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Abstract 

 

Parasitism is one of the commonest and most successful modes of life on Earth.  

Parasites have played a significant role in the evolution of other, non-parasitic 

organisms and hence contributed to the overall biodiversity.  Furthermore, they can 

alter the physiology and behavior of the hosts that have a significant role in systems, 

which in turn modifies community structure.  Illuminating current status and 

evolutionary transitions of host-parasite interaction is therefore crucial to understand the 

origin and maintenance mechanisms of biodiversity.  Diversification processes of 

parasites have indeed been investigated using molecular methods for various lineages in 

several phyla including Arthropoda, Nematoda, Platyhelminthes and Acanthocephala.  

However, quite little is known about the timing of their ecological transitions, 

morphological evolution and species diversification, making it difficult to reveal a more 

complete picture of parasite evolution.  This scarcity of knowledge is attributable to 

the extremely rare fossil record for small and soft-bodied parasites. 

 The class Gastropoda offers an unmatched advantage for studying the evolution 

of parasites with its abundant fossil record.  Among parasitic gastropods, the 

Eulimidae and Pyramidellidae have achieved significant diversification during their 

Cenozoic radiation that resulted in thousands of extant species in each family.  

Interestingly, ecological and morphological traits are quite different between the two 

groups.  Eulimids are exclusive parasites of echinoderms and exhibit rich varieties of 

parasitic strategies (temporary, ecto- and endoparasitism) and shell shapes (slender, 

globose and capuliform).  Pyramidellids in contrast parasitize on annelids and other 

mollusks, mostly as temporary parasites with rather uniformly high-spired shells.  

Despite being such fascinating targets for studies on parasite evolution, their ingroup 

relationships have been poorly understood due to the lack of comprehensive molecular 

phylogenies.  Here in this dissertation, the evolutionary histories and diversification 



patterns are first illuminated and compared between these two largest families of 

parasites in Gastropoda. 

 The relationships of the Eulimidae among non-parasitic taxa are not well 

understood, while such knowledge is essential for the inference of the ancestral states 

and evolutionary transition in a parasitic lineage.  In the Chapter 1 of this thesis, 

Bayesian and maximum likelihood phylograms are reconstructed to explore the 

phylogenetic position of Eulimidae within its parent taxon Hypsogastropoda, based on 

the nucleotide sequences of five genes (nuclear 18S/28S rRNA and Histone H3 and 

mitochondrial 16S rRNA and COI) from 58 species in 38 hypsogastropod families and 

from five cerithioideans as the outgroup.  The phylogenetic trees suggest Vanikoridae 

as the sister group of Eulimidae; the two families are collectively placed in the newly 

redefined superfamily Vanikoroidea, with Truncatelloidea and Rissooidea as its closest 

relatives.  Vanikorids are protandrous hermaphrodites as are many eulimids and are 

essentially carnivorous, differing from the mostly gonochoristic and herbivorous or 

detritivorous Truncatelloidea and Rissooidea.  The parasitic lifestyle in the Eulimidae 

was probably derived from carnivorous mode of feeding as in the case of many other 

parasitic organisms. 

 The internal phylogeny of the Eulimidae and their evolutionary consequences 

are examined in the Chapter 2 by molecular phylogenetic reconstruction and 

morphometric analysis of shells.  Phylogenetic trees are inferred from six-gene 

sequences (a total of 4.7 kb) from 101 eulimid species belonging to over 50 genera as 

well as three vanikorids for outgroup comparison.  Reconstruction of ancestral 

character states and divergence time estimates based on the tree topology reveal that (1) 

eulimids exploiting each of the five echinoderm classes belong to two or three phyletic 

groups, (2) each of the teleoconch and radula has been lost more than once in the 

evolution of eulimids, and (3) globose to capuliform shells as well as endoparasitism 

have evolved independently and rapidly in several of the lineages.  In addition, the 



principal component analysis based on seven measurements of eulimid shells reveals a 

strong correlation between shell morphology and parasitic strategy.  These results 

indicate that the evolution of the Eulimidae involves the process of repeated adaptive 

radiation.  Respective radiations have started from temporary parasitic ancestors 

bearing a slender shell and ended in permanent ectoparasites and endoparasites with 

globose to patelliform shells or without a shell.  These radiations involving the 

adhesion and infiltration to the host of a particular echinoderm class thus have a strong 

deterministic component, as has shown in the replicated adaptive radiation by other 

organismal lineages on islands and in lakes.  Fossil records suggest that the repeated 

radiation has occurred throughout the evolutionary history of Eulimidae, since well 

before and more frequently than it can be traced by the ancestral state reconstruction 

based on phylogenetic relationships among extant species and distribution of their 

ecological traits. 

 The Chapter 3 is devoted to illuminate evolutionary relationships and 

diversification process in the Pyramidellidae.  A molecular phylogeny of the family is 

reconstructed based on six-gene sequences (5.1 kbp); also estimated are the ancestral 

conditions of the shell shapes and habitats.  This phylogenetic analysis includes 59 

pyramidellid species in more than 40 genera as well as 14 related taxa for comparison.  

The resulting trees reject the monophyly of the Pyramidellidae and all of its four 

subfamilies as currently defined based almost solely on shell morphology.  Although 

many species of the family apparently exhibit low host specificity, which may decrease 

the diversity of accessible niches for colonization, they probably have achieved the 

great diversification through frequent shifts among different environments while often 

retaining dependence to a particular lineage of hosts, ranging from a single species to 

various taxa in a phylum.  The reasons why pyramidelloids have not specialized to 

give rise endoparasites or why they have achieved a permanent ectoparasitic lifestyle 



only once are discussed in comparison with the repeated adaptive radiation of the 

Eulimidae. 

 Summing up, the diversification processes greatly differ in the two most 

speciose groups of parasitic gastropods, Eulimidae and Pyramidellidae: Recurrent 

specialization to the permanent parasitic lifestyle has enhanced the diversification in the 

former, while frequent habitat shifts among disjunct marine environments have 

contributed to the species richness of the latter.  The present study on eulimid 

diversification provides perhaps the most complete and dynamic picture of parasite 

evolution in terms of the large number of parallel specialization events.  This study 

also indicates that the fossil records of the Gastropoda can provide unmatched 

knowledge on the evolution of host-parasite interaction, particularly if a number of 

conchological characters are properly evaluated and only truly unique conditions are 

used to diagnose monophyletic groups.  Further investigations on the evolutionary 

history of parasitic gastropod lineages, each of which exhibits different ecological and 

morphological conditions but unanimously benefits from the rich fossil record, would 

elucidate diversification of parasitic organisms in time and space. 
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1 

General Introduction 

 

本章については、5年以内に雑誌などで刊行予定のため、非公開。 
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Chapter 1 

Phylogenetic position of the Eulimdiae within Hypsogastropoda 

 

1-1. Introduction 

 

The class Gastropoda is one of the most successful animal lineages as parasites and has 

acquired parasitism at least eight times, fewer only than the numbers in two arthropod 

classes, Copepoda and Malacostraca (Poulin & Morand, 2000).  With the great impact 

on the global evolution of animals and plants, the origins of parasitic lineages and their 

evolutionary histories of ecological and morphological traits have attracted much 

attention from phylogenetic systematists (e.g. Whitfild, 1998; Herlyn et al., 2003; 

Littlewood, 2006).  However, while the phylogenetic position of the parasites among 

non-parasitic taxa is not necessarily well understood, such knowledge is essential for the 

inference of the ancestral states and evolutionary transition in the parasitic lineage.  

