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ABSTRACT 

Landslides are one of the most widespread geological hazards affecting mountainous 

regions all over the world. In recent years, extreme weather has brought about many weather -

related disasters worldwide, causing significant casualties and economic losses. In hilly 

terrains such as in densely populated regions of China and Japan, there are always the risks 

of landslides that cause multiple fatalities and serious consequences by extreme rainfall or 

serious tremors. Concerted efforts of the government and the general public are crucial in 

enhancing the community’s resilience against landslide disasters and reducing the potential 

loss of life and damage to properties. Hence, expeditious construction of landslide inventory 

maps and prediction of landslide occurrence have become an important but challenging issue.  

This research mainly presents the results of testing the strengths and weaknesses of 

contemporary landslide inventories and susceptibility mapping techniques, to facilitate the 

construction of accurate regional landslide susceptibility maps for varying geo-environments, 

through case studies in Japan and China. Three main topics were selected based on extensive 

reviews of literature and considered as the most important to improve landslide susceptibility 

mapping. The details of three specific tasks are listed as below:   

1) Landslide inventories are often prepared by manual analysis of post -event aerial 

photographs or satellite images. This is time-consuming and may lead to misinterpretations. 

This work presents an improved automated model for rapid preparation of landslide 

inventories. The experimental results indicated that the proposed integrated method 

demonstrates higher classification performance than the stand-alone object oriented image 

analysis (OOIA) technique for detecting landslides. The area under curve (AUC) of the 

receiver operating characteristics (ROC) was also higher than that of the simple OOIA, 

indicating the high efficiency of the proposed landslide detection approach. The case library 
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created using the integrated model can be reused for time-independent analysis, thus 

rendering our approach superior in comparison to other traditional methods, such as the 

maximum likelihood classifier. 

2) Many previous studies successfully evaluated susceptibility of landslides in a wider 

area, however prediction of landslide types in to deep and shallow slides which are crucial 

for risk analysis has rarely been conducted. This work examines the differences in landslide 

depth, volume and the risk imposed between shallow and deep-seated landslide types. 

Shallow and deep-seated landslide prediction is useful in utilizing emergency resources by 

prioritizing target areas while responding to sediment related disasters. Ten factors, 

including elevation, slope, aspect, curvature, lithology, distance from the nearest geologic 

boundary, density of geologic boundaries, distance from drainage network, the compound 

topographic index (CTI) and the stream power index (SPI) derived from the DEM and a 

geological map were analyzed using support vector machine (SVM) technique. Iterated over 

10 random instances the average training and testing accuracy of landslide type prediction 

was found to be 89.2% and 77.8%, respectively. The overall accuracy of SVM does not 

rapidly decrease with a decrease in training samples. The trained model was then used to 

prepare a map showing probable future landslides differentiated into shallow and deep-

seated landslides. 

3) Different studies use different numbers of causative factors for the development of 

susceptibility maps. The selection of the causative factors so far largely remains random and 

subjective. Selection of essential factors improves the prediction accuracy of landslide 

susceptibility mapping (LSM). This work proposes a rule-based statistical method for an 

objective selection of causative factors fitting to differently triggered landslides. The 

certainty factor (CF) model was then applied to select the best subset from the original 

available factors. Using all factors and the best subset factors obtained, landslide 
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susceptibility maps were produced using statistical index (SI) and logistic regression (LR) 

models. The susceptibility maps were validated and compared using landslide locations in 

the validation data. The prediction performance of two susceptibility maps was estimated 

using AUC. The result shows that AUC values for the LR model (0.817 for Niigata and 0.837 

for Dongjiang) are slightly higher than those obtained from the statistical index (SI) mode l 

(0.801 for Niigata and 0.794 for Dongjiang). Our findings can help to understand the main 

causative factors with landslide occurrence. 

These spatial-temporal aggregation and scenario models for detecting and evaluating 

landslide susceptibility, which could be adopted as a prototype for warning systems in the 

other similar landslide-prone areas. Additionally, the optimization of causative factors such 

as slope angle, and lithology can be used in other susceptible regions, especially for data 

scarcity areas. Moreover, the susceptibility maps could assist urban planners, designers, civil 

engineers and earth scientists to specify where a problem may exist and to determine what 

type of failure may occur at the hazardous regions in the future.ral aggregation and scenario 

models for detecting and evaluating landslide susceptibility, which could be adopted as a 

prototype for warning systems in the other similar landslide-prone areas. Additionally, the 

optimization of causative factors, such as slope angle, lithology, these can be used in other 

susceptible regions, especially for data scarcity areas in an efficient manner. Moreover, the 

susceptibility maps could assist urban planners, designers, civil engineers and earth scientists 

to specify where a problem may exist and to determine what type of failure may occur at the 

hazardous regions in the future.  
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1. CHAPTER 1 INTRODUCTION 

1.1 Literature review 

Landslides are the result of natural geologic processes that have worked to shape the 

landscape, which are one of the most widespread geological hazards affecting the 

mountainous regions all over the world. Landslides are induced by earthquakes, rainfall, 

snow melt and human interventions, resulting in significant casualties and property damage 

every year around the world. The annual losses due to landslides are more than those of any 

other types of natural disasters such as earthquakes, floods, and sinkhole formation (Guzzetti 

1999; García-Rodríguez et al. 2008). In recent years, especially the extreme weather has 

brought about many more weather-related disasters worldwide, including the landslide 

hazards which cause significant casualties and economic losses. In hilly terrains such as in 

densely populated regions of China and Japan, there are always the risks of landslides that 

cause multiple fatalities and serious consequences by extreme high-intensity rainfall, 

adverse geological environment, anthropogenic activities or serious tremors. As indicated 

by Turner and Schuster (1996), this trend will continue and be clearer under the influence of 

urbanization, economic development, deforestation, and increased regional precipitation in 

landslide-prone areas due to changing climate as shown in Figure 1-1 (IHRR 2010). To 

mitigate from serious disasters, landslide susceptibility, hazard, and risk must be predicted  

(Guzzetti 1999; De Waele et al. 2011). Concerted efforts of the Government and the general 

public are crucial in enhancing the community’s resilience against landslide disasters and 

reducing the potential loss of life and damage to property. Therefore, fast constructing 

inventory map, classification, and susceptibility of landslide occurrence have become an 

important but challenging issue in the hazard mitigation research field (Chang and Chao 

2006; Dou et al. 2014; Danneels et al. 2007; Lu et al. 2011). 
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Figure 1-1 Number of fatality-inducing landslides in 2003, 2009 and 2010 compared with 

average revised from International Landslide Centre part of Institute of Hazard, Risk and 

Resilience (IHRR), 2011. 

For a successful qualitative or quantitative landslide hazard evaluation, compiling a 

historical landslide-event inventory is particularly crucial for pre-disaster and post-disaster 

analyses (Guzzetti et al. 2005; Lu et al. 2011). Landslide inventory maps have largely been 

generated through visual interpretation of aerial photos or satellite images combined with 

extensive field surveys. However, such methods are labor-intensive and expensive and, 

therefore, inefficient for generating maps of large areas. Moreover, traditional map-

generating techniques require prior knowledge about the involved hazard, and such 

techniques are highly subjective and have limited reproducibility (McKean and Roering 

2004a). Herein, to address the above mentioned problems, this work proposes a relatively 

new approach for semi-automatically detecting landslides from high-spatial-resolution 

images by integrating three-phase object-oriented classification. The proposed approach is a 

http://dict.youdao.com/w/knowledge/
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combination of segmentation and feature optimization that involves using a genetic 

algorithm (GA). 

Additionally, both shallow failures and erosion into bedrock play important roles in 

shaping landscapes in mountainous areas (Oguchi 1996). However, previous studies tended 

to focus on the spatial prediction of only a single type of landslides (Chang and Chao 2006; 

Lee and Tsai 2008; Cheng et al. 2010). Therefore, few studies differentiated the probabilities 

of shallow and deep-seated landslides. Differentiating the two landslide types is conducive 

to assessing the geomorphic hazards contributing to the hillslope erosion and sediment 

discharge for the protection of human settlements and infrastructures (Dramis and Sorriso-

Valvo 1994; Korup 2005, 2006; Tsai and Chen 2009; Larsen et al. 2010). In this study, we 

propose a nonlinear algorithm of support vector machine (SVM) to classify the landslide 

types. 

Furthermore, Landslide susceptibility maps play a vital role in assisting and managing 

hazards for land use planning and risk mitigation (Yalcin et al. 2011; Tofani et al. 2014; 

Shahabi et al. 2014; Dou et al. 2015a; Dragićević et al. 2015) . These maps provide 

information on the likelihood of landslides occurring in an area given the local terrain 

conditions (Brabb 1984). This involves not only finding where the risk of landslide-related 

problems is spatially located, but also qualitatively and quantitatively assessing the 

significance of any such hazards and associated risk factors.  Using GIS (geographical 

information systems), various methods for landslide susceptibility mapping have been 

proposed, which can be divided into qualitative and quantitative methods (Felicísimo et al. 

2012; Peng et al. 2014). Qualitative methods is the knowledge driven approaches that denote 

susceptibility levels in descriptive terms using expert knowledge (Conoscenti et al. 2014). 

Qualitative methods are relatively subjective and were extensively used during the 1970s 

and 1980s (Aleotti and Chowdhury 1999; Yilmaz et al. 2011). The main limitation of 
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qualitative methods is that accuracy depends on the knowledge of the experts who carried 

out the research. Quantitative methods statistically and numerically investigate the 

relationship between landslides and causative factors to predict landslide occurrence 

probabilities (Neuhäuser et al. 2011; Anbazhagan and Ramesh 2014). Compared to 

qualitative methods, a more realistic susceptibility map can be obtained from statistical 

methods based on the data-driven approaches (Yalcin et al. 2011) because they reduce 

subjectivity and biases in the process of weighting landslide causal factors. This study will 

apply different methods of landside susceptibility mapping (LSM) and compare the results. 

For LSM, different scientists use different causative factors. Ayalew and Yamagishi (2005) 

reported that neither universal criteria nor guidelines are followed to select the landslide 

causative factors. Thus, it is difficult to determine whether the collected factors are 

appropriate or not. Moreover, factor redundancy and a method to quantify factors pose a 

challenge (van Westen et al., 1997). Hence, we propose a method to optimize the factors for 

landslide susceptibility assessment. 

1.2 Research objectives 

The overall objectives of this dissertation are to construct the landslide inventory map, 

classify the landslide types, and compare the robustness of different models for landslide 

susceptibility assessments based on case studies in Japan and China with varying geo-

environments. The specific three objectives are as follows: 

1) Propose an integrated model to rapidly map the spatial landslide distribution for the 

future landslide assessment in the one of fast economic developing area, south China. 

As noted, landslide inventories are often prepared by the manual analysis of post -event 

aerial and satellite images, which is time-consuming and may lead to misinterpretations. 

Our work includes an improvement to the method for preparing landslide inventories and 
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classification of their types. 

2) Classify landslides into shallow and deep-seated based on existing inventories. As 

noted, this kind of work has been needed but rarely conducted. 

3) Optimize landslide causative factors, apply different landslide susceptibility models, 

and compare their results. Selection of positive factors improves the prediction 

accuracy of an LSM. This work proposes a rule-based statistical method for an 

objective selection of causative factors fitting to differently triggered landslides.  

1.3 Structure of the doctoral thesis 

This thesis is organized in eight chapters. The following chapters are as follows: 

Chapter 2 describes the four study regions in Japan and China.  

Chapter 3 uses data for the four study areas including 1) image data (satellite image and 

aerial photographs); 2) topographic data (different resolution DEMs); 3) landslide  data from 

NIED, and 4) others such as land use data from GSI (Geospatial Information Authority of 

Japan), geological maps (1:50000) from GSJ (Geological Survey of Japan), rainfall data from 

JMA (Japan Meteorological Agency), and field photographs. 

Chapter 4 presents an integrated model to automatically detect landslides for 

constructing landslide inventories.  

Chapter 5 provides a method to classify landslides into shallow and deep-seated ones 

using a machining learning method applied to the existing inventories. 

Chapter 6 discusses the selection and significance of landslide causative factors through 

the application of different mapping techniques. 

Chapter 7 evaluates the approaches and results obtained in the previous chapters. An 

overall discussion to summarize the work is also included.  

Chapter 8 concludes the thesis with listing the advantages and limitations of landslide 
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susceptibility assessment using remote sensing and GIS in varying geo-environments. 
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2. CHAPTER 2 STUDY AREAS 

In this research, four typical landslide-prone mountainous areas in China and Japan are 

selected as case study sites. They are: 1) Conghua district, Pearl River Delta (PRD), south 

China (frequent rainfall and human intervention activity); 2) Chuetsu area, Niigata 

Prefecture, Japan (earthquake-triggered landslides); 3) Sado Island, Niigata Prefecture, 

Japan (snowmelt and rainfall triggered landslides); and 4) Dongjiang Reservoir watershed, 

Hunan Province, China (torrential rainfall and human intervention activity). These areas 

have been suffered from severe landslides which caused considerable damage to properties 

and loss of life. Therefore, it is necessary to understand the mechanism of landslides for 

quickly detecting and forecasting landslides, to alert the authorities and local people in these 

regions. 

2.1. Conghua district, China 

The Conghua district is located in a subtropical region between 113° 44' E to 113°59' E 

and 23°43' N to 23°51' N in the center of Guangdong Province, South China (Figure 2-1). It 

is a district of Guangzhou City, which connects the Pearl River Delta (PRD) with the 

mountainous area in the north of Guangdong Province. The elevation of the district ranges 

from 4 to 1185 m with a mean of 600 m. The district is known as “Guangzhou Garden” 

because of its vast forest coverage of approximately 67%, a total area of 1974.5 km2, in the 

proximity of the Tropic of Cancer. The average temperature is approximately 21°C. Nearly 

half of the study area consists of mountains and highlands. In the past few years, the study 

area has experienced fast land-use/land-cover changes in response to the economic boom; it 

is one of the fastest developing regions in China. The rainfall in this area is abundant at 

approximately 2176 mm annually. Because of heavy rainfall, a complex geological 
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environment, and intense human activities in this area, landslides have been occurring 

frequently (Figure 2-2), resulting in considerable economic losses from the road damage and 

destruction of fundamental infrastructure. In particular, a road section near National 

Highway 105 (NH 105) is frequently damaged by landslides, causing event injury to people 

and severe destruction of buildings and property. Principal landslide types observed in  

Conghua are shown in Figure 2-2. The majority of them are debris slides, soil creep, and 

rock falls, according to the classification by Varnes (1978). Evidence of previous landslides 

can be observed along NH 105 (Figure 2-2 d–f) including concrete structures for slope 

stabilization. Hence, understanding the spatial distribution of landslides and mitigating 

hazards are urgent in this region. 
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Figure 2-1 Location of the Conghua district with elevation distribution. 
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Figure 2-2 Examples of landslides in the Conghua district. (a) Debris slide threatening a 

house. (b) Soil creep. (c) Rock fall. Evidence of previous landslide scarps in the form of (d) 

terraced off and (e, f) concrete structures for slope stabilization. 
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2.2. Chuetsu area, Japan 

The study area in the Chuetsu area is located in a mountainous region of Niigata 

Prefecture, Japan (Figure 2-3). The 300 km2 study area is situated at 138°47'E – 138°58'E 

and 37°14'N – 37°22'N, where the elevation ranges from 22 to 734 m with a mean of 206 m. 

It annually receives approximately 2000 mm of precipitation, a few typhoons, and heavy 

snow. The area is underlain by sedimentary and metamorphic rocks from the Paleogene to 

Quaternary (Takeuchi and Yanagisawa 2004). Land use/cover in the area is characterized by 

sparse settlements, agro-industrial activities such as paddy farming, and deciduous broad-

leaved beech forests. 

The area experienced an earthquake of M 6.8 on October 23, 2004, with the depth of the 

hypocenter being 13 km (Japan Meteorological Agency, 2004; Figure 2-4). The ground 

shaking caused by the earthquake and numerous aftershocks (four ≥ M 6 and ten M 5–6) 

triggered numerous shallow and deep-seated landslides (Figure 2-5), in the Hagashiyama 

Mountains in the Chuetsu area. The Fire and Disaster Management Agency of Japan (2004) 

reported that 40 people died and 4,496 were injured during this event. The damage of 

property and infrastructure from the landslides alone had been initially estimated at U.S. $8 

billion, making it one of the costliest landslide events in the history (Kieffer et al. 2006). 

Therefore, it is necessary to assess this event in detail. We analyzed an airborne LiDAR 

digital elevation model (DEM), and collected 13 possible landslide-conditioning factors: 

elevation, slope angle, slope aspect, total curvature, plan curvature, profile curvature, 

drainage density, distance from drainage networks, the compound topographic index (CTI), 

the stream power index (SPI), lithology, density of geological boundary, and distance from 

geological boundary. 
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Figure 2-3 Location of the study area in Chuetsu and distribution of landslides. Landslide 

data are from the National Research Institute for Earth Science and Disaster Prevention 

(NIED), Japan. 
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Figure 2-4 Epicentral distribution of major earthquakes (23 Oct – 10 Nov, 2004) in and 

around the mid-Niigata prefecture region. Map prepared using the data from Japan 

Meteorological Society, 2004. 
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Figure 2-5 A shallow landslide (left) in the southwest of Nigorizawa, Nagaoka City; and a 

deep-seated (right) landslide in the western entrance of the Haguro tunnel, Nagaoka City. 

Width and relative height for the deep-seated landslide is larger than those of the shallow 

landslides. (Images provided by NIED). 

 

2.3. Sado Island, Japan  

The study area in Sado Island (Figure 2-6) is located in Niigata Prefecture, Japan, 

between longitudes 138° 14' - 138° 32' E, and latitudes 37° 57' - 38° 20' N. It covers an area 

of nearly 400 km2. The elevation varies from 0 to 1172 m with a mean of 333 m. The peak 

of the island is the Mt. Kimpoku in the Osado Mountains. The geology is composed of 

Neogene and marine volcanics, such as dacitic and andesitic sediments, associated with 

pyroclastics and rhyolitic intrusives in green tuffs. Some coastal slopes involve lately formed 

semi-consolidated and unconsolidated sand deposits and gravel. This area is highly prone to 

landslides and subjected to tectonic movements that are evidenced by thrust up benches and 

active faults. In the study area, the landslide types are mostly deep-seated, translational and 

rotational slides (Figure 2-7). Ayalew et al. (2005) noted that rock falls  seldom occurred 

in this region. Most of the deep-seated landslides are inventoried in the rhyolitic and dacitic 
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lithologies. The landslide susceptibility may also be influenced by rainfall, snow melting, 

geology, slope aspect, and slope angle. 

 
Figure 2-6 Satellite image of the study area. The three bands (Near-IR, red and green) false 

composite ALOS image was provided by The Japan Aerospace Exploration Agency (JAXA). 

Vegetation in a red color reflects high reflectance for the Near-IR. 

file:///C:/Users/Nothing_/AppData/Roaming/Microsoft/2014.6%20taiwan%20ICEO/landslide_journal/Dou_An%20landslide_9.24.docx%23_Toc399344848
file:///C:/Users/Nothing_/AppData/Roaming/Microsoft/2014.6%20taiwan%20ICEO/landslide_journal/Dou_An%20landslide_9.24.docx%23_Toc399344848
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Figure 2-7 Examples of identified major landslide types in Sado Island. a) Rotational slide 

that severely damaged a road. b) Translational slide in the hilly terrains that carved the dense 

vegetation.  

2.4. Dongjiang Reservoir, China 

The Dongjiang Reservoir study area located in the southeast of Hunan Province, China 

(Figure 2-8 a and b). The Dongjiang Reservoir is susceptible to heavy precipitation during 

tropical cyclone seasons. The elevation of the area ranges from 78 to 1868 m with a mean of 

540 m. It is mainly composed of three distinct geomorphological units: hilly plains, hilly 

valleys and the Luoxiao Mountains near the eastern and southern boundaries. The area is 

geologically composed mostly of Paleozoic sedimentary and metamorphic rocks such as 

sandstone, sandy slate, and limestone, which were intruded by granitic rocks in places. The 

granitic rocks are deeply weathered. The weathered soils are mostly composed of highly 
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oxidized laterite, prone to erosion. Land use/cover in the study area is characterized by 

settlements, small-scale agro-industrial activities such as paddy farming, and plantation. The 

study area belongs to the humid sub-tropical monsoon climate. The annual precipitation is 

1,538 mm, mostly affected by typhoons.  

The Dongjiang Reservoir is the largest reservoir in the south of Hunan Province, covering 

the water area of 160 km2 and has the capacity of 8.12×109 m3. Due to the heavy rainfall 

caused by the Typhoon BILIS in 2006, thousands of sediment-related disasters, including 

numerous slope failures (shallow landslides) and debris flows occurred, and were 

inventoried through the Quickbird images (0.6 m in resolution), CBERS images (20 m) and 

field work (Figure 2-9). The torrential precipitation event associated with Typhoon BILIS 

caused 246 deaths, 95 missing and more than 300 million US dollars of economical loss just 

in and around Zixing City. Damages of destroyed or buried buildings by debris flows were 

serious. There were also considerable slope failure disasters where precipitation was intense. 

Flash floods also inundated short and steep rivers in the hilly areas. 
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Figure 2-8 Dongjiang Reservoir study area. a) Location map of China. b) Map of the study 

area with rain gauge distribution. c) Distribution of shallow landslides on the elevation map 

derived from a 30 m DEM. d) The lower map is the enlarged area of showing the landslide 

boundary.  
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Figure 2-9 Rainfall-induced landslides by the typhoon BILIS. (a) Example of shallow 

landslide (dots on the scar indicate vector points) and associated with debris flows. (b) 

Landslide scar and threatened property. (c) Many shallow landslides (black arrows). 
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3. CHAPTER 3 DATA 

3.1. Data for the Conghua district, China 

High-resolution imagery is crucial for obtaining detailed landslide information. High-

resolution Quickbird images of the study area with a spatial resolution of 0.6 m in three 

spectral bands in the visible wavelength, acquired on 10 October 2006 and 20 March 2007, 

were used to detect landslides by adopting image segmentation and feature selection methods. 

They enabled excellent recognition of the shape and location of objects. The main task was 

investigating landslides along the road because it is vulnerable to landslide damage. A SPOT 

5 satellite image acquired on 7 December 2006 and a 1 m DEM were used as ancillary data. 

Table 3-1 lists the specifications and details of the satellite images used. We also conducted 

field surveys in the same season of the year as the image acquisition periods to support and 

validate our results.  

Table 3-1 Spectral and spatial resolution of QuickBird and SPOT5 satellite image data. 

