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1 Introduction

The aim of this thesis is to study branching laws of real reductive Lie groups
by algebraic methods.

1.1 Irreducible decomposition

The main problem is to analyze the restriction of an irreducible represen-
tation of a Lie group (resp. Lie algebra) with respect to a closed subgroup
(resp. Lie subalgebra). The problem is called the branching problem. If the
given irreducible representation is unitary, the following fact assures us that
the restriction has an irreducible decomposition.

Fact 1.1 (Mautner and Teleman). Let U be a unitary representation of a
locally compact group G. Then U has an irreducible decomposition:

U ≃
∫ ⊕

Ĝ

m(π)Vπdµ(π),

where Ĝ is the unitary dual of G and Vπ is a representation space of π.

The measurable function m : Ĝ′
R → Z≥0 ∪ {∞} is called the multiplicity

function. For the case of Lie group representations, R. Goodman showed
in the proof of [12, Lemma 3.1] that the direct integral decomposition is
compatible with the Lie algebra action.

Fact 1.2 (Goodman). Let U be a unitary representation of a Lie group G
with direct integral decomposition:

U ≃
∫ ⊕

Z

Uzdµ(z).

Then for any vector v ∈ U∞ defined by a section z 7→ v(z), v(z) belongs
to U∞

z for µ-almost every z, where U∞ is the space of smooth vectors with
respect to the G-action. Furthermore, for any X ∈ U(g), we have (Xv)(z) =
X(v(z)) for µ-almost every z.

1.2 Branching problem

Our main concern is the branching problem of unitary representations of real
reductive Lie groups. For the branching problem of real reductive Lie groups,
we refer to [35, 40]. Let GR be a real reductive Lie group and G′

R a reductive
subgroup of GR. For any irreducible unitary representation V of GR, the
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restriction V |G′
R
to G′

R has an irreducible decomposition by the theorem of
Mautner and Teleman:

V |G′
R
≃

∫ ⊕

Ĝ′
R

m(π)Vπdµ(π). (1.2.1)

Since G′
R is reductive, the irreducible decomposition is unique. The irre-

ducible decomposition is called the branching law of V with respect to G′
R.

The branching problem for compact Lie groups has been studied by many
mathematicians, and explicit branching laws have been obtained such as the
Clebsh–Gordan formula, the Pieri rule, the branching laws for (GR, G

′
R) =

(U(n),U(n−1)), (SO(n), SO(n−1)) and (Sp(n), Sp(n−1)), the Littlewood–
Richardson coefficient, Kostant’s formula and the Littelmann path model.
Conversely, the branching problem for non-compact reductive Lie groups
is difficult in general, and branching laws were known at the end of 1980s
only for specific unitary representations such as holomorphic discrete series
representations [17], [20], [53], [68], the Segal-Shale-Weil representation [18,
19], [23] and K-type formulas.

In the late 1980s, T. Kobayashi discovered discretely decomposable branch-
ing laws of Zuckerman derived functor modules Aq(λ). Let θ be a Cartan
involution of GR preserving G′

R. Set KR := Gθ
R and gR := Lie(GR). We de-

note by K and g the complexification of KR and gR, respectively. We use a
similar notation for G′

R such as K ′
R, K

′ and g′. For a representation V of GR,
we write VK for the subspace of all KR-finite vectors. In the series of papers
[27, 28, 30, 31], Kobayashi initiated and developed the theory of discretely
decomposable (g, K)-modules and gave examples of explicit branching laws
for Aq(λ).

Definition 1.3 (T. Kobayashi [30, Definition 1.1]). A (g, K)-module V is
said to be discretely decomposable if V has a (g, K)-module filtration V0 ⊂
V1 ⊂ · · · such that

∪
i Vi = V and each Vi is finite length.

He gave criteria for the discrete decomposability of a restriction of an
irreducible (g, K)-module by the asymptotic K-support [30] and the associ-
ated variety [31], and gave necessary and sufficient conditions for the discrete
decomposability of a restriction of Aq(λ). An important property is that the
discrete decomposability of a (g, K)-module implies the discrete decompos-
ability of a unitary representation of GR as follows.

Fact 1.4 (T. Kobayashi [32, Theorem 2.7]). Let V be an irreducible uni-
tary representation of GR. Suppose that VK |(g′,K′) is discretely decompos-
able. Then VK |(g′,K′) is decomposed into the direct sum of irreducible (g′, K ′)-
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modules:

VK |(g′,K′) ≃
⊕
π∈Ĝ′

R

m(π)(Vπ)K′ ,

and V |G′
R
is decomposed into the direct sum of irreducible unitary represen-

tations with the same multiplicity function m(π):

V |G′
R
≃

∑⊕

π∈Ĝ′
R

m(π)Vπ.

In the framework, discretely decomposable restrictions, explicit branching
laws were computed for some unitary representations [6], [13], [27, 28, 30, 31],
[42], [56], [59], [63], [72]. The discretely decomposable restrictions of Aq(λ)
with respect to symmetric subgroups were classified by T. Kobayashi and Y.
Oshima [44], and the branching laws were obtained by Y. Oshima in [62].