Among the parasitic groups of Gastropoda, phylogenetic position has been investigated 

for the Coralliophilinae (Barco et al., 2010), Pediculariinae (Meyer, 2003, 2004; 

Schiaparelli et al., 2005) and Pyramidellidae (Dinapoli & Klussmann-Kolb, 2010; 

Jörger et al., 2010; Dayrat et al., 2011; Dinapoli et al., 2011).  These studies have 

provided interesting insights that parasitic snails often constitute a clade with 

carnivorous taxa, which might represent the prerequisite condition for parasitism.  

Coralliophilinae is one of the terminal subfamilies of the large carnivorous family 

Muricidae (Barco et al., 2010).  This family also includes Vitularia, which parasitizes 

molluscan hosts (Herbert et al., 2009) and represents either the sister clade of 

Coralliophilinae or another terminal lineage among carnivorous genera (Barco et al., 

2010).  Pediculariinae belongs to the monophyletic, otherwise carnivorous Ovulidae 

(Schiaparelli et al., 2005), whose putative sister taxa also comprise predators on sponges 

and tunicates (Cypraeidae, Velutinidae & Triviidae; Wilson, 1998a, 1998b).  
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Pyramidellidae represents a possible sister clade of Glacidorbidae (Dinapoli & 

Klussmann-Kolb, 2010; Dinapoli et al., 2011), Amphiboloidea (Jörger et al., 2010) or 

Lymnaeoidea (Dayrat et al., 2011).  The species of Glacidorbidae feed on the tissue of 

wounded invertebrates (Ponder, 1986).  On the other hand, amphiboloids and 

lymnaeoids are deposit feeders and omnivores strongly oriented to animal food, 

respectively (Bovbjerg, 1968; Roach & Lim, 2000). 

 

Eulimidae and its phylogenetic position 

 

The family Eulimidae represents one of the most diverse groups of parasitic molluscs in 

terms of not only the number of extant species but also the existence of the widest range 

of parasitic strategies.  These parasites exhibit a large variety of parasitic modes (e.g. 

endoparasitism, ectoparasitism and gall forming), sexual strategies (hermaphroditic, 

gonochoristic and environmental sex determination) and shell shapes (slender, conical, 

globose and capuliform; Warén, 1984).  The Eulimidae are exclusive parasites of 

echinoderm hosts including all five classes, i.e. Echinoidea, Holothuroidea, Asteroidea, 

Ophiuroidea and Crinoidea (Warén, 1984), while the Late Cretaceous origin of this 

gastropod family clearly post-dates the Paleozoic divergence of the echinoderm clades 

(Neumann & Wisshak, 2009). 

 The phylogenetic position of the family has not been established within the 

Gastropoda.  Eulimids had been placed in Ptenoglossa, which originally included a 

number of families that share a comb-like or “ptenoglossate” radula (Gray, 1853).  

Ptenoglossa was later confined to Eulimoidea, Epitonioidea and Triphoroidea based on 

the common presence of an acrembolic proboscis and two pairs of salivary glands in the 

three superfamilies (see Ponder et al., 2008).  However, this group was found to be 

paraphyletic or polyphyletic in a cladistic analysis using morphological characters 

(Ponder & Lindberg, 1997) and therefore treated as an informal group in the working 
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classification by Bouchet & Rocroi (2005).  In particular, eulimids differ from other 

ptenoglossans in lacking the distinctive parasperm (Healy, 1988).  Molecular 

phylogenetic studies also support the polyphyly of the Ptenoglossa among the 

Hypsogastropoda (Colgan et al. 2000, 2007; Churchill et al., 2011a; Criscione & Ponder, 

2013).   

 Hypsogastropoda represents the largest clade among the superorder 

Caenogastropoda with Cerithioidea as a possible sister taxon and consists of three 

provisional subgroups, i.e. Littorinimorpha, Neogastropoda and Ptenoglossa (Ponder & 

Lindberg, 1997; Bouchet & Rocroi 2005; Ponder et al., 2008).  Of these, 

Neogastropoda constitutes a robust clade (Ponder & Lindberg, 1997; Zou et al., 2011) 

that is only remotely related to eulimids (Colgan et al., 2007).  Previous phylogenetic 

studies have identified the Rissoinidae of the Littorinimorpha as the sister clade of 

Eulimidae (Colgan et al., 2007; Churchill et al., 2011a; Criscione & Ponder, 2013).  

However, this relationship remains inconclusive due to insufficient taxon sampling.  

Littorinimorpha and Ptenoglossa comprise a total of 65 families in 18 superfamilies 

(Bouchet & Rocroi, 2005), only less than half of which were included in those 

phylogenies, and the closest relative of Eulimidae may be found among other neglected 

taxa.  Also the microalgal and bacterial feeding of rissoinids (Ponder & de Keyzer, 

1998a) is at variance with the generally suggested position of parasitic lineages among 

carnivorous relatives. 

 In this study, 58 species from 38 hypsogastropod families were analyzed along 

with five outgroup species from Cerithioidea, with a special emphasis on littorinimorph 

and ptenoglossan taxa.  Our goals are to determine the phylogenetic position of 

Eulimidae and to verify the monophyletic nature of the family in order to unravel the 

ancestral states from which parasitic life has derived. 
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1-2. Materials and Methods 

 

Taxonomic sampling 

 

Fifty-two littorinimorph and ptenoglossan species belonging to 32 families were 

collected and selected for the present molecular analysis to increase the total 

phylogenetic diversity of operational taxonomic units (OTUs; Table 1-1).  Special 

emphasis was placed on Rissooidea and Truncatelloidea, which have been identified as 

possible close relatives of Eulimidae in previous studies (Colgan et al., 2007; Criscione 

& Ponder, 2013).  Also included in the analysis was the type species of Aclis in the 

family Aclididae.  Bouchet & Rocroi (2005) remarked that the Aclididae share certain 

morphological conditions with the Eulimidae and classified the two families as the 

exclusive members of Eulimoidea.  However, a molecular phylogeny transferred the 

family to the superorder Heterobranchia based on sequences from Larochella, but not 

from the type genus Aclis (Dinapoli & Klussmann-Kolb, 2010; see also Warén, 2013).  

