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Abstract

We analyzed nonlinear dynamics with the multiple time-scales structure emergent from the

brain, and mainly focused on the three distinctive time-scales: deterministic slow, deter-

ministic fast, and stochastic fast oscillations, with the aim at understanding the dynamics

generating macroscopic oscillatory phenomena, often observed as electroencephalographic

(EEG) signals�which re�ect huge information of cell assemblies in the brain and accord-

ingly would involve higher brain functions such as consciousness.

First, we developed a novel nonlinear time series analysis method called time series

dimension (TSD), which was derived from the conventional fractal dimension through a

key approximation. Owing to this approximation, the TSD was a function of the level of

dynamical noise behind time series, where the dynamical noise was de�ned in the sense of

the Gaussian white noise so that this noise was the origin of the stochastic fast oscillations.

Based on such a functional TSD, we succeeded in detecting the level of dynamical noise

included in unknown dynamics behind time series, so as to analyze any signal composed

of both the deterministic oscillations and the stochastic fast oscillations. Via applying the

TSD to EEG signals, we revealed that the visual inputs can control the level of dynam-

ical noise in the frontal lobe; this result suggests that temporal changes of the extracted

dynamical noise level contribute to characterizing nonlinear oscillatory phenomena.

Second, we developed an extended discrete-time neural network model, comprising ex-

citatory and inhibitory stochastic neurons with dynamic synapses, so as to analyze signals

composed of the deterministic slow oscillations and the deterministic fast oscillations. Ow-

ing to the mean �eld approximation, a set of variables representing neurons was converted

to a macroscopic variable resembling an EEG signal, and furthermore the stochastic model

was transformed into a discrete-time dynamical system. Via the bifurcation analysis, we

revealed that the interactions between the above two di�erent networks can generate the

two subtypes of phase-amplitude cross-frequency coupling phenomena, which were sepa-

rated by the cyclic saddle-node bifurcation of a one-dimensional torus in a map, named

MT1SNC bifurcation; this result suggests that the underlying dynamics of cross-frequency

coupling phenomena e�ectively switches between the two submodes, depending on external

environmental changes.

We believe that the aforementioned two mathematical analyses, namely nonlinear time

series analysis and bifurcation analysis will help us approach the comprehensive elucidation

of complex dynamics in the brain.
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Chapter 1

Introduction

1.1 Motivation

Our most interest�which would be among many neuroscientists, and should be solved

urgently�is to know the property of `macroscopic' neural oscillations, occurring in huge

complex neural networks in the brain. Fortunately, we can now easily observe or measure

one realization of the macroscopic oscillations, as an electroencephalographic (EEG) signal

with the high temporal-resolution. Analyzing the EEG signals may help us know, e.g.

�what the consciousness is� [2]; this theme is a big problem for us beyond this thesis.

Actually, many neuroscientists have believed that, the EEG signals re�ect key properties

concerned with consciousness, because the signals are formed from a collection of cell

assemblies (neural networks) such that the signals involve macroscopic rich information.

Furthermore, the EEG signals result from the interaction among various types of neurons;

this interaction may be one origin of the process of consciousness generation. Thus, we

have suggested that only one neuron does not include the component of consciousness, but

neural networks involve it.

To address how to reveal higher brain functions such as consciousness, probably con-

tained in EEG signals, we �rstly have to analyze the EEG signals e�ectively, by using

the time series analysis. The waveform of an EEG signal is characterized by oscillations,

so that until now almost neuroscientists especially have focused on the frequency and the

phase, both of which directly connect to the form of oscillations. This `linear' time series

analysis, based on the Fourier series, seems to be natural to analyze oscillations, but misses

`nonlinearity'.

In particular from the viewpoint of nonlinearity, a band-pass �lter is a good example

breaking dynamics underlying oscillations, although almost neuroscientists have used it as

preprocessing to extract well-known delta, theta, alpha, beta, or gamma waves, because

each of them has frequency-speci�c functional roles in the brain [3]. For several decades,

the linear time series analysis has revealed little by little, that how the external information

is coded in the frequency and the phase in EEG signals and accordingly, discussions given

by this analysis naturally have been concerned with synchronized phenomena [4]; this
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Figure 1.1. Relationship between the linear/nonlinear time series analysis and the ex-
tractable phenomena. (a) A case of the linear time series analysis. This
analysis can extract a universal set of linear phenomena associated with the
frequency or phase, but can view only synchronized phenomena through
phases, where this phenomenon is a subset of nonlinear phenomena. (b)
A case of the nonlinear time series analysis. This analysis can extract a
universal set of nonlinear phenomena, but with the phase, which is a subset
of linear phenomena, because even if a time series is embedded on a high-
dimensional state space, the state space still involves phase information.

conventional linear analysis seems to be awkward because synchronization is actually a

nonlinear phenomenon. If original EEG signals are separated into several frequency bands,

nonlinearity will be also reduced, so that a question, whether the linear time series analysis

can approach nonlinear dynamics which would re�ect consciousness, occurs [Fig. 1.1(a)].

