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Abstract 

Indeterminate muscle growth provides teleosts with a vast potential to increase their body size. Teleosts are unique 

amongst vertebrates due to their indeterminate muscle growth. Therefore, fish is an attractive model to study such 

indeterminate muscle growth mechanisms because in teleost skeletal muscles, both hyperplasia and hypertrophy 

occur throughout the organism’s lifespan. Torafugu myosin heavy chain gene, MYHM2528-1, is a potential target to 

understand the molecular network involved in indeterminate muscle growth due to its specific expression in neonatal 

muscle fibers produced by muscle hyperplasia amongst different fish species. In the present study, we examined the 

promoter activity of the 5′-flanking region of torafugu MYHM2528-1 via an in vivo reporter assay using zebrafish and 

successfully identified 2,100 bp 5’-flanking sequences was sufficient for its expression in skeletal, craniofacial 

muscles  region that had adequate promoter activity (Chapter 2). We also showed this promoter participates in 

induction of gene expression specifically in neonatal muscle fibers produced by hyperplastic muscle growth at larval 

and post-larval stages of zebrafish development (Chapter 2). . As well, despite the phylogenetic distance between 

zebrafish and torafugu, our results clearly indicate that the signaling cascade responsible for the MYHM2528-1 

promoter activity is conserved, suggesting that this molecular cascade is conserved among teleosts (Chapter 2). As 

well, promoter deletion analysis revealed that the-2100~-600bp 5'-flanking sequence of MYHM2528-1 is essential for 

promoter activity (Chapter 2). This region contains putative binding sites for several myogenic regulatory 

transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration 

of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion 

constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the 

involvement of specific transcription factors in indeterminate muscle growth (Chapter 2). Furthermore, transcriptory 

regulatory mechanism involved in MYHM2528-1 expression in indeterminate muscle growth remained unknown. Here, 

we examined the cis-regulatory mechanism of 2,100 bp 5’-flanking region of torafugu MYHM2528-1 using deletion-

mutation analysis in zebrafish embryo. Therefore, we revealed that myoblast determining factor (MyoD) binding 

elements play a key role and participate in the transcriptional regulation of MYHM2528-1 expression (Chapter 3). We 

further discovered that paired box protein (Pax3) are required for promoting MYHM2528-1 expression (Chapter 3) and 

myocyte enhancer factor-2 (MEF2) binding sites participate in the transcriptional regulation of MYHM2528-1  

expression in slow/fast skeletal muscles in relation with muscle hyperplasia (Chapter 3). Subsequently, we further 

demonstrated that the nuclear factor of activated T-cell (NFAT)-like binding sites take part in the transcriptional 

regulation of MYHM2528-1  expression in slow and fast muscles fiber in relation to indeterminate muscle growth 

(Chapter 3). Finally, we validated that above mention transcription factor in zebrafish and torafugu using gene 

specific primer through PCR analysis (Chapter 3). These results obviously confirmed that multiple cis-elements in 

the 5’-flanking region of MYHM2528-1 function in the transcriptional regulation of its expression in zebrafish. 
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Chapter 1 Introduction 
 

1.1 General Background  

1.1.1 Structural arrangement of teleost myotomal muscle 

Teleosts skeletal muscle is structurally arranged into segmental myotomes in a complex sequential fashion. This 

segmental myotome includes various muscle fibres which increase equally to the body axis even as fibres in deeper 

region of the myotomes. Therefore, myotomal compartment is associated with the requirement to produce equal 

reduction of sacromeres at distant body flexures (Alexander, 1969; Rome and Sosnicki, 1990; Johnston et al., 2011). 

