
　　　博士論文

Visualizing Dynamic Networks

using Matrix Technology

（行列技術を用いた動的ネットワーク
　可視化）

　　　　斉　済　

Abstract

This dissertation makes contributions to the field of dynamic network vi-

sualization related to knowledge discovery and analysis of the evolution of

community structure over time. Our approach provide a framework involv-

ing three levels of dynamic network visualization as a circle of data analysis:

underlying algorithms processing large-scale data streams as the lowest level,

appropriately designed visual interface including all the human-computer in-

teractions as the middle level, and exploring method with pattern of potential

discoveries as the highest level. Experiments are conducted for evaluating the

approach from different angles.

In this work, I present both the two underlying algorithms for data pro-

cessing. One is the dynamic matrix seriation algorithm for arranging the

visualization layout over time. Comparing with previous outstanding algo-

rithms in this field, our approach makes consideration of both the smoothness

of matrix permutation and the highlight of hidden patterns at the same time.

Another algorithm is for detecting the evolution of network community struc-

ture over time, where the main idea of the algorithm is dynamically capturing

the splitting/merging events of communities. The performance of our algo-

rithm is proved to be more stable when networks are more complex with vague

boundaries between communities. Meanwhile, I also present a 2 dimensional,

matrix-like, and animation-based design of visualization, where each decision

of feature selection is for the purpose of reducing the interface cost of compu-

tation and the learning cost of users. Finally, I present a pattern of potential

meaningful knowledge on the visualization, which is inspired by the process

of chance discovery via KeyGraph.

Together, this visualization approach suggests a way of knowledge discov-

ery over rapid data stream of networks, and we suggest the application of

our approach is in the domain of real-time analytics on big data. Potential

application scenarios on real world tasks and future research directions are

discussed.

Acknowledgements

First, I wish to thank my supervisor and mentor, Professor Yukio Ohsawa, for

opening the bright window of human-computer interaction for me. He helps

me to find out a new world of research combining machine learning and data

analysis with human subjects and actions. I sincerely appreciate his trust,

patience, and ongoing support.

Second, I want to thank my girlfriend, Shihan Wang, for her wholehearted

support in my daily life and research. I can always be inspired by her magic

whimsy. Also, I thank for my family for supporting me unconditionally for

everything. Wherever I am living and whatever I am facing, there is a place

I believe I can always go back anytime.

Finally, I thank all the colleges and friends in Ohsawa Lab and the Uni-

versity of Tokyo for guiding me and helping me over the years. Also, I thank

the Japan Science and Technology Agency (JST) for supporting part of this

research.

Contents

List of Figures 1

List of Tables 4

1 Introduction 5

1.1 Network Dynamics . 5

1.2 Problem Statement . 6

1.3 Background and Motivation 8

1.4 Summary of Contributions . 11

1.4.1 Contributions in Visual Interface 11

1.4.2 Contributions in Underlying Algorithms 12

1.4.3 Contributions in Exploring Method 13

1.5 Potential Impact and Research Directions 13

1.6 Roadmap . 14

2 Visual Interface 17

2.1 Design Features . 17

2.1.1 Matrix vs. Node-Link Diagram 18

2.1.2 2D vs. 3D . 20

2.1.3 Animation vs. Timeline 22

2.2 User Interface . 23

2.3 Architecture of the System . 27

3 Underlying Algorithms 30

3.1 Dynamic Community Detection Algorithm 30

3.1.1 Related Works . 30

3.1.2 Algorithm Design . 33

3.2 Dynamic Matrix Seriation Algorithm 36

3.2.1 Related Works . 37

3.2.2 Algorithm Design . 41

4 Exploring Method 47

4.1 Background . 47

4.2 Procedure of observation . 50

5 Experimental Evaluation 54

5.1 Evaluation of Background Algorithms 54

5.1.1 Dynamic Community Detection Algorithm 55

5.1.2 Dynamic Matrix Seriation Algorthm 60

5.2 Evaluation of Visualization . 67

5.2.1 Case Study 1: Layout 68

5.2.2 Case Study 2: Readability 71

5.2.3 Case Study 3: Exploration 73

6 Discussion and Conclusion 76

6.1 Summary . 76

6.2 Potential Impact and Application 78

6.3 Further Works . 81

List of Figures

1.1 Visualization of the Twitter network before and after the 2011

Japanese earthquake, where different color shows different shows

the communities with different topics of chatting [1]. 6

1.2 Sketch map of the procedure of data analysis and the role of

data visualization technology 8

1.3 A sample interface of a visualization software 9

1.4 Example presentation of a large network represented by D3.js 10

2.1 Visualizations of a network with 50 nodes and 400 links using

different presentation forms: (a) node-link diagram, and (b)

adjacency matrix . 18

2.2 Visualizations of HIV-1 protease structure using different inter-

face appearance: (a) 2-dimensional network, and (b) 3-dimensional

netowrk . 20

2.3 Visualizations of a network evolving process using different ex-

pressions of time series: (a) animation, and (b) timeline 22

2.4 Visual interface design of the visualization introduced in this

dissertation . 25

2.5 Representation of different events over the evolution of network

community structure: (a) splitting, (b) merging, and (c) relo-

cating . 26

2.6 Architecture of the visualization system 27

3.1 Splitting and merging conditions of communities within the

evolution of network topology caused by the new coming links 33

1

3.2 Matrix representation of the network of relationship between

artists in Paris: (a) before seriation, and (b) after seriation . . 36

3.3 Illustration of the running procedure of the local search algo-

rithm on sample matrix . 44

4.1 A sample capture of KeyGraph 49

4.2 The sense of the Innovators’ Marketplace of Data Jacket as an

example . 50

4.3 Remarks of birth and death of community: (a) birth, and (b)

death . 51

4.4 Remarks of splitting and merging of community: (a) merging,

and (b) splitting . 52

4.5 Pattern of potential meaningful discovery inspired by chance

discovery via KeyGraph: (a) a sample network structure, where

red nodes outline the rare but important event, and (b) repre-

sentation by our visualization approach 52

5.1 NMI result for learning θβ, the threshold of bipartition ration . 57

5.2 NMI result of both our algorithm and previous outstanding

algorithms for comparison: (a) Informap, (b) BLONDEL ET

AL., (c) RN, (d) RADICCHI, (e) CLAUSET ET AL., and (f)

BIPARTITE . 59

5.3 Parameter study result of tmax in global optimizing algorithm

against three evaluating criterion: (a) Gradient Measure, (b)

Least Square Criterion, and (c) Hamiltonian Path Length . . . 61

5.4 Parameter study result of distance metric in local searching al-

gorithm against three evaluating criterion: (a) Gradient Mea-

sure, (b) Least Square Criterion, and (c) Hamiltonian Path

Length . 63

5.5 Statistical results of comparison between our algorithm and

other five previous works: (a) Gradient Measure, (b) Least

Square Criterion, and (c) Hamiltonian Path Length 64

2

5.6 Visualization of the permutation generated by both our algo-

rithm and previous works for comparison: (a) ARSA, (b) MDS,

(c) Spectral, (d) C&Z, (e) VAT, and (f) Recut 66

5.7 PCA projection result of the Fisher dataset, where the outliers

are highlighted by a circle . 66

5.8 Tracking result of the average aspect ratio over time 70

5.9 Tracking result of the average distance change over time . . . 70

5.10 Captures of the visualizing result by either our visualization

and node-link diagram in case study 2 72

5.11 Captures of the visualization for two situations of the network:

(a) during the most time of the election, and (b) near to the

end of the election . 74

3

List of Tables

5.1 Previous outstanding algorithms of community detection for

comparison . 58

5.2 Formulas of the evaluating criterion of seriation algorithms . . 60

5.3 Formulas of distance metrics for comparison 63

5.4 Previous outstanding algorithms for comparison 64

5.5 Information of the books appearing in the visualization 74

4

Chapter 1

Introduction

1.1 Network Dynamics

Networks in the real world involve dynamics generally. The network dynamics

can be defined as the changes in network topology over time. By taking about

the changes on network topology, there exist two perspectives: nodes may

come and go, while links may recover and pass away. The duration of network

dynamics is always transient, which means the topology changes on networks

always occur for a short period only. Also, network dynamics are constantly

occurring over time, but the frequency may vary. In general, this pace is due to

the real scenario of application. For example, Figure 1.1 presents a comparison

of the Twitter network before and after the 2011 Japanese earthquake. It is

clearly seen that the communities within the network growth much larger and

denser after the disaster than before, while the top hot trends also changed

as the scale of the node color shows.

There are many illustrative problems worked on in the domain of dynamic

network analysis, such as learning and extracting theories of network evolu-

tion, decay, and adoption; developing control process of dynamic networks

online; forecasting changes in existing networks; tracking groups in networks

overtimes; etc. Definitely, it also involves developing techniques to visualize

network dynamics overall or locally.

In this dissertation, the network dynamic we would like to describe through

5

Figure 1.1: Visualization of the Twitter network before and after the 2011
Japanese earthquake, where different color shows different shows the commu-
nities with different topics of chatting [1].

information visualization is the evolution of network community structure

over time. There has been previous research stating that the local community

structure of networks, especially large-scale networks in the real world, is

general and has been paid much attention in the dynamic network analysis

field [2]. Also, we considered that it is difficult and less meaningful to observe

the topological changes on the level of individual nodes and links in case of

visualizing large-scale networks.

Meanwhile, the changes in network topology is defined as only the increase

of nodes/links, since the networks we considered in this dissertation are incre-

mental networks such as traffic networks, chatting networks on social media,

neural networks of human brain, etc., where nodes and links will not disappear

once added into the network. Also, the input of the network is a continuous

sequence of links instead of a stream from multiple distributed sources, as we

assume there is only one link coming to the network every time a topological

change occurs.

1.2 Problem Statement

As a powerful and essential means, visualization technology assists analyzing

and understanding the evolution of dynamic networks over time. Visualizing

dynamic networks face several challenges. First, the information overload is a

6

general issue caused by too complicated user interfaces. Second, huge interface

cost of computation is another problem in this domain. This is correlated to

the improving requirement of analysis on a large dataset, especially for the

case of stream data mining, where data keep coming rapidly in the format

of a data stream in real-time. Also, visualization should be combined with

reasonable exploring methods for making meaningful observations from the

networks.

The aim of this dissertation is to introduce an online visualization technol-

ogy that efficiently represents the evolution process of large dynamic networks

in real-time. As an assistant technology, data visualization should be perfectly

embedded into the procedure of data analysis as an important circle. Based

on this idea, we design our visualization to involve three levels of implemen-

tations:

• At the lowest level, the underlying algorithms dynamically arrange the

layout of visualization and detect the evolution of network structure for

supporting the online visualization. This level is the entrance of input

data and the foundation of the visualization.

• At the middle level, the visual interface conducts all the interactions

between human and machine. This part is the core of visualization

technology because all the insights of data from users are generated

based on this part.

• At the highest level, an exploring method combining with the visual-

ization is introduced for making observations that have the potential

to be meaningful. Through this level, data are indeed transferred into

knowledge that can support further analysis and decision making.

Figure 1.2 provides an intuitive explanation of the role of visualization

technology and the functions of each level of design. Together, work in this

dissertation is designed to assist the understanding and discovering of dynamic

networks in real time.

7

Figure 1.2: Sketch map of the procedure of data analysis and the role of data
visualization technology

1.3 Background and Motivation

Dynamic networks have been employed in many important aspects of our life,

such as social media sites (SNS), traffic dispatching, stock marketing, etc.

One of the most valuable approaches to understanding dynamic networks and

especially making complicated network dataset more approachable to most

people is data visualization technology. Appropriate visualization helps im-

prove the efficiency of knowledge mining on networks. Generally, nearly all

the networks in the real world are dynamic, where both content and structure

of networks evolve over time passage. So many network evolutions are going

on around us in daily life. For instance, our everyday chatting on SNS builds

the dynamic network of our daily social relationship; the transportation in

urban area itself is a big dynamic network of traffic stream; electronic sig-

nals are transmitted on the neural network in human brains every moment.

Researchers in domains like real-time analytics believe that tracking and rea-

soning the evolution of networks is meaningful for decision making. In this

background, online visualization of dynamic networks makes it possible to

observe the network evolution and make discoveries in real time. As a result,

research on dynamic network visualization attracts much attention from re-

searchers of data visualization. By reviewing the research in past decades,

several challenges still remain in this domain.

8

Network dynamics as additional complexity leads to information

overload

For visualizing dynamic networks, especially when networks get larger, visual

interface tend to be more complicated with too many parameters to be ad-

justed and views to be shown in a single window [3]. When this complexity

rises above a certain level, users may feel too difficult to learn the visualization,

probably as well as the network data. This issue is summarized as informa-

tion overload, which is significant on tasks of dynamic network visualization

and navigation [4]. To avoid information overload, it should be considered by

visualization developers that which feature(s) should be highlighted within

the visual interface, so that users can quickly focus on the discovering and

analyzing process.

Figure 1.3 shows an example of a complicated user interface belonging to a

visual software for data analysis. This interface involves 16 subviews, where 8

of them should be operated by users at the same time. With this complicated

UI, it is difficult to make a move in a short time even for trained users. And

this complexity definitely increases the learning cost of users.

Figure 1.3: A sample interface of a visualization software

9

Figure 1.4: Example presentation of a large network represented by D3.js

Visualizing large dynamic network in real time is challenging

When network size gets large enough, the computational expense can become

very high. Here, two partitions of computation are involved. One is the

execution of the underlying algorithms. There exists computation between

raw data streams and structured data for supporting visualization. Generally,

this work is automatically completed by computers deal to its large-scaling.

Another is the interface cost, which corresponds to essential drawing and

animation of shapes, colors, opacity, and any other features for the purpose

of visualization. For example, if visualizing a network with 5000 nodes and

100000 links using a node-link graph, there will be at least 5000×2+100000 =

110000 entities displayed at the same time, where ×2 corresponds to the

5000 labels of nodes. In this case, the computational cost of the underlying

algorithms is the cost of dynamically arranging the network layout, and the

cost of the visual interface comes from maintaining and animating all the

110000 entities based on the layout arrangement. Figure 1.4 shows a capture

of a large network represented using D3.js. Definitely, this high cost cannot

be ignored in online visualization tasks.

10

Methods should be declared to guide users to explore and under-

stand the data

Generally, previous methods only focus on the visualization task itself but

ignore the role that visualization technology play in the whole procedure of

data analysis. However, even with an appropriate visualization, it can still be

difficult to make a meaningful observation without any guidance, especially

when the data keeps varying. For this reason, the exploring method for visu-

alization is also essential, where guidance is for suggesting users about what

kind of observation is possible to be meaningful, so that users can quickly

put their energy into the discovering process, instead of wasting time on blind

navigation.

