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Abstract

Transcription is one of the most important biological processes in the cell. As the first
level in the cascade of gene expression, the comprehensive understanding of the transcrip-
tional mechanism is still a great challenge for life science researchers. For a gene to be
expressed, the genomic region surrounding its transcription start site has to be bound by
specific regulatory proteins known as transcription factors. A great body of studies have
hypothesized that those genes (or a part of them) expressed in the same tissue, cell type or
physiological condition might be regulated by a similar mechanism and hence share com-
mon promoter structures. Thereby the finding of structural patterns in promoter regions
could contribute to better explain the regulatory mechanism of these genes and search for
co-expressed genes with unknown biological functions. This thesis presents three studies
performed under the above-mentioned assumption.
Although several studies have focused on the analysis of promoter regions of co-expressed
genes in distinct metazoan tissues, little research has been carried out in plants. The plant
Arabidopsis thaliana offers a valuable opportunity for the modeling of promoters because
of its small genome and short intergenic regions. Taking advantage of such characteristics
and the availability of microarray data from A. thaliana structures, one method intended
to uncover motif-combination patterns in promoters of genes expressed in plant structures
such as flower, root, shoot and seed, and in the whole plant A. thaliana was developed.
Initially, de novo motifs were predicted in five different sets (each comprising the promot-
ers of genes expressed in the above plant structures) and eight of them appeared to be
novel. Subsequently, the average of distances of identified motifs on both strands from
the translation start site were computed and input into a support vector machine. The
correctly classified promoter regions per plant structure were further taken for creating
specific patterns of sets of motifs to describe the promoter architecture of co-expressed
genes. These five patterns were used to scan the entire A. thaliana promoter set and de-
tect genes with unknown biological functions. Significant percentages of genes expressed
in petal differentiation, root hair, synergid cells and trichome, as well as housekeeping
genes were found.
In order to draw a better picture of the transcription mechanism, another computational
method was designed and validated in cis-regulatory modules of antenna-expressed genes
in Drosophila melanogaster. This approach intended to simultaneously combine diverse
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structural features such as relative positioning to the transcription start site, pairwise
positioning, binding order and strand orientation of regulatory motifs. Predictions of de
novo motifs in the regulatory regions of antenna-expressed genes uncovered six poten-
tially interesting antenna-related motifs from which three turned out to be novel. The
regulatory regions were then scanned in search for the aforementioned features and a
correlation-based filter was introduced to remove irrelevant characteristics. Afterwards a
genetic algorithm was designed as to reach the most highly informative features common
to the regions. As a result, eight structural features were obtained and used to score
the entire set of D. melanogaster regulatory regions for unknown antenna-expressed genes
with a similar promoter architecture. Validations were conducted with two independent
RNA-Sequencing datasets of eye-antenna disc-derived and antenna disc-derived cell lines
in the third instar larval stage from the Model Organism Encyclopedia of DNA Elements
database (modENCODE). Expressed genes were compared to genes with highly scoring
regions predicted by the method, resulting in roughly 76.7% of overlapping genes. Conser-
vation signals of the structural features were found in regions of orthologs across eleven
D. melanogaster sibling species. The approach showed comparable results to a former
study and uncovered relevant features related to binding order and strand orientation of
regulatory motifs.
The above computational method was extended to model the regulatory regions of genes
expressed in 22 developmental stages of D. melanogaster. RNA-Seq data covering the
whole developmental cycle were downloaded from modENCODE to build and validate
the models. Two additional structural features as distance of motif pairs to the tran-
scription start site and presence of motifs anywhere in the promoter were included. As a
result, 13 (59%) out of 22 models showed statistical significance (p-value < .01).
These studies evidence the reliability of measures as positioning and orientation of motif
sequences at specific distances to the translation start site for differentiation of promoters
of genes expressed in distinct A. thaliana structures. The integration of different features
including order and orientation of motifs into a single approach has proved to describe the
promoter regions of tissue-expressed genes. The combination of correlation-based filter
and genetic algorithm has contributed to better learn those highly informative features
of similar promoter architectures. Despite the proposed approach can be generalized for
modeling the promoters of genes expressed in other biological conditions, its effectiveness
is still comparable to that of previous studies conducted under the same premise.
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Chapter 1

Introduction

1.1 Motivations

Transcription is the first step in the cascade of gene expression and one of the most impor-

tant biological processes in the cell. Its control is carried out by a set of proteins known as

transcription factors (TFs), which regulate the expression of genes through their binding

to DNA regulatory elements in nearby genomic regions [1]. The study of TFs and their

binding sites has become a key factor in understanding the regulation of transcription.

Great attention has recently been paid not only to the prediction of TF binding sites but

also to the modeling of the binding and function of TFs in different tissues [2].

Many studies have attempted to elucidate aspects such as the binding mechanism, the

promoter structure and the regulatory binding sites. DNA sequences have been regarded

as vertices of a regular simplex for explaining the binding mechanism [3]. Bayesian net-

work representations of TF binding sites were employed to expand the probabilistic rep-

resentation of DNA motifs from an independent position specific-scoring matrix to a full

dependency model [4]. Tags of several TF binding sites in mouse and human genomes

were sequenced to analyze the evolution of different promoter classes. New transcrip-

tion start sites (TSSs) which facilitated the identification of tissue-specific promoters and

cis-acting elements were detected [5]. Proximal human and mouse promoters across dif-

ferentiated tissues were also studied to identify regulatory modules capable of explaining

tissue-specific differential expression [6].

Other works have specifically focused on cis-regulatory modules. Common properties of

these modules such as elevated GC contents, increased levels of interspecific sequence
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conservation, and tendency to be transcribed into RNA have been found [7]. An algo-

rithm designed for detecting cis-regulatory modules showed a high enrichment of them

for differentiated tissues versus a depletion for embryonic development genes in the region

close to the TSS [8].

Since promoters might contain a variety of binding sites for different TFs, it is no longer

enough to think of factors acting individually. Additional studies have been conducted

under the premise that genes showing similar expression profiles could somehow share

common structural characteristics in their promoter regions. Based on the previous hy-

pothesis a simple Markov chain-based model was proposed for modeling the promoter

architecture. This method included characteristics as orientation, position with respect

to the translation start site (TLS) and order of predicted occurrences of overrepresented

motifs [9]. A set of rules comprising presence and pairwise positioning of motifs was later

created to describe human and mouse promoters [10].

Cis-regulatory elements and motif pairs bound by interacting proteins have demonstrated

co-occurrence of specific sites in promoters [11]. Many of the genomic regions densely

bound have revealed new binding relationships between TFs [12]. If the promoter regions

of tissue-expressed genes (or a part of them) have common binding patterns, their mod-

eling could contribute to detect motif sequences bound by tissue-related factors.

This thesis has intended to prove that promoters of genes expressed in the same biolog-

ical tissue or physiological condition share a common promoter structure. Three studies

conducted under the aforementioned premise are presented here. The first method an-

alyzed the promoter regions of genes expressed in four plant structures and the entire

plant Arabidopsis thaliana and proposed novel motif-combination patterns capable of de-

tecting genes with related biological functions. The second method combined four types

of features such as relative positioning to the TSS, pairwise positioning, order and orien-

tation of motif sequences for describing the cis-regulatory modules of antenna-expressed

genes in Drosophila melanogaster. The previous method was then improved and applied

to regulatory regions of genes expressed in a spectrum of D. melanogaster developmental

stages. Validations with RNA-Sequencing (RNA-Seq) data confirmed the potential of the

computational models in detecting genes with similar promoter architectures.
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1.2 Background of Molecular Biology

This section introduces the reader to the biological background necessary to understand

the contents of this thesis. Gene expression is a continuous process that comprises tran-

scription, translation and even post-translational events. Because the main findings of

this research are related to the first level of gene expression, the transcription mechanism

as well as the biological entities involved in it shall be explained. For detailed knowledge

about this section, the interested reader might also refer to [13, 1].

1.2.1 Basics of Transcription

Transcription is the biological process in which the genomic sequence of nucleotides is

converted to a new type of nucleic acid, ribonucleic acid (RNA). The genomic loci this

RNA is created from is known as genic region or gene (Figure 1-1).

Transcription comprises three different stages: initiation, elongation and termination.

Initiation

The chromatin-remodeling machine joins some acetylated lysines and desorganizes nucle-

osomes, increasing the exposition level and accessibility of promoters. The preinitiation

complex is formed once the RNA Polymerase (RNAP) has recognized and bound the

promoter. The complex formed by TFs and the RNAP II evolves into closed and open

complexes. The former comprises some TFs and the mediator whereas the latter is formed

by the helicase activity of one of the factors.

The synthesis of a messenger RNA (mRNA) begins at the point +1, which marks the start-

ing point of transcription. When an adequate fragment of RNA has been synthesized, the

C-terminal domain of RNAP II is phosphorylated. Such phosphorylation destabilizes the

interactions of RNAP II with some TFs, favoring the rapid advancement of RNAP II in

transcribing the gene.

Elongation

The RNAP II catalizes the formation of phosphodiester bonds between nucleotides. The

elongation factors decrease the pauses of RNAP II, desorganize the nucleosomes and fa-
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vor the process of error correction. Here another position of the C-terminal domain is

phosphorylated and recognized by proteins with functions in processing and maduring

the pre-mRNA. The mRNA capping is conducted in the initiation phase and the splicing

process during elongation.

Termination

The C-terminal domain is dephosphorylated and the RNAP II continues transcribing un-

til a sequence indicating the site of polyadenylation is reached. An endonuclease cuts

the mRNA a few nucleotides from such sequence and releases it. The sequence is also

recognized by an enzyme that adds a poly (A) tail to the transcript.

The mechanism of transcription varies in complexity among organisms. In prokaryotes

it is simple and involves operons, which are controlled by a single promoter. Prokaryotic

promoters contain two hexamers that help to position the RNAP I at the TSS and TFs

bound to the RNAP I that increase the affinity of the hexamers. Eukaryotes, on the other

hand, have a more complex transcription mechanism. Their promoter regions are longer

and DNA is wrapped around histones, forming nucleosomes and creating a high-level

structure referred to as chromatin (Figure 1-1). Basal TFs are also necessary for RNAP

II binding and DNA wrapping around histone proteins.

1.2.2 Promoter Region and Regulatory Elements

Promoter regions facilitate the binding of TFs, which are required to form the pre-

initiation complex. In eukaryotes, promoters are often split into two regions, a long region

upstream of the TSS (proximal promoter) and a short region near or around the TSS (core

promoter). Core promoters can be of two distinct types. One type comprises regions with

a single TSS or a cluster of them within a narrow genomic stretch. The other type, on the

other hand, consists of regions with wide ranges of TSSs and overrepresented CpG islands.

Core promoter regions also contain essential regulatory elements such as the TATA box

(AT-rich sequence) and the initiator. The TATA box is bound by the TATA-binding pro-

tein, which along with TATA-associated factors, form the multi-subunit initiator complex.

The initiator element in conjunction with the downstream promoter element recruits the
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TF IID complex whose binding to the TATA box creates a stable transcription complex.

Other cis-regulatory elements are the B recognition element, the motif ten element, the

downstream core element and the X core promoter element 1. The B recognition element

is localized immediately upstream and downstream of the TATA box in TATA-containing

promoters and specifically interacts with the TF IIB.

The elements localized upstream of the core promoter region are referred to as proximal

TF binding sites and allow the interaction of distant elements with the core promoter.

Three of such elements are enhancers, silencers and insulators (Figure 1-1).

Enhancers

Non-coding sequences that recruit distant TFs and upregulate the formation and binding

of the preinitiation complex to the core promoter [14, 15]. These motifs can be found up-

stream and downstream of the TSS, in 3’ or 5’ untranslated regions or thousand base pairs

from the gene boundary. It is believed that either the free movement of the chromatin

strand facilitates the enhancer-promoter interaction or the active enhancer and protein

complex follow the chromatin strand until the promoter is found. Most of yeast genes do

not have distant enhancers but activating sequences upstream of the TSS.

Silencers

Position-independent or position-dependent motifs, which downregulate the expression of

genes [16, 17]. The former are short elements upstream of the TSS that interfere with the

preinitiation complex assembly once bound by repressors. The latter can be located up-

stream and downstream of the TSS and prevent the binding of TFs to their cis-regulatory

motifs.

Insulators

Special cis-acting regions that block unwanted interactions between enhancers or silencers

[18]. Enhancer-blocking insulators tackle the gene activation by obstructing enhancer-

promoter interactions. Barrier insulators, on the other hand, hinder the heterochromatin

expansion and lie in the boundaries of heterochromatin and euchromatin.
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Figure 1-1: The promoter and genic regions along with the different regulatory elements
involved in transcription. This figure is reused, with permission, from Nature Reviews
Genetics [1] c© (2012) Macmillan Publishers Ltd.

1.3 Biological Experiments

This section explains two biological experiments designed for measuring gene expression

levels. The first experiment known as DNA microarrays (DNA chip) makes use of the

hybridization property of DNA strands (section 1.3.1) whereas the second one referred

to as RNA Sequencing (Whole Transcriptome Shotgun Sequencing) is based on next-

generation sequencing (section 1.3.2). In this thesis, biological data generated by either

of the above experiments have been used for detecting tissue-expressed genes or validating

the expression of computationally predicted genes. The interested reader can find detailed

explanations in [19].

1.3.1 DNA Microarrays

Despite most cells of our body contain the same genomic sequence, only a fraction of the

expressed genes give unique properties to each cell. When a collection of RNA molecules

are analyzed, the main goal is to identify the expressed genes these RNAs are transcribed

from.

DNA microarray experiments are often employed for measuring changes in gene expres-

sion, screening single nucleotide polymorphisms, genotyping differences in the genetic
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make-up of individuals, among others. They have been designed for conducting a series

of hybridization experiments quickly and efficiently in parallel by relying on the comple-

mentation and formation of hydrogen bonds between two DNA strands. The expression

of thousand genes can then be assessed by analyzing the amount of mRNAs that hybridize

their complementary sequences in a single microarray. There are two kinds of microar-

rays: complementary DNA (cDNA) microarrays and oligonucleotide arrays. The former

are produced through the insertion of double-stranded cDNA onto a solid surface (glass

or nylon) whereas in the latter oligonucleotides are synthesized to specific alignments.

