dependent runs with γ = 15.8 and T = 5000, fitted by probability density
function of a Rayleigh distribution with scale parameter σM (red solid curve).
(b) Time series of M in initially asymmetric runs with γ = 15.8. Colors cor-
respond to the initial values M(0) as indicated by the color bar. Polar order
quickly emerges with M(0) > M∗. (c)(d) γ dependence of M∗, which de-
creases as γ approaches γc ≃ 15.6 from above, and of σM , which increases,
respectively. (e) The ratio between the two values decreases, suggesting that
the fluctuation of M is more likely to lead to an escape from the metastable,
disordered state by crossing the potential barrier.





Chapter 3

Kinetic approach

3.1 Introduction

Efforts to derive a continuum theory of active matter has been initiated by
Toner and Tu[24, 25], who formulated a hydrodynamic expression of macro-
scopic fields based on the symmetry and conservation considerations. Their
theory provides an effective description for the Vicsek model, that the nonzero
speed of the particles enhances the domain of alignment of interaction with
other particles and thus account for the emergence and stabilization of the
long-range order. They also predicted that long wavelength instability and
giant number fluctuations arise from the broken rotational symmetry, which
is later confirmed by numerical simulations[22].

Despite its ability to address the general features of the active matter,
Toner-Tu theory is not able to calculate the transport coefficients from the
microscopic parameters. It also misses clustering and segregation observed in
the simulations of Vicsek model, mainly because the treatment of noise term is
elusive. To overcome these shortcomings, one has to resort to a coarse-graining
method. Such approach was developed by Bertin et al.[69, 70], who constructed
a kinetic theory starting from the Boltzmann equation. Later, the expansions
of this approach up to higher order has been made using the Boltzmann-
Ginzburg-Landau framework[71, 72, 73] and the Enskog-type approach[74].
Here, I will briefly depict the outline of this Boltzmann formalism.

The main idea is to obtain a mesoscopic description of the evolution of the
system by one-particle distribution f(ζ) in the phase space, where ζ denotes the
set of relevant variables, from the microscopic dynamics. The hydrodynamic
equations should be derived by integrating this mesoscopic equation. Let us
consider a dilute limit where only binary interactions take place. The Vicsek
model assumes an equal constant speed for all the particles, so ζ = (r, θ, t),

41
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where θ is the heading direction of the velocity. The speed is a time-dependent
variable for the repulsive SPP model, but as we deal with a dilute system,
it quickly relaxes to the stationary one compared to the time scale where a
particle runs the mean free path. In other words, particles are always fully
relaxed before every collision in terms of the velocity and the polarity. Hence,
we can think that ζ = (r, θ, t) in this case too.

The Boltzmann equation is written as

∂f(r, θ, t)

∂t
+ vê(θ) ·∇f(r, θ, t) = Idif [f ] + Icol[f

(2)]. (3.1)

The second term of the left hand side stems from the streaming equation, that
is, Eq. (1.5) for the Vicsek model and Eq. (2.1) in the repulsive SPP model,
with stationary speed v and unit vector ê(θ) in the direction of motion. Idif
accounts for self-diffusion caused by angular fluctuation; this term does not
exist in the repulsive SPP model due to the deterministic character. Finally,
Icol describes the contribution of binary collisions. It generally depends on
the two-particle distribution f (2)(r, θi, θj, t). Here, we employ the “molecular
chaos” assumption, which approximates the two-particle distribution as the
product of one-particle distributions,

f (2)(r, θi, θj, t) ≃ f(r, θi, t)f(r, θj, t). (3.2)

This assumption signifies that the collisions are not correlated to each other.

The collision integral Icol is given by the sum of a loss term (−) and a gain
term (+),

I−col = −f(r, θ, t)

∫ π

−π

dθ′ Γ(θ′, θ)f(r, θ′, t), (3.3)

I+col =

∫ π

−π

dθ1

∫ π

−π

dθ2 Γ(θ1, θ2)f(r, θ1, t)f(r, θ2, t)

×
∫ ∞

−∞
dη P (η) δ2mπ(Ψ(θ1|θ2) + η − θ), (3.4)

where δmπ is a generalized Dirac delta function imposing that the argument
is equal to zero modulo mπ, or explicitly defined as δ2mπ(θ) =

∑∞
m=−∞ δ(θ +

2mπ).