1.3 Intertwining operator

The space of all intertwining operators is important to study the branch-
ing problem. Let V be an irreducible (g, K)-module and V ′ an irreducible
(g′, K ′)-module. Consider the following two vector spaces:

Homg′,K′(V, V ′),

Homg′,K′(V ′, V ).

An element of Homg′,K′(V, V ′) or Homg′,K′(V ′, V ) is called an intertwining
operator.

The two spaces have a natural U(g)G′
-module structure. For the case of

compact G′, it is well-known that the action on Homg′,K′(V ′, V ) is irreducible.
In particular, when G′

R is equal to the maximal compact subgroup KR of GR,
the U(g)K-module plays an important role in the theory of (g, K)-modules
such as Harish-Chandra’s subquotient theorem [14]. Remark that for non-
compact G′

R, the U(g)G′
-modules may be reducible.

The space Homg′,K′(V ′, V ) is deeply related to the discrete decomposabil-
ity:

Fact 1.5 (T. Kobayashi [31, Lemma 1.5]). Let V be an irreducible (g, K)-
module. Homg′,K′(V ′, V ) is non-zero for some irreducible (g′, K ′)-module if
and only if V |(g′,K′) is discretely decomposable.
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In many cases, the restriction of an irreducible (g, K)-module to the sub-
pair (g′, K ′) is not discretely decomposable, and Homg′,K′(V ′, V ) is zero for
any irreducible (g′, K ′)-module V ′. In such cases, any general theories to
deal with branching laws are not known. Nevertheless, some geometric and
analytic methods work well for some irreducible unitary representations [7],
[17], [42], [43], [47], [58], [60], [61], [80].

The space Homg′,K′(V ′, V ) may have many information about branch-
ing laws with continuous spectrum. T. Kobayashi proposed the program to
construct symmetry breaking operators explicitly. Here a symmetric break-
ing operators means a continuous G′

R-intertwining operator from a contin-
uous irreducible (or finite length) representation of GR to one of G′

R. The
explicit construction was obtained for principal series representations and
(GR, G

′
R) = (O(n + 1, 1),O(n, 1)) [47], and holomorphic discrete series rep-

resentations [45, 46]. A relation between symmetry breaking operators and
(g, K)-module intertwining operators was discussed in [39], and recent devel-
opments and open problems on this topic are in [40].

1.4 Multiplicity-free representation

The concept of a multiplicity-free representation is just as important as that
of the discrete decomposability.

Definition 1.6. For a unitary representation V ofGR, we denote byMGR(V )
the essential supremum of the multiplicity function of the irreducible decom-
position. V is said to be multiplicity-free if MGR(V ) = 1, and to have
uniformly bounded multiplicities if MGR(V ) < ∞.

We use the same terminology for completely reducible (g, K)-modules
and algebraic representations.

The Fourier transform, the Fourier series expansion and spherical harmon-
ics are classical and important examples of multiplicity-free representations.
In the representation theory of Lie groups, many multiplicity-free represen-
tations are known such as the Clebsh–Gordan formula, the Pieri rule, the
Peter–Weyl theorem, the branching laws for (GR, G

′
R) = (U(n),U(n − 1))

and (SO(n), SO(n − 1)), the Cartan–Helgason theorem, the Plancherel for-
mulas for Riemannian symmetric spaces and group manifolds.

A multiplicity-free representation has a ‘canonical’ irreducible decompo-
sition, and the representation yields some natural transform like the Fourier
transform. Therefore, finding a multiplicity-free representation may be re-
lated to finding some good analysis and geometry. We refer the reader to
[34] for the point of view.
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A spherical variety is one of the geometric objects to produce multiplicity-
free representations.

Definition 1.7. Let G be a complex reductive algebraic group with Borel
subgroup B. A G-variety X is said to be spherical if B has an open orbit on
X.

By [76, Theorem 2], an affine G-variety X is spherical if and only if the
coordinate ring C[X] of X is a multiplicity-free G-module.

T. Kobayashi introduced the notion of visible action on a complex mani-
fold in [33], and showed the propagation theorem of multiplicity-free property
in [29, 38]. Many multiplicity-free representations can be explained in the
machinery [34]. An advantage of the notion is that infinite-dimensional uni-
tary representations of any Lie group such as non-reductive Lie groups can be
treated in the framework. An example of applications of visible actions is the
branching laws of unitary highest weight modules with respect to symmetric
subgroups [36].

Let GR be a connected simple Lie group of Hermitian type with Cartan
involution θ and G′

R a symmetric subgroup of GR preserved by θ. Put KR :=
Gθ

R and K ′
R := (G′

R)
θ. Let a′R be a maximal abelian subspace in g−θ ∩ (g′R)

⊥.
Set MR := ZK′

R
(a′R).

Fact 1.8 (T. Kobayashi [34, Theorem 18, Theorem 34], [36, Theorem A]). Let
H be a unitary highest weight module of GR embedded in O(GR/KR, GR ×KR

F ) for some irreducible unitary representation F ofKR. If F |MR is multiplicity-
free, then H|G′

R
is multiplicity-free. In particular, if H is of scalar type, then

H|G′
R
is multiplicity-free.

