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Preface

Blow-up phenomena are one of important problems in the theory of nonlinear partial

differential equations (PDEs). Since the behavior of solutions of PDEs near the blow-

up time is a meaningful study, the numerical study of them is also crucial from the

standpoint of mathematical study. In this paper, we study numerical analysis of

blow-up phenomena for nonlinear wave equations focusing on the blow-up time.

In practical applications, it is desirable to use numerical methods which are math-

ematically guaranteed their validity. This is because it is hard to distinguish the

numerical results which exactly simulate blow-up phenomena of PDEs from failure

of computations.

Moreover, convergence analysis of numerical method used for the simulations is

important for the numerical analysis of blow-up phenomena. In this paper, we

consider a splitting method which is a time-discretization numerical method. It is

often used for Schrödinger equations.

On the other hand, we analytically show continuous differentiability of the blow-up

curve of a wave equation with a nonlinear term involving the derivative of unknown

functions by applying the idea of numerical analysis in Chapter 1. We also simulate

these results. Moreover, we present numerical results that showed the blow-up curves

have singular points.

In Chapter 1, we consider the following wave equation.{
utt − uxx = |u|p, t > 0, x ∈ SL,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ SL.
(0.1)

Here, SL = R/LZ and p > 1 is a constant such that the function sp (s ≥ 0) is of

class C4. The solution of (0.1) blows up in finite time if the initial values are large

enough. The aims of this Chapter are to construct the numerical method of the

blow-up time and to give the error estimates of them. In this paper, we call the

approximation of the blow-up time numerical blow-up time. We divide the proof of

convergence of the numerical blow-up time into 2 steps.

(Step 1.) Proof of convergence of numerical method for wave equations.

(Step 2.) Proof of convergence of numerical blow-up time.

There are almost no studies on numerical blow-up time for wave equations, while

there are lots of such studies for heat equations. In resent years, construction of

numerical blow-up time and convergence analysis of it for wave equations were done

by Cho [10]. However, the proof of (Step 1.) is still open at present. He proved

(Step 2.) holds under the assumption that (Step 1.) holds.
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We need to take sufficiently small time increments near the blow-up time in order

to compute the blow-up phenomena. That is, we use the variable time increments.

There are many results of convergence analysis of numerical methods using variable

time increments for heat equations. However, there is no such study for wave equa-

tions. The reason is that wave equations have the second derivative by time. Thus,

we construct the numerical methods and corresponding numerical blow-up time for

(0.1) and prove both (Step 1.) and (Step 2.).

We rewrite (0.1) as the following first order system.
ut + ux = ϕ, t > 0, x ∈ SL,

ϕt − ϕx = |u|p, t > 0, x ∈ SL,

u(0, x) = u0(x), ϕ(0, x) = u1(x) + u′0(x), x ∈ SL.

(0.2)

We present numerical method using variable time increments for (0.2). We show

our numerical methods satisfy (Step 1.) by using the idea of [32]. We also prove our

numerical blow-up time satisfies (Step 2.). Moreover, we present numerical results

of blow-up time of (0.2).

In Chapter 2, we consider error analysis of semilinear evolution equations. As

mentioned above, such study is important from the viewpoint of numerical analysis

of blow-up phenomena. Let X be a Hilbert space and let A be an m-dissipative

operator in X. For u0 ∈ D(A), we consider the following Cauchy problem for

semilinear evolution equation:{
ut = Au+ F (u), t ∈ [0, T ],

u(0) = u0,
(0.3)

The splitting method is one of time-discretization methods. Let S(t) be the solution

operator of (0.3). The idea behind splitting methods is to approximate the solution

u(t) = S(t)u0 of (0.3) by ΦA(t) and ΦF (t), which are solution operators of ∂tv = Av

and ∂tw = F (w), respectively. The splitting method is useful when ΦA(t) and ΦF (t)

are easy to compute, while S(t)u0 is difficult to compute. In particular, the approx-

imation Ψ(t) = ΦA(t/2)ΦF (t)ΦA(t/2) is called the Strang-type splitting method.

The Strang-type spitting method is numerically known as a second order convergent

scheme. In addition, splitting method retains the dissipation or conservation prop-

erties of (0.3). Hence their ease of calculation and the dissipation or conservation

properties, the splitting method is in common used as a numerical method for solv-

ing various differential equations. However, there are many open problems on error

analysis of (0.3). In particular, for (0.3), whether the Strang-type splitting method

is second order convergent or not was an open question in a rigorous manner.

The splitting method which is split into 2 parts is used on many occasions. On

the other hand, sometimes there are cases that we should use the splitting method

which is split into 3 parts. Therefore, we demonstrate that the convergence of our

Strang-type splitting method which is split into 3 parts is a second order rate.
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In Chapter 3, we consider a blow-up curve for the following nonlinear wave equa-

tion. {
utt − uxx = F (u), t > 0, x ∈ R,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ R,

(0.4)

where F (u) = |ut|p. Here, p > 1 is a constant such that the function sp (s ≥ 0)

is of class C4. It is well known that the solution of (0.4) blows up in finite time if

the initial values are large enough. Let R∗ and T ∗ be positive constants. We set

BR∗ = {x | |x| < R∗}. We consider

T (x) = sup {t ∈ (0, T ∗) | |ut(t, x)| <∞} (x ∈ BR∗).

We call Γ = {(T (x), x) | x ∈ BR∗} blow-up curve. Below, we will identify Γ

with T itself. We have 2 purposes of this Chapter. First, we analytically show

that T ∈ C1(BR∗). Second, we present numerical examples of blow-up curve. We

numerically show that the blow-up curve is smooth if the initial values of (0.4) are

large and smooth enough. Moreover, we show that the case where the blow-up curve

has singular points even the initial values are smooth. In previous study, the cases

of F (u) = |u|p, eu and the following blow-up curve are considered (for example, [6],

[7], [18]).

T̃ (x) = sup {t ∈ (0, T ∗) | |u(t, x)| <∞} (x ∈ BR∗).