Microarrays contain many spots with picomoles of specific DNA sequences (probes).

These probes could be polymerase chain reaction products, synthetic oligonucleotides,

cDNA or short sections of a gene. While probes are immobilized on a solid spot, targets

are applied on the array for hybridization. Probe-target hybridization is detected and

quantified to assess the relative amount of DNA in the target. Figure 1-2 shows two types

of microarray experiments, two-colour experiment (left panel) and one-colour experiment

(right panel). In two-colour experiments mRNAs from different tissues/cell lines are ex-

tracted, converted to a mixture of cDNAs, and labelled with differentially fluorophores

such as Cy3 and Cy5. The labelled DNA is then hybridized to a microarray slide. When

the slide is washed off to remove non-specific hybridizations, it is read with a laser scanner

that differentiates Cy3- from Cy5-signals. The quantification step measures the fluores-

cent intensity corresponding to each labelled sample. In one-colour experiments the same

procedure is conducted but DNA is labelled with a single colour and hybridized without

a reference sample.

1.3.2 RNA Sequencing

Hybridization-based microarrays have been widely used for analyzing transcriptomes, but

their restrictions of design limit the detection of spliced patterns and do not provide a

comprehensive understanding of transcriptomes.

Large-scale approaches such as serial analysis of gene expression and massively parallel

signature sequencing give better accounts of transcript abundance. Although genome-

wide tiling microarrays have been utilized for assessing gene expression and discovering

new transcripts they require huge amounts of RNA. A recent technology that overcomes
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Figure 1-2: Overview of a typical microarray experiment. This figure is reused, with
permission, from Nature Reviews Genetics [20] c© (2008) Macmillan Publishers Ltd.

the above limitation by using high-throughput sequencing is often used. This technique

is known as RNA Sequencing (RNA-Seq) and avoids the bacterial cloning of cDNA.

RNA-Seq analyzes transcriptomes with resolutions higher than those of microarray-based

methods. It processes the mature mRNA with an oligo (dT) or random primer in order

to generate the cDNA. The cDNA is subsequently used as template and amplified via

polymerase chain reaction. During the amplification phase two known sequences, primer

and adaptor, are ligated to the cDNA. The ligated sequence, primer + cDNA + adaptor, is

sequenced using high-throughput sequencing to produce short reads. The resulting reads

are finally aligned to a reference genome to create a transcriptome map and measure the

8



expression level of the corresponding genes (Figure 1-3).

Figure 1-3: Overview of a typical RNA-Seq experiment. This figure is reused, with
permission, from Nature Reviews Genetics [21] c© (2009) Macmillan Publishers Ltd.

1.4 Machine Learning Techniques

The field of machine learning has evolved from pattern recognition and computational

learning theory. Machine learning methods are intended to design algorithms capable of

learning from existing examples and predicting desired behaviours. These methods have

been applied to many computational domains like computational biology [22]. This thesis

has made use of two machine learning techniques: genetic algorithms (GA) (section 1.4.1)

and support vector machines (SVM) (section 1.4.2), so that the present section will focus

on them.
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1.4.1 Genetic Algorithms

GA is a method that imitates the evolution theory of Darwin for solving real problems

[23]. Each individual of the population represents one of the possible solutions to the

problem. The GA follows five basic steps:

1. Evaluate the score of each individual,

2. Reproduce the fittest individuals,

3. Mutate the newly generated individuals,

4. Organize the resulting population, and

5. Repeate the entire procedure until a condition is reached.

GA requires three essential parameters:

• Size of population: Number of individuals in the population. If this parameter is

insufficient few possibilities of crossover will exist.

• Probability of crossover: Likelihood of reproduction between parental individuals.

This parameter keeps children from being exact copies of their parents.

• Probability of mutation: Frequency with which individuals are mutated. This pa-

rameter guarantees the change of new individuals after crossover.

There are several types of codification, but the most used is the binary codification in

which individuals are represented as a binary string (0s/1s). Genetic operators such as

selection, crossover and mutation are applied on each individual or the entire population

(Figure 1-4).

Selection

This operator chooses the fittest individuals because they might reproduce with higher

probability. Selection methods like fitness proportionate (roulette wheel), elitist and tour-

nament are often employed. In the roulette wheel method each individual has a major

10
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Figure 1-4: Operators: crossover, mutation and roulette wheel selection.

or minor part in the roulette depending on its scoring. On the other hand, elitist se-

lection copies the fittest individual to the next generation whereas tournament selection

randomly chooses a number of individuals and takes the fittest one for crossover.

Crossover

This operator interchanges information between two individuals so that children with bet-

ter fitness are produced. One- and two-point crossovers are frequently used. In one-point

crossover two parents are cut at one point. Children are then created by copying the

information of a parent from the beginning until the cut point and the remaining infor-

mation from the other parent. In two-point crossover the parents are cut at two positions.

Information from the beginning until the first cut point, from the first until the second

cut point and from the second cut point until the end is copied to the children.

Mutation

This operator keeps the solutions from falling into local optima by randomly changing the

individuals. Before increasing mutations the randomness of the initial population should

be regarded.

Unlike traditional techniques GA explores the solution space for many solutions while

discarding suboptimal ones. It does not need specific knowledge about the problem, but

random changes to the candidate solutions are made and a fitness function is used to

assess any improvement.
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1.4.2 Support Vector Machines

SVM is a classification technique which learns the decision surface between two different

classes. It maps the input information to a higher dimensional space and searches for

the separation hyperplane capable of maximizing the margin between the objects of both

classes [24, 25].

Let us suppose the following training set

TS = (x1, y1), . . . , (xi, yi) i = 1, . . . , n (1.1)

where each instance xi belongs to the class yi (yi ∈ {−1, 1}). This set TS is mapped to

a feature space of higher dimension to search for the optimal hyperplane.

By considering z = ϕ(x) as the vector with mapping ϕ to the feature space Z, the optimal

hyperplane

w · z + b = 0 (1.2)

is that for which the instance xi is separated as

f(xi) = sign(w · zi + b) =

{
1 yi = 1
−1 yi = −1

w ∈ Z and b ∈ <
(1.3)

If the set TS were linearly separable there is a unique optimal hyperplane and hence a

pair (w, b) so that

{
(w · zi + b) ≥ 1, yi = 1

(w · zi + b) ≤ −1, yi = −1
(1.4)

is valid for all the elements of TS.

If the set TS were nonlinearly separable, equation 1.4 shall be modified with non-negative

values ξi ≥ 0, resulting in

yi(w · zi + b) ≥ 1− ξi (1.5)

where ξi 6= 0 are the values for which the instance xi does not satisfy equation 1.4.

By regarding the term
∑n

i=1 ξi as the measure of classification error, the problem of the
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optimal hyperplane is redefined as

min
{

1
2
w · w + C

∑n
i=1 ξi

}
yi(w · zi + b) ≥ 1− ξi

ξi ≥ 0

(1.6)

where the constant C is the regularization parameter adjusted during the formulation of

the SVM.

To search for the optimal hyperplane in equation 1.6 a Lagrangian is built and transformed

into

max W (α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjyiyjzi · zj∑n

i=1 yiαi = 0 and 0 ≤ αi ≤ C
(1.7)

where α = (α1, . . . , αn) is the vector of Lagrange multipliers.

The solution αi of equation 1.7 satisfies

αi(yi(w · zi + b)− 1 + ξi) = 0
(C − αi)ξi = 0

(1.8)

where αi 6= 0 are the unique values for which the constants in equation 1.5 are satisfied

with the equality sign. The instance xi corresponding to αi > 0 is referred to as support

vector. In the non-separable problem there are two types of support vectors xi called

errors. A vector satisfies

yi(w · zi + b) = 1
ξi = 0 for 0 < αi < C

(1.9)

whereas the other vector does not satisfy equation 1.4 and

ξi 6= 0 for αi = C (1.10)

Thus, the instance xi for which αi = 0 is correctly classified.

The optimal hyperplane w · z + b is then built by

w =
n∑

i=1

αiyizi (1.11)

and b is computed from equation 1.8.

The decision function deduced from equations 1.3 and 1.11 is

13



f(x) = sign(w · z + b) = sign
( n∑

i=1

αiyizi · z + b
)

(1.12)

Since the parameter ϕ is unknown, the solution of equations 1.7 and 1.12 is impossible

unless a kernel function is used. Hence the kernel function K(·, ·) computes the dot

product of the training instances in the feature space Z by

zi · zj = ϕ(xi) · ϕ(xj) = K(xi, xj) (1.13)

The separation hyperplane is then found by

max W (α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjyiyjK(xi, xj)∑n

i=1 yiαi = 0 and 0 ≤ αi ≤ C
(1.14)

with the decision function

f(x) = sign(w · z + b) = sign
( n∑

i=1

αiyiK(xi, xj) + b
)

(1.15)

1.5 Thesis Overview

This thesis presents three computational methods aimed at modeling the promoter archi-

tecture of tissue-expressed genes.

• The first method uses genes expressed in five distinct A. thaliana structures (Chapter

2). This chapter shows novel motif-combination patterns found in promoters of

genes expressed in four structures and in the entire plant. Motifs were predicted

in each promoter set and the average distance of the identified motifs upstream of

the TLS on both strands was computed. A SVM was employed for classification

and correctly classified promoters were taken to create motif-combination patterns

capable of describing the promoter architecture of each set of expressed genes.

• The second method was created with D. melanogaster antenna-expressed genes

(Chapter 3). This chapter describes an improved computational method which

simultaneously combines features such as relative positioning of motifs to the TSS

and from each other, binding order and strand orientation for accurately model-
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ing the promoter architecture. Six antenna-related motifs were predicted, three of

which appeared to be novel. A correlation-based filter was introduced to remove

irrelevant features and a GA was designed for optimizing the remaining feature col-

lection. Eight highly informative characteristics were obtained and used to score the

entire set of D. melanogaster regulatory regions for antenna-expressed genes with

unknown biological functions. Validations were conducted with two independent

RNA-Seq datasets and expressed genes were compared to predicted ones for 76.7%

of overlapping genes. The discovered features were also found to be conserved in

regulatory regions of orthologs across eleven Drosophila sibling species.

• The above computational method was extended to model the cis-regulatory modules

of D. melanogaster genes expressed in 22 developmental stages (Chapter 4). RNA-

Seq data from each stage were used for creating and validating the models. Two new

features such as presence of motifs anywhere in the promoter and relative distance

of motif pairs to the TSS were further added. As a result, 13 (59%) out of 22 models

showed statistical significance.
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Chapter 2

Novel Motif-Combination Patterns
Define the Promoter Architecture of
Arabidopsis thaliana Genes

Though several studies have analyzed the promoters of genes expressed in metazoan tissues

or cells, little research has been conducted in plants. This chapter describes the finding of

novel motif-combination patterns in promoters of genes expressed in four different plant

structures (PSs) and in the entire plant A. thaliana. Sets of genes expressed in four

PSs (flower, seed, root and shoot) and housekeeping genes were formed from a database

of gene expressions in A. thaliana. PS-specific motifs were subsequently predicted and

eight of them turned out to be novel. A SVM was trained using the average upstream

distance of the identified motifs from the TLS on both strands. The correctly classified

promoters per PS were used to construct patterns of sets of motifs able to describe the

promoter architecture of PS-expressed genes. The discovered patterns were tested in the

entire A. thaliana promoter set, identifying 77.8%, 81.2%, 70.8% and 53.7% of genes

expressed in petal differentiation, synergid cells, root hair and trichome, as well as 88.4%

of housekeeping genes. The content of this chapter has been published in [26].

2.1 Introduction

Despite numerous studies have attempted to analyze the promoter structure of co-expressed

genes, the motif-sequence patterns of plant promoters have been inadequately analyzed.

Previously, Molina and Grotewold made use of a combination of expectation-maximization

and Gibbs sampling methods to identify motifs overrepresented in A. thaliana core pro-
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moters [27]. However they did not focus on the combination of predicted motifs for

proposing patterns of sets of motifs in promoters of genes expressed in specific structures

of the plant. Since the analysis of promoter regions is easier in small genomes with short

intergenic regions, the A. thaliana genome was chosen for conducting the current analysis.

This study has used distance and orientation of motifs in four PSs and in the whole A.

thaliana for creating specific motif-combination patterns able to capture the promoter

structure of PS-expressed genes. Motifs specific to the four PSs and to the entire A.

thaliana were first predicted. Eight of them did not significantly match cis-acting regula-

tory elements from the PLACE database and were considered new motifs. Five patterns of

motif combinations that describe the promoter architecture of genes expressed in flower,

seed, root, shoot and the whole plant were built. Each pattern identified a significant

number of genes expressed in petal differentiation, synergid cells, root hair and trichome,

as well as housekeeping genes by scanning the whole A. thaliana promoter set.

2.2 Materials and Methods

This section explains the details of the methodology (Figure 2-1).

2.2.1 Gene Expression Datasets

An A. thaliana trans-factor and cis-element prediction database (ATTED-II) [28] of ex-

pression information deduced from microarray data was used. ATTED-II contains the

expression of 22,591 genes in different experimental series. Five datasets composed of the

normalized expression of 22,591 genes from 81, 27, 21, 27 and 9 microarrays based on

annotation of flower, seed, root, shoot and whole plant were initially created. Each ex-

pression dataset was used to identify initial PS-expressed genes. Let ei be the expression

of a gene in microarray i, so that its expression mean in each PS would be

eps =

∑n
i=1 ei
n

(2.1)

where n = {81, 27, 21, 27, 9} represents the number of microarrays in the datasets of PSs

ps = {flower, seed, root, shoot and whole plant}. The expression mean e shall be
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(154 genes)
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• MEME

Selection of the best motifs per PS

• Conversion to k-mer frequency vectors
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• Computation of group speci!city scores

Split the model-build set into single-promoter sets

(leave one-out cross-validation)

Training a support vector machine 

Testing its performance using each remaining fold

Root

(159 genes)

Figure 2-1: Workflow of the proposed methodology.

e =
1

5

∑
ps

eps (2.2)

and the standard deviation of average expression values through all the five datasets is

defined by
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s =

√√√√1

4

∑
ps

(eps − e)2 (2.3)

By considering the difference d between the two greatest average expressions as

d = eA − eB; d > 0;A,B ∈ ps (2.4)

the target gene is assigned to PS A as long as d < s×threshold. The parameter threshold

represents a number manually chosen to obtain sets of over a hundred genes. Using the

above procedure, sets of 138, 147, 159, 154 and 145 genes expressed in flower, seed, root,

shoot and in the whole plant were obtained with thresholds of 2.05, 2.35, 2.36, 0.8 and

0.75, respectively.

