
 
 

博士論文（要約） 
 
 

 

Full-Field Simulation for Sonic Boom Propagation 

through Real Atmosphere 

（実在大気中のソニックブーム伝播に関する全空間解析） 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

山 下  礼 
 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTokyo Repository

https://core.ac.uk/display/197119723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

Doctoral Thesis 

 
 

 

Full-Field Simulation for Sonic Boom Propagation 

through Real Atmosphere 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Rei Yamashita 

 

Department of Advanced Energy 

Graduate School of Frontier Sciences 

The University of Tokyo 

February, 2016 



 
 

i 
 

 

Contents 
 

Nomenclature 

 

1 Introduction ·········································································································· 1 

 1.1 Sonic boom ····································································································· 1 

 1.2 Existing prediction methods for sonic boom ······························································· 3 

    1.2.1 Near field······························································································· 3 

    1.2.2 Far field ································································································ 4 

   1.2.3 Caustic-vicinity field ················································································· 5 

    1.2.4 Limitation of application············································································· 6 

  1.3 Full-field simulation ··························································································· 7 

    1.3.1 Introduction of full-field simulation method ······················································ 7 

    1.3.2 Roadmap for formulation of full-field simulation method ······································ 8 

 1.4 Objectives ······································································································ 10 

  1.5 Outline of this thesis ·························································································· 10 

 

2 Full-Field Simulation Method ··················································································· 11 

(Not open to the public because the contents of this chapter will be published in journal articles.) 

 

3 Validation of Computational Accuracy ········································································ 12 

(Not open to the public because the contents of this chapter will be published in journal articles.) 

 

4 Full-Field Simulation for Rise Time Prediction ······························································ 13 

(Not open to the public because the contents of this chapter will be published in journal articles.) 

 

5 Full-Field Simulation at Low Supersonic Speed ····························································· 14 

(Not open to the public because the contents of this chapter will be published in journal articles.) 

 



 
 

ii 
 

6 Full-Field Simulation at Hypersonic Speed ··································································· 15 

(Not open to the public because the contents of this chapter will be published in journal articles.) 

 

7 Conclusions ·········································································································· 16 

(Part of this chapter is not open to the public because the contents of this chapter will be published in 

journal articles.) 

 

Appendix Waveform Parameter Method ········································································ 18 

 

References ················································································································ 20 

Publications ·············································································································· 25 

Acknowledgment ········································································································ 27 



 
 

iii 
 

 

Nomenclature 
 

Roman Symbols 

an :  velocity normal to wave front 

A :  Jacobian matrix or ray tube area 

c :  speed of sound 

D :  maximum diameter 

e :  total energy per unit volume 

22
, vNvO ee  :  vibrational energy of O2 and N2 per unit volume 

E, F, G : inviscid flux vectors 

Ev, Fv, Gv : viscous flux vectors 

F~  : inviscid flux vector at cell interface 

g :  acceleration of gravity 

h :  altitude 

ha :  absolute humidity 

hr :  relative humidity 

H :  axi-symmetric inviscid term 

Hv :  axi-symmetric viscous term 

I :  unit matrix 

J :  Jacobian 

m  :  mass flux 

mi :  pressure gradient of segment i (Appendix) 

M :  Mach number 

ns :  number of molecular species 

L :  length of body 

p :  pressure 

p~  :  pressure flux 

Pr :  Prandtl number 

q : primitive variables 
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Q : conservative variables 

R :  gas constant 

Re :  Reynolds number 

s :  flux limiter function 

S :  source term 

S(x) :  cross-sectional area at x coordinate 

SC :  correction term for gravity term 

SG :  gravity term 

SW :  translational-vibrational relaxation term 

t : time 

t


 : unit vector tangential to surface of body 

T :  temperature 

T01 :  triple point temperature 

22
, vNvO TT  :  vibrational temperature of O2 and N2 

u, v, w :  velocity components 

U


 :  velocity vector 

Vn : velocity component normal to cell interface 

22
, vNvO ww  :  translational-vibrational relaxation term of O2 and N2 

wv, max :  maximum value of translational-vibrational relaxation term 

xn, yn, zn : unit vector components normal to cell interface 

x, y, z : Cartesian coordinates 

x, r, θ : cylindrical coordinates 

 