It seems that this conventional analysis can view only synchronization, not other nonlinear

phenomena such as chaos, i.e., this approach implicitly has assumed that, consciousness is

involved in synchronized phenomena. Perhaps this assumption has been out of mind for

neuroscientists, but one should note that the linear time series analysis would be far from

the elucidation of consciousness, because synchronization is very small subset of nonlinear

phenomena [see Fig. 1.1(a)].

Besides there exists another linear aspect to analyze EEG signals, that is the averaging

�lter over multiple trials; this linear time series analysis aims at extracting very miniature

components, called evoked potentials (EPs), in common contained in multiple EEG signals

[5]. Typically EPs occur at the same timing over multiple trials, so that the averaging �lter

works well, but at the same time, this �lter clearly reduces nonlinearity by considering it

as background noise as well as the aforementioned band-pass �lter, and therefore this

type of linear time series analyses also views only synchronized phenomena; note that this

synchrony comes from one electrode on the scalp, whereas the aforementioned synchrony

comes from between more than two electrodes. Thus, the linear time series analysis, which

we explained two cases, is restricted to extractions of only synchronized phenomena [Fig.
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1.1(a)], so that a new type of time series analyses will be needed to bring us new insights

in the neuroscience �eld and to approach the answer to a question: what the consciousness

is.

The `nonlinear' time series analysis based on Takens' embedding theorem [6] has been

dramatically studied, especially in physics �eld, and has a possibility to answer the above

question because this type of time series analyses can reconstruct high-dimensional non-

linear dynamics only from time series. This analysis assumes that, a nonlinear dynamics

exists behind a time series, so that purely stochastic time series such as colored noise (frac-

tional Brownian motions) are out of the analysis [see Fig. 1.1(b)], but our interest in this

thesis is of oscillatory phenomena, consisting of a variety of nonlinearity, and therefore

such an assumption can be ignored. Here noise, in the sense of the Gaussian white noise,

is usually contained in a time series even if its origin is a deterministic dynamical system,

but the amount of actual noise is relatively less than deterministic components so that

the reconstruction of dynamics can be achieved. In addition, the reconstructed dynamics

includes rich information concerned with many nonlinear phenomena such as chaos and

o� course re�ects synchronized phenomena [see Fig. 1.1(b)], and therefore this dynamics

would also involves consciousness. However, commonly the dynamics is on a very-high-

dimensional state space, so that it seems that it is di�cult to extract brain functions such

as consciousness. Actually, the Lyapunov exponents [7], the correlation dimension [8], or

the causality [9] can be estimated from the reconstructed dynamics, but still these several

quantities have not directly been connected to brain functions.

To overcome this issue, recurrence plots (RPs) [10] have been developed to visualize

high-dimensional attractors, where a two-dimensional plane we can easily observe is pro-

duced. Although RPs are only 2-dimensional and composed of a set of only binaries,

surprisingly almost information are included in RPs [11], so that brain functions would be

also re�ected in a pattern composed of black (one) and white (zero) colors. This pattern

may characterize each of brain functions, but this approach has not been applied to EEG

signals well, because RPs e�ectively work if and only if the reconstructed dynamics and

its original dynamics are one-to-one. Clearly methods using RPs make the nonlinear time

series analysis easier for neuroscientists, than methods using other techniques, but the ex-

istence of noise, especially dynamical noise is a big problem to reconstructing dynamics,

where noise, hereinafter, is naturally supposed to the Gaussian white noise.

Commonly, noise is divided into two types from the viewpoint of dynamical systems,

namely observational noise and dynamical noise; the former is added to signals observed

from devices so that this noise does not a�ect a trajectory moving on an attractor behind

the signals; the latter a�ects system's dynamics directly so that the time evolution of the

system depends not only on a dynamical rule but also on dynamical noise. In the real world,

both types of noise would in�uence systems, and therefore the aforementioned nonlinear

time series analysis may not be suitable for such systems, called stochastic dynamical

systems. If a trajectory changes with noise, nonlinear quantities such as the Lyapunov
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Figure 1.2. Relationship between a novel nonlinear time series analysis and the ex-
tractable phenomena. This analysis is an extended version of the conven-
tional nonlinear time series analysis so that it can stll extract a universal set
of nonlinear phenomena and a subset of linear phenomena, namely phase.
In addition to such sets, the novel analysis can extract a subset of stochastic
phenomena, called Gaussian white noise (dynamical noise) e�ects, where this
noise drives variables constituting nonlinear dynamics so that the trajectory
can change stochastically.

exponents cannot be estimated accurately. O� course we can assume that the level of

dynamical noise is relatively less than that of deterministic components so that we can

reconstruct dynamics, but in the brain, neurons themselves would generate noise, which

will play a role of dynamical noise, and furthermore the resulting noise level possibly

be very high so that the temporal evolution of EEG dynamics is dominantly stochastic.