1.4 Summary of Contributions

As we mentioned in the previous section, this dissertation presents an online

visualization of dynamic networks based on three levels: (1) underlying algo-

rithms dynamically arranging the visual layout, (2) visual interface aiming at

reducing both the interface cost of computation and the learning cost of users,

and (3) exploring method for visualization focusing on guiding the process of

knowledge discovery. This section briefly illustrates the main ideas of the

three levels of visualization in this dissertation and outlines the contributions

discussed in later chapters.

1.4.1 Contributions in Visual Interface

Visualization in this work is designed to be a 2-dimensional, matrix-like, and

animation-based approach. The major presentation form is the adjacency

matrix of communities in networks, where major information of network com-

munity structure is remained by involving less visual entities comparing with

employing adjacency matrix of nodes in the traditional way. On the other

hand, 2-dimensional representation speeds up the generation and variation

of visualization, while the animation-based representation of time dimension

11

simplifies the recognizing and tracking of network structures. The core idea

of this design is for reducing the interface cost of computation and the recog-

nizing cost of users.

This work is described in Chapter 2. Preliminary study of this work is

published in [5], and a follow-up study is published in [6]

Contributions

• a novel design of dynamic network visualization that reduces both the

recognizing cost of network structure and the computational cost of

visual interface;

• case study shows how the visualization assist users in knowledge dis-

covering task on networks, against both benchmark networks and real

datasets.

1.4.2 Contributions in Underlying Algorithms

For dynamically detecting the network community structure over time pas-

sage, an incremental algorithm of community detection is developed. Com-

munities are split or merged based on the splitting/merging condition, which

is defined as community bipartition ratio. Experimental evaluation shows

statistical evidence of a more stable performance on networks with different

degrees of network complexity, comparing with a number of previous algo-

rithms widely used.

Another algorithm implemented in this work is an incremental algorithm

of matrix seriation (matrix reordering in other words), which is for arrang-

ing the layout of visualization. Hidden knowledge can be highlighted through

this arrangement for improving the efficiency of knowledge discovery. Com-

paring with previous methods optimizing different coefficients, our algorithm

balances the smoothness of matrix permutation and the highlighting presen-

tation of hidden information.

Both of the two algorithms are compared with previous approaches against

benchmark datasets for performance evaluation. This work is described in

12

Chapter 3 with more details. A preliminary study of the matrix seriation

algorithm is published in [5], and a follow-up study is going to be published

in [7]. The community detection algorithm is published in [6].

Contributions

• a novel incremental algorithm of network community detection, which

provides a stable performance on networks with different degree of com-

plexity.

• a novel incremental algorithm of matrix seriation, which balance smooth-

ing display and highlighting features.

• Statistical and empirical evaluation of the two algorithms against both

benchmark networks and real datasets.

1.4.3 Contributions in Exploring Method

Inspired by the process of chance discovery via KeyGraph [8], a pattern of

potential meaningful discovery is defined for guiding the navigation process

on the visualization. By following the guidance, the knowledge discovery

process by users is expected to be more intuitive and simple. A case study

against a history logging dataset of book co-purchasing on Amazon reveals

empirical evidence of efficient discovery following the guidance. This work is

illustrated in Chapter 4 with related experiments in Chapter 5.

Contributions

• a detailed exploring method for discovering rare but meaningful knowl-

edge behind network data, combining with visualization technology.

1.5 Potential Impact and Research Directions

Originally, data analysis and knowledge discovery on a static database is chal-

lenging, while problem tends to be more complex in the case of dynamic data

13

streams. Large-scaling data streams bring difficulty of analytics in real time,

and the uncertainty of online data streams increases the troubles. Contribu-

tions of this dissertation have the potential to assist real-time analytics on

dynamic networks in domains such as social medias, e-commerce, transporta-

tion, and all the other domains building on dynamic networks and can benefit

from real-time computing and analytics.

Application scenarios of our visualization are expected to be as follows for

example:

• Instead of analyzing user relationships and behaviors on a long-term

accumulated data, it is possible to successfully build new relationships

between social media users in different communities of interest, only

based on the network behaviors in real time.

• A real-time analysis of customer-store networks for online B2C e-commercial

sites could be useful, since an appropriate warehouse management al-

ways brings revenue growth, especially during big sales.

More detailed discussion about the potential impact and research direc-

tions is in Chapter 6. In summary, we see the opportunities to assist real-time

analytics based on dynamic networks.

1.6 Roadmap

The remaining chapters of this dissertation is organized as follows: detailed

design and implementation of the visual interface is introduced in Chapter

2; the two underlying algorithms are illustrated in Chapter 3; the exploring

method for this visualization is presented in Chapter 4; all the experimental

evaluation works are included in Chapter 5; a summarization of this disser-

tation with further research directions is presented in Chapter 6. Detailed

structure within each chapter is described as follows:

Chapter 2 begins by introducing the design of visual interface based on

three main features of visual design: the major presentation form of visual-

14

ization (matrix or node-link diagram), the dimension of representation (2D or

3D), and the expression form of the time dimension (animation or timeline).

Then the user interface is presented with the introduction of all the functions

and views. At the end, the architecture of the visualization is illustrated,

details of the demo system implementation will be introduced in this part.

Chapter 3 presents the two underlying algorithms with details. For the

dynamic matrix seriation algorithm, I briefly review related works against

different optimizing functions at first, then the algorithms are described by

pseudo-code with examples for intuitive explanation. On the other hand,

for the incremental community detection algorithm, previous outstanding ap-

proaches in this domain are reviewed as well. Then, the bipartition ration of

community is defined and the algorithms are illustrated in details at the end.

Chapter 4 begins by introducing the background knowledge of the explor-

ing method. It is explained that how this method is inspired by the chance

discovery process via KeyGraph, including a brief introduction of both chance

discovery theory and KeyGraph. Then, the pattern of potential discoveries

on the visualization is defined combining with the exploring method.

Chapter 5 includes experimental evaluations and case studies for both un-

derlying algorithms and the visualization. The matrix seriation algorithm is

firstly evaluated against the famous Fisher’s Iris data set by comparing with

previous approaches. Then the experiment is introduced for evaluating the

performance of our incremental community detection algorithm against the

LFR benchmark networks by comparison with related works. Finally, the

visualization is empirically evaluated through a human-centered study and a

case study.

Chapter 6 concludes this dissertation. Firstly, contributions of this work

are outlined and related to the challenges of online dynamic network visual-

ization. Then, potential impact and application of this work are discussed

15

within detailed scenarios. At the end, I discuss the research directions of this

work in the future.

16

Chapter 2

Visual Interface

2.1 Design Features

The design is primary to implementation for visualization technology. Before

developing the underlying algorithms and the exploring methods, what the

visual interface looks like should be considered at first. According to the

challenges of online dynamic network visualization, two goals are designed to

be achieved by this work:

• Visualization should be intuitive and friendly to users, especially for

tasks with online and dynamic features, because the time for users to

understand the information delivered from the visualization is expected

to be very short. Also, the observation made by users should be reason-

able with the visualization, this can significantly improve the efficiency

of further analysis based on the observation [9].

• Visualization should be economical, which means presenting more infor-

mation by less cost. This cost includes the computational cost of the

visual interface and the recognizing cost of users. In the case of visu-

alizing dynamic networks in real time, we expect the visualization can

deal with a large data stream of a network in a considerable speed.

For achieving these two goals, three important aspects of dynamic network

visualization are considered in this work. With decisions of choices on these

17

three aspects, a general image of the visualization can be provided for guiding

the follow-up developments.

2.1.1 Matrix vs. Node-Link Diagram

The first problem considered for designing is which one should be chosen

as the major presentation form in this work, matrix or node-link diagram?

Solving this problem is relatively prior to the following two because the main

expression form is the soul of a visualization technology. It decides the way

of information delivering to users. The second and third aspects introduced

in the following sections serve the first one for a better presentation.

Figure 2.1: Visualizations of a network with 50 nodes and 400 links using
different presentation forms: (a) node-link diagram, and (b) adjacency matrix

Figure 2.1 shows two presentations of the network published by Ghoniem

et al. for comparing the readability of network representation between the

node-link diagram and matrix [10]. It is difficult to conclude which one is

better by simply looking at the figures. Actually, both of them show some

advantages and disadvantages. For a node-link diagram, the most impor-

tant advantage is the intuitive expression of the network. Node-link graph is

the most natural way of representing a network since networks are originally

graphs with additional features. Meanwhile, the drawback of the node-link

18

graph is also obvious, that is the occlusion problem of graph layout. There

are different types of occlusion on node-link diagrams: (1) occlusion on links

by other links, which leads to mess and unreadable view when plenty of links

cross together, (2) occlusion on links by nodes, which may result in misunder-

standing of node belongingness and confusion of network structure as further

consequence, (3) occlusion on nodes by other nodes, which causes difficulty

of detecting individual nodes, and (4) occlusion on labels, which causes many

problems related to labels, such as overlapping of labels, mis-belonging of la-

bels (label of node A may be recognized as that of node B probability because

of aggregated graph layout), and long label wrapping problem. Even it takes

a high computational cost to avoid the occlusion problem, performance of the

final appearance is still not guaranteed deal to specific dataset.

By contrast, there is nearly no occlusion problem on matrix layout. All

the nodes are represented by matrix rows/columns respectively, and could

be sorted based on orders such as the alphabetical order of labels, node de-

grees, semantical meaning, etc. Meanwhile, there is naturally no occlusion

between links in the matrix, because all the links are represented by elements

inside matrix without overlap. Also, labels of nodes are usually listed beside

rows/columns for easy reference. However, drawbacks of the matrix also ex-

ist. Matrix layout is less flexible then graph layout, even when the latter is

more complex. Elements (not order) within a matrix permutation should be

exactly kept based on the network structure. As a result, when arranging a

single element on position, the whole row/column containing this element will

be relocated according to other rows/columns, while only two nodes need to

be moved in node-link diagram for the same purpose. This difference leads

to additional computation on arranging matrix layout, where matrix seriation

algorithms aim at improving the efficiency of this computation.

Corresponding to the advantages and disadvantages of the matrix and

node-link diagram, previous researches suggest that matrix presentation is

more appropriate when the network is large and dense, while node-link dia-

gram yields better performance on small and sparse networks [10]. Readabil-

ity of both matrix and graph were evaluated on tasks such as quick node/link

19

searching, degree counting, central nodes detecting and tracking, etc. Es-

pecially, experiments support the observation that analysis on complicated

networks can benefit from the clear layout of the matrix, provided that ma-

trix layout is well organized.

A Large number of previous approaches to dynamic network visualization

employed node-link graphs as their major presentation form. Misue et al.

firstly introduced a visualization method with dynamic adjustment approach

of node-link diagram layout [11]. Brandes and Wagner introduced random

field models for uniform representation by different layout models [12]. Instead

of choosing from various layout models, Lee et al. regarded dynamic node-

link graph layout problem as an optimization problem, which tried to meet

different requirements by adjusting parameters [13]. On the other hand, some

of the methods applied matrix instead. Bach et al. represented the matrix

as a 3D cube, where the additional dimension represented the time-series

[3]. Burch et al. employed a sequence of a bar chart on horizontal axis

inside matrix cells to show the change of links [14], while Stein et al. applied

the greyscale for the same purpose [15]. Also, Brandes and Nick introduced

gestaltlines, a new expression of temporal changes on matrix elements [16].

2.1.2 2D vs. 3D

Figure 2.2: Visualizations of HIV-1 protease structure using different interface
appearance: (a) 2-dimensional network, and (b) 3-dimensional netowrk

Figure 2.2 shows both 2-dimensional and 3-dimensional representation of

20

HIV-1 protease structure published by [17]. By separately considering expres-

siveness, 3D representation brings a view of the hierarchical structure from

the outside in, comparing with the 2D representation where all the molecules

lied on a single plane. 3D representations are more expressive by providing

different perspectives of observation. Combining with zooming and navigating

functions, data can be explored in very details. However, 3D representation

suffers from some unavoidable problems as well, for example, the depth percep-

tion issue and more complicated navigation. In the case of dynamic network

visualization, the most serious problem is the expensive computation of 3D

shaping, edition, and animation.

By contrast, generating 2D representation is much faster and cheaper than

3D one for the same task. One of the drawbacks of 2D techniques is the visual

overlap problem. As the previous section introduced, It always requires the

additional cost of visualization for avoiding overlap and occlusion. Another

potential problem is the learning cost of users. As we mentioned, 3D represen-

tation could be more intuitive than 2D one in many cases, but it still depends

on specific cases. Previous research shows some experimental results that 3D

visualization can significantly improve the user experience at the beginning of

usage, although the best performance on 3D representation matched the 2D

one only under the right combination of task and user [18].

Both 2D and 3D appearance of the visual interface have been employed

in previous works. For example, Greilich et al. introduced TimeArcTrees

aligning captures of network evolutions as 2D graphs [19]. Burch et al. em-

ployed 2D parallel coordinates for aligning [20]. Dwyer and Eades introduced

a visualization that used 2D cylinders to represents nodes over time passage

[21]. On the other hand, Erten et al. introduced a different way of performing

top-down layout by using multiple surfaces in a 3D space as different time

steps [22]. Federico et al. developed a demo system that predefined three

views of 3D networks with fixed camera perspective and layer positions [23],

while Itoh et al. released these settings to users [24].

21

2.1.3 Animation vs. Timeline

The major difference between dynamic network visualization and the static

situation is the additional time dimension, which leads to new tasks of network

analysis, such as detecting and tracking the evolution of network structure

overtime. As the key feature of dynamic networks, temporal changes should

be described clearly. Generally, either animation or timeline is employed for

representing the temporal feature.

Figure 2.3: Visualizations of a network evolving process using different ex-
pressions of time series: (a) animation, and (b) timeline

Both animation-based and timeline-based visualization of the dynamic net-

work are shown as an example in Figure 2.3. Different from the animation-

based approach that only involves a single view of visualization, multiple views

are listed as a sequence in the timeline-based visualization. Captures of pre-

sentation bring convenience on comparing network status between different

time points, but with the drawback of difficulty in tracking tasks. Generally,

it tends to be difficult to track the variation of a community or even a single

node between captures, as the existence and the position of nodes and links

may be unexpected because of the layout arrangement caused by network evo-

lution. Also, a large number of captures generated from a long-term evolution

may lead to the information overload issue. Also, detailed information has a

high probability to be difficult for the user to observe when all the captures

are packed together tightly in a single visual interface.

22

Different from timeline-based approaches, the whole evolving process of

the network is presented in a single view in an animation-based approach.

Relocation of nodes/links and evolution of network structure are described

by animation so that temporal variation can be tracked easily following their

actions. There was a qualitative study on the difference of user observation

through animation-based and timeline-based representation. The experiment

results indicated that representing temporal changes by animation encouraged

users to make more findings on local changes and events, while more long-term

discoveries were made through observing the timeline-based representation

[25]. For the feature of instantaneity and rapidity, real-time systems always

prefer short-term observations on the local area.