Greek Symbols 

α :  angle of flow velocity from x direction 

β :  temperature lapse rate 

βr :  relaxation coefficient 

γ :  ratio of specific heat 

Δetr, max :  maximum increase in translational energy per unit volume 

Δp :  pressure fluctuation from atmospheric pressure 

Δpi :  pressure rise at the boundary of segments i and i–1 (Appendix) 

Δpmax :  pressure rise 

Δtex :  exchange time of translational-vibrational energy 
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Δtrt :  rise time 

22
, NO εε   :  mole ratio of air of O2 and N2 

22
, NO θθ  :  characteristic vibrational temperature of O2 and N2 

κ : thermal conductivity 

λ :  spectral radius 

λDi :  time duration of segment i (Appendix) 

μ :  viscous coefficient 

μM :  Mach angle 

μM mod :  modified Mach angle 

ρ : density 

τ :  viscous shear stress 

22
, NO ττ  :  relaxation time of O2 and N2 

φ  :  scalar quantity 

ξ, η, ζ :  generalized coordinates 

 

Subscript 

0 :  ground 

1 :  value just before shock wave 

a :  atmosphere 

L, R :  left-side and right-side values at cell interface 

∞ :  freestream value at flight altitude 

 

Superscript 

eq :  thermal equilibrium 

* :  nondimensional variable 
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Chapter 1 

Introduction 
 

1.1 Sonic Boom 
 Shock waves generated from a supersonic or hypersonic flight object propagate through the atmosphere 

down to the ground. Consequently, the rapid pressure rises caused by the shock waves generate significant 

impacts including explosive sounds on the ground. This phenomenon is known as sonic boom [1], which 

occurs primarily due to an aircraft flying faster than the speed of sound [2] and a meteorite falling to the 

earth [3, 4]. 

Figure 1.1 shows a schematic of sonic boom propagation from the near field around a supersonic aircraft 

to the far field reaching the ground. Multiple shock waves generated from a fuselage and wings are 

consolidated into an N-shaped waveform (N-wave) in the far field, and as a result the explosive sound 

occurs twice on the ground [5]. For the sonic boom problem, the overland civil supersonic flight has been 

restricted, and there has been no civil supersonic aircraft after the Concorde was retired in 2003 [6]. The 

International Civil Aviation Organization (ICAO) [7] presently deliberates an international standard in 

which the allowable level of sonic boom is determined to realize an overland supersonic flight. To 

formulate the clear international standard, sonic boom intensity in various flight and atmospheric 

conditions must be precisely predicted. Therefore, research activities of sonic boom including not only the 

sonic boom minimization [8, 9] but also the development of accurate prediction methods for sonic boom 

[10, 11] are accelerated. Moreover, to validate the accuracy of sonic boom predictions, several flight tests 

for sonic boom were recently conducted by NASA [12, 13] and the Japan Aerospace Exploration Agency 

(JAXA) [14, 15]. 

Sonic boom researches on supersonic aircrafts have been significantly advanced, whereas those on 

hypersonic aircrafts have been hardly conducted. However, the development of hypersonic aircrafts is 

recently accelerated [16, 17], and the sonic boom problem must be addressed not only in supersonic 

aircrafts but also in hypersonic aircrafts [18]. Sonic boom intensity of a hypersonic aircraft may be weaker 

than that of a supersonic aircraft because of the following reason: The cruising altitude of the hypersonic 
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Fig. 1.1  Schematic of sonic boom propagation generated from supersonic aircraft. 

 

aircraft is assumed to be higher than that of the supersonic aircraft, and the distance of sonic boom 

propagation to the ground increases with increasing the flight altitude. However, sonic boom propagation 

from hypersonic aircrafts cannot be precisely predicted because the existing prediction methods for sonic 

boom based on the weak shock theory [19] do not consider the strong nonlinearity and thermochemical 

nonequilibrium in hypersonic flow regimes [20]. Therefore, the accurate prediction method considering 

these effects must be constructed to evaluate sonic boom intensity generated from hypersonic aircrafts. 