Satellite Pan (µm) Red (µm) Green 

(µm) 

Blue (µm) Near IR 

(µm) 

Spatial 

Resolution 

Date of Acquisition 

QuickBird 0.45–0.9 0.63–0.69 0.52–0.6 0.45–0.52 0.78–0.9 Pan:0.61 m 10 October 2006 

and 20 March 2007 Ms:2.8 m 

SPOT 5 0.48–0.71 0.61–0.68 0.5–0.59 Shortwave IR 

(1.58–1.75) 

0.78–0.89 Pan 2.5 m 7 December 2006 

Ms:10 m 

3.2. Chuetsu area, Japan 

Landslides in the past are keys to predict the distribution of future landslides (Guzzetti 

et al. 1999). We used a landslide inventory prepared by NIED, Japan, based on the 

interpretation of aerial photographs. The inventory contains 895 shallow landslides and 330 

deep-seated landslides, with an average area of 187 and 9,600 m2 respectively (Figure 3-1). 
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Their minimum areas are 42 and 271 m2, and maximum areas are 28,178 and 205,461 m2, 

respectively. The inventory contains landslides represented by polygons; however, for this 

study, the landslide polygons were changed into points each at the centroid of each landslide 

polygon, using ArcGIS 10.1, a GIS package from ESRI.  

   

Figure 3-1 Histograms showing characteristics of landslide types: (a) area of deep-seated 

landslides, (b) area of shallow landslides. 

Landslides can be classified into deep and shallow in relation to material and movement 

mechanism (Dai et al. 2011) (Figure 3-2). NIED used the depth of the sliding plane to 

differentiate the two types: depth < 10 m = shallow, and else deep-seated. This scheme of 

landslide differentiation is also used by Roering et al. (2003). Shallow landslides with the 

movement of the surface soil mantle are smaller in volume than the deep-seated 

landslides with the movement of both surface mantle and underlying weathered 

bedrock. Deep-seated landslides more likely cause large scale debris flows and 

landslide dams, with more disastrous consequences. 
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 Figure 3-2 Sketch of shallow landslides (left) and deep-seated landslides (right). 

The thematic data used are summarized in Table 3-2. An airborne Lidar DEM with a 

spatial resolution of 2 m was provided by GSI in 2005 (Geographical Survey Institute 2007). 

The geological information used is based on the geological maps provided by GSJ (Takeuchi 

and Yanagisawa, 2004). The lithology is mainly classified into three groups: (1) gravel, 

andesite, dacite lava, andesitic pyroclastic rock, tuffaceous sandstone, and rhyolite tuff; (2) 

gravel, sand, silt, and mudstone; (3) sand, silt, sandstone, and massive mudstone. All 

conditioning factors used are continuous except the categorical lithology data. 

Table 3-2 Thematic datasets used in the study. 

Classification 
Sub-

classification 
GIS data type 

Scale or 

resolution  
Classes 

Source of 

data 

Landslide 

inventory map 
Landslide 

Polygon 

coverage 
1:50,000 Continuous NIED 

Geological map 

Lithology 

Geological 

boundary 

Polygon 

coverage 

Line coverage 

1:50,000 
Categorical 

Continuous 
GSJ 

Topographic map DEM 
ARC/INFO 

Grid 
2×2 m 

Continuous 

  
GSI 
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3.3. Sado Island, Japan  

According to Guzzetti et al. (1999), landslides which occurred in the past and present are 

keys to predict future landslides. The first step is to compile a landslide inventory map. The 

details of the data for Sado Island are itemized in Table 3-3. In this study, a total of 825 

known landslides (Figure 3-3) were first obtained for the model development; these 

landslides were interpreted by the landslide experts at NIED. NIED has been producing this 

landslide inventory since the year 2000 from the repeated acquisition of multiple aerial 

photographs. The landslides are depicted as boundary polygons in the GIS shape file format 

and are available at the NIED archives (http://lsweb1.ess.bosai.go.jp/gis-data/index.html). 

The archived landslide inventory data were also used to successfully produce landslide 

hazard map by a logistic regression model in other study regions (Wang et al. 2013). It is 

observed from the landslide inventory map that most landslide areas are greater  than 0.01 

km2. The minimum area observed is 0.0006 km2, whereas the largest landslide covers an area 

of about 1.65 km2. The total area of landslides is about 57 km2, and accounts for 

approximately 15% of the study area. The areas of all the mapped landslide display a 

frequency distribution that can be described by a power law for approximately three orders 

of area with a good fit (R2 = 0.95) (Figure 3-4). In this study, the landslide distribution was 

examined only for medium to large landslides (2.34×103 to 8.48×105 m2) with a significant 

rollover value (1.13×104 m2). The power law can be used to examine the dominant landslide 

areas (Guzzetti et al. 2002). The exponent of the power law (1.6) indicates that the large 

landslide areas are dominant.  

Different sampling strategies are available to construct the reliable landslide 

susceptibility maps. Several previous researches preferred to use ‘points’ to represent the 

spatial location of landslides (Neuhäuser et al. 2011; Tien Bui et al. 2012b). Dai and Lee 

http://lsweb1.ess.bosai.go.jp/gis-data/index.html
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(2003) delineated only the source areas during the landslide susceptibility assessments and 

excluded both the transport and deposition of areas existing landslides. Few other studies 

preferred to use the landslide area with depletion and accumulation zones like “seed cells”  

to represent pre-failure conditions (Süzen and Doyuran 2004; Bai et al. 2010; Wang et al. 

2013). “Seed cells” are the zones that are regarded to represent the undisturbed 

morphological condition (Süzen and Doyuran 2004). Comparisons of these sampling 

strategies are however beyond the scope of this study. Here, we adopted one of the most 

popular methods, the use of the polygon of each landslide to represent its location (Yalcin 

et al. 2011; Peng et al. 2014). For building models, the landslide inventory was randomly 

partitioned into two groups: a training dataset (70%, 578 landslides) and a validation dataset 

(30%, 247 landslides). 
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Figure 3-3 Landslide data for Sado Island. (a) Landslide inventory map for the study area 

randomly divided into two groups (training and validation samples) with a shaded relief map 

from a 10 m DEM. (b) Enlargement of a landslide location with an aerial photograph from 

the Midori Niigata and Sado City (acquired in 2005). 

 

 

Figure 3-4 Landslide characteristics. (a) Histograms showing the distribution of landslide 

sizes; (b) Probability distribution of landslide areas in the Sado Island.. 
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Table 3-3 List of data used. 

Spatial database Causative factor GIS/RS data type Scale or resolution  Source of data 

Landslide 

inventory map 
Landslide Polygon coverage 1:50,000 NIED 

Geological map 

 

Lithology 

Faults 

Geological 

boundary 

Polygon coverage 

Line coverage 
1:200,000 GSJ 

Topographic map 
Morphometric 

factors 
ARC/INFO Grid 10×10 m GSI 

ALOS 

Aerial photographs 

NDVI Raster  10×10 m JAXA 

 Raster 0.25×0.25 m 

Midori 

Niigata and 

Sado city 

Landslides occurrence are influenced by the interaction of topographic, hydrological and 

geological factors (Costanzo et al. 2012; Dou et al. 2014a); therefore, the selection of the 

causative factors is considered to be a fundamental step in landslide susceptibility modeling. 

In this study, based on analysis of the landslide inventory map and the underlying geo -

morphometric conditions (Conoscenti et al. 2015; Dou et al. 2015a), a total of 15 landslide-

causative factors (Figure 3-5) commonly found in literature were firstly derived. These 

factors were extracted from their respective spatial databases (Table 3-3). The source data 

for the factors may vary in their scale, which affect the accuracy of landslide susceptibility 

models (Lee et al. 2004b). To be commensurate with the diversity of the data sources and 

difference in the scales, we converted all the factors to a raster format with a resolution of 

10 m that corresponds the DEM resolution.  

The 10 m digital elevation model (DEM) obtained from GSI was used to derive elevation, 

slope angle, slope aspect, total curvature, profile curvature, plan curvature, CTI and SPI 
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using ArcGIS 10.2 software. The detailed classes and maps of these factors are shown in 

Figure 3-5 and Table 3-3. 

Elevation is widely used for the assessment of landslide susceptibility. The variation in 

elevation may be related to different environmental settings such as vegetation types and 

rainfall (Catani et al. 2013). Slope angle is typically considered to be an influential factor 

because it controls the shear forces acting on hillslopes (Dou et al. 2009a; Tien Bui et al. 

2011). Slope aspect, related to sunlight exposure and drying winds control on soil moisture, 

were also considered an important factor (Magliulo et al. 2008). Total curvature is defined 

as the change in slope along a small arc of the curve. The profile curvature is the cur vature 

in the downslope direction, while the plan curvature is the curvature of the topographic 

contours. All of them were found to influence the triggering of landslides (Dou et al. 2015g). 

Profile curvature influences the driving and resisting stresses within a landslide in the 

direction of motion, and controls the change in velocity of mass movement flowing down 

the slope; whereas, the plan curvature controls the convergence or divergence of landslide 

material and water in the direction of the landslide motion (Ohlmacher 2007). CTI and SPI 

are hydrological factors frequently used for the assessment of landslides (Beven and Kirkby 

1979; Gessler et al. 1995; Jebur et al. 2014).  

Lithology is considered one of the most influential factors in landslide susceptibility 

mapping because of it represents geo-mechanical characteristics of rocks (Costanzo et al. 

2012). In this study, the lithology and faults were derived from the geology map at 1:200,000 

scale published by GSJ. A total of 10 lithological units were constructed: metamorphic, 

plutonic and intrusives, sedimentary (mudstone, sandstone, and slate + sandstone), volcanic 

(andesite lava, basalt, dacite lava, dacite, and rhyolite lava).  

It was found that geologic boundaries often relates to the rock strength. A high density 

of geologic boundary means lower stability and may lead to increase in landslide occurrences 
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(Dou et al. 2014a). Therefore the distance to geological boundaries also considered as a 

factor in this study. The data of geological boundaries are provided by the Geological Survey 

of Japan (GSJ). The geological boundaries represent the boundary between different 

geological units or rock types, and are represented as lines. The distance to these lines was 

defined as the distance from the center of the landslide to the closest point of the geological 

boundaries. Faults have been regarded as a critical factor in triggering landslide  in 

tectonically active areas (Tien Bui et al. 2011). Additionally, the strength of fracturing and 

shearing stresses crucially influence the slope instability. Hence, distance to faults was also 

considered in this study to investigate the relationship between lineaments and landslide 

occurrence. 

The vegetation cover and the land use patterns are often found to affect landslide 

occurrence, because they are related to the anthropogenic interference on hillslopes (Pradhan 

and Lee 2010; Zhu et al. 2010). The normalized difference vegetation index (NDVI) was 

generated from the available cloud free ALOS satellite images (10 m resolution) acquired 

on November 5th, 2006. NDVI is an indicator that reflects the amount of green vegetation 

(Pettorelli et al. 2005) and can be computed using the following equation: 

 NDVI= (NIR - RED)/(NIR + RED) (3-1) 

where NIR and RED are the spectral reflectance of near infrared and red bands of the 

electromagnetic spectrum, respectively. The values of NDVI vary from -1 to 1 and a higher 

value implies a denser green vegetation whereas lower values indicate sparse vegetation. 

High NDVI values are due to high concentration of chlorophyll that cause a relatively lower 

reflectance in the red band implying high stacking of leaves (Pradhan and Lee 2010). 
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Figure 3-5 Landslide causative factors: a) elevation, b) slope angle, c) slope aspect, d) total 

curvature, e) profile curvature, f) plan curvature, g) CTI, h) SPI, i) drainage density (m-1), 

(j) distance from drainage networks, k) lithology, l) density of geological boundaries, m) 

distance to geological boundaries, n) distance to faults, and o) NDVI. 
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Figure 3-5 Continued. 
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3.4. Dongjiang Reservoir area, China 

Rainfall data from the records of 21 rain gauges in and around the Dongjiang Reservoir 

area were used to analyze the rainfall characteristics of the major storm. Typhoon BILIS was 

a strong tropical storm with severe precipitation in a short duration, whose trail was shown 

in Figure 3-6 and it landed on the coast of Fujian Province, China, on July 14th, 2006, with 

the maximum wind speed of 108 km/h. Then it weakened into a tropical storm and moved 

westward and north-westward at the speed of 10-15 km/h until July 16th, 2006 when it 

disappeared in Hunan Province. 

The rainfall observation data from the rain gauge networks around the reservoir on 14-

15th July are displayed in Figure 3-7. The Longxi rain gauge shows the maximum rainfall 

with a total 36-h rainfall of 507 mm and a total monthly rainfall of 826 mm. We also selected 

two rain gauges, Xingnin and Lianping, for detailed presentation (Figure 3-8). In 48 hours, 

the cumulative rainfall in Xingnin and Lianping is more than 400 and 285 mm, respectively. 

In particular the incremental rainfall of Xingnin at 15-18 UTC was approximately 180 

mm/3h. Figure 3-9 shows the rainfall contour diagram of the Dongjiang reservoir area in 36 

h on July 14th-16th. The reservoir watershed area totally received a rainfall amount of 

around 6, 6,000, 0000 m3, leading to a reservoir depth increase of 4.66 m. The reservoir was 

severely affected by the heavy rainfall in a short time.  

 

 

 



 

 

 

32 

 

 

 

Figure 3-6 Trail of the Typhoon BILIS (data from Japan National Institute of Informatics). 

Figure 3-7 Graphs showing rain gauge precipitation in the Dongjiang Reservoir area in July 

(top) and on 14-16th (36 hour) rainfall (bottom). The depth of water of the reservoir 
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increased 7.73 m during 14-19th, July, 2006. 

 

 

Figure 3-8 Incremental and cumulative rainfall rain gauges in Xingnin (a) and Lianping (b) 

around the Dongjiang reservoir. 

(a) 

(b) 
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Figure 3-9 Rainfall contour diagram of the Dongjiang Reservoir area in 36 h on 14th-16th, 

July, 2006. The reservoir area suffered from the total rainfall of around 6, 6,000,0000 m3, 

leading to a reservoir depth increase of 4.66 m. 

Moreover, using satellite images before and after the event including Quickbirds (0.6 m 

in resolution) and CBERS (20 m) as listed in Table 3-4, we inventoried 2,407 landslide sites 

as points each of which corresponds to the center of the landslide scar. The landslide density 

is approximately 8.2/km2. Topographic data for analyses were also derived from the 30 m 

ASTER GDEM (version 2).  
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Table 3-4 Collected images in the study area 

Serial number Date Path Satellite and sensor 

1 2000-03-26 373-71 CBERS01-CCD 

2 2003-12-26 373-71 CBERS02-CCD 

3 2005-11-27 373-71 CBERS02-CCD 

4 2005-12-23 373-71 CBERS02-CCD 

5 2006-10-05 373-71 CBERS02-CCD 

6 2006-10-31 373-71 CBERS02-CCD 

7 2006-12-22 373-71 CBERS02-CCD 

8 2007-10-27 1-70 CBERS02-CCD 

9 2008-11-11 373-71 CBERS02B-CCD 

10 2008-05-13 373-71 CBERS02B-CCD 

11 2009-01-02 373-71 CBERS02B-CCD 

12 2009-10-24 372-71-A-2 CBERS02B-HR 

13 2009-10-24 373-71-A-4 CBERS02B-HR 

14 2009-01-02 373-71-B-1 CBERS02B-HR 

15 2009-01-02 373-71-B-2 CBERS02B-HR 

16 2009-01-02 373-71-B-3 CBERS02B-HR 

17 2009-01-02 373-71-B-4 CBERS02B-HR 

18 2009-01-02 373-71-B-5 CBERS02B-HR 

19 2008-01-04 373-71-C-4 CBERS02B-HR 

20 2008-01-04 373-71-C-5 CBERS02B-HR 

21 2007-12 -18  Quick bird 
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4. CHAPTER 4 LANDSLIDE INVENTORY MAPPING 

Preparing landslide inventory maps is necessary to archive the extent of landslide 

phenomena in specific areas; to examine their spatial distribution and types, risk, 

vulnerability, recurrence, and statistical slope instability; and to investigate the evolution of 

landscapes controlled by landslide processes (Guzzetti et al. 2012; Dou et al. 2014b). 

For a successful landslide hazard evaluation, creating a historical landslide-event 

inventory is principally crucial for pre-disaster and post-disaster analyses (Guzzetti et al. 

2005; Lu et al. 2011; Dou et al. 2015b). Up until now, landslide inventory maps have largely 

been generated via visual interpretation of aerial photos or satellite images combined with 

extensive field surveys. Nonetheless, such methods are labor-intensive and expensive and, 

therefore, inefficient for generating maps of large areas. Moreover, traditional map-

generating techniques require prior knowledge about the involved hazard, and such 

techniques are highly subjective and have limited reproducibility (McKean and Roering 

2004a; Dou et al. 2015d). By contrast, a semi-automated or automated classification 

approach can provide a scheme for addressing the aforementioned problems. Several studies 

have been conducted to detect and identify landslides (Dou et al. 2009a; Lu et al. 2011). 

Experiments based on the emerging technique of expert-based knowledge systems (EKS) 

have been proposed; in these experiments, rules have been applied to classify and identify 

hazard prone areas. The rules are typically created from spectral, textural, and shape features 

(Myint et al. 2011). This research has demonstrated that EKS performance is higher than 

that of traditional per-pixel approaches in classifying land cover types. The advantage of 

EKS is in task specific knowledge; however, a limitation of implementing EKS methods is 

that identifying and defining rules for each separate problem is tedious and time consuming 

(Li and Yeh 2004; Dou et al. 2009b).  

http://www.thesaurus.com/browse/archive
http://dict.youdao.com/w/knowledge/
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With the advancement in the spatial resolution of commercial satellite images (e.g., 

SPOT 5, ALOS, IKONOS, QuickBird, and Wordview1), traditional pixel-based methods 

have become inapt for identifying and characterizing landslides. Furthermore, post-

classification processes in pixel-based classification are tedious. In contrast to the pixel-

based method, the object-oriented image analysis (OOIA) method aggregates pixels into a 

network of homogeneous objects corresponding to surface cover patches (Dou et al. 2010). 

Landscape shape and textural features are prominent in high-resolution satellite images; 

however, the spectral data range is narrow. Nevertheless, OOIA has several advantages over 

the pixel-based method. For instance, OOIA combines shape and context information with 

spectral and textural information simultaneously, thus preventing the “salt and pepper” effect 

prevalent in the pixel-based classification method (Qian et al. 2007; Anders et al. 2011; 

Chang et al. 2012). Additionally, OOIA provides a potentially automated method for 

detecting landslides and can consider the spectral, morphological, and contextual properties 

of landslides according to expert knowledge (Martha et al. 2010; Lu et al. 2011). 

This paper proposes a relatively new approach for detecting landslides from high spatial-

resolution images by integrating three-phase object-oriented classification. The proposed 

approach is a combination of segmentation and feature optimization that involves using a 

genetic algorithm (GA) in this research. eCognition software was first used to segment 

QuickBird images and to extract spectral and textural features. The resulting objects were 

exported for further analysis. To reduce redundant data, the most appropriate features related 

to a landslide occurrence must be used; thus, a GA was applied. The GA method is 

considered to be a powerful tool for addressing the feature optimization problem because of 

its robustness. The GA method has been successfully implemented in several fields, such as 

feature selection in computational analysis, and classification of remote sensing images 

(Yang 2007; Vancoillie et al. 2007). In this study, the optimization process was based on the 
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optimal fitness value of landslide detection. The GA-driven feature optimization procedure 

offers several feature combinations for subsequent landslide detection. In the final phase, a 

relatively new approach was used for detecting landslides from high-spatial-resolution 

images based on case-based reasoning (CBR) techniques. CBR differs from EKS, which 

require high levels of computing competence in cognitive tasks. Although EKS are heuristic 

with judgments as well as with formal knowledge of established theories, they fail when 

applied to incomplete or inexact data because the systems accommodate more power than 

the user. Conversely, CBR is more similar to human perception, which uses knowledge 

derived from previous situations to solve new problems. CBR has been applied in various 

fields such as finance, marketing, and engineering (Ahn et al. 2006; Qian et al. 2007; Du et 

al. 2013; Minor et al. 2014). In this study, CBR was used to detect landslides for mapping 

image objects. CBR approaches were generated based on the optimal feature combination to 

obtain the detection results. The experiment was conducted in a fast-growing urban area in 

the Conghua district, PRD, China. According to a literature review, CBR integrated with 

OOIA, and GA has never been used to detect landslides because they are relatively new 

techniques. 

Figure 4-1 shows a flowchart of the integrated methodology used for the intelligent 

landslide detection in this study. The flowchart comprises three main phases: 1) multi -

segmentation of images after data collection and preprocessing; 2) feature selection, using 

GAs based on the feature set; and 3) implementation of the CBR method to categorize the 

geomorphological features and validate the accuracy. Each phase is detailed in the 

subsequent sections. 
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Figure 4-1 Integrated structure for automatic landslide detection, comprising three 

processes: 1) multi-segmentation by OOIA, 2) feature selection by GA, and 3) detection by 

CBR and validation using field work data. 

4.1. Multi resolution segmentation 

Multiresolution segmentation is a bottom-up segmentation algorithm based on a pairwise 

region-merging technique (Baatz et al. 2004). This algorithm generally groups image pixels 

that possess homogeneous spectral and textural characteristics. Smaller objects are combined 

into larger objects based on criteria determined by three parameters: scale, color, and shape 

(smoothness and compactness) (Benz et al. 2004). The segmentation process continues until 
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the smallest object growth exceeds a user-defined threshold. The heterogeneity (e.g., spectral 

and color) criterion can be defined as follows:  

 

   object21
object object1 2

objectmerge

merge. . .c c c c

c

H w n n n    
 

4-1 

where H is an arbitrary heterogeneity criterion, cw  represents the weight attributed to each 

band, objectn  is the different segmented objects, c  corresponds to the standard deviation of 

the spectral values within band c, and n denotes the number of pixels in a segment.  

To remove the image distortions in the different data set, all the data were geometrically 

rectified based on ground control points (GCPs) by using the Autosync Workstation module 

of the Erdas 9.1 software. GCPs were acquired for eight locations with the help of the 

Trimble positioning system during the field survey. Additionally, the image geometry was 

evaluated by computing the root mean square error (RMSE). To ensure a high model quality 

over the image, the improper tie pointes were pruned after careful visual confirmation. The 

computed RMSE was less than one pixel (0.5 m) for the study area, which was considered 

satisfactory considering that the location is an undulating terrain. This step was crucial 

before characterizing the attributes of features interest (Martha et al. 2010). Figure 4-2 shows 

an example of image segmentation results from QuickBird images. The segmentation 

outcomes are determined by the spatial resolution of images and object features, and the 

segmentation scales are determined by the size of landslides. The segmentation scale as 

defined in OOIA is the maximum color difference within each chosen image layer inside 

square image objects (Baatz et al. 2004). Although determining the optimal segmentation 

scale is difficult, the Estimation of Scale Parameter (ESP) tool, which builds on the idea of 

local variance of object heterogeneity, facilitates a suitable method for multi-segmentation 
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that avoids objectivity and repetition (Drǎguţ et al. 2010). In this study, after performing 

visual interpretation through trial and error, four levels (150, 100, 50, and 30) of the 

segmentation scale were selected at first. The chosen scales were also tested by running ESP 

tools, and the results indicated that the images were segmented appropriately by using the 

bottom-up region-merging strategy. As shown in Figure 4-2, a larger segmentation scale 

detects larger but fewer objects, whereas a smaller segmentation scale detects smaller objects 

but in greater numbers. This does not necessarily mean that smaller segmentation detects 

more landslides. A visual comparison indicated that the objects were over-segmented at a 

scale of 30. Thus, the subsequent detections were based on the three scales of 50, 100, and 

150. A total of 445 feature polygons were generated (Figure 4-3); however, after the post-

processing stage (omitting outliers), 366 features were prepared for subsequent analysis. The 

attributes of the aforementioned objects, such as spectral, textural, and spatial information, 

were then exported for GA optimization. 