Nine eulimid species were also included in our phylogenetic reconstruction to cover the 

widest ranges of morphology and host diversity of the family as possible (Table 1-2).  

Most live snails were boiled in 70–90 ºC water for 0.1–1 min and the animals were 

extracted from the shells and preserved in pure ethanol.  Voucher material has been 

deposited at Atmosphere and Ocean Research Institute, The University of Tokyo, unless 

otherwise noted in Table 1-1.  All shell, operculum, radula and cephalic part of the 

animal were kept undamaged in most specimens for future taxonomic studies. 

 For outgroup comparisons, published cerithioid sequences were retrieved from 

the DDBJ/EMBL/Genbank (e.g. Zou et al., 2011), along with other sequences from five 

littorinimorph and one neogastropod species (Kameda & Kato, 2011).  Neogastropoda 

was also represented by new sequences of Chauvetia tenuisculpta (Buccinidae), which 

is plausibly a parasite on echinoderms (Oliver & Rolan, 2008; Wirtz, 2011). 
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DNA extraction, PCR amplification and sequencing 

 

Total DNA was extracted from the foot tissue using DNeasy Blood and Tissue Kit 

(Qiagen) and purified by GeneReleaser
 
(Bioventures) following the manufacturer’s 

recommendations.  Portions of the mitochondrial and nuclear genes were amplified 

using the primer sets LCO1490-HCO2198 (for mitochondrial cytochrome c oxidase 

subunit 1, COI), 16SarL-16SbrH (16S rRNA), LSU5-LSU1600R and 1100F-na2 

(nuclear 28S rRNA), 18A1-1800r (18S rRNA) and H3MF-H3MR (Histone H3; see 

Appendix 1).  PCR reactions were conducted in a total volume ca. 25 µl: 17.5 µl DDW, 

0.13 µl TaKaRa Ex Taq Hot Start Version (TaKaRa Bio Inc.), 2.5 µl Ex Taq Buffer (10x), 

2.0 µl dNTP mixture (2.5 mM each), 0.3 µl forward and reverse primers (20 µM each) 

and 2.5 µl genomic DNA.  After an initial denaturation for 2 min at 94 ºC, the reaction 

solution was run for 35 cycles with the following parameters: denaturation for 30 sec at 

94 ºC, annealing for 40 sec at 50 ºC and extension for 60 sec at 72 ºC, followed by the 

final extension at 72 °C for 4 min; an annealing temperature at 42 ºC was used instead 

for the COI amplification.  If amplification was unsuccessful under these conditions, 

either or both of the primers were replaced by others listed in Table S1-1.  Amplicons 

were purified by ExoSAP-IT (Affymetrix) following the described protocol.  Purified 

PCR products were sequenced with the amplification and/or internal primers; 

sequencing reactions were prepared using a Big Dye Terminator Cycle Sequence Kit ver. 

3.1 (Applied Biosystems) following the manufacturer’s protocol.  The reaction 

mixtures were analyzed on an ABI PRISM 3130xl sequencer after purification with a 

Big Dye XTerminator Purification Kit (Applied Biosystems). 

 

Phylogenetic analyses 

 

I generated two datasets based on different combinations of genes and OTUs.  The first 
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dataset comprised partial sequences of the 28S (spanning domains D1–D5; see Michot 

et al., 1984) and COI genes representing 60 species and 40 families from the whole 

Hypsogastropoda and its outgroup taxa.  The second, five-gene dataset was made to 

reconstruct a more detailed phylogeny for Eulimidae and its related taxa, which were 

illustrated by the two-gene analyses.  This dataset consisted of longer 28S fragments 

(D1–D7b), entire 18S and partial H3, COI and 16S sequences from 30 species and 15 

families.  For each dataset, the sequences of the three rRNA and one coding (COI) 

genes were aligned individually by ProAlign 0.5 alpha 1 (Löytynoja & Milinkovitch, 

2003) with the band-width set to 1,200; the COI fragments were aligned as deduced 

amino acid sequences.  The H3 sequences had no indels and were aligned by eye in 

MEGA 5 (Tamura et al., 2011).  Each aligned dataset was masked to remove alignment 

ambiguous sites by ProAlign and Gblocks 0.91b (Castresana, 2000), resulting in four 

alignments (2gPA, 2gGB, 5gPA and 5gGB).  For the 2gPA and 5gPA alignments, 

regions with posterior probabilities below 50% in the ProAlign analyses were excluded 

in the succeeding phylogenetic reconstruction.  The 2gGB and 5gGB alignments were 

masked with the default parameters of Gblocks except that the “Minimum number of 

sequences for a conserved position” was set to 60% of OTUs, “Minimum number of 

sequences for a flank position” to 80% of OTUs and “Allowed gap positions” to “With 

half.” 

 Phylogenetic trees were reconstructed from the four alignments using the 

Bayesian inference and Maximum Likelihood (ML) methods.  In the Bayesian 

analyses performed with MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003), the general 

time-reversible model was used for all the datasets with invariant site frequency and 

gamma-shaped parameters estimated from the data (GTR + Γ + I), which was selected 

as the best-fit model by the Akaike information criterion in MEGA 5.  The shape, 

proportion of invariant sites, state frequency and substitution rate parameters were 

estimated for each codon position separately in the amino acid coding COI and H3 
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genes.  Each gene was allowed to have different parameters, hence the two-gene and 

five-gene alignments had four and nine partitions, respectively.  Two parallel runs were 

made for 20,000,000 generations (with a sample frequency of 100), using the default 

value of four Markov chains.  The first 100,000 trees for each run were discarded to 

make sure the four chains reached stationarity by referring to the average standard 

deviation of split frequencies (Ronquist & Huelsenbeck, 2003).  The consensus tree 

and posterior probabilities (PP) were computed from the remaining 200,000 trees 

(100,000 trees, two runs).  Posterior probabilities equal to or above 0.95 were 

considered meaningful support.  The ML analyses were performed using the Pthreads 

version of RAxML v7.2.6 (Stamatakis, 2006) with the same partitions as the Bayesian 

analyses and the following commands: a rapid bootstrap analysis and search for the 

best-scoring ML tree in one single program run (-f a) and 1,000 bootstrap replicates (-# 

1000) under the GTR + Γ + I substitution model (-m GTRGAMMAI).  Bootstrap 

probabilities (BP) equal to or above 70% were considered meaningful support.  