Many previous approaches employed animation-based representation for

describing the time dimension. Diehl et al. introduced foresighted layout for

stably presenting animation representation [26]. After that, Diehl and his col-

leagues extended the foresighted layout to focus on the adjustment strategies

in different cases [27]. Instead of generating the super graph, Erten et al. con-

nected equivalent nodes were connected by virtual links in their demo system

named GraphAEL [28]. Some other approaches employed timeline represen-

tation. Ohsawa et al. implemented a tool for visualizing transient causes in

time-series data [29]. Sugimoto et al. detected word clusters with tempo-

rally updated corpus using a sequence of word networks [30]. Also, virus-like

visualization of node changes was represented by using timeline expression

[22, 23].

2.2 User Interface

Based on the review of the three main aspects of dynamic network visu-

alization in the previous section, we design the work to be a matrix-like,

2-dimensional, and animation-based approach in this dissertation. All the de-

cisions are made for reducing the recognizing cost and the interface cost. By

applying matrix as the major presentation form, large and complex networks

can be described clearly without visual occlusion and mess view. Also, 2D

23

appearance brings enough functions in most of the cases, and its efficiency

on computation makes it more appropriate to online tasks. Furthermore,

animation-based representation has been proved to perform better on local

detecting and tracking tasks, which is also appropriate to the real-time visu-

alization task.

Especially, adjacency matrix of communities instead of nodes is employed

in this work. While visualizing large and dense networks, it is generally not

necessary to present detailed topology for each node. Comparing with effect

by a single node in a huge network, groups of nodes and their evolving trends

attracts more attention from network analysts. That is community structure

of the network, a key factor describing the macro-level topological structure

of the network. Many types of research have attacked the problem of tracking

community structure evolution on dynamic networks. For example, Vehlow et

al. introduced a visualization improved from Sankey Diagram for reasoning

network evolution [31]. Chihua et al. focused on brain networks and intro-

duced a hybrid approach of node-link diagram and adjacency matrix [32].

Raghvendra et al. introduced Netgram that is also a visualization similar to

Sankey Diagram with details like community size and modularity metrics [33].

The visual interface of the visualization introduced in this dissertation

designed as Figure 2.4 shows based on the previous discussion. Simply, the

interface involves two partitions, the control panel and the main view, where

parameters, functions, and visual expressions are introduced in the following

sections.

Control Panel

For simplifying the operation and learning cost by users, only essential func-

tions are provided within the control panel, as the left part of Figure 2.4 shows.

Especially, zooming function is originally provided by a web browser, so it is

not involved in the system. Also, the restarting function of the visualization

is purchased using the refreshing function of a web browser.

24

Figure 2.4: Visual interface design of the visualization introduced in this
dissertation

Upload button responds to upload static database file to the system. This

function is essential at this stage since the system is just a demo system, where

the input data stream is simulated by sequentially receiving links from a static

database. By clicking on this button, a file exploring window will appear and

users can choose the dataset file for analysis. Input data file usually in the

format of text, where each line represents a link between two end nodes. Links

are ordered by their time stamps.

Start/stop button control the process of visualization. Start button can

start/restart the process, while stop button can pause it. For the convenience

of observation, pause is allowed in the demo system. However, it may not be

possible in the real case, as data stream comes rapidly without pause.

25

Speed slider control the speed of the animation. The maximum speed is

20 links per second, while the minimum is 1 link per second. This function is

also for the convenience of observation.

Main View

The matrix in this work is considered to be symmetric as we do not define the

direction of inter-community relations. As a result, only half of the matrix is

shown for reducing interface cost. There are two different kinds of elements.

Those elements alongside the matrix diagonal represent communities. All the

community elements are squares, where the element size represents the relative

scale of the community comparing with all the other the communities, and

the element opacity represents the graph density of community. Labels on

those community elements correspond to central nodes within communities,

where the centrality measure is node degree in this work. On the other hand,

elements beside the diagonal represent the relations between communities.

The opacity of the relation elements shows the connecting strength between

related communities.

Figure 2.5: Representation of different events over the evolution of network
community structure: (a) splitting, (b) merging, and (c) relocating

During the evolving process of the network, three categories of events are

highlighted and described by the visualization for capturing temporal changes

of network community structure. Figure 2.5-a shows a sample of community

splitting process from community A to C,D. Especially, changes in relations

are also described by our visualization according to changes on communities.

Similarly, the merging process from community A and B to D is shown in

Figure 2.5-b. The relocation of community A is shown in Figure 2.5-c. Strictly

speaking, this relocating process is due to the dynamic matrix layout problem.

26

However, the rearrangement of matrix layout is caused by the evolution of

network community structure, in this case, we regard relocation as the third

category of evolving events on networks.

2.3 Architecture of the System

Figure 2.6: Architecture of the visualization system

For simulating the real online environment, the demo system is conducted

on a web-service framework. There are three main partitions involved: the vi-

sual interface, the web server, and the background application. As mentioned

in the previous section, the data stream is simulated by sequentially receiving

data of single link from a static database. For every new coming link to the

network, data is transmitted to the background application through the web

server. After computing, the background application returns the revised lay-

out information to the interface for an update. During this process, the web

server transmits data by receiving, posting, and responding HTTP requests.

Detailed descriptions are in the following sections.

27

Visual Interface

The main function of visual interface is representing the network evolution

corresponding to the input link stream rapidly coming in real time. All the

interactions between users and the system are held within this part. The new

link data is packaged as a POST request and then sent to the server for further

process.

The interface is implemented on a web browser using HTML/CSS for easy

usage. All the animations and presentations driven by data are developed by

D3.js, a widely used JavaScript Library for data-driven visualization. Also,

JQuery is employed for data management and transmission from the front

end.

Web Server

Web server is the transfer station of information in this system. It receives the

new link data from the interface and transfer it to the background application,

then post the layout data back to the interface. This part is essential for

dealing with the rapid input in order.

We employed Bottle as the web framework for building the server. It is a

simple and lightweight framework built on the standard Web Server Gateway

interface. Bottle.py provides some useful functions like quick routing and file

uploading, which helps simplify the developing works and improve the transfer

efficiency.

Background Application

Both the matrix seriation algorithm and the community detection algorithm

are implemented and executed in this part. After communicating with the

web server, the new link is sent to a switcher with four branches:

• New Community : if both the two end nodes of the new link are new to

the network, a new community is built based on this link.

28

• Exist Community : if one or both of the two end nodes belongs to an

existing community, the new link will be added to the community, then

it will be checked if this community should be split with the new coming

link.

• New Relation: If the new link is between two communities originally

with no relation, a new relation will be built based on this new link.

• Exist Relation: If the new link is built on two related communities, it will

be added to that relation, and it will be checked if the two communities

should be merged with the new coming link.

After adding the new link, the matrix layout updated and returned to the

interface for further visualization. Algorithms are implemented using Python.

29

Chapter 3

Underlying Algorithms

3.1 Dynamic Community Detection Algorithm

For employing the adjacency matrix of the community as the presentation

form, the evolution of network community structure should firstly be tracked,

then an algorithm of dynamic community detection is essential. In this section,

an incremental algorithm is introduced for dynamically detecting the temporal

changes of both communities and relations between. In this section, previous

methods are firstly reviewed by categories, then algorithm developed in this

work is introduced in details.

3.1.1 Related Works

Based on different strategies adopted from different methods, most of the

previous methods fall into two categories: optimizing-based approach and

heuristic-based approach. The optimizing-based approaches find the optimal

solution of the community detection problem by solving a equivalent optimiza-

tion problem against a pre-defined objective function, for example, algorithms

optimizing the network modularity defined by Newman [34, 35, 36, 37, 38, 39,

40, 41], the edge clustering coefficient [42], the maximization likelihood [43],

the minimization of the Hamiltonian path [44], and the optimal compression

of network [45, 46]

On the other hand, the heuristic-based approaches detect the network

30

community structure by specifically designed rules or assumptions instead of

transferring the community detection problem into an optimization problem

[47, 48, 49]. Here, all the assumptions and rules are based on the recognition

of network community, where the number of links inside communities should

be larger than outside. Related works of both the two categories are reviewed

in the following sections.

Optimizing-Based Approach

The most popular optimizing function is the Girvan-Newman modularity in-

troduced by Girvan and Newman in their work in 2002, with the first algorithm

of modern community detection on networks named the GN algorithm [34].

As a well known objective function, the GN modularity has been employed in

many types of research. Clauset et al. introduced a fast greedy modularity

optimization algorithm based on isolated nodes initially [35]. Also, some re-

search performed a global optimization of modularity based on methods like

simulated annealing [36, 37, 38, 39]. Blondel et al. introduced a local optimiza-

tion algorithm of the GN modularity based on the neighborhood of each node

and collected a considerable accuracy and linear computational complexity

[40]. Another method by Donetti and Munoz introduced spectral properties

of the graph (eigenvectors of the Laplacian Matrix) into the optimization of

modularity [41]. This approach is more like a traditional clustering process in

a multi-dimensional space.

Although GN modularity has been used as the quality function of com-

munity in many types of research, there is one issue that has been proved to

limit the performance of algorithms optimizing GN modularity, that is the

resolution limit [50]. This limit comes from the null assumption of modularity

definition: each node is attachable on the network. However, this assumption

has been proved to be unreasonable, especially for large networks. For avoid-

ing this limit, some other functions were employed as the optimal function

as well. For instance, Algorithm by Radicchi et al. is a divisive hierarchical

algorithm similar to the GN algorithm, but optimizing the edge clustering

31

coefficient instead of the GN modularity [42]. This coefficient was defined as

the ratio between the number of circles involving an edge and the possible

number of circles involving this edge. Also, two different types of communi-

ties were introduced with different coefficient conditions. Another work called

expectation-maximization algorithm was introduced by Newman and Leicht,

where the community structure is detected by Bayesian inference, and the

best fit was inferred by maximizing a likelihood [43]. Also, for avoiding the

resolution limit of modularity optimization, a model based on minimizing the

Hamiltonian path was introduced by Ronbovde and Nussinov [44]. The opti-

mal compression of the network structure was also employed for detecting the

communities, as the structure should be recovered after decoding [45, 46].

Heuristic-Based Approach

The computational complexity of optimal algorithms generally tends to be

high because of the global searching process. Even for a local search, it can

still take a long time when the dataset is large. For this reason, some previous

researches aimed to solve this problem through other means.Heuristic-based

approaches aim to find a good enough solution in the reasonable time period,

instead of indicating the best fit by optimization.

Even though the GN algorithm is based on the GN modularity, the algo-

rithm itself is a heuristic algorithm. The algorithm performed a hierarchical

division on links based on their betweenness. In the most popular implemen-

tation, the iteration of link division is stopped when the modularity of the

current partition reaches the maximum [47]. Cfinder introduced by Palla et

al. was built on the assumption of K-clique rolling community [48], the aim

of this approach is for detecting communities that may overlap. Another ap-

proach simulating a peculiar diffusion process on the graph is introduced by

Dongen et al [49]. The algorithm iteratively measured a probability matrix

of a random walk on the network and enhance the matrix with a parameter

α, until the matrix indicated a forest, whose components correspond to the

communities.

32

3.1.2 Algorithm Design

We define the community detection problem in this dissertation as a dynam-

ically splitting and merging problem. With the new links come, two changes

may occur on the community distribution of the network, as Figure 3.1 shows.

On one hand, one community may be split into two while there exist two

groups of nodes inside this community that are linked denser inside and sparser

between. On the other hand, if the relation between two communities become

strong enough over time, then these two communities should be merged into

one based on the change of network topology.

Figure 3.1: Splitting and merging conditions of communities within the evo-
lution of network topology caused by the new coming links

Previous approaches focus on satisfying the cut criteria of network bi-

partition, which is always related to the number of links. The definition of

modularity expects the number of links within communities to exceed the

number expected by chance. As a result, intra-community links are dense

and inter-community links are sparse. Heuristic-based approaches also follow

similar rules and assumptions. A comparative study of community detection

algorithms shows that both optimizing-based and heuristic-based algorithms

underperformed when community structure was complex enough. Here, the

complexity of community structure is evaluated by mixing parameter, which

is defined as follows:

33

µ =
1

|C|
∑
i∈C

kouti

kouti + kini
(3.1)

Where i is a node inside community C, kouti is the number of i’s neigh-

bor nodes outside C, while kini is the number of neighbors outside. In this

case, simply considering the number of links is not enough because of the

ignorance of group scale for both inside and outside the community. In other

words, a large number of intra-group links do not respond to a dense group.

For attacking this problem, we define the bipartition ratio for controlling the

splitting/merging of the community. Given graph G(V,E) and a bipartition

X, Y of G satisfying the following conditions:

X
⋂

Y = ∅ and X
⋃

Y = V (3.2)

The bipartition ratio between X and Y is defined as follows:

β =
NXY

|X| × |Y |
(3.3)

Where NXY represents the number of links between X and Y . A smaller

β leads to a higher graph density inside X and Y naturally because the total

number of links inside G is fixed at the one-time point. The detecting problem

is then transferred to minimization of β. However, even we have found the

bipartition with the minimum β, the graph may be G still not appropriate to

be split if the bipartition ratio is not small enough. We need a threshold, say

θβ, to clarify the splitting condition. With bipartition ratio and the threshold,

we define the splitting/merging condition of community to be as follows:

• At time point t, a community C(VC , EC) will be split into two commu-

nities X(VX , EX) and Y (VY , EY) if the following condition is satisfied:

βtC =
NVXVY

|VX | × |VY |
< θβ (3.4)

• At time point t, two communities X(VX , EX) and Y (VY , EY) will be

merged into one community C(VC , EC) if the following condition is sat-

34

isfied:

βtC =
NVXVY

|VX | × |VY |
≥ θβ (3.5)

With the definition of bipartition ratio, an algorithm was developed for

incrementally updating the bipartition ratio of communities every time a new

link comes. For a community C, a bipartition X and Y of the node set of C,

one end node of the new link v, and the current time t, the algorithm adds v to

either X or Y and measures the bipartition ration for both the two situations

as βX and βY , then v is added to the side with lower value of bipartition ratio.

Algorithm 1 shows the details.

Algorithm 1 Algorithm of Updating Bipartition Ratio

procedure Bipartite(C,X, Y, v, t):
βX ← C.Beta(X

⋃
{v}, Y) . C.Beta(X, Y): measure β between X and

Y on C
βY ← C.Beta(X, Y

⋃
{v})

if βX ≤ βY then
βtC ← βX
X.add(v) . X.add(v): add v to X
if v ∈ Y then

Y.remove(v) . Y.remove(v): remove v to Y
end if

else
βtC ← βY
Y.add(v)
if v ∈ X then

X.remove(v)
end if

end if
end procedure

The computational complexity of our algorithm is near O(c), where c is a

constant value. The main part of computation in the algorithm is C.Beta(X, Y),

with NXY measured as:

NXY = |EC | − |EX | − |EY | (3.6)

35

Where |EC | represents the number of links in community C, and |EX |
represents the number of links between nodes within X. By incrementally

updating |EC |, |EX | and |EY |, the algorithm can be very efficient as a whole.