2.2.2 Final Gene Sets

Each initial set composed of genes expressed in flower, seed, root, shoot and whole plant

was split into (1) motif-prediction set and (2) model-build set. Both sets were randomly

composed of 40% and 60% of genes in the corresponding initial set. The motif-prediction

set was employed to search for de novo motifs. The model-build set was, on the other

hand, used to differentiate promoters with precise combinations of motifs from background

promoters and create novel patterns of sets of motifs per PS.

Promoter regions stretching 50 bp, 100 bp, 150 bp and 200 bp upstream of the TLS [29]

were extracted and used to group the promoters of genes in the motif-prediction set. Four

sets composed of promoters 50 bp, 100 bp, 150 bp and 200 bp long were thus created.

For each initial set, a control set comprising genes other than those in the respective

motif-prediction and model-build sets was also formed.

2.2.3 Identification and Selection of Motifs

The motif-discovery algorithms Seeder [30], Weeder [31] and MEME [32] were employed

for predicting de novo motifs in each of the four previous promoter sets. For Seeder [30],

motifs 6 bp, 8 bp, 10 bp and 12 bp long with a seed length of 7 were predicted on both

strands. Weeder [31] was run for the following motif lengths: 6 bp with 1 mutation, 8

bp with 2 and 3 mutations, 10 bp with 3 and 4 mutations and 12 bp with 4 mutations
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on both strands. For MEME [32], motifs with length between 6 bp and 12 bp, and any

number of repetitions were predicted on both strands.

Conversion of PFM to KFV

The position frequency matrix (PFM) of each motif was converted to a k-mer frequency

vector (KFV) [33]. By considering the 4×n PFM M , the sequence of k (k ≤ n) nucleotides

represents a k-mer K. The 4k-dimensional KFV VM of M shall be

VM =
(
LK1,M , LK2,M , . . . , LK

4k
,M

)
(2.5)

where LKi,M is the likelihood of k-mer Ki as described by M .

The likelihood LK,M is defined as

LK,M =
n−k+1∑
i=1

∏k
j=1(NK)Tj ·

Mi+j−1

|Mi+j−1| (2.6)

where n and k are the lengths of PFM M and k-mer K, NK is the 4 × k binary matrix

of k-mer K, (NK)j is the j-th column of NK , Mi is the i-th column of M and |Mi| is the

Manhattan norm of column vector Mi computed by

|Mj| =
n∑

i=1

Mij (2.7)

The above procedure was implemented in Python (Appendix A) and the parameter k was

set to 4.

Clustering of KFVs

The Pearson Correlation distance between KFVs was computed to build a distance ma-

trix per PS and cluster each collection of motifs based on similarities. The hierarchical

clustering module of the C Clustering Library for cDNA microarray data was employed

[34]. The euclidean distance and the average-linkage were defined as distance function

and hierarchical method, respectively.

Group Specificity Score

The group specificity score is a measure of how well a motif targets the promoter regions
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where it was found [35]. The score of a motif is defined as

S =
min(s1,s2)∑

i=x

(
s1
i

)(
N−s1
s2−i

)
(
N
s2

) (2.8)

where N is the total number of promoters (22,591), s1 and s2 represent the number of

regions in the group used to find the motif and in the group of target genes, and x is the

number of regions in the intersection of both groups. For each motif, the list of target

genes was formed by scanning the entire A. thaliana promoter set and choosing the top

100 regions with the best sites matching the corresponding PFM. Equation 2.8 represents

the likelihood of observing an intersection of promoter regions assuming random sampling

of both groups. The scores of clustered motifs were finally calculated and the motif with

smallest score per cluster was chosen for further analysis.

The selected motifs were compared to plant cis-acting regulatory elements in the PLACE

database [36] using the STAMP website application [37]. For comparison purposes, the

comparison metric, alignment method, multiple alignment strategy and tree-building al-

gorithm were set to Pearson Correlation Coefficient, ungapped Smith-Waterman, iterative

refinement and UPGMA, respectively. Motifs matching with p-value < .001 were regarded

as known motifs, otherwise, novel ones.

2.2.4 Characterization of Promoter Regions

The promoters of genes in the model-build set were scanned to identify sites for the PS-

specific motifs. For every promoter, the average of motif distances from the TLS on both

strands (Figure 2-2) was computed as

avg distance =

∑n
i=1 xi
n

(2.9)

where xi represents the distance of site i from the TLS and n stands for the number of

sites on the same strand.
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Figure 2-2: Hypothetical distribution of sites for one specific motif along the promoter
region. Ovals with ”+” are sites located on plus strand, whereas those with ”-” are
positioned on minus strand. D1-5 represent the distances of the sites from the TLS.

The distances were divided by the promoter length (200 bp) for normalization and the

average distance of an absent motif on a specific strand was regarded to be zero. The

promoter regions were characterized by different-size vectors depending on how many

motifs were selected in the model under analysis. For instance, six motifs were chosen

in flower (six average distances in each strand for six motifs) hence the promoters of

flower-expressed genes will be represented by a 12-component vector. A training matrix

characterizing the promoters of genes in the model-build and control sets was finally

prepared per PS.

2.2.5 Design of Support Vector Machines

SVM is a supervised-learning algorithm able to predict the class of a new instance (un-

known category) once a set of objects that belong to two possible classes is given. This

algorithm seeks the hyperplane that optimally separates instances of either class with a

maximum margin [24].

The model-build set was randomly split into single groups for leave one-out cross-validation.

Each single promoter was employed for assessing the performance of the SVM whereas

the remaining promoters were used for training it. Accordingly, the number of training

vectors varies depending on how many promoters are used for training. The Perl module

Algorithm::SVM (version 0.12) currently maintained by the Brinkman Laboratory at Si-

mon Fraser University was utilized as interface of connection to the libsvm package [38].

The kernel function was a polynomial of degree 3 (gamma = 1 and coef0 = 0).
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2.2.6 Creation of Motif-Combination Patterns

The promoter regions (labelled as true positives by the SVM) of genes expressed in each

PS were taken while the incorrectly classified promoters, which do not seem to have an

alike architecture, were discarded. Each formed promoter set was scanned for sites of the

respective PS-specific motifs within the four upstream regions [0, -50], [-50, -100], [-100,

-150] and [-150, -200] that cover the entire promoter region. The distribution of every

motif on both strands was subsequently calculated per promoter group. Motifs present

in more than 60% of promoters in the flower, seed, root and shoot groups as well as 50%

of promoters in the whole plant group were used to create novel patterns of sets of motifs

to describe the promoter architecture of genes expressed in each PS.

2.2.7 Genome-Wide Prediction of PS-Expressed Genes

All the A. thaliana genes with promoter regions more than 60% similar were removed. The

entire set of promoter sequences were clustered by the program cd-hit (clustering threshold

= 0.6; word length = 3) [39] and one representative region per cluster was regarded. As

a result, the initial set of 22,591 genes was reduced to a collection of 19,212 genes. Each

motif-combination pattern was then used to scan the whole set of A. thaliana promoters

in search for PS-expressed genes with similar regulatory structures. In order to illustrate

the validity of the predictions, plant ontology annotations for cellular localization were

checked per group of predicted genes.

2.3 Results

The expression data of ATTED-II database [28] was analyzed for obtaining initial sets

of genes expressed in flower, seed, root, shoot and in the whole plant. To find similar

promoter architectures for expressed genes in the four A. thaliana structures and the

whole plant, this study began by predicting de novo motifs with key regulatory roles in

each of the PSs (flower, seed, root, shoot) and the entire plant.
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2.3.1 Identification and Selection of PS-Specific Motifs

The motif-prediction step identified 142 flower-specific, 183 seed-specific, 171 root-specific,

142 shoot-specific and 141 whole plant-specific motifs (Table 2-1). The optimal number

of clusters was 6, 3, 5, 4 and 2 for flower, seed, root, shoot and whole plant, respectively.

Hereafter the whole plant will be referred to as a PS for simplicity. In order to restrict

as much as possible the motif comparison, a strict p-value equal to that successfully used

to validate the motif comparison algorithm Tomtom [40] was chosen. As a result, motif

Rt-1 (Table 2-2) matched ACIIPVPAL2 (motif known for playing a key role in vascular

tissue whose primary component xylem is usually located close to the interior of roots),

motif Sd-1 (Table 2-3) matched ACGTSEED3 (ACGT motif related to seed expression)

and motif Pt-1 (Table 2-4) matched INTRONLOWER (motif involved in 3’ intron-exon

splice junctions in plants). On the contrary, flower-specific motifs Fw-1, Fw-2, Fw-3 and

Fw-5 (Table 2-5), root-specific motifs Rt-2 and Rt-4 (Table 2-2), seed-specific motif Sd-

2 (Table 2-3) and shoot-specific motif St-2 (Table 2-6) did not match significantly any

known cis-acting regulatory element in the PLACE database [36], representing potentially

new regulatory motifs in plants. The predicted motifs were also compared to previously

reported A. thaliana motifs [27]. As a result, motif Pt-2 (Table 2-4) matched Motif 8

(figure 1 in [27]), motif Rt-3 (Table 2-2) matched Motif 3 (figure 1 in [27]) and motif Sd-1

(Table 2-3) matched Motif 11 (figure 1 in [27]) (p-value < .001). In addition, the eight

novel motifs were compared to motifs in JASPAR database [41] where all the new plant

motifs significantly matched motifs in other organisms (Table 2-7).

2.3.2 Classification of PS-Specific Promoters

By using each collection of PS-specific motifs, the scanning of the training promoter groups

yielded matrices composed of 12-component, 6-component, 10-component, 8-component

and 4-component vectors characterizing the promoter regions in flower, seed, root, shoot

and the whole plant, respectively. For each positive training matrix, another matrix

composed of control promoter regions not included in either the motif-prediction set or

the model-build set of a PS was formed.

The SVM of the flower model achieved the highest accuracy of 75.8% whereas that of the
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Table 2-2: Logos of the overrepresented motifs in root. For each motif, the group
specificity score and a comment are included. Known motifs are also depicted with an
E-value from the STAMP website application [37], a description and reference to the
binding TF.

Id Logo
Specificity

Score Comment Ref.

Rt-1

1
1

1
2

1
0987654321

2

1

0

b
it
s

4.6e-07

ACIIPVPAL2
[interaction between the Myb

protein and the G-box]
(E-value: 1.9e-06)

[42]

Rt-2

1
1

1
2

1
0987654321

2

1

0

b
it
s

3.6e-09 novel -

Rt-3

654321

2

1

0

b
it
s

2.1e-10

TATABOX4
[TATA binding protein]

(E-value: 8.3e-10)
[43]

Rt-4

1
0987654321

2

1

0

b
it
s

5.9e-09 novel -

Rt-5

7654321

2

1

0

b
it
s

4.3e-11

AMMORESIVDCRNIA1
[motif IVD found in the

Chlamydomonas Nia1 gene
promoter]

(E-value: 5.2e-05)

[44]
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Table 2-3: Logos of the overrepresented motifs in seed. For each motif, the group
specificity score and a comment are included. Known motifs are also depicted with an
E-value from the STAMP website application [37], a description and reference to the
binding TF.

Id Logo
Specificity

Score Comment Ref.

Sd-1
87654321

2

1

0

b
it
s

3.2e-16

ACGTSEED3
[binding of the TF bZIP]

(E-value: 2.2e-07)
[45]

Sd-2

654321

2

1

0

b
it
s

1.3e-09 novel -

Sd-3

654321

2

1

0

b
it
s

8.5e-02

SUREAHVISO1
[binding of the TF WRKY]

(E-value: 8.9e-07)
[46]

Table 2-4: Logos of the overrepresented motifs in whole plant. For each motif, the
group specificity score and a comment are included. Known motifs are also depicted with
an E-value from the STAMP website application [37], a description and reference to the
binding TF.

Id Logo
Specificity

Score Comment Ref.

Pt-1

987654321

2

1

0

b
it
s

1.6e-11

INTRONLOWER
[consensus sequence
for plant introns and

splice junctions]
(E-value: 3.9e-05)

[47]

Pt-2

87654321

2

1

0

b
it
s

8.5e-09

CRTDREHVCBF2
[binding of the TF

AP2-EREBP]
(E-value: 1.7e-04)

[48]
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Table 2-5: Logos of the overrepresented motifs in flower. For each motif, the group
specificity score and a comment are included. Known motifs are also depicted with an
E-value from the STAMP website application [37], a description and reference to the
binding TF.

Id Logo
Specificity

Score Comment Ref.

Fw-1

1
1

1
2

1
0987654321

2

1

0

b
it
s

2.3e-03 novel -

Fw-2

87654321

2

1

0

b
it
s

9e-10 novel -

Fw-3

1
0987654321

2

1

0

b
it
s

1.6e-05 novel -

Fw-4

87654321

2

1

0

b
it
s

5.2e-11

BOXCPSAS1 2
[nuclear protein
binds to Box C]

(E-value: 1.3e-07)

[49]

Fw-5

87654321

2

1

0

b
it
s

1.1e-06 novel -

Fw-6

87654321

2

1

0

b
it
s

5.1e-13

PALBOXAPC
[TF binds to Box A]

(E-value: 1.8e-07)
[50]
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Table 2-6: Logos of the overrepresented motifs in shoot. For each motif, the group
specificity score and a comment are included. Known motifs are also depicted with an
E-value from the STAMP website application [37], a description and reference to the
binding TF.

Id Logo
Specificity

Score Comment Ref.