The collision kernel Γ(θ1, θ2) is the so-called differential scattering cross
section, collision rate for particles moving in θ1 and θ2. Both for the Vicsek
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model and the repulsive SPP model, it is given as

Γ(θi, θj) = 2va |ê(θi)− ê(θj)| = 4va

∣∣∣∣sin
θij
2

∣∣∣∣ , (3.5)

where a is the interaction range and θij is the relative angle between θi and θj.
η denotes the angular noise drawn from the distribution P (η); again, we can
set η = 0 and ignore the integral with respect to η for the deterministic case.

Given that particle i and j collide with pre-collisional directions θi and
θj, respectively, the functionΨ(θi|θj) returns the post-collisional direction of
particle i. For the Vicsek model, it has a simple form,

Ψ(θi|θj) =
1

2
(θi + θj). (3.6)

However, for the repulsive SPP case, more calculation is necessary to obtain
Ψ(θi|θj), as we will see in the next sections.

Once we have the Boltzmann equation, we can obtain hydrodynamic equa-
tions by Fourier expansion of one-particle density f with respect to the angular
variable θ and calculate all transport coefficients; I will not go into detail here,
but interested readers can look for the procedure in references[69, 70, 72, 61,
73].

The uniform distribution is the trivial solution of the Boltzmann equation.
One can test the stability of the isotropic state against the fluctuaions: to
this end, Lam et al.[75] proposed the von Mises distribution ansatz, which
links the global order parameter and the one-particle angular distribution.
By linearizing the distribution, they explained the nature of the instability of
isotropic state.

In this chapter, we give a much more simple understanding on the mech-
anism that underlies the ordering behavior shown in the previous section by
focusing on the binary particle collision process. We numerically derive Ψ,
or the input-output mapping of collision. We try to expand the method for
application in the finite density regime.

3.2 Binary scattering analysis in dilute limit

In this section, we assume that the system is dilute (Φ → 0) so that the
collisions are uncorrelated with each other, and that both the velocity and the
polarity are fully relaxed before every collision.

Let us consider a binary scattering process between particle i and j (Fig. 3.1).
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(a)

bvi

vj

vi - vj

(b)

bvi

vj

vi - vj

Figure 3.1: Illustration of binary scattering. (a) In dilute limit, the ve-
locity of the two particles are fully relaxed (vi = vj = α) before colli-
sion. The geometry of binary collision is fully specified by the relative angle
θij = arccos (vi · vj/vivj) of the velocities and impact parameter b. (b) For fi-
nite densities, the velocities may not be at the stationary speed at the moment
of contact. Here, the relative velocity vi − vj and the impact parameter b are
equal to those in (a), but the velocities are set to be vi = 1.1α, vj = 0.8α. The
consequent trajectory differs from the dilute case.

Since we assume the rotational invariance, the geometry of the moment of con-
tact is fully specified by two scalar parameters: the impact parameter

b =
√

r2ij − rij · (vi − vj)/vij ∈ [0, a), (3.7)

where vij = |vi − vj|, and the relative angle

θij = |θi − θj| ∈ (0, π]. (3.8)

The impact parameter shows the perpendicular offset of the two bodies’ center
of mass from head on collision. If b = 0 the collision is head on whereas it is
a miss if b > a.

Instantaneous alignment of the two particles is characterized by two-particle
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polarization,

M (2) =
1

2
|ê(θi) + ê(θj)| , (3.9)

which corresponds to Eq. (2.4) with N = 2. We measure the post-collisional
two-particle polarization M (2)

out at the point where the polarities and the veloc-
ities are fully relaxed, and compare it to the pre-collisional polarization M (2)

in .

The increment ∆M (2) = M (2)
out−M (2)

in indicates the magnitude of parallel align-
ment caused by the scattering process.

Assuming the system is homogenous and isotropic, two particles should
collide in the relative angle of θij with a probability proportional to the relative
velocity vij; the impact parameter b should be uniformly distributed. The
average tendency of binary alignment, as a function of γ, is then obtained by
taking an integral weighted by the “scattering cross section,”

⟨∆M (2)⟩ = 1

C

∫ π

0

∫ 2a

0

∣∣∣∣sin
(
θij
2

)∣∣∣∣ ∆M (2)(θij, b) db dθij, (3.10)

where C is a normalization constant.

Fig. 3.2 shows ∆M (2) as a function of the magnitude of relative velocity
vij =

√
2− 2 cos θij and the impact parameter b.