On the contrary, mammallian skeletal muscle enclosed a bundle of muscle fiber, facilitates single muscles in 

supplying durable, lower force contractions, in connect with primary fracture of movement. In across with mammals, 

teleost myotomal muscles are structurally segregated into different areas. Regards, fast muscle fibers delineate 

deeply and major part in the myotome, whereas slow fibers are situate at lateral superficial to the myotome (Fig 1-1) 

(Van Raamsdonk et al., 1982; Sanger and Stoiber, 2001). Thus, teleost fiber types can be partitioned by the 

histochemical dissection of SDSase (Fig. 1-1).  The fast twitch fibers comprise the greater part of myotomes which 

are typically larger in diameter than slow muscle fibres in teleosts (Greer-Walker and Pull, 1975; Altringham and 

Johnston, 1982). The fast muscle fibers hold a low density of mitochondria  and have a light capillary network 

(Johnston, 1982; Egginton and Sidell, 1989; Sanger and Stoiber, 2001). Its contract and fatigue faster than other 

fibre types (Altringham and Johnston, 1982; Johnston and Salmonski, 1984; Langfeld et al., 1989). They are 

engaged to power rapid bursts of movement e.g. escape responses when a predator appears (Altringham et al., 1993; 

Altringham and Ellerby, 1999). Slow muscle fibers are relatively lesser in diameter from other muscle fibres (Greer-

Walker and Pull, 1975; Altringham and Johnston, 1982). As well, slow muscle fibres are situated in a thin 

superficial band adjoining to the lateral line known as lateralis superficialis (LS) with a wedge-shaped condense in 

the region of the horizontal septum (Fig. 1-1). Besides LS slow muscle, one more type of slow muscle is positioned 

at the median fins in fish including to the order Tetradontiformes, termed erectors and depressor muscle (ED) 

(Winterbottom, 1974). Also, slow twitch fibers are extensively appeared to contract slowly (Altringham and 

Johnston, 1982; Johnston and Salmonski, 1984; Langfeld et al., 1989), contain rich source of mitochondria 

(Johnston, 1982; Egginton and Sidell, 1989; Sanger and Stoiber, 2001), and are providing with a thick capillary 

network (Egginton and Sidell, 1989; Sanger and Stoiber, 2001). All these divergent characters of slow muscle fibers 

imitate their efficient role in stable and constant swimming activities fuelled by aerobic metabolism (Johnston et al., 

1977; Rome et al., 1984; Altringham and Ellerby, 1999).  
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On the other hand, from above major fiber types, some minor fiber such as intermediate or pink muscle fibers 

(Scapolo and Rowlerson, 1987; Gill et al., 1989), tonic fibers (Zowadowska and Kilarski, 1984; Sanger et al., 1997) 

and red bim fibers (van Raamsdonk et al., 1980) have been ijvestigated in fish. In this regards, intermediate, or pink 

muscle, is collection in-between twitch muscle fibers, which are typically intermediate in diameter and represent 

10%~20% of total teleost myotome cross-sectioned area (Johnston et al., 1977; Langfeld et al., 1989). They are to be 

found between the fast and slow fiber and contain intermediate contraction speeds and fatigue-resistance contrast to 

slow and fast muscle fibres (Altringham et al., 1993; Altringham and Ellerby, 1999). Similar to slow fibers, 

intermediate fibers contain direction similar to the axis of body (Scapolo and Rowlerson, 1987). The additional fiber 

types for example red rim fibers and tonic fibers form a somewhat little part of myotome and are regard as to 

contribute less significantly to the swimming of fish. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1-1. Structural arrangement of teleost myotomal muscle (A-C). A, Typical size of teleost fish. (B) Typical view 

of slow and fast muscle in zebrafish. (C), Location of slow and fast muscle in zebrafish by S58 antibody and SDSase, 

respectively (Lee et al., 2010). Slow (S), Intermediate (I), and fast muscle (F). 

A B 

C 
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1.1.2 Teleost myogenesis in relation  to indeterminate growth   

The main event of myogenesis in teleost skeletal muscle refers to the three stages, embryonic, stratified hyperplasia 

and mosaic hyperplasia. At each stage, the fundamental processes of myogenesis are ceded concerning steps of 

determination, proliferation, migration, fusion and differentiation (Fig. 1-2A). Also myoblast-myoblast, myoblast-

myotube, and myoblast muscle fibre fusion events took place (Fig. 1-2B). In this regard, myogenetic process 

necessary for indeterminate muscle growth, which includes the recruitment of newly form muscle fibres 

(hyperplasia) and development of existing muscle fibres through nuclear accretion (hypertrophy). 

