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Abstract 

The recent years of researches on GeO2/Ge interface passivation technics have enable 

the operation of high mobility Ge MOSFET for the first time, which might be the dawn of 

a new generation of IC application with Ge channel. However, the remaining concerns are 

still critical. Namely, (1) the poor thermal and chemical stability of GeO2/Ge stack must be 

improved; (2) the equivalent oxide thickness (EOT) must be reduced to below 1 nm 

without degrading the interface; and (3) the long term reliability of Ge MOS device must 

be ensured for real application. These three concerns are among the most critical 

challenges on bringing Ge back to future. 

In this work, I will address the above concerns by designing new dielectric materials 

for MOS devices formation. The key to the dielectric designing is to manipulate the 

structure of oxides by the formation of ternary alloys. This is because the bonding 

configuration in the ternary oxide might be changed from the binary oxides and such 

change would bring about significant influences on the material and electrical properties of 

the gate dielectric. 

Under this guiding principal, a new material, metal oxide doped GeO2 (M-GeO2), was 

proposed for the robust interfacial layer (IL) on Ge gate stack. Drastic improvements in 

thermal and chemical stability were obtained without any cost of interface properties by 
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small amount of suitable doping like Y or Sc. The significant improvements in material 

stability were discussed from the network modification of GeO2 by doping. 

A new ternary high-k dielectric, yttrium scandate (YScO3), is also proposed for the gate 

stack formation in the sub-nm EOT region. A higher k-value and sufficient energy gap is 

observed for YScO3, which is a pronounced advantage over its binary compounds. The 

k-value improvement is also discussed from the structural change and denser packing of 

the ternary oxides. The YScO3 also inherit the interface aware properties of its binary 

compounds, which enable it to be used on an ultra-thin IL. The 0.5 nm EOT and very high 

electron peak mobility is demonstrated by YScO3/Y-GeO2/Ge stack. 

Based on the good initial properties, the reliability assessment of the Ge MOS device is 

also carried out in terms of both pre-existing trap in the as-prepare gate stacks and trap 

generation under high electric stress field (Estress). It is found that the hole trap is the major 

concern among the pre-existing traps, which is controllable by the gate stack process 

condition such as high oxygen pressure. While, the trap generation behavior in the Ge 

stack is dominated by the intrinsic rigidity of the dielectrics network. Y or Sc-GeO2 can 

effectively suppress the trap generation under high Estress comparing to pure GeO2. Based 

on this knowledge, we demonstrated significant reliability improvements in Ge MOS 

devices.   
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breakdown occurs rapidly in HPO-GeO2/Ge stack under 9 MV/cm.
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Overview 

Due to the physical limitation on Si MOSFET dimensional scaling, Ge is emerging as 

an advanced channel material in substitute of Si to achieve higher device operation speed. 

The design of the gate dielectric is the most critical concern to ensure a sufficiently 

passivated Ge interface and high carrier mobility in the channel. Significant progresses 

have been reported recent years on the preparation of high quality GeO2 on Ge, which 

yield a well passivated Ge interface and high carrier mobility over Si universality. Though 

GeO2 has been believed to be the best candidate for the interface passivation, advanced 

gate dielectrics are still needed to improve several vital properties of Ge MOS device. 

Namely, the thermal and chemical robustness of the GeO2/Ge stack must be improved. The 

scalability of the equivalent oxide thickness to deep sub-nm region must be ensured. And 

finally, the long term reliability of the Ge MOS device must be evaluated. This work will 

investigate the various dielectrics oxides in terms of the above requirements. A structural 

viewpoint on dielectric oxides is to be developed for controlling the material and electrical 

properties of the Ge MOS device.      

  

1.1 High mobility channel material for future MOS device 

Since the first demonstration on silicon in 1959 by Dawon Kahng and Martin M Atalla 

in Bell Lab,
1
 metal-oxide-semiconductor field-effect-transistors (MOSFET) has been one 

of the most used electronic devices in the world. The logic, memory, power and 

radio-frequency (rf) circuits all utilize the MOSFET structure as their basic units.
2-5

 It is 

not hard to sketch a basic configuration of MOSFET (Figure 1.1).
6
 A MOSFET is basically 

an three-terminal device where the channel resistance between two contacts are controlled 

by the third.
6
 In detail, the carriers flow from the source to the drain, and the control 

terminal is the gate, which can manipulate the channel resistance by capacitively coupled 
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electric field. Despite this simple schematics of the MOSFET structure, the understanding 

and improvement the MOSFET are not easy challenges. 

 

                   

Figure 1.1 Schematics of a MOSFET with planar structure. There are three terminals for 

the device, the source, the drain and the gate. The carriers are injected from the source to 

the drain through the semiconductor channel, which is controlled by field applied through 

gate electrode.  

 

Ever since the proposal of MOSFET concept in 1930s
7, 8

 and the first demonstration in 

1959,
1
 progressive achievements have been made by the relentless works. In the recent 

decades of MOSFET researches, people have been focusing on shrinking the device size 

due to two fundamental reasons.
9-12

 Firstly, the smaller the devices are, the larger amount 

of them can be integrated in a circuit. With a fixed cost of entire wafer process, the average 

cost of a single function can be reduced by larger amount of devices. Secondly, the smaller 

device can offer faster switch delay for the logic function, thereby to achieve higher speed 

of the circuit. Table 1.1 lists in detail the size scaling results of the devices with constant 

electric field.
13

 With the shrinkage of the device size, the shorter switch delay, smaller 

power dissipation and larger number of transistors are obtainable, which is beneficial to 
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improve the speed and the total number of functions on a single chip. Therefore, the 

scaling of the device size is the major trend for the MOSFET technology development for 

the recent decades. 

 

Table 1.1 scaling effect on the device parameters with device sized reduced by a factor K. 

Here α is a scaling factor which is larger than 1.
13

 

 

 

To utilize the aforementioned benefits of smaller devices, semiconductor enterprises 

have managed to reduce the device size by half in about every 3 years, following the 

prediction by Moore’s low.
14

 Figure 1.2 shows the international technology roadmap for 

semiconductors (ITRS) technology node of logic and memory devices,
15

 which basically 

reflects the half pitch scale of a single MOSFET. The blue squares represent the technology 

nodes which have already been achieved and the red circles are those expected in the near 

future. 

 

Parameters Expressions Scaling

Saturated Id Id=VsatWgCox(Vg-Vth) K

Id/gate wide Id/Wg 1

Gate capacitance Cg=ε0εOXLgWg/tOX K

Switch speed τ=CgVdd/Id K

Clock frequency f=1/τ 1/K

Chip area Achip α

Integration N α/K2

Power per chip P=fNCV2/2 α
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Figure 1.2 ITRS technology node of device scaling by years.
15

 The half reduction of the 

device dimensions has been successfully carried out every 3 years so far, but further 

reducing the device size to a few nm will inevitably face the physical limitations. 

       

Regardless of the success on device scaling so far achieved, the simple reduction of 

devices size is no longer a viable choose for future since many intrinsic limitations emerge 

when the devices are in only several nm size. In the horizontal direction, short channel 

effect appears when the source and drain depletion regions take a substantial proportion of 

the channel length, featuring large source drain leakage current.
6,16

 In the vertical direction, 

to have sufficient control of the channel field by the gate bias, the thickness of the gate 

insulator is expected to be decreased with smaller device size, which inevitably results in a 

large gate leakage current (JG), limiting the further scaling of the oxide thickness.
17, 18

 

Furthermore, the heavily doped source and drain region need to be more shallowly profiled 

with scaling of the device to maintain a high on current,
18, 19

 which is a great challenge for 

the doping technics concerning the solubility limitation. These intrinsic limitations, 
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together with overwhelming production cost, make the further device size scaling virtually 

unattainable and useless. 

Alternative approaches have been investigated to extend the semiconductor 

development in the More Moore era as summarized in Figure 1.3.
13

 These approaches are 

dealing with either device topology, gate insulator materials, or channel materials. Among 

them, replacing Si with high mobility (μ) semiconductors and replacing ploy-Si/SiO2 with 

metal gate/high-k dielectric might be a feasible choice for the MOSFET with high carrier 

mobilities and thin equivalent oxide thickness (EOT).  

 

Figure 1.3 Schematics of various approaches to improve the device properties in the post 

dimensional scaling age.
13

 The device structure, gate insulator material and channel 

material are all possible components that can be improved. 

 

Various high-μ semiconductors have been investigated
20-23

 to substitute Si as listed in 

Figure 1.4. Among them, germanium (Ge) has both high electron and hole mobilities over 

that of Si. It is notable that, though some group III-IV compound semiconductors have 

even higher electron mobilities, their hole mobilities are not satisfying. Thus, a balanced 

high electron and hole mobilities of Ge are a great advantage in terms of make the 
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complimentary MOS (cMOS) operations. Moreover, the low processing temperature of Ge 

makes it easier to be integrated in the existing Si technology. Therefore, Ge has emerged as 

the feasible channel material in replacement of Si. 

 

 

                    (a)                                  (b) 

Figure 1.4 Bulk mobilities of (a) electron and (b) hole for various semiconductors. The 

striking advantage of Ge over the other semiconductor materials is that its electron and 

hole mobilities are higher than Si in a balanced way. 

 

Ge is a lustrous, greyish-white matter in the group IVb in periodic table. It has five 

natural isotopes, namely, 70Ge, 72Ge, 73Ge, 74Ge and 76Ge. The structure of crystallized 

Ge is diamond structure in cubic phase, which is the same with that of crystallized Si. The 

other physical properties of Ge at room temperature (RT, 300K) are listed in Table 1.2 in 

comparison with Si.
24

  

 

 

 

 

 

10
2

10
3

10
4

10
5

InSbInAsInPGaAsGe

E
le

c
tr

o
n

 m
o

b
il
it

y
 (

c
m

2
/V

s
)

Si
10

2

10
3

10
4

10
5

InSbInAsInPGaAsGe

H
o

le
 m

o
b

il
it

y
 (

c
m

2
/V

s
)

Si



Chapter 1. Introduction   

26 

 

Table 1.2 Basic physical properties of Ge and Si at 300 K.
24

 

 

 

1.2 Requirements for gate stack design in Germanium MOS device 

1.2.1 Intrinsically good interface of GeO2/Ge 

To ensure the high channel mobility, merely selecting a high-μ channel material is not 

enough, because the carriers in the channel are scattered by various mechanisms, namely, 

the Coulomb, phonon and surface roughness scatterings.
25

 Among them, the Coulomb 

scattering is dominating the channel mobility under a low field, and is largely determined 

by the selection of gate oxides. Because, without a sufficient passivation of the 

dielectric/Ge interface, a large density of interface states (Dit) might exist, which act as 

scattering source to limit the channel mobility.
25

 Therefore, the formation of a promising 

gate stack is one essential requirement for fully utilizing the high-μ of Ge. Germanium 

dioxide (GeO2) was naturally considered as the gate dielectric for Ge gate stack 

formation
26

 simply inspired by the successful SiO2/Si system. As expected, very promising 

interface properties has been obtained by the growth of high quality GeO2 through various 

methods thermally or chemically.
27-29

 The Dit can be controlled at about 1×10
11

 eV
-1

cm
-2

 

near the mid gap for these well prepared GeO2/Ge gate stack.
27-29

 Ge MOSFET operations 

have also been demonstrated with both electron and hole mobilities exceeding Si 

Properties Ge Si

Density (g/cm3) 5.323 2.329

Lattice constant (A) 5.658 5.431

Melting point (oC) 937 1415

Dielectric constant 16.0 11.9

Band gap (eV) 0.66 1.12

Electron affinity, χ(V) 4.0 4.05

Breakdown field (V/cm) ~105 ~3×105
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universality
25

 by GeO2/Ge interface as summarized in Figure 1.5. Besides GeO2, other 

dielectric materials with various deposition technics have also been investigated for Ge 

passivation, such as GeON,
30

 GeOS,
31

 fluorine,
32

 silicon,
33

 or direct high-k
34-37

 passivation. 

However, on contrary to GeO2/Ge interface, these passivation methods result in relatively 

higher Dit, which cannot yield high mobility for MOSFET operation. Therefore, we 

believed that GeO2 was the best candidate for Ge interface passivation so far. 

 

Figure 1.5 Channel mobilities in Ge MOSFET reported in the literatures with high quality 

GeO2(x)/Ge interface
27-29

 or with other dielectric passivation.
33-37

 Both high electron and 

hole mobilities over that of Si universality
25

 have been demonstrated by GeO2/Ge interface. 

While with other passivation methods, the mobilities are relatively poorer. 

 

1.2.2 Challenges for the Ge gate stack formation 

Regardless of the promising properties of GeO2/Ge interface, there are still critical 

concerns on utilizing GeO2/Ge system for device application in a real scene. Firstly, GeO2 

is a relatively soft material comparing to SiO2,
38

 which makes GeO2/Ge stacks thermally 

and chemically unstable. The formation of Ge monoxide (GeO) in the GeO2/Ge stack is 
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observed from a relatively low temperature as shown in Figure 1.6(a),
39

 which reflects the 

reaction between GeO2 and Ge. The formed GeO is then desorbed from the surface of 

GeO2/Ge stack and is detectable in the thermal desorption spectrum (TDS). Figure 1.6(b) 

shows the GeO desorption peak temperature from GeO2/Ge gate stacks as a function of 

initial thickness of GeO2 according to previous reports.
40

 GeO desorption occurs at a 

relatively low temperature, which is accompanied by the oxygen vacancy (VO) formation 

and electrical properties degradation.
40

  

 

 

                 (a)                                   (b) 

Figure 1.6(a) GeO component in the GeO2/Ge gate stack as a function of annealing 

temperature.
39

 The inset shows the typical fit with six components due to three species, Ge, 

GeO and GeO2. Also shown in the inset is a plot of the intensity of the signal due to 

oxygen normalized by the beam current, indicating that the amount of oxygen remains 

essentially unchanged during the transformation. (b) GeO desorption peak temperature 

from GeO2/Ge stacks as a function of GeO2 thickness.
40

 The desorption temperature is 

quite low, especially for thin GeO2.  

 

The highly hygroscopicity nature of GeO2 is also a big problem. Figure 1.7(a) shows 

the thickness of GeO2 as a function of immersion time in pure deionized water (DIW). On 

GeO desorption 
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contrary to water insoluble SiO2, several nm of GeO2 is immediately etched by DIW. The 

hygroscopic nature of GeO2 incurs not only great trouble in the device process but also 

reliability issue with exposure to air as shown in Figure 1.7(b).
41

 Both thermal instability 

and water solubility are among the biggest obstacles against bringing Ge back to future in 

spite of superior GeO2/Ge interface properties. 

 

 

                    (a)                                  (b) 

Figure 1.7(a) The thickness of GeO2 and SiO2 as a function of immersion time in DIW. 

SiO2 is not etched by water, while GeO2 is etched immediately. (b) Hysteresis of the C-V 

curves of GeO2/Ge gate stack as a function of time with exposure to air.
41

 Regardless of the 

good initial properties, the hysteresis increase a lot with air exposure. 

 

Since the dielectric constant (k) of GeO2 is about 5.2 to 5.9,
26, 42

 it is naturally hard for 

GeO2/Ge stack to achieve an EOT beneath 1 nm with affordable JG. Therefore, only 

ultra-thin GeO2 layer can be used as an interfacial layer (IL) between Ge and high-k 

dielectrics. The high-k/IL/Ge gate stack would be valid even for a real device application 

with very high switching frequency, because the high k-value is not reduced up to several 
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tens of GHz.
43

 On the other hand, the biggest concern is the impact of high-k dielectrics on 

the interface. Due to the soft nature of GeO2, considerable intermixing might occurs 

between the top high-k dielectrics and the GeO2 IL in such bilayer stacks,
44, 45

 which makes 

the interface properties highly sensitive to the high-k dielectric as well. Most conventional 

high-k dielectrics are expected to form a defect state by intermixing into GeO2 IL as shown 

in Figure 1.8(a) (HfO2 on Ge in this example).
46

 Thus, the criteria for selecting proper 

high-k materials on sub-nm EOT Ge gate stack formation is more strict and comprehensive 

than that on Si. Without a proper high-k, the scaling of the EOT will inevitably be at the 

cost of Dit increase. This is the reason for the unsatisfying interface properties for very thin 

EOT Ge gate stack as reported in previous works (Figure 1.8(b) for a ZrO2 as high-k, 

which is very similar to HfO2
34

). Therefore, selecting a proper high-k oxide with interface 

awareness becomes a key to the EOT scaling in sub-nm region. 

 

              (a)                                    (b) 

Figure 1.8(a) First principle calculations on the defect state formation when conventional 

high-k dielectric (HfO2 in this case) was intermixed with GeO2 IL.
46

 (b) Dit spectra of an 

aggressively scaled Ge stack with ZrO2 as high-k (similar to HfO2).
34

 Though very thin 

EOT is demonstrated, the Dit is in the order of 10
12

 cm
-2

eV
-1

 near the mid gap (almost 10 
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times higher than the state-of-the-art low Dit in Ge stack), which is not satisfying for high 

mobility MOSFET application. 

 

   Moreover, it is reported in the previous literatures that the higher k-value in the 

transition oxides are always at the cost of the smaller band gap as shown in Figure 1.9.
47

 

For the low-k oxides like SiO2, the band gap can be as wide as 9 eV. While, for the 

ultra-high-k oxide TiO2, the band gap is only about 3 eV. The narrower band gap 

significant blurs the advantage of high-k dielectrics in terms of reducing JG. Thus it is a 

great challenge to find a suitable combination of high-k value and sufficient band gap. 

 

Figure 1.9 Band gap of various oxides as a function of the k-value.
46

 The higher k-value is 

always at the cost of smaller band gap for normal transition metal oxides. 

 

Finally, the promising initial characteristics of Ge MOS devices do not necessarily 

secure their long term reliability. Under an electric stress field (Estress), electron or hole are 

injected into the gate dielectric and might be captured by some trap sites in the dielectric, 

which results in the shift of device parameters over time as schematically shown in Figure 

1.10(a).
48, 49

 The Dit or bulk trap density might also be increased by the Estress, which brings 
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about more severer shift of threshold voltage (Vth), the degradation of the 

trans-conductance (Gm) or the increase of JG. A comprehensive understanding is not yet 

obtained on the long term reliability properties of Ge MOS devices. The reports so far 

indicate that the trapping is much severer for Ge MOS than that of Si counterpart 

(Figure 1.10(b)).
50

 A systematic assessment on the Ge gate stack reliability is to be carried 

out to understand the reliability degradation mechanism and to improve the long term 

reliability projection. 

 

 

Figure 1.10(a) Schematics of the carrier trapping in Ge MOS device under and positive 

Estress. The electrons are injected from the Ge to gate metal and the holes are injected in an 

inverse direction. Both might be captured by the trap sites in the dielectric. Similar 

situation can be expected for negative Estress. (b) Vth shift as a function of electric field in 

Ge and Si stacks.
50

 

 

1.3 Objective and organization of this work 

   In this work, I will focus on the gate stack formation on Ge in terms of aforementioned 

challenges. Under the presumption of (1) intrinsically good GeO2/Ge based interface, I will 

discuss the (2) improvement of the thermal and chemical robustness of the GeO2/Ge based 
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interface. (3) design of an interface aware high-k for EOT scaling of Ge gate stack, and (4) 

understanding and improvement of the reliability of Ge gate stack for long term application. 