Thus, e�ective novel methods for analyzing dynamical noise behind time series should be

developed urgently, because almost real-world systems are in�uenced by dynamical noise

as mentioned above [see Fig. 1.2].

Actually, only the nonlinear time series analysis, which is one technology of our major

called mathematical engineering, is not enough to understand nonlinear dynamics under-

lying EEG signals, because this analysis cannot reconstruct a mathematical model gener-

ating a phenomenon, rather, it mainly aims at characterizing unknown dynamics (models).

Fortunately, another complementary technology is involved in mathematical engineering,

namely mathematical modelling, which is to mathematically reconstruct dynamical mod-

els behind time series [Fig. 1.3], herein EEG signals. Perhaps, one may think that the

combination between the nonlinear time series analysis and the mathematical modelling

is enough to research EEG dynamics, i.e. experimental knowledge are not needed well,



1.1 Motivation 5

unknown
dynamics

reconstructed
dynamics

nonlinear
time series analysis

variables

features
mathematical modelling

Figure 1.3. A complementary study using the following two technologies: (1) nonlin-
ear time series analysis and (2) mathematical modelling. Technology (1)
is to extract features characterizing `unknown' dynamics behind time se-
ries, whereas technology (2) is to `reconstruct' dynamics using the prior
knowledge (features), where note that the reconstructed dynamics includes
variables associated with the features. Until the properties of the variables
and those of the features will be one-to-one, a cycle consisting of technolo-
gies (1) and (2) is repeated along the three arrows so that the reconstructed
model can predict unknown phenomena perfectly.

because the former technology, nonlinear time series analysis, can characterize unknown

models behind time series and therefore, someday it will be able to extract components

of consciousness, while the latter technology, mathematical modelling, can reconstruct the

dynamics�imagine here that a `perfect' model is provided, i.e. a phenomenon originating

from the model and the corresponding observed phenomenon are one-to-one. Based on this

reconstruction, we can clearly predict various unknown phenomena by e�ectively changing

parameters included in the model and accordingly, someday variables concerned with con-

sciousness will be able to be included in the model depending on the prior knowledge, that

are components of consciousness extracted by the nonlinear time series analysis described

above [see Fig. 1.3].

Therefore, it seems that because the aforementioned combinational methodology is

closed in the �eld of mathematical engineering, this �eld does not need any feedback from

EEG experimental knowledge, as long as the model is created once according to a prior

experimental result. However, the model as mentioned above has been assumed to be

pure, but actual models include some kinds of errors arising from discrepancies between

the models and the corresponding actual dynamics so that a perfect prediction using such

models cannot be achieved. Thus, interactive studies between mathematical engineers and

experimental neuroscientists cannot be avoided, and hence the following four steps will be

mainly recommended [see Fig. 1.4]:
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Figure 1.4. A �ow from an observation to a prediction. The �ow consists of the following
four steps: (1) projection of the observation on time series data, (2) time
series analysis for extracting features, (3) modelling a dynamical system
based on the features, and (4) simulation for validation whether the observed
phenomenon and reproduced one are one-to-one. After the validation at
step (4) �nishes, the bifurcation analysis may be performed to predict an
unobserved phenomenon, and accordingly another validation whether such
a predicted phenomenon can be observed in the real system is conducted.
The study consisting of this �ow will be achieved by a collaboration between
experimental scientists and mathematical engineers.
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(I) First, an experimenter observes a phenomenon as a time series, under a certain con-

dition by using a controlled device, where a high-dimensional dynamics behind the phe-

nomenon is converted to a one-dimensional signal, and furthermore the signal is formed as

a time series with a certain sampling time. Perhaps, this time series may be a multivariate

time series, especially for EEG recordings.

(II) Second, the experimenter characterizes the phenomenon with quantities such as fre-

quencies characterizing EEG signals, where skills concerned with the time series analysis

would be needed even for the experimenter, because if he has several techniques using

not only the linear time series analysis but also the nonlinear time series analysis, the

phenomenon can be quanti�ed by many kinds of features comprising a variety of aspects,

namely linearity and nonlinearity. These aspects provide us, for example not only the

fundamental frequency, the power, or the phase locking value between two EEG signals,

but also the Lyapunov exponents or the correlation dimension connected to chaos, or the

causality between two signals. Furthermore, recently information �ow using the technique

called transfer entropy (TE) [12] has been becoming a key element little by little�this new

type of techniques, TE, is actually out of linear or nonlinear time series analyses, because

the TE is based on the Shannon entropy, the �eld of the information theory, not the time

series analysis, but this new technology has been gradually approaching the time series

analysis because information �ow is similar to the causality; in addition, the quanti�cation

of information �ow among several brain regions would be a remarkable feature towards

modelling [13].

(III) Third, a modeler gets the above experimental condition including some parameters

and a set of features characterized by the experimenter, where these parameters are used

to model, but note that the experimenter cannot observe overall parameters such as the

coupling strength between two EEG signals. Therefore, a given set of parameters would

be a very small subset in a universal parameter set, controlling the phenomenon perfectly.