 
 

 

   

 

 

 

 

 

 

Fig. 1-2: A universal model for teleost myogenesis (Johnston et al., 2006). A, Myotubes are formed by specification, 

activation, proliferation differentiation process. B, at this stage of growth the MPC progeny can fuse with muscle 

fiber (myoblast-muscle fiber fusion) in the process of nuclear accretion. 

 

Likely, three major steps of myogenesis found to be noted in teleost, specifically embryonic myogenesis, stratified 

hyperplasia (SH), and mosaic hyperplasia (MH) (Rowlerson and Veggetti, 2001; Johnston, 2006; Steinbacher et al., 

2007; Akolkar et al., 2010; Rescan et al., 2013; Asaduzzaman et al., 2013; Ahammad et al., 2015). Regarding each 

steps, timing and single events are vary from species to species. As for determinate growth upholding species have 

miniature of utmost growth such as guppies (Poecilia reticulate) (Veggetti et al., 1993;  Biga and Goetz, 2006), the 

first two steps of myogenesis produce the greater part of muscle fibres. Conversely, MH fabricates the bulk of 

muscle fibres in species which demonstrate indeterminate growth and get to a larger magnitude of body (Johnston, 

2006).  Therefore, present understanding of three major steps of myogenesis are reviewed in the followining 

sections. 
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During embryogenesis skeletal muscle in vertebrates is developed from metameric appearance of somites i.e. 

segmental blocks of paraxial mesoderm that develop into muscle, axial skeleton and dermis during later 

development (Noden, 1991; Couly et al., 1992; Elmasri et al., 2004). The somite development in teleosts is identical 

to that in amphibians, birds, and mammals that is extremely conserved within these vertebrates (Kimmel et al., 1995; 

Pourquié 2001). After that the paraxial mesoderm, the mesoderm bordering to the central body axis, build up from 

cells approximately the edge of the germ ring that transfer in the direction of dorsal side, where the somites create 

and concentrate (Kimmel et al., 1990). As well, additional transformation of the paraxial mesoderm, and its 

distribution into somites, are exceedingly lying on the axial structures (Lassar and Munsterberg, 1996). The 

commencement of somitogenesis differs in the direction of epiboly among various species, the progression carry on 

during a rostral-caudal gradient while the paraxial mesoderm is distributed into membrane-bound blocks of cells 

(Kimmel et al., 1995; Stickney et al., 2000; Pourquié 2001). During vertebrate embryonic developmental, somites 

produced as of the presomitic mesoderm and fast form two main substructures, a ventral sclertome section and a 

dorsally situated epithelial dermomyotome (Pourquié 2001). Contained by the teleost somite, while, the ventral 

sclerotome, that will become visible the axial bone and cartilage of the embryo, is deeply abridged in contrast with 

terrestrial vertebrates (Kimmel et al., 1995; Stickney et al., 2000). This may be the sign of the shortened demand 

intended for behind skeletal framework and an improved locomotory condition for axial muscle compare to 

appendicular muscle in lymphatic environmental system (Bone, 1966). Inventive work introducing the way of 

teleost embryonic muscle development was highly executed in zebrafish. According to Devoto et al. (1996) spatial 

distribution of teleost muscle types occurred in the embryo, wherever slow and fast muscle fibres derived from two 

distinct subset of muscle pioneers i.e. adaxial cells and lateral presomitic cells in the somites.  These two cell type, 

the adaxial and lateral presomitic cells, can be recognized in the segmental plate on based on their location and 

structures (Devoto et al., 1996) along with the different gene expression specially snail (Thisse et al., 1993) and 

myod (Weinberg et al., 1996).  At first, adaxial cells can be differentiated at both side of the notochord earlier to 