It is important to note that all the challenges should be addressed simultaneously and the 

solution of one issue should not be at the cost of sacrificing another. The approaches in this 

work are not simple optimization of process, but the research into entirely new materials 

which are intrinsically good for Ge MOS device application. 

In the first chapter, inspired by thermodynamics on metal oxides, yttrium oxide doped 

GeO2 (Y-GeO2) is investigated for interface passivation on Ge. Significant improvement of 

both thermal stability and water resistance was demonstrated in GeO2/Ge stack by 

replacing GeO2 with Y-GeO2. The excellent electrical properties of Y-GeO2/Ge stack with 

low Dit are presented as well as the enhancement of k-value in Y-GeO2 layer, which is 

beneficial for further EOT scaling of Ge gate stack. Based on an systematic investigation 

of various metal oxides doping effect on GeO2, a structural modification model was 

proposed to explain the material properties change in metal oxide doped GeO2 (M-GeO2). 

In the second chapter, the proper high-k dielectric is designed for EOT scaling into 

deep sub-nm. Since many conventional high-k oxides cause interface degradation when 

they are intermixed with GeO2 IL, the critical point here is to compromise the sufficient 

k-value with the awareness of the interface properties. An alternative approach for 

designing high-k oxide is proposed in this chapter, namely the formation of a ternary real 

high-k out of two promising binary medium-k materials. As an example, yttrium scandate 

(YScO3) is demonstrated for gate stack formation on Ge, which enables the scaling down 

of the EOT to about 0.5 nm with affordable interface degradation. Ge n-MOSFET was also 

examined, which achieved the record high peak electron mobility (1057 cm
2
/Vsec) in the 

sub-nm EOT region. 

In the third chapter, the reliability assessment was carried out on Ge gate stack with 

good initial properties. This work focuses on the trap density pre-existing in the 
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as-prepared gate stack and the degradation of the dielectric under a high Estress. It is found 

that though the initial trap density in the GeO2 is controllable by process condition, the 

degradation of the dielectric under high Estress is dominated by the intrinsically weak 

network of GeO2. The relatively rigid network materials like Y or Sc-GeO2 can suppress 

both interface degradation and trap generation under high Estress. The impact of different 

high-k on the reliability of Ge gate stack is also assessed.  

Though the aforementioned challenges are solved separately in each chapter, the 

underlying physical understanding is in common. In a word, by manipulating the structure 

of the oxides, both the material and electrical properties of the oxides might be improved. 

In the final chapter, I will summarize such structure/property relationships for the oxides 

on Ge gate stack and offer a guideline for the Ge gate stack design in deep-nm EOT region. 
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Overview: 

   The thermal and chemical robustness of the GeO2/Ge system is a vital concern in Ge 

gate stack formation. In this chapter, metal oxide doped GeO2 (M-GeO2) is proposed to 

substitute GeO2 for a robust IL formation in Ge stack according to the thermodynamic 

consideration. It is found that yttrium doped GeO2 (Y-GeO2) can improve the thermal 

stability of GeO2 by over 100
o
C and reduce the water etching rate of GeO2 by over 1000 

times. The promising interface property comparable to the state-of-the-art GeO2/Ge is also 

demonstrated.  

To consistently explain the improvement of thermal and chemical stability, the 

modification of GeO2 continuous random network (CRN) model is proposed, which build 

up a simple relationship between the network structure and various material and electrical 

properties. A systemic comparison on the material and electrical properties has also been 

carried out among different M-GeO2/Ge stacks to further examine the MRN model. Two 

criteria for selecting desirable doping materials in GeO2 are proposed. Firstly, metal cations 

with larger ionic radii are more preferable for their stronger influence on the GeO2 network 

rigidity, which result in the higher thermal stability and water resistance. Secondly, metal 

oxides are necessarily to be unreactive with Ge substrate (typically trivalent oxides) to 

prevent the Ge-M metallic bond formation.   

 

2.1 Thermodynamics for interface reaction and thin films 

Regardless of its similarity with SiO2, GeO2 has been well known of its unstable 

thermal and chemical properties. It has been clarified that volatile germanium monoxide 

(GeO) are easily desorbed from GeO2/Ge stack at a relatively low temperature.
1
 Figure 2.1 

schematically shows the GeO desorption mechanism from GeO2/Ge stacks under thermal 

process.
2
 It is notable that the GeO desorption involves the oxygen vacancy (VO) formation 
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at the bottom GeO2/Ge interface, diffusion through the bulk GeO2 and reaction at the top 

GeO2 surface. Thus, the GeO desorption can deteriorate the electrical properties by 

generating a huge amount of both Dit and bulk defects. Related to the unstable nature of 

GeO2, the water solubility is another big concern. It not only incurs difficulty in GeO2/Ge 

based device process but also results in the degradation of GeO2/Ge interface properties 

with exposure to atmosphere.
3, 4

 Both thermal instability and water solubility are among 

the biggest obstacles against bringing Ge back to future in spite of superior GeO2/Ge 

interface properties. Such unstable properties blur the intrinsically promising electrical 

properties of GeO2/Ge interface and bring great difficulties in MOS application. Many 

attempts have been made to solve these issues, such as GeON or Al2O3 capping layer.
5, 6

 

However, these approaches are always at the cost of interface properties or EOT, which is 

also unwanted. Thus, an alternative material is needed beyond GeO2 for a robust Ge MOS 

device application. 

 

Figure 2.1 schematics of GeO desorption mechanism in GeO2/Ge stacks under thermal 

process.
2
 The GeO desorption process is accompanied by the VO formation and diffusion 

throughout the GeO2 layer, which result in drastic degradation of electrical properties. 
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A basic understanding on why GeO2/Ge stack is thermally unstable must be obtained 

before any improvement work can be carried out. The Ellingham diagram of the metal 

oxide formation is an effective tool for analyzing the stability of metal oxides 

thermodynamically. Figure 2.2 shows the Ellingham diagram for GeO2 and SiO2 formation 

under various oxygen ambient conditions calculated from thermodynamic data base.
7
 Note 

that the ΔG
0
 values are Gibbs free energy for the corresponding oxides formation and PO2 

is the oxygen partial pressure in the annealing ambient which is named as oxygen 

potential.  

  

Figure 2.2 Ellingham diagram for GeO2 and SiO2 formation under various oxygen ambient 

conditions calculated from thermodynamic data base.
7
 

 

In the Ellingham diagram, the region with ΔG
0

 lower than ambient oxygen potential 

corresponds to a stable oxide. In the current example, GeO2 should be stable at low 

temperature and SiO2 is stable within all the range in Figure 2.2. On the contrary, the 

region with ΔG
0

 higher than ambient oxygen potential in the diagram corresponds to the 

decomposition of the oxide, namely, the GeO desorption from GeO2/Ge stack. 

Temperature (oC)

-200 -

-100 -

-0 -

500

N2

HPO (ref. 8)

Δ
G

0
(k

c
a
l/

m
o

l)
P

O
2

(a
tm

)

- 102

- 100



Chapter 2. Rigidity coordination in GeO2 network   

45 

 

Quantitatively, such a relationship between the oxide stability, ΔG
0
 and ambient oxygen 

potential in the Ellingham diagram can be summarized into the following equation:  

                         ∆G=∆G
0
-RTln(PO2)                        (2.1) 

The requirement for keeping a stable oxide is to ensure the sufficient energy gap (∆G) 

between ΔG
0

 and RTln(PO2), like SiO2. Inspired by the Ellingham diagram, high pressure 

oxidation (HPO) was invented as reported in the previous works,
8
 which yields high 

quality GeO2 growth on Ge. The reason for the success of HPO is that it can create the 

sufficient ∆G between ΔG0 and RTln(PO2) as indicated in Ellingham diagram as well (by 

the blue PO2 line in figure 2.2). 

It is noticed that the sufficient energy gap ∆G might also be achieved by changing the 

oxide materials instead of PO2. By lowering the ΔG0 value of the oxide, the thermal 

stability can be improved in a given annealing ambient. There are various kinds of metal 

oxides having a lower ΔG
0
 than that of GeO2 as shown in Figure 2.3. Note that the 

reaction formulas have been normalized to one oxygen molecule for a fair comparison of 

ΔG
0
. It is expected that by doping these metal oxide into GeO2 the lower ΔG

0
 can be 

obtained for the mixture and the thermal stability of GeO2 might be improved. Therefore, 

the concept of M-GeO2 is proposed and examined in this work for stable oxides formation.  
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Figure 2.3 ΔG
0
 for various metal oxides formation as a function of temperature. Note that 

the reaction formulas are normalized to one O2 molecule. 

 

   Though the thermodynamics for the stable oxides formation are readily understood, a 

further concern is the validity of the thermodynamic understandings on the thin film and 

interface reaction. It is wondered if the thermodynamics built up based on the bulk material 

properties are applicable for the thin film reaction or not. Fortunately, it has been discussed 

in the previous works that the thin film or interface reactions are influenced by both bulk 

thermodynamics and interface energy.
9, 10

 Let’s consider the reaction between the oxides 

and semiconductors at the interface with sub-oxides as final products. Since the elementary 

semiconductor and the oxide do not have a same lattice constant or distance between atoms, 

it is natural to expect that strain might exist on the interface between them. It induces a 

negative Gibbs free energy for the interface reaction which favors the alloy (GeO2/Ge 

reaction in this case) formation
10

 in order to release the stress. Thus, one can expect that 

the thin film GeO2/Ge interface reaction should occur more readily than that predicted by 

bulk thermodynamics. The interface energy would also be a possible explanation for 

existence of transition region (commonly referring to Ge sub-oxides between GeO2 bulk 
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and Ge).
11

 Nevertheless, for thin film reaction with several nm physical thickness, the 

thermodynamics still gives a correct direction experimentally.
8
 Thus, for the thin film 

M-GeO2/Ge, the change of the thermal stability is still expected to be in the same direction 

as bulk materials though the quantitative meaning might be partially lost.  

 

2.2 Thermal stability and hygroscopic tolerance improvements in 

Y-GeO2 

2.2.1 Y-GeO2/Ge gate stack formation 

Y-GeO2 was examined since Y2O3 has one of the lowest ΔG
0
 among various oxides 

listed in figure 2.3. To investigate the bulk and interface properties of Y-GeO2/Ge gate 

stack, p- and n-type Ge(111) wafer was used with resistivity of 0.6 Ω·cm and 0.7 Ω·cm, 

respectively. The Ge substrate was chemically cleaned by methanol (10 min in ultrasonic), 

8% HCl (1 min) and 2% HF (3 min), sequentially, with DIW rinsing between each step. 

The smooth surface after wet chemical cleaning of Ge substrate was confirmed by atomic 

force microscopy (AFM) with RMS roughness at about 0.3 nm. 

The gate stack fabrication process is shown in Figure 2.4. Y-GeO2 was deposited on 

the Ge substrate by rf co-sputtering of GeO2 and Y2O3 targets at the same time. The Y 

concentration in Y-GeO2 was controlled by the sputtering power of both targets. Note that 

Ar/O2 gas were supplied with 22/0.6 sccm during the sputtering. After deposition of 

Y-GeO2 on Ge, the post deposition annealing (PDA) was carried out at 500
o
C in N2 

ambient for 30 s. To study the electrical properties of Y-GeO2/Ge stacks, Au and Al were 

deposited by vacuum evaporation for the gate electrode and substrate contact of the MOS 

capacitors (MOSCAPs), respectively, and the capacitance-voltage (C-V) and 

current-voltage (I-V) characteristics were measured at room temperature (RT). 
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Figure 2.4 Y-GeO2/Ge gate stack preparation process by rf co-sputtered technics. Note that 

the annealing process of this gate stack is pure N2 ambient annealing in 1 atm pressure.  

 

The Y atomic percentage (Y/(Y+Ge)) is calibrated by X-ray photoelectron 

spectroscopy (XPS). Figure 2.5 shows the XPS core level spectra of Y3d and Ge3d from a 

(4 nm)Y-GeO2/Ge stack.
12

 The Y atomic percentage was calculated from the spectra as 

follows:
13
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.    (2.2) 

Here, I and S are the intensities and sensitivities of the corresponding XPS core level 

spectra peaks which are denoted in the subscript correspondingly. Note that the Ge3d3/2 

and Ge3d5/2 are not deconvoluted from the Ge
4+

 signal because these two peaks are 

located very closely.  
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Figure 2.5 XPS core level spectra of Y3d and Ge3d from a Y-GeO2/Ge stack. The spectra 

are deconvoluted as shown in the dotted curves.
12

  

 

Comparing to thermally grown oxides, the uniformity of the deposited Y-GeO2 thin 

film is an important property to be confirmed. The depth distribution of the Y component 

in Y-GeO2 film was confirmed by angle-resolved XPS. Figure 2.6(a) shows the 

angle-resolved XPS spectra of Y-GeO2/Ge stack. The intensity ratio between Ge3d
 4+

 and 

Y3p is not changed by changing the take-off angle. The atomic percentage of Y and Ge 

among metallic atoms as a function of take-off angle were calculated and shown in Figure 

2.6(b). Since the different take-off angle corresponding to the different integration depth of 

the XPS signal, figure 2.6(b) indicates that Y component has a uniform depth distribution 

in the GeO2 film. The surface morphology of Y-GeO2 was also examined by atomic force 

microscope (AFM), the low RMS roughness (0.26 nm for (4 nm) Y-GeO2/Ge stack with 10% 

Y) indicates a good uniformity of the deposited Y-GeO2 film. The in-plain x-ray diffraction 

(XRD) is also measured, which shows the amorphous nature of the Y-GeO2 after PDA 
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(data not shown). To maintain a low gate leakage current, the amorphous oxide is preferred 

over those poly-crystalized ones. 

 

                (a)                                  (b) 

Figure 2.6 (a) Angle-resolved XPS spectra of Y-GeO2/Ge stack. The intensity ratio 

between Ge 3d
 4+

 and Y 3p is not changed by changing the take-off angle. (b) The atomic 

percentage of Y and Ge among metallic atoms calculated from the XPS spectra as a 

function of take-off angle. 

 

2.2.2 Thermal stability and hygroscopic tolerance change by Y doping 

The thermal desorption spectroscopy (TDS) was used to measure the GeO desorption 

features from Y-GeO2/Ge stacks. TDS system (EMD-WA100S/W, ESCO Ltd) is made up 

of a lamp heater beneath the sample holder, a quadrupole mass spectrometer and an 

ultra-high vacuum chamber. By heating up the samples through the holder, the atom or 

molecule species are desorbed from the sample to the vacuum chamber, and finally 

analyzed by the mass spectrometer. Figure 2.7(a) shows the TDS spectra corresponding to 

GeO (M/z=90) from (3 nm) Y-GeO2/Ge stacks with various Y percentage. The TDS 

spectrum from a (3 nm) GeO2/Ge stack is also shown as a comparison. GeO desorption 

occurs from a certain temperature for each stacks, becomes faster with increasing 
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temperature and finishes when all the GeO2 (or Y-GeO2) is consumed by the GeO 

desorption. Thus, a peak appeared in the TDS spectrum for each stack. It is noticed that 

with small amount of Y doping, the GeO desorption temperature is significantly increased 

comparing to pure GeO2 and higher Y percentage leads to higher desorption temperature. 

Figure 2.7(b) shows the GeO desorption peak temperature as a function of initial Y-GeO2
14

 

and GeO2 thicknesses (the data of GeO2/Ge stack is re-plotted from ref. 2). SiO desorption 

from SiO2/Si stacks are also shown for comparison.
15

 It has been explained in the previous 

works that the thickness dependent of the TDS peak temperature in GeO2/Ge stack comes 

from the VO diffusion barrier effect of GeO2.
2
 It is notable that, at each thickness, 

Y-GeO2/Ge stack shows obviously higher GeO desorption temperature than GeO2/Ge stack, 

indicating a higher thermal stability of Y-GeO2/Ge stack. The desorption behavior of 

Y-GeO2/Ge stack is getting closer to the SiO2/Si case with high Y concentration. It should 

be noted that the electrical properties would also benefit from the higher thermal stability 

due to the suppression of defects formation related to VO. 

 

                    (a)                                   (b) 

Figure 2.7(a) TDS spectra corresponding GeO (m/z=90) from Y-GeO2/Ge and pure 

GeO2/Ge stacks. Note that the thicknesses of the dielectrics are 3 nm in these stacks. (b) 
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TDS peak temperature corresponding to GeO as a function of initial Y-GeO2 and GeO2 

thickness
14

 (the data of GeO2/Ge stack is re-plotted from ref. 2). Note that desorption of 

SiO from Si/SiO2 is also shown for comparison.
15

 The GeO desorption temperature is 

increased by the Y-doping. 

 

The VO formation at GeO2/Ge interface and diffusion through GeO2 bulk were believed 

to be the dominant mechanisms for GeO desorption.
2
 To clarify the influences of Y doping 

on the Vo formation and diffusion, bilayer stacks were deposited as schematically shown 

in Figure 2.8(a). The Y is doped in different positions of the dielectric layer, namely, Y 

doped on the top(Y-GeO2/GeO2/Ge), on the bottom (GeO2/Y-GeO2/Ge) and in the middle, 

while the total thickness of the dielectrics is fixed at 12 nm. TDS spectra of GeO 

desorption from these bilayer stacks are shown in Figure 2.8(b) together with the spectrum 

of a (12 nm) GeO2/Ge stack. As expected, the desorption temperatures of all the bilayer 

stacks are higher than that of GeO2/Ge stack. However, the desorption temperature of all 

the bilayer stacks are almost the same regardless of the different positions of Y doping. 

Therefore, it can be concluded that the suppression of GeO desorption are mainly 

attributable to the limitation of Vo diffusion by Y-GeO2. 
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                 (a)                                     (b) 

Figure 2.8(a) Schematic of bilayer stacks with top Y doping (10%Y-GeO2/GeO2/Ge), 

bottom Y doping (GeO2/10%Y-GeO2/Ge) and in the middle. (b) Corresponding GeO 

desorption spectra. The spectrum of a 12 nm Ge/GeO2 stack is also shown as reference. 

 

It is note that, from the oxygen/VO diffusion viewpoint, the upward diffusion of VO 

equals to the downward diffusion of the atomic oxygen. Though atomic oxygen diffusion is 

the main contribution to the GeO desorption process, the Ge thermal oxidation process is 

majorly discussed in terms of molecular oxygen diffusion. To clarify the molecular oxygen 

diffusion in Y-GeO2, thermal oxidation rate of Ge beneath a Y-GeO2 layer is also examined 

by XPS. Figure 2.9 shows the thickness change of GeO2 as a function of oxygen annealing 

time at 550
o
C for (2 nm) Y-GeO2/Ge and GeO2/Ge stacks. Almost no further oxidation can 

be observed in Y-GeO2/Ge stacks, which supported that Y-GeO2 is also a strong barrier 

against molecular oxygen diffusion and oxidation at the interface. 
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Figure 2.9 Thickness of GeO2 regrowth in (2 nm) Y-GeO2/Ge or GeO2/Ge stacks as a 

function of time under 550
o
C O2 ambient annealing. Regardless of the same initial 

thickness of Y-GeO2 and GeO2, the GeO2/Ge stack shows significant regrowth of GeO2, 

while Y-GeO2 can block the further oxidation. 