St-1

654321

2

1
0

bi
ts 6.3e-12

ARELIKEGHPGDFR2
[R2R3-type MYB factor]

(E-value: 1e-05)
[51]

St-2

1
1

1
0987654321

2

1

0

b
it
s

8.8e-08 novel -

St-3

54321

2

1

0

b
it
s

2.1e-08

TATABOX4
[TATA binding protein]

(E-value: 7e-07)
[43]

St-4

654321

2

1
0

bi
ts 4.3e-11

E2FAT
[binding of the TF E2F]

(E-value: 4.9e-07)
[52]
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Table 2-7: Information of comparisons to motifs in other organisms. For each novel
plant motif, TF of the motif it matched, E-value from the STAMP website application
[37], organism the TF was found in and reference are shown.

Novel motifs Comment Organism Ref.

Fw-1
ladybird early homeodomain TF (lbe)

(E-value: 2.4e-06)
D. melanogaster [53]

Fw-2
regulatory protein CAT8

(E-value: 5.95e-05)
S. cerevisiae [54]

Fw-3
probable transcription repressor RGM1

(E-value: 3.54e-05)
S. cerevisiae [55]

Fw-5
TF c-Rel

(E-value: 3.36e-07)
H. sapiens [56]

Sd-2
operator OpA

(E-value: 5.39e-06)
S. cerevisiae [57]

Rt-2
early growth response protein 1 (Egr1)

(E-value: 9.86e-05)
R. norvegicus [58]

Rt-4
suppressor of hairless homolog (Su H)

(E-value: 2.31e-05)
C. intestinalis [59]

St-2
transcription corepressor MIG3

(E-value: 3.01e-06)
S. cerevisiae [60]

shoot model achieved the lowest accuracy of 60.2%. The SVM of the remaining seed, root

and whole plant models reached similar accuracies of 69%, 65.2% and 64.1%, respectively

(Table 2-8).

Table 2-8: Information of the performance of each SVM.

Model TP TN FN FP Sensitivity Specificity Accuracy (%)
Flower 56 63 27 11 0.675 0.851 75.8
Seed 55 63 33 20 0.625 0.759 69
Root 70 46 25 37 0.737 0.554 65.2
Shoot 60 46 32 38 0.652 0.548 60.2

Whole Plant 63 44 24 36 0.724 0.55 64.1
TP: True Positives
TN: True Negatives
FN: False Negatives
FP: False Positives
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2.3.3 Creation of Motif-Combination Patterns

Taking the true positives of the SVM predictions, five distinct sets composed of 56, 55, 70,

60 and 63 promoters of genes expressed in flower, seed, root, shoot and whole plant were

obtained. These sets were used to create novel patterns of sets of motifs for deciphering

similar promoter architectures for PS-expressed genes (Table 2-9).

Flower-Pattern

The pattern for promoters of genes expressed in flower comprises four motifs (Figure 2-3).

It was observed that motif Fw-5 has a strong tendency to be present throughout the

promoter region on both strands, whereas motifs Fw-3 and Fw-4 have a tendency to be

found on both strands at the region 0 to -100 near the TLS. The presence of Fw-3 and

Fw-4 at the core promoter region on both strands could possibly facilitate a stronger

binding of the transcriptional machinery. On the other hand, motif Fw-2 has a tendency

to be at the region -100 to -150 on both strands. Motifs Fw-1 and Fw-6 were both

present in less than 47% of promoters. It indicates their binding factors might not act

independently at specific distances from the TLS and their role in transcription is some-

how related to the presence of other factors with which they act in cooperation. Motif

Fw-2 is, on the other hand, present on minus strand at the region 0 to -100 in 57.4%

of promoters, whereas on both strands at the region -150 to -200 in 44.4% of promoters.

Figure 2-3 shows the promoter region of identified genes expressed in petal differentiation.

Seed-Pattern

The pattern for promoters of genes expressed in seed combines the three identified motifs

(Figure 2-4). Motif Sd-2 shows a tendency to appear on plus strand at the region -50 to

-100, but on both strands at the region 0 to -50. The presence of motif Sd-3 is restricted

to the region -50 to -150 on both strands, whereas motif Sd-1 tends to appear on minus

strand at the region 0 to -100. Motif Sd-1 is sparsely present (< 40% of promoters) and

motif Sd-2 is also poorly represented (< 35% of promoters) on both strands at the region

-150 to -200. Figure 2-4 shows the promoter region of genes expressed in synergid cells.
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NHL domain-containing protein

unknown protein

Member of the Glycosyltransferase Family 64

unknown protein 

C2H2-like zinc �nger protein

Cyclophilin-like peptidyl-prolyl cis-trans isomerase

Molecular function unknown

MAD/FHA domain-containing protein

SKP1 interacting partner 3

Histone superfamily protein

Combined with ATAPY2 inhibits pollen germination

Regulator of Vps4 activity in the MVB pathway

Beta-galactosidase 17

Encodes a member of the XI myosin protein family

Programmed cell death

Its sequence is similar to Arabidopsis gene (NDR1)

Encodes an atypical pectin methylesterase

DNA-directed RNA polymerase II protein

BTB/POZ domain-containing protein

unknown protein

unknown protein

Polynucleotide adenylyltransferase family protein

Protein in the inner envelope of chloroplasts

Protein of unknown function (DUF788)

Glyoxylate reductase located in chloroplasts

Cytochrome c oxidase 10 (COX10)

Protein arginine methyltransferase 4B

0                   -50                -100               -150               -200

Fw-2 Fw-3 Fw-4 Fw-5

Figure 2-3: Promoter architecture of 27 out of 49 genes involved in petal differentiation
found with the flower-pattern. The regions illustrate the positioning of motifs Fw-2, Fw-3,
Fw-4 and Fw-5 on both strands at specific distances from the TLS. A brief description of
each gene function is also provided.
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unknown protein

Protein kinase family protein

Allantoate amidohydrolase

Ypt/Rab-GAP domain of gyp1p superfamily protein

Endosomal targeting BRO1-like domain-containing protein

MAP kinase 20

Combined with ATAPY2 inhibits pollen germination

Peptidyl-tRNA hydrolase II (PTH2) family protein

Protein of unknown function

Golgi SNARE 11 protein (GOS11)

unknown protein

RING/U-box superfamily protein

Plant DEAD box-like RNA helicase 

Binding partner of acd11 1 (BPA1)

SAC3/GANP/Nin1/mts3/eIF-3 p25 family

Glycosyl hydrolase family 35 protein

Phosphorylase superfamily protein

Hydrolases superfamily protein

A paternally expressed imprinted gene

Tetratricopeptide repeat (TPR)-like superfamily protein

unknown protein

FAD/NAD(P)-binding oxidoreductase

unknown protein

Concanavalin A-like lectin family protein

Nuclear pore complex protein

Damaged DNA binding protein 1A

F-box/FBD-like domains containing protein

Formyl transferase

unknown protein

 0                     -50                   -100                  -150                  -200

Sd-1 Sd-2 Sd-3

Figure 2-4: Promoter architecture of 29 out of 134 genes expressed in synergid cells
found with the seed-pattern. The regions illustrate the positioning of motifs Sd-1, Sd-2
and Sd-3 on both strands at specific distances from the TLS. A brief description of each
gene function is also provided.
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Root-Pattern

The pattern for promoters of genes expressed in root combines the presence of four motifs

(Figure 2-5). Motif Rt-5 shows a strong tendency to be on both strands throughout the

promoter region. Motifs Rt-3 and Rt-4 tend to appear at the region -100 to -150 on both

strands and motif Rt-3 that significantly matched the TATABOX4 has a tendency to be

bound about the same distance reported for the TATA box. Since motifs Rt-1 and Rt-2

are poorly present (< 40% of promoters) at the region 0 to -50 on both strands, the TFs

of both motifs might be somehow linked. The factor binding to motif Rt-5 seems to have

an important role within the core promoter, whereas the TFs of motifs Rt-3 and Rt-5

could be cooperating at specific distances from each other on both strands at the region

-50 to -150. Figure 2-5 shows the promoter region of genes expressed in root hair.

Shoot-Pattern

The pattern for promoters of genes expressed in shoot combines three motifs (Figure 2-6).

Motif St-3 appears throughout the promoter region on both strands, whereas motifs St-1

and St-4 show a tendency to be found at the region -50 to -200 on minus strand. The

fact that motifs St-1 and St-4 tend to be on the same strand at specific distances from

the TLS may suggest not only a presence of their binding factors at these positions but

also at precise distances between them. Figure 2-6 shows the promoter region of genes

expressed in trichome.

Whole Plant-Pattern

The pattern for promoters of housekeeping genes comprises two motifs (Figure 2-7). Motif

Pt-1 tends to appear throughout the promoter region on both strands, whereas motif Pt-2

has a tendency to be found at the region 0 to -100 on minus strand. Surprisingly, motif

Pt-2 is poorly present (< 8% of promoters) at region -150 to -200 on plus strand while

its presence is more clearly visible near the core promoter region. It is possible that more

than two factors are involved in the transcription of genes expressed in the whole plant,

but the method of obtaining PS-specific motifs might have ruled them out. Figure 2-7

shows the promoter region of plant housekeeping genes.

35



2.3.4 Genome-Wide Prediction of PS-Expressed Genes

The above described patterns flower-pattern, seed-pattern, root-pattern, shoot-pattern

and whole plant-pattern were used to search for genes expressed in each of the PSs by

analyzing the A. thaliana promoter set. The searching identified 63, 165, 48, 95 and 86

genes whose promoters satisfied the motif patterns. Although genes whose promoters

were employed to train each model were not ruled out, no overlapping was detected

after the genome-wide predictions. As a result, 49 (77.8%) out of 63 genes expressed

in petal differentiation and expansion stage, 134 (81.2%) out of 165 genes expressed in

synergid cells, 34 (70.8%) out of 48 genes expressed in root hair, 51 (53.7%) out of 95

genes expressed in trichome and 76 (88.4%) out of 86 genes with housekeeping function

(Table 2-1) were found. The poor prediction of trichome could be due to similar promoter

structures between genes expressed in shoot and those expressed in any of the other PSs.

This similarity could have impeded the SVM from correctly differentiating the promoters

of trichome-expressed genes.

2.4 Discussion

From the 20 motifs predicted in promoters of genes expressed in the different PSs, eight of

them did not match significantly either cis-regulatory elements in the PLACE database

[36] or previously reported plant motifs [27]. This study describes novel patterns of sets

of motifs capable of describing the promoter architecture of genes expressed in four PSs

and the entire plant A. thaliana. Two features of promoter regions such as orientation

and distance of motif sequences from the TLS were regarded. Each motif-prediction

set was used to search for de novo motifs and those PS-specific motifs were employed

for scanning the promoter regions and computing structural features. Despite the lack

of transparent results achieved by a SVM, its kernel allows flexibility in separating PS-

specific promoters from background genomic promoters. Unlike artificial neural networks

that give multiple solutions related to a local minimum and may not be robust enough

over distinct instances, SVM provides unique solutions considering the convexity of the

optimization problem. Hence a SVM was trained to discriminate between PS-specific

promoters and background promoters. The correctly classified regions were scanned for
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sites of the PS-specific motifs within the four bins: 0 to -50, -50 to -100, -100 to -150 and

-150 to -200 encompassing the entire promoter region. Five motif-combination patterns,

flower-pattern, seed-pattern, root-pattern, shoot-pattern and whole plant-pattern, were

defined and used to scan the A. thaliana promoter set. These patterns uncovered 49, 134,

34 and 51 genes expressed in petal differentiation, synergid cells, root hair and trichome, as

well as 76 housekeeping genes. Since TSS data are not available for A. thaliana, generally

the distance between TSS and TLS is believed to be short in this species. A former study

has also suggested the presence of more putatively functional motifs in the 5’ untranslated

regions of A. thaliana than previously thought [29].

This approach comprises two key points: (1) a SVM for discriminating promoters of

genes expressed in four different PSs and in the whole plant from background genomic

promoters and (2) novel patterns of sets of motifs able to successfully capture the promoter

architecture of PS-expressed genes.

2.5 Conclusions

The described method has analyzed promoter sets of genes expressed in four different

A. thaliana structures and in the whole plant. Motifs related to each promoter group

were predicted and eight of them with regulatory functions in four PSs were potentially

new and yet unknown motifs. Five novel patterns of sets of motifs able to describe the

promoter region of PS-expressed genes were built and shown to be useful in predicting

genes expressed in specific biological processes from the entire A. thaliana promoter set.