 

Figure 4-2 Details of QuickBird image segmentation including four scales: (a) 150, (b) 100, 

(c) 50, and (d) 30.   
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Figure 4-3 Object attributes exported in the OOIA analysis. 

4.2. GA based optimization of feature selection 

GAs are a class of stochastic search and optimization techniques based on natural 

selection and evolutionary principles (Addis et al. 2011). This algorithm has been proven to 

be robust and effective in searching large spaces for a wide range of applications (Tang et 
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al. 2005; Iovine et al. 2005). To minimize data redundancy, optimizing the features that are 

closely related to landslide occurrence was crucial because most of the segmented object 

features were not relevant to this study. To reduce the data dimensionality, in the second 

phase of the proposed approach, we applied the GA method to solve the optimization 

problems because of their robustness (Kudo and Sklansky 2000). To determine the properties 

associated with the landslides, 366 feature attributes from the previous step (including the 

spectrum, shape, texture, hierarchy, and neighborhood of each object) were selected. 

In using the GA for feature optimization, the feature attributes were coded as 

chromosomes, a type of binary string. Figure 4-4 presents an example of the procedure. For 

instance, the value of a code is set to 0 or 1. In this case, a bit value of 1 means that the 

corresponding instance is selected, and a value of 0 means that the corresponding instance 

is not selected. The populations were initially randomized before the search process was 

resumed, and then searched to determine the encoded chromosomes to maximize the optimal 

fitness function, which was computed for each of the randomly originated chromosomes. 

Because designing the optimal fitness function plays a major role in improving the search 

space efficiently and effectively, an improper fitness function can easily be trapped in a local 

optimum and decrease in search effectiveness (Tang et al. 2005). It facilitates assigning the 

optimal fitness value for each chromosome. The fitness function ( )f x  can be expressed as 

follows: 
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here 
ix  is an n-dimensional feature vector of image object i, 

1 2( , ,... )i i i i

nx x x x  is the 

segmented object, and  ,i jx x  are the Euclidean distance between vectors 
ix  and 

i

kx , which is k-th feature value of i, 
k  is the weight of the k-th feature, and n  is the 

number of  objects  in feature optimization. The GA can compute the optimal fitness value 

for each individual, and under this condition, only the optimal individuals can survive. Hence, 

an optimized generation process can reproduce generations through mutation or crossover. 

Eventually, to passage a discrimination related to the fitness, the optimal individuals were 

decoded for use and corresponded to feature selection as inputs for landside detection and 

classification in the CBR process. The GA optimization process was conducted using the 

Gene Hunter software package. 

 

Figure 4-4 Illustration of GA: (top-1) an example of the single point crossover for a binary 

GA, randomly setting the parents and obtaining the offspring; (bottom-2) the mutation for a 

binary GA, in which the bits are randomly chosen and the allele’s values are altered.  

4.3. CBR for landslide detection 

CBR is a problem-solving method that imitates the reasoning of human intelligence and 
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involves applying past experiences to determine a solution. Hence, CBR has often been used 

in fields such as marketing, engineering, and economics to solve complex problems and is 

an effective technique because of its flexibility in representing a particular case (Aamodt 

and Plaza 1994; Jonassen and Hernandez-Serrano 2002; Minor et al. 2014). Moreover, CBR 

has a higher number of appealing features than that of EKS approaches, and can overcome 

the disadvantages of EKS approaches while retaining advantages such as artificial 

intelligence, simplification of tedious tasks, and high automatic competence. 

In the CBR approach, a case is the basic unit that records a problem condition and 

contextualizes knowledge representative of experience obtained during a problem-solving 

event. A case library is the core of a CBR system when applied for landslide detection. The 

case library of this study was established using aerial photographs and GPS data collected 

during the field survey. CBR offered an approach to representing the retrieved, reused, 

revised, and retained (4R) cases. The rapid development of CBR is attributable to its 

competence and maintenance of a rule-based EKS. Each case must be represented by a 

problem description in addition to the solution and outcome. 

An advantage of CBR over conventional classifications such as maximum likelihood 

classification (MLC) is that it can allow the use of both numeric and nonnumeric data and 

does not require a normal distribution form (Li and Yeh 2004). In this study, the data of each 

object were provided as the attributes of a case, thereby overcoming restrictions reported in 

previous studies, thus enabling the smooth interpretation of numeric data. Figure 4-5 shows 

the details of applying CBR for detecting landslides by using remote sensing data. Each case 

comprises two parts: the delineation of the problem and the solution of the problem 

(classified landslide types). A case can be expressed as follows: 

                         1 2, ..., ;n kX X X X T  (4-4) 
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where 
nX  is the nth feature related to the spectral, shape, and textural attributes of the case, 

and kT
 represents the landslide type of the case. 

CBR is used to detect landslides by assessing the interrelated similarity correlation 

degree (SCD). Several techniques have been used (e.g., Manhattan distance, grey relational 

analysis, and k-nearest neighbor) to calculate SCD between the input case and output case 

in the CBR system. Because the distance scale relational data reflects only the position of 

the curve rather than the trend of the data sequence changes, the actual distance to the data 

sequence may not be similar, as found when the k-nearest neighbor or Manhattan distance 

technique is use. However, gray relational analysis (GRA) improves the measurement of 

distance similarity so that it can fully express the similarity of data sequences, as shown by 

Goldberg (1989) and other studies (Drǎguţ et al. 2010). Hence, this research used the GRA 

method to calculate similarity because of its advantage of global comparisons. The SCD 

value of GRA is calculated using the following equation: 
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where  iSCD n is the related coefficient of case I at point n , with the value ranging [0, 1],

 
0

X n  and  
i

X n  represent the value of the n-th feature of input case x and existing case 

i, respectively. The term  is the identification coefficient. The SCD assessment includes 

multiple values to prevent dispersion in a given system (Deng 1982); thus, the related grade 

(RG) between sequences can be defined by dividing the related coefficient by its average 

value: 
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(4-6) 

where N is the number of features. The value of RG ranges from 0 to 1. 
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Figure 4-5 Illustration of landslide detection using the CBR method in this study. 

The optimal features were normalized to eradicate the dominating effect of high values 

ranging mainly from 0 to 1 by using the following equation:  

                
Min

Max Min

X X
Y

X X





                        (4-7)   

(1) 
where Y is the normalized feature value ranging from 0 to 1, and X Max

and X
Min

 represent the 

maximum and minimum value, respectively. 

Figure 4-6 shows examples of landslides in the case library. Multiscale detection must 

be used because each case has a unique size. Moreover, to elude repetitive detection, the 

segmentation results are portrayed from a larger scale to a smaller scale. Additionally, the 

detected landslides were extracted before performing subsequent small-scale detections. 
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Figure 4-6 Examples showing the preparation of reference landslides in the case library, in 

the form of Quickbird images: a, b, c, and d are young landslides (bright area with no 

vegetation cover); e and f are old landslides (less bright areas covered with concrete 

structures and vegetation). 

Each segmented object was consecutively identified by CBR at different scales; the 

degree of similarity between each input and the existing case library was separately 

calculated so that the highest similarity degree could be determined to identify the landslide 

type. The CBR inference was programmed on the Matlab 2010b platform, thus increasing 

the likelihood of fast automatic detection (Matlab 2010). 

4.4. Accuracy estimation 

Various methods and indices have been established for evaluating the accuracy of remote 

sensing products. Accuracy assessments typically rely on a confusion matrix and the 

definition of a sampling unit defined in the response design (Congalton 1991; Radoux and 

Bogaert 2014). In previous studies, indices such as the kappa index, and overall, user, and 

producer accuracies were extensively used to estimate the results of map’s quality 

a  b c 

e d f 
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(Congalton 1991; Yang et al. 2013). However, recent studies have indicated a decline in the 

use of the kappa index because of its flawed methodology, which involves the practical 

application of remote sensing (Pontius and Millones 2011). Radoux and Bogaert (2014) 

recommended the use of sample polygons to assess thematic accuracy when spatial objects 

are identified on a map as polygons. Mondini et al. (2011) used receiver operating 

characteristic (ROC) plots (plotting the true positive value against the false positive value) 

for validating the results of map classification. These studies indicated that a higher ROC 

value matches the optimal fit results. Yang et al. (2013) successfully applied overall accuracy 

to assess the landslide identification in the 2008 Wenchuan earthquake area in China. 

However, thus far, no universal optimal fit method exists for evaluating map accuracies 

(Radoux and Bogaert 2014).  

In this study, the ROC index was employed for validating the model. ROC is a popular 

index and has been extensively used in the field of engineering and signal detection. Swets 

(1988)  indicated that the ROC is a highly useful indicator for evaluating the quality of 

deterministic and probabilistic detection and forecast systems (Swets 1988). Although it is 

widely accepted in binary calculations, it is less frequently used in the field of remote sensing. 

Typically, several classes exist in calculations; however, in ROC plots, all classes are 

grouped into landslide and non-landslide classes. The area under the curve (AUC) was 

calculated using Matlab software. The true positive rate (TPR), false positive rate (FPR), 

false negative rate (FNR) and true negative rate (TNR) were computed by comparison with 

the ground reference data. Figure 4-7 shows the schematic diagram of TPR, FPR, FNR, and 

TNR employed in this study. The area under the ROC curve (AUC) was then used to 

characterize the quality of a forecast system by describing the system’s ability to correctly 

predict the occurrence or nonoccurrence of a predefined event. The equation is expressed as 

follows (Fawcett 2006).  
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Y = Sensitivity = 𝑇𝑁𝑅/(𝑇𝑁𝑅 + 𝐹𝑃𝑅)     (4-8) 

                                                                   

Specifity =
∑True negative

∑Condition negative
= TNR/(TPR + FNR)    (4-9) 

   

      X=1- Specifity = 1 −
∑True negative

∑Condition negative
= 1 − TNR/(TPR + FNR)  (4-10) 

                  𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑋)𝑑𝑋
1

0
                               (4-11)                                           

where the values of the AUC vary from 0 to 1 and a higher AUC value represents a superior 

classifier. 

 

Figure 4-7 Schematic diagram showing the computation of true positives, false positives, 

false negative, and true negatives for verifying the accuracy of the model.  Herein, (a) true 

positive: actual landslides that were correctly classified as landslides, (b) false positive: non-

landslides that were incorrectly classified as landslides, (c) false negative: landslides that 

were incorrectly classified as non-landslides, and (d) true negative: non-landslides that were 

correctly classified as non-landslides. 
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4.5. Application  

4.5.1 CBR-based multi-scale landslide detection  

Based on previous studies and objects that were recognizable and interpretable from the 

satellite images (Van Den Eeckhaut et al. 2010), three classes of objects were categorized in 

this study: old landslides, young landslides, and non-landslides. Old landslides appear as 

large crescentic amphitheaters and are mostly covered by bush and grassland. Old landslides 

can be considered as relict or mature features that have been dormant for some time. These 

regions are often characterized by concrete or grass seeding protective measures for slope 

stabilization and therefore easily recognizable in the images. Examples of old landslides are 

shown in Figure 2-2 c, e, and f. Young landslides, however, appear as bright “scars” in the 

images and exhibit a clear unvegetated back scarp, and are therefore clearly visible in 

satellite images. Non-landslides include all classes of objects, excluding the aforementioned 

landslide classes. 

In the GA optimization, the initial values for population, crossover, and mutation rate 

were set at 200, 0.6, and 0.05, respectively. Figure 4-8 illustrates the relationship between 

fitness value and the feature number, indicating that the number decreases with the feature 

number for the first 11 features. After the 11th feature, the fitness value increases (Figure 

4-8). Based on these settings, the first 11 features were selected by the GA (Table 4-1). The 

selected features included spectral features such as the layer mean and ratio, textural features 

such as gray level co-occurrence matrix (GLCM is a measurement of the variation intensity 

in the pixels of interest, which is tabulation of how often different arrangements of gray 

levels co-occur in an image or image section) and grey level difference vector (GLDV is the 

sum of the diagonals of the GLCM) (Vancoillie et al. 2007; Blaschke 2010), morphometric 

features such as elevation, and shape features such as the length-to-width ratio. CBR was 
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then used on the basis of the features selected by the GA. Feature selection was 

simultaneously optimized by the GA by applying the multi-scale parameters; the selection 

was not related to the scale sizes.  

 

 

Figure 4-8 Relationship between the feature number and the fitness value in the GA 

process. 

 

Figure 4-9 Plots of old (a) and young (b) landslide curves. The curves have similar periodic 
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trend changes.  

Table 4-1Feature selection optimized by the GA. 

Code Feature  Depiction 

1 
Mean difference to 

neighbors 

For each neighboring object, the layer mean difference is computed and 

weighted with regard to the length of the border between the objects. 

2 Ratio to scene 
Ratio to scene of Layer L is the Layer L mean value of an image object 

divided by the Layer L mean value of the whole scene. 

3 Length/Width the length of an object is divided by its width. 

4 
GLCM Std 

Dev(all dir) 

The grey level co-occurrence matrix the layer values of all n pixels 

forming an image object. Feature value range: [0; depending on bit depth 

of data]. 

5 
GLCM 

Homogeneity 

If the image is locally homogenous, the value is high if GLCM is 

concentrated along the diagonal. 

6 
GLCM 

Dissimilarity 

Texture measurement of the amount of local variation in the image 

objects by the grey level co-occurrence matrix (GLCM). It increases 

linearly and is high if the object has a high contrast. 

7 
GLDV Entropy(all 

dir) 

The grey level difference vector (GLDC). The values are high if all 

elements have similar values. 

8 
GLCM Ang2nd 

moment 
High if some elements are large and the remaining elements are small. 

9 NDVI Vegetation index, NDVI= (NIR - R)/(NIR + R), value range: [-1, 1]. 

10 Elevation 
Elevation affects the distribution of vegetation and landslides typically at 

comparatively high elevation. 

11 Slope Slope = Raise/Run, [0, 90o], affectsing the stability of slope failure. 

The patterns of the shape of the curve for the optimized features and their values for each 

landslide type (including old and young) were highly similar and consistent; the curves for 

the non-landslide objects exhibited no obvious pattern and differed considerably from those 

of the objects classified as landslides (Figure 4-9). This implies that the SCD value of the 

GA can be used to compare the experimental cases with the cases in the library. 

After comparing the results, the segmentation scales of 150, 100, and 50 were determined 

to be suitable for identifying and delineating the landslides for the study area (Figure 4-10). 

The 800 cases in the library were then prepared from the three scales of segmentation. These 

cases were separated equally but randomly into two parts: one for training cases, and the 
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other for accuracy assessment. Each scale was treated as independent. Although, the 

landslides with larger sizes were detected by the large segmentation scale (150), and 

relatively small landslides were detected by the small segmentation scale (50), it is difficult 

to obtain a conclusion regarding the optimal segmentation fit because misclassification in 

the form of over-segmentation in the smaller scale and omission of smaller landslides in the 

larger scale is always problematic. We therefore recommend a site-specific segmentation 

scale for an optimal fit result. The total prone area by detected landslides was calculated to 

be approximately 1.7 km2. The identified landslides varied in size between 59 and 32700 m2. 

The results also indicate that implementing a multi-scale detection strategy and adopting 

essential measures to avoid repetition as mentioned can result in effective landslide detection. 

The hybrid approach can facilitate detecting landslides in large landslide-prone areas and 

simultaneously reduce the visual-interpretation bias. 
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Figure 4-10 Results of landslide detection at different scales (150, 100, and 50). 

4.5.2 Validation 

Accuracy assessment of the results was verified using field investigation, GPS control 

points, and a QuickBird image acquired in 2007 (Figure 4-11). The accuracy of the proposed 

methodology was evaluated with the second set of samples separated from the 800 cases. 

ROC curves for the two types of landslide mentioned in Section 4.1 are displayed in. AUC 

values for the young landslides (0.9) are higher than those for the old landslides (0.82). Table 
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4-2 shows the accuracy assessment results of the landslide detection, indicating that the 

overall accuracy was 0.87. The young-landslide detection of user and producer accuracy was 

0.86 and 0.89, respectively, whereas the accuracies for old landslide classes were 0.82 and 

0.85, respectively. The young landslides had obvious characteristics, compared with 

neighboring objects, such as less vegetation cover. These results indicate that high-resolution 

remote sensing data can be effectively used to detect landslides, particularly in the urbanized 

region in the PRD, which has pioneered China’s economic development and urbanization 

process. 

 

Figure 4-11 Data for validation: (a) track of GPS route for field survey; (b) examples of landslide 

detection points overlying the QuickBird image, using CBR.  
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Figure 4-12 Prediction rate of ROC curve for each landslide class using CBR: (a) young 

landslides; (b) old landslides. 

Table 4-2 Comparison of accuracy in the CBR method 

Landslide type 
User's 

accuracy 

Producer's  

accuracy 

Omission 

error 

Commission 

error 

Overall 

accuracy 

Old landslides 0.82 0.85 0.15 0.18  

0.87 Young landslides 0.86 0.89 0.11 0.14 

To elucidate the efficiency of the proposed method, the results were compared with the 

OOIA classification approach. The nearest neighbor membership function value at standard 

deviation (σ) was set at 0.2, and feature space optimization was used to refine the 

classification. The same 11 features were optimized by the GA. Subsequently, the same cases 

were used as training data for the landslide detection. Figure 4-13 a and b show that the AUC 

values of the OOIA method for old and young landslides were 0.7 and 0.74, respectively. 

Table 4-3 shows the results of the OOIA method, indicating an overall accuracy of 0.75. 

Additionally, other comparisons were made by applying a standard traditional per-pixel 

classification, viz., and the supervised MLC for classifying the same images with the same 

training and testing samples, using the Erdas software. This method was derived from the 

Bayes theorem, which expresses a posteriori distribution based on spectral data. The AUC 

value of the MLC method for old and young landslides were 0.64 and 0.67, respectively 
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(Figure 4-13). 

Table 4-4 shows that the maximum likelihood method of overall accuracy was 0.68. 

Both results suggest that the accuracy of the OOIA and maximum likelihood classification 

method are considerably lower than that of the hybrid CBR model proposed in this study. 

According to the same accuracy estimation approach, the results of stand-alone OOIA and 

MLC were highly unsatisfactory with a considerably lower classification accuracy than that 

obtained using the OOIA-GA-CBR method. The poor classification of the supervised method 

may be due to the obvious spatial variations of environmental settings (e.g., roughness and 

soil types). However, the discrete cases in the CBR method must be suitable for representing 

these complexities and must facilitate obtaining more favorable classification performance.   

 

Figure 4-13 Prediction rate of the ROC curve for each landslide class: (a) young landslides, using 

OOIA; (b) old landslides, using OOIA; (c) young landslides, using MLC; and (d) old landslides, 

using MLC. 
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Table 4-3 Comparison of accuracy in the OOIA method. 

Landslide type User's accuracy 
Producer's  

accuracy 

Omission 

error 

Commission 

error 

Overall 

accuracy 

Old landslides 0.82 0.85 0.15 0.18  

0.75 Young landslides 0.86 0.89 0.11 0.14 

 

Table 4-4 Comparison of accuracy in the supervised maximum likelihood method. 

Landslide type 
User's 

accuracy 

Producer's  

accuracy 

Omission 

error 

Commission 

error 

Overall 

accuracy 

Old landslides 0.65 0.62 0.38 0.35 
0.68 

Young landslides 0.67 0.63 0.37 0.33 

4.6. Summary 

Landslide detection can facilitate establishing a landslide inventory that can potentially 

provide a clearer understanding of landslide patterns through spatial and temporal 

dimensions. Classifying high-resolution remote sensing data provides valuable landslide 

information for disaster management and urban planning. However, conventional visual 

interpretation is tedious and time-consuming. This paper proposes a new approach for 

automating landslide detection by integrating an object oriented approach and a GA. The 

results indicate that high-resolution images can enable quick identification of landslides in 

a fast-growing area in the PRD, South China. This study demonstrated the advantage of the 

proposed integration approach by using a GA to optimize feature selection and combining 

OOIA and CBR for detecting landslides. 

The proposed model incorporates each method’s advantages and avoids problems such 

as knowledge-based selection bottlenecks in creating EKSs. In addition, the experimental 

results indicated that the hybrid model demonstrated a higher accuracy than traditional 

methods (supervised classification). Traditional methods generally hypothesize that a certain 

terrain object must maintain a stable spectral signature in the entire study area. The 
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variations, however, can be complex under real world conditions. Moreover, the established 

case library in the hybrid model can be reusable for time-independent landslide detection. 

To reuse the case library, the typical landslides and non-landslides must be revised and 

updated. 

This paper proposes an approach for detecting and characterizing landslide features to 

construct a landslide inventory for the PRD. The established inventory is the basis for 

forecasting the spatial and temporal distribution of future landslides. Predictive 

susceptibility mapping with satisfactory consistency can be transformed into hazard disasters 

by applying the numerous independent landslides. This valuable knowledge is suitable for 

disaster management and identification of landslide-prone areas, rebuilding after the 

occurrence of landslide disasters, and preventing future unnecessary economic losses in 

urban development. 
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5. CHAPTER 5 CLASSIFICATION OF LANDSLIDE 

INVENTORY 

Shallow failures and erosion into bedrock play important roles in shaping landscapes in 

mountainous areas (Oguchi 1996). However, previous studies tended to focus on the spatial 

prediction of only a single type of landslides (Chang and Chao 2006; Cheng et al. 2010; Lee 

and Tsai 2008). Therefore, few studies differentiated the probabilities of shallow and deep-

seated landslides.  

Shallow and deep-seated landslides innately differ in their size, extent and the risk posed 

(Zêzere et al. 2005). Such landslide types reflect a variety of environmental and geological 

factors (Turner and Schuster 1996; Schmidt et al. 2001; Roering et al. 2005). Differentiating 

the two landslide types is helpful in evaluating the geomorphic hazards contributing to the 

soil erosion and sediment discharge for the protection of human settlements and 

infrastructures (Dramis and Sorriso-Valvo 1994; Korup 2005a; Korup 2006; Larsen et al. 

2010; Chang and Lin 2013). Some studies focused on factors controlling the occurrence of 

deep-seated landslides. Roering et al. (2005) applied an algorithm developed from the 

relationship between hillslope angle and curvature to differentiate large, deep-seated 

landslides from debris flows and shallow slope failures. May (2007) developed an automated 

algorithm that granted the identification and mapping of deep-seated landslides over a wide 

area. 