 

Since Y-GeO2 has significantly changed the thermal stability of GeO2, it is wondered if 

the hygroscopic nature of GeO2 is changed as well. To study the influence of Y-doping in 

GeO2 on the water etching properties, Y-GeO2/Ge and GeO2/Ge stacks were immersed into 

the 100% DIW, and the film thicknesses of Y-GeO2 and GeO2 with immersion time were 

measured by XPS, as shown in Figure 2.10.
14

 It is found that the increase of Y 

concentration in GeO2 drastically reduces the wet etching rate of Y-GeO2 in water, while 

pure GeO2 is dissolved in water immediately. The stronger water resistance of Y-GeO2 will 

be beneficial not only for the device fabrication process but also for the hygroscopic 

tolerance of the gate stack.  
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Figure 2.10 Thickness of Y-GeO2 and GeO2 as a function of immersion time in pure DIW. 

The solubility of Y-GeO2 is drastically decreased. 
14

 Note that SiO2 is insoluble in water. 

 

2.2.3 Interface and bulk electrical properties of Y-GeO2/Ge 

To investigate the interface properties of Y-GeO2/Ge stack, Au/Y-GeO2/Ge MOSCAPs 

were fabricated and their electrical properties were measured. Figure 2.11(a) shows the 

bidirectional C-V curves of Au/10%Y-GeO2/p-Ge MOSCAPs measured at RT, where PDA 

was carried out at 500
o
C in N2 ambient for 30s.

14
 The physical thickness of Y-GeO2 is 3 nm 

and EOT is estimated to be 1.45 nm. The 1 MHz C-V curve of pure (3 nm) GeO2/p-Ge 

stack is also shown for comparison, the process of which was in a same manner with 

Y-GeO2/Ge stacks. A drastic improvement of electrical properties is observed in 

Y-GeO2/Ge stack, compared to the pure GeO2/Ge stack. No hysteresis and frequency 

dispersion of C-V characteristics in Y-GeO2/Ge stack indicates a low Dit. Figure 2.11(b) 

shows the bidirectional C-V curves of Au/10%Y-GeO2/n-Ge MOSCAPs which have the 

same process condition as that of Au/10%Y-GeO2/p-Ge MOSCAPs.
 14

 Note that the C-V 

characteristic of Y-GeO2/Ge stack undergoes no obvious degradation with one week 
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exposure to atmosphere, which is attributable to a stronger hygroscopic tolerance as 

discussed in figure 2.10.  

 

                    (a)                                  (b) 

Figure 2.11 (a) Bidirectional C-V curves of an Au/10%Y-GeO2/p-Ge MOSCAPs measured 

at RT. The 1 MHz C-V curve of a sputtered (3nm) GeO2/p-Ge stack is also shown for 

comparison. (b) Bidirectional C-V curves of Au/10%Y-GeO2/n-Ge MOSCAPs measured at 

RT. 

 

To quantitatively estimate the Dit spectrum of Y-GeO2/Ge interface, low-temperature 

conductance method was carried out at 100 to 250 K. Figure 2.12 shows the energy 

distribution of the estimated Dit in the Au/Y-GeO2/Ge stacks with various Y concentrations. 

An extremely low Dit was achieved at 10%Y-GeO2/Ge interface, which is close to the 

state-of-the-art low Dit at GeO2/Ge interface prepared by HPO.
8
 It is worth noting that the 

Dit distribution is in a symmetric U-shape across Ge band gap and not depending on PDA 

temperature up to 550
o
C, indicating good thermal stability of this stack. The low Dit might 
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defect formation by Y-doping is in good accordance with theoretical calculations.
16

 Further 

reduction of Dit can be expected by the optimizing the Y-doping concentration and PDA 

condition. 

 

Figure 2.12 Energy distribution of the estimated Dit in the Au/Y-GeO2/Ge stacks with 

various Y percentages measured by low-temperature conductance method. The state of art 

low Dit at GeO2/Ge interface prepared by HPO is also shown for comparison.
8
 

 

Since pure GeO2 has a relatively low dielectric constant (k) (5.2~5.9),
17, 18

 it becomes a 

bottleneck of the EOT scaling in GeO2/Ge-based gate stacks. Another advantage of 

Y-doping in GeO2 is the enhancement of k-value, which is beneficial for further EOT 

scaling. Figure 2.13(a) shows the EOT as a function of Y-GeO2 and GeO2 physical 

thickness.
14

 k-value is increased to 8 and 10 for 10%Y-GeO2 and 30%Y-GeO2, 

respectively. It is noticed by a simple math that, the k-value improvements in Y-GeO2 is 

higher than the linear combination of GeO2 (5.2-5.9) and Y2O3 (~12). The reason for the 

non-linear increase of k-value will be further explained in section 2.3.3. The promising 

properties of Y-GeO2/Ge stack offer not only superior interface properties with thermal 
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stability and hygroscopic tolerance, but also enhancement of k-value. Therefore, further 

EOT scaling of Ge gate stack into deep sub-nm range can be expected by using Y-GeO2 as 

the IL between Ge and high-k dielectrics. Figure 2.13(b) shows the corresponding gate 

leakage current (JG) as a function of the physical thickness.
 14

 The JG of Y-GeO2/Ge stacks 

are more than 3 orders of magnitude lower than that of pure GeO2/Ge stacks prepared in a 

same manner, indicating the improvement of bulk properties with the suppression of GeO 

desorption. It is noticed, however, that the JG of Y-GeO2/Ge stack increases with an 

increase of Y concentration from 10 to 30%, indicating that an alternative leakage path 

might be formed by the excessive Y-doping. The explanation on the change of JG as a 

function of Y percentage will be included in section 2.3.4. 

 

 

                  (a)                                    (b) 

Figure 2.13(a) EOT as a function of Y-GeO2 and GeO2 physical thickness. It is notable 

that the enhancement of k-value is observed by Y-doping in GeO2.
14

 (b) JG as a function of 

Y-GeO2 and GeO2 physical thickness.
14
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stacks. A negative shift of the VFB from its ideal value is frequently observed in pure 

GeO2/Ge stacks, which has been discussed from the interaction with top metal electrode
19

 

or absorption of water related species
3, 20

. On the other hand, small amount of Y doping can 

effectively alleviates this negative shift. Figure 2.14(a) shows the VFB in the C-V curves of 

GeO2/Ge and Y-GeO2/Ge stacks as a function of Y percentage. Since enhancement of water 

resistance is observed in Y-GeO2/Ge stacks as shown in figure 2.10, it is reasonable to 

speculate that Y-GeO2 can suppress the absorption of water related species. The 

suppression of VO formation in Y-GeO2 also reduces its interaction with top metal 

electrode. Thus, Y-GeO2/Ge has a smaller negative VFB shift than GeO2/Ge. Further 

increase of Y atomic percentage beyond 10% doesn’t cause more VFB shift, indicating that 

the introduction of metal cations does not yield additional fixed change. A detailed 

estimation of fixed charge density is carried out using the VFB dependence on the physical 

thickness of Y-GeO2 as shown in Figure 2.14(b). Note that the VFB of pure GeO2/Ge stacks 

prepared by HPO are also shown for comparison.
4
 Generally speaking, if a certain amount 

of fixed charges exist in the gate dielectric, the VFB should be obviously dependent on the 

thickness of the dielectrics (the larger thickness, the larger VFB shift). For the Y-GeO2, the 

VFB dependent on thickness is so weak that very small amount of fixed charges can be 

expected in Y-GeO2. The fixed charges in the Y-GeO2 are considered to be locally (not 

uniformly) located in the film and can be estimated to be 1×10
11

 cm
-2

 from the slope of the 

line, which is as low as the state-of-the-art GeO2/Ge stacks prepared by HPO. This small 

fixed charge density in Y-GeO2/Ge stacks confirms that the no additional fixed change was 

created by the incorporated Y cations. 
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                     (a)                                  (b) 

Figure 2.14(a) VFB as a function of the Y percentage in Y-GeO2/Ge stacks. A negative shift 

of the VFB from its ideal value is frequently observed in pure GeO2/Ge stacks, while Y 

doping can effectively alleviate this negative shift. Note that the thicknesses of the 

dielectrics are 3 nm in these gate stacks. (b). VFB of Y-GeO2/Ge stacks as a function of the 

physical thicknesses of Y-GeO2. A fixed charge density of 1×10
11

 cm
-2

 is derived from the 

slope of the line. 

 

2.3 Network modification model for the metal oxide doped GeO2 

2.3.1 GeO2 network and its modification by Y doping 

The improvement on the thermal stability of Y-GeO2 is qualitatively in agreement with 

thermodynamic expectation as discussed in section 2.1. On the other hand, the drastic 

change of water resistance is not expected by thermodynamics. Though both phenomena 

seem to be independent experimental observations, it is natural to think that both are 

originated from a same mechanism since they occur simultaneously on Y-GeO2. Thus, in 

this section, I will try to establish a model which might explain the change of the material 

properties of Y-GeO2 consistently.  
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Firstly, a fundamental discussion on the microscopic structure of GeO2 is needed to 

clarify the unstable nature of GeO2 and the prominent effect of Y doping. Stoichiometric 

amorphous GeO2 has a similar local structure as amorphous SiO2 as schematically shown 

in Figure 2.15,
21

 featuring Ge-O4 tetrahedral as the basic units of amorphous network. The 

Ge-O4 tetrahedral unit shares a cornered oxygen atom with another unit, and each oxygen 

atom is thus bonded to two Ge atoms. 

 

Figure 2.15 Schematics of amorphous GeO2 structure. The bond configurations of Ge and 

O atoms are also shown (2-dimensional represent). 

 

   Let’s consider what happens during the GeO desorption from GeO2/Ge stack and GeO2 

etching by water. For GeO desorption, it can be considered that the following reaction 

occurs, 

                          GeO2+Ge=2GeO                             (2.3) 

Note that on the left side of this equation are two solids, while on the right side is a 

molecular in the ambient. It means that the solid material is dissociated into independent 

species with all the bonds connecting them broken. It is natural to expect that the energy 

barrier for this equation is related to both single bond energy and bond number. 

   Similarly, the water etching of GeO2 might be written as the following equation, 

                          GeO2+2H2O=Ge(OH)4                        (2.4) 
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Again, the solid material on the left side (GeO2) of the equation is dissociated into the 

separated species (Ge(OH)4) in a water solution. An energy barrier of the reaction can also 

be considered here as a function of single bond energy and bond number. 

To obtain a quantitative impression on how hard it is to dissociate GeO2 through the 

above reaction 2.3 and 2.4, a new concept, the network rigidity, is created here by 

considering the average coordination number (Nav) and a pre-factor γ.  

Network rigidity= Nav×γ                            (2.5) 

Nav can be derived from the total number of coordination and number of atoms in a 

network. For GeO2, the Nav value is 2.67, which is the same as that of SiO2.
22

 Note that the 

Nav value is obtained by dividing total number of coordination in a network with the 

number of atoms.
22

 On the other hand, the pre-factor γ represents the strength and the 

constraint of a single coordination. Here we set the γ value to be 1 for SiO2. According to 

the first-principles calculation on glass forming system,
23

 the Ge-O bonding strength is 

much weaker (2.82 eV) than that of Si-O (3.48 eV) in spite of their similar structures, 

which means that it is easier to deform or dissociate a Ge-O bond than Si-O. Therefore, the 

γ value is smaller than 1 for GeO2. It should be noted that the rigidity is a purely 

topological concept and the introduction of γ enables the use of this concept for dielectric 

properties discussions. 

The energy consumption in dissociation of GeO2 network should be proportional to the 

rigidity of the network. Thus, the dissociation rate of a network (either by thermal 

desorption or water etching) should be dependent on the total network rigidity as follows, 

                 Dissociation rate∝ Exp[-α(Nav×γ)/kT]                   (2.6) 

Note that, since rigidity is a dimensionless value, a constant α with eV unit is included here 

(the value of α varies with different reactions). Thus, we established the relationship 

between the unstable properties of GeO2 with that of its network topology information.  
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GeO2 network is highly flexible. A flexible oxide might favor the Ge interface 

passivation,
11

 but it also results in the unstable thermal and chemical properties. What is 

accomplished here by Y-GeO2 is that, it enhances the rigidity of the network in a 

well-controlled manner to improve the thermal and chemical stability, while not too rigid 

to form a bad Ge interface. Let’s investigate in detail on the role of Y in the Ge network.  

Y doping is expected to change the microscopic structure of GeO2 according to the 

modified random network (MRN) model
 
as schematically shown in Figure 2.16.

24
 

Y-doping exists in the form of the Y
3+

 cation in the GeO2 network, bonded to the nearest 

oxygen atoms according to MRN model. The Y-O bonding number is determined by the 

ratio of the Y
3+

 cation radii to the O
2-

 anion radii.
25

 With a large Y
3+

 radii of 0.9 Å,
 26

 Y 

forms up to 7 bonds with the nearby oxygen atoms in GeO2-Y2O3 ternary oxides, which 

has been confirmed by the observations on Y2Ge2O7 and Y2GeO5.
27, 28

 The coordination 

number of oxygen are increased simultaneously. Thus, the total Nav of the Y-GeO2 network 

is necessarily increased to about 3 in 10% Y-GeO2 by the introduction of Y-O bonds.  

 

Figure 2.16 Schematics of MRN structure of Y-GeO2. Due to the large amount of 

additional Y-O bond, some O atoms increase their coordination to 3 as well. 

  

To quantitatively discuss the rigidity of the GeO2 based oxide, a γ value of 0.8 is 

assumed for simplicity (the Ge-O single bond is 0.8 times the strength of Si-O single 
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bond
23

). The network rigidity of 10% Y-GeO2 is derived by equation (2.5) by assuming a 

same value of γ with GeO2 as shown in Figure 2.17. It is understandable that increasing 

the Nav value has a similar impact on the network rigidity with stronger single bond. 

Therefore, the higher Nav is expected to strengthen the Y-GeO2 network significantly, 

thereby enhance the thermal stability, water resistance and electrical properties.
29

 

  

Figure 2.17 Network rigidity as a function of Nav estimated from the structures of Y-GeO2 

and GeO2.
29

 The better rigidity of Y-GeO2 than the flexible GeO2 network results in its 

both better thermal stability and water resistance. Note that the γ value is assumed to be 0.8 

here for all the GeO2 based oxides (γ=1 for SiO2). 

 

The network modification effect is experimentally observable from optical 

characterization of the thin films. Since the introduction of Y-O bond into the GeO2 

network is expected to change the bond configuration of GeO2 according to MRN model, 

the bond vibrations should be changed as well. Figure 2.18 shows the Fourier transform 

infrared spectroscopy (FTIR) absorbance spectra of GeO2 and Y-GeO2.
14
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broadened. Two possible reasons for the peak shift of FTIR spectra can be considered. One 

is the decrease of Ge-O-Ge bond angle and the other is the increase of Ge-O bond length.  

 

 

Figure 2.18 FTIR absorbance spectra of pure GeO2 and Y-GeO2.
14

 The peak shift of 

asymmetric stretching mode in GeO2 to lower energy is clearly observed with the increase 

of Y concentration. The thickness of the dielectrics are 40 nm  

 

The extended x-ray absorption fine structure (EXAFS) measurement was also carried 

out to directly investigate the coordination configuration in the GeO2 and Y-GeO2 network. 

The estimated bond atom-atom distances in the GeO2 and Y-GeO2 network were derived 

by deconvolution of the spectra as shown in Table 2.1. It is noticed that the nearest Ge-O 

distance is enlarged by the Y incorporation, which supports the conclusion that GeO2 

network has been modified by the incorporation of Y atoms. 
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Table 2.1 atom-atom distances in the GeO2 and Y-GeO2 network measured by EXAFS 

 

Based on the Clausius-Mossoti (C-M) equation, the k-value of oxide is strongly related 

to both the ion species and the oxide structure as follows.
30
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                       (2.7) 

Here, αm and Vm are the molar polarizability and molar volume, respectively. For Y-GeO2, 

the αm is determined by the ion polarizability of Y
3+

, Ge
4+

 and O
2-

 through the additive 

rule
30

 and Vm is determined by the structure of Y-GeO2. It is obvious from the C-M 

equation that a slightly denser packing of the structure can result in significant 

enhancement in k-value. The fact that Y-GeO2 has a higher density than pure GeO2 

explains the increase of k-value demonstrated in figure 2.14(a). 

In summary, the Y-O bond formation in the MRN network of Y-GeO2 can reasonably 

explain both the rigidity enhancement of the network and the improvements in the thermal 

stability and water resistance.  

 

2.3.2 Network modification effect of various metal cation species. 

   In the previous part of this section, we built up the MRN model to explain the eminent 

thermal and chemical stabilities of Y-GeO2. However, Y does not stand alone on the 

thermodynamic diagrams (figure 2.3) as thermally stable oxides. In fact, several high-k 

metal oxides are possible candidate as doping materials in GeO2 as well. The validity of 

MRN model is examined in various M-GeO2/Ge stacks. After chemically cleaned by 

Material Path Distance (Å)

GeO2

Ge-O 1.738±0.007

Ge-Ge 3.163±0.023

Y-GeO2

Ge-O 1.750±0.009

Ge-Ge(Y) 3.178±0.054
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methanol, HCl and diluted HF solution sequentially, M-GeO2 was deposited on Ge 

substrate by radio frequency co-sputtering of GeO2 and corresponding metal oxides targets. 

The M atomic percentage of all the samples in the following experiments was controlled to 

be (10±1)% in metallic atoms ratio (M per.=M/(Ge+M)) and confirmed by XPS. 

The direct comparisons on the thermal stability and water resistance are good 

indications of the network rigidity of different M-GeO2. Fig. 2.19 shows the TDS peak 

temperature of GeO desorption from various M-GeO2/Ge and pure GeO2/Ge stacks.
12

 The 

improvements of thermal stability are observable in all the M-GeO2/Ge stacks. It is notable 

that the improvements of the thermal stability by different metal oxides doping, from 

lowest to highest, are in the order of Al2O3, HfO2, Sc2O3, Y2O3 and La2O3.  

 

Figure 2.19 TDS peak temperature of GeO desorption as a function of initial M-GeO2 and 

GeO2 thickness.
12

 The improvements of the thermal stability by different metal oxides 

doping, from lowest to highest, are in the order of Al2O3, HfO2, Sc2O3, Y2O3 and La2O3. 

 

To study the influence of different metal oxides doping on the GeO2 in terms of water 

resistance, M-GeO2/Ge and pure GeO2/Ge stacks were immersed into 100% pure DIW and 

their thicknesses as a function of immersion time was measured by XPS as shown in 
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Figure 2.20.
12

 GeO2 is immediately dissolved in DIW while the etching rate of M-GeO2 is 

drastically reduced. The stronger water resistance of M-GeO2 will be beneficial not only 

for the device fabrication process but also for the electrical properties of the gate stack. 

Coincidently, the improvements of water resistance of M-GeO2 among different doping 

species follows the same trend as their TDS peak temperature, which is, from weakest to 

strongest, Al2O3, HfO2, Sc2O3, Y2O3 and La2O3. 

  

Figure 2.20 Thicknesses of M-GeO2 and pure GeO2 estimated from XPS as a function of 

immersion time in DIW.
12

 The water resistance increase by different metal oxides doping, 

from weakest to strongest, is Al, Hf, Sc, Y and La. 