Despite several works have attempted to elucidate the promoter architecture in different

organisms, a few have been specifically focused on plants. As the discovered patterns

indicate, the motifs along with the positioning and orientation of their sites at specific

distances from the TLS are reliable measures to differentiate promoters of genes expressed

in different A. thaliana structures from background genomic promoters. This method

could be used to predict novel motifs and decipher the promoter architecture of A. thaliana

genes expressed in other biological tissues or physiological conditions.
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O-fucosyltransferase family protein

Disease resistance protein (TIR-NBS-LRR class) family

Ubiquitin family protein

Serine carboxypeptidase-like 13

Pectinacetylesterase family protein

FAR1-related sequence 7

Acyl-CoA sterol acyl transferase 1

Cleaves the phytosulfokine  AtPSK4, a growth promoting peptide

unknown protein

ROP guanine nucleotide exchange factor 5

unknown protein

Member of MRP subfamily

Leucine-rich repeat protein kinase family protein

Kinase-related protein of unknown function

Pyrimidine d

Ribosomal protein L1p/L10e family

Protein with NAD-dependent glycerol-3-phosphate dehydrogenase

Protein localized to phloem �laments

Cytosolic delta3, delta2-enoyl CoA isomerase

Galactose oxidase/kelch repeat superfamily protein

Voltage dependent anion channel 2

Receptor kinase required for cell elongation during growth

Hydrolases superfamily protein

Cysteine/Histidine-rich C1 domain family protein

Transcription regulators - zinc ion binding

unknown protein

Hydrolases superfamily protein

ssDNA-binding transcriptional regulator

Encodes 14-3-3 protein that binds H  -ATPase in response to blue light

0                    -50                 -100                -150                -200

Rt-1 Rt-3 Rt-4 Rt-5

+

Figure 2-5: Promoter architecture of 29 out of 34 genes expressed in root hair found
with the root-pattern. The regions illustrate the positioning of motifs Rt-1, Rt-3, Rt-4
and Rt-5 on both strands at specific distances from the TLS. A brief description of each
gene function is also provided.
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Tetratricopeptide repeat (TPR)-like superfamily protein

D-3-phosphoglycerate dehydrogenase

Encodes NPX1 (nuclear factor regulating abscisic acid responses)

Encodes an anther-speci�c proline-rich protein

Protein kinase superfamily protein

Involved in the patterning and shape of leaf trichomes

RING-H2 �nger A1A

Homeodomain-like superfamily protein

CP12-2 encodes a small peptide found in the chloroplast stroma

TRAF-like family protein

Phosphatidylinositol-4-phosphate 5-kinase family protein

Sequence similar to the Arabidopsis gene (NDR1)

O-Glycosyl hydrolases family 17 protein

HAD superfamily, subfamily IIIB acid phosphatase

NACL-inducible gene 1

Protein kinase superfamily protein

ATP-dependent protease La (LON) domain protein

Protein tyrosine phosphatases

Tetratricopeptide repeat (TPR)-like superfamily protein

RNA binding (RRM/RBD/RNP motifs) family protein

Encodes a putative 2OG-Fe(II) oxygenase

RNA-binding KH domain-containing protein

PLC-like phosphodiesterases superfamily protein

Magnesium chelatase i2

Synthase involved in generating the group B sesquiterpenes

O-acyltransferase (WSD1-like) family protein

unknown protein

Eukaryotic aspartyl protease family protein

Tetratricopeptide repeat (TPR)-like superfamily protein

St-1 St-3 St-4

0                      -50                   -100                   -150                 -200

Figure 2-6: Promoter architecture of 29 out of 51 genes expressed in trichome found
with the shoot-pattern. The regions illustrate the positioning of motifs St-1, St-3 and
St-4 on both strands at specific distances from the TLS. A brief description of each gene
function is also provided.
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Succinyl-CoA ligase, alpha subunit

Encodes a component of the TIC protein translocation machinery

unknown protein

Eukaryotic protein of unknown function

Ribosomal protein S2

unknown protein

Expansin-like protein

Embryo sac development arrest 10

Pseudouridine synthase family protein

Beta-galactosidase 17

Member of Heat Stress Transcription Factor (Hsf ) family

Mitochondrial substrate carrier family protein

Vacuolar ATP synthase subunit C

Galacturonosyltransferase 3

Chromatin remodeling 5

Encodes an inorganic phosphate transporter

Involved in translational up-regulation of ribosomal proteins

Arabidopsis thaliana myb family transcription factor

unknown protein

unknown protein

Transferases, transferring glycosyl groups

Syntaxin of plants 72

Cation e!ux family protein

unknown protein

Nitrogen metabolism (isoenzyme that controls aspartate biosynthesis)

Prenylated RAB acceptor 1.B1

Dihydroxyacetone kinase

Required for normal meiosis

TIM-barrel signal transduction protein

 0                   -50                 -100                -150                -200

Pt-1 Pt-2

Figure 2-7: Promoter architecture of 29 out of 76 housekeeping genes found with the
whole plant-pattern. The regions illustrate the positioning of motifs Pt-1 and Pt-2 on
both strands at specific distances from the TLS. A brief description of each gene function
is also provided.
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Chapter 3

Structural Features Define the
Cis-Regulatory Modules of
Antenna-Expressed Genes in
Drosophila melanogaster

No studies have simultaneously examined diverse structural features (SFs) such as posi-

tioning of cis-regulatory elements relative to the TSS and to each other, as well as order

and orientation for accurately describing overall cis-regulatory structure. This chap-

ter presents an improved computational method, which combines the above features for

modeling the cis-regulatory modules of antenna-expressed genes in D. melanogaster. A

collection of eight highly informative SFs was obtained from the regulatory region (RR)

of antenna-expressed genes and used to score the whole D. melanogaster RR set for po-

tentially unknown genes with a similar promoter structure. The SFs were found to be

conserved in RRs of orthologs in Drosophila sibling species. The content of this chapter

has been published in [61].

3.1 Introduction

Many studies have analyzed the RRs of D. melanogaster genes. Quantitative analyses

of enhancer activity revealed many cell-specific D. melanogaster enhancer elements [62].

A thermodynamic model that took into account cis-regulatory sequences, binding-site

preferences and TF expression was designed for finding cis-regulatory modules in D.

melanogaster. It suggested that positional information is very important while weak and
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strong binding sites contribute equally to gene expression regulation [63]. A machine-

learning framework that combines TF binding, evolutionarily conserved sequence motifs,

gene expression and chromatin modification data was proposed for predicting putative

functions for uncharacterized genes in D. melanogaster nervous system development [64].

Reporter gene assays have also demonstrated organ-specific expression patterns in D.

melanogaster [65].

Despite the clear interdependency among sequence motifs, no computational method has

simultaneously examined positional and structural relationships of regulatory motifs for

modeling the promoters of tissue-expressed genes. In general, details of the regulatory

structures responsible for regulating tissue- or condition-expressed genes are still lacking.

Antenna is a sensory organ usually covered with olfactory receptors, which detect odor

particles in the air or changes in vapor water concentrations when used as humidity

sensors. The function of antenna has been widely studied for understanding the receptor-

odorant interactions [66] and analyzing the expression profiles of odorant binding proteins

[67]. Given the importance of antenna and the fact that D. melanogaster is a well-studied

species with a huge amount of available genomic data to validate new findings, genes

expressed in D. melanogaster antenna were chosen for this study. The analyzed RR

comprises not only the Drosophila core promoter region but also enhancers located in its

proximity.

This chapter describes a novel computational method, which combines different SFs such

as orientation, order, position relative to the TSS and pairwise positioning of motifs

for explaining the promoter architecture of D. melanogaster antenna-expressed genes.

Although a previous study combined some of these SFs [68], it did not consider the order

of regulatory motifs focusing instead on motif discovery. A collection of eight informative

SFs was obtained and used to score all the D. melanogaster RRs for unknown antenna-

expressed genes with a similar promoter structure.

3.2 Materials and Methods

The proposed method consisted of three main steps (Figure 3-1): the first step aimed at

identifying overrepresented antenna-related motifs, the second step focused on computing
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four types of SFs and the third step intended to obtain highly informative SFs.
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Figure 3-1: Workflow of the computational method.

3.2.1 Databases

The expression values of D. melanogaster genes were selected from COXPRESdb database

[69], which contains data for expressed genes in multiple species. Since this repository

comprises expression information for 12,192 D. melanogaster genes under different experi-

mental conditions, 56 microarrays derived from antenna, head, body and proboscis tissue

(14 microarrays per tissue) were chosen. The gene expression data were derived from

adult antenna (Gene Expression Omnibus accession number GSE27927). Samples were

taken at 0, 24 and 48 hours and separated in antenna, head, body and proboscis tissue for

six pools of flies [70]. This microarray information was used to choose > 100 expressed

genes per tissue as explained in section 2.2.1. The Z-score of each gene was also computed

and genes in the antenna dataset with Z-scores < -1 were grouped into a negative control

set. As a result, 224 antenna-expressed genes and 1,073 non-antenna-expressed genes were

selected.
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3.2.2 Gene Sets

The initial set of antenna-expressed genes was randomly split into three non-overlapping

sets: motif-prediction set (Appendix B.1), feature-computation set (Appendix B.2) and

model-build set (Appendix B.3). The first set (90 genes) was employed for prediction of

de novo motifs. The second set (44 genes) was used to compute and remove redundant

SFs, whereas the third set (90 genes) was employed for obtaining an optimal combination

of informative SFs for the RRs of antenna-expressed genes. The D. melanogaster genome

(version 5.51) and the TSS data were downloaded from FlyBase repository [71]. The

most upstream TSS among alternative TSSs of a gene was taken. The genomic stretch

spanning 1.5 kbp upstream and 500 bp downstream of the TSS [72] was regarded as RR.

3.2.3 Prediction and Selection of Motifs

The motif-discovery algorithms MEME [32] and Weeder [31] were used for de novo motif

prediction. MEME [32] searched for 6- to 12-bp motifs with any number of sites per

sequence on both strands. Weeder [31] searched for 6-bp motifs with one mutation, 8-bp

motifs with two and three mutations, 10-bp motifs with three and four mutations, and 12-

bp motifs with four mutations on both strands. All the predicted motifs were compared to

each other using the motif comparison algorithm Tomtom [40] (minimal overlapping = 1;

distance function = euclidean) for removing redundant motifs. For each pair of matching

motifs (p-value ≤ .001), the motif with higher information content [73] was kept.

Overrepresentation Index

The overrepresentation index (ORI) measures the presence of a motif in a set of promoter

sequences with respect to a non-promoter set [74]. This measure is defined as

ORI(mi) =
densitypromoter(mi)

densitynon−promoter(mi)
× proportionpromoter

proportionnon−promoter

(3.1)

Densitypromoter(mi) and densitynon−promoter(mi) represent the densities at which motif mi

is found in promoter and non-promoter sequences, and are computed by

densitypromoter(mi) =
Pp

Lengthpromoter

(3.2)
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densitynon-promoter(mi) =
Pnp

Lengthnon-promoter

(3.3)

where Pp and Pnp are the number of sites for motif mi in promoter and non-promoter

sequences, and Lengthpromoter and Lengthnon-promoter are the total length of promoter and

non-promoter sequences.

Proportionpromoter and proportionnon−promoter are defined as

proportionpromoter =
Np

Npromoter

(3.4)

proportionnon-promoter =
Nnp

Nnon-promoter

(3.5)

where Np and Nnp are the number of promoter and non-promoter sequences where motif

mi is found, and Npromoter and Nnon-promoter represent the total number of promoter and

non-promoter sequences.

The RRs of genes in the motif-prediction set and genomic regions from +2 kbp to +4

kbp downstream of the TSS were regarded as promoter and non-promoter sequences,

respectively. The ORI of every remaining motif was computed and motifs with ORI ≥ 2

were chosen for further analysis.

The final motifs were compared to those in JASPAR CORE (Insecta/Nematoda) database

[75] and motifs that did not significantly match (p-value > .01) any known motif were

regarded as potentially new motifs.

3.2.4 Computation of SFs

To define the threshold for sites of each motif, 1000 random RRs were independently

scanned and the score for each base pair in a position-specific scoring matrix was com-

puted. Based on this score, a threshold of about one site in 5000 bp was chosen.

The overrepresented motifs along with the feature-computation and control sets were

subsequently employed to create a collection of SFs. The RRs of genes in the feature-

computation set were scanned in 100-bp windows in both directions (1.5 kbp upstream

and 500 bp downstream) of the TSS. Four types of SFs such as position relative to the

TSS, pairwise positioning, order and orientation of motifs (Figure 3-2) were computed.
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For the positioning of motifs relative to the TSS, the 100-bp window was centered at the

TSS. The pairwise positioning of motifs was determined by regarding one of the two motifs

as the starting point. The order of motifs was assessed relative to the TSS, independent

of motif orientation and positions of no more than three motifs were included. The SFs

were further binarized so that each RR was represented as a vector where presence (1) or

absence (0) of each SF was indicated.

TSS
3

Pairwise positioning

Position relative to the TSS

Order of motifs

2 1

Figure 3-2: Schematic scanning of the upstream RR. The geometrical forms on and
under the black line represent the motifs on plus and minus strand, respectively. The
orange and green arrows and the rectangle indicate the computed SFs.

3.2.5 Removal of Redundant SFs

Since the computed feature set was relatively large and contained a considerable number

of redundant SFs, a pre-processing filtering step was introduced. This filter improves

the computational efficiency of the GA while eliminating redundant SFs that might not

correctly describe the RRs of expressed genes. The correlation-based filter [76] has a

relatively low computational time and makes use of a measure known as symmetrical

uncertainty defined by

SU(F,C) = 2×
(

IG(F |C)

H(F ) +H(C)

)
(3.6)

where F and C are two SFs, IG(F |C) is the information gain of SF F given C whereas

H(F ) and H(C) are the respective entropies of SFs F and C. The information gain

IG(F |C) is computed as
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IG(F |C) = H(F )−H(F |C) (3.7)

and the corresponding entropies are

H(F ) = −
∑
i

P (fi)log2(P (fi)) (3.8)

H(C) = −
∑
j

P (cj)log2(P (cj)) (3.9)

H(F |C) = −
∑
j

P (cj)
∑
i

P (fi|cj)log2(P (fi|cj)) (3.10)

where P (fi) and P (cj) are the prior probabilities for all values of SF F and C, and P (fi|cj)

is the posterior probability of SF F given the values of SF C.

The filter was implemented in Python (Appendix C.1) and used to remove redundant SFs

for which the correlation with the RR of genes in the feature-computation set was low.

3.2.6 Feature Weighting

The filtered SFs were weighed according to their importance within the RRs. Measures

like information gain have been used for weighing features [77], but they do not always

describe particular probabilistic events. Therefore, the Kullback-Leibler metric [78] was

used as follows

DKL(C|oij) =
∑
c

P (c|oij)log
(
P (c|oij)
P (c)

)
(3.11)

where P (c) is the probability of class c (the positive class comprises the RRs of genes

in the feature-computation set whereas the negative class includes those of genes in the

control set), oij is the RR with the j value (presence/absence) of the SF i, P (c|oij) is the

probability of class c given the RRs oij and DKL(C|oij) is the Kullback-Leibler measure

of class C (positive and negative classes) given the RRs oij. The weight of SF i is then

defined by

wi =

∑
j|i P (oij)×DKL(C|oij)

−∑j|i P (oij)× log(P (oij))
(3.12)
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where wi is the weight of SF i and P (oij) is the probability of RRs oij.

This weighting procedure was implemented in Python (Appendix C.2) and the computed

weights were normalized to sum up to 1. Two kinds of classes: RRs of antenna-expressed

genes in the feature-computation set (positive class, 1) and RRs of non-antenna-expressed

genes in the control set (negative class, 0) were considered. The weights of the SFs

were uniquely used to score the D. melanogaster RRs and identify genes with a similar

regulatory structure. The sum of the weight for each SF in a RR was the final overall

score for that region.