Bayesian analyses were also performed for individual genes with 5,000,000 generations 

and burn-in value setting at 25,000 to compare evolutionary rates and to eliminate 

possible contamination and erroneous sequences.  All trees were edited by FigTree 

v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). 

 

1-3. Results 

 

Sequence data 

 

The numbers of total, excluded, variable, and parsimony-informative sites are shown for 

the four alignments in Table 1-3.  Stenothyra thermaecola and Tubbreva sp. were 

found to have extremely high evolutionary rates of the 28S gene and were therefore 

excluded from the multi-gene alignments; Aclis minor was also excluded due to 
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difficulties in amplifying gene fragments except H3.  The two-gene dataset had 2,235 

sites, of which 309 and 382 were masked in the 2gPA and 2gGB alignments, 

respectively.  The five-gene dataset had 5,616 sites and 610 and 646 were excluded in 

the respective 5gPA and 5gGB analyses.  Gblocks tended to exclude more sites of 18S 

and 28S than ProAlign did, whereas the 16S alignments showed the opposite pattern.  

The proportion of variable sites varied from 9.6% in the 18S gene of the 5gGB 

alignment to 60.6% in the COI of the 2gGB alignment.  Parsimony-informative sites 

varied from 4.8% in the 18S of the 5gGB to 50.2 % in the COI of the 2gPA (Table 1-3).  

There were two 3-bp deletions in the COI matrix at the positions 95–97 (Vanikoro 

helicoidea) and 296–298 (Caecum globellum and Iravadia sakaguchii). 

 

Phylogenetic analyses of the combined datasets 

 

Bayesian and likelihood analyses yielded the same results for all four alignments in 

terms of clades with meaningful support values.  I therefore show only Bayesian trees 

with posterior probabilities and ML bootstrap values on branches (Figs. 1-1, 1-2). 

 The two-gene dataset recovered the Eulimidae as a robust monophyletic clade 

in the analyses of both 2gPA and 2gGB alignments (PP = 1.00, BP ≥ 98%; Fig. 1-1, see 

Appendix 1 for the 2gGB tree).  The family consisted of two subclades, reflecting the 

presence or absence of the radula (1.00, ≥ 89%; Table 1-2).  The monophyletic 

Vanikoridae (Vanikoro + Macromphalus: 1.00, 100%) constituted a well-supported 

clade with Eulimidae as the newly redefined superfamily Vanikoroidea (1.00, 100%).  

Lyocyclus, a genus previously assigned to Vanikoridae or its own family Lyocyclidae, 

was found to be distant from the type genus Vanikoro and formed a moderately 

supported clade with Macrocypraea (Cypraeidae) in the 2gGB analysis (0.96, < 50%).  

The previously suggested affinity of Hipponicidae to Vanikoridae (as a member of 

Vanikoroidea; e.g. Ponder & Warén 1988; Bouchet & Rocroi 2005) was clearly rejected 
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in all analyses.  The superfamily Rissooidea (Rissoidae, Rissoinidae and Barleeiidae) 

was paraphyletic to the Vanikoroidea albeit with insignificant support values (≤ 0.91, ≤ 

68%).  The two superfamilies constituted a robust clade with the Truncatelloidea (1.00, 

89%).  Twenty other suprageneric nodes received meaningful PP and BP values in both 

analyses: Niso + Pyramidelloides + Hemiliostraca (1.00, ≥ 95%), Monogamus + 

Vitreolina + Stilifer + Thyca (1.00, 100%), Monogamus + Vitreolina (≥ 0.97, ≥ 83%), 

Stilifer + Thyca (1.00, 100%), Rissoidae (1.00, 100%), Benthonella + Lucidestea (1.00, 

≥ 90%), Rissoinidae (1.00, 100%), Rissoinidae + Barleeiidae (1.00, ≥ 92%), 

Truncatelloidea (1.00, 100%), Assiminea + Truncatella + Cecina + Falsicingula + 

Potamopyrgus + Amphithalamus (≥ 0.97, ≥ 71%), Assiminea + Truncatella + Cecina + 

Falsicingula (1.00, ≥ 99%), Teniostoma + Iravadia (≥ 0.99, ≥ 72%), Hipponicidae (1.00, 

100%), Epitonioidea (1.00, ≥ 91%), Janthinidae + Alexania + Epitonium (1.00, 100%), 

Janthinidae + Alexania (≥ 0.95, ≥ 72%), Nystiellidae + Opalia (1.00, ≥ 96%), 

Pterotracheoidea (1.00, ≥ 87%), Neogastropoda (≥ 0.99, ≥ 78%), Cerithioidea + 

Pickworthiidae (1.00, ≥ 99%), Pelycidion + Microliotia (≥ 0.99, ≥ 75%).  The Tornidae 

and Epitoniidae sensu Bouchet & Rocroi (2005) were recovered as non-monophyletic 

groups in our analyses.  The monophyly of Cerithioidea + Pickworthiidae was 

confirmed by a separate two-gene analysis with Campanile symbolicum 

(Campaniloidea) and three heterobranch species as outgroup taxa (see Appendix 1). 

 The five-gene dataset recovered the relationships among and within the 

Vanikoroidea, Truncatelloidea and Rissooidea with higher posterior and bootstrap 

values (Figs. 1-2, see Appendix 1 for the 5gGB tree).  The sister relationship between 

the redefined Vanikoroidea and Truncatelloidea was supported in both 5gGB (1.00, 

64%) and 5gPA (0.95, 62%) analyses.  The superfamily Rissooidea, here represented 

by Rissoidae and Rissoinidae, was supported in the Bayesian analysis of the 5gGB 

alignment (0.97; ML: < 50%) but not in the 5gPA analyses (0.88, < 50%).  The 

relationships among eulimid genera in the 5gGB trees were not concordant with those 
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recovered in the two-gene and 5gPA analyses: Hemiaclis was the basal-most offshoot of 

the family in the 5gGB analyses (1.00, 75%) while it constituted a clade with Niso + 

Pyramidelloides + Hemiliostraca with lower support indices in the 5gPA analyses (0.96, 

68%).  The two ophiuroid parasites included in the dataset formed a robust clade in 

both analyses (Pyramidelloides + Hemiliostraca; 1.00, ≥ 92%).  On the other hand, the 

asteroid parasites Stilifer and Thyca were distantly related to Niso, another group 

exploiting sea stars (1.00, 100%). 