 

The similar trends of thermal stability and water resistance improvements in different 

M-GeO2/Ge stacks are also self-consistently explained by the MRN model discussed in the 

previous sections. The metal in doped metal oxides exist as M
x+

 (x is 3 or 4 for trivalent or 

tetravalent oxides, correspondingly) cation in the GeO2 network and form M-O bond with 

the nearest O
2-

 anions, which should enhance the rigidity of the very flexible GeO2 

network as discussed in previous sections. The magnitude of this effect is therefore related 
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to the M-O bond number. Figure 2.21 shows the expected M-O bonding number per M
x+

 

cation as a fuction the M
x+

 cation radii according to literature reports.
25, 26, 31

 Larger cations 

are prone to have higher M-O bonding number, therefore, exert stronger influence on the 

network of GeO2, which leads to the higher thermal stability and stronger water resistance.  

 

Figure 2.21 Expected coordination numbers of M cation in GeO2 network and the 

corresponding Nav of the total network.
25, 26, 31

 Note that the M percentage here is 

controlled to be 10% for all the M-GeO2  

 

A quantitative analysis on the material stabilities of various M-GeO2 were carried out 

by applying the equation 2.6 on the detailed GeO desorption and water etching process for 

further understanding on the MRN model. According to equation 2.6, the relationship 

between GeO desorption peak temperature and Nav can be can be written as follows, 

                 RTDS,peak∝ Exp[-αdesorb(Nav×γ)/kTpeak]                  (2.8) 

Here, the RTDS,peak and Tpeak are the peak desorption rate and desorption temperature, 

respectively. Since the RTDS,peak is almost invariant among all the M-GeO2/Ge stacks with 
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same thickness of M-GeO2 or GeO2 (data not shown), the Tpeak should be proportional to 

Nav. On the other hand, the water etching of GeO2 occurs under the room temperature (T0). 

Thus the etching rate Retching should be exponentially dependent on the Nav as follows, 

Retching∝ Exp[-αetching(Nav×γ)/kT0]                      (2.9) 

Figure 2.22 summarizes the Tpeak and Retching as a function of Nav. The experimental data 

on Tpeak and Retching fit the aforementioned relations with reasonable deviation, which 

further support the network rigidity criteria offered in the MRN model. 

 

                    (a)                                (b)    

Figure 2.22 (a) Tpeak and (b) Retching as a function of Nav. Note that the Tpeak are from the 

M-GeO2/Ge and GeO2/Ge stack with the same thickness (3 nm). Here, γ is assumed to be 

0.8 for all the materials in the figure. 

 

   Finally, the various metal cations’ modifying effect is also confirmed by the FTIR 

measurement as shown in Figure 2.23.
12

 The FTIR peak corresponding to GeO2 

asymmetric stretching mode shifts to a lower energy and becomes broadened for all the 

M-GeO2. The magnitudes of FTIR peak shift are in agreement with the enhancements of 
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material properties in the corresponding M-GeO2/Ge stacks. It further supports the MRN 

model for various M-GeO2. 

 

Figure 2.23 FTIR absorbance spectra of M-GeO2 and pure GeO2.
12

 The peak shift of 

asymmetric stretching mode in GeO2 to lower energy is clearly observed. The magnitude 

of this peak shift in different M-GeO2 is an indication of how strongly the GeO2 network is 

modified. 

 

2.4 Concerns: interface defect bond and bulk immiscibility 

2.4.1 Defect bond configuration between modifier and Ge    

Since the electrical properties of M-GeO2/Ge stacks are firmly related to the 

improvement of thermal stability and water resistance, it might be expected from previous 

result that a lower Dit is obtainable in M-GeO2/Ge stacks. Figure 2.24 shows the 

bi-directional C-V curves of the pure GeO2/Ge and M-GeO2/Ge stacks measured at room 

temperature.
12

 It is notable that, at a given physical thickness of gate dielectrics, the 
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the dielectric constant is changed significantly by doping. The change of dielectric constant 

is also partly understandable from the GeO2 network modification and packing density 

change by doping as discussed in previous section. Al, Sc and Y doping improve the 

interface properties of the M-GeO2/Ge gate stack featuring the negligible hysteresis and 

frequency dispersion in the C-V curves, which is in agreement with the expectation from 

thermal stability improvement. On the other hand, C-V curves of Hf-GeO2/Ge and 

La-GeO2/Ge stacks exhibit considerable hysteresis. It indicates that electrical properties of 

M-GeO2/Ge stack are not simply determined by the thermal stability and water resistance. 

 

 

Figure 2.24 Bidirectional C-V curves of Au/GeO2/Ge and Au/M-GeO2/Ge MOSCAPs 

measured at RT: (a) GeO2, (b) Al-GeO2, (c) Hf-GeO2, (d) Sc-GeO2, (e) Y-GeO2, (f) 

La-GeO2.
12

 Note that the thicknesses of the dielectrics are about 3 nm in these gate stacks. 

 

To quantitatively estimate the Dit spectra of M-GeO2/Ge stacks, low temperature 

conductance method was carried out at 100 to 250 K on both n-Ge and p-Ge substrates. 
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Figure 2.25 shows the energy distribution of Dit in M-GeO2/Ge stacks derived from low 

temperature conductance method (closed symbols) and high-low-frequency capacitance 

method (open symbols).
12

 It is notable that Y-GeO2 and Sc-GeO2 yield low Dit about 

1×10
11 

eV
-1

cm
-2

 near the mid gap, which is close to the state-of-the-art low Dit at GeO2/Ge 

interface prepared by high-press oxidation.
8
 Hf-GeO2/Ge stack, on contrary, has a 

significantly higher Dit (also the case for La-GeO2).  

 

Figure 2.25 Energy distribution of Dit in M-GeO2/p-Ge and n-Ge stacks derived from low 

temperature conductance method (closed symbols) and high-low-frequency capacitance 

method (open symbols).
12

 It is notable that Y-GeO2 and Sc-GeO2 yield low Dit on Ge, which 

is close to the state-of-the-art low Dit at GeO2/Ge interface prepared by high-press 

oxidation.
8
 Hf-GeO2/Ge stack, on contrary, has a significantly higher Dit, especially in the 

lower half of Ge band gap. 

 

XPS measurements were carried out on the M-GeO2/Ge stacks to identify this interface 

degradation mechanism observable for some M-GeO2. As an example, the XPS results 
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from the Y-GeO2/Ge (with good interface) and Hf-GeO2/Ge stacks (with poor interface) 

are compared here. Figure 2.26(a) shows the Ge3d core level spectra from the 

Hf-GeO2/Ge stacks with different thicknesses of the dielectrics.
12

 The Ge3d spectrum of 

as-cleaned Ge substrate is also shown as a reference. The chemical shift of Hf-GeO2 is 

about 3.1 eV with respect to Ge
0+

 peak, which is smaller than that of pure GeO2 (about 3.5 

eV). This smaller chemical shift of M-GeO2 is originated from the second nearest-neighbor 

effect of M atoms through Ge-O-M bond configuration,
32

 because of the stronger ionicity 

of M than that of Ge. Figure 2.26(b) shows Ge3d core level spectra from the Y-GeO2/Ge 

stacks measured at the same condition for comparison. It is worth noting that Ge-Hf 

metallic bond is preferentially observable in Hf-GeO2/Ge stack at a lower binding energy 

with respect to Ge
0+

 peak,
33,34

 while no Ge-Y bond is found in Y-GeO2/Ge stack. 

Regardless of different Hf-GeO2 thickness, the XPS intensity of Ge-Hf metallic bond is 

almost same with respect to Ge
0+

 peak in all Hf-GeO2/Ge stacks, which is a strong 

indication that the Ge-Hf metallic bond is locally distributed near the interface. The 

difference of bond configurations in the Y-GeO2/Ge and Hf-GeO2/Ge stacks is 

schematically shown in Figure 2.26(c).
12

 Y and Hf cations in the bulk network exist in the 

similar configuration as indicated in the MRN model. Although the interface is majorly 

passivated by GeO2, introducing Hf near the interface results in Ge-Hf bond. Y doping, on 

contrary, is free from this concern. The degradation of Hf-GeO2/Ge interface is attributable 

to the Hf-Ge bond, which is consistent with the first principle calculation.
31
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Figure 2.26 Ge3d core level spectra of (a) Hf-GeO2/Ge and (b) Y-GeO2/Ge measured by 

XPS,
12

 Note that the spectrum of the as-cleaned Ge substrate is also shown in the dotted 

line for comparison. The Ge-Hf metallic bond is preferentially observed in Hf-GeO2/Ge 

stack. (c) Schematic of the bond configurations in Y-GeO2/Ge and Hf-GeO2/Ge stacks.
12

 

 

Thermodynamic considerations are required to understand the observation that M-Ge 

bond preferentially existed in Hf-GeO2/Ge interface. By assuming that M-O or M-Ge 

single bond-strength is not changed from MxOy/Ge to M-GeO2/Ge stacks,
35

 the reason that 

Hf-Ge bond is energetically favorable are readily understood from thermodynamic 

calculations on MxOy/Ge interfacial reaction. The Y-Ge or Hf-Ge bond formation is related 

to the germanidation reaction at the interface. Within the accuracy of reference and 

thermodynamic database,
7, 35, 37

 it is calculated as: 

HfO2 + 3Ge = HfGe2 + GeO2      ΔG=-27 kcal/mol,            (2.10) 

Y2O3 + 3.5Ge = 2YGe + 1.5GeO2   ΔG=152.8 kcal/mol.         (2.11) 

Hf-Ge metallic bond is easier to form relating to the negative Gibbs free energy for 

germanidation, while the formation of Y-Ge bond is relatively hard from the 

thermodynamic viewpoint.  

Similar Ge-La metallic bond can be experimentally observed in La-GeO2/Ge stacks 

(data not shown), which explains the degradation in its C-V curves as well. However, it is 
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not likely for the La2O3 to react with Ge in the same way as equation 2.11 

thermodynamically.
37

 Instead, one possible reaction which might occur for La2O3 and Ge 

are written as follows, 

                La2O3+2Ge=1.14LaGe+0.43La2Ge2O7                     (2.12) 

Here, besides LaGe, the other product is a ternary alloy of La2O3 and GeO2. Though there 

is no available thermodynamic data for this reaction, it is possible that the ternary alloy 

La2Ge2O7 has a lower energy state than its binary compounds,
38

 which offers a net energy 

gain for the reaction. 

 

2.4.2 Defect bond configuration between network former and Ge  

   Besides the different M doping species, the interface properties of M-GeO2/Ge stacks 

are also dependent on the percentage of doping experimentally. Figure 2.27 shows the Dit 

at Ei-0.2 eV of Y-GeO2/Ge stacks as a function Y percentage. Though small amount of Y 

doping can reduce Dit due to the suppression of GeO desorption (below 10%), it increases 

drastically with higher Y percentage. Since it has already been clarified in the previous 

sections that the existence of Y itself does not introduce the interface defect bond, such 

interface degradation with high Y percentage should be attributed to different mechanism 

instead of improper chemical bonds. 
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Figure 2.27 Dit at Ei-0.2 eV of Y-GeO2/Ge stacks as a function Y percentage. Though small 

amount of Y doping is beneficial in terms of low Dit, it increases a lot with high Y 

percentage. 

 

   In fact, not all the chemically stable dielectrics can yield good interfaces on 

semiconductor. Silicon oxynitride (SiON) is a typical example of stable dielectric which 

have poor interface on Si.
39

 The Ge interface degradation by high Y-percentage Y-GeO2 

might be attributable to a similar reason as SiON on Si, namely, the over-constraint of the 

oxide.
39 

Figure 2.28 schematically shows the degree of freedom and constrain in of atoms. 

The degree of freedom of each atom is 3, while the number constraint is dependent on the 

coordination between atoms (Nav, equally).
40

 Too many coordination will result in a larger 

constraint number than the degree of freedom, which is called “over constraint”.
39

 Such an 

over constraint network will inevitably include some broken bond at the interface since not 

all the constraint can be satisfied by the arrangement of the atoms. The relationship 

between Dit and constraint has been summarized in the literatures as follows,
 39
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Here, Nav* is the optimal average coordination number, which is below 3 for most 

dielectrics. In Y-GeO2/Ge gate stacks, the Nav is larger than 3 when Y concentration is over 

10%, which explains the observed Dit increment. From the constraint criteria, the low Nav 

value of 2.67 also explains why both GeO2 and SiO2 can offers sufficient passivation for 

Ge and Si. While, the unsatisfying interface properties in direct high-k/semiconductor 

interface are also explainable from much larger Nav value of the high-k oxides. 

  

Figure 2.28 Schematics of the degree of freedom and constrain of atoms in a network. The 

degree of freedom is related to the number of atoms, while the number of constraint is 

determined by the number of the bond. 

 

From the viewpoint of both interface bond and network constraint, it is not hard to 

understand the low Dit in 10% Y-GeO2/Ge interface. Firstly, on the Y-GeO2/Ge interface, 

the Y is bonded in a Y-O-Ge configuration to the Ge interface, which does not yield a gap 

states. Secondly, though the network rigidity of 10% Y-GeO2 is higher than pure GeO2, it is 

still flexible enough to avoid the over-constraint and dangling bond formation. Therefore, 

very low Dit is obtained in 10% Y-GeO2/Ge.  

 

2.4.3 Uniformity or immiscibility in bulk ternary oxides film  

Degree of freedom
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   Besides the interface properties, it is found in the previous section 2.2.3 that the bulk 

electrical properties, especially JG, are also dependent on the Y concentration (figure 

2.13(b)). The JG reduction by the small amount of Y doping is understandable from less VO 

formation. On the other hand, the increase of JG at high Y-percentage indicates that a 

different mechanism is dominating the JG change. The water etching experiment reveals 

some hints on the reason for JG increase at high-Y percentage. Y-GeO2/Ge gate stacks with 

different Y concentrations are emerged in DIW and the AFM images are collected after 

water immersion as shown in Figure 2.29(a) and (b) for 4 nm 10% and 30%Y-GeO2, 

respectively. It is found that 10%Y-GeO2 is etched by DIW uniformly. While the surface 

of 30%Y-GeO2 is roughened by DIW etching with some localized particles revealed, 

which indicates that the uniformity is degraded in 30%Y-GeO2. 

 

                  (a)                                  (b) 

Figure 2.29 AFM images of the top surface of (a) 10%Y-GeO2 and (b) 30%Y-GeO2 after 5 

min immersion in DIW. The 10%Y-GeO2 is uniformly etched by water, while 30%Y-GeO2 

shows some localized particles.  

 

   Such uniformity degradation under certain Y percentage can be explained in the ternary 

phase diagram of GeO2-Y2O3 system, which is called immiscibility region as schematically 

shown in Figure 2.30.
41

 The immiscibility region exists between pure GeO2 and Y2Ge2O7 

RMS=0.55 nmRMS=0.32 nm

30% Y-GeO2
10% Y-GeO2
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on the phase diagram. When the GeO2-Y2O3 ratio is located inside the immiscibility region, 

they cannot form a uniform material. Instead, phase separation would occur, which results 

into the Y-poor part and Y-rich parts in the oxide. Under the DIW etching, the etch rate of 

this two segregations are different. Therefore the surface is roughened by the DIW etching 

for 30% Y-GeO2. The uniformity degradation also introduces an additional leakage path 

through the segregation boundaries, which might explain the increase of JG for 30% 

Y-GeO2 as shown in figure 2.13(b).  

 

Figure 2.30 Phase diagram of GeO2-Y2O3 ternary oxide.
41

 Mainly three regions exist in 

the diagram, namely, Y-GeO2, Y-rich germanate and phase segregation region. 

 

2.5 Summary 

In summary, inspired by thermodynamics in metal oxide formation, a new approach is 

proposed to enhance the thermal and chemical stability of GeO2/Ge gate stacks by metal 

oxide doping. Y-GeO2 provided both stronger water resistance and better thermal stability 

than pure GeO2. Those are well understandable from a network modification viewpoint 

that the oxygen is more strongly bonded to the Ge and Y atoms, and thereby increase the 

Spinodal curve

T
e
m

p
e
ra

tu
re

Y-GeO2
Phase

segregation

Y conc. in GeO2 (at. %)

Y-germanate

Y2Ge2O7

Y2GeO5

Y4GeO8

GeO2
Y2O3

GeO2-Y2O3 ternary oxide

Ge

Y-GeO2



Chapter 2. Rigidity coordination in GeO2 network   

81 

 

Nav in Y-GeO2 network. Superior interface properties with low interface state density was 

also achieved in Y-GeO2/Ge gate stack together with an enhancement of the k-value. 

A systemic investigation has also been carried out on the network modification effect 

of various M-GeO2 and M concentrations. It is found that a desirable M doping species 

should satisfy two semi-empirical criteria. Firstly, metal cations with larger ionic radii are 

more preferable for their stronger influence on the GeO2 network, which result in the 

higher thermal stability and water resistance. Secondly, metal oxides are necessarily to be 

unreactive with Ge to prevent the Ge-M metallic bond formation. Combining the 

knowledge of this work and the literatures, transition metal cations can be categorized 

according to the two semi-empirical criteria as schematically shown in Figure 2.31. Firstly, 

under a certain PDA condition, larger or tetravalent cations are more reactive with Ge 

substrate than smaller or trivalent ones, which form the Ge-M metallic bond and result in 

the degradation of interface properties. Therefore, Al, Sc and Y doping survive Zr, Hf, La 

and some of the Lanthanide Rare-earth (Ln RE) due to less reactivity with Ge substrate and 

better interface properties of M-GeO2/Ge stacks. Secondly, among unreactive cations, 

relatively large ones are more preferable due to a higher thermal stability offered by the 

network modification effect. Concerning the doping concentration, it is understood that a 

small amount of cation is the key to both material stability and good electrical properties. 

Higher M doping concentration would result in degradation of interface and bulk electrical 

properties due to over constraint and immiscibility, respectively.   
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Figure 2.31. Schematic of two semi-empirical criteria for the interface properties in 

different M-GeO2/Ge stack. The doping species that are reactive with Ge substrate are in 

the red region and the unreactive ones are in the blue region. Note that part of the Ln RE 

cations are reactive with Ge. 

 

Thermally robust gate stack with deep sun-nm EOT can be expected by using suitable 

M-GeO2 as an interfacial layer on Ge. 
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Overview 

   In the previous chapter, the formation of a thermally robust IL has been investigated. 

Improvement of thermal stability and hygroscopic tolarence of GeO2/Ge interface was also 

demonstrated by Yttrium-doped-GeO2 (Y-GeO2) without any cost of interface properties. 

Therefore, GeO2-based dielectrics, especially Y-GeO2, are feasible interfacial layer (IL) 

between Ge and high-permittivity (k) dielectrics. However, with aggressive scaling of 

equavalent oxide thickness (EOT), the interface properties of Ge gate stacks become also 

highly sensitive to the top high-k dielectrics because the high-k dielectrics are readily 

intermixed with the ultra-thin GeO2-based IL.
1, 2

 Therefore, proper high-k dielectrics are 

needed for the deep sub-nm EOT Ge gate stack formation.  

In this chapter, the interaction between the different top high-k dielectric and Ge 

interface is investigated in terms of intermixing and defect formation. Alternative high-k 

dielectric thin film yttrium scandate (YScO3) is proposed for Ge gate stack formation. 