3.2.7 Design of the Genetic Algorithm

A GA was designed to identify the most informative combination of SFs. GA is a search

heuristic that simulates the genetic evolution process of living organisms at the population

or individual level [79]. Unlike traditional machine learning methods, GA operates without

a priori knowledge of the problem to be solved. When used in optimization problems,

it tends to be less affected by local maxima than other methods. In this context, an

individual of the GA represents a RR of genes in the model-build set and contains as

many bits as the number of SFs being assessed. Each bit is represented as a binary

character indicating presence (1)/absence (0) of a particular SF. A modified version of the

script provided with the book ”Machine Learning: An Algorithmic Perspective” [80] was

employed as the main source of the GA. The fitness proportionate selection method was

used to choose the SF arrangement with highest fitness value. Even with low probability,

this selection method chooses solutions with low fitness values which could be important

during the recombination process. An uniform crossover with mutation probability of

0.05 was regarded. The accuracy used as fitness function was defined as

accuracy =
TP + TN

Total
(3.13)

where TP is the number of positive RRs with at least one SF, TN is the number of

negative RRs that do not contain any SF and Total is the number of RRs in the training

set.

For convergence, the algorithm was stopped when accuracy reached ≥ 90% or the num-
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ber of epochs was 10000. To assess the model performance and the robustness of the

high-confidence SFs, both the model-build and control sets were randomly split into five

subgroups for fivefold cross-validation (CV) [81]. The GA was trained with four of the

subgroups and tested in the remaining fold. The CV was repeated 100 times and the

individual set with highest accuracy was chosen. Since each of the CV runs produced a

distinct individual, SFs present in at least three out of five individuals were considered

to be highly informative SFs. The individuals of the best CV run were further mutated

with ten different mutation rates and the receiver operating characteristic (ROC) curve

was then drawn.

3.2.8 Validations

To evaluate the biological validity of the most informative SFs, their weights (section

3.2.6) were used to score the entire D. melanogaster RR set for genes with a similar

regulatory structure. By regarding a scoring system that sums up the weights of present

SFs, each RR was scored according to the SFs it contained and the top 1000 genes with

highest-scoring RRs were selected. The gene ontology terms [82] (uncorrected p-value ≤

.01) associated with the identified genes were first analyzed to confirm whether these genes

were related to antenna tissue or to basal cellular functions. The RNA-Seq data of two

D. melanogaster cell lines: eye-antenna disc-derived (DCCid: modENCODE 4399) and

antenna disc-derived (DCCid: modENCODE 4402) in the third instar larval stage were

downloaded from the Model Organism Encyclopedia of DNA Elements (modENCODE)

database (www.modencode.org). These data were mapped to the D. melanogaster genome

(release r5.52) with TopHat (default parameters) [83] and Bowtie (-n = 2) [84]. The gene

expression was measured in fragments per kilobase of transcript per million mapped reads

(FPKM) with Cufflinks (supplied with reference annotation; parameter -G) [85], and a

relative expression level > 1 was fixed to define the set of expressed genes. The above

RNA-Seq data from immature antenna were used because no available data for adult

antenna were found in the modENCODE database.

Furthermore, the genomes of eleven Drosophila sibling species were downloaded from

FlyBase database [71]. Their entire RR set was scanned for sites of the six antenna-

related motifs and the SFs were computed. The common SFs among orthologs were
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searched for conservation across the Drosophila lineage.

3.3 Results

This study consists of three main steps (Figure 3-1). The first step was intended to

predict de novo motifs whereas the second one was aimed at computing four types of SFs

in the RRs of antenna-expressed genes. The final step then focused on obtaining the most

informative combination of SFs.

3.3.1 Prediction, Selection and Comparison of Motifs

Cis-regulatory motifs were first predicted in the 90 RRs (1.5 kbp upstream and 500 bp

downstream of the TSS) of antenna-expressed genes in the motif-prediction set. As a

result, 65 de novo motifs were initially uncovered. After removing redundancy in this

motif collection, 25 non-redundant motifs remained. By using the same motif-prediction

set, the ORI [74] was computed for each of these motifs and those with low levels of

enrichment were removed. The final motif collection contained six highly enriched, non-

redundant motifs, which are designated D. melanogaster enriched (DME) 1-6 (Table 3-1).

These motifs were compared to those in the JASPAR CORE Insecta database of eukary-

otic TF binding profiles [75] and three significant matches were found. DME-4 matched

the motifs bound by TFs Eip74EF (ecdysone-induced protein 74EF) and STAT92E (signal

transducer and transcription activator), whereas DME-5 and DME-6 matched the motifs

bound by TFs Eip74EF and opa (odd-paired). None of these TFs has been thus far re-

ported to be important in antenna. The analysis of acetylation patterns on Drosophila

ecdysone induced Eip74EF and Eip75B genes has shown acetylation of histone H3 lysine

23 in promoters and relationships to ecdysone induced gene activation [86]. The activa-

tion of STAT92E, a signal transducer in early wing imaginal discs has been reported to

inhibit the formation of ectopic wing fields and notum identity to divide the body wall

whereas specifies dorsal pleural [87]. The TF opa1, on the other hand, increases mito-

chondrial morphometric heterogeneity, allowing heart dilation and contractile impairment

in Drosophila [88]. For the remaining three motifs no significant match in the JASPAR

CORE Insecta database [75] was found, so they appear to be new motifs with potentially
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Table 3-1: Predicted motifs in RRs of antenna-expressed genes. For each motif, iden-
tifier, logo and ORI are shown. The binding TF, Tomtom p-value and citations are also
given for known motifs.

Id Logo ORI Comment Citations

DME-1

1
2

1
1

1
0987654321

2

1

0

b
it
s

2.27 - -

DME-2

87654321

2

1
0

bi
ts 3.09 - -

DME-3

654321

2

1

0

b
it
s

2.19 - -

DME-4

654321

2

1

0

b
it
s

2.24
Eip74EF (5.82e-04)
STAT92E (2.91e-03) [86, 87]

DME-5

1110987654321

2

1
0

bi
ts 2.08 Eip74EF (1.14e-04) [86]

DME-6

10987654321

2

1
0

bi
ts 2.4 opa (3.32e-03) [88]

important roles in regulating antenna-expressed genes. Comparisons of the six motifs to

others previously found in Drosophila [89] showed certain similarity of motifs DME-3 and

DME-6 to Motif 7 and Motif 1 (Table 2 in [89]), respectively.

3.3.2 Computation, Removal and Optimization of SFs

The six motifs were used to scan the RRs of genes in the feature-computation set for

SFs based on position relative to the TSS, pairwise positioning, orientation and order of

motifs. The RRs were scanned in 100-bp windows in both directions of the TSS, and

544 SFs were identified. The SFs were also examined in RRs of genes in the control
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set (non-antenna-expressed genes; Z-score < -1). Since the SFs are binarized to represent

presence (1)/absence (0), a 544×1117 binary matrix (544 features; 44 genes in the feature-

computation set and 1,073 genes in the control set) was built. This matrix was input into

the correlation-based filter [76], which reduced the initial feature collection to 19 SFs.

The model-build set was split into five folds by fivefold CV method [81]. The GA was then

trained in four folds and tested in the remaining one. The CV method [81] was repeated

100 times and the performance of the GA with the best CV run reached an area under

the ROC curve (AUC) of 0.841 (Figure 3-3a). The best CV run was considered and the

previous collection of 19 SFs was thus reduced to eight high-confidence SFs (Table 3-2).

(a) (b)

D. melanogaster (antenna) C. elegans (muscle)

AUC = 0.841

AUC = 0.7407

Figure 3-3: ROC curve of the GA with (a) antenna-expressed genes in D. melanogaster
and (b) muscle-expressed genes in C. elegans.

3.3.3 Searching for Genes with Similar Regulatory Structure

The eight highly informative SFs were used to score the entire D. melanogaster RR set

for genes with a similar regulatory structure. The top 1000 genes with highest-scoring

RRs were picked out and the gene ontology terms were first checked. It was found that

a reduced subset of genes appear to function in ”bristle morphogenesis”, the biological

process that generates sensory bristle structures, or in basal functions of the cell (Table 3-

3).

Because the corrected gene ontology term p-values were exceptionally high, probably ow-

ing to the lack of complete annotation data, RNA-Seq data from two cell lines (eye-antenna
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disc-derived and antenna disc-derived) in the third instar larval stage were mapped to the

D. melanogaster genome. As a result, 7,691 (63.1%) of 12,192 genes in the genome-wide

set were expressed in antenna whereas 767 (76.7%) of 1000 genes with high-scoring RRs

were expressed in the antenna-related cell types. From the 7,691 antenna-expressed genes,

5,666 of them were among the 7,691 genes with highest-scoring RRs. This percentage of

antenna-expressed genes (76.7%) is because a high threshold (FPKM > 1) was used in

comparison to that of previous studies [90] (FPKM > .05). Because the RNA-Seq data

were originated from immature cells, many receptor genes showed little or no expression

at all. From the 50 genes with highest-scoring RRs (Appendix D), only two were also

included in the motif-prediction, feature-computation and model-build sets. Since each

gene in the previous three sets has different SFs, genes with RRs containing more SFs

or more heavily weighted SFs will score higher than others. From the initial set of 224

genes, 81 were among the 1000 top scoring genes. The number of RRs out of the 50

highest-scoring ones containing the identified SFs was also verified. It turned out that

the 50 RRs contained DME-3 at ∼0-100 bp from DME-3 on plus strand (feature 1), 11

RRs had DME-5 at ∼100-200 bp from the TSS on minus strand (feature 2), 34 RRs had

DME-4 at ∼200-300 bp from the TSS on either strand (feature 3), 40 RRs had DME-5

at ∼600-700 bp from the TSS on either strand (feature 5) and 19 RRs had DME-6 at

∼300-400 bp from the TSS on either strand (feature 8).

The scoring of D. melanogaster RRs uncovered genes with known biological functions in

sensory organs and others with unknown functions. Gr22b (FlyBase ID FBGN0045500)

encodes a protein involved in detecting chemical stimuli [91]. The RR of Gr22b shares

SFs 1, 3 and 5 with that of ac (FlyBase ID FBGN0000022) and Adk2 (FlyBase ID

FBGN0022708), which encode proteins involved in sensory organ development and neuro-

genesis [92, 93]. The RR of gene CG17298 (FlyBase ID FBGN0038879), whose biological

function is unknown, shares the previous three SFs with that of genes Gr22b, ac and

Adk2, and also contains the SF 8 (Figure 3-4).

To check the conservation of the SFs in regions of Drosophila orthologs, the RRs of each

Drosophila specie’s genes were scanned for potential sites of the six enriched antenna-

related motifs. Every RR was then explored for presence of the eight SFs. As a result,
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Figure 3-4: Detailed architecture of four of the highest-scoring D. melanogaster RRs.
Each ’F’ represents an informative SF. Human gene names are shown for D. melanogaster
genes with human orthologs.

feature 1 was found to be extensively conserved across Drosophila lineage. The RRs of

closest orthologs additionally shared features 2, 3 and 5 (Figures 3-5, 3-6 and 3-7).

3.3.4 Comparison to Another Method

The computational method was also compared to a previous promoter structure-modeling

approach [95] for Caenorhabditis elegans muscle-expressed genes. In doing so, a set of
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Figure 3-5: Conservation of SFs between the RR of D. melanogaster gene ac and that
of orthologs across the Drosophila lineage. Colored squares represent the antenna-related
motifs. Squares above or under the black line indicate motifs on plus or minus strand,
respectively. The red cross means either the respective RR does not contain conserved
SFs or no ortholog was found. The phylogenetic tree is based on the tree reported in [94].
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121 genes was randomly split into three independent sets: ”Ce motif-prediction” set (48

genes), ”Ce feature-computation” set (23 genes) and ”Ce model-build” set (50 genes).

The C. elegans genome (WS201) was obtained from WormBase [96]. The RR spanning

from 1 kbp upstream to 200 bp downstream of the TSS was analyzed. The motif-discovery

algorithms MEME [32] and Weeder [31] were used for predicting de novo motifs in the

RRs of genes in the ”Ce motif-prediction” set (section 3.2.3). A total of 64 de novo motifs

were uncovered, and 18 non-redundant motifs remained after removing redundant motifs.

The ORI [74] of each previous motif was next computed, resulting in 11 overrepresented

motifs (Table 3-4). Comparisons of the motifs to those in the JASPAR CORE Nematoda

database [75] showed that C. elegans motifs (CEL) 4, 6 and 9 matched motifs bound

by TFs DAF-12 (protein DAF-12), EOR-1 (protein EOR-1) and DPY-27 (chromosome

condensation protein DPY-27), respectively. On the other hand, eight motifs did not

significantly match any known motif and were hence regarded to be potentially novel C.

elegans muscle-related motifs. It has been reported that TF DAF-16 enhances daf-12

expression while suppressing daf-9 expression during larvae formation upon cholesterol

starvation [97]. Genes eor-1 and eor-2 are said to promote terminal neuron differentiation

and apoptosis of the male hermaphrodite neurons [98]. On the other hand, protein DPY-

27 condenses the chromatin structure of X chromosome [99]. Thus far, TFs DAF-12,

EOR-1 and DPY-27 have not been reported to directly regulate muscle-expressed genes.

Comparisons of the 11 enriched muscle-related motifs to previously reported motifs re-

vealed some interesting similarities. Motifs CEL-5 and CEL-6 are similar to Motif 2 and

Motif 5 [95] and to M1 [100]. The first six nucleotides of motif CEL-8 appear to be similar

to Motif 6 [95] (Table 3-4; Figure 4 in [95]). Motif CEL-4 is similar to motif M4 [100] and

also matched DAF-12 like motif M4 initially did (Table 1 in [100]).