It was shown that T̃ ∈ C1(BR∗) under suitable initial values. The method introduced

by Caffarelli-Friedman [7] are used in the proof of regularity of the blow-up curve.

However, we cannot directly apply their method to (0.4) in the case of F (u) = |ut|p.
For these reasons, the mathematical analysis of blow-up curve for the wave equation

with a nonlinear term involving the derivative of unknown functions is not well

understood.

On the other hand, Ohta-Takamura [30] studied the blow-up curve in the case of

F (u) = (ut)
2 − (ux)

2. The key point of their proof is the transformation v = e−u.

We see that v satisfies vtt − vxx = 0. Thanks to the linearization, we can study the

blow-up curve in the case of F (u) = (ut)
2 − (ux)

2. However, we cannot use this

transformation in the case of F (u) = |ut|p.
Thus, we rewrite (0.4) as the following first order system by using the idea of

Chapter 1. 
D−ϕ = 2−p|ϕ+ ψ|p, t > 0, x ∈ R,
D+ψ = 2−p|ϕ+ ψ|p, t > 0, x ∈ R,
ϕ(x, 0) = f(x), ψ(x, 0) = g(x), x ∈ R,

where D−v = vt − vx, D+v = vt + vx and f = u1 + ∂xu0, g = u1 − ∂xu0. Such

rewriting makes it easier to analyze the blow-up curve, not to mention ease of analysis

of numerical methods. We also offer an alternative proof of [7] for showing that

the blow-up curve of the blow-up limits is an affine function. Our proof is more

elementary and easy to read. Moreover, we show some numerical examples of the
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blow-up curve of (0.4) in the case of F (u) = |ut|p. From the numerical results,

the blow-up curve sometimes has singular points even the initial values are smooth

if the initial values are not large. The analytical proof is still open in the case of

F (u) = |ut|p.
In order that we want to readers to avoid to confuse the formulations, we explicitly

write the definitions in each chapter. Although multiple same definitions may appear

through the thesis, the arguments in each chapter become self contained. This helps

readers understand the detailed content of each chapter separately.
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1 Blow-up of finite-difference solutions to

nonlinear wave equations

Finite-difference schemes for computing blow-up solutions of one dimen-

sional nonlinear wave equations are presented. By applying time in-

crements control technique, we can introduce a numerical blow-up time

which is an approximation of the exact blow-up time of the nonlinear

wave equation. After having verified the convergence of our proposed

schemes, we prove that solutions of those finite-difference schemes actu-

ally blow up in the corresponding numerical blow-up times. Then, we

prove that the numerical blow-up time converges to the exact blow-up

time as the discretization parameters tend to zero. Several numerical

examples that confirm the validity of our theoretical results are also of-

fered.

1.1 Introduction

The purpose of this chapter is to establish numerical methods for computing blow-

up solutions of one space dimensional nonlinear wave equations with power nonlin-

earlities. In order to avoid unessential difficulties about boundary conditions, we

concentrate our attention to L-periodic functions of x with L > 0. That is, set-

ting SL = R/LZ, we consider the following initial value problem for the function

u = u(t, x) (t ≥ 0, x ∈ SL),{
utt − uxx = |u|p, t > 0, x ∈ SL,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ SL.
(1.1)

Before stating assumptions on nonlinearlity and initial values, we recall a general

result for nonlinear wave equations. Set QT,L = [0, T ]× SL for T > 0.

Proposition 1.1.1. Let u0, u1 ∈ C3(SL) and f ∈ C4(R) be given. Then, there

exists T > 0 and a unique classical solution u ∈ C3(QT,L) of{
utt − uxx = f(u), (t, x) ∈ QT,L,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ SL.
(1.2)

Moreover, there exists a positive and continuous function Cml(η) of η > 0 satisfying∥∥∥∥ ∂m∂tm ∂l

∂xl
u

∥∥∥∥
L∞(QT,L)

≤ Cml

(
∥u∥L∞(QT,L)

)
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for non-negative integers m, l such that m+l ≤ 3. Furthermore, if f(s) ≥ 0 for s ≥ 0

and u0(x) ≥ 0, u1(x) ≥ 0 for x ∈ SL, then we have u(t, x) ≥ 0 for (t, x) ∈ QT,L.

This proposition is proved by the standard argument based on the contraction

mapping principle (cf. [15, §12.3]) with the aid of the explicit solution formula given

as

u(t, x) =
1

2
[u0(x− t) + u0(x− t)]

+
1

2

∫ x+t

x−t
u1(ξ) dξ +

1

2

∫ t

0

∫ x+s

x−s
f(u(s, y)) dyds.

Throughout this paper, we make the following assumptions:

f(u) = |u|p with p > 1 is of class C4; (1.3)

u0, u1 ∈ C3(SL); (1.4)

u0(x) ≥ 0, u1(x) ≥ 0, x ∈ SL. (1.5)

Thanks to Proposition 1.1.1, the problem (1.1) admits a unique non-negative solution

u ∈ C3(QT,L), which we will call simply a solution hereinafter. We note that the

condition (1.3) is equivalently written as

p = 2 or p is a real number ≥ 4. (1.6)

See also Remark 1.2.10.

The supremum of T in Proposition 1.1.1 is called the lifespan of a solution and is

denoted by T∞. If T∞ = ∞, then we say that the solution u of (1.1) exists globally-

in-time. On the other hand, if T∞ < ∞, we say that u blows up in finite time and

call T∞ the blow-up time of a solution.

As a readily obtainable consequence of Proposition 1.1.1, we deduce the following

proposition.

Proposition 1.1.2. Let u be the solution of (1.1). Then, the following (i) and (ii)

are equivalent.

(i) u blows up in finite time T∞ <∞.

(ii) lim
t↑T∞

∥u(t)∥L∞(SL) = ∞.