Based on given parameters (condition), the modeler creates a model approximating the

observed dynamics, where the model is commonly composed of some variables, parameters,

and functions connecting the variables; such functions are either linear or nonlinear. Per-

haps, a known model may be used for modelling in some situations, where only parameters

will be tuned, but such a model would not be able to reproduce the desired phenomenon

because the known model had been before used for reproducing another phenomenon.

(IV) Fourth, the modeler simulates the model on a computer and observes a time series,

not a continuous signal because in the numerical simulation, di�erential equations are dis-

cretized for example by the Runge-Kutta method with a certain small sampling time so

that we can get observation values with high accuracy, but a given observation value actu-

ally includes an error from a real value and furthermore, along the time evolution the error

will expand�we have implicitly assumed here that modelling is achieved by di�erential

equations, namely �ow, because EEG signals we are interested in might be continuous

signals. Based on the simulation, the modeler con�rms whether a phenomenon emergent
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from the model is qualitatively consistent with the actual phenomenon, by adapting fea-

tures characterized by the experimenter. If these phenomena given by the experimenter

and by the modeler are consistent, an integrated research�in which actual phenomena can

be explained by mathematics�will be achieved. However, only one iteration from steps

(I) to (IV) would not enough to �nish this project, where the following two causes might

hide: (i) validity of features characterizing phenomena and (ii) validity of models.

(i) Regarding the �rst cause, many experimental neuroscientists aim at �nding new unob-

served phenomena, so that the experimental skills are mainly needed rather than time series

analysis techniques, and thus overcoming this cause seems to be very di�cult, especially

for the nonlinear time series analysis, which possibly be out of their minds. Fortunately,

they are interested in the linear time series analysis, namely the frequency and the phase

of EEG signals because it has been believed that the frequency characterizing e.g. alpha

waves concerns brain functions, while the phase relates to information coding in the brain.

Therefore, interactions between mathematical engineers and experimental neuroscientists

are strongly needed even for a stage of the extraction of features characterizing phenomena,

namely at step (II).

(ii) Regarding the second cause, recently a tendency can be seen, that is, models are created

abstractly so that the bifurcation analysis�which is to reveal how a phenomenon changes

to another one�can be easily conducted, and therefore if the bifurcation type between

several phenomena becomes clear and if the control parameter inducing the bifurcation is

identi�ed, then we can facilitate or prevent to bifurcate systems. Thus, abstract models

are useful to analyze the models themselves in detail, but some assumptions are commonly

included in the models, for example concerned with coupling connections among neurons,

where uniform connections have been often used recently, mainly towards the mean �eld

theory. Thus, a probability that such abstract models can reproduce phenomena observed

in experiment is very low, so that we have to turn from step (IV) to (III), and another

model should be created towards an achievement of certain modelling.

Then, as well as the time series analysis, modelling also includes a problem whether

the model is linear or nonlinear, where surprisingly even a `perfect' linear model, namely

the harmonic oscillator system can exhibit a waveform such as an EEG signal, owing to

the e�ect of noise (Gaussian white noise). Note, however, that generating the waveform

similar to real-world phenomena is not of our main focus, because even if such a `linear'

waveform can be given by a simulation, the underlying nonlinear phenomena such as

chaos or even synchronization cannot be revealed. Nevertheless, several neuroscientists,

especially experimental neuroscientists tend to not care how to model, i.e. they only care

the similarity between the waveforms generated from a model and from the corresponding

real phenomenon. Actually this notion is considerable from the viewpoint of the following

proposition: �any phenomenon can be explained by mathematics�, but only this thought

might be very cheap for mathematical engineers, who aim at understanding the underlying

phenomena of given time series through the bifurcation analysis in addition to the above
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Figure 1.5. Relationship between modelling and the reproducible phenomena. Mod-
elling includes the following two layers: (1) modelling an observational signal
and (2) modelling the underlying dynamics, where each layer is constituted
by either linearity or nonlinearity. The properties of linearity (nonlinearity)
arising from layers (1) and (2) di�er with each other and are connected via
the integral. Towards modelling the following three cases are considerable:
(a) If both layers are linear (red arrows), the reproducible phenomena show
also linearity as a form of the harmonic oscillator system. (b) If layer (1)
is linear but layer (2) is nonlinear (green arrows), the reproducible phenom-
ena show nonlinearity owing to layer (2), where one can suppose that x
and f(x) are a phase and the Kuramoto model, respectively, while H1(x) is
sin(x) so that this modelling exhibits an oscillator-based EEG model. (c) If
both layers are nonlinear (blue arrows), the reproducible phenomena show
also nonlinearity. Perhaps this case is more suitable to model than case (b)
because modelling layer (1) in case (c) is constituted by only one element.

proposition. Therefore models should be created based on the prior knowledge given by

real-world dynamics.