segmentation at the stage of the horizontal septum (HS) as a membrane-like sheet monolayer neighboring all side of 

the notochord (Devoto et al., 1996). Adaxial cells are predominantly superior and in ordinary shaped than the 

surrounding lateral presomitic cells that enclose them (Devoto et al., 1996). The arrangement of adaxial cells to 

chase the slow muscle differentiation program entrusts significantly on inaugural signals from the notochord and 

floorplate intercedes by members of the hedgehog protein family (Wolff et al., 2003). Previous studies designated 

that the area before thought to contain lateral presomatic cells (Devoto et al., 1996) are consist of two different cell 
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types, lateral-anterior and lateral-posterior somite cells (Fig. 1-3A). These three divergent cell types are reorganized 

during a succession of entire somite replacement events due to produce embryonic slow and fast muscle fibres 

together with myogenic progenitor cells (MPCs) necessary for following myogenesis. During the entire somite 

replacement, lateral anterior and posterior cells are reshuffled into the lateral-external and later-medial cell layer 

(Fig. 1-3B). At late segmentation the 90 degree somite rotation is accomplished foremost to the development of a 

discrete external cell layer (ECL) foundation from the lateral anterior somite cells (Fig. 1-3C). As well, the adaxial 

cells begin to move both laterally and radially (Fig. 1-3C). The migrated adaxial cells ultimately turn to monolayer 

of embryonic slow muscle fibres between ECL and embryonic fast muscle fibres (Fig. 1-3D). Afterward, some cells 

from ECL move into the myotome while the slow muscle layer lead to develop fast muscle fibres in separate zones 

as SH (Fig. 1-3E). It has been recommended that ECL plays a vital role in additional successive postembryonic 

muscle fibre production even though this leftover to be confirmed. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1-3: Diagram illustrating the patterning of slow and fast muscle fibres during embryonic and early 

postembryonic stages (Adapted from Lee, 2010). The transverse views of somites during early and mid 

segmentation stage designate the distinct origins of anterior somite cells (anterior) and embryonic fast myoblast 

(posterior). 
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Resulting embryonic myogenesis, new muscle fibres are recruited to from “germinal zones” namely stratified 

hyperplasia (SH) (Fig. 1-4A). SH has been extensively recognized in many species (review in Rowlerson and 

Veggetti, 2001) and deliberate the key basis of neomyogenesis during late embryonic and early postembryonic 

growth. SH produce marked gradients in muscle fibre diameter from the marginal to the deep myotomes (Fig. 1-4) 

(Rowlerson and Veggetti, 2001). SH took place following the segmentation period in accordance with recruitment of  

new muscle fibres by their gene expression pattern in zebrafish (Barresi et al., 2001), pearlfish (Steinbacher et al., 

2006), brown trout (Steinbacher et al., 2007) and (Rescan et al., 2013). To begin with, newly form slow muscle are 

frequently incorporated into the dorso-ventral boundary of the accessible monolayer of slow muscle (Barresi et al., 

2001) while newly recruited fast muscle fibres are largely added at the side-line of the slow muscle layer, the border 

of the existing fast muscle and dorso-ventral region of the myotomal muscle (Steinbacher et al., 2006, 2007; Rescan 

et al., 2013).   

 

 

 

After SH, the ultimate phase of hyperplasia took place termed as mosaic hyperplasia (MH) (Rowlerson and Veggetti, 

2001). On the contrary to SH, MH includes the increase number of precursor cells which next to migrate and 

combined  to form myotubes on the scaffold of existing fibres to generate a mosaic of muscle fibre diameters in a 

myotome across section (Fig. 1-4B) (Rowlerson et al., 1995). In fast muscle, muscle fibre development continued up 

to ~40% of the maximum fork length (Weatherley et al., 1988; Johnston et al., 2003; 2004). In teleost which are 

greater than ~40% of the maximum fork length, recruitment of new fiber is ceased except the muscle becomes 

injured (Rowlerson et al., 1997). Subsequently, the conclusion of muscle fibre recruitment all subsequent growth is 

by fibre hypertrophy alone, which entails the accretion of additional nuclei to maintain the myonuclear domain size 

within certain limits (Johnston et al., 2003, 2004). On the contrary, slow muscle fibre number maintains to increase 

with body length to the utmost body size (Johnston et al., 2004). 
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      A                                                               B      