Sonic boom is generated from not only an aircraft flying faster than the speed of sound but also a 

meteorite falling to the earth. Ten-thousand near-earth asteroids are presently observed [21], and there is 

always the possibility of a meteorite falling. In fact, the big meteorite events were observed near the 

Marshall Islands in 1994 [22], Indonesia in 2009 [23], and Chelyabinsk, Russia in 2013 [24–27]. In 

particular, the Chelyabinsk event was well known because the significant damage was caused by the 

meteorite falling. The Chelyabinsk meteorites exploded several times, and small fragments generated by 

the explosions fell to the ground. At that time, strong shock waves were generated from not only the 

meteorites exploding but also their hypersonic flights, and they propagated toward the ground. 

Consequently, the sonic boom rather than the direct impact of the fragments caused the significant damage 

including not only the destruction of the building but also the human damage. Extrapolated from the 

measurement of the window breakage in Chelyabinsk, the pressure rise caused by the shock wave was 

estimated to be 3.2±0.6 kPa [24]. Hence, it can be seen that the sonic boom intensity in the Chelyabinsk 

meteorite was much stronger than that in a supersonic aircraft (e.g., the pressure rise generated by the 

Concorde flying at the cruising speed was approximately 95 Pa [6]). Because the proportion of the 

population area on the earth is low, a natural disaster, as well as the Chelyabinsk event, was not observed in 
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the past century. However, it is thought that the meteorite of the same size as that of Chelyabinsk falls to 

the earth once in a decade [27, 28]; thus, there is always the possibility of a natural disaster caused by a 

meteorite falling. From these facts, it is important to evaluate the influence of meteorite impacts including 

sonic boom and to anticipate hazard meteorites. However, the sonic boom prediction of a hypersonic 

meteorite has been mainly predicted by the self-similar solution [29, 30], without consideration of the 

atmospheric effects such as atmospheric stratification, viscosity, and thermochemical nonequilibrium. In 

addition, the existing prediction methods based on the weak shock theory [19] cannot be applied to the 

sonic boom prediction of the hypersonic meteorite because of the strong nonlinearity and thermochemical 

nonequilibrium in a hypersonic flow regime [20]. Therefore, the accurate prediction method must be 

constructed to precisely predict sonic boom propagation generated from hypersonic meteorites as well as 

that generated from hypersonic aircrafts. 

 

1.2 Existing prediction methods for sonic boom 

 Sonic boom intensity depends on the configuration of flight object, the flight and atmospheric conditions, 

and the ground geometry [2]. In particular, the atmospheric effects such as atmospheric stratification [31], 

molecular relaxation [32, 33], and atmospheric turbulence [34–36] significantly affect the sonic boom 

intensity because the sonic boom propagates for quite a long distance until it reaches the ground. Therefore, 

the accurate prediction of sonic boom with consideration of all such effects is challenging but essential for 

evaluating the perceived loudness of sonic boom. Thus far, the prediction methods for sonic boom have 

been mainly developed to realize a low-boom supersonic aircraft [8, 9], and the predictions have been 

conducted in three different fields: the near field around a supersonic aircraft, the far field reaching the 

ground, and the caustic-vicinity field [37] where the shock waves are focused due to accelerations, 

maneuvers, and low-supersonic flights. In this section, the representative prediction methods in each field 

and the limitation of the application are described. 

 

1.2.1 Near field 

As a three-dimensional aircraft configuration and strong nonlinearity must be considered in the near field, 

near-field pressure waveforms have been obtained by experiments or Computational Fluid Dynamics 

(CFD). The experiments are categorized into two types: wind tunnel [38, 39] and ballistic range [40] 

experiments. The experimental techniques using wind tunnels have been already established, and the 

experimental results have been used to validate the accuracy of computation [41]. However, the influence 

of a sting to which the experimental model is attached cannot be ignored in the wind tunnel experiments. In 
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contrast, such a sting is unnecessary in ballistic range experiments because the free flight of the model is 

conducted. For this reason, the ballistic range experiments have been conducted, although the experimental 

technique should be further improved because the flight control including the angle of attack is difficult. In 

addition, CFD analysis [42] is often performed not only to obtain near-field waveforms but also to evaluate 

the flow field around the body. However, the computational results may be somewhat different from the 

experimental results because of the complexity of the flow fields around three-dimensional aircraft 

configurations. Thus, the CFD methods for precisely predicting sonic boom intensity have been studied [43, 

44]. 