Fact 1.9 (T. Kobayashi [29, Theorem B]). Retain the notation in the above
fact. If (GR, G

′
R) is a symmetric pair of holomorphic type (i.e. g′ contains

the center of k), then H|G′
R
has uniformly bounded multiplicities.

The second fact asserts MG′
R
(H) < ∞. In this case, T Kobayashi stated

in [36, Remark 1.5] that using the Howe duality [19], we could relate the
multiplicity function and the stable branching coefficients defined by F. Sato
[70].

1.5 Stability of multiplicities

If a representation has uniformly bounded multiplicities, the multiplicity
function may have a stability property. We state Sato’s stability theorem
[70] as follows.
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Let G be a connected complex semisimple algebraic group and G′ a con-
nected reductive subgroup of G. Assume that (G,G′) is a spherical pair, that
is, there is a Borel subgroup B of G such that BG′ is open dense in G. Put

L := {g ∈ G : gBG′ = BG′} ∩G′.

Then L is a reductive subgroup of G′ by a Theorem of Brion–Luna–Vust [4].
Note that the set of equivalence classes of irreducible representations of L
can be parametrized by a set of characters of B ∩G′ ⊂ L. We denote by Λ+

the set of all dominant integral weights of B. For a weight λ ∈ Λ+, we write
FG(λ) for the finite-dimensional irreducible representation of G with highest
weight λ. Set

Λ+(G/G′) :=
{
λ ∈ Λ+ : FG(λ)G

′ ̸= 0
}
.

Under this setting, F. Sato proved the following theorem.

Fact 1.10 (F. Sato [70, Theorem 3]). Let F be a finite-dimensional irre-
ducible representation of G′. Then for any λ ∈ Λ+, there exists a weight
ν0 ∈ Λ+(G/G′) such that

dimC(HomG′(FG(λ+ ν0 + ν), F )) = dimC(HomL(F
L(λ|B∩G′), F ))

for any ν ∈ Λ+(G/G′).

The above fact asserts two things: the multiplicity function of IndG
G′(F )

is invariant by the translation of Λ+(G/G′) for enough large parameters;
and for such parameters, the multiplicity function can be described by the
multiplicity function of the fiber F . The first property is called stability by
F. Sato in [70].

For the case of symmetric pairs (GR, G
′
R), the stability property appeared

in Wallach’s book [77, Cor. 8.5.15]. In the case, we can see the phenomena
in some literatures [28, Lemma 3.4], [49]. Stable branching coefficients was
computed for some concrete compact Lie groups [54], [74].

2 Main results

In this section, we state the main theorems in this thesis.
Let GR be a reductive Lie group with Cartan involution θ and G′

R a re-
ductive subgroup of GR closed under θ. We put KR := Gθ

R and gR := Lie(GR)
and denote by K and g the complexifications of KR and gR, respectively. In
a similar way, we define K ′ and g′ for G′

R.
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2.1 Direct integral and intertwining operators

For a representation V of GR, we write VK for the subspace of KR-finite
vectors.

Theorem 2.1. Let V be an irreducible unitary representation of GR. Suppose
that the irreducible decomposition of V |G′

R
is as in (1.2.1). Then for almost

every π ∈ Ĝ′
R, there exist a U(g)G′

-module structure on Cm(π) and a surjective
(g′, K ′)-module and U(g)G′

-module homomorphism:

ϕπ : VK → (Vπ)K′ ⊗ Cm(π)

such that the vector field (π 7→ ϕπ(v)) is equal to v in V for any v ∈ VK.

Remark 2.2. A similar result for the Plancherel formulas on homogeneous
spaces is well-known [2].

For the proof of the theorem, we use the reduction theorem by A. E.
Nussbaum [57], which is a generalization of von Neumann’s reduction the-
orem for bounded operators to closed operators. Since VK and U(g)G′

are
at most countable-dimensional, we can define ϕπ for almost every π. The
compatibility with the g′-action is proved by Fact 1.2.

Definition 2.3. For a (g, K)-module V and a (g′, K ′)-module V ′, we define

H0(g
′, K ′;V ⊗ (V ′)∗K′)

as the space of all coinvariants of V ⊗ (V ′)∗K′ . Then H0(g
′, K ′;V ⊗ (V ′)∗K′)

has a natural U(g)G′
-module structure.

Remark 2.4. In the context of the Howe duality [19], the spaceH0(g
′, K ′;V⊗

(V ′)∗K′) appears as the full theta lift. Hence the U(g)G′
-module structure on

H0(g
′, K ′;V ⊗ (V ′)∗K′) is used in the study of the Howe duality [50], [52].

By Theorem 2.1, there is a surjective U(g)G′
-module homomorphism:

H0(g
′, K ′;VK ⊗ (V ∗

π )K′) → Cm(π)

for almost every π. This is one of the reasons to study U(g)G′
-modules.
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2.2 Irreducibility of U(g)G′
-module: generalized Verma

modules

Let q = l⊕ u be a parabolic subalgebra of g constructed from a semisimple
element H ∈ g′. Define q′ = l′ ⊕ u′ in a similar way for g′. We fix a Cartan
subalgebra h′ of l′ and extend it to a Cartan subalgebra h of l.