 

Independent gene analyses 

 

Most of the 13 Bayesian analyses for independent gene sequences resulted in poorly 

resolved trees (see Appendix 1), while the monophyly of the Eulimidae was 

unambiguously supported in 28S, COI and 16S trees (PP = 1.00).  Other clades with 

meaningful posterior probabilities (≥ 0.95) include: all four eulimids without the radula 

(supported by 18S, 28S and COI), Vanikoridae (18S, 28S, H3 and 16S), Vanikoroidea 

(28S), Rissoidae (18S and 28S), Rissoinidae (18S, 28S and COI), Hipponicidae (28S 

and COI), Nystiellidae + Opalia (28S, H3 and 16S), Epitonioidea (18S and 28S).  

There were a few contradictory clades with meaningful support values in the 

independent gene trees, particularly between nuclear rRNA and mitochondrial COI 

topologies with regard to the positions of Vanikoridae, possibly reflecting excessive 

evolutionary rates of the latter gene and long-branch attraction. 

 The shorter fragments of the 28S gene (D1–D5) confirmed the truncatelloid 

affinity of Stenothyra thermaecola (PP = 1.00), while Tubbreva sp. of Cingulopsidae 

appeared in a large, basal polytomy (Appendix 1; see also Criscione & Ponder, 2013).  

The phylogenetic position of Aclis minor, the type of the family Aclididae, could not be 

resolved with the available H3 sequences.  However, this H3 sequence showed the 

smallest uncorrected distances to Schwartziella subulata (5.2%) and Macromphalus sp. 
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(6.2%; Appendix 1), which suggests a position of the family among the Vanikoroidea, 

Rissooidea and Truncatelloidea, and corroborates with the classification by Fretter & 

Graham (1982), Bouchet & Rocroi (2005) and Warén (2013). 

 

1-4. Discussion 

 

Phylogenetic position and ancestral states of the Eulimidae 

 

The most significant finding of the present study is the robust sister relationship of the 

Eulimidae and Vanikoridae (Figs. 1-1, 1-2) and we propose that the two families 

constitute a newly redefined Vanikoroidea Grey, 1840, which has nomenclatural 

precedence over Eulimoidea Philippi, 1853.  Earlier molecular phylogenies that 

suggested that the closest relationship of Eulimidae is with Rissoinidae (Colgan et al., 

2007; Churchill et al., 2011a; Criscione & Ponder, 2013) did not include vanikorids.  

The gastropod classification by Bouchet & Rocroi (2005) assigned Vanikoridae along 

with Hipponicidae and Haloceratidae into Vanikoroidea, and Eulimidae and Aclididae in 

Eulimoidea, based on shared, but plausibly symplesiomorphic, conditions of the early 

ontogeny and feeding ecology (see Ponder, 1998).  The Hipponicidae and Vanikoridae 

have been analyzed in a molecular phylogeny that showed their distant relationship 

(Collin, 2003; see also Ponder et al., 2008), but again Eulimidae was not included. 

 The Vanikoridae are globose to conical, small- to medium-sized, non-parasitic 

snails living in shallow intertidal waters as well as at subtidal, shelf and bathyal depths 

(Warén & Bouchet, 1988; Ponder, 1998).  There seems to be no clear synapomorphy 

among described conchological or anatomical conditions to support the monophyletic 

group comprising Eulimidae and Vanikoridae.  However, limited anatomical 

information available for vanikorids has been obtained mainly from the large, possibly 

autapomorphic genus Vanikoro (e.g. Simone, 2002) and little is known for the various 
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genera from deeper waters; one of the few shared anatomical features of the family is 

the presence of the epipodial flap on each side of the foot, which is lacking in Eulimidae 

(Warén & Bouchet, 1988). 

 Interestingly, the two families share some reproductive and ecological 

conditions.  Most hypsogastropod species are dioecious (Heller, 1993), while many 

eulimids are sequential hermaphrodites (Warén, 1984; Bouchet & Warén, 1986) as are 

vanikorids (Ponder, 1998).  In addition, Goto et al. (2011) have found a vanikorid, 

Macromphalus tornatilis, in the burrows of echiuran worms and suggested a certain 

association between them.  Although the feeding ecology of the Vanikoridae has not 

been adequately studied, sponge spicules, foraminifers and diatoms have been found in 

the stomach contents of Vanikoro cancellata (Golding et al., 2009).  Indeed, species of 

Vanikoro are almost always found attached on/near sponges on the underside of 

deep-buried coral rubble (Y. Kano, personal observation; Appendix 1), suggesting 

omnivorous or carnivorous feeding habits for the family.  If this is the case, the 

common ancestor of Eulimidae and Vanikoridae might have depended on animal flesh 

for its nutrient requirement and differentiated from the detritivorous modes in the 

Rissooidea and Truncatelloidea, which represent possible sister clades of Vanikoroidea 

(Fig. 1-1).  The parasitic mode of life in eulimids has therefore likely originated from a 

predatory ancestor as in the cases of some other gastropod (Schiaparelli et al., 2005; 

Barco et al., 2010). 

 Vanikoroidea potentially includes two other extant families, namely Aclididae 

and Haloceratidae.  Aclidids are small animals imperfectly known both in morphology 

and way of life, because of their rarity and sublittoral habitats.  The species of the type 

genus Aclis are almost certainly carnivores, which have an acrembolic proboscis and 

small ptenoglossan radula (Fretter & Graham, 1982).  They most closely resemble the 

Eulimidae among the polyphyletic ptenoglossan families in that they share similar 

anatomical conditions and protoconch morphology, although the tumid teleoconch 
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whorls and the lack of a penis differentiate the former from the latter (Fretter & Graham, 

1982; Bouchet & Rocroi, 2005).  The presence of a large epipodial fold on each side of 

the foot in Aclis (Bouchet and Warén, 1986; Gofas et al., 2011) and vanikorids (Warén 

& Bouchet, 1988; Ponder 1998) may further suggest the affinity of Aclididae to 

Vanikoroidea.  The available specimen of the type species (A. minor) yielded only a 

H3 sequence that did not clearly show a phylogenetic position in the Bayesian analysis 

for this gene, while the comparison of genetic distances supported the vanikoroid 

affinity but not a relationship to the Epitoniidae, another possible candidate as the 

closest relative of Aclididae (Bouchet & Warén, 1986).  A previous molecular 

phylogeny transferred Aclididae to the superorder Heterobranchia based on sequences 

from Larochella (Dinapoli & Klussmann-Kolb, 2010; see also Warén, 2013).  However, 

so-called aclidids contain many polyphyletic genera with small and slender shells but 

with a fundamentally different anatomy, and Larochella actually belongs to an unrelated 

heterobranch family, Graphididae (Warén, 2013), or its possible senior synonym 

Tofanellidae (Gründel & Nützel, 2013).  A future analysis with a better-preserved 

specimen of A. minor is needed to determine the precise phylogenetic position of 

Aclididae. 