Significant enhancement of k-value was observed in YScO3 comparing to both of its binary 

compounds, Y2O3 and Sc2O3, without any cost of interface properties. It suggests a feasible 

approach to design the promising high-k dielectrics for Ge gate stack, namely the 

formation of high-k ternary oxide out of two medium-k binary oxides. Aggressive scaling 

of equivalent oxide thickness (EOT) with promising interface properties is presented by 

using YScO3 as high-k dielectric and yttrium-doped GeO2 (Y-GeO2) as interfacial layer, for 

a realistic demonstration of high-k gate stack on Ge. In addition, Ge n-MOSFET 

performance showing peak electron mobility over 1000 cm
2
/Vsec in sub-nm EOT region 

was also demonstrated by YScO3/Y-GeO2/Ge gate stack. 
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3.1 Concerns on the high-k selection in Ge gate stack 

3.1.1 Advantages and general requirements on the high-k. 

The scaling of equivalent oxide thickness (EOT) is one important aspect of device 

scaling.
3-6

 Thinner EOT can offer stronger control of the vertical electric field in the 

channel by the gate voltage (VG), thereby improve the device properties. In detail, the drain 

current (Id) in a MOSFET is directly dependent on the oxide capacitance (Cox=ε0/EOT) as 

follows,
7
 

        In the linear region: d eff ox G th d

W
I C (V V )V

L
    for 

d G thV (V V )    (3.1) 

        In the saturated region: 
2

2
d eff ox G th

W
I C (V V )

ML
                    (3.2) 

where W and L are the width and length of the channel. μeff and Vth are the effective 

mobility of the carriers and the threshold voltage. M is a function of doping concentrations. 

It is obvious that a higher Cox (thinner EOT, equally) can result in larger Id under a given 

gate voltage (VG). Moreover, the short channel properties are also improved by thinner 

EOT thanks to the stronger electric control of the channel region.
6
 

The insufficient k-value of GeO2 (5.2-5.9) and Y-GeO2 (8-10) makes it impossible for 

the sub-nm EOT gate stack formation using only GeO2 or Y-GeO2 as gate dielectric. A 

higher-k dielectric layer is needed above the GeO2 or Y-GeO2 interfacial layer (IL). There 

are several requirements on the material and electrical properties of the high-k dielectrics 

for Ge MOS devices as schematically shown in Figure 3.1. Namely, (1) the high-k 

dielectric should be uniform and armorphous to suppress the gate leakage current (JG) 

since the it is deposited; (2) the oxide should have a high k-value and a sufficient band gap 

(Eg); (3) since the Id is also directly dependent on the μeff, the introduction of the high-k 

should not be at the cost of interface properties. Without ensuring the above three 

requirements, there would be no meaning for improving the Cox by high-k dielectrics.  
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Figure 3.1 Schematic of basic Ge gate stacks structure for EOT scaling into sub-nm region. 

The requirements on the ultra-thin IL and high-k are listed with regard to both IL and 

high-k. The issue for the IL has been addressed in the chapter 2. 

 

Though (1) and (2) are requirements simply on the properties of the dielectrics, (3) 

involve a complicated relationship between high-k, IL and semiconductor. Therefore I 

would like to spend more time on requirement (3) for a detail explanation.  

It has been systematically investigated on the Si gate stacks that the interface 

awareness of the high-k is strongly related to the thermodynamics between the high-k 

dielectric and Si substrate.
8
 Those chemically stable dielectrics are preferable for the 

interface aware high-k formation on Si. The chemical stabilities of dielectric/Si are 

considered in the following three reactions thermodynamically for the selection citeteria.
8
 

                      Si+MOx  M+SiO2                            (3.3) 

                      Si+MOx  MSiz+SiO2                         (3.4) 

                      M+SiO2  MOx+MSiy                         (3.5) 

According to the Gibbs free energy (ΔG) of the three reactions, the high-k metal oxide can 

be catergoried in the following manner (Figure 3.2) for their stability on Si.
8
 Note that in 

the bottom triangular phase diagrams, the conneted lines between two materials indicate 

Ultra-thin IL

Ge(111)

High-k

1. Amorphous

2. k-value (~20) and 

band gap (~6 eV)

3. Immunity to interface 

degradation

1. Low Dit (~1011eV-1cm-2)

2. Thermal stability

(~550oC) and chemical

stability
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that the two materials are chemically stable with contact to each other. On the other hand, 

the reaction should occur for the two materials without a connecting line. It can be found 

that only the first configuration (left) can yield stable MOx on Si, with ΔG of both reaction 

3.3 and 3.4 being positve. 

 

Figure 3.2 Flowchart for the selection of thermally stable metal oxides on Si.
8
 In the 

triangular diagram, a solid line is plotted between every two materials which are not 

reactive with each other. 

 

Similarly criteria can be used for identying chemically stable high-k oxide for Ge gate 

stacks. According to the literatures
9-11

 and the discussions in the chapter 2, some 

conventional high-k oxides like HfO2 becomes nolonger suitable for Ge gate stack 

formation since it increases the interface states density (Dit). In fact, the aforementioned 
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thermodynamic criteria (requirements 3) leave us a limited amount of “Ge friendly” cation 

species, namely, Al, Sc, Y, and some of lathanide rare-earth (Ln RE) (figure 2.31). 

 

3.1.2 Intermixing behavior between high-k and GeO2 IL 

One might ask here that how strongly can the high-k dielectric influence the interface 

properties. In another word, when will the the interface properties becomes sensitive to the 

high-k dielectrics. If 0.5 nm of GeO2-based IL can block any influence of high-k dielectrics 

on the interface with required annealing condition, then the discussion on the interface 

aware high-k would be meaningless.   

So, here before the discussion on the interfacce aware high-k dielectric selection, I 

would like to clarify one important issue first: the intermixing between GeO2 IL and the 

high-k, because it determines how strongly the high-k dielectric can influence the interface 

and how thin we can use for the IL. It has been reported qualitatively that, comparing to 

SiO2, GeO2 IL is weaker oxides in terms of blocking the cation diffusion from top high-k to 

the interface,
1, 2

 which make the Ge interface more senstive to the high-k than the Si 

counterpart.  

In this section, using Y2O3 as an example, the intermixing between the high-k and 

GeO2 are invesitgated quantitatively, to clarify how signifiantly the high-k can influcence 

the interface. Figure 3.3 shows the experimental design for this observation. 

GeO2/Y2O3/Ge stacks (note that Y2O3 is at the bottom and GeO2 is on the top) are 

deposited by sputtering and annealed in different PDA temparature to form an intermixing 

layer between GeO2 and Y2O3 (the product is Y-GeO2). After that, the gate stacks are 

immersed in diluted deionized water (DIW) (Methanol/DIW=20/1). Since only pure GeO2 

is etched by diluted DIW, the intermixing player Y-GeO2 are remained and measurable by 

XPS. 
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Figure 3.3 Experimal procedures to esitmate the intermixing thickness at the GeO2/Y2O3 

interface. The critial point here is the different DIW etching rate between the intermixed 

layer and pure GeO2. 

 

Figure 3.4(a) shows the thickness of the GeO2 or Y-GeO2 estimated from the XPS as a  

funtion of immersion time. As expected, pure GeO2/Ge stack is completely etched in the 

diluted DIW, with an etching rate similar to the literature.
12

 While, with the intermixing of 

Y2O3, the GeO2 can not be completely etched, which is attributable to the Y-GeO2 formtion 

by the Y2O3/GeO2 intermixng. The thickness of the intermixing layer was extracted after 

20 min immersion and plotted in Figure 3.4(b) as a funtion of annealing temperature. Over 

1 nm of intermixing layer can be found in the stack after 500
o
C annealing, which indicates 

that the intermixing between Y2O3/GeO2 is much easier than the Y2O3/SiO2 conterpart.
13

 It 

should be noted that the thickness of intermixing is whitin the common thickness scale of 

an IL for sub-nm EOT gate stack (1 nm GeO2 or Y-GeO2 contibutes 0.7 or 0.5 nm EOT, 

respectively).  
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                    (a)                                   (b) 

Figure 3.4(a) GeO2 thickness in GeO2/Y2O3/Ge stacks as a funtion of immersion time in 

diluted DIW. The results from a GeO2/Ge stack is also shown as a reference. The remained 

GeO2 layer after long time DIW etching is attributable to the intermixing between GeO2 

and Y2O3 (Y-GeO2), which is not soluble in water. (b) The intermixing layer at GeO2/Y2O3 

interface as a funtion of annealing temperature.  

 

It is found that, besides Y2O3, many high-k oxides share the similar intermixing 

property with contact to GeO2. For the sub-nm EOT Ge gate stack with ultra-thin IL (about 

or below 1 nm), the high-k species can reach the interface easily, influencing the electrical 

properties. Therefore, for some high-k like HfO2, even though an IL is prepared before 

HfO2 depostion, Hf might still penatrate the IL and degrade the interface. Figure 3.5 shows 

the bidirection C-V curves of HfO2/Y-GeO2/Ge gate stacks measured at room temperatrue 

(RT) with different Y-GeO2 IL thickness. It is found that thick Y-GeO2 IL ensures decent 

C-V curves, while reducing the Y-GeO2 IL below 1 nm results in obvious degradation of 

the C-V curve. Such a interface degradation is not due to the Y-GeO2 IL, because the 

results is even worse with 1 nm pure GeO2 IL (also shown in figure 3.5). 
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Figure 3.5 Bidirectional C-V curves of HfO2/Y-GeO2/Ge stacks with various Y-GeO2 IL 

thicknesses measured at RT. It is notable that decent C-V curves are kept with Y-GeO2 

thickness over 1 nm, while thinner Y-GeO2 thickness (below 1 nm) results in the 

degradation of the C-V curve. The HfO2/(1 nm) GeO2/Ge stack also shows poor electrical 

properties. 

 

Thus, it can be concluded that the defect forming high-k dielectrics like HfO2 can not 

be used directly on ultra-thin IL, even on the very robust Y-GeO2. One popular approach is 

to block the reactive high-k species by inserting a diffusion barrier layer like Al2O3.
14

 

While in this section, an alternative attempt is made by creating a real high-k oxide out of 

thosed limited “Ge friendly” cations. 

 

3.2 Alternative ternary high-k: YScO3 

3.2.1 Thin film YScO3 preparation 

To investigate the dielectric properties of YScO3 on Ge, p-type Ge(111) wafer was 

chemically cleaned by methanol, HCl and diluted HF solution sequentially. Prior to the 
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deposition of YScO3, ultra-thin Y-GeO2 IL was deposited by rf co-sputtering GeO2 and 

Y2O3 targets (Y/(Y+Ge)=10%) for interface passivation as described in the chapter 2. 

Then, YScO3 thin film was deposited in-situ by rf co-sputtering of Y2O3 and Sc2O3 targets 

without breaking the vacuum. After the deposition of YScO3/Y-GeO2/Ge stacks, the post 

deposition annealing (PDA) was carried out at 500
o
C in N2+O2(0.1%) ambient for 30 s. 

The gate stack preparation is schematically show in Figure 3.6.  

 

Figure 3.6 Schematics of YScO3/Y-GeO2/Ge gate stack process. Note that in the step 3, 

low sputtering power is preferred to reduce damage to the passivated interface. 

 

Since the non-uniformity or poly-crystallinity of the dielectric film would results in the 

increase of JG,
15

 the uniformity and amorphous feature are examined firstly. The surface 

morphology of the annealed YScO3/Y-GeO2/Ge stacks was characterized by atomic force 

microscopy (AFM) as shown in Figure 3.7(a). A smooth and featureless YScO3 top 

surface was observed with RMS roughness of 0.3 nm in 2μm×2μm region can be observed 

for the annealed gate stack, which indicates a good uniformity of deposited YScO3 thin 

film. The amorphous character of the annealed YScO3 with relative larger thickness 
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(40 nm) was also confirmed by X-ray diffraction (XRD) as shown in Figure 3.7(b). The 

XRD pattern of bare Ge(111) substrate is also shown for comparison. The diffraction 

pattern of anneal YScO3/Ge, as-deposited YScO3/Ge and Ge substrate is exactly the same. 

There is no diffraction peaks corresponding to the YScO3 crystal can be found in the XRD 

spectrum, indicating the amorphous nature of the annealed YScO3 film. The good 

uniformity and amorphous nature of YScO3 is important for maintaining low leakage 

current in the Ge gate stack.  

    

 

                 (a)                                    (b) 

Figure 3.7(a) AFM image of the top surface of 4 nm YScO3/Ge stack after annealing. The 

RMS roughness is about 0.3 nm. (b) XDR pattern of (40 nm) YScO2/Ge gate stacks (both 

annealed and as-deposited). The XRD pattern of Ge(111) substrate are also shown for 

comparison.  

 

3.2.2 k-value enhancement in YScO3 through structural change 

To study the electrical properties of YScO3/Y-GeO2/Ge gate stacks, Au and Al were 

deposited by vacuum evaporation for the gate electrode and substrate contact of the MOS 
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capacitors (MOSCAPs), respectively, and the C-V and I-V characteristics were measured at 

RT. 

The k-value of YScO3 thin film is estimated from the C-V measurement on 

YScO3/Y-GeO2/Ge gate stacks with different physical thicknesses of YScO3. Figure 3.8(a) 

shows the EOT of YScO3/Y-GeO2/Ge gate stacks as a function of physical thickness of 

YScO3. Note that the physical thickness of Y-GeO2 IL is fixed at 1 nm, which contributes 

0.5 nm in the total EOT. k-value about 17 of YScO3 is estimated from the slope of the 

linear fit. Eg of YScO3 was also measured on a (40 nm) YScO3/Ge stack by spectroscopic 

ellipsometry as shown in the inset of Figure 3.8(a). The Eg of YScO3 is estimated to be 

5.8 eV, which is in agreement with previous reports.
16

 The EOT scaling potential of the 

YScO3/Y-GeO2/Ge stacks is ensured by the high k-value and sufficient Eg of YScO3.  

From a common viewpoint, one might naturally expect that the mixture of two binary 

oxides should acquire a k-value which is the linear combination of the two compounds as 

well. However, it is not the case for YScO3. Interestingly, a significant enhancement of 

k-value of YScO3 over its binary compounds is noticed as shown in Figure 3.8(b). More 

interestingly, regardless of the enhancement in k-value, Eg of YScO3 is similar to that of 

Y2O3 or Sc2O3, which is against the common trend of k-Eg trade-off relationship as 

described in the figure 1.9 in chapter 1. The enhanced k-value and sufficient Eg are 

obtained in YScO3 at the same time, which is a big advantage of YScO3 over its binary 

compounds as high-k dielectric for Ge gate stacks formation. 
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                   (a)                                (b) 

Figure 3.8(a) EOT of YScO3/Y-GeO2/Ge gate stacks as a function of physical thickness of 

YScO3. Note that the physical thickness of Y-GeO2 IL is fixed at 1 nm, which contributes 

0.5 nm in the total EOT. The inset shows the absorption coefficient (α) as a function of 

photon energy for a (40 nm) YScO3/Ge stack. (b) k and Eg values of Y2O3, Sc2O3 and 

YScO3. It is notable that YScO3 enhance the k-value comparing to its both binary 

compounds. 

 

To understand the origin of the k-value enhancement in YScO3, reflective indices of 

Y2O3, Sc2O3 and YScO3 are measured by spectroscopic ellipsometry on the (40 nm) 

Y2O3/Ge, Sc2O3/Ge and YScO3/Ge stacks, respectively, as shown in Figure 3.9(a). Note 

that the refractive indices are determined at λ=632 nm in this experiment and α is assumed 

to be 0 at this wavelength. YScO3 shows higher refractive index than both Y2O3 and Sc2O3, 

which strongly indicates that YScO3 has a higher packing density than Y2O3 and Sc2O3.
17

 

The denser packing of YScO3 is evident from its structure reported in previous 

literatures.
18, 19

 YScO3 has a different structure with both Y2O3 and Sc2O3 as shown in the 

Figure 3.9(b)
18, 19

. Y2O3 or Sc2O3 has the Y-O6 or Sc-O6 octahedral as their basic unit, 

respectively. While in YScO3, the relatively larger cation Y
3+

 will increase its coordination 
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to Y-O8. On the other hand, the Y-O or Sc-O bond length is not largely changed from the 

binary compounds to YScO3
18, 19

. This structural change enables a denser packing of the O 

atoms in the YScO3. 

 

                     (a)                                (b) 

Figure 3.9(a) Refractive indices of Y2O3, Sc2O3 and YScO3 measured by spectroscopic 

ellipsometry on the (40 nm) Y2O3/Ge, Sc2O3/Ge and YScO3/Ge stacks, respectively. Note 

that the refractive indices are determined at λ=632 nm and α is assumed to be 0 at this 

wavelength. The higher refractive index of YScO3 indicates a higher packing density. (b) 

Schematics of the coordination polyhedrons in Y2O3, Sc2O3 and YScO3
18, 19

. 

 

It is notable that such a denser packing is common feature among various rare-earth 

scandate (REScO3) according to the literature reports.
20

 Figure 3.10 summarized the 

densities of several REScO3 and their corresponding binary compounds, Sc2O3 and RE2O3. 

The density of all the REScO3 is higher than the linear combination of the two binary 

compounds, which indicates that the structure of REScO3 is more densely packed than that 

of the binary compound. 
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Figure 3.10 Densities of some REScO3 and that of their binary compounds. Note that the 

densities of REScO3 are higher than linear combination of their binary compounds, which 

indicates that they are more densely packed. 

 

The denser packing of YScO3 (and other REScO3) comparing to its binary compounds 

would result in a drastic increase of k-value as expected by Clausius-Mossoti (C-M) 

equation. Figure 3.11 shows the k-value of REScO3 and their binary compounds as a 

function of their αm/Vm value. Note that the αm of RE2O3, Sc2O3 and REScO3 are derived 

from ion polarizabilities of RE
3+

, Sc
3+

 and O
2-

 by the additivity rule,
21

 and Vm is calculated 

from the structures of RE2O3, Sc2O3 and REScO3.
18-20

 The experimental k-values of RE2O3, 

Sc2O3 and REScO3 are also plotted in the figure both from this work and literatures, which 

fit the prediction by C-M equation with small deviation. It is notable that the enhancement 

of k-value is also observable for the other rare-earth scandate (REScO3)
22, 23

, which might 

be attributed to the similar structural change and denser packing effect. Thus, we can 
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conclude that the denser packing of ternary oxides like YScO3 can create high-k dielectrics 

out of two medium-k binary oxides. 

  

Figure 3.11 k-value of RE2O3, Sc2O3 and REScO3 as a function of αm/Vm (ref. 18-21). 

The k-value predicted by C-M equation is also shown as a reference. 

 

3.2.3 Interface awareness of YScO3 due chemical stability 

  The remaining issue (and probably the most important issue) of YScO3 is its impact on 

the Ge interface after the discussion of film quality and k-value. As discussed in the section 

1 of this chapter, the interface aware high-k should be unreactive with Ge. It has been 

experimentally confirmed that both Y2O3 and Sc2O3 are unreactive species on Ge (data not 

shown). The reactivity between YScO3 and Ge are also examined. Figure 3.12 shows the 

Ge3d XPS core level spectra of (4 nm) YScO3/Ge with different N2 PDA temperature (for 

30 sec). Note that the spectra are de-convoluted into the Sc3p, Y4p and Ge3d peaks at 

about 32, 30 and 26 eV, respectively. Referring to equation 3.3 and 3.4, GeO2 should be 

form if any reaction occurs between YScO3 and Ge at given annealing temperature. In fact, 
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there is no signal corresponding to the GeOx can be found in these gate stacks. It should be 

noted that the signal at higher binding energy with respect to Ge 3d is attributed to Sc 3p 

peak, which is confirmed by YScO3/Si stack deposited at the same condition. The XPS 

observation indicates that YScO3 is chemically stable on Ge even at 600
o
C. 