For a finite-dimensional irreducible l-module F , we define a generalized
Verma module by

indg
q(F ) := U(g)⊗U(q) F.

The following theorem is needed to consider the branching problem of gen-
eralized Verma modules.

Fact 2.5 (T. Kobayashi [37]). Under the setting, indg
q(F )|g′ is discretely

decomposable and g′-admissible.

Following Knapp–Vogan’s book [26], we recall the notion of the good
range. A finite-dimensional irreducible l-module F is said to be in the good
range if the infinitesimal character λ of F satisfies

Re(λ+ ρ(u), α) < 0 for any α ∈ ∆(u, h).

Under this setting, the following theorems hold.

Theorem 2.6. Let F be a finite-dimensional irreducible l-module in the good

range. Suppose that indg
q(F )|g′ is completely reducible and ind

g′

q′ (F
′) is an ir-

reducible direct summand. Then the U(g)G′
-module Homg(ind

g′

q′ (F
′), indg

q(F ))
is irreducible.

Theorem 2.7. Let F be a finite-dimensional irreducible l-module in the good

range. Then the length of the U(g)G′
-module Homg(ind

g′

q′ (F
′), indg

q(F )) is less

than or equal to the length of ind
g′

q′ ((F
′)∗ ⊗ C−2ρ(u)).

2.3 Outline of the proof of Theorem 2.6

To study the U(g)G′
-modules, we define a (g′ ⊕ g,∆(G′))-module structure

on the space of ∆(G′)-finite linear maps as follows.

Definition 2.8. Let V be a (g, K)-module and V ′ be a (g′, K ′)-module.
Then g′ ⊕ g and K ′ × K act on HomC(V

′, V ). HomC(V
′, V )∆(G′) is defined

as the sum of finite-dimensional (∆(g′),∆(K ′))-submodules which lift to a
representation of ∆(G′). Then HomC(V

′, V )∆(G′) becomes a (g′ ⊕ g,∆(G′))-
module. We define a (g′ ⊕ g,∆(G′))-module HomC(V, V

′)∆(G′) in the same
way.
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Remark 2.9. If G′
R is equal to GR, a (g′ ⊕ g,∆(G′))-module is a Harish-

Chandra module of a complex reductive Lie group. In this case, for objects
V, V ′ of the BGG category O, HomC(V

′, V )∆(G) was studied by many math-
ematicians because the module is related to primitive ideals of the universal
enveloping algebra and principal series representations of complex semisimple
Lie groups (e.g. [3], [5], [8, 9], [22]).

An important property of the module is that the ∆(G′)-invariant part
of the module is equal to the space of all intertwining operators. Hence
we can study the U(g)G′

-module through the (g′ ⊕ g,∆(G′))-module. More
precisely, the following two propositions hold.

Proposition 2.10. Retain the settings in the above. Put

I := U(g′ ⊕ g)∆(G′) ∩ U(g′ ⊕ g)∆(g′).

Then there is an algebra isomorphism:

α : U(g)G′ ≃ U(g′ ⊕ g)∆(G′)/I

∈ ∈

X 7→ I ⊗X + I.

Proposition 2.11. Let W be a (g′ ⊕ g,∆(G′))-module. Then the length of
the U(g)G′

-module on W∆(G′) is bounded by the length of W . In particular if
W is irreducible, then W∆(G′) is irreducible or zero.

To prove Theorem 2.7, 2.6 and 2.17, we construct (g′ ⊕ g,∆(G′))-modules
using the Zuckerman derived functor RiΓ. Let L′ be the analytic subgroup of
G′ with Lie algebra l′. For a finite-dimensional irreducible l-module F with in-

finitesimal character λ, let Og′

q′ (λ) be the full subcategory of the relative BGG

category Og′

q′ whose object V satisfies that V ⊗F can lifts to a representation
of L′. We denote by F(g′ ⊕ g,∆(G′)) the category of (g′ ⊕ g,∆(G′))-modules
of finite length. The following theorem is a key result.

Theorem 2.12. Let F be a finite-dimensional irreducible l-module with in-
finitesimal character λ in the good range. Set S := dimC(u

′). Then the
following functor gives a category embedding:

Og′

q′ (λ) ∋ M 7→ RSΓ
∆(G′)
∆(L′)(M ⊗ indg

q(F )) ∈ F(g′ ⊕ g,∆(G′)),

that is, the functor is exact and fully faithful, and maps irreducible objects to
irreducible objects.
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Remark 2.13. If g = g′, the theorem was proved by T. J. Enright [8,
Chapter 16] except for the full faithfulness.

Remark 2.14. For a non-symmetric pair (g, k), a (g, k)-module with some
finiteness conditions is called a generalized Harish-Chandra module by I.
Penkov and G. Zuckerman [64, 65, 66].

The proof of the theorem follows the proofs in Knapp–Vogan’s book [26],
Wallach’s book [79] and Penkov–Zuckerman’s papers.