 

1.2.2 Far field 

  It is difficult to precisely predict sonic boom propagation for quite a long distance in the real atmosphere 

because sonic boom intensity depends on various effects such as geometrical spreading, nonlinearity, and 

atmospheric effects [33]. Hence, far-field waveforms have been obtained by simplified prediction methods 

based on the weak shock theory formulated by Whitham [19], in which a shock wave is treated as a sound 

wave, and the propagation speed at any point is modified by the isentropic wave theory to consider the 

nonlinear effect; i.e., the propagation speed is assumed to be a sum of the local speed of sound and the 

change of velocity. In addition, a shock wave is determined by the area-balancing technique: if two Mach 

lines intersect with each other, the bisector is treated as a shock wave. According to the Whitham’s theory, 

the pressure rise of weak shock wave in the far field decreases as the power –3/4 of radial distance from the 

body axis (according to the Lin’s self-similar solution, the pressure rise of strong shock wave decreases as 

the power –2 of radial distance [29]). Although sonic boom intensity can be roughly predicted by the 

Whitham’s solution, the accuracy is inadequate for evaluating the perceived loudness of sonic boom 

because of the following two reasons: First, the strong nonlinearity in the near field around a flight object 

cannot be considered by the solution. Second, the atmospheric effects such as atmospheric stratification, 

molecular relaxation, and viscosity cannot be considered. Thus, several prediction methods, in which the 

weak shock theory is extended to the more practical use, have been proposed. 

  The waveform parameter method invented by Thomas [45] is a representative prediction method for 

sonic boom. In this method, far-field waveforms can be predicted by extrapolating the near-field waveform 

that is obtained by the experiment or CFD [46], and the wave propagation is computed in consideration of 

several effects including geometrical spreading, nonlinearity, and atmospheric stratification (see Appendix 

for details). However, the rise time of sonic boom, which is one of the most important parameters for 

evaluating sonic boom intensity, cannot be predicted by the waveform parameter method because the shock 

wave is treated as a discontinuity; i.e., the shock wave has no thickness. Although the formation mechanism 
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of rise time has not been well clarified, it is thought that the molecular relaxation and thermoviscous 

dissipation including the fluid friction and thermal conduction have significant effects on the formation of 

rise time [32]. Hence, several prediction methods of rise time, in which the molecular relaxation and 

thermoviscous dissipation are considered, have been proposed. These methods are categorized into two 

approaches. One is the frequency domain approach [47], wherein the relaxation effects are considered in 

the frequency domain while the wave propagation is computed in the time domain. The other is the time 

domain approach based on the augmented Burgers equation [48], wherein the wave propagation with the 

relaxation effects is computed in the time domain. Recently, the method of solving the augmented Burgers 

equation is often used to predict far-field waveforms, including not only the pressure rise but also the rise 

time. 

Accuracy of the prediction methods was recently evaluated by comparison with the Drop test for 

Simplified Evaluation of Non-symmetrically Distributed sonic boom #1 (D-SEND#1) [14] conducted by 

JAXA. As a result, the latest prediction method of solving the augmented Burgers equation [48] was the 

best possible way to predict the sonic boom intensity, including not only the pressure rise but also the rise 

time. However, the discrepancies between predictions and flight test measurements were significantly 

changed according to the flight and atmospheric conditions [49], because of the following two reasons: 

First, the effects of molecular relaxation and thermoviscous dissipation were treated as simplified models, 

and the treatments might not be adequate for analyzing sonic boom propagation in various flight and 

atmospheric conditions because these effects have not been fully clarified, although they have been 

investigated by one-dimensional numerical and asymptotic analyses [50]. Second, the effect of atmospheric 

turbulence [34–36], which causes the ragged distortion of the waveform behind the shock wave, was not 

considered because it cannot be well modeled. Therefore, the effects of molecular relaxation, 

thermoviscous dissipation, and atmospheric turbulence should be further investigated, and the prediction 

method considering the detailed models of these effects must be constructed to precisely predict sonic 

boom propagation through the real atmosphere. 

 

1.2.3 Caustic-vicinity field 

  Acoustic rays that indicate the propagation paths of shock waves converge in accelerations [51], 

maneuvers [52], and low-supersonic flights [53]. Consequently, the envelop surface of the rays forms a 

caustic cusp, at which the sonic boom intensity becomes approximately three times larger than that without 

the focusing of the rays. This phenomenon is known as focused sonic boom [54]. In order to predict 

focused sonic boom, the diffraction effect caused by atmospheric stratification with altitude must be 

considered. Because the far-field prediction methods such as the waveform parameter method cannot 
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consider the diffraction effect, focused sonic boom has been analyzed by other prediction methods of 

solving the progressive wave equation [55], Khokhlov–Zabolotskaya (KZ) equation [56], nonlinear 

Tricomi equation [57] and so on. The accuracies of these methods were evaluated by comparison with the 

flight test, known as the Superboom Caustic Analysis and Measurement Project (SCAMP) [12] at NASA. 