The result shown in Fig. 3.3 indicates that the alignment tendency has
a maximum at γ ∼ 1. For γ → 0, which corresponds to the regime where
angular relaxation is slow, ⟨∆M (2)⟩ goes to zero. For large γ, namely γ → ∞,
⟨∆M (2)⟩ has a negative value.

Qualitative explanation is as follows. If the rotational damping is weak,
the polarity of two particles remain unchanged, so the directions of motion
will eventually restored to the original direction. In contrast, if the damping is
strong, the polarity rotates itself quickly to follow the change in the direction
of motion. It is with an intermediate value of the damping strength that the
motion of two bodies align parallel, due to the competing effect of repulsive
collision and subsequent rotational damping.

This argument is consistent with the results obtained from the many-
particle simulations: First, the ordering in many-body system is the fastest
in the parameter region that maximizes the value of ⟨∆M (2)⟩; second, the
transition point in a dilute system is in agreement with the zero-crossing point
(Fig. 2.7). These agreements imply that the onset of the collective motion
arises from iteration of binary scattering, although one will have to take into
account many-body correlation for the late stage of the ordering process, where
the isotropic and uncorrelated conditions no longer hold.
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Figure 3.2: Binary alignment ∆M (2) as a function of the magnitude of relative
velocity vij =

√
2− 2 cos θij and the impact parameter b.

3.3 Expansion for finite densities

The analysis in the previous section is only valid for dilute limit, where the ve-
locity and the polarity of the particles are fully relaxed before every collisional
event. At finite densities, however, the relaxation may not complete between
collisions (Fig. 3.1).

For the parameter values we choose (α = 1 and k = 100), γ ≫ β = 1 in the
disordered phase, meaning that relaxation of polarity is much faster than that
of velocity. We check this by measuring the speed vi = |vi| and the deviation
θi − ψi between direction of velocity and polarity of all the particles directly
from the many-particle simulation. Fig. 3.4 shows that the distribution of vi is
considerably broad compared to the polarity distribution, which has a narrow
peak at the point where θi = ψi. We will therefore take into account the speed
distribution while safely neglecting the angular deviation in the following.

We apply a similar binary scattering study as in the previous section, except
that M (2)

out is not defined at the point where the relaxation is complete, but at
the point where the particle reaches the distance of the mean free path (mfp)
away from the binary contact.

To calculate the mfp, we assume that every particle moves at speed v. The
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Figure 3.3: Average binary alignment ⟨∆M (2)⟩ as a function of angular damp-
ing parameter γ. The tendency of alignment reaches its maximum at γ ∼ 1 and
decreases to take negative values for larger γ. Inset: zoom of the zero-crossing
point.

magnitude of relative velocity between two particles is

vr = 2v sin

(
θij
2

)
. (3.11)

If collisions are uncorrelated to each other, the mean relative velocity is

⟨vr⟩ =
1

π

∫ π

0

2v sin

(
θij
2

)
dθij =

4v

π
. (3.12)

Since the scattering cross section s = 4a and the number density n = Φ/a2π,
the mfp is given as

λ =
v

sn⟨vr⟩
=

aπ2

16Φ
. (3.13)

Suppose particles i and j of speed vi and vj come into contact and are
scattered. We assume that the speed of the particles independently obeys an
identical distribution f(v). The speeds evolve to v′i and v′j when the parti-
cles travels the distance of mfp after the collision. The post-collision speed
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Figure 3.4: Instantaneous distribution of speed (top) and of angular deviation
between velocity and polarity (bottom) in a run with parameter values in the
disordered phase (Φ = 0.2, γ = 18, t = 5000). The speed is distributed broadly,
while the angle distribution has a much narrower peak at 0, suggesting most
of the particles are relaxed in terms of rotational degree of freedom.

distribution can be written as

f(v′) = Ŝf(v), (3.14)

where Ŝ denotes the scattering operator.
If the system is in the disordered phase, then the distribution is stationary,

so the following self-consistent condition should be satisfied:

Ŝfs(v) = fs(v), (3.15)

where fs(v) is the stationary distribution. According to the Perron-Frobenius
theorem[76], fs(v) is the eigenfunction of operator Ŝ which corresponds to the
eigenvalue one.