 The deep-sea family Haloceratidae represents another rare and poorly studied 

group with an uncertain affinity in Hypsogastropoda.  Warén & Bouchet (1991) noted 

in the description of the family that haloceratids are probably sedentary carnivorous 

animals with sequential hermaphroditism (see also Warén, 1993).  These 

characteristics may suggest their close affinity to the Vanikoridae (Ponder 1998) as well 

as to the Eulimidae and the predatory mode of life as the ancestral condition for the 

latter family.  Haloceratids are also similar to vanikorids in sharing a characteristic foot 

that is divided into two functionally different parts, although other morphological 

conditions instead suggest their affinity to either the Capulidae (Capuloidea) or the 

Laubierinidae (Tonnoidea; Warén & Bouchet 1991).  The Haloceratidae may represent 
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another important group in future phylogenies to shed light on the evolution of the 

parasitic mode of life in Vanikoroidea. 

 

Convergent evolution and superficial resemblance to Vanikoroidea 

 

The present study reveals that some taxa that have been included in Vanikoroidea or 

assigned close to or within Vanikoridae are distantly related and have independently 

acquired morphological resemblance.  Simone (2002, 2011) showed that the 

Vanikoridae have certain similarities to the Hipponicidae, Calyptraeidae and Capulidae 

in conchological and anatomical characters.  Of these, Hipponicidae has been 

considered a member of Vanikoroidea, while each of Calyptraeidae and Capulidae 

represents an independent superfamily in many of the current classifications (e.g. 

Bouchet & Rocroi, 2005).  All four families have been included in a molecular 

phylogenetic analysis (Collin, 2003) that showed distant relationships among the 

Hipponicidae, Vanikoridae and Calyptraeidae + Capulidae.  Based on the present and 

previous molecular phylogenies, Hipponicidae is provisionally transferred from 

Vanikoroidea to its own monotypic superfamily Hipponicoidea Troschel, 1861.  

Convergence is also apparent within the Vanikoridae.  There are little-known genera 

from the deep sea, for example Lyocyclus, which have been classified into this family 

based on similarities in external anatomy and radular morphology, regardless of their 

rather unusual shell shapes (Warén & Bouchet, 1988; Warén, 1989).  Lyocyclus is 

found to be very distant from Vanikoro + Macromphalus and represents its independent 

family Lyocyclidae Thiele, 1925 (Fig. 1-1).  There might be more heterogeneous taxa 

in Vanikoridae that deserve independent familial status or belong to other 

hypsogastropod families. 

 Polyphyly of the informal group Ptenoglossa was reaffirmed (see Bouchet & 

Rocroi, 2005; Colgan et al., 2007; Churchill et al., 2011a).  Ptenoglossate radulae have 
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been acquired independently in Vanikoroidea, Epitonioidea and Triphoroidea as well as 

in many other, totally distant gastropod groups, e.g. some of Trochaclididae, 

Pseudococculinidae (both Vetigastropoda) and Architectonicidae (Heterobranchia), 

probably to serve similar feeding ecologies (Warén, 1984; Warén & Gofas, 1996).  

Also, parasitism on echinoderms has probably evolved more than once in 

Hypsogastropoda.  Chauvetia tenuisculpta apparently parasitize echinoids and 

asteroids (Oliver & Rolan, 2008; Wirtz, 2011), while the present trees confirm its 

position within Neogastropoda (Buccinidae) and distant from Eulimidae (Fig. 1-1). 

 

Ecological radiation and morphological differentiation in the Eulimidae 

 

The present phylogeny demonstrates that the family Eulimidae constitutes a robust 

clade (Figs. 1-1, 1-2), although the nine genera included in the analysis have 

considerably different morphologies, hosts and parasitic strategies (Table 1-2).  Adams 

and Adams (1853) established a separate family Styliferidae for Stilifer that bears a 

broader and more globose shell than that of Eulima, the type genus of Eulimidae.  

Succeeding authors had placed several other eulimid genera with similarly broad shells 

in Styliferidae (e.g. Laseron, 1955).  These conchological differences, however, have 

been shown to be specializations connected with the degree of parasitism; the inflated 

shells are presumably apomorphic and acquired in multiple genera where parasites 

permanently attach to their hosts (Warén, 1984).  The distant relationship between 

Stilifer and another globose genus Monogamus in the present molecular trees verifies 

the plasticity of the shell shape in the evolution of the Eulimidae.  Further support of 

this plasticity is indicated by the terminal position of the limpet-shaped genus Thyca, 

which shows an even more derived condition from Stilifer.  This apparently represents 

morphological adaptation for stronger attachment to the host with a larger sole of the 
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foot, as suggested for multiple lineages of rocky-shore limpets to substrates (Vermeij, 

1993). 

 The Eulimidae are exclusive parasites of echinoderms including all five classes.  

Warén (1984) noted that each class of the host seemed to be infected by a single lineage 

of eulimids, with a possible exception by the genus Vitreolina that includes ophiuroid 

and echinoid parasites.  However, the present phylogeny demonstrates at least one 

more exceptional case where a host class is parasitized by multiple eulimid clades.  

The asteroid parasites Stilifer and Thyca are distantly related to Niso, another group 

exploiting sea stars (Warén, 1984).  Regardless, the evolutionary history of host 

associations cannot be dealt with precisely without including additional taxa.  There 

are more than 1,250 described species and over 90 genera in the family which has a 

global distribution from the equator to the poles and occupy a wide range of depths, 

from intertidal to abyssal waters (Warén, 1984; Bouchet & Warén, 1986).  The polarity 

of evolutionary transitions among sexual (gonochoristic and protandric/simultaneous 

hermaphroditic) strategies is even more difficult to evaluate due to the rarity of properly 

preserved specimens that represent various ontogenetic stages. 

 One of the few morphological or ecological characters that accord well with 

our tree topology is the presence or absence of the radula.  Radula-less species always 

constitute a robust monophyletic clade, while snails with the radula (Hemiaclis, Niso, 

Pyramidelloides and Hemiliostraca) were either monophyletic or paraphyletic in the 

two-gene and five-gene reconstructions, respectively (Figs. 1-1, 1-2; Table 1-2).  The 

Eulimidae have acquired the ptenoglossate radula in parallel to those of Epitonioidea 

and Triphoroidea (see above) and one of the ancestral lineages of the family has 

apparently lost this digestive apparatus, which may have a limited use in their 

blood-sucking mode of feeding (Warén, 1984).  A more detailed ingroup phylogeny 

would provide further insights on the loss of the radula and transitions of other 

morphological and ecological traits. 
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Rissooidea and Truncatelloidea 

 

Relationships among Vanikoroidea, Rissooidea and Truncatelloidea were not clearly 

resolved in our trees.  The sister relationship between Vanikoroidea and 

Truncatelloidea was supported by the highest Bayesian posterior probability but 

insignificant ML bootstrap values in the 5gPA tree (Fig. 1-2, see also Appendix 1).  