Any solution u of (1.1) actually blows up. To verify this fact, the functional

K(v) =
1

L

∫ L

0
v(x) dx (v ∈ C(SL))

plays an important role. Obviously, we have

K(v) ≤ ∥v∥L∞(SL) (0 ≤ v ∈ C(SL)). (1.7)
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Proposition 1.1.3. Assume that

α = K(u0) ≥ 0, β = K(u1) > 0. (1.8)

Then, there exists T∞ ∈ (0,∞) such that the solution u of (1.1) blows up in finite

time T∞.

As a matter of fact, the key point of the proof is that the solution u of (1.1)

satisfies, whenever it exists,

d

dt
K(u(t)) ≥ β +

∫ t

0
K(u(s))p ds > 0, (1.9)[

d

dt
K(u(t))

]2
≥ 2

p+ 1
K(u(t))p+1 +M1 ≥ 0, (1.10)

where M1 = β2 − 2
p+1α

p+1 and K(u(t)) = K(u(t, ·)).
These inequalities, together with the following elementary proposition, implies

that K(u(t)) cannot exist beyond TK , which is defined below. Thus, u(t, x) blows

up in finite time T∞ ∈ (0, TK ], which completes the proof of Proposition 1.1.3.

Proposition 1.1.4. Let a C1 function w = w(t) satisfy a differential inequality

d

dt
w(t) ≥

√
2

p+ 1
w(t)p+1 +M1 (t > 0) (1.11)

with w(0) = α ≥ 0. Then, w(t) blows up in finite time TK ∈ (0, T1), where

T1 =

∫ ∞

α

[
β2 +

2

p+ 1
(sp+1 − αp+1)

]− 1
2

ds <∞.

Inequalities (1.9) and (1.10) are derived in the following manner. First, we derive

by using Jensen’s inequality

d2

dt2
K(u(t)) ≥ K(u(t))p, (1.12)

which gives (1.9). Multiplying the both-sides of (1.12) by (d/dt)K(u(t)), we have

d

dt
K(u(t))

d2

dt2
K(u(t)) ≥ d

dt
K(u(t))K(u(t))p.

Thus
d

dt

[
1

2

(
d

dt
K(u(t))

)2

−
∫ K(u(t))

α
ξp dξ

]
≥ 0.

Therefore, we get[
d

dt
K(u(t))

]2
≥ β2 +

2

p+ 1

[
K(u(t))p+1 − αp+1

]
,

which implies (1.10).
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There are a large number of works devoted to blow-up of positive solutions for

nonlinear wave equations. To our best knowledge, the first result was obtained by

Kawarada [24]. He studied a nonlinear wave equation

utt −∆u = f(u) (x ∈ Ω, t > 0) (1.13)

in a smooth bounded domain Ω in Rd and proved a positive solution actually blows

up in finite time if the initial values are sufficiently large. (He did not consider

a positive solution explicitly, but as a readily obtainable corollary of his theorem

we could obtain the blow-up of a positive solution.) Those results are referred as

“large data blow-up” results. After Kawarada’s work, a lost of results have been

reported. For example, Glassey’s papers [16], [17] are well-known. On the other

hand, “small data blow-up” results were presented, for example, F. John ([22]) and

T. Kato ([23]). See an excellent survey by S. Alinhac ([2]) for more details on blow-

up results for nonlinear hyperbolic equations. In contrast to parabolic equations, it

seems that there is a little work devoted to asymptotic profiles and blow-up rates

of blow-up solutions for hyperbolic equations. Therefore, numerical methods would

be important tools to study blow-up phenomena in hyperbolic equations.

However, the computation of blow-up solutions is a difficult task. We do not

state here the detail of those issues; see, for example, [13] and [10]. In order to

surmount those obstacles, various techniques for computing blow-up solutions of

various nonlinear partial differential equations are developed so far. Among them,

∆tn is of use. The pioneering work is done by Nakagawa [28] in 1976. He considered

the explicit Euler/finite difference scheme to a semilinear heat equation ut−uxx = u2

(t > 0, 0 < x < 1) with u(t, 0) = u(t, 1) = 0. The crucial point of his strategy is that

the time increment and the discrete time are given, respectively, as

∆tn = τ min

{
1,

1

∥uh(tn)∥L2

}
, tn+1 = tn +∆tn =

n∑
k=0

∆tk

with some τ > 0, where uh(tn), h being the size of space grids, denotes the piece-

wise constant interpolation function of the finite-difference solution at t = tn and

∥uh(tn)∥L2 its L2(0, 1) norm. Then, he succeeded in proving that, for a sufficiently

large initial value, the finite-difference solution uh(tn) actually blows up in finite

time

T (τ, h) =

∞∑
n=1

∆tn <∞

and

lim
τ,h→0

T (τ, h) = T∞, (1.14)

where τ denotes the size of a time discretization and T∞ the blow-up time of the

equation under consideration. T (τ, h) is called the numerical blow-up time. Later,

Nakagawa’s result has been extend to several directions; see, for example, Chen [9],

Abia et al. [1], Nakagawa and Ushijima [29] and Cho et al. [13]. However, those

papers are concerned only with parabolic equations. On the other hand, it seems
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that little is known for hyperbolic equations and C. H. Cho’s work ([10]) is the first

result on the subject. He studied the initial-boundary value problem for a nonlinear

wave equation{
utt − uxx = u2 (t > 0, x ∈ (0, 1)),

u = 0 (t ≥ 0, x = 0, 1), u(0, x) = u0(x), ut(0, x) = u1(x).

and the explicit Euler/finite-difference scheme
1

τn

(
un+1
j − unj
∆tn

−
unj − un−1

j

∆tn−1

)
=
unj+1 − 2unj + unj−1

h2
+ (unj )

2,

un0 = unN = 0, u0j = u0(xj), u1j (xj) = u0(xj) + ∆t0u1(xj),

(1.15)

where the time and space variable are discretized as tn = ∆t0 +∆t1 + · · ·+∆tn−1,

xj = j/N and N ∈ N, and unj denotes the approximation of u(tn, xj). He proposed

the following time-increments control strategy

∆tn = τ min

{
1,

1

∥uh(tn)∥
1/2
L2

}
, τn =

∆tn +∆tn−1

2
. (1.16)

Then, he succeeded in proving that (1.15) actually holds true under some assump-

tions. One of the crucial assumptions in his theorem is convergence of the finite-

difference solutions, that is,

lim
h→0

max
0≤tn≤T

|unj − u(tn, xj)| = 0 (1.17)

for any T ∈ (0, T∞). The proof of this convergence result is still open at present.