All the 11 muscle-related motifs were used for scanning the RRs of genes in the ”Ce

feature-computation” set. A collection of 887 SFs regarding orientation, order, position

relative to the TSS, and pairwise positioning of motifs was created for describing the

RR of C. elegans muscle-expressed genes (section 3.2.4). The irrelevant SFs were filtered

with a correlation-based filter [76], yielding 13 significant SFs. A GA was subsequently

designed to reach highly informative SFs in the RRs of muscle-expressed genes. The ”Ce
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model-build” set was split into five subsets for fivefold CV [81]. The GA was trained in

four folds and validated in the remaining fold. It showed an AUC (0.7407) comparable

to that achieved in the previous study [95] (Figure 3-3b) while uncovering five SFs (Ta-

ble 3-5) that also considered orientation and order of motifs. The five-feature set was

used for scoring all the C. elegans RRs and identifying unknown muscle-expressed genes

with a similar regulatory structure. The 50 genes with highest-scoring RRs were retrieved

(Appendix E). Two C. elegans genes (B0304.1A and F07A5.7A.1) previously reported [95]

were also uncovered here (Figure 3-8).

3.4 Discussion

This chapter describes the combination of four types of SFs, which have not been simulta-

neously considered in previous approaches aimed at modeling the promoter architecture

of tissue-expressed genes. The proposed method reveals that the orientation and order

of regulatory motifs are important features to be taken into account for describing the

promoter structure of genes. Interestingly, it was found that although the orientation of

motifs was important to RRs of both D. melanogaster antenna-expressed genes and C.

elegans muscle-expressed genes, the order of motifs was only relevant to RRs of muscle-

expressed genes. It somehow suggests a certain degree of interaction or collaborative

regulation between the TFs binding these motifs. The correlation-based filter success-

fully removed redundant SFs, greatly reducing the initial feature space and improving the

performance of the GA. For D. melanogaster antenna-expressed genes, the most relevant

SFs were related to pairwise positioning, orientation and positioning of motifs relative to

the TSS. The expression levels revealed by the RNA-Seq data confirmed that a subset of

antenna-expressed genes indeed shared a similar promoter architecture. Furthermore, the

conservation of some SFs in RRs of Drosophila orthologs and the fact that more closely

related sibling species tended to share more of them provide strong evidence for the pos-

itive selection of the six antenna-related motifs. For example, two motifs DME-3 were

separated ∼100 bp on plus strand across the Drosophila phylogenetic tree, demonstrating

the conservation of these motifs among the Drosophila sibling species and the ability of

this study to consistently detect them.

57



The computational method achieved an AUC comparable to that of a similar approach

with C. elegans muscle-expressed genes [95], but the obtained SFs were more detailed and

descriptive because they included the important consideration of orientation and order of

regulatory motifs. The motif order in RRs of muscle-expressed genes appears to suggest

certain interaction or collaborative regulation between the binding TFs. This method also

identified genes with known biological functions in C. elegans muscle tissue, in whose RRs

orientation and order of motifs seemed to be important. For instance, the RR of gene

B0304.1A contains motif CEL-4 at ∼200-300 bp from motif CEL-8 on opposite strands

(feature 2 in Table 3-5) whereas that of gene F07A5.7A.1 has motif CEL-10 at ∼400-500

bp downstream from motif CEL-4 on plus strand (feature 4 in Table 3-5).

3.5 Conclusions

A new computational method has been successfully developed to describe the RRs of

tissue-expressed genes. It offers an advantage over previous studies because regards order

and orientation of regulatory motifs. Validation using RRs of D. melanogaster antenna-

expressed genes identified three potentially novel motifs. This analysis also showed that

the orientation and order of motifs are both relevant SFs for modeling the promoter

architecture of tissue-expressed genes and hence should be considered in future studies.

The identified SFs were conserved in RRs of orthologs across the Drosophila lineage,

further indicating the reliability of these findings.
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Table 3-2: SFs that best describe the RRs of antenna-expressed genes in D. melanogaster.
For each SF, a description of the involved motifs and the Kullback-Leibler weight are
shown. Squares above or under the black line indicate motifs on plus or minus strand,
whereas those in the middle of the line represent motifs on either strand.

Illustration Description and Weights

 -1500                                                                                  0                                +500

         TSS        Feature 1 ~0-100 bp DME-3 is positioned at ∼0-100 bp
from DME-3 on plus strand

(0.02)

 -1500                                                                                  0                                +500

         TSS        Feature 2

~100-200 bp

DME-5 is positioned at ∼100-200 bp
from the TSS on minus strand

(0.01)

 -1500                                                                                  0                                +500

         TSS        Feature 3
~200-300 bp

DME-4 is positioned at ∼200-300 bp
from the TSS on either strand

(0.01)

-1500                                                                                  0                                +500

         TSS        Feature 4 ~0-100 bp DME-5 is positioned at ∼0-100 bp
from the TSS on plus strand

(0.01)

         TSS        Feature 5
~600-700 bp

-1500                                                                                  0                                +500

DME-5 is positioned at ∼600-700 bp
from the TSS on either strand

(0.02)

         TSS        Feature 6
~500-600 bp

-1500                                                                                  0                                +500

DME-5 is positioned at ∼500-600 bp
from the TSS on minus strand

(0.01)

         TSS        Feature 7
~1100-1200 bp

-1500                                                                                  0                                +500

DME-2 is positioned at ∼1100-1200 bp
from the TSS on plus strand

(0.01)

         TSS        Feature 8
~300-400 bp

-1500                                                                                  0                                +500

DME-6 is positioned at ∼300-400 bp
from the TSS on either strand

(0.02)

ANTENNA-RELATED MOTIFS

DME-1 DME-2 DME-3 DME-4 DME-5 DME-6
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Table 3-3: Gene ontology terms for the top 1000 genes (excluding genes in the initial
sets) with highest-scoring RRs. Number of genes with each annotation, uncorrected and
multiple testing-corrected p-values are indicated.

Gene Ontology Term Count p-Value Benjamini
RNA degradation 12 1.6E-3 1.3E-1

transcription 45 2.4E-3 9.7E-1
FBOX 9 2.4E-3 3.8E-1

dioxygenase 5 3.4E-3 5.7E-1
transcription, DNA-dependent 18 3.5E-3 9.3E-1

RNA biosynthetic process 18 4.4E-3 8.9E-1
GPI anchor metabolic process 7 4.4E-3 8.2E-1

Cyclin-like F-box 9 4.7E-3 9.9E-1
nucleoplasm part 28 4.8E-3 8.1E-1

endomembrane system 26 5.1E-3 5.9E-1
nucleoplasm 30 5.2E-3 4.5E-1

histone modification 10 6.3E-3 8.6E-1
covalent chromatin modification 10 6.3E-3 8.6E-1

organelle lumen 53 6.4E-3 4.3E-1
intracellular organelle lumen 53 6.4E-3 4.3E-1
vesicle-mediated transport 38 6.4E-3 8.1E-1
membrane-enclosed lumen 54 6.9E-3 3.8E-1

bristle morphogenesis 9 7.7E-3 8.2E-1
transcription from RNA polymerase II promoter 14 8.0E-3 7.9E-1

chromatin modification 15 9.2E-3 8.0E-1
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Figure 3-6: Conservation of SFs between the RR of D. melanogaster gene Adk2 and that
of orthologs across the Drosophila lineage. Colored squares represent the antenna-related
motifs. Squares above or under the black line indicate motifs on plus or minus strand,
respectively. The red cross means either the respective RR does not contain conserved
SFs or no ortholog was found. The phylogenetic tree is based on the tree reported in [94].
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Figure 3-7: Conservation of SFs between the RR of D. melanogaster gene Gr22b and that
of orthologs across the Drosophila lineage. Colored squares represent the antenna-related
motifs. Squares above or under the black line indicate motifs on plus or minus strand,
respectively. The red cross means either the respective RR does not contain conserved
SFs or no ortholog was found. The phylogenetic tree is based on the tree reported in [94].
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Table 3-4: Predicted motifs in RRs of muscle-expressed genes. For each motif, identifier,
logo and ORI are shown. The binding TF, Tomtom p-value and citations are also given
for known motifs.

Id Logo ORI Comment Citations

CEL-1

121110987654321

2

1
0

bi
ts 2.373 - -

CEL-2

1
2

1
1

1
0987654321

2

1

0

b
it
s

3.503 - -

CEL-3
121110987654321

2

1
0

bi
ts 2.904 - -

CEL-4

1
2
1
1

1
0987654321

2

1

0

b
it
s

6.935 DAF-12
(7.55e-05)

[97]

CEL-5

1
2
1
1

1
0987654321

2

1

0

b
it
s

3.145 - -

CEL-6

121110987654321

2

1
0

bi
ts 2.215 EOR-1

(1.91e-03)
[98]

CEL-7

1
2

1
1

1
0987654321

2

1

0

b
it
s

7.093 - -

CEL-8

1110987654321

2

1
0

bi
ts 2.878 - -

CEL-9

1110987654321

2

1
0

bi
ts 5.151 DPY-27

(9.7e-03)
[99]

CEL-10

1110987654321

2

1
0

bi
ts 2.09 - -

CEL-11

1
2

1
1

1
0987654321

2

1

0

b
it
s

3.967 - -

63



Table 3-5: SFs that best describe the RRs of muscle-expressed genes in C. elegans. For
each SF, a description of the involved motifs and the Kullback-Leibler weight are shown.
Squares above or under the black line indicate motifs on plus or minus strand, whereas
those in the middle of the line represent motifs on either strand.

Illustration Description and Weights

-1000                                                                                  0                               +200

         TSS        Feature 1 CEL-4 is positioned downstream
from CEL-10 on opposite strands

(0.1)

         TSS        Feature 2
~200-300 bp

-1000                                                                                  0                               +200

CEL-4 is positioned at ∼200-300 bp
from CEL-8 on opposite strands

(0.09)

         TSS        Feature 3

-1000                                                                                  0                               +200

CEL-8 is positioned downstream
from CEL-2 on minus strand

(0.13)

         TSS        Feature 4 ~400-500 bp

-1000                                                                                  0                               +200

CEL-10 is positioned at ∼400-500 bp
downstream from CEL-4

on plus strand
(0.14)

         TSS        Feature 5

-1000                                                                                  0                               +200

CEL-6 is positioned downstream
from CEL-1 and CEL-7

on opposite strands
(0.06)

MUSCLE-RELATED MOTIFS

CEL-1 CEL-2 CEL-3 CEL-4 CEL-5 CEL-6 CEL-7 CEL-8 CEL-9 CEL-10 CEL-11   
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Figure 3-8: Detailed architecture of two C. elegans RRs previously reported [95] and
also uncovered by the proposed method. Colored squares represent the muscle-related
motifs. Squares above or under the black line indicate motifs on plus or minus strand,
respectively.
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CHAPTER 4 CANNOT BE DISCLOSED.



Chapter 5

Conclusions

This thesis presents three computational methods, which validate the hypothesis that

tissue-expressed genes (or a part of them) somehow share a similar promoter architec-

ture.

The first method took advantage of the short intergenic regions of A. thaliana genes and

analyzed the promoters of genes expressed in four plant structures (flower, seed, root and

shoot) and in the entire plant. Eight motifs were said to be potentially novel because

they did not significantly match any known motif. The predicted motifs were used to

create five motif-combination patterns that turned out to describe the promoters of genes

expressed in the different plant structures. The patterns regarded the relative positioning

and orientation of motif sequences to the TLS as a suitable measure to differentiate the

promoter groups from background genomic promoters. This approach could successfully

decipher the promoter structure of genes expressed in petal differentiation, synergid, root

hair, trichome and that of housekeeping genes.

The second method modeled the cis-regulatory modules of antenna-expressed genes in D.

melanogaster. It simultaneously combined four types of structural features such as rel-

ative positioning to the TSS, pairwise positioning, binding order and strand orientation

of motifs. Three motifs appeared to be novel in the regions of antenna-expressed genes.

The combination of correlation-based filter and genetic algorithm was introduced to leave

out irrelevant features and reach highly informative ones. Validations with independent

RNA-Seq data confirmed the prediction potential of the method. This study proposed

the strand orientation and binding order of motifs as important characteristics to be con-

sidered in future analyses. The identified features also showed signals of conservation in
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regulatory regions of orthologs across the Drosophila lineage.

The above method was further improved into a third method, which was created and

validated with D. melanogaster genes expressed in different developmental stages. Two

additional features such as presence of motifs anywhere in the promoter and relative dis-

tance of motif pairs to the TSS were added to the feature collection. From 22 models

13 (59%) of them turned out to be statistically significant. Validations with independent

RNA-Seq data proved the reliability of this new method, which uncovered interesting fea-

tures in the promoter regions of stage-expressed genes. Although this methodology could

be extended to model the cis-regulatory modules of genes expressed in other biological

conditions, its effectiveness is still limited and comparable to that of previously reported

studies.