Under the settings of Theorem 2.6, using the functor, we can prove the
following U(g)G′

-module isomorphism:

Homg′,K′(ind
g′

q′ (F
′), indg

q(F )) ≃ RSΓ
∆(G′)
∆(L′)(M ⊗ indg

q(F ))∆(G′),

where M is a unique irreducible quotient of ind
g′

q′ ((F
′)∗ ⊗C−2ρ(u′)). Thus the

irreducibility of Homg′,K′(ind
g′

q′ (F
′), indg

q(F )) is reduced to the irreducibility

of RSΓ
∆(G′)
∆(L′)(L⊗ indg

q(F )) by Proposition 2.11.

2.4 Irreducibility of U(g)G′
-module: Zuckerman derived

functor modules

To apply Theorem 2.6 to Zuckerman derived functor modules, we define a
quasi-abelian parabolic subalgebra.

Definition 2.15 (quasi-abelian). q is said to be quasi-abelian with respect
to g′ if (α, β) ≥ 0 holds for any α ∈ ∆(u′, h′) and β ∈ ∆(u′′, h′).

Remark 2.16. In the case of G′
R = KR, the notion of a quasi-abelian

parabolic subalgebra was used by Enright–Parthasarathy–Wallach–Wolf [10]
to study Zuckerman derived functor modules.

If q is quasi-abelian with respect to g′, the completely reducibility always
holds as long as F is in the good range. We assume H ∈ k′, and set KL :=
ZK(H) and K ′

L := ZK′(H). Then the following theorem holds.

Theorem 2.17. Let F be a finite-dimensional irreducible (l, KL)-module in
the good range. Suppose that there exists an ideal k1 of k such that H ∈ k1 and
u∩k ⊂ k1 ⊂ g′, and suppose that q is quasi-abelian with respect to g′. Put S :=
dimC(u ∩ k). Then RSΓK

KL
(indg

q(F ))|(g′,K′) is completely reducible and each

direct summand is of the form RSΓK′

K′
L
(ind

g′

q′ (F
′)) with F ′ in the good range.

Moreover, Homg′,K′(RSΓK′

K′
L
(ind

g′

q′ (F
′)), RSΓK

KL
(indg

q(F ))) is irreducible as a

U(g)G′
-module.
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Remark 2.18. As we mentioned in the introduction, T. Kobayashi gave a
necessary and sufficient condition for the discrete decomposability of Aq(λ)
(including discrete series representations), and gave some examples of explicit
branching laws in [27, 28, 30, 31].

Remark 2.19. One of important cases satisfying the assumptions is the case
of discretely decomposable restrictions of discrete series representations with
respect to symmetric subgroups. For small discrete series representations
and its restrictions to symmetric subgroups, the branching law was computed
by Gross–Wallach in [13]. For any discrete series representations and non-
symmetric subgroups, Duflo–Vargas gave a formula of the multiplicities like
Blattner’s formula in [6]. The subgroup K1 in our setting is the same as in
[13] and [6].

Under the assumptions in the theorem, indg
q(F )|g′ is completely reducible.

Hence the proof is reduced to Theorem 2.6 by the following fact.

Fact 2.20 (Gross–Wallach [13, Lemma 7]). Under the assumptions in The-
orem 2.17, RSΓK

KL
(indg

q(F )) is isomorphic to RSΓK1
K1∩L(ind

g
q(F )).

2.5 Irreducibility of U(g)G′
-module: Holomorphic dis-

crete series representations

We study the U(g)G′
-module and (g′ ⊕ g,∆(G′))-module arising from the

branching law with continuous spectrum.
Following Kanpp’s book [25, Chapter VI], we recall holomorphic discrete

series representations. Assume that GR is a connected simple Lie group of
Hermitian type. Fix an element H ∈

√
−1c(kR) such that adg(H) has eigen-

values −1, 0 and 1. Then g is decomposed into the direct sum of eigenspaces
of adg(H):

g = p+ ⊕ k⊕ p−

corresponding to eigenvalues 1, 0 and −1, respectively. We put q := k ⊕ p+
and q = k⊕ p−. Then GR/KR admits a GR-invariant complex structure such
that the natural embedding GR/KR ↪→ G/Q is holomorphic.

Fact 2.21 (Harish-Chandra [15]). Let F be an irreducible unitary represen-
tation of KR. Then O ∩ L2(GR/KR, GR ×KR F ) is non-zero if and only if F
is in the good range with respect to q, where O ∩ L2 means the space of all
holomorphic and L2 sections. Furthermore, if O ∩ L2(GR/KR, GR ×KR F ) is
non-zero, it is irreducible and unitary as a representation of GR.
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The irreducible unitary representation is called a holomorphic discrete
series representation.

Assume that (GR, G
′
R) is a symmetric pair of anti-holomorphic type (i.e.

g′R does not contains the center of kR) and G′
R satisfies the following condition:

Adg(G
′
R) = G′ ∩ Int(gR),

where G′ is the analytic subgroup of Aut(g) with Lie algebra g′.
It is known that the branching law of a holomorphic discrete series rep-

resentation with respect to G′
R is reduced to the Plancherel formula of the

Riemannian symmetric space G′
R/K

′
R. Hence the irreducible decomposition

has a continuous spectrum.