As a matter of fact, we need some a priori estimates or stability in a certain norm

in order to prove (1.17). However, as Cho mentioned in [10, page 487], it is quite

difficult to prove a stability that remains true even when ∆tn → 0.

Recently, K. Matsuya reported some interesting results on global existence and

blow-up of solutions of a discrete nonlinear wave equation in [26]. However, it seems

that his results are not directly related with approximation of partial differential

equations.

This paper is motivated by the paper [10] and devoted to a study of the finite-

difference method applied to (1.1). Thus, we propose finite-difference schemes and

prove convergence results (cf. Theorems 1.2.4 and 1.2.5) for those schemes even

when time-increments approaches to zero. To accomplish this purpose, we rewrite

the equation as

ut + ux = ϕ, ϕt − ϕx = |u|p,

which is based on the formal factorization utt − uxx = (∂t − ∂x)(∂t + ∂x)u = |u|p,
and then follow the method of convergence analysis proposed by [32] that is origi-

nally developed to study time-discretizations for a system of nonlinear Schrödinger

equations. Actually, it suffices to prove local stability results in a certain sense (cf.

Theorems 1.2.2 and 1.2.3) in order to obtain convergence results. Moreover, we show

that discrete analogues of (1.9) and (1.10) holds true, and therefore, we can deduce

approximation of blow-up time (1.14) (cf. Theorem 1.2.8).
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Notation

For v = (v1, . . . , vJ)
T ∈ RJ , we set ∥v∥ = max

1≤j≤J
|vj |, where ·T indicates the transpose

of a matrix. We write v ≥ 0 if and only if vi ≥ 0 (1 ≤ i ≤ J). We use the matrix ∞
norm

∥E∥ = max
v∈RJ

∥Ev∥
∥v∥

= max
1≤i≤J

J∑
j=1

|Eij |

for a matrix E = (Eij) ∈ RJ×J . Moreover, we write E ≥ O if and only if Ei,j ≥ 0

(1 ≤ i, j ≤ J). The set of all positive integers is denoted by N.

1.2 Schemes and main results

Introducing a new variable ϕ = ut + ux, we first convert (1.1) into the first order

system as follows:
ut + ux = ϕ (t, x) ∈ QT,L,

ϕt − ϕx = |u|p (t, x) ∈ QT,L,

u(0, x) = u0(x), ϕ(0, x) = u1(x) + u′0(x), x ∈ SL.

(1.18)

Take a positive integer J and set xj = jh with h = L/J . As a discretization of

the time variable, we take positive constants ∆t0,∆t1, . . . and set

t0 = 0, tn =

n−1∑
k=0

∆tk = tn−1 +∆tn−1 (n ≥ 1).

Then, our explicit scheme to find

unj ≈ u(tn, xj), ϕnj ≈ ϕ(tn, xj) (1 ≤ j ≤ J, t ≥ 0)

reads as
un+1
j − unj
∆tn

+
unj − unj−1

h
= ϕnj

ϕn+1
j − ϕnj
∆tn

−
ϕnj+1 − ϕnj

h
= |un+1

j |p
(1 ≤ j ≤ J, n ≥ 0) (1.19)

where un0 and ϕnJ+1 are set as un0 = unJ and ϕnJ+1 = ϕn1 .

We also consider an implicit scheme for the purpose of comparison. However,

we do not prefer fully implicit schemes since we need iterative computations for

solving resulting nonlinear system. Instead, we consider a linearly-implicit scheme

by introducing dual time grids

tn+ 1
2
=

∆t0
2

+ tn (n ≥ 0). (1.20)

Then, our implicit scheme to find

unj ≈ u(tn, xj), ϕ
n+ 1

2
j ≈ ϕ(tn+ 1

2
, xj) (1 ≤ j ≤ J, n ≥ 0)

12



reads as

un+1
j − unj
∆tn

+
1

2

(
un+1
j − un+1

j−1

h
+
unj − unj−1

h

)
= ϕ

n+ 1
2

j ,

ϕ
n+ 3

2
j − ϕ

n+ 1
2

j

∆tn
− 1

2

ϕn+ 3
2

j+1 − ϕ
n+ 3

2
j

h
+
ϕ
n+ 1

2
j+1 − ϕ

n+ 1
2

j

h

 = |un+1
j |p,

(1 ≤ j ≤ J, n ≥ 0), (1.21)

where un0 and ϕ
n+ 1

2
J+1 are set as un0 = unJ and ϕ

n+ 1
2

J+1 = ϕ
n+ 1

2
1 .

Remark 1.2.1. It is possible to take

t 1
2
=

∆t0
2
, tn+ 1

2
=

∆t0
2

+
n∑

k=1

τk (n ≥ 1)

as dual time grids instead of (1.20), where τk = (∆tk−1 +∆tk)/2. With this choice,

the implicit scheme is modified as

un+1
j − unj
∆tn

+
1

2

(
un+1
j − un+1

j−1

h
+
unj − unj−1

h

)
= ϕ

n+ 1
2

j ,

ϕ
n+ 3

2
j − ϕ

n+ 1
2

j

τn
− 1

2

ϕn+ 3
2

j+1 − ϕ
n+ 3

2
j

h
+
ϕ
n+ 1

2
j+1 − ϕ

n+ 1
2

j

h

 = |un+1
j |p,

(1 ≤ j ≤ J, n ≥ 0). (1.22)

Then, we can deduce all the results presented below with obvious modifications.