Ŝ is numerically derived by mapping pre-collision speeds (vi, vj) onto post-
collision speeds (v′i, v

′
j). We divide the v-space into bins and simulate a binary

scattering process for the representative value for each bin to obtain the matrix
Ŝ . Applying the power iteration method, we yield fs(v) as the eigenvector of
Ŝ .
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Once fs(v) is known, the averaged increment in the two particle polarization
is calculated as

⟨∆M (2)⟩ = 1

C

∫ ∞

0

dv

∫ vi+vj

vi−vj

dvij

∫ a

−a

db
fs(v)

vij
∆M (2)(vi, vj, vij, b), (3.16)

where v12 = |v1 − v2| and C is a normalization constant.
Again, by numerically calculating the point where ⟨∆M (2)⟩ crosses zero,

we obtain the estimated phase boundary. However, the estimation deviates
from the results of many-body simulations, as shown in Fig. 2.7. The binary
scattering approach is based on three assumptions: (i) the collisions are un-
correlated to each other; (ii) the motion of the particles is isotropic; (iii) the
system is homogeneous, i.e., the density does not fluctuate. We suppose that
these assumptions basically contribute to suppress the emergence of ordering
behavior and that the deviation with the results from many-body simulations
stems from the failure of one or more of the assumptions. A more detailed
analysis of this point, particularly a closer look into the local quantities, is left
for future work.

3.4 Summary

The kinetic approach to the dynamics of repulsive SPP uncovered that the
physics that induces the emergence of the collective motion is the iteration
of binary collision and the rotational relaxation afterwards. This argument is
supported by the fact that the binary scattering analysis predicts the transition
point from the many-particle simulation in the dilute limit. For finite densi-
ties, however, the approach deviates from the actual boundary because the
disordered state is unstable against the many-particle correlations, anisotropy
of the collisions, and the density fluctuation in the system.





Chapter 4

Effects of geometry and
boundaries

4.1 Introduction

In the last two Chapters, we explored the characteristics of systems under
the periodic boundary conditions. Periodic boundaries gain a long-standing
popularity in the history of computational statistical physics, especially in
the context of molecular dynamics simulation, because it is useful for approx-
imating the bulk properties of many equilibrium systems. However, it has
some limitations: an artificial order may be imposed because of the periodic-
ity that can lead to abnormal results for structural and dynamical properties
obtained from the simulation. In equilibrium systems, finite size analysis is a
convenient way to infer the asymptotic behavior in the thermodynamic limit.
However, the method may neither be justifiable nor come in handy when ap-
plied to systems strongly out of equilibrium. Therefore, the effects of geometry
and boundaries should be tested and compared with the results with periodic
boundary conditions.

Another reason we should consider various geometries and boundary con-
ditions is that it is easier to draw an analogy to the physical systems. In the
embryonic development process, the collective cell migration involves all stages
of morphogenesis of multicellular structures. Usually this kind of migration
occurs under a certain spatial confinement. For example, the epithelial surface
of spherical Drosophila egg chamber exhibits a coordinated rotational motion
within the space sandwiched between follicle cells and the extracellular matrix
(ECM) during the elongation of the organism[77]; primordial cells migrate in
a quasi-one-dimensional space surrounded by ECM in the process of the devel-
opment of the zebrafish lateral line[78]. Turning to the pedestrian dynamics,
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people’s decisions on direction of motion are often affected by the geometry
of the space defined by the surrounding walls. The geometries of particular
interest include straight corridors, curves, bottleneck structures, rooms with a
exit, and intersections. Obstacles such as pillars, trees, and shelves also have
influence on the people’s behavior.

In this Chapter, we analyze the dynamics of the self-propelled particles
in systems with three basic geometries: a “pipe” or “corridor” has periodic
boundaries in the x direction while bounded by two reflecting walls in the
y direction; a “box” or “room” is a rectangular area enclosed by walls that
surround all four sides; a “disk” is a circular surface also confined by reflecting
boundaries.

4.2 “Pipe” condition

First, we discuss the behavior of the system in the “pipe” condition. The ver-
tical boundaries, perpendicular to the x axis, is periodic, while the horizontal
ones, perpendicular to the y axis, is assumed to be elastic walls. The force act-
ing on particle i in contact with the wall W is analogous with the inter-particle
interaction:

fiW = −k (a− riW ) n̂W , (4.1)

where riW denotes the distance to the wall W , and n̂W is the unit vector in
the normal direction to it. The elastic coefficient k is same as that of the inter-
particle interaction. Incorporating this term changes the equation of motion
(Eq. 2.1) as follows:

dvi

dt
= αê(ψi)− βvi +

∑

j

fij +
∑

W

fiW . (4.2)

We carry out the numerical simulations by employing same parameters
and implementation methods as in the full-periodic case. Typical snapshots
are shown in Fig. 4.1. The most significant difference from the periodic case is
the segregation: the particles tend to aggregate along the elastic walls moving
into either of two horizontal directions. The streams can either be in the same
or in the opposite directions on the upper wall and the bottom, or it can
be only along one of two sides. The direction of motion and the number of
particles in the aggregates seem to have no dependence to the parameters.