Fact 2.22 (J. Repka [68], R. Howe [17], Ólafsson–Ørsted [58]). For a holo-
morphic discrete series representation V of GR realized in O(GR/KR,V) for
a holomorphic GR-equivariant vector bundle V on GR/KR, the following iso-
morphism holds:

V |G′
R
≃ L2(G′

R/K
′
R,V|G′

R/K
′
R
).

Let Q′
R = M ′

RA
′
RN

′
R be a minimal parabolic subgroup of G′

R. Take a Car-
tan subalgebra t′ of m′, and put h′ := a′⊕ t′. Write I (δ, ν) for the underlying
Harish-Chandra module of the principal series representation induced from

(δ, Vδ) ∈ M̂ ′
R and ν ∈ (a′)∗. We consider ‘generic’ principal series representa-

tions in the following sense.

Lemma 2.23. Let µ be the infinitesimal character of δ. Assume

2(−ν − µ+ ρ(n′), α)

(α, α)
̸∈ Z for any α ∈ ∆(n′, h′).

Let W be an irreducible subquotient of I (δ, ν). Then the following properties
hold:

(a) EndC(W )∆(G′) is irreducible as a (g′ ⊕ g′,∆(G′))-module;

(b) for any finite-dimensional representation F of G′, F ⊗W is completely
reducible.

Fix a maximal abelian subspace tR of (g′R)
⊥ ∩ kR. Then tR is a maximal

abelian subspace of (g′R)
⊥. Choose a set of positive roots ∆+(g, t) containing

∆(p+, t). Let γ1 be the highest weight of ∆(g′R, a
′
R) with respect to the

parabolic subgroup Q′
R, and β1 be the highest weight of ∆(p+, t). Then the

following theorem holds.

12



Theorem 2.24. Retain the notation and the assumption in Lemma 2.23.
Let Cλ be a one-dimensional representation of KR with weight λ. Assume

±(w(ν − ρ(n)) + ρ(n), γ1)

(γ1, γ1)
+

(λ, β1)

(β1, β1)
̸∈ Z

for any w ∈ Wg′R
. Then the (g′ ⊕ g,∆(G′))-module HomC(ind

g
q(Cλ),W )∆(G′)

is irreducible.

Remark 2.25. In the case of the trivial representation W (the theorem can
not apply to this case), HomC(ind

g
q(Cλ),1)∆(G′) is isomorphic to a degenerate

principal series representation of some real form of G. The irreducibility of
degenerate principal series representations can be determined from the data
of the K-type decomposition and the p-action on each K-type. T. Hirai
introduced this method to study degenerate principal series representations
of Lorentz groups [16]. Many mathematicians computed the composition
series of degenerate principal series representations by a similar way such as
V. F. Molčanov [55], Klimyk–Gavrilik [24], Johnson–Wallach [21] and Kudla–
Rallis [48].

The structure of HomC(ind
g
q(Cλ),W )∆(G′) can be computed by a simi-

lar way. Under the assumptions of Theorem 2.24, HomC(ind
g
q(Cλ),W )∆(G′)

is completely reducible and multiplicity-free as a (g′ ⊕ g′,∆(G′))-module.
Hence we can use the irreducible decomposition as a (g′ ⊕ g′,∆(G′))-module
instead of the K-type decomposition.

It follows from Harish-Chandra’s classification of holomorphic discrete
series representations (Fact 2.21) that if λ is in the good range, indg

q(Cλ)
is isomorphic to the underlying Harish-Chandra module of a holomorphic
discrete series representation. We apply the Jantzen–Zuckerman translation
functor to HomC(ind

g
q(Cλ),W )∆(G′), and we obtain the following theorem.

Theorem 2.26. Let F be an irreducible unitary representation of KR in
the good range, and let (δ, Vδ) be an irreducible subrepresentation of F |M ′

R
.

Suppose that the center c(k) of k acts on F by a character λ. Assume that λ, δ
and ν ∈ (a′)∗ satisfy the conditions of Lemma 2.23 and Theorem 2.24. Let W
be an irreducible subquotient of I (δ, ν). Then HomC(ind

g
q(F ),W )∆(G′) is an

irreducible (g′ ⊕ g,∆(G′))-module, and Homg′,K′(indg
q(F ),W ) is irreducible

as a U(g)G′
-module.

2.6 Stability of multiplicities

We generalize Sato’s stability theorem (Fact 1.10) to the case of quasi-affine
spherical varieties.
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Let X be a quasi-affine spherical variety of a complex connected reductive
algebraic group G with Borel subgroup B = TN . Then the coordinate ring
C[X] is a multiplicity-free G-module. Fix an open orbit Bx0 ⊂ X and put
L := {g ∈ G : gx0 = x0, gBx0 ⊂ Bx0}. Then L is a reductive subgroup of G
by the theorem of Brion–Luna–Vust [4, Théorème 3.4]. Consider a finitely
generated torsion-free (C[X], G)-module M such as the space of all global
sections of a G-equivariant vector bundle on X. Then the following theorem
holds.