For n ≥ 0, we set

un = (un1 , . . . , u
n
J)

T ∈ RJ ,

ϕn = (ϕn1 , . . . , ϕ
n
J)

T ∈ RJ , ϕn+ 1
2 = (ϕ

n+ 1
2

1 , . . . , ϕ
n+ 1

2
J )T ∈ RJ .

Theorem 1.2.2 (Local stability of the explicit scheme). Let τ = γh with some

γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Let a ≥ 0, b ≥ 0 ∈ RJ . Then,

the solution (un,ϕn) of the explicit scheme (1.19) with u0 = a and ϕ0 = b satisfies

un ≥ 0 and ϕn ≥ 0 for n ≥ 1. Furthermore, for any N ∈ N, there exists a constants

hR,N > 0 depending only on N and R = ∥a∥ + ∥b∥ such that, if h ∈ (0, hR,N ], we

have

sup
1≤n≤N

(∥un∥+ ∥ϕn∥) ≤ 2R. (1.23)

Theorem 1.2.3 (Well-posedness and local stability of the implicit scheme). Let

τ = 2γh with some γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Let a, b ∈ RJ .

Then, the implicit scheme (1.21) admits a unique solution (un,ϕn+ 1
2 ) for any n ≥ 1,

where u0 = a and ϕ
1
2 = b. Moreover, if a ≥ 0 and b ≥ 0, then we have un ≥ 0

and ϕn+ 1
2 ≥ 0 for n ≥ 1. Furthermore, for any N ∈ N, there exists a constants
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hR,N > 0 depending only on N and R = ∥a∥ + ∥b∥ such that, if h ∈ (0, hR,N ], we

have

sup
1≤n≤N

(
∥un∥+ ∥ϕn+ 1

2 ∥
)
≤ 2R. (1.24)

In order to state convergence results, we introduce en = (enj ), εn = (εnj ) and

εn+
1
2 = (ε

n+ 1
2

j ) which are given as

enj = u(tn, xj)− unj , εnj = ϕ(tn, xj)− ϕnj , ε
n+ 1

2
j = ϕ(tn+ 1

2
, xj)− ϕ

n+ 1
2

j .

Recall that T∞ denotes the blow-up time of the solution u(t, x) of (1.1).

Theorem 1.2.4 (Convergence of the explicit scheme). Let τ = γh with some γ ∈
(0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Suppose that (un,ϕn) is the solution of

the explicit scheme (1.19) for n ≥ 1, where (u0,ϕ0) is defined as

u0j = u0(xj), ϕ0j = u1(xj) + u′0(xj) (1 ≤ j ≤ J). (1.25)

Let T ∈ (0, T∞) be arbitrarily. Then, there exists positive constants h0 andM0 which

depend only on

p, T, γ, M = max
0≤m+l≤3

∥∥∥∥ ∂m∂tm ∂l

∂xl
u

∥∥∥∥
L∞(QT,L)

(1.26)

such that we have

max
0≤tn≤T

(∥en∥+ ∥εn∥) ≤M0(τ + h)

for any h ∈ (0, h0].

Theorem 1.2.5 (Convergence of the implicit scheme). Let τ = 2γh with some

γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Suppose that (un,ϕn+ 1
2 ) is the

solution of the implicit scheme (1.21) for n ≥ 1, where (u0,ϕ
1
2 ) is defined as

u0j = u0(xj), ϕ
1
2
j = u1(xj) + u′0(xj) (1 ≤ j ≤ J). (1.27)

Let T ∈ (0, T∞) be arbitrarily. Then, there exists positive constants h0 and M0,

which depend only on (1.26), such that we have

max
0≤tn+1≤T

(
∥en∥+ ∥εn+

1
2 ∥
)
≤M0(τ + h) (1.28)

for any h ∈ (0, h0].

Remark 1.2.6. If taking constant time-increments ∆tn = τ and suitable initial value

ϕ
1
2 , we can prove

max
0≤tn+1≤T

(
∥en∥+ ∥εn+

1
2 ∥
)
≤M0(τ

2 + h)

instead of (1.29).

14



By using the solutions of the explicit scheme (1.19) and the implicit scheme (1.21),

we can calculate the blow-up time T∞ of the solution of (1.1). To this purpose, we

fix

1 ≤ q <∞, 0 < γ < 1 (1.29)

and choose the time increments ∆t0,∆t1, . . . as

∆tn = τ ·min

{
1,

1

∥un∥q

}
(n ≥ 0), (1.30)

where τ is taken as

τ =

{
γh for the explicit scheme (1.19)

2γh for the implicit scheme (1.21).
(1.31)

Definition 1. Let un be the solution of the explicit scheme (1.19) or the implicit

scheme (1.21) with the time increment control (1.30) and (1.31). Then, we set

T (h) =

∞∑
n=0

∆tn.

If T (h) <∞, we say that un blows up in finite time T (h).

Remark 1.2.7. The blow-up of un implies that lim
tn→T (h)

∥un∥ = lim
n→∞

∥un∥ = ∞.

We are now in a position to state numerical blow-up results.

Theorem 1.2.8 (Approximation of the blow-up time). Let un be the solution of the

explicit scheme (1.19) or the implicit scheme (1.20) with the time increment control

(1.30) and (1.31), where the initial value is defined as (1.25) or (1.27), respectively.

In addition to the basic assumptions (1.4) and (1.5) on initial values, assume that

u1(x) is so large that

u1(x) + u′0(x) ≥ 0, ̸≡ 0 (x ∈ SL). (1.32)

Then, we have the following:

(i) un ≥ 0 and ϕn ≥ 0 (or ϕn+ 1
2 ≥ 0) for all n ≥ 0.

(ii) If (1.8) holds true, un blows up in finite time T (h) and

T∞ ≤ lim inf
h→0

T (h). (1.33)

(iii) In addition to (1.4), we assume that

lim
t→T∞

K(u(t)) = ∞, (1.34)

then we have

T∞ = lim
h→0

T (h). (1.35)

Remark 1.2.9. The assumption (1.35) is somewhat restrictive. Essentially the same

assumption is considered in [10]. However, we are unable to remove it at present.

To find the sufficient condition for (1.35) to hold is an interesting open question.