We depict the phase diagram of the system as a function of volume fraction
Φ and rotational damping parameter γ, as in the previous Chapter. We employ
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(a) (b)

(c) (d)

Figure 4.1: Patterns under “pipe” conditions. Parameters are N = 3000, γ =
1, t = 5000 for all figures. (a) Φ = 0.1. (b) Φ = 0.3. (c) Φ = 0.5. (d) Φ = 0.7.

the same method as the periodic case for categorizing the phase, which is to
observe the time development of the system until t = 5000 and see if the
system is in the state of coherent flow or in the disordered state. In order
to quantitatively define the “coherent flow,” we employ the definition of the
order parameter following the previous studies on lane formation[79, 80]. Every
particle i is labeled as moving to positive or negative directions along x axis
depending on the sign of the projection of polarity vector, ê(ψi) · x̂. Then they
are assigned an order parameter φpipe

i , which is equal to 1 if the lateral distance
(along the y axis) |yi − yj| to all particles j moving to the opposite direction
is larger than the sum of the radius of the two particles, which in this case is
2a; otherwise, φpipe

i is chosen to be zero. The global order parameter φpipe is
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Figure 4.2: Phase diagram for N = 5000 systems with the “pipe” geometry.
The dots are shaded black to white proportional to the time average of order
parameter over 5000 time units.

defined as the fraction of “ordered” particles,

φpipe =
1

N

N∑

i=1

φpipe
i . (4.3)

The obtained phase diagram (Fig. 4.2) is similar to the one for the periodic
case (Fig 2.7).

Fig. 4.3 shows another interesting phenomenon, observed as a transient
state during some of the ordering process, where particles are dense and ordered
in one part while remain disordered in the rest of the system. This coexistence
of the “crystallized” region and the “gaseous” region is not a stationary state;
the ordered stream eventually absorbs the particles in the gaseous region and
end up in the fully ordered state where all the particles are moving into the
same direction. However, the growth of order tends to be much slower and the
stationary state than that in the periodic system, where the onset of growth
spreads quickly to the entire system. We suppose this difference arises from
the capability of propagating the particle-particle correlations. The reflecting
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Figure 4.3: Coexistence of “gaseous” state at the top and “solid” state at the
bottom. N = 3000,φ = 0.4, γ = 30, t = 4900.

boundaries along the x axis prevent the correlations to spread from one side
to another.

4.3 Confined geometries:“box” and “disk”

We now turn to the “box” condition, where all four boundaries, instead of two,
consist of the reflecting walls with the same elastic property as in the “pipe”
case. In contrast to the periodic and “pipe” cases, it is impossible that the
entire system coherently moves into a single direction because the simulation
box is enclosed and there is no inflow nor outflow of particles. The “ordered”
state in this geometry is whirling motion along the boundary, as shown in
Fig. 4.4.

The state with multiple vortices, whirling to the direction opposite to each
other, can be regarded as a transient state under the box condition (Fig. 4.5).
Once this structure is established, it persists for a considerably long time,
especially for the case γ ≃ 1. This is again due to the effect of the limited
correlations.

Although the transition towards coherent motion in the “box” geometry is
visible when we look at the snapshots, a suitable order parameter is difficult
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(a) (b)

(c) (d)

Figure 4.4: Patterns under “box” conditions. Parameters are N = 3000, γ =
1, t = 5000 for all figures. (a) Φ = 0.1. (b) Φ = 0.3. (c) Φ = 0.5. (d) Φ = 0.7.

to construct. Therefore, we perform simulations in another, more symmetric,
confined geometry. Instead of a rectangular box, particles are placed in a
simulation area enclosed by a circular reflecting wall. The packing fraction Φ
is controlled by changing the radius R of the disk-shaped field as Φ = Na2/R2.
As one can expect, the coherent circular motion is observed as an ordered state
under this geometrical condition as well.