As a result, the latest prediction method of solving the lossy nonlinear Tricomi equation [58] was the best 

possible way to evaluate the focused sonic boom, and the focusing strength was in good agreement with the 

flight test results. However, because the lossy nonlinear Tricomi equation does not incorporate the 

important effects of geometrical spreading and atmospheric stratification, the accuracy of the prediction 

may significantly differ in the flight and atmospheric conditions. In addition, the attenuation characteristics 

of the evanescent wave [57, 58] under the caustic region have not been fully clarified, although this wave is 

assumed to decay exponentially toward the ground. Therefore, the flight test, known as the Farfield 

Investigation of No boom Threshold (FaINT) [13] at NASA, was conducted to evaluate sonic boom cutoff 

phenomena [53] in the caustic-vicinity field, where the shock waves do not reach the ground because of an 

increase in atmospheric temperature toward the ground. 

 

1.2.4 Limitation of application 

  Sonic boom waveforms generated from supersonic aircrafts in several flight and atmospheric conditions 

can be predicted by the existing prediction methods. However, these methods are based on the weak shock 

theory, and even complex phenomena are treated as simplified models. Thus, the applications of these 

methods are limited, and there are four big issues as follows. First, the accuracy of the rise time prediction 

is not necessarily adequate because the molecular relaxation and thermoviscous dissipation are evaluated as 

simplified models, and the effect of atmospheric turbulence cannot be well considered, as described in 

section 1.2.2. Second, the prediction of focused sonic boom in the caustic-vicinity field is conducted 

without consideration of the important effects such as geometrical spreading and atmospheric stratification, 

and the prediction accuracy of the evanescent wave is not adequate, as described in section 1.2.3. Third, the 

prediction methods based on the weak shock theory cannot be applied to sonic boom propagation generated 

from hypersonic flight objects because of the following reason: The area-balancing technique [19] for 

determining the weak shock waves cannot be applied to the strong shock waves with strong nonlinearity. In 

addition, the formation process of rise time significantly differs in supersonic and hypersonic flow regimes 

because the effects of molecular relaxation and chemical nonequilibrium in the hypersonic flow regime are 

much stronger than those in the supersonic flow regime. Forth, the variation in the circumferential direction 

around the body axis cannot be considered, and the ground effects [59, 60], including the ground reflection 

and ground topography, are treated as simplified models in the exciting prediction methods. For these 
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reasons, the applications of the existing prediction methods are limited, and they must be further improved 

to precisely predict sonic boom intensity in various flight, atmospheric, and ground conditions. Moreover, 

considering the fact that the several flight tests for sonic boom measurements were recently conducted, 

high-precision numerical flight experiments should be conducted in concert with the flight tests. Therefore, 

instead of the simplified prediction methods using the weak shock theory, the rigorous prediction method 

based on the CFD, i.e., the full-field simulation method [61, 62] seems to be a valid approach not only for 

analyzing sonic boom propagation through the real atmosphere but also for realizing numerical flight 

experiments (see next section for details). 

 

1.3 Full-field simulation 

1.3.1 Introduction of full-field simulation method 

  Full-field simulation [61, 62] represents CFD analysis for sonic boom predictions, wherein the entire 

flow field including the near, far, and caustic-vicinity fields is solved as a single computational domain. 

This simulation has the potential for considering various flight, atmospheric, and ground conditions 

because of the following three reasons: First, even complex effects such as molecular relaxation, viscosity, 

chemical nonequlibrium, and turbulence can be incorporated by modifying the governing equations 

[63–65], although the rigorous physics-based models of these effects must be constructed as needed. 