  

Figure 3.12 XPS spectra from 4 nm YScO3/Ge gate stacks. The spectra are de-convoluted 

into Sc3p, Y4p and Ge3d peaks. Note that the spectra do not show obvious change with 

increasing the annealing temperature. 

 

To examine the impact of YScO3 on the interface properties, Dit of YScO3/Y-GeO2/Ge 

gate stacks with different Y-GeO2 IL thicknesses was estimated by the high-low frequency 

capacitance method as shown in Figure 3.13.
24

 Dit from the HfO2/Y-GeO2/Ge gate stacks 

is also shown for comparison. Note that the thicknesses of both YScO3 and HfO2 are fixed 

at 2 nm, while EOT of the gate stacks is changed by the Y-GeO2 IL thickness. It is found 

that, with the decreasing of Y-GeO2 IL thickness, Dit at YScO3/Y-GeO2/Ge gate stacks is 

almost unchanged. On contrary, HfO2 drastically increases Dit with Y-GeO2 IL thinner than 

1 nm, which is attributable to the defect formation by Hf intermixing with IL.
11

 Therefore, 
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we can conclude that, by combining two “IL friendly” medium-k components, real high-k 

dielectrics like YScO3 can be formed also with “IL friendly” character, which is in a 

remarkable contrast with the conventional high-k dielectrics like HfO2. It should also be 

noted that this “IL friendly” character of YScO3 is valid for both Y-GeO2 IL and GeO2 IL 

(data not shown). 

 

Figure 3.13 Dit at Ei-0.2 eV as a function of EOT in YScO3/Y-GeO2/Ge and 

HfO2/Y-GeO2/Ge stacks. Note that the thicknesses of both high-k dielectrics are fixed at 2 

nm while the EOT is changed by Y-GeO2 IL thickness. HfO2 degrades the interface 

properties when Y-GeO2 IL is thinner than 1 nm. On contrary, YScO3 is immunity to 

interface degradation with ultra-thin Y-GeO2 IL. 

 

   To summarize the results in this section, it is confirmed that YScO3 is one of the 

desirable high-k dielectrics which satisfy all the three requirements suggested in the section 

1 of this chapter. Thus, Ge gate stacks with deep sub-nm EOT and good interface can be 
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expected by using YScO3 as high-k. It has to be pointed out that beside YScO3, some other 

REScO3 might have the similar properties. 

 

3.3 Demonstration of 0.5 nm EOT Ge gate stack 

3.3.1 Aggressive scaling of the EOT 

Thanks to the “IL friendly” nature of YScO3, EOT scaling can be carried out by 

aggressively reducing the Y-GeO2 IL thickness. Figure 3.14(a) shows the bidirectional C-V 

characteristics of a YScO3/(0.5 nm)Y-GeO2/Ge gate stack measured at RT.
24

 The EOT of 

this gate stack is about 0.5 nm. There is no obvious hysteresis or frequency dispersion, 

which indicates that the good interface properties are maintained regardless of the 

aggressive EOT scaling. The JG at VFB-1 V of the YScO3/Y-GeO2/Ge gate stacks as a 

function of EOT is also shown in Figure 3.14(b).
24

 With high k-value and sufficient 

bandgap of YScO3, JG is affordable even in the deep sub-nm EOT region, which is 

comparable to the state-of-the-art Ge gate stacks reported in the recent literatures.
14, 25-27

 

 

                   (a)                                   (b) 

Figure 3.14(a) Bidirectional C-V curves of YScO3/(0.5 nm)Y-GeO2/Ge gate stacks with 

EOT about 0.5 nm measured at RT.
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indicates that YScO3 does not degrade the Ge interface with only 0.5 nm Y-GeO2 IL. (b) 

JG as a function of EOT in YScO3/Y-GeO2/Ge gate stacks.
24

 Low JG is observed which is 

comparable to the state-of-the-art Ge gate stacks.
14, 25-27 

 

3.4.2 Demonstration of the MOSFET operation   

Since the electron mobility in Ge n-channel FETs is highly sensitive to interface 

properties,
27

 we fabricated Ge n-MOSFET to verify out gate stack design for device 

applications. After HF-last cleaning, 30 nm Y2O3 and 500 nm SiO2 were deposited to form 

the spacer and field oxides, respectively. Several channel lengths (W/L=90 μm/100–500 

μm) were defined, and phosphorus (1×10
15

/cm
2
 dose) was implanted at 70 keV through the 

Y2O3 layer for source/drain (S/D) formation. Dopant activation was carried out at 600
o
C in 

N2 ambient. YScO3/Y-GeO2/Ge gate stacks were prepared in a same manner as MOSCAPs. 

After gate stack formation, Al electrodes for the source, drain, and gate were formed by 

thermal evaporation. The main process flow and device schematics are shown in the 

Figure 3.15. 

 

Figure 3.15 Process flow and schematics of Ge n-MOSFET with YScO3/Y-GeO2/Ge gate 

stacks. 30 nm Y2O3 and 500 nm SiO2 were deposited to form the spacer and field oxides, 
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respectively. Several channel lengths (W/L=90 μm/100–500 μm) were defined, and 

phosphorus (1×10
15

/cm
2
 dose) was implanted at 70 keV through the Y2O3 layer for 

source/drain (S/D) formation. (a) Y2O3 was etched with HCl-based solution to form spacer; 

Dopant activation was done by RTA at 600
o
C for 30 sec. (b) YScO3/Y-GeO2 deposition by 

rf co-sputtering and annealed at 500
o
C N2/O2 (0.1%) for 30 sec. (c) Gate electrode 

patterning after Al deposition (d) S/D patterning. 

 

Figure 3.16 shows the effective electron mobility (μeff) as a function of inversion 

carrier density (Ns) in the YScO3/Y-GeO2/Ge and HfO2/Y-GeO2/Ge n-MOSFETs where the 

Y-GeO2 IL thickness is fixed at 1 nm. The μeff in the Y-GeO2/Ge n-MOSFET (without 

high-k) is also shown for comparison. The YScO3/Y-GeO2/Ge n-MOSFET shows a 

moderate μeff loss with respect to that of Y-GeO2/Ge when the EOT is greatly reduced. At a 

fixed EOT (0.8 nm), YScO3/Y-GeO2/Ge stack has much higher μeff over the HfO2 

counterpart, especially in the low Ns region. Since the mobility in low Ns region is mainly 

limited by the coulomb scattering,
29

 it is readily understandable that the better interface 

offered by YScO3/Y-GeO2/Ge stack shows advantage over HfO2 counterpart. The peak μeff 

in the YScO3/Y-GeO2/Ge n-MOSFET with EOT 0.8 nm is about 1057 cm
2
/Vsec, which is 

so far the highest peak μeff for sub-nm EOT Ge n-MOSFET to our knowledge. Thus it is 

concluded that YScO3 is a promising high-k dielectric for high mobility Ge n-MOSFET 

operation with thin EOT. 
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Figure 3.16 The μeff of YScO3/Y-GeO2/Ge n-MOSFETs where the Y-GeO2 IL thickness is 

fixed at 1 nm. The μeff in the Y-GeO2/Ge n-MOSFET is also shown for comparison
5
. The 

peak μeff of 1057cm
2
/Vsec with EOT 0.8 nm is demonstrated in YScO3/Y-GeO2/Ge, which 

is the highest one in sub-nm EOT region due to the immunity to interface degradation. 

 

Figure 3.17 shows the benchmarking of the peak electron mobilities of Ge 

n-MOSFETs.
24

 Some results from the resent works are also shown as reference.
14, 27, 30-32

 

Comparing to the conventional high-k dielectrics, the advantage of YScO3 is most obvious 

for the sub-nm EOT region since the mobility is not significantly degraded with reducing 

EOT. This result obtained for YScO3/Y-GeO2/Ge stack strongly suggested that YScO3 is a 

promising high-k dielectric. 
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Figure 3.17 Benchmarking of peak electron mobility in Ge n-MOSFETs as a function of 

EOT.
14, 24, 27, 30-32

 Comparing to other conventional high-k, YScO3 shows moderate mobility 

degradation with reducing EOT. 

 

3.4 Summary 

   The selection of a highly scalable and interface aware high-k has been discussed in this 

chapter after the designing of a promising IL. It is pointed out that the intermixing of 

high-k dielectric with GeO2 based IL enables the high-k to exert a significant impact on the 

interface properties depending on the bond configuration of cation species in GeO2-based 

IL. Thus, the procedure for the high-k selection here follows a “bottom up” manner, 

namely, selecting the cation species with defect free configuration on Ge and use this 

limited category of cations to assemble a real high-k.    

It is found that ternary oxides made from two Ge friendly binary oxides are feasible 

high-k dielectrics for Ge gate stack formation in terms of both high k-value and “IL 
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friendly”. The key point is the scandate formation of ternary oxides, in which a small 

cation radius Sc can enhance the density (reduce molar volume). This has lead us to the 

successful results, in spite of the fact that both binary oxides have medium-k values. 

YScO3 is found to be a good example of desirable high-k material on Ge due to its “IL 

friendly” character and a high permittivity about 17. Based on these understandings, EOT 

scaling to about 0.5 nm was demonstrated by YScO3/Y-GeO2/Ge gate stacks with 

promising interface properties. 
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Overview 

   Reliability of device for long term application is one of the most critical concerns for 

the MOSFET design and fabrication. Though prominent interface property and aggressive 

EOT scalability has been demonstrated in the previous chapters, the good initial properties 

do not secure the long term application since device parameter might be changed over time 

by the applied electric field. VFB shift (or Vth shift, equally) under the electric stress field 

(Estress) is one of the most important failure modes which limit the device performance and 

lifetime.
1, 2

 The interface passivation can be degraded by the Estress too, which results in the 

increase of interface state density (Dit) and the reduction of trans-conductance (Gm).
3
 

Insulating properties of the gate oxides might also be degraded under Estress in terms of 

excessive gate leakage current (JG) known as the stress induced leakage current (SILC).
4, 5

 

Such destructive change of device parameters comes up as a possible showstopper for the 

device application in the real scene, while no sufficient information has been reported for 

Ge. 

   In this chapter, the reliability degradation mechanisms of the Ge MOS device are 

discussed, and the possible approaches to improve the Ge MOS reliability are investigated 

as well. 

Since the interface layer (IL) is especially susceptible to reliability degradation,
6
 and 

for Ge MOS device, the IL is an essentially different component from the Si counterpart, a 

detailed investigation should be carried out firstly on GeO2-based ILs. By measuring the 

MOS device parameter shifts, the trapping behaviors in GeO2/Ge are analyzed in term of 

both pre-existing traps in the as-prepared gate stacks and trap generation by the Estress. It is 

found that the initial trap density in the as-prepared Ge gate stack is related to the process 

condition. The reduction of oxygen vacancy (VO) by high pressure oxidation (HPO)
7
 can 

effectively reduce the hole traps. On the other hand, the trap generation under high Estress is 

determined by the network rigidity of the dielectrics. Y or Sc-GeO2 can suppress the trap 
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generation due to their enhanced rigidity of the network. The interface degradation under 

high Estress is also found to be improved by doping.  

The reliability assessment is also carried out for the sub-nm EOT YScO3/Y-GeO2/Ge 

and HfO2/Y-GeO2/Ge gate stacks. The impact of different high-k on the Ge MOS reliability 

is discussed.   

 

4.1 Dielectric degradation mechanisms in MOS device 

    With the reduction of device dimensions, it becomes an increasingly critical problem 

that the device parameters change over time such as the degradation of Gm, the shift of the 

Vth and the increase of the JG. It has been pointed out that such device parameter change is 

majorly induced by the charge trapping in the dielectrics.
1-5

 The traps are classified into 

two types according to their formation mechanism, namely, the pre-existing traps formed 

during the gate stack process and generated traps under high Estress.
8-10

 Here, some basic 

understandings on these two types of traps are summarized according to the literatures.  

In the gate stack process, the purity, stoichiometry and uniformity cannot be 

completely ensured. The inclusion of these charged defects might result in trap in the 

as-prepared gate stacks,
11, 12

 which can capture the electrons or holes through Coulomb 

attraction. One of the direct impacts of the charge trapping is the shift of the VFB (or Vth, 

equally) with time, which is understandable from the distortion of the band diagram as 

schematically shown in Figure 4.1(a) and (b) for the electron trapping and hole trapping, 

respectively. Note that the black lines indicate an ideal band diagram without any trapping, 

while the blue and red dotted lines indicate the distorted band diagram after the occurrence 

of electron or hole trapping, respectively. Note that these two schematics are reflecting the 

flat band condition of the gate stack. Now let’s assume that the flat band condition should 

be maintained and charge trapping is introduced into dielectric. When electrons are trapped, 

the gate voltage (VG) should be positively shifted to compensate the electric field generated 
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by the trapped electrons (otherwise the flat band condition is broken). Thus, a positive shift 

of the VFB could be observed when electron trapping is dominant. The hole trapping, on 

contrary, results in a negative shift of the VFB. The dependence of VFB shift on the trap 

density can be written as follow,
13

 

t
FB

ox

qN
V

C
                                (4.1) 

Here, Nt, Cox, q are the trap density, oxide capacitance and electron charge, respectively. 

Note that the traps are assumed to be near the dielectric/semiconductor interface.  

 

 

              (a)                              (b) 

Figure 4.1 Band diagram of Ge gate stacks with (a) electron or (b) hole trapping. Note that 

the black lines denote the ideal gate stack without trapping, while the blue and red dotted 

lines stands for the band distorted by electron and hole trapping, respectively. Such 

distortion of band is originated from the electric field from the trapped carriers, which is 

compensated by the shift of VG. 

    

    Though the effect of the electron and hole trappings are shown separately in the above 

schematics, both might exist in a same gate stack. Thus, the total VFB shift after stress is a 
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combined effect of electron and hole trappings, and the direction and magnitude of VFB 

shift is determined by the net charge trapping density. Since electron and hole traps have 

different cross-sections for the carriers,
14-16

 the trapping rate of electron and hole might be 

different as well, which might result in a “turn around” VFB shift as shown in Figure 4.2 

(for SiO2/Si stacks, depending of the stress condition as well).
16

 

   

Figure 4.2 VFB shift of Al/SiO2/Si gate stack as a function of time under constant current 

stress of I=3×10
-7 

A (gate diameter=0.032 inch).
16

 For room temperature stress (293 K), 

the electron trapping is dominant initially and then the hole trapping becomes the major 

component. 

  

It must be emphasized that, to differentiate the contribution of pre-existing traps from 

that of newly generated traps, the applied Estress field must be small enough,
8-10

 because that 

an elevated Estress field can create additional traps by bond breakings in the dielectrics. 

Though it is widely accepted that bond breaking in the dielectric is the origin of trap 

generation, the quantitative models to analyze such bond breaking process are so far 

controversial. There are basically two models for the bond breaking under Estress, the carrier 

injection model
17

 and the thermochemical model.
18

 The carrier injection model explains 
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the bond breaking in the dielectrics from the injected carriers as schematically shown in 

Figure 4.3.
 17

 Under a negative VG, the injected electrons are accelerated by the external 

electric field and obtain a considerable energy gain (εgain), which enables them to break the 

bond (especially Si-H) by ionization. It is a slightly different case under positive bias since 

the hole is facing a higher band offset than that of the electron. Therefore, the hole 

injection is triggered by the electrons.
19

 Namely, the electrons are accelerated from the 

semiconductor side to the gate metal and excite the electron-hole pairs in the gate metal. 

The generated holes again can be injected from gate metal to the semiconductor interface 

and break the bonds as well.
19

 The carrier injection model has successfully explained the 

reliability degradation mechanisms in the SiO2/Si system.
17,19

 However, the carrier 

injection model becomes less helpful when high-k dielectric is involved which shows 

different degradation behaviors with SiO2 experimentally. 

 

  

Figure 4.3 Schematic of carrier injection model for trap generation in the dielectrics under 

a negative Estress.
17

 The electrons from the gate metal are accelerated by the external 

electric field and acquire the sufficient εgain to break the bond near interface. For the 

positive Estress, similar mechanism is involved except for that the holes are generated by the 

injected electrons. 
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Thermochemical model can analyze the reliability of the dielectrics with different 

k-values at better accuracy. Figure 4.4(a) schematically shows the thermochemical model 

in atomistic scale for the dielectric degradation mechanism of SiO2.
18, 20

 The chemical 

bonds are broken by the local electric field (Eloc, not externally applied field) and the ions 

are displaced from their original sites to form traps. The thermochemical model for the trap 

generation rate can be quantitatively expressed as the following equation, 

0 loc
0

B

H E
r r exp( )

k T

  
                        (4.2) 

where r0 is a characteristic of collision (interaction) frequency, μ and T are the molecular 

dipole moment and temperature, respectively. ΔH0 stands for the activation energy for bond 

breaking and ion displacement in the dielectric.  

This equation reflects a basic physical picture of the trap generation in the MOS 

devices. In detail, the dielectric/semiconductor is a highly ordered system, while the trap 

sites can be seen as disorders from this ideal state. Thus, the entropy should favor the trap 

generation. Fortunately, the metal-oxygen bond forms an energy barrier here to stop the 

dielectric degradation immediately, which is reflected as an activation energy term ΔH0 in 

the equation 4.2. On the other hand, with the local electric field and dipole moment, an 

additional energy μEloc is given to lower the activation energy of bond breaking and ion 

displacement. Therefore, dielectric is degraded under electric stress. 

It should be noted that, for the dielectric with higher-k than SiO2, the value of Eloc is 

also larger, which makes it more susceptible to trap generation. This difference results in 

the k-value dependence of dielectric reliability, which is confirmed by experimental 

observations.
20

 Figure 4.4(b) schematically shows the energy states corresponding to the 

ideal dielectric and trap generation with and without electric field. The equation 4.2 is 

more easily understandable by referring to this energy state configuration. 
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Since the dielectrics discussed in this work, including GeO2 and M-GeO2, have 

different k-values (higher than that of SiO2), I will use the thermochemical model to 

analyze the experimental results in the following sections. 

 

 

                 (a)                                     (b) 

Figure 4.4(a) Atomistic schematics of thermochemical model for dielectric degradation in 

SiO2.
18, 20

 The chemical bonds in the dielectric are broken by the Eloc (dependent on the 

dielectric thickness, VG and k-value) and the ions are displaced from the original sites, 

which results in the generation of hole traps. (b) Schematically shows the energy states 

corresponding to the ideal dielectric and trap generation with and without electric field. 