The transition towards the circular flow is detected by the order parameter
φdisk, which is defined as

φdisk =
1

N

∣∣∣∣∣

N∑

i=1

vi · T̂ω

|vi|

∣∣∣∣∣ , (4.4)
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Figure 4.5: Transient state with two vortices. N = 3000,Φ = 0.5, γ = 10, t =
200.

where ω is the angular coordinate of the particle’s position in the polar coor-
dinate system whose pole is located at the center of the disk, and T̂ω denotes
the unit vector in the direction of increasing ω normal to the radial direction,
i.e., T̂ω = − sinωx̂+ cosωŷ.

Again, we realize a number of simulations for (Φ, γ) parameter pairs and
depict the phase diagram (Fig. 4.7). The fact that the phase boundary traces
almost the same curve as those in the periodic and “pipe” cases leads to a
conclusion that the phase transition is not affected by the boundary conditions
and that the intrinsic mechanism behind the ordering behavior is indeed the
microscopic correlations propagated by iteration of binary collisions.

4.4 Lane formation in bidirectional flow

Among the variety of self-organized behaviors that human crowds display, the
spontaneous formation of unidirectional lanes in pedestrian counterflow is cer-
tainly one of the most popular examples that we can observe in daily urban
conditions. Indeed, the phenomenon serves as one of the qualitative bench-
marks to test the plausibility of a crowd simulation. Starting from random
initial positions, binary mixture of pedestrians with two opposite desired di-
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(a) (b)

(c) (d)

Figure 4.6: Patterns under “disk” conditions. Parameters are N = 3000, γ =
1, t = 5000 for all figures. (a) Φ = 0.1. (b) Φ = 0.3. (c) Φ = 0.5. (d) Φ = 0.7.

rections spontaneously separate into lanes with coherent direction of motion.

Yet, quantitative discussion on the phenomena has been scarce in the con-
text of pedestrian dynamics by analyzing the behavior of off-lattice models.
It has been rather studied in the field of colloidal dynamics: The formula-
tion of lanes in a binary dispersion of colloidal particles, oppositely driven by
an externally applied field are studied using molecular dynamics simulations,
Brownian dynamics simulations, and experiments. Nonequilibrium phase tran-
sitions from a disorder to lane forming state as a function of field strength and
amplitude of time-dependent oscillatory field are found by Dzubiella et al.[79].
Helbing et al.[81] reported a nontrivial jamming transition as a function of noise
amplitude. By increasing the amplitude of fluctuations, which corresponds to
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Figure 4.7: Phase diagram for N = 5000 systems with the “disk” geometry.
The dots are shaded black to white proportional to the time average of order
parameter over 5000 time units.

the temperature in thermal systems, stationary flow in lanes is hindered by
the appearance of a jammed state with crystal structure. This noise-induced
frozen state is destroyed by exerting additional noise, giving rise to a disor-
dered state. Recently, oscillatory and turbulence-like behaviors are found by
assuming anisotropic frictions[82].

In this section, we will first confirm the characteristics of the lane formation
phenomena using the repulsive SPP model introduced in the previous Chap-
ters. Switching off the rotation of the polarity yields a model similar to the
social force model or oppositely driven particles with deterministic dynamics.
Next, we will discuss the effect of inducing the rotational relaxation, which
can be considered as the case where pedestrians have a finite-time memory.

We consider a simulation area with the “pipe” condition. Instead of the
random initial configuration employed throughout this dissertation, we con-
sider the case where a half of the particles have initial direction of polarity
pointed toward positive direction along x-axis, x̂, and the other half to the
opposite direction, −x̂. Positions are randomly distributed in the simulation
area, regardless of the initial polarity.

First, we test the d = 0 case, where polarities are never rotated by collisions
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(a) (b)

Figure 4.8: Spontaneous lane formation. Introduction of weak rotational
damping reduces the number of lanes. Parameters are N = 1000,Φ = 0.3.
(a) γ = 0. (b) γ = 0.004.

with other particles. This setting corresponds to the social force model, which
assumes that each agent has their own fixed desired direction, except that
the interaction is not the exponentially decaying force as usually assumed.
As shown in Fig. 4.8, the spontaneous lane formation is observed. After a
transitional period during which the particles collides with each other, the
system reaches to a stationary state where collision and scattering no longer
takes place. In this state, the binary mixture is ideally separated so that an
arbitrary pair of oppositely moving particles i and j is distanced larger than
the sum of their radius, |yi − yj| > 2a.