Second, the three-dimensional structure of a shock wave can be clarified because this method can consider 

the variation in the circumferential direction around the body axis. Third, the ground effects, including not 

only the ground reflection but also the ground topography, are precisely predicted because even a complex 

geometry, as well as an aircraft configuration, can be analyzed by the CFD methods [66, 67]. For these 

reasons, the full-field simulation method seems to be a powerful tool for precisely predicting sonic boom 

propagation in the realistic environmental conditions and for clarifying the complex sonic boom 

phenomena that have not been well clarified. Moreover, this simulation holds promise for conducting 

numerical flight experiments, wherein flight tests for sonic boom measurements are precisely reproduced. 

CFD analysis for sonic boom propagation in the far field has been conducted by solving the 

one-dimensional, spherical-symmetric, and axi-symmetric equations [68–70]. However, the resolution of 

the shock wave was not necessarily adequate, and the computational load was very high. In addition, there 

is no precedent for three-dimensional CFD analysis considering atmospheric stratification. Therefore, the 

following three problems must be improved to perform full-field simulation in the real atmosphere. First, 

the computational approach for considering atmospheric stratification must be constructed. In the case of 

compressible CFD analysis, the flow field is generally discretized by the computational grid and is solved 

by the Riemann solver [71]. Consequently, the change caused by atmospheric stratification with altitude is 
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treated as a discontinuity in the Riemann solver, and nonphysical waves are generated. Thus, a 

computational approach for avoiding this change must be constructed because such an approach has not yet 

been proposed. Second, the solution-adapted grid over the entire flow field must be constructed to precisely 

capture shock waves [72]. Because the shock-wave angles change with the atmospheric temperature, the 

grid angles must be changed according to the propagation directions of the shock waves in the stratified 

atmosphere; thus, the three-dimensional solution-adapted grid must be constructed. Third, the 

computational load must be reduced as much as possible because the computational domain ranges over 

quite a long distance, and the thermal nonequilibrium flow analysis [68, 69] with high computational load 

is essential for predicting the rise time. With those in mind, the framework of the full-field simulation 

method is developed to analyze sonic boom propagation through the real atmosphere in this study. 

 

1.3.2 Roadmap for formulation of full-field simulation method 

Figure 1.2 shows the roadmap for constructing the framework of the full-field simulation method. The 

roadmap is composed of three phases. The first phase is the formulation of the full-field simulation method 

including the computational approach, the method of constructing the solution-adapted grid, and the 

segmentation method of a computational domain. The computational approach is formulated to simulate 

sonic boom propagation including five important effects as follows: 

・ Geometrical spreading: the attenuation effect due to the geometrical spreading of a wave with 

increasing distance from a generation source. 

・ Nonlinearity: the effect of wave steepening that is caused by the difference in the propagation speed of 

waves. 

・ Atmospheric stratification: the atmospheric effect due to variation in atmospheric properties with 

altitude. 

・ Molecular relaxation (thermal nonequilibrium): the relaxation effect due to translational-vibrational 

energy exchange. 

・ Viscosity: the dissipation effect due to the fluid friction and thermal conduction. 

If the computational approach considering these five effects is formulated, the extension of this approach is 

assumed to be relatively easy because the full-field simulation is based on the CFD. The method of 

constructing the solution-adapted grid is formulated so as to meet the following three requirements. First, 

shock waves must not intersect with the grid lines; thus, the grid lines in the entire computational domain 

must align with the shock waves. Second, the grid resolution near the shock waves must be adequately high. 

Third, the number of grid points must be reduced as much as possible because the computational domain 

ranges over quite a long distance. The segmentation method of a computational domain is constructed to 
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Fig. 1.2  Roadmap for constructing framework of full-field simulation method. 

 

reduce the computational load and to improve the efficiency of computation. 

The second phase is the validation of computational accuracy. Full-field simulation is performed to 

reproduce the flight test, and the simulation results are validated by comparison with the results of the 

waveform parameter method, which is a representative prediction method for sonic boom, and the flight 

test data. Consequently, the reproducibility of the flight test for sonic boom in the real atmosphere is 

investigated. 

The third phase is the demonstration of the applicability to the analysis of complex sonic boom 

phenomena that have not been well clarified. First, full-field simulation with the thermal nonequilibrium is 

performed to investigate the formation mechanism of rise time as described in section 1.2.2. Second, 

full-field simulation is performed to analyze sonic boom cutoff phenomena [53] generated from a low 

supersonic flight object, including focused sonic boom in the caustic-vicinity field as described in section 

1.2.3. Third, full-field simulation is performed to investigate sonic boom characteristics in hypersonic flow 

regimes as described in section 1.1. Consequently, the usefulness of full-field simulation method is 

investigated as a valid approach for analyzing sonic boom characteristics at all speeds including 

nonequilibrium characteristics and for clarifying sonic boom phenomena that cannot be investigated in the 

existing prediction methods. 