   

 

 

 

 
Fig. 1-4: Hyperplastic growth of trunk muscle in zebrafish larvae (Adapted from Lee et al., 2010). A: Methylene 

blue stained section showed stratified hyperplastic growth. B: Methylene blue stained section showed mosaic 

hyperplastic growth (red arrowheads). 

 

1.1.3 Fish muscle fiber is an important tool for aging research 

Sarcopenia stand for the muscle fiber number continue to decrease with aging of human. As well, it is the 

relationship between the muscle fiber number and the age of the person, where the number of muscle fibers 

decreases rapidly from 50 years old (Fig. 1-5) (Lexell et al., 1988). Now-a-days, the prevalence of sarcopenia is 

tremendously elevated with corresponds to the increasing world’s population. Indeed, almost 87 million persons in 

the United States will be over the age of 65 by the year 2050 (Federal Interagency Forum on Aging-Related 

Statistics, 2008). This noticeable increase in elderly persons and following diagnoses of sarcopenia cause a 

momentous challenge to aging researchers (Clark and Manini, 2008, 2010), while the want for efficient treatments 

for these conditions will be of great significance. In this regard, the most important model organism for aging 

research is the laboratory mouse where displayed marked senescence as it increases in age. On the other hand, the 

many intricate variables between mouse and teleosts (e.g., terrestrial vs. aquatic, actinopterygian vs. tetrapod) 

engender straight coincidence of these species arduous at best. Inspite of many biological differences between 

mammal and teleost fish, the major issue may be the complementary growth potentials of these two groups of 

animals. In case of mammals like mouse, attain a definitive size following puberty that is they exhibit an 

characteristic growth level (Lui and Baron, 2011) and are termed “determinate” growth (Lincoln et al., 1982). 
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Fig. 1-5: Diagram showing sarcopenia i.e. reduction of muscle mass associated with aging. Sarcopenia indicates the 

relationship between the muscle fiber number and the age of the person, but the number of muscle fibers decreases 

rapidly from 50 years old and so on (Adapted from Lexell et al.,1988) 

 

Though, many fish does not show such a strict growth level (Sebens, 1987), as they grow throughout their life cycle, 

even though at a slower rate. This type of growth, namely “indeterminate,” is very frequent among the many fish 

species. On the contrary to mammals, the indeterminate growth was found to be observing in most fishes is highly 

slanted by external factors (Sebens, 1987). This pattern is one in which age is extremely analytical of body size 

(Lincoln et al., 1982), a difference with determinate growth. Regarding skeletal muscle, a tissue with rich metabolic 

activity representing a large amount of vertebrate muscle mass, the distinction between terrestrial mammals and 

aquatic piscines persist. Even more fascinatingly, how do fishes carry on to accumulate new muscle fibers even into 

old age? The answers to such questions are critical for attenuating the effects of sarcopenia in the increasingly large 

aged population. Lastly, as result of sarcopenia, increasing the risk of diabetes and obesity due to a decrease in basal 
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metabolism, or overall deterioration in the quality of life due to loss of motor function which are the biggest 

concerned in world. Therefore, in the therapy of Sarcopenia, it has been attracting attention to study on fish muscle 

fibers continue to increase lifelong. But the mechanism of fish muscle to grow lifelong does not known at all. 