Details about running time of the algorithms are introduced in Chapter 5

based on the tracking records during the experiment.

3.2 Dynamic Matrix Seriation Algorithm

Figure 3.2: Matrix representation of the network of relationship between
artists in Paris: (a) before seriation, and (b) after seriation

The dynamic community detection algorithm deals with the splitting/merging

events of communities for describing network community structure over time.

Also, the matrix layout should be dynamically rearranged for highlighting

meaningful information hidden behind data. The seriation algorithm is devel-

oped for attacking this problem. Figure 3.2 shows the matrix presentation of

a relationship network between artists in Paris before and after seriation 1. It

is difficult to detect useful information from Figure 3.2-a with a mess layout,

while relations between artist groups are clearly described in Figure 3.2-b.

Generally, a seriation algorithm seeks a matrix permutation by optimizing an

1Figures are originally published in http://matthewlincoln.net/2014/12/20/adjacency-
matrix-plots-with-r-and-ggplot2.html

36

objective function. In this section, we firstly review the related works based

on different optimizing objects, then we introduced the seriation algorithm we

developed.

3.2.1 Related Works

Many optimizing functions have been defined in this domain, and they could

be either loss function (the smaller the value is, the better), or metric function

that is opposite to the loss functions. There are three widely used objective

functions in this domain: the gradient measures, the least square criterion,

and the Hamiltonian path length. Most of the previous works employed one of

them or the alternative forms. We will introduce the previous works organized

by these three measures, also some methods that do not belong to any of the

three categories are introduced separately.

Gradient Measures

The gradient measures were defined based on the definition of the anti-Robinson

matrix, where the row/column dissimilarity matrix contains monotonically

nondecreasing values. In other words, for an anti-Robinson matrix with a

set of row/column objects {O1, O2, ..., On}, this matrix holds the following

gradient condition:

dik ≤ dij for 1 ≤ i < k < j ≤ n (3.7)

where dij represents the dissimilarity between Oi and Oj. For optimizing this

condition, Hubert et al. [51] introduced the gradient measure as follow:

GM(O) =
∑
i<k<j

f(dik, dij) (3.8)

37

Where f(x, y) is the sign function. Two of the sign functions are defined in

[51]. The first one is the most traditional one like this:

f(x, y) = sign(x− y) =

+1 if x > y

0 if x = y

−1 if x < y

(3.9)

And the second function is the weighted version of the first one, which is

defined like this:

f(x, y) = |x− y|sign(x− y) = x− y (3.10)

This formula gives an intuitive understanding of the gradient condition, that

only cases following the monotonically nondecreasing order can obtain positive

values. As a result, the gradient measure is a metric function (the larger, the

better). Another similar criterion called anti-Robinson events used the same

frame of the formula, but a different f(x, y) function as follows [52]:

f(x, y) = I(x− y) =

 1 if x > y

0 otherwise
(3.11)

Some methods used the gradient measures as the optimizing criterion. Brusco

and Stahl applied the branch-and-bound algorithm to the seriation problem,

which can guarantee globally-optimal solution [53], but the scaling capability

of the algorithm was limited up to size 35× 35 because of the computational

complexity. For improving the efficiency and the capability of matrix scale,

Brusco et al. introduced a heuristic method based on dynamic programming

escaping from local optima[54]. The simulated annealing was employed as the

global optima for achieving this goal.

Least Squares Criterion

Another criterion for seriation is least squares criterion, which minimizes the

divergence between the dissimilarity of two objects and their position gap.

38

This divergence is expected small, therefore the least squares criterion is a

loss function (the smaller the better). Caraux and Pinloche introduced one

formula to capture this divergence [55] as follows:

LS(O) =
n∑
i=1

n∑
j=1

(dij − |i− j|)2 (3.12)

This formula uses the square error as the divergence measures, while another

criterion called linear seriation criterion simply used multiplication instead

[56], formula listed as follows:

LS(O) =
n∑
i=1

n∑
j=1

dij(−|i− j|) (3.13)

Also, the 2-Sum loss criterion used similarity instead of dissimilarity in the

formula [57], as the following formula shows:

LS(O) =
n∑
i=1

n∑
j=1

1

1 + dij
(i− j)2 (3.14)

Where similarity was simply defined as 1/(1 + dij).

There are some methods using least square criterion or related metrics as

the optimizing criterion. Rodgers and Thompson employed Multi-Dimensional

Scaling to the seriation problem [58]. After obtaining an empirical order of

the matrix by seriation, MDS was then used for scaling the two separate tri-

angles of the proximity matrix defined by this ordering. Also, Ding and He

introduced another approach of seriation by using spectral ordering [59]. The

author showed a study on a k-way cluster assignment approach for releas-

ing the limitation of special clustering methods applying on 2-way or k-way

clustering problems.

Hamiltonian Path Length

By regarding the dissimilarity matrix of the object set as the adjacency matrix

of a weighted graph, the seriation problem can be transferred to a Traveling

39

Salesman Problem (TSP). As a result, the Hamiltonian path length was in-

troduced as an optimizing criterion of seriation problem [56]. The formula is

as follows:

HP (O) =
n−1∑
i=1

di,i+1 (3.15)

Hamiltonian path length is also a loss function. There is a very good feature

for this criterion, that is the only dissimilarity in the object order are needed

for the measures. Gruvaeus and Wainer improved the hierarchical clustering

algorithm and optimized the Hamiltonian path length [60]. For improving the

effectiveness of algorithm, the author made the solution of clustering unique

by introducing similarity between different solutions. Also, Sharlee and Wang

introduced rearranging clustering, which was also based on TSP solution [61].

Other Approaches

There is also some other criterion for the seriation problem. For example,

McCormic et al. defined the measure of effectiveness as the summation of the

value product between one cell and all 4-way neighbors (up, down, left, and

right) for all the cells in the matrix [62]. For an n×mmatrix X = (xij), the

measure of effectiveness is defined as follows:

ME(X) =
1

2

n∑
i=1

m∑
j=1

xij(xi,j+1 + xi,j−1 + xi+1,j + xi−1,j) (3.16)

Then based on this thinking, Niermann defined another criterion named stress

as the sum square error of the value between one cell and its (at most) 8-way

neighbors [63], The local stress for element xij is defined as follows:

µij =

min(n,i+1)∑
k=max(1,i−1)

min(m,j+1)∑
l=max(1,j−1)

(xij − xkl)2 (3.17)

and the global stress is defined as follows:

ST (X) =
n∑
i=1

m∑
j=1

µij (3.18)

40

The famous algorithm optimizing measure of effectiveness is the bond energy

algorithm (BEA) that is introduced by McCormic in the same paper of in-

troducing the measure of effectiveness, while after two years, Lenstra proved

that the optimization of BEA can be regarded as two independent TSPs [64].

3.2.2 Algorithm Design

There is a balance problem that most traditional algorithms are confronted

with. Some approaches provide permutations with the perfect smoothness

of the matrix permutation, where rows/columns are closely associated with

the gradient order. However, smooth permutation may lead to the blurred

representation of network structure, such as community structures and de-

tailed structures inside communities. On the other hand, some other ap-

proaches highlight hidden information well by closer aggregating similar ma-

trix rows/columns, but this aggregation is alway at the cost of losing necessary

coherence of the matrix rows/columns.

Another problem of previous works is the limitation on the dynamic situ-

ation with the large matrix. Generally, seriation algorithms are designed for

the small and static matrix, where no modification is involved over the time

passage. However, in the task of dynamic network visualization, the matrix

is generally large, and the adjacency matrix must be dynamic. As a result,

an incremental seriation algorithm is essential in this case. Only one algo-

rithm deals with this problem at the state of the art. Wittek introduced an

incremental approach optimizing the Hamiltonian path length [65]. Seriation

on matrix rows and columns were treated as two independent TSP problems.

However, this approach only solved the problem of new coming rows/columns,

because the core of the dynamic seriation in this approach was a quick search-

ing and insertion based on a greedy strategy. For the situation of modification

on existing rows/columns, the author did not provide a solution in the paper.

For attacking the problems stated above, we developed an incremental

approach of seriation that maintains a globally optimal solution temporally

by solving an optimization problem against the Hamiltonian path length. The

41

algorithms involve two partitions, one is a local searching algorithm based

on dynamic programming, another is a global optimizing algorithm based

on simulated annealing. Following sections introduce the two algorithms in

details with our designing philosophy.

Local Searching Algorithm

The local search algorithm is called ”Recut” as for abstracting the process of

recursively cutting and combining in the algorithm. This algorithm is based on

a greedy strategy, that is greedily replacing high-dissimilar object pairs with

low-dissimilar ones. We use dynamic programming to solve this problem as

dynamic programming separates complex problems into simple sub-problems,

and finally, combine the results of sub-problems to solve the complex root

problem. The overlap problem is defined as follows: the algorithm cuts the

object sequence into two sub-sequences at the object pair with the highest

dissimilarity, then reorders the two sub-sequences separately and combines

them back on the dissimilarity condition. In this case, the algorithm only

needs to store the dissimilarity values for those object pairs that do appear in

the permutation process. Instead of measuring the whole dissimilarity matrix

at the beginning, our approach can definitely save the computing storage and

time.

Algorithm 2 shows detailed information of Recut algorithm. For incre-

mentally processing dynamic matrix, distances between objects are updated

depending on demands dynamically. The updating rules are very simple: if

the distance between two objects undertaken is not measured before, compute

this distance and restore it in memory, otherwise, check if this distance should

be updated based on the new coming link. The algorithm can be very efficient

on theory. Time complexity of this algorithm is:

T =

O(c) if n < 3

O(nL) +O(nR) +O(c) otherwise
(3.19)

Where n is the length of the input order sequence, nL and nR is the length

42

Algorithm 2 Local Search Algorithm

procedure Recut(O) . O: n-length object sequence
if O.length < 3 then

return O
end if
bp← argmaxi∈[1,n−1](di,i+1) . di,j: dissimilarity between Oi and Oj

L← Recut(O[1 : bp]) . O[i, j]: sub sequence of O from Oi to Oj

R← Recut(O[bp+ 1 : n])
cp← argmini∈{lL,rL},j∈{lR,rR}(dij) . cp: combining point, lL, rL: the left

and right end of L
if cp is rL, rR then

return (L+Reverse(R)) . L+R: joint of L and R following the
order shown

else if cp is lL, lR then
return (Reverse(L) +R)

else if cp is lL, rR then
return (R + L)

else if cp is rL, rR then
return (L+R)

end if . Totally 4 different conditions of combination
end procedure

of the two sub-sequences. O(c) represents the constant time for running a

fixed piece of code. The worst case of our algorithm is nL = 1 or nR = 1 for

every iteration. In this case, the time complexity is O(c(n− 2)), which is still

linear. It was tested through experiments that the worst case appears quite

rarely, and the algorithm can execute at a satisfying speed. Details about the

experiments are introduced in Chapter 5.

Figure 3.3 shows an example of the running procedure of Recut. Here,

we simply employ the Euclidean distance as the dissimilarity measure of the

Hamilton path length. More detailed evolution of applying different distance

formulas is presented in Chapter 5. Before running the algorithm, the matrix

layout looks distributed, and it is hard to observe relations between matrix

columns. Then After running Recut on columns of the matrix, the layout

tends to become clearly and aggregately, where a continuous appearance of

elements is presented intuitively, and it is reasonable this improvement comes

from a significant decrease in the path length.

43

Figure 3.3: Illustration of the running procedure of the local search algorithm
on sample matrix

As we mentioned in the previous section, considering both smoothing the

permutation and highlighting important information together is a problem of

seriation algorithms. The algorithm design of recursively cutting and com-

bining is for attacking this problem. Previous approaches that optimized the

Hamiltonian path length usually built the shortest path from the beginning

with an initial object. By contrast, Recut arbitrarily set the current order

as the initial state and searches for the shortest path by replacing long inter-

distances with shorter ones. As a result, segments that are originally contin-

uous are kept through the process of cutting, while segments that should be

outlined together will be aggregated via combining.

44

Global Optimizing Algorithm

Generally, it is hard for algorithms based on a greedy strategy to achieve

the global minimum, where the searching space is not a concave surface. As

a result, a global optimizing algorithm is necessary. In our case, we choose

simulated annealing as the technology for global optimization. Details of this

algorithm are shown in Algorithm 3.

Algorithm 3 Optimization Algorithm

procedure Optimize(O) . O: n-length object sequence
for t in 1 : tmax do

Onew ← recut(O)
if Path length(Onew < Path length(O)) then

O ← Onew

else . Case of achieving local minimum
O′ ← randomly pick(N(O))
if random(0, 1) > P (t) then . random(0, 1): random number

in (0,1)
O ← O′

end if
end if

end for
return O

end procedure

The end-loop condition of the algorithm can be set to either satisfying a

threshold of the optimizing criteria or reaching a maximum cycle index. For

seriation algorithms, there is no such a threshold of criteria as a standard.

Therefore, we choose the maximum cycle index, notated tmax, as the end-

loop condition. Every time when achieving a local minimum, the algorithm

may choose to move to a neighbor state of current object order based on an

acceptance probability. This probability is defined as follow:

P (t) =
t

tmax
(3.20)

Where t is the current step number. This setting prefers to move to neigh-

bor states in an early stage, but more inclined to keep the current state over-

time. Here, the neighbor state space is defined as follows:

45

N(O) = {O′|O′ = {O1, ..., Oi+1, Oi,, On}, for i ∈ [1, n− 1]} (3.21)

Where O is the current object order and O′ is one of the neighbor states

of O. Algorithm stops while achieving the end-loop condition tmax, and the

best order, in the end, is returned. The temporal efficiency of this algorithm

highly depends on the stopping condition tmax, which is pre-defined before

running the algorithm. A parameter study of tmax is presented in Chapter 5,

where we discuss the choose of tmax for either static and dynamic situations.

Noticed that the acceptance probability in simulated annealing algorithm

is generally defined as follows:

P (T) = e
−δE
T (3.22)

Where δE is the increase of energy (Hamiltonian path length in our case)

from the previous time point to the current time, and T is another param-

eter named temperature for controlling the cooling-down procedure of the

algorithm, calculated as follows:

T ∝ t

tmax
(3.23)

However, we consider this setting to be inappropriate in our case. Accord-

ing to the design of the permutation algorithm, it is very easy to get δE = 0

(the new permutation is exactly the same as the old one while reaching a local

optimization), which leads to an absolute acceptance of a random jump to a

neighbor state, even when the cooling procedure is close to finish. For this

reason, the δE is removed from the acceptance probability, and there is no

need to employ the exponential function of 1
T

anymore. Instead, the linear

formula (Equation 3.20) is employed by experience for maintaining the slow

decrease of acceptance probability over interaction.