Landslides are regarded as a nonlinear system and therefore a sophisticated mathematical 

approach is required for their analysis. The landslide prediction methods developed in recent 

years (Chang et al., 2014; Dou et al., 2014; Guzzetti et al., 1999, 2006; Hoopes, 2014)  may 

not always maintain their stability and reliability when used with a small er training dataset 

(Crowther and Cox 2006). On the contrary, support vector machines (SVMs) have been 
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known to work well even with smaller training datasets (Chi et al. 2008). Huang et al. (2002) 

found that SVMs with smaller training data was more persistently accurate and stable than 

the MLC, decision tree classification (DTC), and artificial neural network (ANN) 

classification with larger training data. Therefore, SVMs have been widely applied in various 

fields including remote sensing, computer science, pattern recognition and economics 

(Marjanovic et al. 2009; Tien Bui et al. 2012b). 

Fine-resolution topographic data are necessary for geomorphological analyses of 

landslides (Glenn et al. 2006). McKean and Roering (2004) used high-resolution topographic 

data from airborne laser altimetry to identify earth flows by contrasting surface roughness 

and surface texture. We have used a 2 m airborne Light detection and ranging (Lidar) DEM 

for our analyses. Lidar data have been used to create the detailed geomorphic maps that 

differentiate the types of landforms and characterize landforms including landslides 

(Ardizzone et al. 2007; Schulz 2007; Van Den Eeckhaut et al. 2009a; Pulko et al. 2012) .  

Intense earthquakes are important as preparatory and triggering factors of landslides 

(Keefer 2000; Harp et al. 2011). In 2004, Niigata Prefecture in central Japan experienced an 

unprecedented number of landslides, including shallow and deep-seated landslides, triggered 

by the Chuetsu earthquake. Several studies have been made on this event (Chigira and Yagi 

2005; Kieffer et al. 2006), and most of them focused on the contribution of geologic and 

geomorphic factors to landslide occurrence. This study incorporates the topographic and 

geological variables to predict the spatial differentiation of landslide  types that may occur 

by future earthquakes using SVMs and relatively few training samples. 

Selection of landslide causative factors is the fundamental step in predicting landslides. 

This study assumes that factors previously used to study landslide susceptibility are equally 

useful in predicting the probable landslide types. Therefore we considered landslide 

susceptibility studies by Caniani et al. (2007), Dou et al. (2009), Guzzetti et al. (1999), 
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(2006), Lee and Tsai (2008), Lee et al. (2008) and Lee and Sambath (2006) for selecting 

factors summarized in Table 5-1. The factors include several DEM derivatives: elevation, 

slope angle, aspect, curvature, distance from drainage network, CTI, and SPI, as well as 

lithology, distance from the nearest geological boundary and density of geological 

boundaries. The density of geological boundaries was computed within a circle of 200 m 

radius based on Kawabata and Bandibas (2009) who studied the same area. The factors used 

were calculated using ArcGIS and the results are shown in Figure 5-1. 
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Table 5-1 Landslide causative factors used in the study. 

Source 

dataset  

Conditioning factors Description or definition Significance 

DEM Elevation  Height above the mean sea 

level 

Vegetation, climate, solar energy. 

Slope Rate of change in elevation for 

each cell 

Overland and sub-surface flow 

velocity, runoff rate, rainfall, 

vegetation, geomorphology, soil 

water content. 

Aspect Downslope direction of the 

maximum rate of change in 

value  

Evapotranspiration, distribution of 

flora and fauna. 

Curvature Curvature of the line parallel or 

perpendicular to the direction 

of the maximum slope  

Erosion or deposition. 

Distance from 

drainage networks 

The minimum distance from 

the closest drainage network 

Erosion, ground water condition 

and relative stability. 

Compound 

topographic index 

(CTI) 

CTI = ln(As/tanβ) with As 

specific catchment area per 

unit channel width orthogonal 

to the flow direction and β the 

slope angle 

Also known as the topographic 

wetness index (TWI); it correlates 

with soil moisture. 

Stream power index 

(SPI) 

SPI = As × tanβ Erosive power of overland flows, 

thickness of soil horizons. 

Geological 

map 

Lithology Lithological information as 

types 

Strength of the surface and direct 

control over most of the factors. 

Distance from the 

nearest geological 

boundary  

The minimum distance from 

the boundary of the nearest 

geological unit 

Stress, cohesion. 

Density of 

geological 

boundaries 

Number of geological 

boundaries per unit area  

Stress, cohesion, tectonic activity. 
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Figure 5-1 Factors maps: a) lithology, b) slope angle, c) aspect, d) distance from drainage 

network, e) density of geologic boundaries, f) distance from the nearest geologic boundary, 

g) curvature, h) compound topographic index (CTI), i) stream power index (SPI), and j) 

elevation. 

Elevation greatly influences precipitation and vegetation due to its orographic effect. 

Slope angle is also an important factor that influences slope stability (Lee et al. 2008). Aspect 

can be an indirect measure of hydro-meteorological influences on vegetation and weathering 

and thus the resistance of slope material (Kawabata and Bandibas 2009; Dou et al. 2014b). 

Curvature controls hydraulic flow in relation to convergence and divergence, and hence 

landslide occurrence (Dai et al. 2011). Differentiation of shallow and deep-seated landslides 

may depend on lithology (Wieczorek and Jäger 1996) that affects the thickness of weak beds. 

Groundwater condition and soil moisture in relation to topography affect landslides (Zinko 

et al., 2005). To describe these, several topographic indices have been proposed. CTI and 

SPI, developed by Beven and Kirkby (1979) and Gessler et al. (1995), respectively, are used  
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in this study. CTI and SPI could be calculated as follows: 

                  CTI = ln (As/tanβ)                                 (5-1) 

                  SPI = As × tanβ                                   (5-2) 

where As is the specific catchment area per unit channel width orthogonal to the flow 

direction (m2/m) and β is the slope angle expressed in degrees. CTI is strongly correlated 

with soil moisture and SPI takes into account both slope and flow accumulation and hence 

is correlated with erosion potential. These indices also provide information on soil depth and 

soil constituents (Moore et al. 1991; Florinsky 2012) suggesting that they can be invaluable 

factors in predicting the landslide types (Wieczorek and Jäger 1996). Density of geological 

boundaries reflects the density of geological discontinuities or relatively weaker zones which 

may contribute to slope instability (Dou et al. 2014b). The data of geological boundaries 

between different geological rock types were obtained from the Geological Survey of Japan 

(GSJ). 

5.1. SVM model in landslide type classification 

5.1.1 SVM model 

SVMs provide supervised learning models with associated algorithms based on the 

concept of optimal separating hyperplane and statistical learning theory (Vapnik 1998). 

SVMs are useful non-linear classifiers whose goal is to find the widest margin between two 

classes in a feature space. Figure 5-2 illustrates this concept: ovals and squares are two kinds 

of samples and the separating hyperplane (H) is one of possible planes which can separate 

the two classes; and the distance between the two dotted lines in Figure 5-2 is called margin. 

The vectors which constrain the width of the margin are called the support vectors. Although 

SVMs are often considered easier to use than neural networks, inappropriate parameter 

setting often leads to unsatisfactory results (Chang and Lin 2011).  

http://en.wikipedia.org/wiki/Algorithm
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Figure 5-2 Illustration of the optimal separating hyperplane. 

SVMs involve a training phase using a training dataset. SVMs are not relatively sensitive 

to the size of training samples and may successfully perform with a limited number of 

training samples (Mantero et al. 2005; Foody and Mathur 2006). Foody and Mathur (2004) 

demonstrated that only a quarter of the entire training data set was sufficient for high 

accuracy classification. 

For a set of linear separable training vectors xi (i = 1, 2…n), consisting of two classes 

represented as yi = ±1, SVMs try to obtain an optimal hyperplane by differentiating the two 

classes by solving the following optimization function (Vapnik 1998): 
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                         (5-3) 

Subjected to the constrains of the following equation: 
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where w is a coefficient vector, b is the offset of the hyperplane from the origin, i  is the 
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positive slack variable, c (> 0) is the penalty parameter of the error term; and the kernel 

function is:  

 
( , ) ( ) ( )T

i j i jk x x x x  
                             (5-5) 

Normally four basic kernel functions, linear (LF), polynomial (PF), radial basis (RBF) 

and sigmoid (SF) functions, are used in the SVMs. Table 5-2 shows their formulas. LF is the 

simplest one; PF is non-stationary and well suited when all training data are normalized; SF 

is from the field of neural networks; and RBF depends on the distance from the origin.  

Table 5-2 SVMs kernel functions, their parameters, and their overall accuracy.  

Kernel Formula 
Kernel 

parameters 

Accuracy of 

prediction 

Training Testing 

Linear function 

(LF) 
k(xi, xj) = xi

Txj  69.76% 59.23% 

Polynomial 

function (PF) 
k(xi, xj) = (γxi

T xj + Υ)
d
, Υ > 0 γ, Υ 95.26% 72.81% 

Radial basis 

function (RBF)  
k(xi, xj) = exp(−γ|xi−xj|

2),   Υ > 0 γ 94.38% 84.31% 

Sigmoid function 

(SF) 

k(xi, xj) = tan h(γxi
T xj) +  Υ,   Υ

> 0 
Υ 71.25% 62.37% 

In this study, the four kernel functions were employed. The 10 landslide controlling 

factors were normalized into 0 to 1 to limit the dominating effect of large values:  

    

( )

( ) ( )

x Min x
y

Max x Min x




                          (5-6) 

where y is the normalized data value and x is the original data value. Partial input and targets 

for SVMs training samples after normalization are listed in Table 5-3. 

In this study, 1225 landslides were randomly divided into two groups: training and 

testing datasets. Varying training sample size (30%, 40%, and 50%) was used to test the 

effect of the size. The shallow and deep-seated landslides were assigned values of 1 and 0, 

respectively. Prior to the calculations, the penalty parameter (c) was obtained using the 
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cross-validation technique detailed in LIBSVM. LIBSVM is an integrated software used for 

support vector classification, distribution estimation (one-class SVM and multi-class 

classification) and regression (Chang and Lin 2011). This led to lesser support vectors and 

significantly reduced time of calculation. To test the stability and reliability of the model, 

the process was iterated 10 times as done by other scholars (Chang and Chao 2006; Pradhan 

et al. 2010b; Seppelt et al. 2012) Each time a random set of landslides was selected for 

training, and the remaining data are used as the test samples. The SVMs model was operated 

on the platforms of Matlab 2012a and LIBSVM.  

Two separate SVMs were used in this study: one using only the landslide types as input 

to differentiate them, and the other using not only landslide types but also data for points in 

non-landslide areas as input. The non-landslide points were randomly selected from areas 

with no landslides. 
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Table 5-3 Partial inputs and targets for SVMs training samples. 

Type Elevation Slope Aspect Curvature 

Density of 

geological 

boundary 

Distance 

from 

drainage 

network 

Landslides (target values) 

(1,0, 0) = deep 

(0,1,0) = shallow 

(0, 0, 1) = non-landslide 

non-

landslide 

0.19 0.17 0.75 0.23 0.22 0.27 
0 0 1 

non-

landslide 

0.20 0.30 0.49 0.25 0.78 0.04 
0 0 1 

non-

landslide 

0.28 0.09 0.28 0.25 0.28 0.33 
0 0 1 

deep 0.02 0.34 0.05 0.25 0.41 0.05 1 0 0 

deep 0.06 0.51 0.85 0.25 0.47 0.13 1 0 0 

deep 0.07 0.48 0.85 0.25 0.46 0.06 1 0 0 

shallow 0.43 0.01 0.75 0.26 0.12 0.01 0 1 0 

shallow 0.41 0.07 0.98 0.26 0.12 0.01 0 1 0 

shallow 0.45 0.41 0.19 0.25 0.15 0.01 0 1 0 

deep 0.21 0.50 0.96 0.26 0.18 0.48 1 0 0 

deep 0.22 0.19 0.83 0.25 0.20 0.37 1 0 0 

shallow 0.48 0.51 0.22 0.25 0.23 0.01 0 1 0 

shallow 0.42 0.12 0.73 0.25 0.12 0.01 0 1 0 

shallow 0.43 0.01 0.75 0.26 0.12 0.01 0 1 0 

shallow 0.41 0.07 0.98 0.26 0.12 0.01 0 1 0 

shallow 0.45 0.41 0.19 0.25 0.15 0.01 0 1 0 

shallow 0.43 0.31 0.28 0.25 0.21 0.01 0 1 0 

shallow 0.45 0.28 0.71 0.27 0.37 0.01 0 1 0 

shallow 0.43 0.05 0.36 0.26 0.35 0.01 0 1 0 

non-

landslide 

0.33 0.12 0.86 0.21 0.23 0.51 
0 0 1 

non-

landslide 

0.34 0.09 0.28 0.20 0.36 0.33 
0 0 1 

deep 0.02 0.30 0.99 0.24 0.43 0.04 1 0 0 

deep 0.18 0.38 0.88 0.26 0.28 0.32 1 0 0 

deep 0.16 0.31 0.85 0.26 0.28 0.29 1 0 0 

deep 0.06 0.39 0.98 0.27 0.44 0.15 1 0 0 

deep 0.05 0.45 0.84 0.26 0.45 0.11 1 0 0 

5.1.2 Back-propagation for a feedforward neural network 

An ANN can be regarded as a quantitative black-box model approach that emulates 



 

 

 

71 

 

 

human pattern recognition functions (Aleotti and Chowdhury 1999). Moreover, earth 

science’s non-linearity analysis and prediction can be studied applying this efficient tool. 

ANN has also been successfully implemented for evaluating landslide susceptibility by 

several researchers (Arora et al. 2004; Falaschi et al. 2009; Pradhan et al. 2010a; Zare et al. 

2013a) . Our study focus on a particular type of ANN model, known as a back-propagation 

neural network. A BPNN algorithm is used in the feedforward ANN. This is typically used 

to train the network among the different types of ANN models including RBF, general 

regression neural networks (GRNN), and probabilistic neural networks (PNN). The BPNN 

algorithm is simply a gradient-descent algorithm (also called a generalized delta rule) that 

uses to minimize the total error or mean error of target computed by the neural network. This 

algorithm is a neural network that is composed of three layers, input, hidden, and output. 

The structure of a typical three layer BPNN is displayed in Figure 5-3. The input layer 

propagates components of a special input vector after weighting synaptic  weights to each 

node in the hidden layer. Each hidden layer computes outputs corresponding to these 

weighted sums through a non-linear/linear function, e.g., log-sigmoid, purelin, or tan-

sigomid (Yesilnacar and Topal 2005; Prasad et al. 2012). The BPNN algorithm comprises of 

two paths, feed forward and backward paths. The feed forward path is expressed as follows 

(Rumelhart et al. 1986): 
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where ix
, jy

, and kZ
 represent the input, hidden, and output layers, respectively, ojW

 and 

okW
 are the bias weights for setting the threshold values, jX

and kY
 represent temporarily 

computing results before using the activation function, and F  is the activation function 

applied in the hidden and output layers. In this study, a sigmoid function or logistic function 

is chosen as the activation function. Thus, the output  jy
 and kZ

 can be expressed as: 

              1

1
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                             (5-10)  

The value of F ranges from 0 to 1.  

For error back propagation weight training, the error function can be defined as 

(Rumelhart et al. 1986): 
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where, kt and ke  are the predefined target value and error in each output node, 

respectively. The goal is to minimize E , the error between the desired and actual output 

values of the network. To adjust the weight, a gradient-descent strategy was used. The weight 

between the hidden and output layers can be expressed as follows: 
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Therefore, the weight adjustment in the link can be computed by: 

                 jk j kw y                               (5-14) ( 
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Where,   is the learning rate with value ranges between 0 and 1. If the learning rate is 

relatively small, the BPNN is slow to converge the network. Conversely, a learning rate that 

is overly large can lead to a widely oscillating network. Thus, it is preferable to choose a 

single value throughout the experiment. The new weight herein is updated by the following 

equation: 

                   
( 1) ( ) ( )jk jk jkw n w n w n  

               (5-15)  

Here n  is the number of iterations in the network. 

Similarly, the error gradient in links between the input and hidden layers can be derived 

from the partial derivative with respect to ijw
, 
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The new weight in the hidden and input links can be updated as: 

                  
ij i jw x                            (5-18) 
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Figure 5-3 Structure of a typical three-layer feed forward BPNN (multi-layer perception) for 

landslide types susceptibility analysis. 

The initial weights were automatically assigned to the random values between 0.1 and 

0.25. The parameters were adjusted as follows: 1) initial learning rate ( ILR) for influencing 

the convergence of the network: 0.1, 2) number of epochs: 1500 iterations, 3) momentum 

parameters: 0.9 (to prevent instabilities caused by an excessively high ILR value), 4) 

activation (transfer) function for layers: transig for hidden layer, purelin for output layer, 
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and 5) training function of networks: variable ILR with momentum (traingdx). The value of 

RMSE for terminating the criterion was set to 0.001. 

5.1.3 Resultant landslide classification using SVM 

The performance of the SVMs model is directly related to the selection of the kernel 

function and parameters. Each kernel was trained and tested, and the results of the prediction 

of the two landslide types from the 10 factors for each kernel (Table 5-2) show that the 

accuracy of the training samples of PF is the highest (95.26%) followed by that of RBF 

(94.38%); however, RBF outperformed for the testing samples (84.31%) and was hence 

selected as the SVMs kernel for this study. This classifier selection may be a limitation of 

SVMs, because only one constraint is active at a time (Burges 1998; Kavzoglu et al. 2013a). 

Average accuracies of the backbone propagation (BP) technique using artificial neural 

network (ANN) applied to the same dataset, from an unpublished work from the same 

authors, show that for models trained with 50% of the data, the average training and testing 

accuracies obtained from SVMs (89.24% and 77.78%) are higher than those from BP (Table 

5-4). The low standard deviation values across the iterations (< 5%) suggest the stability of 

the method. The results (not detailed here) show that deep-seated landslides were classified 

more accurately (88.18%) than shallow landslides (76.99%), as visually represented in 

Figure 5-4. This indicates the strong morphological signatures cast by deep-seated landslides 

while the imprints of shallow landslides were not correctly captured by the DEM used 

(Korup 2005b; May 2007). Although we used the 2 m DEM, the use of higher resolution 

topographical information seems to be necessary to study shallow landslides in detail. 
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Table 5-4 Accuracy of the SVMs and BP model with the data equally (50%) divided into 

training and testing samples. 

 

Iteration number 

Accuracy (%) of SVMs Accuracy (%) of BP 

Training (%)   Testing (%) Training (%)   Testing (%) 

1 90.46 75.87 87.24 69.21 

2 85.59 79.38 86.09 62.10 

3 86.38 73.74 79.31 65.13 

4 88.00 74.22 84.41 59.23 

5 93.82 76.87 81.64 65.12 

6 94.38 77.91 83.16 61.02 

7 84.15 77.39 80.73 58.39 

8 85.38 78.09 81.19 62.34 

9 88.00 80.04 82.36 61.04 

10 96.27 84.31 78.25 58.37 

Min 84.15 73.74 78.25 58.37 

Max 96.27 84.31 87.24 69.21 

Standard deviation 4.04 2.89 2.71 3.27 

Average 89.24 77.78 82.44 62.20 

For the reduced size of the training dataset (30%, 40% and 50%), the model performed 

equally well (Table 5-5 and Figure 5-5). The models trained with 30% and  40% of the data 

yielded the average of overall accuracy of 75.1% and 75.24%, with the standard deviation 

of 2.93 and 2.43, respectively, which are very similar to the results obtained from the 50% 

training data. This agrees with Burges (1998), Chi et al., (2008), Huang et al., (2002) and 

Kavzoglu et al., (2013b) in terms of the stability of SVMs even with fewer training datasets, 

compared to other models like ANN.  

Figure 5-6 is the final map showing the probable landslide types (shallow and deep-

seated) and non-landslide areas in the case of an earthquake of a magnitude similar to the 

Chuetsu earthquake, on the basis of the SVMs and the causative factors. The prediction map 

has an overall accuracy of 71.75%, which seems to be acceptable as the first trial of this kind 

in the study area, and may provide a guideline for social preparation for future landslide 

hazards. From the figure, we can also visualize that most of known-shallow and deep-seated 
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landslides are located in the corresponding probable zones. In the same prediction map, it 

should also be noted that the area with the probable deep-seated landslides is broader than 

that with probable shallow landslides. This result agrees with the landslide inventory for the 

Chuetsu earthquake, including deep-seated landslides fewer in number (330, compared with 

895 shallow landslides) but much larger in average area (9600 m2 compared to 187 m2 for 

shallow landslides). 

Table 5-5 Accuracy of the SVMs model using 30%, 40%, and 50% of the data to train the 

model. 

 

Iteration number 

Prediction accuracy (%) with the testing samples 

Model trained with 

50% data 

Model trained with 

40% data 

Model trained 

with 30% data 

1 75.87 78.60 74.70 

2 79.38 75.10 80.80 

3 73.74 73.52 73.74 

4 74.22 74.10 77.40 

5 76.87 72.31 79.50 

6 77.91 80.01 72.30 

7 77.39 76.80 72.62 

8 78.09 75.13 72.91 

9 80.04 74.80 72.30 

10 84.31 72.10 74.83 

Min 73.74 72.10 72.30 

Max 84.31 80.00 80.80 

Standard deviation 2.89 2.43 2.93 

Average 77.78 75.24 75.10 
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Figure 5-4 Upper: map prepared using the confusion matrix obtained from classification of 

landslide types using SVM with 50% trainings sample, lower: representational aerial 

photographs.  
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Figure 5-5 Prediction accuracy (testing samples) of the SVM model using 30%, 40% and 

50% of the data to train the model. 
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Figure 5-6 Map showing the probable occurrences of shallow and deep-seated landslides in 

the whole study area. 
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5.2. Summary  

This study assumed that variations in topographic and geographic factors used for 

evaluating landslide susceptibility, are equally useful in predicting and differentiating 

shallow and deep-seated landslides. An inventory of landslides triggered by the M 6.8 

Chuetsu earthquake and subsequent aftershocks in 2004, a 2 m Lidar DEM, geological data, 

and SVMs were used. The results with high accuracy suggest that our assumption is valid. 

The existing landslides matched the predictions in most cases. SVMs also outperformed 

ANN (BP) in terms of model stability and accuracy. Among the four SVMs kernels, RBF 

was selected after a comparative test. Moreover, reduction in the size of the training dataset 

from 50% to 30% of the total dataset did not significantly affect the accuracy of the SVMs 

model, confirming that SVMs work even with a smaller training dataset. However, we found 

that a higher resolution DEM is necessary for studying the details of shallow landslides.  