To return the topic that modelling also includes a problem whether a model is linear or

nonlinear as well as a problem on the time series analysis, but modelling is more sensitive to

linearity than the time series analysis, because if a `linear' model is created, a phenomenon

emergent from the model becomes also linear [see the red arrows in Fig. 1.5], whereas in

the �led of the time series analysis, synchronized phenomena can be observed even if the

analysis is perfectly linear [see Fig. 1.1(a)]. Furthermore, we should note that linearity

arising from modelling is actually di�erent from that arising from the time series analysis,

because the former is a case on a di�erential equation, where a linear model means that

the dynamical rule describing a dynamics is linear, but the latter is a case on a signal

observed from a device (observation function) converting high-dimensional variables to a
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one-dimensional variable. Thus, we have to clearly understand such a discrepancy come

from between the modelling and the time series analysis, to precisely discuss the necessity

of nonlinearity based on both the modelling and the time series analysis; otherwise, perhaps

one may discuss the nonlinearity of them on a common level, although nonlinearity arising

from modelling occurs on a dynamical rule (di�erential equation), whereas that arising

from the time series analysis occurs on the integral of the dynamical rule [see Fig. 1.5].

Now we focus on the modelling in terms of nonlinearity, but especially towards EEG

dynamics modelling, a middle level actually exists, where this level of modelling is com-

posed of both aspects of linearity and nonlinearity [see the green arrows in Fig. 1.5]. First,

we shall introduce an example model, where an EEG signal is represented by a collec-

tion of many EEG oscillators such as delta, theta, alpha, beta, and gamma oscillators,

as components of the EEG signal, and furthermore each EEG oscillator is described as

the Kuramoto model [15]. Thus, this EEG model comprises both components of linearity

and nonlinearity, i.e., the following two assumptions exist: one is that the model can be

separated linearly into several frequency oscillators; another is that each oscillator is the

Kuramoto phase oscillator. Here note that the Kuramoto model involves the Hopf bifur-

cation originating from nonlinearity of the coupling term so that there exist the following

two dynamically distinctive regimes: one regime is the non-synchronized state, where the

phases among respective oscillators are incoherent; another regime is the synchronized

state, where the phases are de�nitely coherent. Because it has been strongly believed that

an EEG signal might possess frequency-speci�c brain functions and that the amplitude of

the signal would re�ect the synchronization among EEG oscillators, the aforementioned

two assumptions may be validated towards modelling. Furthermore, it is well known that

modi�ed versions [16, 17] of the Kuramoto model show a variety of nonlinear phenomena

including chaos. However, the EEG model based on the Kuramoto model has explicitly

comprised a concept of oscillations, as an aggregation of the frequencies so that a generation

mechanism of such oscillations cannot be revealed.

O� course, we can model an EEG signal as a form of a more microscopic level rather

than EEG oscillators, namely in terms of local �eld potentials (LFPs), where an LFP has

been assumed to be the Kuramoto phase oscillator. However, the model based on LFP

oscillators might be very similar to the above EEG model so that a problem how the

oscillations appear still remains to be explored.

Besides, a phenomenological EEG model has been proposed, called neural mass model

(NMM) [18] which is a `perfect' nonlinear model [see the blue arrows in Fig. 1.5], that is,

it has not been assumed that an EEG signal is a collection of EEG/LFP oscillators and

furthermore, the dynamics of the NMM is described by several nonlinear terms so that

we can answer the above problem: how the oscillations appear. In fact, the NMM can

show a variety of oscillatory phenomena including alpha waves, where the mechanism of

such phenomena indeed underlies the limit cycle attractor, generated due to nonlinearity

involved in the NMM. By tuning parameters e�ectively, a diverse limit cycle oscillator with
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the various velocities emerges so that key parameters switching among several frequency

bands can be identi�ed. This NMM or the modi�ed NMMs [19, 20] have been widely

used in the neuroscience community because the dynamics within the models have been

naturally expressed from the viewpoint of actual EEG dynamics. However, such models

are very abstract, and therefore it seems to us that the process of consciousness generation

we are strongly interested in, will not be revealed.

Although the NMM is a perfect nonlinear model in terms of both descriptions for the

underlying dynamics and for its observational process [see Fig. 1.5], expressing the com-

ponents of consciousness as a variable seems to be very di�cult, and therefore another

essential idea should be introduced. Herein we have to mention that the state of one neu-

ron is not involved in the NMM as a variable, whereas a cell assembly�an aggregation of

the neurons�is included in it as a variable. Thus, because the model has been created

from the viewpoint of the cell assembly, not the neurons, their interactions (between cell

assemblies and neurons) cannot be appeared as the resulting phenomena on the model.