46

Chapter 4

Exploring Method

4.1 Background

Generally, visualization technology is developed for accurately abstracting

complex data, so that users can observe and understand the data in a more

intuitive and readable way. Therefore, the most primary purpose of a visu-

alization tool is an accurate representation of information. For this reason,

previous research generally involves instructions about how the visualization

describes target data. Especially for dynamic network visualization, most of

the previous works provide illustrations about how to observe the network

structures and the evolution over time with the visualization.

However, visualization technique itself is an important component of data

mining and knowledge discovery. The final purpose of data visualization is

for assisting further analysis in solving problems. Then a guidance on how to

make meaningful observations on the visualization tool is also essential. With

a clear instruction, users can quickly focus on the task of knowledge discovery

without wasting time on considering what kind of observation has the poten-

tial to be meaningful. Motivated by this thinking, the exploring method for

our visualization approach is illustrated for detecting observations that have

the potential to be meaningful. This method is inspired by the procedure of

chance discovery, where KeyGraph is employed as the key visualization tech-

nology for detecting chance from data. For better illustrating our method, we

47

firstly give some background knowledge of chance discovery and KeyGraph.

Chance discovery was firstly introduced by Ohsawa as a process of dis-

covering and reasoning a chance, where chance corresponds to events that

are hard to be observed but have significant meaning for supporting decision

making [66]. Based on the theory of chance discovery, chances always hide

behind knowledge and observations that are obvious and common. For de-

tecting chance from common knowledge, KeyGraph is employed as the key

toolkit.

KeyGraph was firstly published as an automatic indexing approach of key-

words in corpus independent from prior knowledge of semantics [67], and then

introduced as an assisting technology of chance discovery [68]. A number of

research on solving practical problems employed the scenario of chance dis-

covery via KeyGraph. For example, Ohsawa introduced a work for detecting

and reasoning risk activities during earthquake based on a sequence dataset

of the earthquake in Japan [69], while working by Kenich et al. suggested

the application of KeyGraph on product designing [70]. Seo et al. employed

KeyGraph for chance discovery on online BBS, and experiments show a sig-

nificant improvement of efficiency on team meeting [71]. Chance discovery via

KeyGraph had also been employed to enhance genetic algorithms by detecting

deeply hidden blocks [72].

Figure 4.1 shows what KeyGraph exactly looks like. There are two kinds of

nodes with different colors in this graph. The black nodes represent common

knowledge, which may relate to items frequently appeared in the dataset, while

grey nodes represent less frequent ones. In KeyGraph, the black nodes conduct

islands, which indicates communities with correlating common knowledge.

And grey nodes are chosen as bridges between islands. From the most intuitive

meaning, the grey nodes lead to events or knowledge which are rare but linking

multiple general concepts together. On this meaning, information behind the

grey nodes is detected as chance, which is reasonable based on the common

knowledge linked by this chance.

The most major and recent application of chance discovery technique

through KeyGraph is the Innovators’ Marketplace of Data Jacket (IMDJ as

48

Figure 4.1: A sample capture of KeyGraph

short in the following paragraphs), which was systematically introduced in

the work by Liu, Ohsawa, and Suda for the first time [73]. IMDJ is for pro-

viding a social environment to the data owners and potential users based on

the market of data. There are two purposes of IMDJ, one is the validation

of enclosed data by owners, and another is the innovation based on the mar-

ket of data for solving practical problems. Here, what we said the market of

data is different from the traditional data markets, such as Windows Azure

Marketplace and KDnugget, which only provide a platform for trading data

with a limited introduction of the contents of datasets without guarantee of

the usefulness of the data to the buyers. On the other hand, the communi-

cation between expert and non-expert is generally difficult because of the big

gap of knowledge background and experience, while IMDJ is also expected to

provide the environment for enhancing this communication.

Figure 4.2 shows an sample sense of the IMDJ game published in [74].

There are two roles of participants in the game, the consumers provide the

49

Figure 4.2: The sense of the Innovators’ Marketplace of Data Jacket as an
example

requirements based on practical problems to be solved, and the inventors

generate solutions to the requirements based on the KeyGraph and Dataset

involved. Here, datasets are abstracted as data jackets, which includes the es-

sential information for understanding the datasets without opening the data

content. In this process, the chance discovery technique may be used for gen-

erating innovative solutions to the requirements. For example, the inventors

may firstly search the bridge highly related to the requirement, and then com-

bine the islands with data jackets to reason and finally generate the solution.

4.2 Procedure of observation

In our exploring method, some patterns of the visualization are defined for

guiding users. Based on these patterns, users can easily detect events like

birth and death of communities, splitting and merging of communities. Then,

50

another pattern inspired by chance discovery via KeyGraph is defined for

making potential meaningful observations.

Firstly, the birth and death of a community are remarked by a different

color, as Figure 4.3 shows. In the case of the birth of a community, the element

representing the new community will appear in green for a short period of time

and then becomes white after that. On the other hand, red color remarks

community that is going to dead, and then the community disappears from

the matrix.

Figure 4.3: Remarks of birth and death of community: (a) birth, and (b)
death

Another two events, community merging and splitting, are essential to be

detected for describing the evolution of network community structure. Figure

4.4 shows the procedures respectively. At the beginning of merging, the two

communities to be merged are marked by red color and then disappear. In-

stead, the targeting community appears in green and then recovers to white

(maybe grey because of the low opacity). In contrast, the community going

to be split is firstly marked by red and then disappears. At the same time,

51

Figure 4.4: Remarks of splitting and merging of community: (a) merging, and
(b) splitting

two new communities appear in green and then recover to white in a short

period of time.

Figure 4.5: Pattern of potential meaningful discovery inspired by chance dis-
covery via KeyGraph: (a) a sample network structure, where red nodes outline
the rare but important event, and (b) representation by our visualization ap-
proach

One more pattern is defined for detecting potential discoveries. We extend

52

the definition of the island in KeyGraph to a big and dense group of nodes in

general networks, while bridge redefined by a small group of nodes linking at

least two islands together. For example in Figure 4.5-a, this sample network

shows an island-bridge layout, where group A, B and C are islands based

on the extended definition, where all of them contains a number of nodes

densely linked together. Differently, group D can be recognised as a bridge

between A, B and C. In our visualization, a potential meaningful discovery

is detected from a small community element connecting with at least two big

community elements, as the community D shown in Figure 4.5-b. Especially,

when matching this pattern in the real case, the matches may disappear after

a period of time. We consider that better matches exist longer because longer

appearance means a more reliable observation that is not observed by chance.

However, there is no requirement on how long a match of the pattern should

be. This threshold of the time length is decided by users in a specific case.

53

Chapter 5

Experimental Evaluation

5.1 Evaluation of Background Algorithms

Two parts of our visualization approach should be evaluated respectively for

supporting our conclusion that our online visualization of dynamic networks is

efficient. One is the evaluation of the underlying algorithms that completing

all the automatic works for building the visualization. Another is the visual-

ization presented by the user interface, which drives all the interactions from

users during the exploring and discovering process. This section presents

the performance evaluation of the two underlying algorithms introduced in

Chapter 3. Several experiments against either real data set or sample data

generated by benchmark algorithms are conducted with statistical analysis

and discussion of the results.

For the community detection algorithm, a parameter study is presented

for learning the setting of θβ as the threshold of bipartition ratio as the split-

ting/merging condition. Then, I discuss the contributions of our algorithm

through a series of comparisons with previous works. Comparisons are based

on networks generated by a famous benchmark algorithm in this domain.

For the seriation algorithm, two parameter studies are firstly conducted for

exploring the tmax setting in the global optimizing algorithm and the influence

of choosing different distance formula in the local search algorithm. Then,

another experiment is presented for evaluating the algorithm performance

54

comparing with some previous outstanding algorithms of matrix seriation,

with a discussion about how our algorithm brings significant improvement to

previous works.

5.1.1 Dynamic Community Detection Algorithm

In this section, experiments are conducted for evaluating the performance of

the dynamic community detection algorithms comparing with previous meth-

ods. Before that, the threshold of bipartition ratio θβ is learned by a parameter

study. Evaluating criteria employed in the experiments is the Normalized Mu-

tual Information (NMI), which has been widely used for evaluating community

detection algorithms. The reason of not using modularity as the criteria is

because the well-known resolution limit of modularity, which often leads to

inaccurate descriptions of larger networks and smaller communities [50].

In this dissertation, the definition of NMI employed is published by Strehl

and Ghosh [75], where NMI is calculated akin to the Pearson correlation

coefficient. The formula is defined as follows:

NMI(GT,CD) =
I(GT,CD)√
H(GT)H(CD)

(5.1)

Where GT = {C1, C2, ..., CkGT } represents the ground truth of community

distribution in network G, and CD = {C ′1, C ′2, ..., C ′kCD} represents the com-

munity detection result. C and C ′ are node sets representing communities,

while kGT and kCD are the number of communities in GT and CD. Here,

kGT does not have to be equal to kCD. I(GT,CD) represents the mutual

information between GT and CD, which is defined as follows:

I(GT,CD) =
kGT∑
h=1

kCD∑
l=1

nh,llog(
n× nh,l

nGTh × nCDl
) (5.2)

Where n is the total number of nodes in network G, nh,l is the number

of nodes belong to both the hth community of GT and the lth community

of CD at the same time, nGTh represents the number of nodes inside the hth

community of GT , and nCDl is the similar. I(GT,CD) describes how much

55

information are shared by GT and CD, but this measure is not idea as the

criteria. With formula 5.2, all the partitions of GT as CD will lead to the

same result as I(GT,CD) = H(GT), even though these partitions are totally

different. Here, H(GT) is the entropy of GT defined as follows:

H(GT) =
kGT∑
h=1

nGTh log
nGTh
n

(5.3)

To avoid that,
√
H(GT)H(CD) is introduced for normalizing the mutual

information, as formula 5.1 shows. NMI equals 1 if GT and CD are exactly

the same, whereas the value is expected to be 0 if GT is totally independent

of CD.

Parameter Study: learning the threshold of bipartition ratio θβ

For learning an appropriate setting of θβ, performance of the algorithm was

tested by running on a sample network while varying the θβ value. The net-

work was generated by the famous Lancichinetti-Fortunato-Raddichi (LFR)

benchmark algorithm, which has been widely used for evaluating community

detection algorithms [76]. The sample network was generated by employ-

ing the following parameters of the benchmark algorithm: 20 for the average

degree, 50 for the maximum degree, 2 for the minus exponent of degree distri-

bution, 1 for the minus exponent of community distribution, and 0.1 for the

mixing parameter µ. The total number of nodes inside the network was set

to be either 1000 or 5000. Also, two ranges of community size in networks

were set as follows: S notated 10 ∼ 50 nodes in a community, and B notated

a larger size of 20 ∼ 100 nodes. As a result, there were four settings of the

network: 1000S, 1000B, 5000S, and 5000B.

θβ varied from 0.2 to 0.8 with an offset of 0.05, then there were totally

13 settings of θβ. For each value of θβand each setting of the network, our

algorithm was executed for 100 times and average NMI was measured for each

case. This result is shown in Figure 5.1 as a line chart. A peak value can be

indicated at θβ = 0.5 in general, although this trend is not significant and the

56

performance at θβ = 0.55 is even slightly better in case of 5000B. This result

matches the expectation. The Too small value of θβ may lead to over-splitting,

while too large value causes over-merging. Algorithm in both of the two cases

will underperform and result in a relative worse performance on NMI. Based

on this result, we conclude that θβ = 0.5 is an appropriate setting, and we

employ this setting to the following experiments.

Figure 5.1: NMI result for learning θβ, the threshold of bipartition ration

Performance Study: comparing with previous outstanding algo-

rithms

For testing the improvement, an experiment was conducted for comparing

algorithm in this work with a number of previous outstanding approaches.

Networks for evaluation in this experiment was generated by employing nearly

the same parameter setting of the LFR benchmark algorithm as the previous

parameter study, but the mixing parameter varied from 0.1 to 0.8 with an

offset of 0.05. Table 5.1 lists all the methods for comparison:

Evaluation results of these algorithms were published by Lancichinetti and

Fortunato in their work of a comparative study between community detection

algorithms [77]. Actually, there were some other algorithms involved in this

57

Table 5.1: Previous outstanding algorithms of community detection for com-
parison

Name Type Abbreviation
Greedy Optimization [35] Optimizing-Based CLAUSET ET AL.

Fast modularity optimization [40] Optimizing-Based BLONDEL ET AL.
Algorithm by Radicchi [42] Optimizing-Based RADICCHI
Potts model approachv[44] Optimizing-Based RN
Maps of random walks [46] Heuristic-Based Infomap

study, but these five algorithms were highlighted with their good performance

by the authors. Then, the comparison was performed against these five ap-

proaches with results shown in Figure 5.2, where algorithm in this dissertation

is notated by ”BIPARTITE”.

Four algorithms, Informap, RN, BLONDEL ET AL., and RADICCHI,

generated the community distribution exactly the same as the ground truth

with µ varied from 0.1 to 0.35. Especially, Infomap and RN led the per-

formance by maintaining NMI = 1 even with the very complex network

where µ = 0.55 for all the cases. The author of work [77] also summarized

that Infomap and RN topped the performance in this study, while the per-

formance of BLONDEL ET AL. was also considerable with a high level of

NMI till µ = 0.65 for all the network settings. By contrast, CLAUSET ET

AL. performed the worst among all the algorithms, where a sharp decrease of

the curve was shown for every case of a network in Figure 5.2-e. Although

RADICCHI yielded a good performance at the early stage, it could still be

seen that the NMI value decreased abruptly when µ reached 0.5. After that,

the NMI values stayed stable at 0 till µ = 0.8 for all the network settings.

Comparing with the five previous approaches, there was an important

improvement by BIPARTITE, that was the stability of performance in case of

complex networks. It could be seen clearly that previous algorithms yielded

unsatisfying performance when networks were complex with µ ≥ 0.65, even

for Infomap and RN that provided outstanding performance when µ < 0.65.

In contrast, the performance of BIPARTITE is more stable, where NMI value

varied from 0.8 to 0.9 before µ reached 0.45, and maintained greater than 0.5

58

Figure 5.2: NMI result of both our algorithm and previous outstanding al-
gorithms for comparison: (a) Informap, (b) BLONDEL ET AL., (c) RN, (d)
RADICCHI, (e) CLAUSET ET AL., and (f) BIPARTITE

even for the most complex case of µ = 0.8. Meanwhile, there was no obvious

gap between the four cases of the network for BIPARTITE, while a big gap

was shown by RADICCHI and CLAUSET ET AL.