Theorem 2.27. There exists a weight λ0 ∈ Λ+(C[X]) such that

mG
M(λ+ λ0) = mL

M/m(x0)M
(λ|Bx0

)

for any λ ∈ Λ+(M).

Here mG
M(·) is the multiplicity function of the G-module M , and Λ+(M)

is the set of weights of B/N ≃ T in MN . We denote by m(x0) the maximal
ideal of C[X] corresponding to x0.

Remark 2.28. IfX is an affine homogeneous variety G/G′ of G, the theorem
is just Sato’s stability theorem (Fact 1.10).

The proof is essentially the same as the proof of Sato’s stability theorem
[70]. The only difference is that we study some behavior of the evaluation
map M → M/m(x0)M instead of using the reductivity of G′.

As an application of Theorem 2.27, we obtain the following corollary.
Recall the notation in Fact 1.9.

Corollary 2.29. Let H be a holomorphic discrete series representation of
GR. Suppose that G′

R is connected and (GR, G
′
R) is a symmetric pair of

holomorphic type. Then we have

MG′
R
(H) = MMR(H

p+
K ),

where MG′
R
(H) is the maximal value of the multiplicities. In particular, H|G′

R

is multiplicity-free if and only if (Hp+
K )|MR is multiplicity-free.

Remark 2.30. MG′
R
(H) < ∞ and the ‘if part’ of the second assertion were

proved by T. Kobayashi (Fact 1.8, 1.9).

We write σ for the involution defining the symmetric pair (GR, G
′
R). We

can reduce the branching law of H|G′
R
to the irreducible decomposition of

S(p−σ
− ) ⊗ Hp+

K as a K ′-module (see [20, Proposition 2.5] and [36, Lemma
8.8]). As in the proof of [36, Theorem 8.3], the irreducible decomposition of
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S(p−σ
− )⊗Hp+

K is considered as the K-type decomposition of some direct sum
of holomorphic discrete series representations of the associated symmetric
subgroup Gθσ

R . Since S(p−σ
− ) is multiplicity-free by the Hua–Kostant–Schmid

theorem [71], we can apply Theorem 2.27 to S(p−σ
− ) ⊗ Hp+

K , and this shows
the corollary.

2.7 Classification of multiplicity-free restrictions of holo-
morphic discrete series representations

We classify multiplicity-free restrictions of holomorphic discrete series repre-
sentations with respect to symmetric subgroups.

Let GR be a connected simple Lie group of Hermitian type with simply-
connected complexification G, and σ be an involutive automorphism of GR.
Put G′

R := Gσ
R. The following theorem is the classification result.

Theorem 2.31. Let H be a holomorphic discrete series representation of
GR. Put F := Hp+

K . Then H|G′
R
is multiplicity-free if and only if F is one-

dimensional or the highest weight of F |[k,k] belongs to Λ(σ) in Table 1.

Remark 2.32. In the case of scalar type H, the theorem was proved by
T. Kobayashi [29, 34] (Fact 1.8). The multiplicity-freeness was shown for
(gR, g

′
R) = (so(2, n), so(2, n − 1)) by Jakobsen–Vergne [20, Corollary 3.1],

and for (su(p, q), u(p− 1, q)) by T. Kobayashi [36, Theorem 8.10].

gR gσR ± st. Λ(σ)
su(p, q) su(p1, q1) + su(p2, q2) + t h ⃝ (p1 + q1 = 1, p+ q − 1) any

(p1 + q1 = 2, p+ q − 2) mωi

ωi, mωi(i = 1, p± 1, p+ q − 1)
so(p, q) a ωi

sp(p/2, q/2) a mωi(i = 1, p± 1, p+ q − 1)
su(n, n) so∗(2n) h ωi

sp(n,R) h (n = 2) any
(n ≤ 4) mωi

mωi(i = 1, n± 1, 2n− 1)
sl(n,C) + R a ⃝ (n = 2) mωi

ωi, mωi(i = 1, n± 1, 2n− 1)
so∗(2n) so∗(2p) + so∗(2n− 2p) h ⃝ (min(p, n− p) = 1) mωi

ω2, ωn

u(p, n− p) h ⃝ mωi(i = 2, n)
(n = 4, p:odd) mωi(i = 2, 3, 4)

so(n,C) a ω2, ωn
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gR gσR ± st. Λ(σ)
su∗(n) + R a ⃝ mωi(i = 2, n)

so(2, n) so(2, p) + so(n− p) h (p = n− 1) any
(n:odd) ω1

⃝ (n:even p = 0, n− 2) mω1,mω2

(n:even) ω1, ω2

so(1, p) + so(1, n− p) a the same as above
u(1, n/2) h ⃝ mωi(i = 1, 2, n/2)

sp(n,R) sp(p,R) + sp(n− p,R) h (min(p, n− p) = 1) mωi

ω2, ωn

u(p, n− p) h ⃝ ωi

sp(n/2,C) a ω2, ωn

sl(n,R) + R a ⃝ ωi

e6(−14) so(10) + t h ⃝ mω6

so∗(10) + t h ⃝
so(2, 8) + t h ⃝

su(5, 1) + sl(2,R) h none
su(4, 2) + su(2) h none

f4(−20) a mω2, mω3

sp(2, 2) a ω6

e7(−25) e6(−78) + t h ⃝ none
e6(−14) + t h ⃝ none

so(10, 2) + sl(2,R) h none
so∗(12) + su(2) h none

su(6, 2) h none
e6(−26) + R a ⃝ none

su∗(8) a none
Table 1: the classification of multiplicity-free restrictions
of holomorphic discrete series representations