Remark 1.2.10. All results presented above remain valid for f(u) = u|u|2, since it is

a C4 function on R.
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2 Error analysis of splitting methods for

semilinear evolution equations

We consider a Strang-type splitting method for an abstract semilinear

evolution equation ut = Au + F (u). Roughly speaking, the splitting

method is a time-discretization approximation based on the decomposi-

tion of operators A and F. Particularly, the Strang method is a popular

splitting method and is known to be convergent at a second order rate

for some particular ODEs and PDEs. In this chapter, we propose a gen-

eralization of the Strang method and prove that our proposed method

is convergent at a second order rate. Some numerical examples that

confirm our theoretical result are given.

2.1 Introduction and main results

Let X be a Hilbert space equipped with the scalar product (·, ·)X and the norm

∥· ∥X , A be an m-dissipative linear operator in X with dence domain D(A) ⊂ X.

• For any u ∈ D(A), (Au, u) ≤ 0;

• For any f ∈ X and λ > 0, there exists u ∈ D(A) such that u− λAu = f.

As is well-known, the operator A generates a contraction semigroup ΦA(t) = etA if

and only if A is m-dissipative with dense domain. We consider the following Cauchy

problem for semilinear evolution equation:{
ut = Au+ F (u), t ∈ [0, T ],

u(0) = u0,
(2.1)

where F : D(A) → D(A) is a nonlinear operator. Typical examples of (2.1) are

nonlinear Schrödinger equations in Ω ∈ Rd

ut = i∆u+ αu|u|2, (2.2)

ut = i∆u+ αu|u|2 + βu|u|4, (2.3)

where α and β are complex constants. Setting D(A) = {v ∈ H1
0 (Ω) | ∆v ∈ L2(Ω)},

Av = i∆v, and F (v) = αv|v|2 in (2.2), we obtain (2.1).

The main purpose of this chapter is to study the so called splitting method,

which is a semi-discrete approximation of (2.1) with respect to time variable t. The
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idea behind the splitting method is as follows. We denote the (nonlinear) solution

operator (2.1) by S(t). That is, the solution of (2.1) is given as u(t) = S(t)u0; see

(2.9) below. Then, we consider the time-discrete approximation to (2.1) at t = n∆t

as

un = Ψ(n∆t)u0,

where ∆t > 0 denotes a time increment and n a positive integer. Typical choices of

Ψ are, for example,

Ψ(t) = ΦA(t)ΦF (t), (2.4)

Ψ(t) = ΦF (t)ΦA(t), (2.5)

Ψ(t) = ΦA(t/2)ΦF (t)ΦA(t/2) (2.6)

where ΦF (t) denotes the solution operator of wt = F (w). Particularly, (2.6) is called

the Strang method.

Splitting methods are useful when S(t)u0 is difficult to compute, while ΦA(t)u0
and ΦF (t)u0 are easy to compute. In addition, if (2.8) has conservation properties,

then splitting methods basically preserve its discrete version. Splitting methods are

widely used numerical methods for solving ODEs and PDEs.

Analysis of splitting methods for ODEs has been presented in many studies. For

example, see Hairer et al.[20]. Some results on error analysis are also presented for

PDEs. For example, results of error analysis for nonlinear Schrödinger equations

can be found in e.g., Besse et al. [4] and Lubich [25].

However, to our best knowledge, little is known for abstract Cauchy problem of the

form (2.1). Decombes and Thalhammer[14] and Jahnke and Lubich [21] presented

an error analysis for the case in which F is a linear operator. For nonlinear abstract

Cauchy problems, Borgna et al.[5] demonstrated that various splitting methods in-

volving Strang method have first order accuracy. Namely, if ∆t is sufficiently small,

we have

∥S(n∆t)u0 −Ψ(∆t)nu0∥ ≤ C∆t.

However, they did not demonstrate that Strang-type splitting method is a second

order scheme:

∥S(n∆t)u0 −Ψ(∆t)nu0∥ ≤ C∆t2. (2.7)

It should be kept in mind that (2.7) is established for the Strang method applied to

particular PDEs; see Besse et al.[4] and Lubich[25]. Therefore, it is worth studying

the Strang method for abstract Cauchy problem of the form (2.1) and deriving the

second order error estimate.

On the other hand, the majority of previous studies have considered schemes

that are split into two parts; vt = Av and wt = F (w). As a matter of fact, such

two-parts splitting is applied tp (2.2), then the explicit solution formula for the

ordinary differential equation wt = αw|w|2 is available. However, the two-parts

splitting is applied to (2.3), then we have to solve the ordinary differential equation
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wt = αw|w|2+βw|w|4 by numerical method since the exact solution is not available

in the case.

Therefore, some researchers have proposed schemes that are split into more than

two parts. However, the convergence properties of such schemes are not guaranteed

in the case of PDEs.

In this paper, we propose a Strang-type splitting method that is split into three

parts for (2.8). Moreover, we show that it is actually convergent at a second order

rate.

Let us formulate our problem. For given nonlinear operators F1, F2 : D(A) →
D(A), we set

F (v) = F1(v) + F2(v) (v ∈ D(A)).

For u0 ∈ D(A), we consider the Cauchy problem{
ut = Au+ F1(u) + F2(u), t ∈ [0, T ],

u(0) = u0,
(2.8)

and the corresponding integral equation:

u(t) = ΦA(t)u0 +

∫ t

0
ΦA(t− s)F (u(s))ds, t ∈ [0, T ]. (2.9)

We consider D(A) and D(A2) as Hilbert spaces with

∥v∥D(A) = ∥v∥X + ∥Av∥X for v ∈ D(A),

∥v∥D(A2) = ∥v∥D(A) + ∥A2v∥X for v ∈ D(A2).