Future approaches should be intended to reduce complexity while searching for smaller

sets of structural features in promoter regions.
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Appendix A

Python Code for Converting PFM into KFV

import Numeric
from numpy import matrix
import numpy as np
import operator

class FVector:

// This function represents the constructor.

def __init__(self):

self.NFMATRIX = []
self.KFVECTOR = []

// This function updates the field NFMATRIX.

def Set_NFMatrix (self, NFM):

self.NFMATRIX = NFM

// This function computes the Manhattan Norm.

def Compute_Manhattan_Norm (self, Vector):

Sum = abs(sum(Vector))

return (Sum)

// This function creates the binary matrix of a k-mer.

def Create_Binary_Matrix (self, k_mer):

Nucleotides = [’A’,’C’,’G’,’T’]

Array = Numeric.zeros([len(Nucleotides), len(k_mer)])

i = 0
while (i <= len(k_mer) - 1):

Row_Index = Nucleotides.index(k_mer[i])

Col_Index = i

Array[Row_Index, Col_Index] = 1

i += 1

return (Array)
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// This function generates the k-mers.

def Generate_K_Mers (self, k):

Bases = [’A’,’C’,’G’,’T’]
Words = Bases

i = 1
while (i <= k - 1):

Newwords = []
for word in Words:

for base in Bases:
Newwords.append(word + base)

Words = []
Words = Newwords

i += 1

return (Words)

// This function computes the dot product of two vectors.

def Compute_DotProduct (self, i, k_mer, NFMatrix):

Binary_Matrix = self.Create_Binary_Matrix(k_mer)
Binary_Matrix = zip(*Binary_Matrix)

DotProduct = 1

j = 0
while (j <= len(k_mer) - 1):

Binary_Vector = Binary_Matrix[j]
NFVector = NFMatrix[i + j]

Manhattan_Norm = self.Compute_Manhattan_Norm(NFVector)

NewVector = map(lambda x: x/float(Manhattan_Norm), NFVector)

Product = sum(map(operator.mul, Binary_Vector, NewVector))

DotProduct *= Product

j += 1

return (DotProduct)

// This function computes the dot product at each position of the PFM.

def Compute_Likelihood (self, k_mer):

NFMatrix = self.NFMATRIX

Likelihood = 0

i = 0
while (i <= (len(NFMatrix) - len(k_mer))):

DotProduct = self.Compute_DotProduct(i, k_mer, NFMatrix)
Likelihood += DotProduct

i += 1

return (Likelihood)
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// This function computes the KFV of the corresponding PFM.

def Compute_KFVector (self, k):

KMers = self.Generate_K_Mers(k)

Vector = []

i = 0
while (i <= len(KMers) - 1):

Likelihood = self.Compute_Likelihood(KMers[i])

Vector.append(Likelihood)

i += 1

self.KFVECTOR = Vector

105



Appendix B

FlyBase IDs of Antenna-Expressed Genes in

B.1 the Motif-Prediction Set

FBGN0038531 FBGN0038734 FBGN0041624 FBGN0034487 FBGN0041621
FBGN0037590 FBGN0033463 FBGN0030868 FBGN0038958 FBGN0030005
FBGN0031289 FBGN0052448 FBGN0036062 FBGN0017457 FBGN0034224
FBGN0036936 FBGN0034768 FBGN0085325 FBGN0041250 FBGN0003450
FBGN0038114 FBGN0031258 FBGN0036859 FBGN0036938 FBGN0004898
FBGN0026392 FBGN0035865 FBGN0037345 FBGN0052250 FBGN0035475
FBGN0004400 FBGN0033140 FBGN0039325 FBGN0034565 FBGN0039510
FBGN0004832 FBGN0033413 FBGN0040261 FBGN0029853 FBGN0033628
FBGN0040849 FBGN0031479 FBGN0050101 FBGN0031589 FBGN0026389
FBGN0052797 FBGN0041622 FBGN0264954 FBGN0052801 FBGN0262123
FBGN0032085 FBGN0051718 FBGN0031529 FBGN0031059 FBGN0038309
FBGN0003346 FBGN0030016 FBGN0034770 FBGN0037025 FBGN0022724
FBGN0026386 FBGN0261401 FBGN0051717 FBGN0024891 FBGN0033072
FBGN0032181 FBGN0001967 FBGN0039202 FBGN0030244 FBGN0032127
FBGN0036019 FBGN0050051 FBGN0037576 FBGN0041241 FBGN0261380
FBGN0037000 FBGN0034865 FBGN0037399 FBGN0037501 FBGN0010786
FBGN0040253 FBGN0041625 FBGN0032189 FBGN0015553 FBGN0033529
FBGN0003480 FBGN0011787 FBGN0032822 FBGN0053475 FBGN0033931
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B.2 the Feature-Computation Set

FBGN0030234 FBGN0044811 FBGN0052405 FBGN0051075 FBGN0051019
FBGN0052277 FBGN0024249 FBGN0050259 FBGN0036219 FBGN0262685
FBGN0041623 FBGN0050272 FBGN0026373 FBGN0035468 FBGN0024947
FBGN0036212 FBGN0037685 FBGN0038798 FBGN0010651 FBGN0038404
FBGN0031943 FBGN0028946 FBGN0033209 FBGN0039879 FBGN0036638
FBGN0036414 FBGN0036923 FBGN0050044 FBGN0033362 FBGN0037411
FBGN0036009 FBGN0036195 FBGN0027073 FBGN0036628 FBGN0037934
FBGN0053757 FBGN0013749 FBGN0036240 FBGN0031694 FBGN0039009
FBGN0037519 FBGN0035435 FBGN0036078 FBGN0033501

B.3 the Model-Build Set

FBGN0036828 FBGN0038452 FBGN0024352 FBGN0085295 FBGN0031998
FBGN0035168 FBGN0044511 FBGN0035256 FBGN0032684 FBGN0004404
FBGN0053208 FBGN0034769 FBGN0027348 FBGN0026395 FBGN0034906
FBGN0039673 FBGN0034106 FBGN0024432 FBGN0039454 FBGN0032428
FBGN0031324 FBGN0035031 FBGN0032052 FBGN0031854 FBGN0035002
FBGN0036206 FBGN0034473 FBGN0031209 FBGN0025558 FBGN0032877
FBGN0030389 FBGN0038814 FBGN0038602 FBGN0031725 FBGN0000137
FBGN0039319 FBGN0047330 FBGN0031791 FBGN0026385 FBGN0040256
FBGN0038916 FBGN0085326 FBGN0030804 FBGN0036239 FBGN0037989
FBGN0038727 FBGN0031668 FBGN0038799 FBGN0035604 FBGN0053658
FBGN0045502 FBGN0033043 FBGN0039324 FBGN0003462 FBGN0033357
FBGN0030598 FBGN0085424 FBGN0052704 FBGN0038397 FBGN0013812
FBGN0032406 FBGN0039201 FBGN0032211 FBGN0030204 FBGN0034176
FBGN0037726 FBGN0035286 FBGN0026398 FBGN0035742 FBGN0039551
FBGN0038203 FBGN0028963 FBGN0034766 FBGN0032949 FBGN0038350
FBGN0035085 FBGN0085260 FBGN0015271 FBGN0034692 FBGN0035887
FBGN0039385 FBGN0053289 FBGN0030669 FBGN0034909 FBGN0003382
FBGN0036764 FBGN0026397 FBGN0051216 FBGN0036143 FBGN0030395
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Appendix C

Python Code of

C.1 the Correlation-Based Filter

from Utils import *
from Feature import *
import numpy
import math

class FeatureSet:

// This function represents the constructor.

def __init__(self):

self.FEATURESET = dict ()
self.CLASS = None

// This function updates the field FEATURESET.

def setFeatureInstance (self, Identifier, FeatureObject):

self.FEATURESET[Identifier] = FeatureObject

// This function returns the information of the entire feature set.

def getFeatureInfo (self):

return (self.FEATURESET)

// This function returns the class information.

def getClassVector (self):

return (self.CLASS)

// This function creates a dictionary with the information of each feature.

def ValuePerFeature (self, StringList):

Rules = dict()

i = 0
while (i <= len(StringList) - 1):

(Rule, Items) = SplitString ("\t", StringList[i])

Values = StringToInteger(Items)
Rules[Rule.strip()] = Values

i += 1

return (Rules)
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// This function creates a list of class indices.

def CreateClassIndices (self, ClassIdx, Times):

ClassIndices = [ClassIdx] * Times

return (ClassIndices)

// This function updates the fields FEATURESET and CLASS with the
corresponding feature and class values.

def CreateFeatureMatrix (self, SpecificSet_String, NonSpecificSet_String):

SpecificSetRules = self.ValuePerFeature(SpecificSet_String)
NonSpecificSetRules = self.ValuePerFeature(NonSpecificSet_String)

Instance_Class1 = 0
Instance_Class2 = 0

Rules = SpecificSetRules.keys()

for Rule in Rules:

Instance_Class1 = len(SpecificSetRules[Rule])
Instance_Class2 = len(NonSpecificSetRules[Rule])
CompleteValueList = SpecificSetRules[Rule] +

NonSpecificSetRules[Rule]

CompleteValueList = Normalization(CompleteValueList)

ZeroAmount = SpecificSetRules[Rule].count(0)

if (ZeroAmount != len(SpecificSetRules[Rule])):
FeatureObject = Feature()
FeatureObject.setValues(CompleteValueList)
self.setFeatureInstance(Rule, FeatureObject)

ClassVector1 = self.CreateClassIndices(1, Instance_Class1)
ClassVector2 = self.CreateClassIndices(0, Instance_Class2)
ClassVector = ClassVector1 + ClassVector2

ClassObject = Feature()
ClassObject.setValues(ClassVector)
self.CLASS = ClassObject

// This function counts the number of instances per feature value that
belong to a given class.

def getDefinedLikelihood (self, ClassIdx, FeatureVector, ClassVector):

ValueDict = CountValues(FeatureVector)
Values = ValueDict.keys()

IntersectionDict = dict()

Amount = 0

for Value in Values:

Counter = 0
for i in range(len(FeatureVector)):

if ((ClassVector[i] == ClassIdx) & (FeatureVector[i] == Value)):
Counter += 1

Amount += Counter
IntersectionDict[Value] = Counter

return (Amount, IntersectionDict)
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// This function computes the partial entropy of a feature.

def ComputeLikelihood (self, Amount, IntersectionDict):

Values = IntersectionDict.keys()

PartialEntropy = 0.0

for Value in Values:
InternalLikelihood = (IntersectionDict[Value] + 1)/(float(Amount) +

len(Values))
InternalEntropy = InternalLikelihood * Log2(InternalLikelihood)
PartialEntropy += InternalEntropy

return (PartialEntropy)

// This function computes the conditional entropy of two features.

def ComputeEntropyTwoFeatures (self, FeatureInstance1, FeatureInstance2):

Likelihoods = FeatureInstance2.ComputeLikelihoods()

ClassIndices = Likelihoods.keys()

Entropy = 0.0

for ClassIdx in ClassIndices:
(Amount, Intersection) = self.getDefinedLikelihood(ClassIdx,

FeatureInstance1.getValues(), FeatureInstance2.getValues())
PartialEntropy = self.ComputeLikelihood(Amount, Intersection)
Entropy += Likelihoods[ClassIdx] * PartialEntropy

Entropy *= (-1)

return (Entropy)

// This function computes the symmetrical uncertainty of two features.

def ComputeSUncertainty (self, FeatureInstance1, FeatureInstance2):

Entropy_1 = FeatureInstance1.ComputeEntropy()
Entropy_2 = FeatureInstance2.ComputeEntropy()
JoinEntropy = self.ComputeEntropyTwoFeatures(FeatureInstance1,

FeatureInstance2)

InformationGain = Entropy_1 - JoinEntropy
Entropies = Entropy_1 + Entropy_2

SUncertainty = 2 * (InformationGain/float(Entropies))

return (SUncertainty)

// This function computes the symmetrical uncertainty between each feature
and the class.

def ComputeAllUncertainties (self):

FeatureDict = self.getFeatureInfo()
ClassInstance = self.getClassVector()

Features = FeatureDict.keys()

SUDictionary = dict()

for Feature in Features:

SU = self.ComputeSUncertainty(FeatureDict[Feature], ClassInstance)
SUDictionary[Feature] = SU

return (SUDictionary)
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// This function filters the features by their values of symmetrical
uncertainty.

def FilterFeaturesBySUValue (self, Threshold, SUDictionary):

Features = SUDictionary.keys()

for Feature in Features:
if (SUDictionary[Feature] < Threshold):

del SUDictionary[Feature]

return (SUDictionary)

// This function removes the redundant features.

def FastCorrelationBasedFilter (self):

SUDictionary = self.ComputeAllUncertainties()

Threshold = numpy.mean(SUDictionary.values())

FilteredSUDictionary = self.FilterFeaturesBySUValue(Threshold,
SUDictionary)

FeatureCollection = SortDictionaryByValues(FilteredSUDictionary)

FeatureDict = self.getFeatureInfo()

i = 0
while (i <= len(FeatureCollection) - 1):

PredominantInstance = FeatureDict[FeatureCollection[i]]

j = i + 1
while (j <= len(FeatureCollection) - 1):

SUpq = self.ComputeSUncertainty(PredominantInstance,
FeatureDict[FeatureCollection[j]])

SUqc = FilteredSUDictionary[FeatureCollection[j]]

if (SUpq >= SUqc):
FeatureCollection.remove(FeatureCollection[j])

j += 1

i += 1

return (FeatureCollection)
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C.2 the Kullback-Leibler Weighing∗

// This function computes the Kullback-Leibler measure of a feature.

def KullbackLeiblerOneValue (self, Number, ClassVector, Instance,
Likelihoods):

(Amount, IntersectionDict) = self.getDefinedLikelihood(Number,
ClassVector.getValues(), Instance.getValues())

Values = IntersectionDict.keys()

KullbackLeibler = 0.0

for Value in Values:
InternalLikelihood = (IntersectionDict[Value] + 1)/(float(Amount) +

len(Values))
KullbackLeibler += InternalLikelihood *

math.log10(InternalLikelihood/float(Likelihoods[Value]))

return (KullbackLeibler)

// This function calculates the Kullback-Leibler measure of each feature.

def ComputeKullbackLeiblerWeight (self, Instance):

ClassVector = self.getClassVector()

ClassLikelihoods = ClassVector.ComputeLikelihoods()
InstanceLikelihoods = Instance.ComputeLikelihoods()

SplitInfo = self.ComputeSplitInfo(InstanceLikelihoods)

Values = InstanceLikelihoods.keys()

KLWeight = 0.0

for Value in Values:

KL = self.KullbackLeiblerOneValue(Value, ClassVector, Instance,
ClassLikelihoods)

KLWeight += InstanceLikelihoods[Value] * KL

KLWeight = KLWeight/float(SplitInfo)

return (KLWeight)

// This function returns the probabilities of a feature.

def ComputeSplitInfo (self, Likelihoods):

Values = Likelihoods.keys()

SplitInfo = 0.0

for Value in Values:
SplitInfo += Likelihoods[Value] * math.log10(Likelihoods[Value])

SplitInfo *= -1

return (SplitInfo)

∗This code uses functions defined in C.1.
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// This function computes the normalized weight for each feature.

def GetKLWeights (self, FeatureCollection):

FeatureInstances = self.getFeatureInfo()

Weights = dict()

for Feature in FeatureCollection:

Instance = FeatureInstances[Feature]
KLWeight = self.ComputeKullbackLeiblerWeight(Instance)

Weights[Feature] = KLWeight

DecimalWeights = [Weights[i] for i in Weights.keys()]

Total = numpy.sum(DecimalWeights)

NormalizedWeights = dict()

for i in Weights.keys():
NormalizedWeights[i] = round((Weights[i]/Total), 2)

return (NormalizedWeights)
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