When all three phases shown in Fig. 1.2 are accomplished, it can be said that the framework of the 

full-field simulation method is constructed. For the practical use of the framework, the appropriate 

computational method including the governing equations is selected according to the application and is 
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extended as needed. Consequently, the full-field simulation can precisely reproduce sonic boom 

propagation in various flight, atmospheric, and ground conditions; thus, numerical flight experiments can 

be conducted by the full-field simulation. 

 

1.4 Objectives 
  Based on the above discussion, the objectives of this study are to formulate the framework of the 

full-field simulation method for sonic boom, according to the roadmap shown in Fig. 1.2, and to clarify 

sonic boom phenomena as follows: 

・ Formation mechanism of rise time due to molecular relaxation in uniform and stratified atmospheres. 

・ Sonic boom characteristics at low supersonic speeds, including cutoff phenomena in the 

caustic-vicinity field. 

・ Sonic boom characteristics at hypersonic speeds, including waveform transition of sonic boom 

according to flight Mach number. 

Consequently, sonic boom phenomena that have not been well clarified become better understood, and the 

full-field simulation method becomes a powerful tool for precisely predicting sonic boom propagation 

through the real atmosphere and for realizing numerical flight experiments. 

 

1.5 Outline of this thesis 
 An outline of this thesis is as follows. In chapter 2, the full-field simulation method is described. In 

chapter 3, the accuracy of full-field simulation is validated by comparison with the results of the waveform 

parameter method and the D-SEND#1 [14] flight test conducted by JAXA. In chapters 4 to 6, full-field 

simulation is performed to demonstrate the applicability of the full-field simulation method and to clarify 

sonic boom phenomena that cannot be investigated in the existing prediction methods. In chapter 4, 

full-field simulation is performed to investigate the effect of molecular relaxation on the sonic boom 

waveform and the formation mechanism of rise time in the uniform and stratified atmospheres. In chapter 5, 

full-field simulation is performed to analyze sonic boom propagation at low supersonic speeds, including 

sonic boom cutoff phenomena, and to investigate the applicability of this simulation to the analysis of 

focused sonic boom in the caustic-vicinity field. In chapter 6, full-field simulation is performed to clarify 

the waveform transition in a hypersonic flow regime and to investigate the applicability to sonic boom 

propagation from a hypersonic flight object. In chapter 7, the conclusion is described. 
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Chapter 2 

Full-Field Simulation Method 
 

The contents of this chapter are not open to the public because they will be published in journal articles. 
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Chapter 3 

Validation of Computational Accuracy 
 

The contents of this chapter are not open to the public because they will be published in journal articles. 

Parts of this chapter were already published as follows: 

・ Yamashita, R., and Suzuki, K.: Full-Field Sonic Boom Simulation in Real Atmosphere, AIAA Paper 

2014-2269, June 2014. 

・ Yamashita, R., and Suzuki, K.: Rise Time Prediction of Sonic Boom by Full-Field Simulation with 

Thermal Nonequilibrium, AIAA Paper 2015-2583, June 2015. 
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Chapter 4 

Full-Field Simulation for Rise Time 

Prediction 
 

The contents of this chapter are not open to the public because they will be published in journal articles. 
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Chapter 5 

Full-Field Simulation at Low Supersonic 

Speed 
 

The contents of this chapter are not open to the public because they will be published in journal articles. 

Part of the contents was already published as follows: 

・ Yamashita, R. and Suzuki, K.: Full-Field Simulation for Sonic Boom Cutoff Phenomena, 

Transactions of the Japan Society for Aeronautical and Space Sciences, Vol.58, No.6, 2015, pp. 

327-336. 
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Chapter 6 

Full-Field Simulation at Hypersonic Speed 
 

The contents of this chapter are not open to the public because they will be published in journal articles. 