For the running time of the algorithm, the computational complexity of

59

both Infomap and BLONDEL ET AL are essentially linear in network size,

which is the fastest among all the algorithms. The method RN provides

a relative worse time complexity (superlinear in a number of links in the

network) than Infomap and BLONDEL ET AL, but better performance than

our algorithm with a linear complexity on a number of links. Then comes

to CLAUSET ET AL., which can achieve a complexity of O(Nlog2N) with

the efficient data structure, and RADICCHI has the complexity of O(N2).

However, this ranking is for static community detection. In the dynamic case,

our algorithm can top the performance with a nearly constant complexity of

computation. We recorded the time usage of our algorithm and found that

it only took 0.0015 seconds in average for an update of community structure

with a new link coming.

5.1.2 Dynamic Matrix Seriation Algorthm

This section presents all the experiments for learning and evaluating our ma-

trix seriation algorithm. Based on the brief review of seriation algorithms in

Chapter 3, we choose the gradient measure, the least squares criterion, and

the Hamiltonian path length as the evaluating criterion. Table 5.2 lists the

formulas for convenient reference. All the comparisons and evaluations in this

section are all based on these three formulas.

Table 5.2: Formulas of the evaluating criterion of seriation algorithms
Name Type Formula

Gradient Measure Metric

GM(O) =
∑

i<k<j f(dik, dij)

for f(x, y) = sign(x− y) =

+1 if x > y

0 if x = y

−1 if x < y

Least Square Criterion Loss LS(O) =
∑n

i=1

∑n
j=1(dij − |i− j|)2

Hamiltonian Path Length Loss HP (O) =
∑n−1

i=1 di,i+1

60

Parameter Study 1: learning tmax in the global optimizing algorithm

Firstly, experiment for learning tmax is conducted. The experiment setup is

simple, executing the seriation algorithm with different values of tmax, it is

expected to detect an appropriate value instead of an arbitrary setting for

the further experiments. tmax was varied from 100 to 1000 with an offset

of 100, so there were totally 10 settings of tmax. For every parameter set-

ting, the algorithm was executed for 100 times, and the three criterion were

measured for each time. Finally, the average values of the criterion were mea-

sured for each setting of tmax. Especially, the distance formula in the local

search algorithm was fixed by employing the Euclidean distance for controlling

variables, and another experiment was presented in the following section for

learning the setting distance formula. Dataset employed in this experiment

was the famous Fishers Iris dataset, which was firstly published by Fisher

[78]. Matrix transferred from this dataset was a 150 × 150 symmetric ma-

trix, where rows/columns represented cases of iris, and elements of the matrix

corresponded to the similarity between different iris case pairs.

Figure 5.3: Parameter study result of tmax in global optimizing algorithm
against three evaluating criterion: (a) Gradient Measure, (b) Least Square
Criterion, and (c) Hamiltonian Path Length

Figure 5.3 shows a bar chart representing the learning result of the algo-

rithm performance based on the variation of tmax value. In Figure 5.3-a, the

higher the bar is, the better result it represents since the gradient measure is

a metric function. It can be seen that tmax = 500 brings the best performance

comparing with the others, where tmax = 100 is the worst. Although there

seems to be no big difference of performance from tmax = 300 to tmax = 1000

61

in the figure, the gap between the real values of the gradient measure is large,

which means setting tmax = 500 leads a significant better performance than

other settings. On the other hand, tmax = 500 tops the performance of both

the least square criterion and the Hamiltonian path length, with smaller values

of loss function than any other setting.

In general, a peaking trend with the variation of tmax value can be seen,

where tmax = 500 tops the performance, and then gets worse and worse to

both directions. This trend appears significantly in 5.3-c. It can be explained

by the theory of simulated annealing. if tmax is too small, the process of

global searching will be ended too early, where it has a high probability that

the global optimization is not reached yet. By contrast, a too big tmax leads to

a higher probability to transfer to a random neighbor state even after reaching

the global optimization.

It should be emphasised that this experiment is built on a static case,

where the matrix does not change over time. In the case of a dynamic matrix,

the process of global optimization is even shorter, where tmax generally tends

to 50. This is because the change for each step is small and has little effect

on the matrix layout, and the algorithm can reach the global optimization in

just a few steps based on the optimizing result from the previous step.

Parameter Study 2: choosing distance formula in the local searching

algorithm

For exploring the effect of distance metrics on the local search algorithm, we

compared the algorithm performance by employing different distance formu-

las. Table 5.3 shows all the distance metrics considered in our experiment,

where p and q represent two n-length vectors, and d(p,q) represents the dis-

tance between. Also, pi represents the ith element in vector p, and µp represent

the expectation of all the values in p.

The experiment setup was similar to parameter study 1. For every distance

metric, the algorithm was executed for 100 times, and values of all the three

criterion were recorded for each time, and average values were computed. The

62

Table 5.3: Formulas of distance metrics for comparison
Name Formula

Canberra d(p,q) =
∑n

i=1
|pi−qi|
|pi|+|qi|

Bray-Curtis d(p,q) =
∑n
i=1 |pi−qi|∑n
i=1 |pi+qi|

Euclidean d(p,q) =
√∑n

i=1(pi − qi)2

Cosine d(p,q) = 1−
∑n
i=1 pi×qi√∑n

i=1 p
2
i×
√∑n

i=1 q
2
i

Correlation d(p,q) = 1−
∑n
i=1(pi−µp)(qi−µq)√∑n

i=1(pi−µp)2
√∑n

i=1(qi−µq)2

Fisher Iris data set was also employed in this study, where the tmax was set

to be 500.

Figure 5.4: Parameter study result of distance metric in local searching al-
gorithm against three evaluating criterion: (a) Gradient Measure, (b) Least
Square Criterion, and (c) Hamiltonian Path Length

Figure 5.4 shows a bar chart as the comparing results, where values are

the average value in each case. For the gradient measure, both Canberra dis-

tance and Euclidean distance obtain better performance than others, while

Canberra distance performs slightly better than Euclidean distance. By con-

trast, the correlation dissimilarity performs the worst among all the metrics.

The result is similar to the least square criterion as Figure 5.4-b shows. On

the other hand, Canberra distance provides a significantly better performance

than other metrics, and the worst is the cosine dissimilarity in this case. Based

on this result, we conclude that Canberra distance leads to better algorithm

63

performance for all the three optimizing objectives.

Performance Study: comparing with previous outstanding algo-

rithms

For proving and exhibiting the improvements of the algorithm in this disser-

tation, a performance study against the Fisher Iris data set was conducted by

comparing with 5 outstanding algorithms that have been proved to be useful.

Table 5.4 lists the algorithms for comparison with details. Especially, all the

methods are implemented by applying an R package named ”Seriation” [79].

Table 5.4: Previous outstanding algorithms for comparison
Algorithm Abbreviation Optimizes

SImulated Annealing Heuristic [54] ARSA Gradient measure
TSP solver by Climer and Zhang [61] C&Z Hamilton path length

Multi-Dimensional Scaling [58] MDS Least square criterion
Spectral seriation [59] Spectral 2-Sum criterion

Visual Assessment of Tendency [80] VAT Other

Figure 5.5: Statistical results of comparison between our algorithm and other
five previous works: (a) Gradient Measure, (b) Least Square Criterion, and
(c) Hamiltonian Path Length

Figure 5.5 shows the comparing result as a bar chart, where ”Recut” repre-

sents the algorithm in this work, and other abbreviations are listed in Table 5.4

corresponding to the methods. Considering the result optimizing the gradient

measure, it can be seen that ARSA, MDS, and Spectral top the performance

with nearly no gap between each other, and performance of Recut closely

follows the leading tier with a quite small gap. On the other hand, C&Z

performs the worst on this criterion, where a significant gap is shown. The

64

situation appears in the case of optimizing the least square criterion, which is

shown in Figure 5.5-b.

However, in Figure 5.5-c, C&Z performs the best against the Hamiltonian

path length, and the worst performance is provided by ARSA, MDS, and

Spectral, which used to be the leading tier on optimizing the previous two

criterion. Notably, that performance of Recut follows C&Z, which is still at

the second place and significantly better than the rest four algorithms.

We conclude the improvement of our algorithm through this statical result

of analysis as follows: performance of Recut is more stable and even. It can

be seen that performance of Recut is considerable in all the cases, although

it never tops the performance in any case. By contrast, all the outstanding

algorithms, which have ever topped the performance against at least one cri-

teria, have at least one weak point. For instance, ARSA performs the best

against the gradient measure and the least square criterion, but under per-

forms against the Hamiltonian path length, while C&Z is just in the opposite

situation of ARSA.

Visualization of the result permutations also supports our conclusion. Fig-

ure 5.6-a,b,c show the permutations generate by ARSA, MDS, and Spectral

respectively. It is described clearly by the grey scale in the figures that the

matrix rows/columns in these results are sorted continuously and smoothly,

and two groups of similar cases of the iris are highlighted clearly.

However, additional information is captured in the permutation by C&Z.

In Figure 5.6-d, two bright bands are clearly presented. These bright bands

indicate two small groups that are significantly different from both the two

big groups. Different from optimizing the gradient measure that is similar to

sorting, C&Z generates permutations, where similar rows/columns are located

aggregately. As a result, the similarity is highlighted. But still, there is one

problem of the permutation generated by C&Z. The two small groups seem

to match the same pattern, which means they should belong to one group

originally. But they are located separately in the matrix, while they should

be merged to one. This is also easy to understand. Permutations optimizing

the Hamilton path length do not have to be continuous, also there could be

65

Figure 5.6: Visualization of the permutation generated by both our algorithm
and previous works for comparison: (a) ARSA, (b) MDS, (c) Spectral, (d)
C&Z, (e) VAT, and (f) Recut

several paths that are all with the shortest path length. Corresponding to

the statistical analysis, C&Z under performs in the case of optimizing the

gradient measure and the least square criterion. By contrast, Recut provides

a permutation satisfying all the requirements. As Figure 5.6-f shows, one

bright band with a wider range is presented instead of two in Figure 5.6-d.

Also, two big groups are outlined similar to Figure 5.6-a,b,c,d.

Figure 5.7: PCA projection result of the Fisher dataset, where the outliers
are highlighted by a circle

66

Figure 5.7 shows the PCA result of the original Fisher Iris dataset. Ac-

tually three groups can be observed in this figure: the first one on the left

side of the figure involving all the Setosa iris cases, the second one on the

center-right of the figure with mixed Versicolor and Virginica cases, and the

third one on the right-bottom corner with only a few Virginica irises inside

(marked by circle in Figure 6). It is clear that the third group is far closer to

the second one than to the first one. Corresponding to this PCA result, we

can see that the matrix permutation in Figure 5-f is more close to the orig-

inal dataset. Permutations by ARSA, MDS, and Spectral method are more

smooth but contain less information than the rest three ones. On the other

hand, although the missing information is captured by C&Z and VAT as well,

permutations generated by these two methods are less ordered than that by

Recut. In this sense, Recut provides a balanced permutation that considers

both the continuous and ordered the appearance of the permutation and the

clarity of the matrix structure at the same time.

Based on the observations on permutations and the statical analyzing re-

sults, we conclude that Recut can generate the more meaningful result of

seriation algorithm by balancing smoothness and aggregation of matrix per-

mutation.

5.2 Evaluation of Visualization

Generally, there are two aspects for evaluating visualization technologies.

First is how accurate the visualization describes target data, and second,

is how efficient the visualization assists users in further data analysis. Ex-

periments in previous sections aim at evaluating the accuracy of the visual

description. In this section, three case studies are conducted for testing the

accessibility of our visualization approach from different perspectives.

The first study is for numerically evaluating the dynamic layout of the

visualization. With a numerical evaluation, it can be strictly and clearly il-

lustrated in which degree knowledge discovery on the visualization can be

assisted. For achieving this goal, we borrow the evaluating metrics from pre-

67

vious works of evaluating the dynamic layout of the treemap and provides

both a tracking result overtime and a final metric value in average.

The second study is for learning the readability of the visualization through

a human-centered experiment. The most direct criteria come from the user ex-

perience, as data visualization is designed for the purpose of human-computer

interaction. As a result, subjective evaluation by human being is essential

for evaluating data visualization technology. The experiment is based on a

recognition procedure on a real dataset of a membership network of several

organizations before American Revolution, and a comparison is performed

between our visualization and traditional node-link diagrams.

The final study is a preliminary application of the visualization for knowl-

edge discovery. We present the procedure of knowledge discovery on our visu-

alization by following the exploring method introduced in Chapter 4. Dataset

employed in this study is the co-purchasing data of books about US policy on

Amazon during the 2004 presidential election. By presenting the correlation

between online book selling and real policy event as our discovery, I expect to

explain and prove the utility of the visualization.

5.2.1 Case Study 1: Layout

The evaluating dynamic layout of data visualization technology is always chal-

lenging. There is no benchmark in this domain, as the problem highly depends

on both individual subjectiveness and the target data. In this section, we em-

ployed two metrics introduced by Bederson and Shneiderman in their work of

evaluating treemap layout algorithm [81].

The first criteria is the average aspect ratio, which is defined as follows:

AR(t) =
Nt∑
i=1

max(
wi
hi
,
hi
wi

) (5.4)

Where t is the time point of computation, Nt is the number of rectangles

appearing in the visualization at time t, wi is the width of the ith rectangle,

and hi is the height correlated. This value is 1 while all the rectangles ap-

68

pear are perfect squares. Authors of the work [81] stated that squares are

more acceptable in visualization for good visibility and convenient labelling.

The closer to 1 the average respect ratio is, the better the visual layout may

perform.

Another function employed is called the average distance change function.

For fitting the situation of our visualization, we adapt the definition of this

function as follows:

DC(t) =
Nt∑
i=1

d(i, t) (5.5)

Where the distance function d(i, t) is defined like this:

d(i, t) =
√

(xti − xt−1i)2 + (yti − yt−1i)2 + (wti − wt−1i)2 + (hti − ht−1i)2 (5.6)

Here, x and y represents the position of the left top corner of the rectangle.

In case a rectangle does not exist at time t, we set xt = yt = wt = ht = 0.

From the formula, it can be seen that this distance function describes changes

in both shape and position of rectangles. If the value is 0, it means there is

no change in the layout. The closer to 0 the value is, the more stable the

visualization is for users to track on the visualization.

Although, these two metrics are defined for evaluating the dynamic layout

of treemaps, we think they are appropriate in our case for two reasons. Firstly,

the main presentation form of the visualization in this dissertation is a matrix,

where elements inside are either perfect square or rectangle. Second, the

position and shape of rectangles can be changed over time in both this work

and treemap. In this case, both the average ratio and the average distance

metric can be employed for numerically describing how visible and stable the

dynamic layout is.

The experiment was conducted on a network generated by the LFR bench-

mark algorithm by employing the same settings as the previous experiment,

especially set µ = 0.4 and network type to be 1000S. Both of the two metrics

69

were tracked during this process.