Active geological processes like landslides play an important role in reshaping 

topography. Therefore, differentiating the types of landslides is important for discussing the 

geomorphological evolution of hillslopes, and also for supporting the local government 

managing and mitigating local hazards. Further studies using not only a finer DEM but also 

other detailed information such as the peak ground acceleration (PGA) and volume of 

landslides are necessary. 
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6. CHAPTER 6 LANDSLIDE SUSCEPTIBILITY MAPPING 

(LSM)  

LSM plays a vital role in assisting and managing hazards for land use planning and risk 

mitigation (Wu et al. 2008; Yalcin et al. 2011; Tofani et al. 2014; Dou et al. 2015c). LSM 

provide information on the likelihood of landslides occurring in an area given the local 

terrain conditions (Brabb 1984). Using GIS, various methods for landslide susceptibility 

mapping have been proposed in the past. These methods can be grouped into qualitative and 

quantitative, based on the properties they involve (Felicísimo et al. 2012; Peng et al. 2014). 

Qualitative methods denote susceptibility levels in descriptive terms using expert knowledge  

(Conoscenti et al. 2015). Such techniques are relatively subjective and were extensively used 

during the 1970s and 1980s (Aleotti and Chowdhury 1999; Yilmaz et al. 2011). A main 

limitation of qualitative method is that the accuracy depends on the knowledge of the experts 

who conducts the research. Quantitative methods, on the other hand investigates the 

relationship between landslides and causative factors to predict the occurrence probabilities 

(Neuhäuser et al. 2011; Anbazhagan and Ramesh 2014). Compared to the former one, a more 

realistic susceptibility map can be obtained from statistical and numerical methods (Yalcin 

et al. 2011) since they reduce the subjectivity and biases in the process of weighting landslide 

causative factors.   

A wide range of quantitative methods have been successfully used for landslide 

susceptibility mapping by researchers around the globe (Yalcin et al. 2011; Dou et al. 2014a; 

Dou et al. 2015g). The widely used methods are bivariate, multivariate (Magliulo et al. 2008; 

Yalcin et al. 2011), and logistic regression (LR) (Conoscenti et al. 2015), neuro-fuzzy (Tien 

Bui et al. 2012b; Pourghasemi et al. 2013a), support vector machines (Tien Bui et al. 2012b; 

Pradhan 2013; Dou et al. 2015e), and probabilistic models using Monte Carlo simulation 
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with GIS (Wang et al. 2008; Komac 2012). The bivariate and multivariate statistical methods 

estimate landslide probabilities based on correlation analysis between causative factors and 

historical landslide events, whereas the deterministic methods assess slope failures using the 

factor of safety (FoS) (Bahsan et al. 2014; Jamsawang et al. 2015). In literature, statistical 

index (SI) and LR are considered to be the most commonly used methods for the assessment 

of probability of occurrence of landslides at medium and regional scales (Shahabi et al. 2013; 

Meinhardt et al. 2015). In contrast, FoS is used widely for the landslide assessment at local 

scales (Pradhan and Lee 2010; Felicísimo et al. 2012; Dou et al. 2014a) . The advantage of 

LR over other multivariate analysis methods is that it is independent of data distribution and 

can handle a variety of data sets such as continuous, categorical, and binary data (Tien Bui 

et al. 2011; Yalcin et al. 2011). However, if a set of irrelevant independent variables are 

included, the LR model may have little to no predictive value. Owing to such constraints, 

prediction of landslide susceptibility requires a distributed approach that identifies all the 

relevant independent aspects of models used. In addition to that, successful landslide 

susceptibility mapping require optimal causative factors as input to the LSM models. In LSM 

studies, causative factors are usually selected based on the analysis of the landslide types 

and the characteristics of the study area (Ayalew et al. 2005a). Commonly used causative 

factors are elevation, slope angle, slope aspect, plan curvature, and distance to drainage 

networks (Dou et al. 2015g). However, most researchers arbitrarily and subjectively selected 

the causative factors such as geological, geomorphological, hydrological and anthropogenic 

factors. Hence, selection of landslide causative factors and their classes are key points in 

LSM (Costanzo et al. 2012; Meinhardt et al. 2015). 
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6.1. Feature selection using a CF model 

Landslide causative factors and their classes play a crucial role in LSM (Costanzo et al. 

2012; Meinhardt et al. 2015). Landslide causative factors are usually selected based on the 

analysis of landslide types and characteristics of the study area (Ayalew et al. 2005a). 

However, most scholars randomly and subjectively selected the causative factors such as 

geological, geomorphological, hydrological and anthropogenic factors to produce the 

landslide susceptibility maps. Lee and Talib (2005) noted that the selection of positive 

factors can improve the prediction accuracy of LSM. This indicates that the optimized factors 

are significant to LSM. Thus, before building a susceptibility model, predictive abilities of 

the initial selected factors should be quantified and factors with very low or null predictivity 

should be removed. This helps to reduce noise and uncertainties and thus the prediction 

ability of the resulting models will improve (Martínez-Álvarez et al. 2013). For instance, 

Pradhan and Lee (2010) removed the causative factors with small weights down to four, 

seven and eleven factors. Their research concluded that seven factors gave the best predicting 

accuracy. However, it is difficult to decide the threshold of weight to select factors. Although 

Lee and Talib (2005) used factor analysis to remove the correlated variables which is a time-

consuming method. Jebur et al. (2014) followed an optimal technique for detecting best 

landslide causative factors, and their methods rather requires preparation of two sets of 

causative factors. Although various other techniques have been proposed such as the linear 

correlation (Irigaray et al. 2006), Goodman–Kruskal’s gamma (Costanzo et al. 2012), and 

GIS matrix combination (Cross 1998), no standard guideline is available. As herein, we 

address this issue by proposing the CF method that has rarely been used for feature selection 

in landslide studies (Binaghi et al. 1998). CF is an approach using rule-based expert systems 

to resolve certain problem classes. In the past, the search for the probabilistic interpretation 
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of a CF model has been attracted considerable attention (Binaghi et al. 1998; Lucas 2001; 

Devkota et al. 2013; Dou et al. 2014b).  

In our study, CF is applied for selecting the positive causative factors related to landslide 

occurrence. Compared with the other methods, CF can be relatively easy to perform when 

different layers need to be integrated using the combination rule (Binaghi et al. 1998; 

Devkota et al. 2013; Dou et al. 2014b). 

6.2. Methods used for LSM 

Figure 6-1 is an overview of the approach that was applied for the landslide susceptibility 

mapping in the study areas. The flowchart consists of three phases: (i) data preparation and 

extraction of the landslide causative factors; (ii) selection of the best subset of the causative 

factors using the CF method; and (iii) landslide susceptibility mapping using the SI and LR 

method, (iv) model validation and comparison. Each method is presented in the following 

sections. 



 

 

 

86 

 

 

 

Figure 6-1 Flowchart showing overall methodology adopted for this study. 
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6.2.1  CF model 

CF is a rule based expert system method developed by Shortliffe and Buchanan (1975) 

for the management of uncertainty in computational studies. CF provides probable 

favorability functions (FF) for integrating heterogeneous data (Chung and Fabbri 1993). The 

CF index can be calculated using the following functions: 

 
𝐶𝐹 =

{
 

 
𝑃𝑃𝑖 − 𝑃𝑃s

𝑃𝑃𝑖(1 − 𝑃𝑃s)
     if 𝑃𝑃𝑖 ≥ 𝑃𝑃s

𝑃𝑃𝑖 − 𝑃𝑃s
𝑃𝑃s(1 − 𝑃𝑃𝑖)

       if 𝑃𝑃𝑖 < 𝑃𝑃s

   
(6-1) 

 

where 𝑃𝑃𝑖 is the conditional probability of landslides in class i and 𝑃𝑃𝑠 is the prior 

probability of total number of landslides in the study area.  

The CF values range between -1 and 1, and it indicates a measure of belief and disbelief 

(Lucas 2001). A positive value measures decreasing uncertainty whereas negative values 

imply an increasing uncertainty of landslide occurrence. If CF equals 0, no information on 

the certainty is indicated. Once the CF values for classes of the causative factors are obtained, 

these factors are then incorporated pairwise using the combination rule (Binaghi et al. 1998) 

as follows: 

   𝑍   = {

CF1+CF2-CF1CF2        CF1, CF2 ≥ 0                                                     

   CF1+CF2+ CF1CF2       CF1, CF2 < 0                                                       
CF1+CF2

1- min(|CF1|,  |CF2|)
   CF1, CF2, opposite signs                                     

 

 

(6-2) 

where CF1 is a value in class 1, and CF2 is a value in class 2. 

The pairwise combination is carried out until all the CF layers are brought together, and 

the causative factors are optimized by computing the Z values. If the Z values are positive, 

we regard those factors have strong relationships with landslide occurrence 
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Based on the range of CF values, feature weights were obtained. The weights are 

estimated as the sum of the ratio computed relative causative factors that provides a 

measurement of certainty in forecasting the landslides (Binaghi et al. 1998). Based on the 

results, CF weights were then categorized into six classes as shown in Table 6-1.  

Table 6-1 CF weights classification according to the range of CF values 

Code Range Description 

1 −1.0 - −0.09 Extremely low certainty 

2 −0.09 - 0.09 Uncertainty 

3 0.09 - 0.2 Low certainty 

4 0.2 - 0.5 Medium certainty 

5 0.5 - 0.8 High certainty 

6 0.8 - 1.0 Extremely high certainty 

6.2.2  Statistical index method 

The SI method proposed by van Westen et al. (1997) is based on the assessment of 

correlation of a landslide inventory map and causative factors. In SI models, the weight for 

each class of the landslide causative factors was firstly determined. Landslide susceptibility 

indexes were then obtained by summing up the weights. 

The weight (Wi) of each class i is defined as the natural logarithm of the landslide density 

in the class over the landslide density in the factor map as follows(van Westen et al. 1997) : 

 

            Wi= ln (
𝐷𝑒𝑛𝑠𝐶𝑙𝑎𝑠𝑠

𝐷𝑒𝑛𝑠𝑀𝑎𝑝
)= ln (

𝑁𝑝𝑖𝑥(𝑆𝑖)
𝑁𝑝𝑖𝑥(𝑁𝑖)
⁄

∑𝑁𝑝𝑖𝑥(𝑆𝑖)
∑𝑁𝑝𝑖𝑥(𝑁𝑖)
⁄

) 

(6-3) 

 

where Wi is the weight given to a certain parameter class; DensClass is the landslide density 

within the parameter class; DensMap is the landslide density of the entire factor map for all 

classes; Npix(Si) is the number of landslide pixels in the i class; and Npix(Ni) is the total 

number of pixels in all classes. 
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6.2.2 Binary LR 

Binary LR is one of the most frequently used multivariate analytical methods for creating 

landslide susceptibility maps. The LR approach is useful to predict the presence or absence 

of a characteristic outcome from a set of predictor variables (Devkota et al. 2013; Conoscenti 

et al. 2015). Here, we do not use the ordinary least squares regression (OLS) because of three 

problems: 1) the error terms are heteroskedastic; 2) the error terms are not normally 

distributed; 3) the predicted probabilities can be larger than 1 or less than 0. In this study, 

the purpose of LR is thus to simulate the relationships between a dependent variable and 

multiple independent parameters (Tien Bui et al. 2011). The merit of LR is that it does not 

compulsorily require a normal distribution data. Additionally, both continuous and discrete 

data types can be used as an input for the LR model. 

The dependent variable (Y ) in the LR method is a function of the probability and can be 

computed as follows (Lee and Pradhan 2006): 

 

              
exp( )

1 exp( )
( 1 )

bx

bx
P Y x x



  
   

Wi= ln (
𝐷𝑒𝑛𝑠𝐶𝑙𝑎𝑠𝑠

𝐷𝑒𝑛𝑠𝑀𝑎𝑝
)= ln (

𝑁𝑝𝑖𝑥(𝑆𝑖)
𝑁𝑝𝑖𝑥(𝑁𝑖)⁄

∑𝑁𝑝𝑖𝑥(𝑆𝑖)
∑𝑁𝑝𝑖𝑥(𝑁𝑖)⁄

 

(6-4) 

where P  is the estimated probability of landslide occurrence and ranges from 0 to 1; and

X is the independent variables (landslide causative factors), 0 1 2
( , ), , ...

n
X x x x x , 0 1x  ; 

and b  is regression coefficient. 

To linearize the mentioned method as well as remove the 0/1 boundaries for the original 

dependent variable, the estimated P  is transformed by the following formula: 

 

              

' ln( )
1

P
P

P


  

(6-5) 

This alteration is referred to as the logit transformation. Theoretically, the logit 
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transformation of binary data can ensure that the dependent variable is continuous and the 

logit transformation is boundless. Moreover, it can ensure that the probabil ity surface will 

be continuous within the range [0, 1]. Using the logit transformations, the standard linear 

regression models can be obtained as follows: 

 
 '

0 1 1 2 2 n nln( ) b +b x +b x +...+b x +ε
1

P
P

P
 


 

(6-6) 

where, 0b  is the constant or intercept of the formula, 1 2 n
,b b ,...b  represents the slope 

coefficients of the independent parameters, 1 2
, , ...

n
x x x  in the logistic regression and    

is standard error. 

The LR model mainly involves five steps in generating LSM models: 1) pre-selection of 

parameters based on the analysis of the spatial distribution; 2) selection of statistically 

significant parameters via a p-value significance test; 3) significance test to the LR model 

with these parameters (via the goodness of fit by inputting a parameter or eliminating a 

parameter); 4) evaluation of the multi-collinearity among the parameters (diagnosis via two 

indicators, namely, tolerance < 0.1 and variance inflation factor > 5); and 5) assessment of 

the accuracy of the model. 

6.3. LSM for Chuetsu area, Japan 

6.3.1  Feature selection  

The results of the correlation analysis between the landslide occurrence and causative 

factors are shown in Table 6-2. Concerning the CF analysis, the Z value is positive for slope 

angle (0.54), slope aspect (0.03), drainage density (0.14), plan curvature (0.17) density of 

geology boundary (2.89), and lithology (0.3001) (Figure 6-2). These factors have positive 

relationships with the landslide occurrence. The Z value is negative for the other factors. 

Hence, the six factors are selected for LSM.  
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A detailed analysis shows that slope angle has the highest influence on slope stability. 

CF values are positive at slopes from 18o–45o (Table 6-2). The percentage of landslide 

occurrence at the slope class 18 o–24 o, 24 o–30 o, 30 o–35 o, and 35 o–45 o are 12.64%, 15.57%, 

18.36% and 32.87%, respectively. The results indicate that the landslide occurrence 

increases with an increasing slope angle up to 45 o, and then decreases. Gentler slopes have 

a relatively low frequency of landslide occurrences because of the lower shear stress 

corresponding to the low gradient; whereas, very steep slope angles lead to outcropped 

bedrock, which is less susceptible to landslides. 

In the case of slope aspect, landslides mostly occurred along southeast, south, southwest 

and west facing slopes with positive CF values from 0.07 to 0.78. The highest percentage of 

landslides with the maximum CF value (0.78), 23.69% occurred along the southwestern 

slopes, followed by the south slopes (20.72%). Landslides triggered by an earthquake are 

distributed mainly along dip direction of geological formations. The northern slope aspect 

with a negative CF value may be related to dipping of bedrock. 

The drainage density shows positive CF values for the classes 2–4, 4–6, and 6–10. The 

positive maximum CF value of 0.3 is observed with the 4–6 drainage density class. The 

highest percentage of landslide occurrences is 25.55%. Since the landslides in this study 

were triggered by an earthquake and the corresponding CF values are comparatively very 

small, a specific cause-reason relation for the distribution of landslides in the drainage 

density class could not be established. 

In the case of density of geological boundary, the CF values are always positive. The 

maximum CF value, 0.83, is seen in the class with the most dense geological boundary (>-

27) followed by a value of 0.58 in the immediately lower geological density class (20–27). 

The negative CF values for the geological boundary density classes lower than 7 indicate 

that geological uniformity affects the stability of the area. A higher density of geological 
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boundaries suggests lower stability, which may lead to landslide occurrence. 

Concave plan curvature corresponds to a negative CF value (-0.16) while convex 

curvature to a positive value (0.31). Normally convex areas have a lower CF value than 

concave areas because such slopes retain more water and the increased soil moisture content 

reduces the stability of the soil. In this study area though, the concavity is not responsible 

for the landslide occurrences, because the landslides are induced by an earthquake, not by 

rainfall. Ridges tended to collapse because of higher ground acceleration due to the 

earthquake. 

The results of this study also indicate that the lithology1 and lithology2 classes are 

positive. These two lithology mostly consist of sandstone and massive mudstone. Their 

significantly higher CF values are 0.75, 0.31, respectively. The highest percentage of 

landslides among the lithology classes, 93.3%, occurred in lithology1 followed by lithology2 

(4.15%). The bedrock in the area of major landsliding consists of a folded sequence of 

sandstone, mudstone and their interbeddings, and the results point to the occurrence of 

landslides in the weakly cemented lithological groups. 
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Figure 6-2 Calculation of CF value in the Chuetsu study area 
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Table 6-2 Spatial relationship between the causative factors and landslide occurrence by the 

CF method and SI method. 

Causative 

factors  
Class 

Percentage 

of domain 

No. pixel 

of 

landslides 

Percentage 

of 

landslides 

CF Z SI 

Elevation 

(m) 

<100 28.28 239 3.23 -0.92 

-1.00 

-2.17 

100-200 25.72 2165 29.24 0.17 0.13 

20-300 23.61 2826 38.16 0.55 0.48 

300-400 14.55 1703 23.00 0.52 0.46 

400-500 6.01 437 5.90 -0.03 -0.02 

500-600 1.48 32 0.43 -0.78 -1.23 

600-700 0.30 2 0.03 -0.94 -2.42 

>700 0.05 1 0.01 -0.78 -1.23 

Slope 

angle 

(degree) 

0-5 29.27 72 0.97 -0.98 

0.54 

-3.40 

5-10 11.88 314 4.24 -0.72 -1.03 

10-18 12.54 710 9.59 -0.31 -0.27 

18-24 12.49 936 12.64 0.02 0.01 

24-30 9.25 1153 15.57 0.58 0.52 

30-35 8.31 1360 18.37 0.78 0.79 

35-45 10.39 2434 32.87 0.98 1.15 

>45 5.86 426 5.75 -0.03 -0.02 

Slope 

aspect 

North 11.90 216 2.92 -0.78 

0.03 

-1.41 

Northeast 11.63 463 6.25 -0.46 -0.62 

East 14.42 787 10.63 -0.20 -0.30 

Southeast 11.84 1344 18.15 0.58 0.43 

South 12.34 1534 20.72 0.65 0.52 

Southwest 11.37 1754 23.69 0.79 0.73 

West 14.77 1011 13.66 0.07 -0.08 

Northwest 11.74 294 3.97 -0.68 -1.08 

Drainage 

density 

<2 51.59 3204 43.27 -0.22 

0.14 

-0.18 

2-4 13.59 1056 14.26 0.06 0.05 

4-6 19.94 1892 25.55 0.30 0.25 

6-10 11.13 1036 13.99 0.28 0.23 

>10 3.76 217 2.93 -0.29 -0.25 

Distance 

from the 

drainage 

network 

<50 28.66 2674 36.11 0.28 

-0.81 

0.23 

50-100 23.64 1902 25.69 0.10 0.08 

100-175 21.29 1372 18.53 -0.19 -0.14 

175-250 15.20 904 12.21 -0.27 -0.22 

250-330 8.68 480 6.48 -0.33 -0.29 

300-700 2.54 73 0.99 -0.70 -0.95 

700-799 0.00 0 0.00 -1.00 -∞ 

>800 2.54 73 0.99 -0.70 -0.95 
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Table 6-2 Continued 

Causative 

factors  
Class 

Percentage 

of domain 

No. pixel of 

landslides 

Percentage of 

landslides 
CF Z SI 

SPI 

<-8 6.51 38 0.51 -0.94 

-0.99 

-2.54 

-8--4 12.21 648 8.75 -0.36 -0.33 

-4-0 35.98 1284 17.34 -0.61 -0.73 

0-4 42.13 5109 68.99 0.56 0.49 

4-8 2.79 312 4.21 0.48 0.41 

8-12 0.33 13 0.18 -0.55 -0.62 

12-16 0.04 1 0.01 -0.75 -1.13 

CTI 

<-4 9.29 647 8.74 -0.08 

-0.99 

-0.06 

-4-0 11.00 605 8.17 -0.33 -0.30 

0-4 62.43 5715 77.18 0.27 0.21 

4-8 15.28 397 5.36 -0.73 -1.05 

8-12 1.81 39 0.53 -0.78 -1.24 

12-16 0.18 2 0.03 -0.89 -1.88 

16-24 0.02 0 0.00 -1.00 -∞ 

Curvature 

<-224 0.01 0 0.00 -1.00 

-1.00 

-∞ 

-224-0 63.62 4555 61.51 -0.05 -0.03 

0-224 36.37 2850 38.49 0.08 0.06 

224-448 0.01 0 0.00 -1.00 -∞ 

>448 0.00 0 0.00 -1.00 -∞ 

Profile 

curvature 

<-350 0.00 0 0.00 -1.00 

-1.00 

-∞ 

-350--

220 
0.00 0 0.00 -1.00 -∞ 

-220-0 33.30 2679 36.18 0.11 0.08 

0-45 66.52 4713 63.65 -0.06 -0.04 

45-175 0.17 13 0.18 0.05 0.04 

>175 0.01 0 0.00 -1.00 -∞ 

Plan 

curvature 

Concave 69.74 4546 61.39 -0.16 
0.17 

-0.13 

Convex 30.26 2859 38.61 0.31 0.24 

Distance 

from 

the 

geologic 

boundary 

<35 36.72 3269 44.15 0.23 

-0.95 

0.18 

35-130 40.24 2888 39.00 -0.05 -0.03 

130-320 18.30 1066 14.40 -0.29 -0.24 

320-600 4.29 176 2.38 -0.54 -0.59 

>600 0.45 6 0.08 -0.87 -1.71 

Density of 

geology 

boundary 

 

 

<7 63.20 4128 55.75 -0.17 

2.89 

-0.13 

7-14 28.83 2472 33.38 0.18 0.15 

14-20 7.06 675 9.12 0.31 0.26 

20-27 0.68 86 1.16 0.59 0.54 

>27 0.24 44 0.59 0.84 0.89 

Lithology 1 13.39 189 2.55 -0.72 0.30 -1.66 
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2 5.99 307 4.15 0.31 
 

-0.37 

3 80.62 6909 93.30 0.76 0.15 

6.3.2 LSM  

The relationship between the landslide occurrence and causative factors using SI is 

represented in Table 6-2. Two landslide susceptibility maps were generated: (i) using the 

six selected factors (CF > 0) and (ii) using originally selected thirteen factors. The results 

that indicate the spatial probability of landslide occurrence is shown in Figure 6-3. Based 

on the natural breaks inherent in the data, the susceptible level is eventually divided into 

six classes; i.e., extremely low, low, moderate, high, very high and extremely high. It can 

be noticed from the visual observation that there are much more red color areas in Figure 

6-3b, whereas there are more dark blue areas in Figure 6-3a. Figure 6-4 and Table 6-3 

shows that 89.18% of the total landslides occurred in the 55.34% of the area classified as 

high, very high and extremely high susceptibilities when the original 13 factors were used, 

while 92.7% of the total landslides occurred in the 50.37% of the area classified as high, 

very high and extremely high susceptibilities if the optimized six factors were used (Figure 

6-5 and Table 6-4). 
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Figure 6-3 LSM maps produced by the SI method: a) selected six factors, and b) original 13 

factors. Maps show the spatial probability of landslide occurrence in six classes. 