This topology differs from that of a previously published phylogeny (Criscione & 

Ponder, 2013), which places a eulimid species within the Rissooidea with high posterior 

and bootstrap support (PP = 1.00, BP = 93%) based on two of the five markers used in 

the present analyses (28S and 16S, a total of ca. 2.2 kbp).  Possible explanations for 

the incongruence include differences in the numbers of markers and OTUs and the 

method of sequence alignment (see also Fig. 1-1).  On the other hand, Barleeiidae and 

Rissoinidae consistently form a robust clade within Rissooidea, both in the present and 

previous (Criscione & Ponder, 2013) phylogenies.  These two families share a pegged 

operculum, which is lacking in the type family Rissoidae (Ponder, 1985). 

 Our phylogenetic reconstruction reveals more insights on the internal 

relationship of the Truncatelloidea.  The analyzed ten families belong to one of two 

major clades: Anabathridae + Hydrobiidae + Assimineidae + Truncatellidae + 

Pomatiopsidae + Falsicingulidae, and Elachisinidae + Caecidae + Iravadiidae + 

Tornidae (Figs. 1-1, 1-2).  The former clade comprises all marine, freshwater and 

terrestrial taxa, while the species of the latter clade inhabit only the marine environment 

including brackish estuaries and mangrove swamps (see Ponder & de Keyzer, 1998a).  

A subclade of the former clade (Hydrobiidae + Assimineidae + Truncatellidae + 

Pomatiopsidae + Falsicingulidae) has already been recovered with the highest PP value 

in Criscione & Ponder (2013), while its sister relationship to Anabathridae is first 

resolved here (Fig. 1-2).  The monophyletic nature of the Tornidae (= Vitrinellidae; 

Bouchet & Rocroi, 2005) is clearly rejected by the sister relationship between Vitrinella 
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and Iravadia, confirming the previous suspicion that this family comprises 

heterogeneous groups (Ponder & de Keyzer, 1998a). 

 

Other hypsogastropod clades 

 

The present phylogeny provides further information on the suprageneric classification 

of Hypsogastropoda and other caenogastropod taxa.  Nystiellidae of the superfamily 

Epitonioidea (Opaliopsis sp.) is included for the first time in a molecular analysis and is 

found to occupy a terminal position within the Epitoniidae.  Nystiellidae was originally 

established as a subfamily of Epitoniidae (Bouchet & Warén, 1986) and later given a 

distinct familial status based almost solely on the presence of dense axial ribs in the 

protoconch (Nützel, 1998; Bouchet & Rocroi, 2005).  However, nystiellids have 

general shell shapes that are very similar to those of some typical epitoniids with a 

smooth protoconch (e.g. Opalia; Bouchet & Warén, 1986).  The present tree indeed 

shows a close relationship between Opalia and Opaliopsis (Fig. 1-1); the protoconch 

ornamentation has possibly been acquired as an apomorphy in the latter lineage.  The 

neustonic Janthinidae represents another terminal clade within the Epitoniidae as has 

already been discussed by Churchill et al. (2011a).  Interestingly, Alexania represents 

the closest benthic relative of Janthinidae in our trees with meaningful nodal support 

values (Fig. 1-1).  The broad, smooth and brown shell of Alexania differs noticeably 

from the tall, ribbed white shells of other epitoniids and closely resembles that of the 

plesiomorphic janthinid genus Recluzia (Robertson & Habe, 1965; Churchill et al., 

2011a, b).  Unfortunately, our knowledge of their anatomy is insufficient to verify their 

close kinship and to infer morphological differentiation and adaptation that have 

accompanied the radical habitat transition from the benthic to neustonic mode of life. 

 A further, significant finding concerns the position of the little-known, mainly 

cavernicolous family Pickworthiidae.  Only a few snails of the family have been 
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collected alive from submarine caves and similar cryptic voids in the shallow subtidal 

waters of the tropics and subtropics (Table 1-1; Bouchet & Le Renard, 1998; Kase, 

1998).  The Pickworthiidae have been tentatively assigned to Littorinoidea based on 

protoconch morphology alone (Bouchet & Le Renard, 1998; Bouchet & Rocroi, 2005), 

while the same morphological character also implies a relationship to Cerithioidea, a 

possible sister clade of Hypsogastropoda (Ponder & Lindberg, 1997; Colgan et al., 

2007; Ponder et al., 2008).  Our molecular data recover three pickworthiid genera as 

the sister clade of, or paraphyletic to, the Cerithioidea (Fig. 1-1).  The genera 

Pelycidion and Microliotia are clustered with high support values, whereas the former 

has been classified in an independent family (Pelycidiidae) with a unique combination 

of the tall, minute shell and rhipidoglossate-like radula (Ponder & Hall, 1983; Bouchet 

& Le Renard, 1998) or later a subfamily of Pickworthiidae (Bouchet & Rocroi, 2005).  

The paraphyletic nature of Pickworthiinae (here represented by Microliotia and 

Mareleptopoma), however, suggests that the morphologies unique to Pelycidion are 

apomorphic, derived conditions within the family.  Cerithioid anatomy has been 

examined in detail (e.g. Houbrick, 1988; Strong et al., 2011), but the Pickworthiidae are 

neglected due to the inaccessibility of live animals (Bouchet and Le Renard, 1998; Kase, 

1998).  In summary, integrated molecular, morphological and ecological investigations, 

covering taxa from the deep sea and other inaccessible habitats, are essential to reveal 

hypsogastropod relationships and evolution of various life history strategies including 

parasitism. 

 The Chapter 1 has been published as: Takano, T., Kano, Y. (2014). Molecular 

phylogenetic investigations of the relationships of the echinoderm-parasite family 

Eulimidae within Hypsogastropoda. Molecular Phylogenetics and Evolution 79: 

258–269 (Elsevier Inc.). 
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Figure 1-1. Bayesian phylogeny of Hypsogastropoda inferred from 2gGB alignment of 28S 

(D1–D5) and COI genes (1,853 sites in total). Numerals on branches denote posterior 

probabilities (PP, left) and likelihood-based bootstrap values shown as percentages (BS, 

right); significant support in bold (PP ≥ 95%, BS ≥ 70%). Shells from upper left to lower 

right: N. matsumotoi, M. acicula, M. entopodia, T. crystallina, V. helicoidea, S. subulata, R. 

clathrata, M. tokunagai, A. ogasawarana, I. sakaguchii, Truncatella sp. and C. globella (scale 

bars: 1 mm). 
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Figure 1-2. Bayesian phylogeny of Vanikoroidea, Truncatelloidea and Rissooidea inferred 

from 5gGB alignment of 28S (D1–D7b), 18S, H3, 16S and COI genes (4,969 sites in total). 