For i = 1, 2, we assume that Fi : D(A) → D(A) satisfies the following conditions:

(F0) Fi(0) = 0,

(F1) ∥F ′
i (v)w∥D(A) ≤ L(∥v∥D(A))∥w∥D(A) for v, w ∈ D(A),

(F2) Fi(v) ∈ D(A2) and ∥Fi(v)∥D(A2) ≤ L2(∥v∥D(A))∥v∥D(A2) for v, w ∈ D(A2),

(F3) Fi(v) ∈ D(A2) and ∥Fi(v)−Fi(w)∥D(A2) ≤ L3(max{∥v∥D(A2), ∥w∥D(A2)})∥v−
w∥D(A2)

for v, w ∈ D(A2),

(F4) ∥F ′
i (v)w∥X ≤ L4(∥v∥D(A))∥w∥X for v, w ∈ D(A),

(F5) ∥F ′′
i (v)(w,w)∥X ≤ L5(∥v∥D(A))∥w∥X∥w∥D(A) for v, w ∈ D(A).

Herein, F ′
i and F ′′

i denote the first and second Fréchet derivatives, L,L2, · · · , L5 :

[0,∞) → [0,∞) are decreasing functions.

We note that it follows from (F1) and (F0) that

(F6) ∥Fi(v)− Fi(w)∥D(A) ≤ L(max{∥v∥D(A), ∥w∥D(A)})∥v − w∥D(A)

for v, w ∈ D(A),
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(F7) ∥Fi(v)∥D(A) ≤ L(∥v∥D(A))∥v∥D(A) for v ∈ D(A).

Moreover, it follows from (F4) that

(F8) ∥Fi(v)− Fi(w)∥X ≤ L4(max{∥v∥D(A), ∥w∥D(A)})∥v − w∥X
for v, w ∈ D(A).

For simplicity, we write F ′′(v)(w,w) = F ′′(v)w2 for v, w ∈ D(A). Before stating the

schemes and main results, we recall a general result for (2.9):

Proposition 2.1.1. Assume (F0)–(F1)．Then, for any u0 ∈ D(A), there exist

Tmax(u0) ∈ (0,∞] and a unique solution

u ∈ C([0, Tmax(u0)), D(A)) ∩ C1([0, Tmax(u0), X)

of (2.9) such that either the following (i) or (ii) holds:

(i) Tmax(u0) = ∞,

(ii) Tmax(u0) <∞ and lim
t↑Tmax(u0)

∥u(t)∥D(A) = ∞.

Moreover, if u0 ∈ D(A2), then

u ∈ C([0, Tmax(u0)), D(A2)) ∩ C1([0, Tmax(u0)), D(A)).

For the proof of Proposition 2.1.1, see e.g., Section 4.3 of [8].

In order to state our scheme, for i = 1, 2, we consider the following Cauchy

problem: {
wi,t = Fi(wi), t ∈ [0, T ],

wi(0) = wi,0,
(2.10)

and the corresponding integral equation:

wi(t) = wi,0 +

∫ t

0
Fi(wi(s))ds, t ∈ [0, T ]. (2.11)

We denote the solution of (2.12) by wi(t) = ΦFi(t)wi,0. That is,

ΦFi(t)wi,0 = wi,0 +

∫ t

0
Fi(wi(s))ds, t ∈ [0, T ]. (2.12)

Then, our scheme to find Ψ(t)u0 ≈ S(t)u0, reads as

Ψ(t)u0 = ΦA(t/2)ΦF1(t/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)u0. (2.13)

Our scheme includes the Strang method by setting F1 = 0.

We are now in a position to state the main results.
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Theorem 2.1.2. Assume (F0)–(F5)．Let u0 ∈ D(A2), T ∈ (0, Tmax(u0)) and set

m0 = 8 max
t∈[0,T ]

∥S(t)u0∥D(A).

Then, there exists a positive constant h0, which depends only on T,m0 and ∥u0∥D(A2),

such that

∥(Ψ(h))nu0∥D(A) ≤ m0, ∥(Ψ(h))nu0∥D(A2) ≤ eγ1nh∥u0∥D(A2), (2.14)

∥S(nh)u0 − (Ψ(h))nu0∥D(A) ≤ κ1h∥u0∥D(A2), (2.15)

∥S(nh)u0 − (Ψ(h))nu0∥X ≤ κ2h
2∥u0∥D(A2), (2.16)

for all h ∈ (0, h0] and n ∈ N satisfying nh ≤ T, where γ1 is a positive constant

depending only on m0, and κ1, κ2 are positive constants depending only on T and

m0.
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3 Regularity and singularity of blow-up

curve for utt − uxx = |ut|p

We study a blow-up curve for the one dimensional wave equation utt −
uxx = |ut|p with p > 1. The purpose of this paper is to show that the

blow-up curve is a C1 curve if the initial values are large and smooth

enough. To prove the result, we convert the equation into a first order

system, and then apply a modification of the method of Caffarelli and

Friedman [7]. Moreover, we present some numerical investigations of the

blow-up curves. From the numerical results, we were able to confirm

that the blow-up curves are smooth if the initial values are large and

smooth enough. Moreover, we can predict that the blow-up curves have

singular points if the initial values are not large enough even they are

smooth enough.

3.1 Introduction and main results

In this paper, we consider the nonlinear wave equation{
utt − uxx = |ut|p, t > 0, x ∈ R,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R,

(3.1)

where

p > 1 is a constant such that the function |s|p is of class C4. (3.2)

Here, u is an unknown real-valued function.

Let T ∗ and R∗ be any positive constants, and set

BR∗ = {x | |x| < R∗}, (3.3)

K−(t0, x0) = {(t, x) | |x− x0| < t0 − t, t > 0} , (3.4)

KT ∗,R∗ =
∪

x∈BR∗

K−(T
∗, x). (3.5)

We then consider the following function

T (x) = sup {t ∈ (0, T ∗) | |ut(t, x)| <∞} for x ∈ BR∗ .

In this paper, we call the set Γ = {(T (x), x) | x ∈ BR∗} the blow-up curve. Below, we

identify Γ with T itself. There are two purposes of this paper. First, we demonstrate

22



that T is continuously differentiable for the suitable initial values. Second, we present

some numerical examples of the various blow-up curves. From the numerical results,

we were able to confirm that the blow-up curves are smooth if the initial values are

large and smooth enough. Moreover, we can predict that the blow-up curves have

singular points if the initial values are not large enough even they are smooth enough.