Next we apply a weak rotational damping to the particles, namely γ < 0.01.
The rotational damping parameter γ indicates how fast the polarity rotates
to agree the direction of motion. In other words, it expresses how fast the
particle forgets its originally designated direction. From this viewpoint, we
can suppose that the particles have the memory of its past polarity for limited
duration of τγ = γ−1 after encounters with other particles.

The results from numerical simulations with N = 1000, shown in Fig. 4.9,
suggest that the number of lanes are greatly reduced for increasing γ for small
packing fractions. The most extreme case can be seen for Φ = 0.1, where 30
lanes on average are present for γ = 0 whereas merely several lanes, in some
cases a single lane in which all the particles are pointing to the same direction,
is observed for γ = 0.008 and γ = 0.01. On the other hand, the number of
lanes are not affected by imposing rotational damping at large densities, such



4.5. SUMMARY 61

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.002  0.004  0.006  0.008  0.01

nu
m

be
r o

f l
an

es

γ

Φ = 0.1
0.2
0.3
0.4
0.5
0.6

Figure 4.9: Number of lanes as a function of γ in N = 1000 systems.

as Φ = 0.5 and Φ = 0.6. Note that rotational damping is relatively weak: even
for γ = 0.01, the memory of the agents last for τγ = 100. Still, introducing a
finite memory changes the behavior of the system, especially when the system
is sparse.

4.5 Summary

In this section, we investigated the behavior of the system other than the
periodic boundary condition, namely, the “pipe” and the “box” conditions.
Since the microscopic mechanism leading to the coherent motion in large scales
is universal in all three boundary conditions, the phase diagram is hardly
changed. However, the transient states, where particles are locally aligned but
the whole system have not yet reached the stationary state, tend to persist
longer in the “pipe” and “box” confinements than in the periodic simulation
box because the elastic walls shut off the propagation of correlation across
the boundaries. We also studied the spontaneous lane formation in a binary
counterflow, a phenomenon which is known well in the field of pedestrian
dynamics. The rotational damping term in our model can be interpreted as
how quick the agent loses the memory of its previous directions. Even with
a long time memory the behavior of the system is largely altered, with fewer
lanes in the stationary state.





Chapter 5

Concluding remarks

Motivated by the ubiquity of flocking behavior in biological and social systems,
the physics of collective motion has been studied for decades. From the theo-
retical viewpoint, researches using simple mathematical self-propelled particle
(SPP) models, especially the Vicsek model which assumes the ferromagnetic
interaction between individuals, has contributed on the understanding on col-
lective attributes such as ordering and clustering, that seem to be the common
features among the systems composed by living organisms. On the other hand,
experimental and empirical findings suggest that the interactions in real sys-
tems are much more complex and often difficult to identify. Therefore the
question is to find what are the features shared beyond the Vicsek-like ferro-
magnetic SPP framework, and what are attributes that depend on the details
of the model. To this end, we studied the collective dynamics of SPP with
repulsive interactions. The repulsion is considered to be an important com-
ponent in the real systems which prevents the agents from running into each
other. However, few studies have addressed the nature of purely repulsive SPP
systems so far; systematic understanding is still lacking.

In Chapter 2, we constructed a simple repulsive SPP model based on several
principles. From numerical simulations we find the emergence of ordered mo-
tion and transition from ordered phase to disordered phase. Detailed analysis
on the waiting time distribution and the dynamics of order parameter indi-
cates that the nature of the phase transition is of first-order, that stems from
the change of metastability of disordered state. When the disordered state is
metastable, onset of coherent motion is induced by a nucleation process.

In Chapter 3, we studied the microscopic origin of ordering process by a
binary scattering analysis. Binary collision and subsequent rotational damp-
ing of polarity, or “self-alignment” behavior, lead to an effective alignment
of two particles. We attached the significance of this method to the context
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of the Boltzmann approach that aims to derive the mesoscopic description of
collective SPP dynamics, as well as expanding the analysis to finite density
regime.

In Chapter 4, we explored the behavior of the system under geometrical
constraints other than periodic boundary conditions. Looking into the order-
ing behavior with the “pipe,” “box,” and “disk” geometries, we found that
the onset of local coherence is not influenced by the change in the boundary
type. However, as the elastic walls place a limitation on correlation propaga-
tion across the system, transient states—the coexistence of ordered and disor-
dered regions for “pipe” conditions and the multi-vortex structure for “box”
conditions—tend to persist longer than in the system with periodic boundaries.
The robustness of spontaneous lane formation behavior, one of the well-known
self-organizing phenomena in the field of pedestrian dynamics, is also studied.