 

4.2 Carrier trapping behaviors in GeO2 based dielectrics 

4.2.1 Constant field stress on GeO2/Ge based gate stacks 

In following two sections, the reliability of two kinds of gate stacks were examined, 

namely, GeO2/Ge stacks and M-GeO2/Ge stacks. Both p-type and n-type Ge(111) 

substrates were used (from the same vender AXT) after HF-last cleaning, with the 

resistivity of 0.6 Ω·cm and 0.7 Ω·cm, respectively. The (4 nm) GeO2/Ge stacks were 

formed by thermally oxidizing Ge substrates under various oxygen pressure (PO2) from 1 
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to 70 atm. For the 1 atm O2 oxidized GeO2/Ge stacks, a low temperature O2 annealing 

(LOA) were added to passivate the interface.
7
 (4 nm) M-GeO2/Ge (M for Al, Sc and Y, 

respectively) stacks were also prepared by radio frequency co-sputtering of GeO2 and 

M2O3 targets in a same manner as described in chapter 2. The M atomic percentages of the 

samples are all controlled to be (10±1)% in the metallic atom ratio (M per.=M/(Ge+M)) 

unless specifically noted. After the deposition of M-GeO2 on Ge, the PDA was carried out 

at 500
o
C in N2 ambient for 30 sec. Au and Al are used for these MOSCAPs as gate and 

substrate contacts, respectively. Note that all the stacks prepared here for the reliability 

tests have reasonably good interface properties as already systematically discussed in the 

chapter 2. The EOT of GeO2 and Y-GeO2/Ge stacks are 3 and 2 nm, respectively. 

The constant Estress experiments of both polarities were carried out at room temperature 

by applying positive and negative VG on n-Ge and p-Ge MOSCAPs, respectively. This is 

because when the Estress is applied on the accumulation region of Ge gate stack, the voltage 

loss in the Ge substrate can be minimized, and the Estress is completely applied on the 

dielectrics. The C-V and I-V characteristics were recorded before and after the stress. Note 

that, in this work, the magnitude of the Estress is defined as Estress=VOX /EOT for a fair 

comparison by considering the practical device operations with different EOT. Here VOX is 

the oxide voltage (VOX=VG-VFB), namely, the actual voltage applied on the dielectric. Under 

such a definition, the same magnitude of Estress would correspond to the same amount of 

carriers in the channel for MOSFET operation. 

It should be noted that this Estress definition is not only a fair comparison concerning the 

real device application, but also compatible with the thermochemical model, because this 

definition of Estress has compensated the k-value impact on dielectric reliability and the Eloc 

would be almost the same magnitude for the dielectrics with different k-values.  

The detailed experiment procedures are schematically shown in Figure 4.5. Positive 

and negative VG was applied on the n-Ge and p-Ge substrates at room temperature, 
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respectively, where Ge is in accumulation region with negligible voltage drop. The applied 

VG forms an Estress field on the dielectrics, and with a time interval, the VG is scanned once 

to collect a C-V or I-V curve. It has to be noted that such a C-V or I-V scan out of stress 

level might result in the detrapping of the carriers.
21

 To minimize the detrapping effect, the 

C-V or I-V scan is carried out rapidly (within 10 sec) and the VFB value is collected in the 

downward C-V scan of the VG.                       

 

 

Figure 4.5 Schematics of the experimental procedures for Estress on Ge with both polarities. 

Note that the C-V curves are collected along the scan direction indicated by the arrows.  

 

4.2.2 Pre-existing trap species in GeO2/Ge gate stack 

    Firstly, the pre-existing traps in the GeO2/Ge based stacks are investigated under low 

Estress (4 MV/cm) where trap generation should not occur. Namely, this low Estress can only 

fill the pre-existing trap site by injected carriers, but not generating new traps. Before 

investigating various Ge gate stacks, let’s examine the simplest one, 1 atm O2 oxidized 

GeO2/Ge stack first, to acquire a basic concept on which kinds of trap species to mind for 
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the following investigations. Figure 4.6(a) shows VFB shift as a function of time for 1 atm 

GeO2/n-Ge and p-Ge stacks under positive and negative Estress (4 MV/cm), respectively. It 

is found that both polarities show a significant negative VFB shift, which indicates that the 

large amount of hole trapping is the dominant trapping species in GeO2/Ge stack. It has 

been reported by a first principle calculation that the VO formation in the GeO2 contributes 

significantly to the hole traps.
22

 Especially for the VO located close to the Ge interface (in 

transition region, GeOx), its energy level is quite close to the valence band maximum of the 

Ge as schematically shown in Figure 4.6(b), which indicates a negligible energy 

consumption for hole trapping to occur in these trap sites. As discussed in the chapter 2, the 

1 atm O2 oxidized GeO2/Ge stack is expected to has a lot of VO due to the GeO desorption 

process. Therefore, VO in this gate stack might explain the large negative VFB shift under 

Estress. Since the VO might be a major source of pre-existing traps in GeO2/Ge stack, the 

control of which in the gate stack process is expected to improve the reliability assessment 

of Ge gate stacks under low Estress. 

 

 

                       (a)                              (b) 

Figure 4.6(a) VFB shift in 1 atm GeO2/Ge stacks under 4 MV/cm Estress with both polarities. 

The large negative shift of the VFB represents the large amount of hole trapping. (b) The 
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calculated energy level for VO in the GeO2/Ge gate stack,
22

 where GeOx is the transition 

region. Note that, regardless the dominant hole traps, certain amount of electron trap might 

also exists in the GeO2/Ge, which only observed under positive Estress with time longer than 

300 sec (slightly positive VFB shift). 

 

4.1.3 Control of pre-existing traps by gate stack process    

It has also been clarified in the chapter 2 that the VO formation (GeO desorption, 

equally) might be suppressed by HPO or M-GeO2. Therefore, in this section, the impact of 

HPO and M-GeO2 on the pre-existing hole traps are examined.   

   The VFB shift of GeO2/Ge stacks with various annealing PO2 is examined under 

4 MV/cm as shown in Figure 4.7(a) and (b) for positive and negative Estress, respectively. It 

is found that by increasing the PO2, the larger negative VFB shift is reduced comparing to 

1 atm oxidized GeO2/Ge gate stacks for both positive and negative Estress, which is in 

agreement with the expectation from VO consideration. It is noted that, since the total 

amount of the pre-existing hole traps is limited in these HPO-GeO2/Ge stacks, the VFB 

shifts saturate over long stress time. Thus, it can be concluded that the suppression of VO 

during gate stack process by HPO might be a useful approach to reduce the pre-existing 

hole trap density in the gate stack. 
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                    (a)                                  (b) 

Figure 4.7 VFB shift in GeO2/Ge stacks with various process PO2 (1 to 70 atm) as a function 

of time under (a) positive and (b) negative Estress. The large negative VFB shifts are reduced 

in both polarities by increase PO2, which might be explained by less VO formation during 

the gate stack process. 

 

   It has also been proposed in chapter 2 that M-GeO2 is another effective method to 

suppress the VO formation in the gate stack. So, low field Estress (4 MV/cm) is carried out 

on the M-GeO2/Ge stacks as well. The effects of various kinds of M doping (Al, Sc and Y) 

are also compared with that of GeO2/Ge stack. Note that the M-GeO2/Ge stack is annealed 

in N2 ambient, thus there is no HPO effect. Their impact on the pre-existing trap densities 

are estimated from the saturated VFB shift by equation 4.1 and listed on the following Table 

4.1 together with that of pure GeO2. Y and Sc doping have strong effect on reducing the 

pre-existing traps, which is also in agreement with the suppression of GeO desorption and 

VO formation as discussed in chapter 2. 
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Table 4.1 Trap densities of GeO2 and M-GeO2/Ge stacks estimated from the saturated VFB 

shift under 4 MV/cm Estress    

 

 

In the final part of this section, I would like to discuss a little about the definition of 

pre-existing traps. It is simply assumed in the previous discussion that under 4 MV/cm 

Estress the trapping of carriers mainly occurs at the pre-existing traps formed during gate 

stack process, while the newly generated traps are negligible. (The criterion on the Estress 

for no trap generation is usually 4 to 8 MV/cm for the SiO2/Si stack.
8-10

) However, this 

assumption is yet to be confirmed that 4 MV/cm Estress is really low enough or not to 

neglect the trap generation in GeO2/Ge stack. The circularly trapping-detrapping behaviors 

are investigated on a (6 nm) HPO-GeO2/Ge stack, with 900 sec of positive Estress for 

trapping follower by 10 sec of negative Estress in a same magnitude for detrapping circularly 

as shown in Figure 4.8. The magnitude of Estress here is 2 and 4 MV/cm. Under the 

negative Estress carrier trapping occurs which results in obvious VFB shift and it is recovered 

by detrapping under 10 sec positive Estress. It is notable that when the second and the third 

runs of negative Estress are applied, the magnitude of VFB shift saturated at a same value as 

the first stress (for both 2 and 4 MV/cm). Similar repeatability can also be observed under 

and negative-trapping/positive-detrapping experiment. Such repeatability indicates that the 

total trap sites in the dielectric might not be obviously changed by the low field Estress 

below 4 MV/cm, while only those pre-existing traps are filled by the carriers and then 

depleted. 
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Figure 4.8 VFB shift under circularly trapping-detrapping process by 900 sec of positive 

Estress and 10 sec of negative Estress. It is found that the trapping is highly repeatable under 

both 2 and 4 MV/cm, which indicate that the trap generation can be neglected in these 

stress condition. 

 

In summary, it is found that the pre-existing hole trap is a critical concern for the 

GeO2/Ge gate stacks, which might be related to the VO formation during gate stack process. 

By the reduction of VO through controlling the process condition like HPO or M-GeO2, the 

pre-existing hole traps can be reduces, and the reliability of Ge gate stacks can be 

improvement for low field Estress. 
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4.3 Dielectric degradation under high electric field 

4.3.1 Trap creation in GeO2 based oxides under high field 

It is concerned that the promising initial properties of Ge gate stack (including a low 

pre-existing trap density) might be degraded under the elevated Estress. In fact, the trap 

generation occurs due to the bond breaking and ion displacement in the gate dielectric, 

which results in significantly larger VFB shift, and finally, breakdown of the gate 

dielectric.
18, 20, 23-25

 To examine the trap generation behaviors in HPO-GeO2/Ge and 

M-GeO2/Ge stacks, Estress with higher intensities (6.5 and 9 MV/cm) was applied, and VFB 

shift was extracted from C-V characteristic before and after stress. The densities of newly 

generated traps under high intensity Estress were also derived by equation 4.1 (note that in 

the results, the pre-existing trap density is subtracted from the total trap density). 

Since HPO-GeO2/Ge stacks show quite low pre-existing trap densities for both electron 

and hole, its property under high Estress is also examined. Figure 4.9 shows the newly 

generated electron trap density in the GeO2/Ge gate stacks as a function of process PO2. 

Note that the trap density is estimated from the VFB shift with 90 sec Estress by equation 4.1. 

Though HPO-GeO2/Ge slightly reduces the trap generation under high Estress comparing to 

1 atm PO2 processed gate stack, the trap generation is unfortunately still not satisfying 

(reduced by less than half comparing to 1 atm PO2 oxidized GeO2). The weak dependence 

of the trap generation on the PO2 indicates that other approaches might be needed to 

improve the reliability robustness of the Ge gate stacks under high Estress 
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Figure 4.9 The newly generated electron trap density in GeO2/Ge stacks under positive 

Estress as a function of PO2 in the gate stack process. HPO can not sufficiently control the 

trap generation under high Estress regardless of very promising properties in the initial and 

under low Estress field. 

   

Y-GeO2 might have a different impact on the trap generation, because Y-GeO2 not only 

suppresses the VO formation, but also changed the GeO2 network. The trap generation in 

Y-GeO2/Ge stacks is also investigated under high field Estress (6.5 and 9 MV/cm). 

Figure 4.10 shows the newly generated electron trap densities in the Y-GeO2/Ge stacks as 

a function of Y percentage under positive Estress. Again, the trap density is estimated from 

the VFB shift with 90 sec Estress by equation 4.1. It is notable that with small amount of Y 

doping, the trap generation is drastically reduced (1/4 of the value of GeO2/Ge). However, 

further increase the Y percentage will enhance the trap generation again, which might be 

attributed to the over constraint and immiscibility as well since the dielectric might be 

mechanically stressed and less uniform for with high Y percentage.
26, 27
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Figure 4.10 The newly generated electron trap density in Y-GeO2/Ge stacks as a function 

of Y percentage under positive Estress. Small amount of Y doping can drastically suppress 

the trap generation while high Y percentage degrades it again.  

  

Figure 4.11 summarizes the trap generation under both positive and negative Estress for 

HPO-GeO2 and M-GeO2/Ge stacks.
28

 Note that the stress time was fixed at 90 sec for all 

the gate stacks. Traps are generated drastically in HPO-GeO2/Ge stack regardless of its 

good initial characteristics and dielectric breakdown occurs immediately in HPO-GeO2/Ge 

under 9 MV/cm negative Estress. It is noted that only Y-GeO2/Ge and Sc-GeO2/Ge stacks 

significantly reduce the trap generation under both positive and negative Estress comparing 

to that of HPO-GeO2/Ge. On the other hand, Al-GeO2/Ge stack does not suppress the trap 

generation. 
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                   (a)                                    (b) 

Figure 4.11(a) Electron trap generation calculated from the VFB shift in HPO-GeO2/Ge and 

M-GeO2/Ge stacks under positive high Estress (6.5 and 9 MV/cm). Note that the stress time 

is fixed at 90 sec for a fair comparison. (b) Electron trap generation in HPO-GeO2/Ge and 

M-GeO2/Ge stacks under negative Estress calculated through the same way, while 

breakdown occurs rapidly in HPO-GeO2/Ge stack under 9 MV/cm.
28

 

 

The generated traps might also enhance the trap-assisted tunneling through the gate 

oxides, which results in the SILC after high Estress.
4, 5

 To investigate the SILC in 

HPO-GeO2/Ge and M-GeO2/Ge stacks, I-V characteristics before and after stress were 

compared. Figure 4.12 shows the JG of HPO-GeO2/Ge and M-GeO2/Ge stacks with 

different stress time under 9 MV/cm positive Estress.
28

 Though HPO-GeO2/Ge stack shows 

the low initial JG, it increases JG a lot after the stress due to the SILC. Y-GeO2 and 

Sc-GeO2 show less SILC than HPO-GeO2 and Al-GeO2. The smaller SILC is a strong 

indication that Y-GeO2 and Sc-GeO2 stacks suppress the trap generation, which is in 

agreement with the less trap generation derived from the VFB shift as shown in figure. 4.11. 

The low trap generation rate and the prominent initial properties favor Y-GeO2/Ge and 

Sc-GeO2/Ge gate stacks for long time device application. 
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Figure 4.12 JG in (a) Y-GeO2/Ge, (b) Sc-GeO2/Ge, (c) Al-GeO2/Ge and (d) HPO-GeO2/Ge 

stacks with different stress time at 9 MV/cm positive Estress. Though HPO-GeO2 shows low 

initial JG, it increases a lot due to SILC. Y-GeO2 and Sc-GeO2 are stronger against SILC 

than HPO-GeO2 and Al-GeO2. Note that the applied field in JG measurement is also 

defined by VOX/EOT.
28

 

 

4.3.2 Interface degradation under high field 

The interface degradation is one of the critical issues in the device reliability since it 

results in the reduction of Gm.
3
 Under high Estress field where traps are generated, it is 

concerned that the Dit might also be increased, which result into interface degradation. The 

Dit at HPO-GeO2 and Y-GeO2/Ge stacks are investigated by 
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change of Dit at VFB (Ei-0.2 eV or Ei+0.17 eV for the p-Ge or n-Ge, respectively) as a 

function of time under 9 MV/cm Estress with both polarities. The Dit increase in 

HPO-GeO2/Ge stacks is much larger than that of Y-GeO2/Ge stacks regardless of their 

similarly low initial Dit. Thus, it is suggested that the Y doping is also effective for the 

reliability of the interface as well. 

 

Figure 4.13 Dit at VFB (Ei-0.2 eV or Ei+0.17 eV for the p-Ge or n-Ge, respectively) 

increase in HPO-GeO2 and Y-GeO2/Ge stacks as a function of time under positive or 

negative 9 MV/cm Estress. Y-GeO2 can suppress the Dit generation compared to that of 

HPO-GeO2.  

 

Though it has been assumed in the beginning of this chapter that trap generations in the 

investigated stacks are compared and analyzed based on thermochemical model, one might 

concern that, for the Dit increase, the definition of Estress (VOX/EOT) for different gate stacks 

is still a fare comparison condition or not. So, here, I would like to compare the Dit 

increase in different gate stacks by fixing the same Estress or VOX. Figure 4.14 shows the Dit 
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at VFB increase after 90 sec stress for HPO-GeO2 and Y-GeO2/Ge stacks as a function of (a) 

Estress and (b) VOX. Note that they are actually the same experimental data, which is just 

re-plotted versus different X-axis. It is noticed that for both plots, the advantage of Y-GeO2 

over that of HPO-GeO2 can be confirmed. Therefore, it can be concluded that the better 

strength of Y-GeO2 over HPO-GeO2 against Dit degradation is valid from both field and 

voltage viewpoint. 

 

                   (a)                                   (b) 

Figure 4.14 Dit at VFB increase after 90 sec stress for HPO-GeO2 and Y-GeO2/Ge stacks as 

a function of (a) Estress and (b) VOX. The VFB here is Ei-0.2 eV or Ei+0.17 eV for the p-Ge or 

n-Ge, respectively. Regardless of the X-axis, the smaller Dit generation in Y-GeO2/Ge stack 

can be confirmed in the viewpoint of both Estress and VOX. 

 

4.3.3 Guideline for controlling dielectric degradation 

The thermochemical model has been quite successful in describing the reliability 

degradation of gate oxides with different k-values.
18, 20

 From the thermochemical 
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understand the thermochemical model for trap generation in GeO2, let us imagine an 

extreme situation, under which the trap generation continuously happens in the oxide until 

all the possible bonds are broken and ions are free to move under electric field (not a real 

situation because normally the dielectric will break down with many defects). In fact, 

under such an imaginary situation, the network of an oxide is dissociated into separated 

species again, which is similar to the thermal desorption and water etching as discussed in 

chapter 2. Therefore, in the thermochemical model, the trap generation process is the 

dissociation of an oxide network (partially dissociate), and the network rigidity becomes 

helpful again here to discuss the different dielectric degradation behaviors in different 

dielectrics. So here, I would employ the simple terms of the rigidity again for the dielectric 

degradation mechanism. Under a given Estress, the rigidity are critical parameters for the 

bond breaking and ion displacement, respectively.
20

 By assuming the ΔH0 in equation 4.2 

to be -α(Nav×γ), the equation 4.2 can be written as follows, 

av loc
0

B

N E
r r exp( )

k T

    
 

（ ）
                     (4.3)   

It can be inferred from this equation that, under a fixed Estress condition, when the Nav of the 

dielectrics is increased, the trap generation rate would be reduced as well (assuming the γ 

and μ is not largely changed by higher Nav). Therefore, the higher Nav dielectrics can offer a 

smaller trap generation rate. 

From a more microscopic viewpoint, GeO2 has a weaker Ge-O single bond than SiO2 

counterpart,
29

 which makes Ge-O bond highly susceptible to bond breaking under the same 

Estress. Note that it stands true even a smaller external field was applied on GeO2 because 

the higher k-value of GeO2 (5.6) than that of SiO2 (3.9) can enhance the Eloc. Since the Nav 

of GeO2 is as low as 2.67, ion displacement and collapse of GeO2 network readily occur 

when Ge-O bonds are broken as schematically shown in Figure 4.15.
28

 On the other hand, 

a small amount of Y or Sc doping is expected to enhance the rigidity of the flexible GeO2 
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network and suppress the trap generation, which is understandable from the MRN model as 

discussed in chapter 2.
30, 31

 Small amount of Y or Sc doping exists as M
3+

 cation in GeO2 

network and forms many M-O bonds (7 and 6 for Y
3+

 and Sc
3+

, respectively) with the 

nearest O
2-

 anions due to their large cation radii.
30, 31

 Thus, the Nav necessarily increased to 

about 3 in Y-GeO2 or Sc-GeO2 (at 10% of Y or Sc) by the introduction of Y-O or Sc-O 

bonds. The suppression of ion displacement and network collapse are expected with the 

increase of Nav in the network,
20

 therefore, the trap generation is reduced in Y-GeO2 or 

Sc-GeO2.  