Numerals on branches denote posterior probabilities (PP, left) and likelihood-based bootstrap 

values shown as percentages (BS, right); significant support in bold (PP ≥ 95%, BS ≥ 70%). 
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Table 1-2. Ecological and morphological characteristics of eulimid species included in 

the present phylogeny. Specimens of Niso matsumotoi and Hemiliostraca sp. were 

collected as free-living while the two genera are known to parasitize Asteroidea and 

Ophiuroidea, respectively (Warén, 1984); no information available for Hemiaclis. 

Morphological conditions after Warén (1984) and Bouchet and Warén (1986). 

 

Species Host class Mode of life Shell shape Radula 

Hemiaclis sp. unknown Temp conical present 

Hemiliostraca sp. Ophiuroidea Temp slender present 

Melanella acicula Holothuroidea Temp slender absent 

Monogamus entopodia Echinoidea Ecto globose absent 

Niso matsumotoi Asteroidea Temp conical present 

Pyramidelloides angusta Ophiuroidea Temp slender present 

Stilifer akahitode Asteroidea Endo globose absent 

Vitreolina auratus Echinoidea Temp slender absent 
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Table 1-3. Summary of four sequence alignments. 

 

 Alignment Excluded Variable Parsimony 

 length sites sites informative 

2gGB     

  28S D1–D5 1,605 382 331 224 

  COI 630 0 382 316 

  Total 2,235 382 713 540 

 

2gPA     

  28S D1–D5 1,605 306 384 268 

  COI 630 3 380 315 

  Total 2,235 309 764 583 

 

5gGB 

  28S D1–D7b 2,352 397 375 274 

  18S 1,795 60 167 83 

  H3 314 0 110 90 

  16S 525 189 205 173 

  COI 630 0 375 303 

  Total 5,616 646 1,232 923 

 

5gPA 

  28S D1–D7b 2,352 337 399 287 

  18S 1,795 50 174 84 

  H3 314 0 110 90 

  16S  525 220 172 141 

  COI 630 3 373 302 

  Total 5,616 610 1,228 904 
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Chapter 2 

Elucidating the evolutionary history of parasitism in eulimid gastropods: gradual 

specialization to permanent endoparasites or repeated adaptive radiation? 

 

本章については、5年以内に雑誌などで刊行予定のため、非公開。 
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Chapter 3 

Evolutionary relationships and diversification pattern in Pyramidellidae 

 

本章については、5年以内に雑誌などで刊行予定のため、非公開。 
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General Discussion 

 

本章については、5年以内に雑誌などで刊行予定のため、非公開。 
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Supplementary data for Chapter 1 

 

 

 

Figure S1-1. Bayesian tree inferred from two-gene sequences (2gPA). 

Figure S1-2. Bayesian tree inferred from five-gene sequences (5gPA). 

Figure S1-3. Two-gene tree with three heterobranchs. 

Figures S1-4–S1-12. Independent-gene trees. 

Figure S1-13. In situ photos of Vanikoro. 

 

Table S1-1. Nucleotide sequences of primers 

Table S1-2. Pairwise p-distance matrix of H3 sequences 

 

 

 

 

 



 

 

 

Figure S1-1. Bayesian phylogeny of Hypsogastropoda inferred from 2gPA alignment of 

28S (D1–D5) and COI genes (1,926 sites in total). Numerals on branches denote 

posterior probabilities (PP, left) and likelihood-based bootstrap values shown as 

percentages (BS, right); significant support in bold (PP ≥ 0.95, BS ≥ 70%). 

 

 

 



 

 

 

Figure S1-2. Bayesian phylogeny of Vanikoroidea, Truncatelloidea and Rissooidea 

inferred from 5gPA alignment of 28S (D1–D7b), 18S, H3, 16S and COI genes (5,006 

sites in total). Numerals on branches denote posterior probabilities (PP, left) and 

likelihood-based bootstrap values shown as percentages (BS, right); significant support 

in bold (PP ≥ 0.95, BS ≥ 70%). 

 

 

 



 

 

 

Figure S1-3. Bayesian tree inferred from 28S D1–D5 and COI sequences with 

Ophicardelus ornatus, Salinator solida, Siphonaria pectinata (Heterobranchia) and 

Campanile symbolicum (Campaniloidea) as outgroup taxa. 

 

 



 

 

Figure S1-4. Bayesian trees inferred from 28S (D1–D5) gene sequences for two-gene 

dataset. 



 

 

Figure S1-5. Bayesian trees inferred from COI gene sequences for two-gene dataset. 

 



 

 

Figure S1-6. Bayesian trees inferred from 28S (D1–D7b) gene sequences for five-gene 

dataset. 



 

 

Figure S1-7. Bayesian trees inferred from 18S gene sequences for five-gene dataset. 

 



 

 

Figure S1-8. Bayesian trees inferred from 16S gene sequences for five-gene dataset. 

 



 

 

Figure S1-9. Bayesian trees inferred from COI gene sequences for five-gene dataset. 

 



 

 

 

 

Figure S1-10. Bayesian tree inferred from H3 gene sequences for five-gene dataset. 

 

 



 

 

 
 

Figure S1-11. Bayesian tree inferred from 28S (D1–D5) gene sequences with Tubbreva 

sp. and Stenothyra thermaecola. 

 

 



 

 

 

 

Figure S1-12. Bayesian tree inferred from H3 gene sequences with Aclis minor. 

 

 



 

 

 

 

Figure S1-13. Live-taken photographs of Vanikoro snails, which are almost always 

found attached on/near sponges on the underside of deep-buried coral rubble. Left: 

Vanikoro helicoidea in Kakeroma Island, Amami, Japan, courtesy of R. Goto. Right: 

Vanikoro sp. cf. plicata in Aore Island, Santo, Vanuatu. Note that the shape and 

arrangement of the greenish egg capsules differ between the two species. 
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Appendix 2. 

 

5年以内に雑誌などで刊行予定のため、非公開。 

 



 

Appendix 3. 

 

5年以内に雑誌などで刊行予定のため、非公開。 

 