Figure 5.8: Tracking result of the average aspect ratio over time

Figure 5.9: Tracking result of the average distance change over time

Figure 5.8 shows a line chart that describes the changes of the average

aspect ratio overtime, where the x-axis represents the time passage. It can

be seen that the value maintains at a low level of around 5 and fluctuates

within a small range during the first half of the whole procedure. Then there

is a significant increase in high volatility but finally, recovers to a stable state

around 30. In general, this figure shows a stable performance with a short

period of shaking. A similar result is observed on the line chart of the average

distance change function as shown in Figure 5.9, except for a single peak

during the first half of the whole process.

We also computed the average value for both the two functions, where

µAR = 13.65 for the average aspect ratio and µDC = 0.34 for the average

70

distance change. It is difficult to say how good this performance is. However,

we have the experimental result in [81] for evaluating layouts of treemaps as

a side explain. The results were built on three experiments with different

initial distributions of treemap layout. Results show that if a layout yielded

an average distance change less than 0.5, the average aspect ratio was at least

26.10. On the other hand, layout with average aspect ratio around 13 must

result in average distance change more than 7. In conclusion, although the

layout of this work does not yield a better performance on any of the two

metrics singly, it is still substantial by considering the two metrics together.

5.2.2 Case Study 2: Readability

For evaluating the readability, a recognizing process on a real network was

simulated on either traditional node-link graph or visualization in this work.

The dataset used in this study is a bipartite network describing changes on

memberships of 136 people in 5 organizations before American Revolution 1.

The experiment setup is as follows: totally 4 participants were invited,

where two of them were university students (notated as S1, S2), and another

two were employees in the company (notated E1, E2). S1 and S2 were major

in computer science, while E1 and E2 were working as soft engineers and

product manager respectively. All the four participants were in age between

25 to 35 at the time of the experiment. S1 and E2 were males, while S2 and

E1 were females.

Participants were separated into two groups: group 1 with S1 as explainer

and E1 as listener, and group 2 with E2 acting explainer and S2 as listener.

Here, explainer and listener are defined like this: explainer responds to explore

the dataset through the node-link diagram and then describes the evolution

process to the listener on two aspects: (1) how many communities appears

in each time step, and (2) where relation exists between two communities.

Listener checks the description from explainer on the visualization in this work

and see how much percentage the checking result matches the description.

1Dataset can be download from http://konect.uni-
koblenz.de/networks/brunson revolution

71

Explainers and listeners were trained about how to use their visualization

tools separately before the experiment started.

Figure 5.10: Captures of the visualizing result by either our visualization and
node-link diagram in case study 2

Figure 5.10 shows six important captures of the visualization by both

node-link diagram and approach of this work, where changes of the network

72

community structure appear. The performance of both the two groups was

fairly good, more than 95% of the description by explainers were caught by

the listener. One divergence of recognition by both group 1 and 2 was at

t = 31, where community 5 was not recognized as a community by explainers

but was captured by listeners. Another interesting observation was at t = 157.

In group 1, S1 did not declare that there was a relation between community

2 and 4, while E1 detected this relation through observing on visualization

by this work. Then S1 checked again on the node-link diagram and finally

identified the missed relation.

With this experimental result, it is concluded that approach in this dis-

sertation can provide considerable readability, especially when the network is

complex. Details of the evolution process of network community structure

can be described accurately, even some information that is not obvious to be

observed in node-link diagrams can be clearly detected.

5.2.3 Case Study 3: Exploration

In the final case study for presenting a sample of knowledge discovery, the co-

purchasing history of books about US policy during 2004 presidential election

was learned as a dynamic network. Background of this story is the competition

between George W. Bush, the Republican party candidate and incumbent

President, and John Kerry, the Democratic Party candidate. Generally, as

common sense, the Republicans used to be the conservative party, while the

Democrats used to be the liberal party. Opinions of these two parties are

usually antagonistic.

Figure 5.11 shows two captures of the visualization showing the network

structure in the different progress of the election, where labels on the elements

indicate the indexes of books. Table 5.5 lists detailed information of the books

by index.

It was observed that during a long time from the beginning of the election,

the co-purchasing behavior only appeared inside the two groups respectively,

no matter how these two groups changed. But this situation was broken when

73

Figure 5.11: Captures of the visualization for two situations of the network:
(a) during the most time of the election, and (b) near to the end of the election

Table 5.5: Information of the books appearing in the visualization
Index Title Sentiment

1.0 Bush vs. the Beltway Conservative
8.0 A National Parity No More Conservative
60.0 Stupid White Man Liberal
72.0 Stupid White Man Liberal
59.0 Why America Slept Neutral

the election came to the end. A small group containing books with neutral

opinions appeared and linked the rest two large groups together, while still

no relation shown between the two large groups till the end. This observation

perfectly matches the pattern defined in Chapter 4 for detecting potential

meaningful discoveries. Combining with the schedule of the presidential elec-

tion, two observation were concluded to have potential meanings:

• During the period of public voting, co-purchasing is hardly observed

between conservative-oriented and liberal-oriented books.

• It may be a good choice to recommend neutral-oriented books to readers

preferring either conservative-oriented or liberal-oriented books, and it

may be better to avoid the time period of public voting.

74

By reasoning the observations, it is possible to make discoveries with the

potential to be useful, while the exploring process on the visualization is simple

and requires little prior knowledge. Discoveries are then expected to effect the

decision making, or at least inspire discussion.

75

Chapter 6

Discussion and Conclusion

6.1 Summary

This dissertation presents a solution of online visualization and exploration

of dynamic networks. This approach is designed and implemented according

to three levels of data visualization task: automatic processing on the large

dataset for building visualization as the lowest level, appropriate design of

visual interface as the middle level, and efficient exploring method on the vi-

sualization for supporting further data analysis and knowledge discovery at

the highest level. Experiments are conducted as evidence for proving the effi-

ciency of our method from different angles. Contributions in this dissertations

are summarized as follows:

The lowest level involves two algorithms for dynamically detecting com-

munity structure of the network and rearranging the layout of the visualiza-

tion. The community detection algorithm is designed based on the accurate

description of splitting/merging events of communities. Bipartition ratio of

community is defined as the splitting/merging condition. With a high effi-

ciency of the algorithm execution, the algorithm can provide stable perfor-

mance on networks with different complexities. On the other hand, the major

presentation of our visualization is the adjacency matrix of the community,

where layout changes overtime according to network dynamic. The matrix

76

seriation algorithm in this work solves the dynamic layout problem by recur-

sively cutting and recombining the order of matrix rows/columns for a local

optimizing order and searching the global optimization by simulated anneal-

ing.

The middle level is designed on the most important concept that is the

improvement of efficiency, which is reflected by reducing both the interface

cost of computation and the learning cost of users. The visual interface was

developed to be 2 dimensional, matrix-like, and animation-based. On the same

task of visualizing dynamic networks, It is quicker and cheaper to generate

2-dimensional representation rather than 3 dimensional one. On the other

hand, different from the timeline-based approach that may lead to information

overload by providing a large number of views, animation-based approach

captures the temporal change of the network structure in only one view, and

it is easier for users to track entities in the visualization by simply tracking

their movements. Furthermore, comparing with a node-link diagram, matrix

representation helps reduce the interface cost by involving fewer entities, and

simplify the recognition of topological structure, especially for large and dense

networks.

The highest level is based on the further usage of the observations from

visualization. As data visualization is one part of data analysis, observations

through data visualization should serve further analysis and decision making.

Meanwhile, an appropriate guidance leads users to quickly focus on knowledge

discovery, especially for cases where users have little prior knowledge about

the task. The exploring method is inspired by the procedure of chance dis-

covery via KeyGraph. Similar to the bridge-island structure of KeyGraph, we

define the pattern of a potential meaningful discovery as a smaller community

linking at least two larger communities.

Corresponding to our contributions on the three levels, we conduct several

experiments to support our proposition. Parameter settings were learned for

77

both the two underlying algorithms, and algorithm performance was evalu-

ated by comparing with previous outstanding algorithms. Experiments with

statistical analysis support that (1) the matrix seriation algorithm in this

work performs better on highlighting hidden patterns and information while

considering the smoothness and continuance of matrix permutation at the

same time, and (2) the community detection algorithm yields a more stable

performance than previous works, especially when the boundaries between

communities are vague. On the other hand, visual layouts were evaluated

through both statistical and empirical experiments. The tracking records of

the average aspect ratio and the average distance change show a consider-

able level of visual accessibility, while considerable readability of the visual

interface was proved through a human-centered experiment. Finally, a case

study was conducted by showing a sample of knowledge discovery on our vi-

sualization. The result highlights the potential of making useful observations

through this work.

6.2 Potential Impact and Application

As mentioned in Chapter 1, it is expected that this dissertation can make con-

tributions to real-time analytic on dynamic networks. This section discusses

the reason about (1) why visualization technology is essential in real-time

analysis, and (2) what the application scenarios expected to be.

Generally speaking, the most challenging problem for real-time analytic

systems is the human involved decision making. There is always a contradic-

tion between the human decision and the limit of time. In many cases like

buying and selling of stocks, there is generally no time waiting for the human

decision. However, it is also unconscionable to trust the data analysis with-

out reservation. At least at this stage, the final decisions are still made by

humans. For this reason, an approach to communication between automatic

analyzing systems and human beings is essential in case of real-time analytics.

Among all the approaches, visualization technology is the most intuitive and

simple way for building this communication, where users even do not have

78

prior knowledge of data analysis.

Combining with the tasks of real-time analytics, some application scenarios

are proposed in the following paragraphs, in which approaches in this disser-

tation has a potential to play an important role. However, it is also expected

that usage is not limited to the following scenarios, and even not limited to

real-time analytics.

Taxi Reservation: The Dispatching Problem

Dispatching problem is quite common in the economy, production, and many

other aspects of the daily life. Recently, one of the most popular instances

of scheduling problem is transportation dispatching. Many applications on

mobile phones, such as Uber, Didi, and Line Taxi, provide the taxi reservation

service to public. Then, there is a dispatching problem for optimizing the

utilization ratio of taxi resource. This problem comes from the demand of

drivers. From the end of drivers, there are generally two rules for scheduling

their path, the demand density rule and the random rule. By following the

demand density rule, drivers tend to wait at or drive around in ranges with

large demand of taxi, and the random rule is just driving with no significant

purpose. Both of the two rules are empirical, which usually lead to unbalance

of taxi resource and traffic jam. Taxi distribution may concentrate on only

a few areas, where traffic jams appear. Meanwhile, the demand of taxi from

other places may not be satisfied.

Previous approaches fall into two categories: agent-based simulation and

rule-based prediction. The former learns strategies of dispatching by simulat-

ing the transportation situation based on a large amount of history data, while

the latter predicts the future situation based on rules, such as sequencing rules,

flow allowance rules, etc. Predictions can be generated in real time. However,

as a real-time system, it definitely faces the human involved decision-making

problem. Real-time transportation depending on areas should be provided

to drivers with the dispatching recommendations so that drivers can make

decisions of driving path.

79

In this case, we expect visualization in this work to be employed base on

the following scenario or similar: visualization is built on the transportation

network of taxi, where community elements represent the different areas, size

of community elements represent the scale of taxi resource, and density of the

relation elements represents the scale of taxi flow between two areas. Then

small areas strongly linked to multiple bigger areas are suggested. It is consid-

ered that these areas tend to be hidden central areas, to where taxi converge

from different sources, and it is expected that large number of passengers may

exist in hidden central areas. Taxi resources are then redistributed to avoid

blind searching and traffic jams.

Stock Marketing: Prediction of Dynamics

In the past decade, financial networks have attracted much attention from

the research community. Stock correlation network is one type of financial

network based on the correlation between stock pairs. This correlation could

be on stock prices, company relations, social events, etc. Stock correlation

network is dynamic because the correlations between stocks change over time.

It has been proved that correlation between stocks affect the prediction of

stock price, and rules like the average distance rule have bee discovered [82].

Stock buying and selling is a real-time problem based on stock marketing.

The most basic rule of Investors to maximize their capital is buying stocks at

a low price and selling them at high. However, the problem is nobody can

accurately predict the trend of stock price. Given a number of stocks with

price decreased in the past few days/weeks/months, the problem is to decide

which stock(s) will have price warming up again in the near future.

There is a potential that this dissertation provides a solution. The ap-

plication scenario could be like this or similar: visualization is built on the

stock correlation network, where community elements shows the communities

of stocks, size and color of the community elements show the general trend

of prices increasing/decreasing (red and large community element shows a

significant increasing trend of price inside the community in general, while

80

green and small community element shows slight decreasing trend of price),

and connection elements describe the linking strength between communities.

The visualization then suggests small green communities linking at least two

bigger red communities. We expect that stocks inside the suggested commu-

nities are suffering a temporary valley, and they have the potential to meet

a bounce as their close neighbors on the network perform sharply increase of

price.

6.3 Further Works

This research is not finished by this dissertation, there are still some works

remained for further research. Works are listed as follows:

Visualization of inside-community structure Based on the comments

from the participants of the human-centered experiment in Chapter 5, the

most important improvement for further research is considered to be a detailed

visualization of the inner-community structure. One participant in the case

study in section 5.2.2 mentioned that only providing the label of a central node

in the community is not enough for further analyzing and reasoning the ob-

servation, while another participant also suggested that detailed information

can enhance the confidence of making observations by users. By agreeing with

the suggestions of adding detailed information of inside-community structure,

it should also be considered carefully about the way of representation. Sev-

eral issues exist in this case: the community elements in the visualization can

be quite small, where detailed information can only be represented through

zooming function, or by a pop-up sub-view responding to mouse events. Also,

the nature of online system decides that the view of interface changes rapidly,

where expressing detailed information inside the community is quite difficult

for easy recognition.

Improvement of visual design based on real application The fea-

sibility of applying this approach to solving real problems also needs to be

81

discussed. In this dissertation, visualization approach is designed on the theo-

retical level, and some real problems are not considered in details. For exam-

ple, the data transferring problem is always a challenge in real-time analytics.

Data streams are generally unstructured or semi-structure, which need to be

processed for analysis. Also, data streams may come from different sources,

and parallel strategy of multiple data streams processing is also an issue. In

this case, both the visual design and the processing mechanism of data stream

should be revised closer to the real case.

Improvement of the matrix seriation algorithm Our method only con-

siders the physical position of the elements in the visualization, while other

aspects could affect the result as well, such as the semantic relations of the

elements, the social relations if possible, and so on.

Improvement of the visual interface implementation There should

be some extension of the visual interface for fitting to detailed purpose. For

example, our visualization can only describe a pairwise relation between com-

munities, while there could be relations between more than 2 communities,

which cannot be described ideally. In this case, a hierarchical description of a

higher-level structure may be useful. Also, it could be difficult to observe the

small communities. This issue comes to be tricky and should be solved more

smartly.

82

Bibliography

[1] Lu X, Brelsford C. Network structure and community evolution on twit-

ter: human behavior change in response to the 2011 Japanese earthquake

and tsunami. Scientific reports. 2014;4:6773.