Part of the contents was already published as follows: 

・ Yamashita, R. and Suzuki, K.: Waveform Transition of Sonic Boom from N-wave to Caret-wave 

generated from a Sphere at Hypersonic Speed, AIAA Journal, 2015 (published online). 
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Chapter 7 

Conclusions 
 

 A framework of the full-field simulation method was formulated to reproduce sonic boom propagation 

through the real atmosphere and was used to clarify formation mechanism of rise time, sonic boom cutoff 

phenomena, and the waveform transition in hypersonic flow regimes. The results are summarized as 

follows. 

 

Formulation of full-field simulation method (Chapters 2 and 3) 
(Not open to the public because the contents of this chapter will be published in journal articles.) 

 

Full-field simulation for rise time prediction (Chapter 4) 
(Not open to the public because the contents of this chapter will be published in journal articles.) 

 

Full-field simulation at low supersonic speed (Chapter 5) 
(Not open to the public because the contents of this chapter will be published in journal articles.) 

 

Full-field simulation at hypersonic speed (Chapter 6) 
(Not open to the public because the contents of this chapter will be published in journal articles.) 

 

As mentioned above, the framework of the full-field simulation method was completely constructed 

because all three phases were completed, as shown in Fig. 7.1. Moreover, the formation mechanism of rise 

time, the sonic boom cutoff phenomena, and the waveform transition in hypersonic flow regimes were well 

clarified by the full-field simulation. Therefore, the objectives of this thesis were completed. Because the 

full-field simulation based on the CFD has the potential for considering various flight, atmospheric, and 

ground conditions, it seems promising for realizing high-accuracy numerical flight experiments for sonic 

boom. 
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□ Reproduction of flight
test for sonic boom at 
supersonic speed
(Chapter 3)

□ Comparison with 
waveform parameter 
method (Chapter 3)

□ Formulation of 
computational method 
considering following 
five effects (Chapter 2):
□ geometrical spreading
□ nonlinearity
□ molecular relaxation 
□ atmos. stratification
□ viscosity

□ Formulation of solution-
adapted grid generation 
method (Chapter 2)

□ Formulation of 
segmentation method of
computational domain
(Chapter 2)

□ Simulation for rise time 
prediction of sonic boom
(Chapter 4)

□ Simulation of sonic
boom cutoff phenomena 
at low supersonic speed 
(Chapter 5)

□ Simulation of sonic 
boom propagation at
hypersonic speed
(Chapter 6)

Validation of 
computational accuracy

Formulation of full-field 
simulation method

Demonstration of 
applicability

✓

✓
✓
✓
✓
✓

✓

✓

✓

✓

✓

✓

✓

 
Fig. 7.1  Roadmap for constructing framework of full-field simulation method. 
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Appendix 

Waveform Parameter Method 
 

The waveform parameter method [45] invented by Thomas is the representative prediction method for 

sonic boom in the far field reaching the ground. In this method, the pressure fluctuation is derived from the 

conservation of the Blokhintsev energy invariant in the geometric acoustics, and the nonlinear effect on the 

waveform distortion is considered by the isentropic wave theory, in which the propagation speed is 

assumed to be a sum of the local speed of sound and the change of velocity. The entire pressure waveform 

is split into a sequence of segments, and the segmented waveform is described by the following three 

parameters. The first parameter mi is the pressure gradient of segment i. The second parameter Δpi is the 

pressure rise of the shock wave at the boundary of segments i and i–1. The third parameter λDi is the time 

duration of segment i. Figure A.1 shows the schematic of these parameters. These parameters along the ray 

path are computed by the three ordinary differential equations as 
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where p, ρ and c are the pressure, density, and speed of sound, respectively. an is the velocity normal to the 

wave front, and A is a ray tube area [73] as cut by the wave front. Subscript a means the atmospheric value. 

The derivation of the equations above is left out here (see reference 45 for details). The variables C1 and C2 

in the nonuniform atmosphere change along the ray path. However, if these variables are assumed to 
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Segment i

λDi

Δpi

mi (Gradient)

 
Fig. A.1  Three waveform parameters where red line indicates waveform of segment i. 

 

be constant during the sufficiently small time, the equations above can be solved by the finite difference 

method. As the acoustic waves propagate along the ray paths, they are distorted by the nonlinear effect, 

resulting in the coalescence of the waves. In the waveform parameter method, λDi becomes zero when two 

waves coalesce into a single wave. In such a case, the coalescence point is computed, and the waveform 

parameters are redefined at this point. 
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