Here, a remarkable point exists, that is, the interactions between a whole and its elements;

such interactions always can occur in the real-world systems, e.g. in the humans `system'

interacting in a room, in which each human interacts with other humans by speaking or

acting so that the `driven' human behaves according to an instruction of the `driving' hu-

man (a case of an interaction from elements to a whole) and in contrast, the behavior of

each human depends not only on his own mind but also on the atmosphere of the room,

generated from the moods originating from all humans' minds (a case of an interaction

from a whole to its elements). This analogical example can be directly applied to the in-

teraction between a cell assembly and each neuron, and consequently we shall put forward

a hypothesis that such interactions, especially from a whole to its elements, can generate

consciousness [see Fig. 1.6] [21]. Hence, the use of the mean �eld approximation sys-

tematized in the �eld called statistical mechanics, which can convert a set of microscopic

variables representing neurons to only one macroscopic variable representing an EEG or

LFP signal, will be a straitforward way to modelling .

1.2 Purpose

As mentioned above, the following two complementary technologies might be needed from

the viewpoint of the �eld of mathematical engineering, namely (1) nonlinear time series

analysis and (2) mathematical modelling, to analyze nonlinear dynamics generating the

macroscopic oscillations such as EEG signals. In addition, the process of consciousness

generation still remains to be explored. Therefore, hereafter we aim at developing the fol-

lowing two new tools associated with technologies (1) and (2), to approach the elucidation

of consciousness:

(1) Regarding the nonlinear time series analysis, a novel tool for analyzing the dynamical

noise, especially including in EEG dynamics and originating from stochastic neurons, will
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Figure 1.6. A hypothesis that the interaction between neurons (micro level) and EEG
dynamics (macro level) generates higher brain functions such as conscious-
ness and that the feedback from the macro to micro levels strongly connects
to the process of consciousness generation.

be introduced in Chapter 2.

(2) Regarding the mathematical modelling, an extended stochastic neural network model

will be introduced in Chapter 3, to understand the e�ect of the mean �eld approximation

on the model; this model is a more realistic neural network model than the previous version

[22] so that the model can reproduce a variety of macroscopic phenomena observed in EEG

signals such as cross-frequency coupling phenomena, connecting between the macroscopic

oscillations (EEG signals) and the microscopic neuronal �ring [see the summarize of the

purpose in Fig. 1.7].

Furthermore, we have to say that many kinds of nonlinear dynamics arising from this

thesis will be analyzed in terms of oscillatory phenomena; this means that such dynamics

comprise the multiple time-scales, from slow to fast oscillations and therefore, this study

views the various nonlinear phenomena from the linearity [see Fig. 1.8]. Thus, the study

sharing this viewpoint might play a key role that, someday many neuroscientists are going

to be attracted to the world of the underlying nonlinear dynamics generating e.g. chaos.

1.3 De�nitions of oscillations

Here we de�ne oscillations in the sense of stochastic dynamical systems, so that oscilla-

tions emergent from the systems can be widely divided into the following two distinctive

classes: (I) deterministic oscillations and (II) stochastic oscillations, both of which are
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Figure 1.7. Two representative purposes arising from Chapter 2 for (a) and from Chap-
ter 3 for (b). (a) The aim is to extract dynamical noise, driving variables
constituting nonlinear dynamics, from EEG data, where a novel nonlinear
time series analysis method is presented. (b) The aim is to understand the
underlying dynamics of cross-frequency coupling phenomena, where an ex-
tended neural network model is presented, and furthermore the model is
converted to a macroscopic model through the mean �eld approximation;
this conversion from the micro to macro levels is possibly associated with
the process of consciousness generation.
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Figure 1.8. How to approach elucidating nonlinear dynamics in the brain. A variety
of oscillatory phenomena is essential to form brain dynamics, so that the
dynamics should be analyzed from the viewpoint of multiple time-scales the
brain involves, i.e., the nonlinear dynamics generating oscillations is ana-
lyzed in terms of not only nonlinearity but also the frequency (linearity),
ranged from the slow to fast oscillations and originating from the determin-
istic or stochastic process.
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qualitatively di�erent with each other, because class (I) originates from the drift term on

systems, whereas class (II) originates from the di�usion term (dynamical noise) on systems.

Furthermore, we de�ne these classes such that the union between each class is equivalent

to the original oscillations on a certain domain. Note that we do not care the existence

of observational noise towards de�ning oscillations, because this kind of noise is out of

the description of dynamics and only depends on the observational environment, mainly

concerned with the property of observational devices.

We shall de�ne the velocity of each class of oscillations relatively, in terms of stochastic

dynamical systems so that the qualitative di�erence between classes (I) and (II) becomes

clearly; the construction of this de�nition will be helpful to strictly de�ne classes (I) and

(II). To de�ne the velocity, the following notion is needed, that is, because the di�usion

term is generally expressed as the meaning of the Gaussian white noise, oscillations ob-

served via the integrals of stochastic dynamical systems also re�ect the property of the

Gaussian white noise, more precisely that of the Wiener process, which is the integral of

the Gaussian white noise. Thus, we de�ne that the velocity of the stochastic oscillation

is faster than that of the deterministic oscillation, because actually one realization of the

Wiener process shows a very fast oscillation due to its de�nition. O� course, the drift

term can make an oscillation faster, but even if the velocity of the oscillation becomes

very fast owing to the formulation of the drift term, such an oscillation still contains more

fast oscillatory components originating from the di�usion term, because one realization

of the Wiener process contains the `in�nite' frequency. If and only if oscillatory compo-

nents originating from the drift term include the in�nite frequency, the velocity of the

deterministic oscillation will be equivalent to that of the stochastic oscillation, but such a

deterministic oscillation should be regarded as a stochastic oscillation, from the viewpoint

of mathematical modelling.