[2] Stone J, Developers NT, Eargle J, Sethi A, Li L, Luthey-Schulten Z.

Dynamical Network Analysis. 2012;.

[3] Bach B, Pietriga E, Fekete JD. Visualizing dynamic networks with matrix

cubes. In: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. ACM; 2014. p. 877–886.

[4] Herman I, Melançon G, Marshall MS. Graph visualization and naviga-

tion in information visualization: A survey. Visualization and Computer

Graphics, IEEE Transactions on. 2000;6(1):24–43.

[5] Qi J, Ohsawa Y. Matrix-like visualization based on topic modeling for

discovering connections between disjoint disciplines. Intelligent Decision

Technologies. 2015;(Preprint):1–11.

[6] Qi J, Ohsawa Y. BLOCKS: Efficient and Stable Online Visualization

of Dynamic Network Evolution. The Review of Socionetwork Strategies.

2016;10(1):33–51.

[7] Qi J, Ohsawa Y. Recut: a seriation algorithm balancing smooth display

and aggregated features. Fundamenta Informaticae. 2016;146(3).

[8] Ohsawa Y. Chance discoveries for making decisions in complex real world.

New Generation Computing. 2002;20(2):143–163.

83

[9] Fayyad UM, Wierse A, Grinstein GG. Information visualization in data

mining and knowledge discovery. Morgan Kaufmann; 2002.

[10] Ghoniem M, Fekete JD, Castagliola P. A comparison of the readability of

graphs using node-link and matrix-based representations. In: Information

Visualization, 2004. INFOVIS 2004. IEEE Symposium on. Ieee; 2004. p.

17–24.

[11] Misue K, Eades P, Lai W, Sugiyama K. Layout adjustment and the

mental map. Journal of visual languages and computing. 1995;6(2):183–

210.

[12] Brandes U, Wagner D. A Bayesian paradigm for dynamic graph layout.

In: Graph Drawing. Springer; 1997. p. 236–247.

[13] Lee YY, Lin CC, Yen HC. Mental map preserving graph drawing using

simulated annealing. In: Proceedings of the 2006 Asia-Pacific Symposium

on Information Visualisation-Volume 60. Australian Computer Society,

Inc.; 2006. p. 179–188.

[14] Burch M, Schmidt B, Weiskopf D. A matrix-based visualization for ex-

ploring dynamic compound digraphs. In: 2013 17th International Con-

ference on Information Visualisation. IEEE; 2013. p. 66–73.

[15] Stein K, Wegener R, Schlieder C. Pixel-oriented visualization of change

in social networks. In: 2010 International Conference on Advances in

Social Networks Analysis and Mining. IEEE; 2010. p. 233–240.

[16] Brandes U, Nick B. Asymmetric relations in longitudinal social net-

works. Visualization and Computer Graphics, IEEE Transactions on.

2011;17(12):2283–2290.

[17] Doncheva NT, Assenov Y, Domingues FS, Albrecht M. Topological anal-

ysis and interactive visualization of biological networks and protein struc-

tures. Nature protocols. 2012;7(4):670–685.

84

[18] Sebrechts MM, Cugini JV, Laskowski SJ, Vasilakis J, Miller MS. Visu-

alization of search results: a comparative evaluation of text, 2D, and 3D

interfaces. In: Proceedings of the 22nd annual international ACM SIGIR

conference on Research and development in information retrieval. ACM;

1999. p. 3–10.

[19] Greilich M, Burch M, Diehl S. Visualizing the evolution of compound

digraphs with TimeArcTrees. In: Computer Graphics Forum. vol. 28.

Wiley Online Library; 2009. p. 975–982.

[20] Burch M, Vehlow C, Beck F, Diehl S, Weiskopf D. Parallel edge splatting

for scalable dynamic graph visualization. Visualization and Computer

Graphics, IEEE Transactions on. 2011;17(12):2344–2353.

[21] Dwyer T, Eades P. Visualising a fund manager flow graph with columns

and worms. In: Information Visualisation, 2002. Proceedings. Sixth In-

ternational Conference on. IEEE; 2002. p. 147–152.

[22] Erten C, Kobourov SG, Le V, Navabi A. Simultaneous graph draw-

ing: Layout algorithms and visualization schemes. In: Graph Drawing.

Springer; 2003. p. 437–449.

[23] Federico P, Aigner W, Miksch S, Windhager F, Zenk L. A visual an-

alytics approach to dynamic social networks. In: Proceedings of the

11th International Conference on Knowledge Management and Knowl-

edge Technologies. ACM; 2011. p. 47.

[24] Itoh M, Toyoda M, Kitsuregawa M. An interactive visualization frame-

work for time-series of web graphs in a 3D environment. In: Information

Visualisation (IV), 2010 14th International Conference. IEEE; 2010. p.

54–60.

[25] Boyandin I, Bertini E, Lalanne D. A Qualitative Study on the Exploration

of Temporal Changes in Flow Maps with Animation and Small-Multiples.

In: Computer Graphics Forum. vol. 31. Wiley Online Library; 2012. p.

1005–1014.

85

[26] Diehl S. Preserving the Mental Map using Foresighted Layout Stephan

Diehl, Carsten Giorg and Andreas Kerren University of Saarland, FR 6.2

Informatik, PO Box 15 11 50, D-66041 Saarbriucken, Germany. 2001;.

[27] Diehl S, Görg C. Graphs, they are changing. In: Graph drawing. Springer;

2002. p. 23–31.

[28] Erten C, Harding PJ, Kobourov SG, Wampler K, Yee G. GraphAEL:

Graph animations with evolving layouts. In: Graph Drawing. Springer;

2003. p. 98–110.

[29] Ohsawa Y, Ito T, Kamata MI. Kamishibai KeyGraph: Tool for Vi-

sualizing Structural Transitions for Detecting Transient Causes. New

Mathematics and Natural Computation. 2010;6(02):177–191.

[30] Sugimoto M, Ueda T, Okada S, Ohsawa Y, Maeno Y, Nitta K. Discus-

sion analysis using temporal data crystallization. In: New Frontiers in

Artificial Intelligence. Springer; 2012. p. 205–216.

[31] Vehlow C, Beck F, Auwärter P, Weiskopf D. Visualizing the evolution of

communities in dynamic graphs. In: Computer Graphics Forum. vol. 34.

Wiley Online Library; 2015. p. 277–288.

[32] Ma C, Kenyon RV, Forbes AG, Berger-Wolf T, Slater BJ, Llano DA. Vi-

sualizing dynamic brain networks using an animated dual-representation.

In: Proceedings of the Eurographics Conference on Visualization (Euro-

Vis); 2015. p. 73–77.

[33] Mall R, Langone R, Suykens JA. Netgram: Visualizing Communities in

Evolving Networks. PloS one. 2015;10(9):e0137502.

[34] Girvan M, Newman ME. Community structure in social and bio-

logical networks. Proceedings of the national academy of sciences.

2002;99(12):7821–7826.

[35] Clauset A, Newman ME, Moore C. Finding community structure in very

large networks. Physical review E. 2004;70(6):066111.

86

[36] Guimera R, Sales-Pardo M, Amaral LAN. Modularity from fluctua-

tions in random graphs and complex networks. Physical Review E.

2004;70(2):025101.

[37] Massen CP, Doye JP. Identifying communities within energy landscapes.

Physical Review E. 2005;71(4):046101.

[38] Medus A, Acuna G, Dorso C. Detection of community structures in

networks via global optimization. Physica A: Statistical Mechanics and

its Applications. 2005;358(2):593–604.

[39] Guimera R, Amaral LAN. Functional cartography of complex metabolic

networks. Nature. 2005;433(7028):895–900.

[40] Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of

communities in large networks. Journal of statistical mechanics: theory

and experiment. 2008;2008(10):P10008.

[41] Donetti L, et al. Detecting network communities: a new systematic

and efficient algorithm. Journal of Statistical Mechanics: Theory and

Experiment. 2004;2004(10):P10012.

[42] Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining

and identifying communities in networks. Proceedings of the National

Academy of Sciences of the United States of America. 2004;101(9):2658–

2663.

[43] Newman ME, Leicht EA. Mixture models and exploratory analy-

sis in networks. Proceedings of the National Academy of Sciences.

2007;104(23):9564–9569.

[44] Ronhovde P, Nussinov Z. Multiresolution community detection for

megascale networks by information-based replica correlations. Physical

Review E. 2009;80(1):016109.

[45] Rosvall M, Bergstrom C. Maps of information flow reveal community

structure in complex networks. Citeseer; 2007.

87

[46] Rosvall M, Bergstrom CT. Maps of random walks on complex networks

reveal community structure. Proceedings of the National Academy of

Sciences. 2008;105(4):1118–1123.

[47] Newman ME, Girvan M. Finding and evaluating community structure

in networks. Physical review E. 2004;69(2):026113.

[48] Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping com-

munity structure of complex networks in nature and society. Nature.

2005;435(7043):814–818.

[49] Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm

for large-scale detection of protein families. Nucleic acids research.

2002;30(7):1575–1584.

[50] Fortunato S, Barthelemy M. Resolution limit in community detection.

Proceedings of the National Academy of Sciences. 2007;104(1):36–41.

[51] Hubert L, Arabie P, Meulman J. Combinatorial data analysis: Optimiza-

tion by dynamic programming. vol. 6. SIAM; 2001.

[52] Chen CH. Generalized association plots: Information visualization via

iteratively generated correlation matrices. Statistica Sinica. 2002;p. 7–29.

[53] Brusco MJ, Stahl S. Branch-and-bound applications in combinatorial

data analysis. Springer Science & Business Media; 2006.

[54] Brusco MJ, Köhn HF, Stahl S. Heuristic implementation of dynamic pro-

gramming for matrix permutation problems in combinatorial data anal-

ysis. Psychometrika. 2008;73(3):503–522.

[55] Caraux G, Pinloche S. PermutMatrix: a graphical environment to ar-

range gene expression profiles in optimal linear order. Bioinformatics.

2005;21(7):1280–1281.

[56] Hubert L, Schultz J. Quadratic assignment as a general data analy-

sis strategy. British journal of mathematical and statistical psychology.

1976;29(2):190–241.

88

[57] Barnard ST, Pothen A, Simon H. A spectral algorithm for envelope

reduction of sparse matrices. Numerical linear algebra with applications.

1995;2(4):317–334.

[58] Rodgers JL, Thompson TD. Seriation and multidimensional scaling: A

data analysis approach to scaling asymmetric proximity matrices. Ap-

plied psychological measurement. 1992;16(2):105–117.

[59] Ding C, He X. Linearized cluster assignment via spectral ordering. In:

Proceedings of the twenty-first international conference on Machine learn-

ing. ACM; 2004. p. 30.

[60] Gruvaeus G, Wainer H. TWO ADDITIONS TO HIERARCHICAL

CLUSTER ANALYSIS†. British Journal of Mathematical and Statis-

tical Psychology. 1972;25(2):200–206.

[61] Climer S, Zhang W. Rearrangement clustering: Pitfalls, remedies, and

applications. The Journal of Machine Learning Research. 2006;7:919–943.

[62] McCormick Jr WT, Schweitzer PJ, White TW. Problem decomposition

and data reorganization by a clustering technique. Operations Research.

1972;20(5):993–1009.

[63] Niermann S. Optimizing the ordering of tables with evolutionary com-

putation. The American Statistician. 2012;.

[64] Lenstra J. Technical Note—Clustering a Data Array and the Traveling-

Salesman Problem. Operations Research. 1974;22(2):413–414.

[65] Wittek P. Two-way incremental seriation in the temporal domain

with three-dimensional visualization: Making sense of evolving high-

dimensional datasets. Computational Statistics & Data Analysis.

2013;66:193–201.

[66] McBurney P, Ohsawa Y. Chance Discovery. 2003;.

89

[67] Ohsawa Y, Benson NE, Yachida M. KeyGraph: Automatic indexing

by co-occurrence graph based on building construction metaphor. In:

Research and Technology Advances in Digital Libraries, 1998. ADL 98.

Proceedings. IEEE International Forum on. IEEE; 1998. p. 12–18.

[68] Ohsawa Y. KeyGraph: visualized structure among event clusters. In:

Chance Discovery. Springer; 2003. p. 262–275.

[69] Ohsawa Y. KeyGraph as risk explorer in earthquake–sequence. Journal

of contingencies and crisis management. 2002;10(3):119–128.

[70] Horie K, Ohsawa Y, Okazaki N. Products designed on scenario maps

using pictorial KeyGraph. WSEAS Transactions on Information Science

and Applications. 2006;3(7):1324–1331.

[71] Seo Y, Iwase Y, Takama Y. KeyGraph-based BBS for online chance

discovery. In: Systems, Man and Cybernetics, 2006. SMC’06. IEEE In-

ternational Conference on. vol. 2. IEEE; 2006. p. 1754–1758.

[72] Goldberg DE, Sastry K, Ohsawa Y. Discovering deep building blocks for

competent genetic algorithms using chance discovery via keygraphs. In:

Chance discovery. Springer; 2003. p. 276–301.

[73] Liu C, Ohsawa Y, Suda Y. Valuation of data through use-scenarios in in-

novators’ marketplace on data jackets. In: 2013 IEEE 13th International

Conference on Data Mining Workshops. IEEE; 2013. p. 694–701.

[74] Ohsawa Y, Liu C, Suda Y, Kido H. Innovators marketplace on data

jackets for externalizing the value of data via stakeholders’ requirement

communication. In: 2014 AAAI Spring Symposium Series; 2014. .

[75] Strehl A, Ghosh J. Cluster ensembles—a knowledge reuse framework

for combining multiple partitions. The Journal of Machine Learning Re-

search. 2003;3:583–617.

[76] Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing

community detection algorithms. Physical review E. 2008;78(4):046110.

90

[77] Lancichinetti A, Fortunato S. Community detection algorithms: a com-

parative analysis. Physical review E. 2009;80(5):056117.

[78] Fisher RA. The use of multiple measurements in taxonomic problems.

Annals of eugenics. 1936;7(2):179–188.

[79] Buchta C, Hornik K, Hahsler M. Getting things in order: an introduction

to the R package seriation. Journal of Statistical Software. 2008;25(3):1–

34.

[80] Bezdek JC, Hathaway RJ. VAT: A tool for visual assessment of (cluster)

tendency. In: Neural Networks, 2002. IJCNN’02. Proceedings of the 2002

International Joint Conference on. vol. 3. IEEE; 2002. p. 2225–2230.

[81] Bederson BB, Shneiderman B, Wattenberg M. Ordered and quantum

treemaps: Making effective use of 2D space to display hierarchies. AcM

Transactions on Graphics (TOG). 2002;21(4):833–854.

[82] Onnela JP, Chakraborti A, Kaski K, Kertesz J. Dynamic asset trees and

Black Monday. Physica A: Statistical Mechanics and its Applications.

2003;324(1):247–252.

91