The circle of the column with title ‘st’ means that its classification can be
reduced to the Stembridge classification, that is, G′

R has a one-dimensional
center. The column with title ‘±’ means that if the value is ‘h’, the symmetric
pair is of holomorphic type, and if the value is ‘a’, the symmetric pair is of
anti-holomorphic type. ω’s are fundamental weights corresponding to simple
roots given later. mωi means that mωi is in Λ(σ) for any m.

To prove the classification result, the following theorem is useful. Fix a
unitary character (ζ,Cζ) of KR. For an irreducible unitary representation F
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of KR with infinitesimal character λ, we define

Zhol(F ) := {z ∈ Z : (λ+ ρ(p+), α) < 0 for any α ∈ ∆(p+, h)} ,

Zfin(F ) :=

{
z ∈ Z :

2(λ+ ρ(p+), α)

(α, α)
∈ {1, 2, . . .} for any α ∈ ∆(p+, h)

}
,

and let L(F ) denote a unique irreducible submodule of O(GR/KR, GR ×KR

F )KR .

Theorem 2.33. Let F be a unitary irreducible representation of KR. Then
the following conditions are equivalent:

(a) MGσ
R
(progq̄(F ⊗ Czζ)) = 1 for any z ∈ Zhol(F );

(b) MGσ
R
(progq̄(F ⊗ Czζ)) = 1 for some z ∈ Zhol(F );

(c) MGσ(L(F ⊗ Czζ)) = 1 for any z ∈ Zfin(F );

(d) MMR(F ) = 1.

where MR is the subgroup of K ′
R defined before Fact 1.8.

Remark 2.34. For the proof of the theorem, we use the method, analytic
continuation of holomorphic discrete series representations [1], [69], [75], [78].
To prove the theorem, we need only that the family of the representations
O(GR/KR, GR ×KR (F ⊗ Czζ))KR depends on z polynomially, that is, any
element of g acts on the space by a differential operator with polynomial
coefficient on z.

Remark 2.35. In the branching problem, the method of analytic continua-
tion was used to study symmetry breaking operators [47].

Remark 2.36. The theorem asserts that the sufficient condition for the
multiplicity-freeness given by T. Kobayashi (Fact 1.8) is a necessary condition
for holomorphic discrete series representations.

By the theorem, the classification of multiplicity-free restrictions of holo-
morphic discrete series representations is reduced to that of finite-dimensional
irreducible representations. In particular, in the case that G′

R has a one-
dimensional center, J. R. Stembridge has classified multiplicity-free restric-
tions of finite-dimensional irreducible representations with respect to G′ in
[73]. Thus for such G′

R, the classification is immediately done by Theorem
2.33 and the Stembridge classification.

As a consequence, we obtain the following proposition.
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Corollary 2.37. Let σ′ be an involutive automorphism of GR. Assume that
Gσ and Gσ′

are conjugate by an inner automorphism of G. Then we have
Λ(σ) = Λ(σ′).

Remark 2.38. The theorem asserts that the classification is not depend
on a choice of real forms. The similarity of two groups with isomorphic
complexifications can be found in many fields in the representation theory
and the harmonic analysis. We give several examples:

• the Weyl unitary trick;

• the Flensted-Jensen duality [11];

• non-existence of compact Clifford–Klein forms [41];

• transfer of K-type [13];

• one to one correspondence of infinitesimal characters in the theory of
the Howe duality [51], [67].

The simple roots of g are numbered as follows.

gR = su(p, q)

◦
α1

◦
α2

· · · ◦
αp+q−2

◦
αp+q−1

αp is a unique non-compact simple root.

gR = so∗(2n)

◦
α1

◦α2

|
◦
α3

· · · ◦
αn−1

◦
αn

α1 is a unique non-compact simple root.

gR = so(2, n) If n is odd, the Dynkin diagram of g is as follows:

◦
α1

⇐= ◦
α2

· · · ◦
αl−1

◦
αl

, where l = (n+ 1)/2. αl is a unique non-compact simple root.
If n is even, the Dynkin diagram of g is as follows:

◦
α1

◦α2

|
◦
α3

· · · ◦
αl−1

◦
αl

, where l = n/2 + 1. αl is a unique non-compact simple root.
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gR = sp(n,R)

◦
α1

=⇒ ◦
α2

· · · ◦
αn−1

◦
αn

α1 is a unique non-compact simple root.

gR = e6(−14)

◦
α1

◦
α3

◦α2

|
◦
α4

◦
α5

◦
α6

α1 is a unique non-compact simple root.

gR = e7(−25)

◦
α1

◦
α3

◦α2

|
◦
α4

◦
α5

◦
α6

◦
α7

α7 is a unique non-compact simple root.
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