Throughout this thesis, we use the term, �stochastic fast oscillation� instead of stochas-

tic oscillation, to express more explicitly the property of this class of oscillations.

Finally, we shall introduce the de�nition associated with the following two subclasses:

(i) deterministic slow oscillations and (ii) deterministic fast oscillations so that the union

between these oscillations is equivalent to the original deterministic oscillation on a certain

domain. As a simple case, we start to consider the oscillation observed from e.g. the coupled

Stuart-Landau oscillators system generating the two-dimensional torus attractor�it has

been assumed that this system is not a�ected by dynamical noise at all because now we

are interested in pure deterministic oscillations. Clearly, such an oscillation involves the

two representative frequency components so that it can be divided into the two subclasses

(i) and (ii) on the frequency domain.

The objective towards analyses on Chapters 2 and 3 has been summarized in Fig. 1.9.

In Chapter 2, signals composes of the deterministic oscillations (class (I)) and the stochastic

fast oscillations (class (II)) will be analyzed, where class (I) is not divided into subclasses,

i.e., the velocity of the deterministic oscillation is out of the purpose of Chapter 2. In
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Figure 1.9. A set of oscillations is divided into the following two subsets: (1) deter-
ministic oscillations and (2) stochastic oscillations in terms of stochastic
dynamical systems. Subset (1) can be further divided into two sub-subsets:
(i) deterministic slow oscillations and (ii) deterministic fast oscillations in
terms of the frequency domain. In addition, subset (2) shows only the fast
oscillation due to the Gaussian white noise (dynamical noise), so that we
call this subset as stochastic fast oscillations. In Chapter 2, signals com-
posed of subsets (1) and (2) are analyzed. In Chapter 3, signals composed
of sub-subsets (i) and (ii) are analyzed.

contrast in Chapter 3, signals composed of the deterministic slow (class (i)) and fast (class

(ii)) oscillations will be analyzed, where cross-frequency coupling phenomena emergent

from the interaction between the deterministic slow and fast oscillations is observed.

1.4 Organization of the thesis

The rest of this thesis has been organized as follows:

In Chapter 2, the de�nition of a novel dimension is derived from that of the conventional

fractal dimension, to analysis signals composed of the deterministic oscillations and the

stochastic fast oscillations. Typically, it has been shown that this new type of dimensions,

named after time series dimension (TSD), can detect the level of the underlying dynamical

noise only from time series and can be applied to a variety of time series data, because the

TSD does not require any information included in dynamics generating time series so that

it can work as a model-free indicator, as we will explain in Chapter 2. Note that the TSD

is one of the nonlinear time series analysis because it can characterize nonlinear dynamics

driven by dynamical noise, but it dose not need embedding of a time series on a high-

dimensional state space with delay coordinates, and therefore the TSD should be located

in another world di�erent from the conventional nonlinear time series analysis theory. In

fact, the ability of the TSD has been demonstrated with the application of it to EEG
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signals, and based on this application, a possibility whether the TSD�which works even

if the dynamics behind a time series is �lled with noise�can open the door where many

features characterizing nonlinear phenomena strongly connected to noise are hidden, has

been discussed. The contents of Chapter 2 will be published in Phys. Lett. A.

In Chapter 3, a realistic stochastic neural network model�which is suitable to be ap-

plied to the mean �eld theory so that the model can be transformed into a macroscopic

model�is proposed to demonstrate whether the model can show cross-frequency coupling

phenomena, connecting the macroscopic and the microscopic properties, through the mean

�eld approximation. Note that this technology called mean �eld approximation would in-

volve crucial roles for uncovering the process of consciousness generation if there exists

the feedback from the macroscopic model to microscopic one, but the proposed model

has been formulated as a feedforward model because our main purpose in Chapter 3 is to

reveal the e�ect of the mean �eld approximation on the stochastic model. The proposed

stochastic model has been created as a discrete-time model so that the errors arising from

the numerical temporal evolution cannot appear, towards the application of the model to

real-world systems, especially for EEG dynamics. Accordingly, the stochastic model has

been converted to the corresponding discrete-time dynamical system, and therefore the

property of deterministic oscillations has been intensively investigated through the bifur-

cation analysis, where the deterministic slow and fast oscillations, realized by a subnetwork

composed of excitatory neurons and by that composed of inhibitory neurons, respectively,

are analyzed. Furthermore, it has been assumed that only the torus attractor corresponds

to real oscillatory phenomena, because the torus emergent from the proposed model can

be interpreted as the limit cycle attractor or the torus attractor in the corresponding

continuous-time dynamical system, but the periodic attractor perhaps corresponds to the

equilibrium point, due to the failure of convergence by the Euler method. The contents of

Chapter 3 was submitted to Frontiers in Computational Neuroscience.