 

Figure 6-4 Susceptibility class distribution within the study area and the occurrence of 

landslides according to the classification scheme for LSM using the SI method with the 

original 13 factors. 
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Table 6-3 Result of statistical analysis concerning landslide susceptibility from the SI 

method with the original 13 factors. 

Class Area of each class 
Percentage of domain

（%） 

No. of 

landslides 

Percentage of 

landslides (%) 

Very low 284530 11.53 20 0.27 

Low 392251 15.9 148 2 

Moderate 425078 17.23 633 8.55 

High 549629 22.28 1543 20.84 

Very high 497791 20.17 2393 32.32 

Extremely high 318130 12.89 2668 36.03 

 

 

Figure 6-5 Susceptibility class distribution within the study area and the occurrence of 

landslides according to the classification scheme for LSM using the SI method with the 

selected six factors. 
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Table 6-4 Result of statistics analysis concerning landslide susceptibility from the SI method 

with the selected six factors. 

Class Area of each class 
Percentage of domain

（%） 

No. of 

landslides 

Percentage of 

landslides (%) 

Very low 269170 10.91 59 0.80 

Low 485549 19.68 239 3.23 

Moderate 469764 19.04 289 3.90 

High 516032 20.91 1905 25.73 

Very high 521015 21.12 2315 31.26 

Extremely high 205879 8.34 2598 35.08 

In this study, the forward stepwise LR approach was used to incorporate predictor 

variables with major contributions to the presence of landslides, using the SPSS 20 software. 

In the training dataset represented the presence of landslide points and were assigned the 

value 1. In agreement with the equal proportions of landslides and non-landslides, the same 

number of non-landslide points were randomly sampled from the landslide-free area and 

assigned the value of 0.  

The result is shown in Table 6-5 with all original factors. Additionally, it is necessary to 

examine the effect of correlation because LR is sensitive to collinearity among the 

independent variables. Table 6-6 and shows the multi-collinearity diagnosis indexes for 

variables used in the LR equation. Tolerance and the variance inflation factor (VIF) are two 

important indexes for multi-collinearity diagnosis. A tolerance of less than 0.20 or 0.1 and/or 

a VIF value of 5 or 10 and above indicates a multi-collinearity problem (O’Brien 2007). The 

Tolerance value ranges [0.802, 0.999], and VIF ranges [1.012, 1.247]; hence there are no 

distinct multi-collinearity between the optimized six factors. According to Table 6-7, it 

shows that all the causative factors have a p-value less than 0.05, indicating a statistical 

correlation between factors and the susceptibility of landslides at the 90% confidence level 

(Tien Bui et al. 2011). The occurrence of landslide probability (P) can be computed as 

mentioned before. 
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Lastly, the regression coefficients of the predictors were imported to generate the 

landslide susceptibility map (Figure 6-6) in GIS. The two maps of classes are also both 

applied the natural break classification to divide the boundaries of each class. Figure 6-7 and 

Table 6-8 show that 90.2% of the total landslides occurred in 57.28% of the area classified 

as high, very high and extremely high susceptibilities if the 13 original factors were used, 

while 96.98% of the total landslides occurred in 51.016% of the area classified as high, very 

high and extremely high susceptibilities if the optimized six factors were used (Figure 6-8 

and Table 6-9). 

Table 6-5 Coefficients, statistics of the factors with all the 13 factors used in the LR equation. 

Landslide factors B S.E. Wald Df Sig.  Exp(B) 
95%C.I. for EXP(B) 

Lower Upper 

Elevation .28 .03 101.16 1 .00 1.32 1.25 1.39 

Slope .72 .03 495.15 1 .00 2.05 1.93 2.18 

Aspect  .27 .03 121.63 1 .00 1.32 1.25 1.38 

Density of geology 

boundary 
.08 .03 6.40 1 .01 1.08 1.01 1.15 

Drainage density -.06 .03 3.27 1 .07 .95 .89 1.01 

Plan curvature -.05 .03 2.26 1 .03 .95 .90 1.01 

Total curvature .17 .03 38.01 1 .00 1.18 .166 .03 

Lithology (1) -.2.3 .11 464.70 1 .00 .10 .08 .12 

Lithology (2) -.78 .23 11.15 1 .00 .46 .29 .73 

Lithology (3) -.25 .12 4.62 1 .03 .77 .62 .98 

SPI .08 .03 8.70 1 .00 1.09 1.03 1.15 

CTI .11 .11 7.46 1 .01 1.12 1.03 1.21 

Distance to drainage 

networks 
.35 .35 128.23 1 .00 1.42 1.33 1.51 

Distance to geological 

boundary 
.04 .03 1.73 1 .18 1.04 .99 1.1 

Profile curvature .02 .04 .38 1 .53 1.02 .96 1.09 

Constant  .84 .03 967.79 1 .00 2.32   
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Table 6-6 Multi-collinearity diagnosis indexes for the six selected factors. 

Landslide 

factors 
B S.E. 

Std. 

coefficients  

Beta 

t Sig.  

95.0% Confidence 

Interval for B 

Collinearity 

Statistics  

Lower 

Bound 

Upper 

Bound 
Tolerance VIF 

Constant .63 .00  143.71 .00 .62 .64   

Slope .13 .01 .26 26.47 .00 .12 .13 .86 1.17 

Aspect  .05 .00 .10 11.34 .00 .04 .06 .99 1.00 

Density of 

geology 

boundary 

.02 .00 .04 4.17 .00 .01 .03 .98 1.02 

Drainage 

density 
.03 .00 .06 6.06 .00 .02 .04 .98 1.01 

Plan 

curvature 
.01 .00 .02 1.96 .04 .00 .02 .98 1.00 

Lithology .126 .01 .26 25.81 .00 .12 .14 .99 1.25 

 

Table 6-7 Beta coefficients and test statistics of the variables used in the LR equation after 

optimization. 

Landslide factors B S.E. Wald Df Sig.  
Exp (B) 

 

Slope .74 .03 611.63 1 .00 2.10 

Aspect  .28 .02 125.57 1 .00 1.31 

Density of geology boundary .1 .02 15.90 1 .00 1.10 

Drainage density .15 .02 34.91 1 .00 1.16 

Plan curvature .04 .02 3.15 1 .00 1.04 

Lithology(1) -2.326 .10 479.29 1 .00 .09 

Lithology(2) -.68 .23 8.47 1 .00 .51 

Lithology(2) -.36 .11 9.86 1 .00 .69 

Constant .83 .02 986.82 1 .00 2.30 
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Figure 6-6 LSM maps produced by the LR method: a) six selected factors, and b) original 

13 factors. Maps indicate the spatial probability of landslide occurrence in six classes . 

 

Figure 6-7 Susceptibility class distribution within the study area and the occurrence of 

landslides according to the classification scheme for LSM using the SI method with the 13 

factors. 
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Table 6-8 Result of statistics analysis concerning landslide susceptibility from the SI method 

with the 13 factors. 

Class Area of each class 
Percentage of domain

（%） 

No. of 

landslides 

Percentage of 

landslides (%) 

Very low 301311 12.21  8 0.11  

Low 405194 16.42  119 1.61  

Moderate 347487 14.08  599 8.09  

High 532429 21.58  1625 21.94  

Very high 611418 24.78  2517 33.99  

Extremely high 269570 10.93  2537 34.26  

 

 

Figure 6-8 Susceptibility class distribution within the study area and the occurrence of 

landslides according to the classification scheme for LSM using the SI method with the 

selected six factors. 
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Table 6-9 Result of statistics analysis concerning landslide susceptibility from the SI method 

with the selected six factors. 

Class Area of each class 
Percentage of domain

（%） 

No. of 

landslides 

Percentage of 

landslides (%) 

Very low 319706 12.96  9 0.12  

Low 427121 17.31  117 1.58  

Moderate 458178 18.57  98 1.32  

High 547426 22.19  1608 21.72  

Very high 485413 19.67  3016 40.73  

Extremely high 229565 9.30  2557 34.53  

6.3.3 Accuracy assessment  

It is essential to verify the accuracy of any prediction model. We verified the accuracy 

of the CF model used for this study and the results using ROC and AUC. 

For the verification, the total landslides were divided into two groups, training data and 

validation data and an ROC plot of sensitivity (true positive rate) and 1-specificity (false 

positive rate) was made. For the SI method, the AUC value for Chuetsu (0.76) is higher for 

the use of the optimal six factors than 0.67 for the original 13 factors (Figure 6-9). For the 

LR model, the AUC value of the prediction rate curve (78.1%) using the six factors is higher 

than that from the 13 factors (67.5%) as shown in Figure 6-10. Additionally, the frequency 

ratio (FR) method is also used to make landslide susceptibility mapping. From the Figure 

6-10, six selected factors give higher accuracy than that of using all the original factors  in 

the FR method. In summary, use of the six factors gives higher accuracy than using all the 

original factors. Additionally, Moreover, LR has a slightly higher accuracy than SI and FR 

in terms of AUC. 
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Figure 6-9 ROC curves for landslide susceptibility maps produced using SI with the selected 
six and original 13 factors for Chuetsu. 
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Figure 6-10 ROC curves for landslide susceptibility maps produced using LR with the 
selected six and original 13 factors for Chuetsu. 

 

6.4. LSM in Sado Island, Japan  

6.4.1  Relationship between landslide occurrence and causative factors 

Figure 6-11 shows the results of frequency analysis for Sado Island to explore the 

relationship between the landslide causative factors and landslide occurrence. The frequency 

of landslides is less than 10% at the elevation less than 100 m due to the gentle terrain 

characteristics. At the intermediate elevation (100–300 m), the frequency of landslide 

occurrences tends to increase, as slopes may be prone to sliding due to the cover by thin 

colluvium deposits. As expected, at higher elevations, the frequency increases. For 
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elevations higher than 600 m, the areal extent of land is low and therefore the frequency of 

landslide occurrences is also lower. The correlation analysis between landslide occurrence 

and slope angle is shown in Figure 6-11. The figure indicates that gentle slopes have a low 

landslide frequency because of the lower shear stress at the slope angles 0–10o. It is obvious 

that the landslide frequency increases for slope angles 15–35o. However a decrease of 

landslide occurrences at > 45o slope is also observed. 

It is believed that slope angle and aspect may affect vegetation patterns and soil 

properties, and in turn landslide susceptibility. In the study area the landslide frequency for 

north-facing slopes is relatively low, and it increases with the orientation angle, reaching the 

maximum for the south-facing slopes. We also investigated the direction of landslides. The 

slope aspect from the DEM and the direction of landslides for Sado Island were compared 

with each other (Figure 6-12). We observe that landslides mostly occur at slope directions 

of SE, SW, and S (Figure 6-12a) and at SW, NE, S, and SE are major directions of landslide 

(Figure 6-12b). The results of LSM described were slightly different, but both of them 

suggest a similar conclusion, for instance, landslides frequently occurred at SW- and S-

facing slopes. Because the western part of the ridge (NNE-SSW) of Osado are characterized 

by less snow cover due to strong western wind, however, much more snow existed in the 

eastern side of the ridge, and snow melted quickly in the southeast area. This may increase 

the soil moisture and aggravated the slope instability. Therefore, the likely occurrence of the 

landslide direction is relatively higher in the southeast part. 

Figure 6-11 shows that landslides mostly occurred at the 0–5 category of the total 

curvature, while for the profile curvature landslides frequently was highest at the -2–0 

category followed by the 2–4 category. For the plan curvature, the landslides usually 

occurred in the concave space because it increases the moisture content of the soil and leads 

to slope failure. However, in this study, most landslides occurred in the convex space. This 
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may be because the mountain ridges in Sado have got weaker due to local tectonics.  

For the hydrological factors CTI and SPI, landslides mostly occurred at the 0–3 and 0–2 

classes, respectively. It may be inferred that dense drainage networks lead to increased 

occurrences of landslides. However, in this study landslides frequently was highest at the 1–

3 m-1 drainage density class. For the distance to drainage networks, landslide frequency 

reached the maximum at 60–120 m, followed by 120–200 m. This may be attributed to more 

activated gully erosion on slopes that facilitates landslides. 

Geological factors such as lithology, density of geological boundaries, distance to 

geological boundary, and distance to faults are related to rock strength and permeability and 

in turn slope failure. The results show that landslides mostly occurred with the volcanics 

(dacite and andesite lava). With respect to the density of geological boundaries, the landslide 

frequency was highest at the 0–70 m-1, followed by 170–70 m-1 suggesting that higher 

tectonic activity causes slope instability. For the distance to a geological boundary, the 

weaker boundaries seem to have led to slope instability. The landslide frequency decreases 

with increasing distance and has the maximum at the <100 m class. Regarding the distance 

to faults, the results show that the majority of landslides falls into the category of the biggest 

distance to faults (>400 m). Other than this category, however, the landslide frequency 

increase in the proximity of fault, suggesting the effect of localize tectonics. 

For the vegetation factor, landslide frequency is usually high for lower NDVI values 

(<0.05) (Ahmed 2014) because the roots of vegetation can retain the slope surface, especially 

for the shallow landslides. Nevertheless, in Sado, landslides often occurred in areas with 

thick vegetation cover (NDVI > 0.25) because the shallow roots of vegetation seldom 

influence large landslide occurrence. 
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Figure 6-11 Correlations between landslide frequency and the causative factors  in Sado 
Island. 
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Figure 6-12 Frequency of slope aspect (a), and direction of landslides (b). 

6.4.2  Feature selection  

The results of the correlation analysis between the landslide occurrence and causative 

factors are shown in Table 6-10. The Z value is positive for slope angle (0.05), slope aspect 

(0.03), drainage density (0.34), lithology (0.3), distance to geological boundary (0.4) and 

distance to faults (0.35). The Z value is negative for the other factors. Therefore, these six 

factors are selected for LSM.  

A detailed analysis shows that slope angle has the highest influence on the slope stability. 

CF values are positive at slopes from 5–30o (Table 6-10). The percentage of landslide 

occurrence at the slope classes 10–15 o, 15–20 o, and 25–30 o are 17.82%, 21.79%, and 15.4%, 

respectively. The landslide frequency increases with an increasing slope angle up to 20 o, 

and then decreases. This agrees with the landslide frequency in Figure 6-11c. Concerning 

slope aspect, landslides mostly occurred on east-, southeast, and south facing slopes with 

positive CF values from 0.09 to 0.15. The highest percentage of landslides with the 

maximum CF value (0.15) was 15.9% for the south-facing slopes, followed by the east-

facing slopes (14.2 %). The snow in the study area is normally blown out by the wind from 

the northwest; therefore, snow accumulates on south to east-facing slopes that may cause 

landslides during snow melting. Drainage density shows positive CF values for the classes 
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2–3 and 3–5. The maximum positive CF value of 0.3 is associated with the 3–5 class. The 

highest percentage of landslide occurrence is 40.48% at the 2–3 class. Concerning lithology, 

six lithology classes have positive CF values. The highest percentage of landslides in the 

lithology class (volcanic-dacite) is 49.31% with a CF value of 0.22. More than 50% of the 

landslides occurred along the margins of dacite and dacite lava. These lavas once covered 

by ocean and were transformed into pelitic rocks that further changed to materials rich in 

smectite clay susceptible to sliding. The feature “distance to geological boundary” shows 

positive CF values for classes >100 m; however, the highest percentage of landslides 

occurred for the class < 100 m. It indicates that the closer to a geological boundary, the more 

occurrences of landslides. The distance to faults shows positive CF values for the classes 0–

100, 100–200, and 200–300 m but the CF values become negative for 300 m. The maximum 

CF value is 0.25 at 0–100 m. 
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Table 6-10 Spatial relationship between the causative factors and landslide occurrence based 

on the CF and SI methods. 

Causative 

factors 
Class 

Percentage of 

domain (%) 

No. of 

landslides 

No. of landslide 

pixels 
CF Z SI 

Elevation (m) 

<100 21.33 38 8103 -0.69 

-0.42 

-1.59 

100-300 30.68 220 62288 0.20 0.08 

300-400 13.09 97 31464 0.22 0.25 

400-600 17.74 120 50504 0.15 0.42 

600-800 11.80 74 29400 0.08 0.29 

>800 5.36 29 5460 -0.07 -0.61 

Slope angle 

(o) 

0 - 5 11.77 18 6317 -0.68 

0.05 

-1.25 

5-10 9.06 58 26860 0.26 0.46 

10-15 8.99 103 27721 0.59 0.32 

15-20 10.35 126 31045 0.61 0.47 

20-25 11.97 86 23115 0.34 0.03 

25-30 13.39 89 28873 0.28 0.14 

30-35 13.98 47 21260 -0.30 -0.21 

35-45 18.05 45 18667 -0.48 -0.59 

>45 2.44 6 3361 -0.49 -0.31 

Slope aspect 

North 5.74 32 10672 -0.04 

0.03 

-0.01 

Northeast 12.64 65 25359 -0.11 0.07 

East 12.89 82 25931 0.09 0.07 

Southeast 12.59 80 24548 0.09 0.04 

South 13.41 92 27897 0.16 0.11 

Southwest 14.68 74 23033 -0.13 -0.02 

West 11.84 59 20342 -0.14 -0.09 

Northwest 10.67 54 19635 -0.13 -0.02 

Flat 5.53 40 10802 0.20 0.04 

Total 

curvature 

<-6 21.33 5 3321 -0.96 

-1.00 

-2.49 

-6 - -2 30.68 50 23168 -0.72 -0.91 

-2 - 0 13.09 183 64542 0.60 0.97 

0 - 5 17.74 334 93753 0.70 1.04 

5 - 15 11.80 6 2433 -0.91 -2.21 

>15 5.36 0 2 -1.00 -8.52 

Profile 

curvature 

<-8 0.03 0 7 -1.00 

 

-1.00 

 

-1.92 

-8-4 0.87 3 1189 -0.40 -0.31 

-4--2 5.81 27 9310 -0.20 -0.15 

-2-0 40.00 275 76347 0.16 0.02 

0-2 9.04 42 11779 -0.20 -0.36 

2-4 36.74 204 75185 -0.04 0.09 

4-8 5.83 21 10719 -0.38 -0.02 
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Plan 

curvature  

Concave 8.02 34 15730 -0.27 

-0.22 

0.05 

Flat 36.24 212 69796 0.01 0.03 

Convex 55.74 332 101693 0.03 -0.03 

CTI 

<-2 14.48 94 23738 0.11 

-1.00 

-0.13 

-2 - 0 0.34 0 480 -1.00 -0.29 

0 - 3 52.98 270 94694 -0.12 -0.05 

3 - 8 29.68 210 62790 0.19 0.12 

8 - 10 1.47 2 3866 -0.77 0.34 

>10 1.05 2 1651 -0.67 -0.18 

SPI 

<-9 3.50 11 3023 -0.46 

-0.61 

-0.77 

-9 - -5 11.07 83 20789 0.23 0.00 

-5 - 0 26.55 120 39004 -0.22 -0.24 

0 - 2 42.38 250 84561 0.02 0.06 

2 - 4 12.56 92 28670 0.21 0.20 

4 - 12 3.94 22.00 11172 -0.03 0.41 
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Table 6-10 Continued. 

Causative 

factors 
Class 

Percentage of 

domain (%) 

No. of 

landslides 

No of 

landslide 

pixels 

CF Z SI 

Drainage 

density (m-

1) 

0-1 10.31 35 10261 -0.42 

0.34 

-0.63 

1-2 40.98 221 70163 -0.07 -0.09 

2-3 37.92 234 78979 0.06 0.11 

3-5 10.78 88 27907 0.30 0.32 

Distance 

to drainage 

networks 

(m) 

0 - 60 25.44 142 64448 -0.03 

-0.82 

0.30 

60 - 120 22.99 208 49926 0.37 0.15 

120 - 200 23.61 148 39592 0.08 -0.11 

200 - 250 11.18 32 15262 -0.51 -0.32 

250 - 350 12.82 39 15250 -0.48 -0.45 

>350 3.96 9 2832 -0.61 -0.96 

Lithology 

1. Sedimentary 

(sandstone) 
15.41 27 8082 -0.70 

0.30 

-1.27 

2. Sedimentary 

(mudstone) 
3.95 11 1500 -0.52 -1.60 

3. Plutonic and 

intrusives  
2.23 15 5005 0.14 0.18 

4.Volcanic 

(basalt) 
0.63 6 1207 0.40 0.02 

5. Volcanic 

(rhyolite lava) 
0.63 3 281 -0.18 -1.43 

6. Volcanic 

(dacite) 
38.82 285 95356 0.22 0.27 

7.Volcanic 

(dacite lava) 
5.75 52 12766 0.37 0.17 

8. Volcanic 

(andesite lava) 
30.92 162 60295 -0.09 0.04 

9.Sedimentary 

(slate and 

sandstone) 

1.05 7 1308 0.13 -0.41 

10.Metamorphic 0.60 10 1430 0.66 0.24 

Density of 

geological 

boundaries  

(m-1) 

0 - 70 30.26 184 65069 0.05 

-0.03 

0.14 

70 - 170 21.96 112 41448 -0.12 0.01 

170 - 270 23.56 138 48197 0.01 0.09 

270 - 400 17.41 105 23067 0.04 -0.35 

>400 6.81 39 9498 -0.01 -0.29 

Distance 

to 

0 - 100 48.57 255 74525 -0.09 

0.40 

-0.20 

100 - 240 25.68 154 54091 0.04 0.12 

240 - 400 13.79 82 30935 0.03 0.18 
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geological 

boundary 

(m) 

    

 

 

400 - 700 9.72 69 21069 0.19 0.15 

 >700 2.25 18 6659 0.28 0.00 

Distance 

to faults 

(m) 

0-100 13.19 101 23269 0.25 

0.35 

-0.06 

100-200 11.82 81 20520 0.16 -0.08 

200-300 10.67 72 16936 0.15 -0.17 

300-400 9.25 52 14905 -0.03 -0.15 

>400 55.06 272 111638 -0.15 0.08 

NDVI 

<0.05 24.43 89 24965 -0.37 

-0.22 

-0.21 

0.05-0.25 37.60 218 49489 0.00 0.04 

0.25-0.65 37.96 271 51402 0.19 0.07 

6.4.3  LSM  

The correlation between the landslide occurrence and causative factors using SI is 

represented in Table 6-10. Two landslide susceptibility maps were generated: (i) using the 

six selected factors (CF > 0) and (ii) using the original 15 factors. The result is shown in 

Figure 6-13. Based on the natural breaks inherent in the data, the susceptible level is 

eventually divided into six classes; i.e., extremely low, low, moderate, high, very high and 

extremely high (Table 6-11). There are much more red color areas in Figure 6-13b, whereas 

there are more dark blue areas in Figure 6-13a. In the detailed maps for a small area in Figure 

6-12, black lines denote main scarps and  blue lines denote dissected crowns. Figure 6-14 

shows that 90.18% of the total landslides occurred in the 69.66% of the area classified as 

high, very high and extremely high susceptibilities when the optimized six factors were used, 

while 73.41% of the landslides occurred in the 93.1% of the area classified as high, very 

high and extremely high susceptibilities when the original 15 factors were used.  