The repulsive SPP model into which we probed throughout this thesis is
capable of accounting for many mathematical models previously proposed in
wide range of field, from pedestrian movement to cell migration. Usually this
kind of generalization would be associated with a complication and increase
in the number of parameters in the model. To sidestep this disadvantage, the
rotational damping strength is chosen to be the sole parameter to be tuned
for the microscopic dynamical property. Even so, the phase transition similar
to the one the Vicsek model displays is observed; this suggests that in both
models, onset of order originates from the interplay of particle motion and
local interaction, which explicitly or effectively contributes to the alignment.
We believe our work provides an alternative perspective on the universality of
collective motion.

There are some remaining topics that should point to interesting directions.

• The validity of binary scattering analysis is restricted to the dilute sys-
tem, where we can assume the collisions are uncorrelated to each other.
Therefore, we need another theory to describe the late stage of the order
growth involving coarsening process. The first step towards this direction
may be to obtain a phenomenological description on interfacial growth
of ordered nucleus.

• Let us recall that an analogy has been made between the Vicsek model
and classical spin systems, as we have seen in the Chapter 1. In the same
sprit, comparison can be made between repulsive SPP systems and its
equilibrium counterpart, which would be granular systems. Indeed, there
is a increasing interest in the field on the idea that the “self-propelled-
ness” is not limited to biological systems: vibrated granular particles
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and driven colloids are also prone to exhibit collective motion. The
natural question would then be as follows: how different are the physics
of granular materials and that of active matter? What is the role of
self-propulsion?

These problems, which are difficult to address but essential for a deeper
understanding on the universality of SPP systems, are left for future work.
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Marc Soria, Hugues Chaté, and Guy Theraulaz. Deciphering interactions
in moving animal groups. PLoS Comput. Biol., 8:e1002678, 2012.

[40] M Ballerini, N Cabibbo, R Candelier, A Cavagna, E Cisbani, I Giardina,
V Lecomte, A Orlandi, G Parisi, A Procaccini, M Viale, and V Zdravkovic.
Interaction ruling animal collective behavior depends on topological rather
than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci.,
105:1232–1237, 2008.

[41] Henricus H Wensink, Jörn Dunkel, Sebastian Heidenreich, Knut Drescher,
Raymond E Goldstein, H. Lowen, and Julia M Yeomans. Meso-scale
turbulence in living fluids. Proc. Natl. Acad. Sci., 109:14308–14313, 2012.

[42] Anna Haeger, Katarina Wolf, Mirjam M Zegers, and Peter Friedl. Col-
lective cell migration: Guidance principles and hierarchies. Trends Cell
Biol., 25:556–566, 2015.

[43] W J Yu, R Chen, L Y Dong, and S Q Dai. Centrifugal force model for
pedestrian dynamics. Phys. Rev. E, 72:026112, 2005.

[44] Mohcine Chraibi, Armin Seyfried, and Andreas Schadschneider. Gen-
eralized centrifugal-force model for pedestrian dynamics. Phys. Rev. E,
82:046111, 2010.

[45] Ioannis Karamouzas, Brian Skinner, and Stephen J Guy. Universal power
law governing pedestrian interactions. Phys. Rev. Lett., 113:238701, 2014.



BIBLIOGRAPHY 71

[46] Michele Ballerini, Nicola Cabibbo, Raphael Candelier, Andrea Cavagna,
Evaristo Cisbani, Irene Giardina, Alberto Orlandi, Giorgio Parisi, An-
drea Procaccini, Massimiliano Viale, and Vladimir Zdravkovic. Empirical
investigation of starling flocks: a benchmark study in collective animal
behaviour. Anim. Behav., 76:201–215, 2008.

[47] Andrea Cavagna, Alessio Cimarelli, Irene Giardina, Giorgio Parisi, Raf-
faele Santagati, Fabio Stefanini, and Massimiliano Viale. Scale-free corre-
lations in starling flocks. Proc. Natl. Acad. Sci., 107:11865–11870, 2010.

[48] Yoshinori Hayakawa and Sho Furuhashi. Group-size distribution of skeins
of wild geese. Phys. Rev. E, 86:031924, 2012.
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