We will state some analytical results from previous studies on the blow-up curves

for nonlinear wave equations. The majority of previous studies have considered the

following nonlinear wave equation:

utt − uxx = F (u), t > 0, x ∈ R,

and corresponding blow-up curve

T̃ (x) = sup {t ∈ (0, T ∗) | |u(t, x)| <∞} for x ∈ BR∗ .

We note that the definition of the blow-up curve is different from ours. The pi-

oneering study on this topic was done by Caffarelli and Friedman [6], [7]. They

investigated the case with F (u) = |u|p. They demonstrated that T̃ in that case is

continuously differentiable under suitable initial conditions. Moreover, Godin [18]

showed that the blow-up curve with F (u) = eu is also continuously differentiable un-

der appropriate initial conditions. It was also shown that the blow-up curve can be

C∞, in the case of F (u) = eu (see Godin [19]). Furthermore, Uesaka [33] considered

the blow-up curve for the system of nonlinear wave equations.

On the other hand, Merle and Zagg [27] showed that there are cases where the

blow-up curve has singular points, while the above results concern the smoothness

of the blow-up curve.

As mentioned above, several results have been established on the blow-up curve

when there are no nonlinear terms involving the derivative of the solution. On the

other hand, to the best of our knowledge only one result has been found concerning

the blow-up curve with nonlinear terms involving the derivative of solution. Ohta

and Takamura [30] considered the nonlinear wave equation

utt − uxx = (ut)
2 − (ux)

2, t ∈ R, x ∈ R. (3.6)

This equation can be transformed into the wave equation ∂2t v − ∂2xv = 0 by

v(t, x) = exp {−u(t, x)} , u(t, x) = − log {v(t, x)} .

Thanks to the linearization of (3.6), we can study the blow-up curve of (3.6).

However, we cannot apply this linearization to (3.1). Therefore, we employ an

alternative method, which is to rewrite to (3.1) as a system that does not include

the derivative of the solution in nonlinear terms. We basically apply the method

introduced by Caffarelli and Friedman [7] to this system. However, we offer an

alternative proof of [7] for showing that the blow-up curve of the blow-up limits is

an affine function. Consequently, our proof is more elementary and easy to read.

Our method would be applied to the original equation of [7].
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We define ϕ and ψ as

ϕ = ut + ux, ψ = ut − ux.

Then, we see that (3.1) is rewritten as
D−ϕ = 2−p|ϕ+ ψ|p, t > 0, x ∈ R,
D+ψ = 2−p|ϕ+ ψ|p, t > 0, x ∈ R,
ϕ(0, x) = f(x), ψ(0, x) = g(x), x ∈ R,

(3.7)

where D−v = vt − vx, D+v = vt + vx and f = u1 + ∂xu0, g = u1 − ∂xu0. (The

equivalency of between (3.1) and (3.7) will be described in Remark 3.1.2.)

Let (ϕ̃, ψ̃) be the solution of
dϕ̃

dt
= 2−p|ϕ̃+ ψ̃|p, t > 0,

dψ̃

dt
= 2−p|ϕ̃+ ψ̃|p, t > 0,

ϕ̃(0) = γ1, ψ̃(0) = γ2,

(3.8)

where γ1 and γ2 are some positive constants which will be fixed later. Then, we see

that there exists a positive constant T1 such that

ϕ̃(t) + ψ̃(t) → ∞ as t→ T1.

We make the following assumptions.

(A1) f ≥ γ1, g ≥ γ2 in BT ∗+R∗ .

(A2) f, g ∈ C4(BT ∗+R∗).

(A3) There exists a constant ε0 > 0 such that

2−p(γ1 + γ2)
p ≥ (2 + ε0)· max

x∈BT∗+R∗
{|fx(x)|+ |gx(x)|}.

(A4) T1 < T ∗.

(A5.1) There exists a constant ε1 >
2

2p− 3
such that

2−p(γ1 + γ2)
p ≥ (2 + ε1)· max

x∈BT∗+R∗
{|fx(x)|+ |gx(x)|}.

(We notice that it follows from (3.2) that p > 3/2.)

(A5.2) There exists a constant C(2) > 0 such that

(f + g)2p−1 ≥ C(2)· max
x∈BT∗+R∗

{|fxx(x)|+ |gxx(x)|}.
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(A5.3) There exists a constant C(3) > 0 such that

(f + g)3p−2 ≥ C(3)· max
x∈BT∗+R∗

{|∂3xf(x)|+ |∂3xg(x)|}.

We now state the main results of this paper.

Theorem 3.1.1. Let T ∗ and R∗ be arbitrary positive numbers. Assume that (A1)-

(A5.3) hold true. Then, there exists a unique C1(BR∗) function T such that 0 <

T (x) < T ∗ (x ∈ BR∗) and a unique (C3,1(Ω))2 solution (ϕ, ψ) of (3.7) satisfying

ϕ(t, x), ψ(t, x) → ∞ as t→ T (x) (3.9)

for any x ∈ BR∗, where Ω =
{
(t, x) ∈ R2 | x ∈ BR∗ , 0 < t < T (x)

}
.

Remark 3.1.2. The equation (3.1) is equivalent to (3.7). We set

u(t, x) = u0(x) +
1

2

∫ t

0
(ϕ+ ψ)(s, x)ds.

Then, u satisfies (3.1).

Remark 3.1.3. The assertion (3.9) implies that ut(t, x) → ∞ as t → T (x) (x ∈
BR∗).

Next, we will mention numerical analysis of blow-up of nonlinear partial differen-

tial equations. There are many previous works of computation of blow-up solutions

of various partial differential equations; See, for example, [28], [13], [10], [34], [31],

[11] and [12].

We computed blow-up curve using the method of Cho [12] and obtained the various

numerical results of blow-up curves.
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