According to Table 6-10, the slope angle class (15–20 o) with the highest SI value of 0.47 

is most susceptible, having the highest percentage of landslide occurrence of 16.58%. The 

landslide occurrence gradually increases with increasing slope angle and then it drops after 

35o. This result is similar to that of CF modelling. 
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Landslides occurred more on northeast-, east-, southeast- and south-facing slopes. The 

highest percentage of landslides with the maximum SI value (0.1) is 14.9% along the south-

facing slopes, followed by the 13.85% for the east-facing slopes. This also agrees with the 

results obtained from CF. 

With an increase in drainage density the SI values are amplified, pointing to increased 

landslides here (SI > 2). The highest percentage of landslide occurrence in this class is 

42.19%. This result is also in agreement with CF. 

With respect to lithology, the results also display that the six lithology classes (similar 

to CF) have stronger relationships with landslide occurrence. The highest percentage of 

landslides among the lithology class (volcanic-dacite) is 50.93% with a maximum SI value 

of 0.27. The landslide frequency along the distance to lithologic boundary of dacite and 

dacite lava are greater than 50%. The distance to geological boundary indicates that 

classes >100 m have high probabilities of landslide occurrence (Table 6-10). The highest 

percentage (39.81%) of landslides is observed at the class >100 m. The distance to faults 

exhibits negative SI values for the classes, 0–100, 100–200, and 200–300 m and then the SI 

values become positive after 300 m.  

Table 6-11 The boundaries classes for susceptibility maps. 

Susceptible class 
SI method LR method 

15 factors 6 factors 15 factors 6 factors 

Extremely low -12.31- -3.41 -3.83 - -2.07 0.00 - 0.13 0.03-0.207 

Low -3.41 - -2.17 -2.07- -1.20 0.13 - 0.32 0.20 - 0.38 

Moderate -2.17 - -0.94 -1.20- -0.577 0.32- 0.51 0.38 - 0.51 

High -0.94 - 0.23 -0.57- -0.04 0.51 - 0.67 0.51 - 0.64 

Very high 0.23 - 1.33 -0.04 - 0.44 0.67 - 0.81 0.64 - 0.75 

Extremly high 1.33- 4.26 0.44 - 1.85 0.81- 0.98 0.75 - 0.91 
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Figure 6-13 Landslide susceptibility maps generated by the SI method from a) selected six factors 

and b) original fifteen factors, with six susceptibility classes on the basis of natural break criterion. 

The lower maps are enlargements (c and d). 

 

((

(a) (b) 

(c) (d) 
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Figure 6-14 Frequency landslide susceptible classes obtained from the SI model. 

In this study, the forward stepwise LR approach was used to incorporate predictor 

variables, using the SPSS 20 software. In the training dataset 578 landslides represented by 

points were assigned the value of 1. The same number of non-landslide points were randomly 

sampled from the landslide-free area and assigned the value of 0. The result of LR is shown 

in Table 6-12. All the causative factors have p-values less than 0.1, indicating a statistical 

correlation between factors and the susceptibility of landslides at the 90% confidence level 

(Tien Bui et al. 2011). The interpretation of the LR coefficient for each causative factor 

(Table 6-12) shows that elevation, slope angle, slope aspect, total curvature, SPI, drainage 

density, lithology, distance to drainage network, distance to geological boundary, and NDVI 

have positive values. Distance to drainage network has the highest value (1.7), followed by 

slope angle (1.2). The remaining factors have negative effects on landslide occurrence. 
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It is necessary to examine the effect of correlations between independent variables 

because LR is sensitive to their collinearity. VIF and tolerance (TOL) are widely used 

indexes of the degree of multi-collinearity. Table 6-12 shows that the maximum VIF and 

minimum TOL were 1.028 and 0.973, respectively. Therefore, there is no distinct multi-

collinearity between these variables.  

 Lastly, the regression coefficients of the predictors and GIS were used to generate 

landslide susceptibility maps (Figure 6-15). The natural break classification was applied to 

divide classes (Table 6-11). Figure 6-16 shows that 91.39% of the total landslides took place 

in the 72.96% of the area classified as high, very high and extremely high when the optimized 

six factors were used, while 68.23% of the total landslides occurred in the 90.79% of the 

high, very high and extremely high areas if the original fifteen factors were used. 

Table 6-12 Coefficients, statistics of the factors and the multi-collinearity diagnosis indexes 

for variables used for LR.  

Causative factors Coefficient S.E. Wald 
P-

value 
Exp(B) 

Collinearity 

Statistics 

Tol VIF 

Elevation 0.96 0.13 51.83 0.00 2.60 1.00 1.00 

Slope angle 1.21 0.19 39.36 0.00 3.35 0.98 1.02 

Slope aspect 0.28 1.57 0.03 0.09 1.33 1.00 1.00 

Total curvature 0.31 0.12 6.50 0.01 1.36 1.00 1.00 

Profile curvature -0.76 1.70 0.20 0.07 0.47 0.99 1.01 

Plan curvature  -1.19 3.67 0.11 0.07 0.31 1.00 1.00 

CTI -0.23 0.99 0.06 0.08 0.79 0.99 1.01 

SPI 0.70 0.49 2.03 0.02 2.01 1.00 1.01 

Drainage density  0.12 0.43 0.08 0.08 1.13 1.00 1.00 

Distance to drainage networks 1.71 0.33 26.88 0.00 5.51 1.00 1.00 

Lithology 0.88 1.56 1.44 0.02 0.15 0.99 1.01 

Density of geological boundaries -0.05 0.54 0.01 0.09 0.96 1.00 1.00 

Distance of geological boundaries 0.85 0.57 2.23 0.01 2.35 0.97 1.03 

Distance to faults -0.44 0.89 0.25 0.06 0.64 0.99 1.01 

NDVI 0.28 0.84 0.11 0.07 1.33 0.99 1.01 

Constant 0.79 0.12 42.69 0.00 2.21   
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Figure 6-15 Landslide susceptibility maps generated by the LR method from a) selected six 

factors and b) original fifteen factors, with six susceptibility classes on the basis of natural 

break criterion. The lower maps are enlargements (c and d). 

 

 

(a) (b) 

(d) 
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Figure 6-16 Comparison of landslide susceptible classes obtained from the LR model.  

6.4.4  Accuracy assessment  

LSM results can be validated using the known landslide locations. Accuracy assessment 

was performed by comparing the distribution of existing landslides that were not included 

in the data used for LSM. Both the training (70% of 825 polygons) and validation (the rest 

30% of 825 polygons) datasets were selected to assess the models. The training data were 

used for computing the LSM success rate and the validation data for the prediction rate. To 

obtain both rates, the landslide susceptibility values of all cells were sorted in descending 

order. Then the ordered values were categorized into 100 classes with 1% cumulative 

intervals, for which the cumulative percentage of landslide occurrence in the classes was 

calculated to obtain AUC.  

Figure 6-17 shows that for the SI method the AUC value of the success rate curve (80.1%) 
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using the six factors is higher than for the model using all the 15 factors (73.4%). For the 

prediction rate curve, the result is similar to that of the success rate curve. For the LR model, 

the AUC value of the success rate curve (81.7%) from the six factors is also higher than that 

from all the 15 factors (73.2%) as shown in Figure 6-18. The prediction rate shows a similar 

result to the success rate. Hence, using the six factors gives higher accuracy than using all 

the factors. Additionally, compared with the SI method, LR has a slightly higher accuracy 

for both success and predication rates. 

 

 

Figure 6-17 ROC curves representing (a) success rate, and (b) prediction rate for the SI 

method. 

(a)  (b)  
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Figure 6-18 ROC curves representing (a) success rate, and (b) prediction rate for the LR 

model. 

6.5. LSM for Dongjiang Reservoir, China 

6.5.1  Feature selection  

The results of the correlation analysis between the landslide occurrence and causative 

factors for the Dongjiang Reservoir area are shown in Table 6-13. The result of CF analysis 

shows that the Z value is positive for slope angle (0.25), curvature (0.82), plan curvature 

(0.21), drainage density (0.96), distance to drainage network (0.11), accumulative rainfall 

(0.97), and lithology (0.47) as shown in Figure 6-19. The Z value is negative for the other 

factors. Hence, these seven factors are selected for LSM.  

(a)  (b)  
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Figure 6-19 Calculation of CF values in the Dongjiang Reservoir 
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Table 6-13 Spatial relationship between the causative factors and landslide occurrence 

based on the CF and SI methods. 

Factors 

 

 

Class 

No.of 

pixels 

in 

domain 

Percentage 

of domain 

No. of 

landslides 

Percentage 

of 

landslides 

CF Z SI 

Elevation 

<320 49499 16.63 381 21.57 0.56 

-0.99 

0.26 

320-400 86673 29.11 762 43.15 0.80 0.39 

400-500 70232 23.59 374 21.18 -0.22 -0.11 

500-600 35575 11.95 128 7.25 -0.61 -0.50 

600-700 23467 7.88 64 3.62 -0.74 -0.78 

700-900 25328 8.51 50 2.83 -0.83 -1.10 

>900 6934 2.33 7 0.40 -0.92 -1.77 

Slope 

angle (o) 

0-5 36715 12.33 97 5.49 -0.75 

0.25 

-0.81 

5-10 51448 17.28 259 14.67 -0.30 -0.16 

10-15 57080 19.17 391 22.14 0.33 0.14 

15-20 52738 17.71 361 20.44 0.33 0.14 

20-25 42919 14.42 297 16.82 0.35 0.15 

25-30 28884 9.70 166 9.40 -0.07 -0.03 

30-35 16179 5.43 121 6.85 0.51 0.23 

35-40 7440 2.50 50 2.83 0.29 0.12 

40-62 4305 1.45 24 1.36 -0.14 -0.06 

Slope 

aspect 

flat 10424 3.50 5 0.28 -0.97 

-0.01 

-2.52 

N 15273 5.13 51 2.89 -0.66 -0.57 

NE 32430 10.89 115 6.51 -0.62 -0.51 

E 38153 12.82 299 16.93 0.60 0.28 

SE 42716 14.35 399 22.59 0.90 0.45 

S 37354 12.55 368 20.84 0.98 0.51 

SW 36945 12.41 295 16.70 0.63 0.30 

W 34987 11.75 138 7.81 -0.55 -0.41 

NW 49426 16.60 96 5.44 0.59 -1.12 

Curvature 

<-3 5207 1.75 33 1.87 0.16 

0.82 

0.07 

-3--2 20378 6.85 138 7.81 0.30 0.13 

-2--1 43154 14.50 258 14.61 0.02 0.01 

-1-0 93076 31.26 494 27.97 -0.22 -0.11 

0-2 111216 37.36 660 37.37 0.00 0.00 

2-3 15509 5.21 112 6.34 0.44 0.20 

>3 9168 3.08 71 4.02 0.58 0.27 

Plan 

curvature 

Concave  56137 18.86 339 19.20 0.04 

0.21 

0.02 

Flat 167924 56.41 929 52.60 -0.15 -0.07 

Convex 73647 24.74 498 28.20 0.30 0.13 
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Table 6-13 Continued. 

Factors Class 

No.of 

pixels in 

domain 

Percentage 

of domain 

No. of 

landslides 

Percentage 

of landslides 
CF Z SI 

Profile 

curvature 

-4--2 142755 47.95 825 46.72 -0.06 

-0.01 

-0.03 

-2-0 141351 47.48 847 47.96 0.02 0.01 

0-2 6247 2.10 41 2.32 0.24 0.10 

2-4 344 0.12 2 0.11 -0.05 -0.02 

>4 40 0.01 1 0.06 1.87 1.44 

Drainage  

density 

<0.8 36537 12.27 32 1.81 -0.93 

0.96 

-1.91 

.8-1 63095 21.19 218 12.34 -0.64 -0.54 

1-1.2 61055 20.51 608 34.43 0.99 0.52 

1.2-1.3 56106 18.85 411 23.27 0.47 0.21 

1.3-1.4 56897 19.11 284 16.08 -0.32 -0.17 

1.4-1.7 24018 8.07 213 12.06 0.81 0.40 

Distance to 

drainage 

network 

<130 84683 28.45 464 26.27 -0.17 

0.11 

-0.08 

130-280 78800 26.47 515 29.16 0.23 0.10 

280-450 65049 21.85 360 20.39 -0.15 -0.07 

450-650 49300 16.56 304 17.21 0.09 0.04 

>650 19876 6.68 123 6.96 0.10 0.04 

SPI 

<-6 102218 34.34 663 37.54 0.21 

-0.79 

0.09 

-6--2 27218 9.14 70 3.96 -0.76 -0.84 

-2-0 75938 25.51 514 29.11 0.30 0.13 

0-2 65551 22.02 377 21.35 -0.07 -0.03 

2-4 18343 6.16 103 5.83 -0.12 -0.05 

>4 8440 2.84 39 2.21 -0.41 -0.25 

CTI 

<-2 102436 34.41 663 37.54 0.21 

-0.89 

0.09 

-2-3 103447 34.75 648 36.69 0.13 0.05 

3-7 52876 17.76 324 18.35 0.08 0.03 

7-11 31389 10.54 116 6.57 -0.60 -0.47 

>11 7560 2.54 15 0.85 -0.83 -1.10 

Accumulative 

rainfall 

<300 40434 13.58 54 3.06 -0.89 

0.97 

-1.49 

300-320 48579 16.32 92 5.21 -0.84 -1.14 

320-345 73703 24.76 735 41.62 1.00 0.52 

345-360 65249 21.92 589 33.35 0.84 0.42 

360-375 54105 18.17 176 9.97 -0.67 -0.60 

375-390 15638 5.25 130 7.36 0.70 0.34 

Lithology 

Shaly 

limestone 
97853 32.87 281 15.91 -0.72 

0.47 

-0.73 

Biotite 

adamellite 
95797 

32.18 878 49.72 0.87 
0.44 
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Siltstone, 

shale 
27045 9.08 197 11.16 0.46 0.21 

Dolomites 12931 4.34 60 3.40 -0.41 -0.25 

Sandstone

, slate and 

siliceous 

rocks 

64082 21.53 350 19.82 -0.17 -0.08 

6.5.2  LSM  

The correlations between the landslide occurrence and causative factors using SI is 

represented in Table 6-13. Two landslide susceptibility maps were generated: (i) using the 

six selected factors (CF > 0) and (ii) using the original factors (Figure 6-20). Based on the 

natural breaks, the susceptibility level was divided into six classes; i.e., extremely low, low, 

moderate, high, very high and extremely high. There are much more red color areas in Figure 

6-20b, whereas there are more dark blue areas in Figure 6-20a. Figure 6-21 shows that 90.84% 

of the total landslides occurred in the 52.56% of the area classified as high, very high and 

extremely high susceptibilities when the original factors were used, while 51.73% of the 

total landslides occurred in the 92.03% of the area classified as high, very high and extremely 

high susceptibilities if the optimized seven factors were used (Figure 6-22 and Table 6-15). 
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Figure 6-20 LSM maps produced by the SI method: a) selected seven factors, and b) original 

12 factors. Maps show the spatial probability of landslide occurrence in six classes. 
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Figure 6-21 Susceptibility class distribution within the study area and the occurrence of 

landslides according to the classification scheme for LSM using the SI method with the 

original 12 factors. 

Table 6-14 Result of statistical analysis concerning landslide susceptibility from the SI 

method with the original 12 factors. 

Class Area of each class 
Percentage of domain

（%） 

No. of 

landslides 

Percentage of 

landslides (%) 

Very low 23530 7.90 2 0.09 

Low 51529 17.31 44 1.99 

Moderate 66159 22.22 134 6.07 

High 69919 23.49 319 14.45 

Very high 58197 19.55 728 32.99 

Extremely high 28374 9.53 980 44.40 
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Figure 6-22 Susceptibility class distribution within the study area and the occurrence of 

landslides according to the classification scheme for LSM using the SI method with the 

selected seven factors. 

Table 6-15 Result of statistics analysis concerning landslide susceptibility from the SI 

method with the selected seven factors. 

Class Area of each class 
Percentage of domain 

（%） 

No. of 

landslides 

Percentage of 

landslides (%) 

Very low 26388 8.86 6 0.27 

Low 52840 17.75 33 1.50 

Moderate 64488 21.66 137 6.21 

High 69376 23.30 372 16.86 

Very high 58052 19.50 770 34.89 

Extremely high 26564 8.92 889 40.28 

The forward stepwise LR approach was used to incorporate the predictor variables using 

the SPSS 20 software. The training dataset (1776 of total landslides) represented by points 

were assigned the value of 1. The same number of non-landslide points were randomly 

sampled from the landslide-free area and assigned the value of 0.  

The result based on all original factors is shown in Table 6-16. According to the table of 

this logistic regression, it shows that all the causative factors have a P-value less than 0.05, 
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indicating a statistical correlation between factors and the susceptibility of landslides at the 

90% confidence level (Tien Bui et al. 2011). Based on equation, the occurrence of landslide 

probability (P) can be computed as mentioned before.                

Lastly, the regression coefficients of the predictors, GIS and the natural break criterion 

were used to generate the landslide susceptibility maps (Figure 6-23). In the maps there are 

places where differences are subtle but also areas with obvious dissimilarities. There are 

more red colors in the map from all factors, which segregate at the very high and extremely 

high ends of the color ramp than the seven-factor counterpart. The map from the seven 

factors is less heterogeneous. Figure 6-24 and Table 6-17 show that 95.51% of the total 

landslides occurred in the 66.73% of the area classified as high, very high and extremely 

high susceptibilities if the all the original factors were used, while if the optimal seven 

factors were used 96.1% of the total landslides occurred in the 64.09% of the area classified 

as high, very high and extremely high susceptibilities (Figure 6-25 and Table 6-18). 
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Table 6-16 Coefficients, statistics of the factors with all factors used in the LR equation. 

Factors B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B) 

Lower Upper 

Elevation -0.50 0.04 187.79 1 0.00 0.61 0.56 0.65 

Slope 0.07 0.02 9.50 1 0.00 1.08 1.03 1.13 

Aspect -0.06 0.02 10.75 1 0.00 0.95 0.91 0.98 

Plan curvature 0.13 0.08 2.52 1 0.01 1.14 0.97 1.34 

Profile curvature -0.25 0.07 12.86 1 0.00 1.28 1.12 1.47 

Curvature 0.08 0.06 1.88 1 0.02 1.08 0.97 1.20 

Drainage density 0.03 0.03 0.92 1 0.03 1.03 0.97 1.09 

Dist. drainage network 0.21 0.03 42.40 1 0.00 1.24 1.16 1.32 

SPI 0.22 0.05 21.43 1 0.00 1.25 1.14 1.37 

CTI -0.45 0.06 55.03 1 0.00 0.64 0.57 0.72 

Rainfall 0.01 0.03 0.17 1 0.05 1.01 0.95 1.08 

Lithology 0.01 0.02 0.06 1 0.01 1.01 0.97 1.05 

Constant -0.18 0.15 1.48 1 0.02 0.84     
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Figure 6-23 LSM maps produced by the LR method: a) selected seven factors, and b) original 

12 factors. Maps show the spatial probability of landslide occurrence in six classes. 
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Figure 6-24 Susceptibility class distribution within the study area and the occurrence of 

landslides according to the classification scheme for LSM using the LR method with the 

original 12 factors. 

Table 6-17 Result of statistical analysis concerning landslide susceptibility from the LR 

method with the original 12 factors. 

Class Area of each class Percentage of domain（%） 
No. of 

landslides 

Percentage of 

landslides (%) 

Very low 16245 5.46 1 0.05 

Low 28468 9.56 25 1.13 

Moderate 54336 18.25 73 3.31 

High 72201 24.25 197 8.93 

Very high 73890 24.82 654 29.63 

Extremely high 52568 17.66 1257 56.96 
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Figure 6-25 Susceptibility class distribution within the study area and the occurrence of 

landslides according to the classification scheme for LSM using the LR method with selected 

seven factors. 

Table 6-18 Result of statistical analysis concerning landslide susceptibility from the LR 

method with selected seven factors. 

Class Area of each class Percentage of domain（%） 
No. of 

landslides 

Percentage of 

landslides (%) 

Very low 16889 5.67 1 0.05 

Low 30600 10.28 17 0.77 

Moderate 59412 19.96 68 3.08 

High 73816 24.79 216 9.79 

Very high 74014 24.86 608 27.55 

Extremely high 42977 14.44 1297 58.77 

6.5.3  Accuracy assessment  

For the verification, the total landslides were divided into two groups, training data and 

validation data and an ROC plot of sensitivity (true positive rate) and 1-specificity (false 
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positive rate) was made. For the SI method, the AUC value (0.837) is higher when optimal 

seven factors were used than 0.794 from all the original factors (Figure 6-26). For the LR 

model, the AUC value of the prediction rate curve (84.8%) form the seven factors is higher 

than that from all factors (80.8%) as shown in Figure 6-27. Consequently, using the seven 

factors give a higher accuracy than using all the original factors. In addition, LR has a 

slightly higher accuracy than SI. 

 

 

Figure 6-26 ROC curves for landslide susceptibility maps produced using SI with the 

selected seven and original 12 factors for Dongjiang Reservoir. 
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Figure 6-27 ROC curves for landslide susceptibility maps produced using LR with the 

selected seven and original 12 factors for Dongjiang Reservoir. 
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7. CHAPTER 7 DISCUSSION  

7.1. Completeness of landslide inventory maps  

In mountainous terrains, field investigation for landslide inventory mapping is 

challenging and tedious (Martha et al. 2010). Although direct visual interpretation of remote 

sensing data is a reliable method, this task is also laborious and time-consuming. New 

perspectives on detecting landslides more automatically have been facilitated with the 

increasing availability of high-resolution remote sensing images and improved computer 

technology in relation to image analysis. In this context, automated detection techniques 

seem to be suitable for efficiently establishing spatial inventories or databases of landslides 

that are useful for qualitative/quantitative hazard assessment. Various methods for 

automated landslide mapping have been proposed; however, few methods have successfully 

demonstrated ideal results. Nichol and Wong (2005) attempted using SPOT and IKONOS 

images to map landslides through pixel-based methods. Martha et al. (2010) recently applied 

OOIA to map landslides semiautomatically through contextual analysis. They empirically 

used expert knowledge to select features. Although Chang et al. (2012) identified shallow 

landslides by using high-resolution remote sensing observation data, they did not use a DEM 

and NDVI. For OOIA, applying expert knowledge to characterize landslides plays a key role  

in semiautomatic landslide detection. However, selecting features related to a landslide 

occurrence is highly subjective because of the high dependence on personal knowledge. 