 

Figure 4.15 Schematic of GeO2 network modification by Y or Sc doping (2-dimensional 

representation) and their influence on the ion displacement. The M-O bond number per 

cation is high for the doped M
3+

 in Y-GeO2 and Sc-GeO2,
30, 31

 result in the higher Nav of the 

network. Under high Estress, the local bond breaking and consequent ion displacement occur 

in GeO2, while appropriate amount of additional M-O bonds enhance the rigidity of the 

network and suppress ion displacement.
28

 

 

It is notable that, regardless of the prominent properties of 10% Y-GeO2 and Sc-GeO2, 

the rigidity enhancement effect is strongly dependent on both the concentration and the 
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species of doping. Excessive Y or Sc concentration in M-GeO2/Ge stacks yields too high 

Nav value, which might lead to the over constrained network
26

 and the immiscibility.
27

 

Contrary to the more rigid Y-GeO2 and Sc-GeO2 network, Al-GeO2 has no observable 

influence on the trap generation. It is also understandable from the network viewpoint that, 

unlike Y or Sc, Al doping substitutes the Ge position in Ge-O4 tetrahedron unit.
32

 Thus, the 

strengthening effect from Al-O bonds is restricted locally in a single tetrahedron unit 

without changing the whole network properties. Some other cation like Hf
4+

 or La
3+

 easily 

forms M-Ge bonds at M-GeO2/Ge interface as discussed in the chapter 2, which deteriorate 

even the initial interface properties of the gate stacks. 

Since the rigidity enhancement effect of M-GeO2 is also represented by the thermal 

stability against GeO desorption and water resistance as described in chapter 2, the fact 

that Y-GeO2/Ge and Sc-GeO2/Ge stacks have better thermal stability and lower water 

etching rate than GeO2/Ge and Al-GeO2/Ge stacks further supports the MRN model for 

explaining the reliability improvement. Thus, it can be concluded that the rigidity 

enhancement of GeO2 by a proper amount of large cation doping is a striking strategy to 

improve the reliability of GeO2. 

To summarize the works in this section, the reliability assessment was carried out on 

HPO-GeO2/Ge and M-GeO2/Ge stacks. It is found that the initial Ge gate stack properties 

did not necessarily mean the high reliability robustness. Though both HPO-GeO2/Ge and 

M-GeO2/Ge stacks show promising initial electrical properties, the HPO-GeO2/Ge stack 

suffers from significant VFB shift, SILC increase and Dit degradation under high Estress due 

to the trap generation in the gate oxides. Large cations like Y
3+

 or Sc
3+

 doping enhance the 

rigidity of GeO2 network, which drastically reduced the trap generation under high Estress. 

Thus, Y-GeO2/Ge and Sc-GeO2/Ge stacks show the prominent initial characteristics as well 

as remarkable reliability robustness. 
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4.4 Demonstration of reliability improvements in Ge gate stacks 

   Two important guidelines on the Ge gate stack reliability are established in the 

previous discussion. That is (1) the process condition should be well controlled to reduce 

the pre-existing hole traps and (2) the rigidity in the network of the dielectric should be 

enhanced to suppress the interface degradation and trap generation under high Estress field. 

Both concept (1) and (2) are experimentally demonstrated by HPO-GeO2 and Y-GeO2, 

respectively. It is natural to consider what will be yield when both methods are combined 

together.  

   In this section, a (4 nm) Y-GeO2/Ge gate stack is annealed in HPO at 500
o
C conditions 

(HPO-Y-GeO2/Ge) and the obtained gate stack is examined for reliability under both low 

and high Estress field. It should be noted that very promising initial C-V curves are also 

obtainable in HPO-Y-GeO2 on both n-Ge and p-Ge as shown in Figure 4.16(a) and (b) 

respectively. The thickness of the dielectric is not increased by the HPO annealing due to 

the strong oxidation barrier effect of Y-GeO2 as discussed in chapter 2. 

 

                    (a)                                  (b) 

Figure 4.16 (a) Bidirectional C-V curves of an Au/10% HPO-Y-GeO2/n-Ge MOSCAPs 

measured at RT. (b) Bidirectional C-V curves of Au/10% HPO-Y-GeO2/p-Ge MOSCAPs. 
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Note that the thickness of HPO-Y-GeO2 is 4 nm, which is the not changed by HPO 

annealing from the as deposited Y-GeO2. 

 

   The VFB shift of a HPO-Y-GeO2/Ge stack as a function time under different Estress is 

extracted from the C-V curves as shown in Figure 4.17(a) and (b) for positive and 

negative Estress, respectively. It is found that the VFB shift under low Estress (4 MV/cm) is less 

than 10 mV even with long stress time, which indicates very low pre-existing both electron 

and hole trap density (below 10
11 

cm
-2

). Under the high Estress field (6.5 and 9 MV/cm), the 

trap generation in HPO-Y-GeO2 is even smaller than that of the Y-GeO2/Ge stacks (figure 

4.11). The small VFB shift in HPO-Y-GeO2 indicates that very low pre-existing trap density 

and small trap generation can be obtained simultaneously in HPO-Y-GeO2/Ge stack. 

 (a)                                  (b)               

Figure 4.17 VFB shift in HPO-Y-GeO2/Ge stack as a function of stress time at various stress 

condition (4, 6.5 and 9 MV/cm of (a) positive and (b) negative Estress). It is worth noting that 

the VFB shift in this gate stack is the smallest among all the gates stacks discussed in this 

chapter. 
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   The prominent reliability of HPO-Y-GeO2 is also reflected from the SILC as shown in 

Figure 4.18 for (a) positive and (b) negative Estress, respectively. The HPO-Y-GeO2/Ge 

gate stack shows both very low initial JG and a negligible SILC after long stress time. The 

low initial JG indicates a low pre-existing traps and the negligible SILC reflects a small 

trap generation. Both are in agreement with the observation from VFB shift.  

 

(a)                                   (b) 

Figure 4.18 JG (absolute value) in HPO-Y-GeO2/Ge gate stack with different stress time at 9 

MV/cm. The low initial JG reflects that HPO-Y-GeO2/Ge is an initially ideal gate dielectric. 

While the negligible SILC in this gate stack indicates its remarkably strong ability against 

trap generation. 

 

   The interface degradation of the HPO-Y-GeO2/Ge gate stacks under Estress is also 

examined. Figure 4.19 shows the Dit increase at VFB (Ei+0.17 eV and Ei-0.2 eV for n-Ge 

and p-Ge, respectively) as a function of time under both (a) positive and (b) negative Estress. 

The Estress here is 4, 6.5 and 9MV/cm and the thickness of HPO-Y-GeO2 is 4 nm. The 

increase of Dit in HPO-Y-GeO2/Ge gate stack is also negligible for both polarities, which is 

the also the smallest value among all the stacks discussed in the chapter. Thus it is 

confirmed that, by combining HPO and Y doping, the advantage of both can be acquired in 
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a same HPO-Y-GeO2/Ge stack. And this gate stack is probably the most reliability GeO2 

based gated stack ever reported. 

 

 

(a)                                   (b)                                

Figure 4.19 Dit change in HPO-Y-GeO2/Ge stack as a function of stress time at various 

stress condition (4, 6.5 and 9 MV/cm of both polarities). The HPO-Y-GeO2/Ge is also the 

strongest gated stack against interface degradation among all the stacks reported in this 

work.  

 

4.5 Reliability assessment for sub-nm EOT Ge gate stack 

In the discussion of previous sections, I have focused on the pre-existing trap and 

newly generation traps in GeO2 and M-GeO2/Ge gates stack, and found that Y or Sc-GeO2 

can improve the reliability in terms of both pre-existing traps and trap generation. In a 

sub-nm EOT gate stack, the GeO2 based dielectrics are used only as an ultra-thin IL and 

real high-k dielectrics should be deposited on it. So in this section, by fixing the prominent 

Y-GeO2 as IL, the reliability of sub-nm EOT stacks was investigated with YScO3 as high-k. 
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Beside the different interface properties in YScO3/Y-GeO2/Ge and HfO2/Y-GeO2/Ge 

stacks, it has also been found that the C-V hysteresis of these stacks is different, which 

might be related to the border or bulk traps in the gate stacks.
21, 33

 Figure 4.20 shows the 

C-V hysteresis of HfO2/Y-GeO2/Ge and YScO3/Y-GeO2/Ge stacks as a function of Y-GeO2 

IL thickness measured at room temperature. The results from the previous reports are also 

shown as comparison.
34, 35

 It is found that YScO3/Y-GeO2/Ge stacks have obviously 

smaller hysteresis than that of HfO2 counterpart (also smaller than the ref. 34, 35) at a 

given IL thickness, which indicates that the border or bulk trap densities are also lower in 

YScO3/Y-GeO2/Ge stacks in addition to its low Dit. 

 

  

Figure 4.20 Hysteresis of the C-V curves in HfO2/Y-GeO2/Ge and YScO3/Y-GeO2/Ge 

stacks as a function of Y-GeO2 IL thickness. The references show the hysteresis of the Ge 

gate capacitances with GeOx as IL.
 34, 35
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According to different hysteresis, the different trapping behaviors in 

YScO3/Y-GeO2/Ge and HfO2/Y-GeO2/Ge stacks are also expected. Figure 4.21 shows the 

VFB shift in HfO2/Y-GeO2/Ge and YScO3/Y-GeO2/Ge stacks as a function of time under 

high negative Estress (VG=1.5 and 2 V, Estress=10 and 15 MV/cm), where the EOT was 

controlled to be 0.8 nm for both stacks. YScO3/Y-GeO2/Ge shows obviously smaller VFB 

shift than HfO2/Y-GeO2/Ge stack, which reflects a lower trap density. The different trap 

densities might also be related to the different bond configurations described in section 2.4 

of chapter 2.    

 

Figure 4.21 VFB shift in HfO2/Y-GeO2/Ge and YScO3/Y-GeO2/Ge stacks (EOT=0.8 nm) as 

a function of time under high negative VG (VG=1.5 and 2 V, Estress=10 and 15 MV/cm). The 

YScO3/Y-GeO2/Ge stacks show less VFB shift than the HfO2 counterpart at a fixed VG and 

EOT. 

 

The interface properties of YScO3/Y-GeO2/Ge and HfO2/Y-GeO2/Ge stacks are also 

examined as a function of stress time by high-low-frequency-capacitance method. 
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Figure 4.22 shows the Dit at Ei-0.2 eV of YScO3/Y-GeO2/Ge and HfO2/Y-GeO2/Ge gate 

stacks as a function of time under 9 MV/cm negative Estress. The Dit of Y-GeO2/Ge stack is 

also shown for comparison. YScO3/Y-GeO2/Ge stack has not only the similar initial Dit as 

that of Y-GeO2/Ge stack, but also the similar Dit increment as a function of stress time. It is 

understandable that, with YScO3 as high-k, the bond type or coordination numbers in the 

IL is not changed, thus, the reliability against Dit increase is also similar with Y-GeO2/Ge 

interface. While, unexpectedly, HfO2/Y-GeO2/Ge stack shows both higher initial Dit and 

larger amount of Dit increase as a function of time under Estress. It implies that some bond 

breaking at the interface might be enhanced by the initially existed defects. 

 

  

Figure 4.22 Dit at Ei-0.2 eV of YScO3/Y-GeO2/Ge and HfO2/Y-GeO2/Ge gate stacks as a 

function of time under 9 MV/cm negative Estress. The Dit at Y-GeO2/Ge stack is also shown 

for comparison. 
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The contrast between YScO3 and HfO2 in terms of reliability assessment further 

emphasizes the importance of high-k selection for device application, which is not only a 

vital parameter for initial interface property and EOT scalability, but also an important 

factor for reliability of long term device application. 

In the final part of this section, the breakdown of YScO3/Y-GeO2/Ge (EOT 0.8 nm) and 

HfO2/Y-GeO2/Ge (EOT 0.8 nm) are roughly estimated. Figure 4.23 shows the time to 

breakdown as a function of VOX in YScO3/Y-GeO2/Ge (EOT 0.8 nm), HfO2/Y-GeO2/Ge 

(EOT 0.8 nm) and Y-GeO2/Ge (EOT 2 nm) stacks. Thanks to the lower trap density, 

YScO3/Y-GeO2/Ge stacks can survive a much longer time than HfO2/Y-GeO2/Ge stacks 

under considerably high voltage.  

 

 

Figure 4.23 Time to breakdown as a function of Estress in YScO3/Y-GeO2/Ge (EOT 0.8 nm), 

HfO2/Y-GeO2/Ge (EOT 0.8 nm) and Y-GeO2/Ge (EOT 2 nm) stacks.  
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4.6 Summary 

This chapter reports on the reliability assessment of Ge gate stacks with promising 

initial electrical properties, focusing on the pre-existing trap and trap generation under a 

constant Estress. Initial Ge gate stack properties do not necessarily secure the high reliability 

robustness. It is found that the pre-existing hole traps are one of the most critical concerns 

in GeO2/Ge gate stack, which might be attributed to the VO formed during the gate stack 

process. The HPO-GeO2 and M-GeO2 can effectively reduce the VO formation during the 

gate stack process, thereby reduce pre-existing hole trap density. 

However, under an elevated stress field, the trap generation becomes a major concern 

regardless of the initial properties because Ge-O bond are highly susceptible to bond 

breaking and ion displacement by electric field. Small amount Y-GeO2 or Sc-GeO2 

significantly reduces the trap generation in Ge gate stacks without the interface 

deterioration. This result is understandable from the increase of average coordination 

number (Nav) in the modified GeO2 network by doping. 

The reliability of sub-nm EOT YScO3/Y-GeO2/Ge and HfO2/Y-GeO2/Ge gate stacks 

are also examined. The selection of top high-k dielectric also has a significant impact on 

the reliability degradation. YScO3/Y-GeO2/Ge shows better long term reliability thanks to 

its defect free characteristics. 
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5.1 The conclusion and achievements in this work 

   Ge has been brought back to future again by the recent decade of researches
1-4

 long 

after its first demonstration as MOSFET. The ultimate driving force of this Ge revival is 

the conflict between the technology limitations of Si and the relentless requirements on 

better device performance.
5,6

 Ge is not the only candidate as the high mobility channel 

material, but it is probably the most feasible one for a symmetric c-MOS application.  

  The research interest on Ge MOSFET has been largely concentrated on the gate stack 

formation and interface passivation because the poor interface passivation was the bottle 

neck of the device application, especially n-MOSFET.
7
 It was not until recently that 

researchers really understand how to prepare well passivated Ge interface by a high 

quality GeO2 layer,
1-3

 which becomes the starting point and premise of this work.       

However, further steps are to be taken before the Ge device application becomes 

commercially available in a real scene. Three of these most critical challenges are 

discussed in this work, namely, (1) the thermal and chemical robustness of the Ge gate 

stack. (2) the EOT scaling of the gate stack by high-k and (3) the reliability 

improvement for long term application. More importantly, all of these challenges should 

be addressed with maintaining a promising interface passivation.  

To achieve these goals, the designing of new dielectric materials are needed rather 

than a simple optimization of the device process, because the aforementioned 

challenged are dominated by the intrinsic properties of dielectric/Ge. It is proposed in 

this work that the structure of the dielectrics might be the most critical intrinsic 

parameter which determines the interface passivation, thermal stability, scalability and 

reliability of MOS device. It is also found that the structural parameters might be 

changed in a way to improve the above properties by mixing the suitable oxides.  
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Following this material consideration, metal oxide doped GeO2 (M-GeO2) was 

proposed to substitute GeO2 as robust IL for Ge passivation. Drastic improvements in 

thermal and chemical stability were obtained with very promising interface passivation 

on Ge by small amount of suitable doping like Y or Sc. It is because that Ge gate stack 

robustness is strongly dependent on the rigidity of a dielectric network, and the 

improvement of which is attainable by increasing the bond number (Nav) through metal 

oxide doping. 

The structural manipulation approach is also applicable on the formation of the 

high-k. A promising ternary high-k YScO3 is proposed by mixing two medium-k binary 

components. The key point is the scandate formation of ternary oxides, in which a small 

cation radius Sc can enhance the density (reduce molar volume). This has lead us to the 

successful results, in spite of the fact that both binary oxides have medium-k values. 

YScO3 is found to be a good example of desirable high-k material on Ge due to its 

interface aware character and a high permittivity about 17. Based on these 

understandings, EOT scaling to about 0.5 nm was demonstrated by YScO3/Y-GeO2/Ge 

gate stacks with promising interface properties. 

Finally, the relationship between dielectric structure and reliability projection of Ge 

MOS device is discussed in detail. It is found that, under low Estress, the pre-existing 

hole traps are the major concern for GeO2/Ge based device, and the reduction of VO by 

HPO can reduce the hole traps. While, under high Estress, the network rigidity was found 

to play an important role in the reliability degradation of Ge gate stacks. Strong network 

material like Y-GeO2 offers much less interface degradation and trap generation 

comparing to that of GeO2. Furthermore, the advantage of YScO3 over HfO2 in terms of 

reliability in sub-nm EOT Ge gate stack is also observed.  
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The key word here concerning a desirable gate dielectric on Ge is a suitable rigidity 

of the network. Though the very flexible GeO2 network offers good interface 

passivation, it is unsatisfying in various other points. While, by slight enhancement of 

the rigidity, the thermal stability, scalability and reliability can be improved without the 

cost of interface property. 

This work offers an alternative future for Ge MOS device research. The most 

important philosophical point is that, the native oxide, GeO2, is not the only (also not 

the best) solution for Ge passivation. And, the better properties of the newly designed 

materials than GeO2/Ge convince us that the desirable materials for MOS are not given 

to us by luck, but are artificially controllable by knowledge.      

 

5.2 Future outlook 

   This work has successfully overcome the technical requirements on the Ge MOS 

device process and initial properties. It has also given the first understanding on the Ge 

MOS device reliability control from the material viewpoint. However, for the device 

application in a real scene, the reliability properties of Ge MOS are still not satisfying. 

The further improvement of material and process are needed to reach the technical 

requirements on the long term reliability. This might be the last obstacle of commercial 

use of Ge device.  

The knowledge of the Ge gate stack formation obtained in this work has 

demonstrated a significant impact on the MOSFET operations in a planer structure 

device. While for further device applications, this gate stack design could be further 

examined on various MOSFET structures, such as FinFET or 3D-intergrations. The 

application of this work on the various kind of MOSFET device structure would bring 
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more significance and impact from this work to the semiconductor application.   

   Finally, the application of this knowledge on the gate stack formation of other 

semiconductor materials would also be an interesting challenge. It is known that, 

besides Ge, other new semiconductor materials are also investigated in substitute of Si 

like SiGe, SiC, GeSn and group III-IV materials. Though the gate dielectrics for these 

semiconductors must be different with that for Ge, the knowledge obtained here might 

also help to select the desirable gate dielectrics for the other semiconductors. Especially 

the consideration on the network rigidity, which might be a universal criteria for the 

dielectric selection for various kinds of semiconductors.
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