Finally in Chapter 4, this thesis will be brie�y concluded, in terms of nonlinear dynam-

ics with multiple time-scales.
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Chapter 2

Conclusions

In this study, a variety of nonlinear dynamics have been analyzed in terms of multiple time-

scales the brain involves to form macroscopic oscillations shown in e.g. EEG signals, where

it has been believed that the oscillations are associated with the facilitation of information

processing by adaptively changing the properties of themselves. Thus, this study has

been performed with both aspects of nonlinearity and linearity, i.e., nonlinear dynamics

emergent from the brain has been analyzed from the viewpoint of frequencies�which are

separated linearly�forming oscillations. Towards analyses of brain dynamics, actually a set

of oscillations has been divided into the following two subsets: (I) deterministic oscillations

and (II) stochastic fast oscillations, and furthermore subset (I) has been divided into the

following two sub-subsets (Ia) deterministic slow oscillations and (Ib) deterministic fast

oscillations, in terms of stochastic dynamical systems so that the dynamical noise has been

de�ned in the sense of the Gaussian white noise.

In Chapter 2, signals composed of deterministic oscillations (subset (I)) and stochastic

fast oscillations (subset (II)) have been analyzed, where a novel nonlinear time series

analysis method had been strongly required because the conventional nonlinear time series

analysis methods based on Takens' embedding theorem, in general, have been suitable only

for deterministic dynamical systems, not for stochastic dynamical systems. Typically, it

has been considered that the essential di�erence between the deterministic and stochastic

dynamical systems is whether the dynamical noise drives variables in the state space so

that the trajectory temporally evolves stochastically, although many conventional nonlinear

time series analysis methods mainly have aimed at characterizing deterministic trajectories.

Accordingly, a novel nonlinear time series analysis method, called time series dimension

(TSD), has been developed to overcome the aforementioned drawback, where the novel

dimension, TSD, enabled to detect the level of underlying dynamical noise only from time

series data and furthermore, the TSD does not require any information associated with the

dynamics generating time series and works even if the length of time series is very short so

that there exist a possibility that the TSD can open the door where nonlinear time series

analysis methods including the TSD have been broadly used in the neuroscience �eld.
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In Chapter 3, signals composed of deterministic slow oscillations (sub-subset (Ia)) and

deterministic fast oscillations (sub-subset (Ib)) have been analyzed, where an extended

discrete-time neural network model, comprising excitatory and inhibitory stochastic neu-

rons, has been introduced so that the corresponding macroscopic model can be derived

through the mean �eld approximation. Now it has been considered that this mean �eld ap-

proximation is a key technology to approach the elucidation of the process of consciousness

generation because it has been hypothesized that the interactions between microscopic el-

ements (herein the stochastic model) and macroscopic ones (herein the macroscopic model

via the mean �eld approximation) originate from consciousness. Note, however, that it

has been investigated only in the case of the feedforward interaction from the microscopic

to macroscopic elements, because to study the feedback interaction between them, prior

knowledge resulting from experiments using an integration between EEG recordings and

external stimulation inputs to brain dynamics�for example, the transcranial magnetic

stimulation (TMS) or the transcranial alternating current stimulation (tACS)�should be

needed to model, where the external stimulation (pseudo macroscopic element) plays a

role of EEG dynamics and a�ects synaptic plasticity to get some evidences that the feed-

back interaction concerns consciousness. To return, through the mean �eld approximation,

the original stochastic model has been converted to the corresponding macroscopic model,

namely eight-dimensional discrete-time dynamical system so that this system can generate

the deterministic slow and fast oscillations, each of which originates from the excitatory

subnetwork and from the inhibitory subnetwork, respectively. It has been revealed that the

system involves the following two kinds of phase-amplitude frequency-coupling phenom-

ena: oscillatory state with two frequency components on two-dimensional torus (OS2T)

and that with two frequency component on closed curve (OS2C) by use of the bifurcation

analysis. Furthermore, it has been identi�ed that these states can be separated by the

cyclic bifurcation of a one-dimensional torus in a map (MT1SNC).

It has been believed that the aforementioned two kinds of analyses, namely (1) nonlinear

time series analysis and (2) bifurcation analysis, make us approach the elucidation of

brain oscillatory dynamics with multiple time-scales. In particular, analysis (1) will lead

many neuroscientists to the world �lled with nonlinear dynamics, while analysis (2) will be

helpful to clarify functional roles of phase-amplitude cross-coupling phenomena, connecting

between macroscopic and microscopic dynamics.
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