Hence, an appropriate feature selection of landslide types is required. In this study, the 

information of objects was created through the multi-segmentation of fine resolution 

QuickBird (0.61 m) multispectral data and 5-m resolution elevation data, and major 

landslides were successfully characterized as old and young landslides.  
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In this thesis multi-segmentation was performed to extract the landslide features. Based 

on the vast feature information, the GA was used to optimize the selection of features related 

to landslides based on the data redundancy and correlation coefficient. GAs are a powerful 

technique for optimization parameters and can also avoid the subjectivity of quantified 

expert knowledge. The GA-based optimization selected 11 features from 366 features. The 

optimized features included spectral features such as layer mean,  morphological 

characteristics such as slope and elevation, and textural information such as GLCM. The 

GLCM and orthogonal relationship between the flow and main directions of objects can be 

used to classify agricultural areas and roads, respectively. This process shortens the 

computation time, reduces the dependence on subjective expert-knowledge, and improves 

the accuracy of landslide identification, particularly compared with the complex rule -set-

based classification of images. For example, Blaschke et al. (2014) built a complicated rule 

set to detect and delineate landslides by using OOIA, but it relies on expert experience and 

is time-consuming. A classification accuracy of 0.87 in the number of landslides was 

achieved in the experimental study area (Table 4-2). The young landslides were detected 

with a higher accuracy than the old landslides. Some vegetated areas were misclassified as 

old landslides because of the dense vegetation cover. In addition, the main misclassification 

of young landslides involved confusing them with bare areas (e.g., rocky outcrops, bare land, 

and roads) by the classifier because of the sparse vegetation; their tones were similar to a 

bright appearance of landslide areas in the satellite image, as shown in Figure 7-1. To reduce 

such false positive classification in the future, we must integrate topographical GLCM that 

can substantially reduce the misclassification of objects (Blaschke et al. 2014). Furthermore, 

the established case library can be reused for time-independent landslide detection. The case 

library is crucial for CBR. Only typical cases must be revised and updated for a time suitable 

detection. This process can reduce the laborious aspects of visual interpretation of data and 
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increase productivity. 

 

Figure 7-1 Examples of misclassification: (a) bare quarry misclassified as a young landslide, 

(b)  related field photo; (c) rock outcrop with sparse forest misclassified as an old landslide, 

and (d) related field photo. The tones of misclassification were similar, with a bright 

appearance of the landslide area in the satellite image. 
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7.2. Importance of landslide classification in susceptibility mapping. 

Active geological processes like landslides play an important role in reshaping 

topography (van Westen et al. 1997; Farrokhzad et al. 2011; Tarolli 2014; Li et al. 2014) . 

They also cause serious natural disasters; about one quarter of the natural disasters in the 

world seems to be directly or indirectly related to landslides (Sassa et al. 2006; Miyagi et 

al. 2011; Huang et al. 2012). The risks posed by landslides differ according to their types 

(shallow or deep-seated) and therefore “when, where and what type” of landslides are 

important aspects of susceptibility mapping. The problem is especially critical in 

developing countries where warning and protection measures are difficult to implement 

due to the limitation of economic conditions (Kojima et al. 2000). The risk imposed as well 

as the extent of the damage caused by a shallow landslide is usually local whereas deep -

seated landslides can have regional implications due their large sheer size and volumes. 

We found that the variations in topographic and geographic factors used for evaluating 

landslide susceptibility are equally useful in predicting and differentiating shallow and 

deep-seated landslides. This showed that the forces behind the occurrence of different 

landslide types are intrinsically different and that the parametric differences of the 

landslide causative factors can classify them into the two types. In a similar previous study, 

Kojima et al. (2000) used different landslide types as independent training datasets for 

prediction maps according to landslide types; however, this thesis has successfully 

combined these two analytical aspects (prediction and differentiation). This will provide 

an important frontier to discuss the geomorphological evolution of hillslopes. Moreover, 

the prediction of landslide types will be a useful guidance for geotechnical engineers and 

the local government managing and mitigating local hazards. 
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7.3. Significance of causative-factor optimization. 

A prior knowledge on appropriate causative factors related to landslide events are 

required to map landslide susceptibility (Guzzetti et al. 1999). Several studies in the past 

have shown that a manual selection of the causative factors by a subject specialist was 

considered the best approach, but it is rather subjective. Indeed, so far there is no general 

criteria or guidelines available on how to identify and select a set of landslide causative 

factors. Due to this fact, numerous scholars have used varied numbers of different causative 

factors to produce landslide hazard maps. Sometimes even 20 to 60 factors have been used 

for building discriminant susceptibility models (Guzzetti et al. 1999). Nevertheless, most 

frequently 10–15 factors were used based on abundance and accessibility (Lee et al. 2008). 

Hence, it seems to be possible to narrow down the factors based on the knowledge of 

triggering mechanism involved. For instance, for earthquake induced landslides, the 

triggering factors associated are no way related to precipitation and their varieties, but are 

linked to ground acceleration and its intensity. In such a case, it is a common understanding 

that one can easily omit those unnecessary factors in the analysis. However, when the 

triggering mechanism is not single or unknown, where the landslide inventory database 

were created from multiple imageries in different periods of time, the screening out process 

requires statistical or computational models. Lee et al. (2008), on computing the 

standardized difference of causative factors, screened six factors out of 14 for landslide 

susceptibility mapping in some parts of Taiwan. Although this method includes less 

computation, it requires to categorize the data into landslide and non-landslide groups 

which is further tedious. Similar statistical equations based on correlation or association 

indexes limit the predictive performances on multivariate models. On the other hand, 

Costanzo et al. (2012) identified the factors based on the ranks associated with each factor’s 
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expected contribution to the predictive skill of a multivariable model. Approaches adopting 

discriminant analysis and LR on the forward selection of variables, however, fail when 

most of the variables are statistically significant. For the same reason, this study did not 

consider the stepwise LR model because we found most of the variables are significant in 

the statistical tests (p < 0.1). As indicated in the results, none of the factors were screened 

with the stepwise LR model. Furthermore, stepwise LR model in landslide susceptibility 

assessment requires both landslide and non-landslide pixels in the calculation. The 

proposed model using CF eliminated these limitations because it used only landslide pixels 

in the computation, and hence is very fast. Prior definition of hazard classes is not required 

in the CF approach and it also supplies advantage of rendering the definition of susceptible 

classes transparent. Moreover, the proposed model is a relatively straightforward method 

that allows the causative factors to be ranked according to their certainty values in the range 

between -1 and 1. It is assumed that a positive CF values have a strong influence on the 

landslide occurrence, and vice versa. As shown in the result, and the criterion discussed in 

Section 6.3, six to seven causative factors were finally identified and they were ranked 

based on their CF values. We believe, CF-based factor screening process for the 

identification of the most determinant factors is an important step in the landslide hazard 

mapping. 
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The results of our analyses demonstrated that a larger number of causative factors are 

not necessarily to obtain a better landslide predictability map. This is probably either 

because of the data redundancy or spatial self-correlation with the study area. For instance, 

in Sado Island, one of the causative factors, NDVI, has no significant effect on the landslide 

occurrence in this study, as most of the landslides were large. Relatively short roots of the 

vegetation cover do not considerably influence large landslides and should be obvious to 

our understandings. In addition, geology and faults may have a positive influence on 

triggering deep-seated landslides. As demonstrated in the previous study (Ayalew et al. 

2005b; Dou et al. 2015g; Dou et al. 2015f) , landslide activity is mostly concentrated in the 

lithologies dominated by volcanic dacites, and volcanic andesites, followed by volcanic 

dacite and sandstone. Volcanic dacite and andesite are characterized by a high silica and 

alumina content and low in potash. They generally have relatively low shear strength and 

are strongly fractured, resulting in most concentrated landsliding in these rocks. 

Furthermore, slopes consisting of these lithologies are relatively steeper and more 

susceptible to failure. Some authors (Tien Bui et al. 2011; Devkota et al. 2013) invoked 

faults as the triggering cause of many deep-seated landslides. Ayalew et al. (2005) reported 

the presence of active faults in Sado Island that could potentially trigger landslides. T his 

is in agreement with our results as confirmed from the CF analysis. 

Although the method proposed in this study has not been tested at other sites, there are 

indications, which suggests its applicability to other landslide prone regions. Firstly, 

notwithstanding the fact that CF methods have seldom been used in identifying causative 

factors in landslide susceptibility mapping, they are used worldwide for managing 

uncertainty in rule-based systems. Because of their favorability functions to handle 

different data layers and the heterogeneity and uncertainty of the data, CF models are 
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largely appreciated in slope stability studies (Binaghi et al. 1998; Tien Bui et al. 2011; 

Pourghasemi et al. 2013a; Devkota et al. 2013). 

7.4. Comparative analysis of landslide susceptibility models 

Predication of the precise locations of the instabilities for landslide susceptibility 

assessment is rather difficult owing to the uncertainty of the spatial and temporal 

distribution of rainfall. Susceptibility assessments may also be influenced by other 

important factors such as geology, slope aspect, and slope angle. These issues are 

commonly addressed by GIS-based landslide susceptibility studies. Different researchers 

utilize various landslide conditioning factors for LSM. Though the selection of factors is a 

fundamental step for landslide susceptibility evaluation, universal standard or rule to select 

the conditioning factors is absent (Ayalew and Yamagishi 2005).Selecting factors is a 

fundamental step for landslide susceptibility evaluation and influences the result of LSM. 

To address this problem, we propose the CF method to select important factors. Using this 

method we selected the conditioning factors highly related to landslide occurrence. The 

resultant improvement in the values of AUC validate our approach. The use of the 

optimized factors led to a higher accuracy than when all possible factors were 

simultaneously used. Spatial auto-correlation and data redundancy among the conditioning 

factors before optimization is the possible cause for this observation. 

Additionally, among the factors for the three study areas in China and Japan as shown 

in Figure 7-2, we found that slope angle and lithology are the most important. This finding 

agrees with the other studies around the world (Can et al. 2005; Solaimani et al. 2013; Zare 

et al. 2013b; Xu et al. 2013; Fuchs et al. 2014). For instance, the slope angle is regarded 

as a very important factor in landslide research (Keefer 1994; Lu and Rosenbaum 2003; 

Fourniadis et al. 2007; Vita et al. 2012; Zare et al. 2013b), because it affects slope stability 
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against gravity and hillslope hydrology such as sub-surface flow velocity. Lithology also 

plays an important role in the occurrence of landslides in relation to rock permeability 

and strengths (Yamagishi et al. 2004; Ayalew and Yamagishi 2005; García-Rodríguez and 

Malpica 2010; Pourghasemi et al. 2013b; Dou et al. 2015g). Thus, these landslide factors 

may be common to various areas in the world. We believe that our research findings are 

universal and provides a method to select and qualify the landslide-conditioning factors. 

Landslides in Dongjiang reservoir watershed in China and the Chuetsu area in Japan 

differ in their triggering mechanisms. Landslides in Dongjiang were rainfall-induced while 

the same in Chuetsu were earthquake-triggered. In the Chinese study area, intense rainfall 

caused slope failures in areas of severely weathered-granite resulting in numerous shallow 

landslides. The permeability and drainage characteristics of the area also affected the 

distance travelled by the of landslide debries. Total curvature and distance to drainage 

network were found to be important in the Dongjian area along with the other common 

factors. Total curvature represents the morphological measurement of the topography (Lee 

and Sambath 2006). A more upwardly concave or convex slope holds more water and keeps 

it longer (Lee et al. 2004a) and these hydrological controls of topography are more expressed 

in mountainous areas and lower in the flat areas. Likewise, factors supplementing ground 

hydrology, distance to drainage network and rainfall, were also found to be important in the 

Dongjiang reservoir watershed area. 

Devastative landslides as a result of intense-rainfall are common in many places around 

the world. For example, on 20th August, 2015, extreme rainfall and the resultant serious 

debris-flow caused 44 injuries, 74 deaths and severely damaged 296 houses in Hiroshima 

City of Japan (Chigira 2001; Wang et al. 2015). On 4th July, 2013, high intensity rainfall 

induced by a torrential rainstorm in Sichuan Province, China, triggered a debris flow that 

caused 19 deaths, and additionally, transported a large amounts of sediments to the Zhuma 
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River and the Nanya River, generating three debris dams that blocked the two rivers 

temporarily (Ni et al. 2014). Similar recent hydro-geological disasters make mitigation 

efforts an urgent necessity. Our study of rainfall-induced landslides in the Dongjiang 

reservoir watershed may be applicable to many similar cases. 

An earthquake was the primary trigger for the landslides in the Chuetsu area. This study 

found that alongside the factors common to the other study areas, density of geological 

boundaries was found to be an important factor for the area. Geological boundaries depict 

geological heterogeneity of an area and its increasing density signifies a decreasing slope 

cohesiveness. The higher density of geological boundaries means lower stability due to the 

weak zones that can lead to an increase in landslide occurrences (Kawabata and Bandibas 

2009). The earthquake led to numerous slip along such weak zones. Plan curvature was 

also found to be an important factor in the study of landslides at Chuetsu. It delineates the 

morphology of the topography and governs the divergence or convergence of surface flow 

(Parsons 1979; Ohlmacher 2007; Conforti et al. 2010; Peckham 2011; Conforti et al. 2014) . 

However, in the case of Chuetsu, not flow but high soil moisture along concave topography 

may have affected landslide occurrence. Ohlmacher (2007) demonstrated that any study of 

landslide susceptibility needs to account for the complex relationship between plan 

curvature and landslide susceptibility.  

Drainage density represents fluvial erosion by streams but can be related to landslides. 

For example, drainage density and erosion rates in steep Japanese mountains are negatively 

correlated due to active landslides (Oguchi 1997). Several scholars have therefore studied 

the inter-relationship of landslides and geomorphological characteristics of drainage 

networks (Benda and Dunne 1997; Hovius et al. 1998; Nath 2004; Lee and Talib 2005; Ng 

2006; Schwab et al. 2008; Devkota et al. 2013; Santangelo et al. 2013; Conforti et al. 2014). 

Drainage density is an important factor both in the Chuetsu area and the Dongjiang 
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reservoir watershed, perhaps because these two study areas have major rivers. In the 

Dongjiang reservoir watershed, the Dongjiang river flows into the reservoir, while in the 

Chuetsu area, rivers such as the Shinano and the Uono cross over this area, hence, the 

drainage density in these areas changed largely place by place (Yoong and Okada 2005; 

Ayalew and Yamagishi 2005; Wang and Zhao 2006). A lot of landslides have been 

observed along the eastern side of the Shinano River near its confluence with the Asahi 

River (Kieffer et al. 2006). However, in Sado Island, there is no big river flowing across 

the study area and thus this causative factor is not important.   

Details about the triggering mechanism of landslides in Sado Island are unavailable but 

rainfall and heavy snowmelt are reported to be the primary reasons (Ayalew et al. 2005a; 

Ayalew et al. 2005b; Yamagishi 2008). Besides the factors common to the three study areas, 

aspect was found to be an important factor for Sado island. Slope-aspect is related to the 

meteorological parameters like precipitation asymmetry, exposure to sunshine, and wind 

velocity (Ercanoglu et al. 2008; Aksoy and Ercanoglu 2012) and hence an important 

causative factor in LSM (Carrara 1983; Van Den Eeckhaut et al. 2009b; Bijukchhen et al. 

2013). Most landslides in Sado occurred on the southern and southwest slopes where the 

snow is easy to melt. The periodic loading/melting of snow results in variation of soil water 

content and over-burden stress. These factors over time gradually decrease the stability of 

slope forming materials (Dou et al. 2015f). In the Chuetsu areas, landslides mostly occurred 

on the hanging-wall side of active faults, and thus slope aspect became important (Kieffer et 

al. 2006; Has et al. 2010). These situations do not occur in the Chinese study area at last 

typically.  

Neotectonic movements like earthquakes often create “broken zones” along the huge 

faults segments in superficial deposits on the higher ground consisting mostly of colluvium. 

Such weak zones are favorable for landslides (Liu et al. 2004). The major structural 
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discontinuities and shear zones generated by the faults are primarily causative factors in the 

analysis of landslide susceptibility (Sarkar and Kanungo 2004; Collins et al. 2012; Tien Bui 

et al. 2012a; Zare et al. 2013b). The distance to faults was found to be a major causative 

factors in Sado Island (Dou et al. 2015g) because of active faulting there. From these three 

case studies in China and Japan we found that the triggering mechanisms dictates the 

causative factors relevant for that kind of landslide susceptibility mapping. 

In this study, several traditional models, such as statistical index (SI), logistic 

regression (LR), frequency ratio (FR), and weight of evidence (WOE) are compared with 

the help of respective AUC values. We found that logistic regression has a better 

performance than the others as shown in Figure 7-3. This conclusion is also in a good 

agreement with the other researchers around the world (Dai et al. 2004; Gorsevski and 

Gessler 2006; Chen and Wang 2007; Devkota et al. 2013) . 

 

 

Figure 7-2 Important collective factors for the Chuetsu area, Sado Island and the 

Dongiang reservoir watershed. 
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Figure 7-3 Comparative different models for LSM by AUC values.  
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8. CHAPTER 8 CONCLUSIONS  

This study developed an integrated approach for detecting and characterizing landslide 

features to automatically construct a landslide inventory in a district in the PRD, China. 

The proposed model incorporates each method’s advantage and eludes some of the 

problems such as bottlenecks of knowledge-based selection in creating an EKS. The 

established inventory is the foundation of forecasting the spatial and temporal distributions 

of future landslides. The predictive mapping of landslide susceptibility can be conducted 

based on independent landslides with a satisfactory consistency. This valuable knowledge 

is suitable for disaster management to identify landslide-prone areas, mitigation after the 

occurrence of landslide disasters, and prevent future unnecessary economic losses. 

Additionally, this study differentiated the landslide types (i.e., shallow and deep-seated 

landslides) using an SVM model with the assistance of a 2-m high resolution Lidar DEM. 

The outcomes with high accuracy suggest that our assumptions employed are valid. The 

existing landslides matched the predictions in most cases. SVMs also performed better than 

ANN (BP) in terms of model stability and accuracy with the relatively small training 

samples. Among the four SVM kernels, RBF was selected after a comparative test. Besides, 

reduction in the size of the training dataset from 50% to 30% of the total dataset did not 

significantly affect the accuracy of the SVMs model, confirming that SVMs work even 

with a smaller training dataset. However, we found that a higher resolution DEM is 

necessary for studying the details of shallow landslides. Active geological processes like 

landslides play an important role in reshaping topography. Therefore, differentiating the 

types of landslides is important for discussing the geomorphological evolution of hillslopes, 

and also for supporting the local government managing and mitigating local hazards. 
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Further studies using not only a finer DEM, but also other detailed information such as the 

peak ground acceleration (PGA) and volume of landslides are necessary. 

This study also demonstrates the usefulness of the CF model in identifying the best 

fitted causative factors for landslide susceptibility mapping. Based on the CF model,  six or 

seven influencing factors with the high correlations to landslide occurrence were selected 

from a set of original factors. The LSM maps were then produced by applying both the SI 

and LR methods for the CF-identified causative factors and the original set of factors. Both 

the success rate and prediction rate indicated for both the SI and LR methods that the six 

or seven factors achieve better results than that of all factors. In addition, we noticed that 

the maps prepared from using six or seven causative factors have much more homogeneous 

classes than the original factors. We found that they all the three case studies include some 

common collective causative factors, such as slope angle, and lithology. These common 

factors may be applied to the other similar study areas. The proposed method provides a 

useful way to select the controlling factors of landslides in particular where data 

redundancy or scarcity is critical. The findings acknowledge that in the mountainous 

regions suffering from data scarcity, it is possible to select key factors related to landslide 

occurrence based on the CF models in a GIS platform. Moreover, in this research, LR has 

slightly outperformed the others among the traditional methods, which agrees with results 

from some other researchers in the world. 

We assume that the results of our studies provide helpful information for disaster 

management, urban planning, risk mitigation and related decision making in landslide-

prone areas. For example, in the study areas, the resultant landslide susceptibility maps can 

be conducive to select appropriate locations for urban development to increase economic 

benefits and decrease future damages and loss of lives. 

In the future, to further understand the geomorphic process and landscape evolution 
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related to landslides in steep mountainous regions, auxiliary research is required concerning 

geomorphic, topographic, anthropogenic, hydrologic, and geologic settings of landslide 

sources. Additionally, to quantitatively asses the influence of environmental changes on 

slope stability, physical-based or process-based models such as, TRIGRS, SHALSTAB, 

SINMAP and SHETEAN models (Santini et al. 2009; Chien et al. 2015) need to be used to 

simulate landslides. Moreover, the relatively new models, such as the random forest (RF), 

deep learning (DP) algorithms will also develop to generate the landslide susceptibility maps 

and enable hazard warnings more precisely. 
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APPENDICES  

Matlab matching coding for detecting landslides in the CBR: 

%extract the variable 

[datalength,m_datawidth]=size(data); 

[m_casedatalength,m_casedatawidth]=size(case_data) 

m_fid = fopen('d:¥test.txt', 'w'); 

 %matches the entire unknown patch to match the attribute. 

for j=1:datalength 

    m_data_id=data(j,1); 

    m_data=data(j,2:m_datawidth); 

     for i=1:m_casedatalength 

        m_casedata_id=case_data(i,1); 

        m_casedata=case_data(i,2:m_datawidth); 

        m_minus=m_casedata-m_data; 

        m_dist(i,1)=m_casedata_id; 

        m_dist(i,2)=sqrt(sum(m_minus.^2)); 

    end     

     [m_matchcase,m_matchcase_index] = sortrows(m_dist,2); 

%     m_matchcasetype(j,1)={m_data_id}; 

_matchcasetype(j,2)={case_textdata(m_matchcase_index(1)+1,6)}; 

% %     fwrite(m_fid,cell2mat(m_matchcasetype(j,1)),'%d'); 

%     fwrite(m_fid,cell2mat(m_matchcasetype(j,2)),'%s');  

     m_matchcasetype=case_textdata(m_matchcase_index(1)+1,6); 
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    fprintf(m_fid,'%d,',m_data_id); 

    fprintf(m_fid,'%s¥n',cell2mat(m_matchcasetype)); 

     %fprintf(m_fid,'%d,%8.2d,%s,%s/n',m_data_id,m_casedata_id,cell2mat(m_mat

chcasetype),cell2mat(m_matchcasetype)); 

end     

 %save('d:¥test.txt','m_matchcasetype','-ASCII') 

%save('d:¥test.txt','m_matchcasetype') 

fclose(m_fid); 

fprintf('¥n'); 

fprintf('finished'); 

fprintf('¥n'); 

 [datalength,m_datawidth]=size(data); 

[m_casedatalength,m_casedatawidth]=size(case_data) 

 m_data_id=data(1,1); 

m_data=data(1,2:m_datawidth); 

 for i=1:m_casedatalength 

    m_casedata_id=case_data(i,1); 

    m_casedata=case_data(i,2:m_datawidth); 

    m_minus=m_casedata-m_data; 

    m_dist(i,1)=m_casedata_id; 

    m_dist(i,2)=sqrt(sum(m_minus.^2)); 

end     

 [m_matchcase,m_matchcase_index] = sortrows(m_dist,2); 

m_matchcasetype=case_textdata(m_matchcase_index(1)+1,6); 

 