 

1.1.4 Salient feature of Myosin heavy chain  
 
The most important function of skeletal muscle is to produce movement and maintain postures using the 

arrangement and protection of an extremely particular mptile machinery. Suchlike contractile functions are 

essentially ascribed to the main muscle proteins viz. myosin and actin. Myosin is the eukaryotic motor protein that 

generates the force for cellular movements. It comprises of heavy chains which are involved in locomotion, and light 

chains which are involved in regulation. A wide spectrum of various myosin motors has recently been categorized 

into 24 classes based on a phylogenetic analysis of the myosin heavy chains (Foth, et al., 2006). Myosins control 

many basic cellular functions including protein transport, cell division, apoptosis, adhesion, migration, phagocytosis, 

exocytosis and contraction (Krendel and Mooseker, 2005). Myosin II is the most important motor protein that 

regulates actomyosin contractility in both muscle and nonmuscle cells. It is also a hexameric protein complex 

composed of a pair of myosin heavy chains, a pair of essential and a pair of regulatory light chains (Fig. 1-5A). The 

myosin heavy chain consists of a conserved motor domain at the N-terminus that drives the movement along actin 

filaments and a neck domain that serves as a rigid lever arm to generate movement of the motor domain along with a 

non-conserved helical coiled-coil domain at the C-terminus, which terminates with a short non-helical tail. The light 

chains bind to the neck domain where the essential light chains provide structural integrity to the motor domain and 

the regulatory light chains regulate the myosin II ATPase activity (Clark et al., 2007). Likely, myosin II accumulates 

into bipolar filaments through electrostatic interactions between the coiled-coil domains (Fig. 1-5B) (Hostetter, et al. 

2004). The motor domains on each end of the filament associate with oppositely oriented actin filaments. By pulling 

actin filaments together, myosin II generates cortical tension. Numerous MYHs have been found in vertebrates, 

which showed strong amino acid sequence homology with each other. The regions that vary in amino acid sequence 

between MYHs are largely restricted to two external loops associated with the ATP (loop 1) and actin sites (loop 2) 

in S1 (Weiss et al., 1999). This diversity is thought to play a crucial role in determining speed of contraction and 

motor function in a particular category of muscle fibers. 
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Fig. 1-6: Diagram illustrating the sarcomeric myosin molecule (Adapted from Clark et al., 2007). (A) Schematic 

diagram of a myosin II monomer, depicting the light and heavy chains. The different parts of the heavy chain, 

including the motor, neck, coiled-coil and nonhelical domains, are indicated. (B) Myosin II self-assembles into 

bipolar filaments through interactions of the C-terminus; the N-terminus binds to actin filaments. Activation of the 

myosin II motor domain leads to the pulling of actin filaments (in the direction of the arrows) to induce cortical 

tension. 

 
 
1.1.5 Expression pattern of myosin heavy chain gene in teleost 

Fish are documented to have highly conserved MYH multigene family, although MYHs are much more than their 

higher vertebrate counterparts (Watabe, 2002; Ikeda et al., 2010). Besides, a significant number of MYHs expressed 

in fish during developmental stages resulting in changes of the composition of muscle-fiber type (Liang et al., 

2008; Watabe and Ikeda, 2006). Conversly, a minimum of 11 sarcomeric MYHs have been recognized in case of 

mammals, and their development-dependent and tissue-specific expressions contribute to the formation of various 

muscles such as fast, slow, embryonic and neonatal with different functional properties (Weiss et al., 1999). For 

instance, 29 fast-type MYHs have been recognized in common carp Cyprinus carpio (Kikuchi et al., 1999) and 20 

sarcomeric MYHs in torafugu Takifugu rubripes (Ikeda et al., 2007). Previous studies on expressed MYHs have been 

identified as different muscle specific expression that persist throughout the life cycle in fish (Mascarello et al., 

A 

B 
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1995; Johanston et al., 1998).  MYHs are found to be expressed and uttered successively during development in fish. 

Amongst MYH family members, expression patterns of multiple MYHs has been characterized during development 

of particular fish species such as rainbow trout Onchorhynchus mykiss (Rescan et al., 2001), zebrafish Danio rerio 

(Bryson-Richardson et al., 2005; Steinbacher et al., 2007; Elworthy et al., 2008; Ahammad et al., 2015), common 

carp Cyprinus carpio (Ennion et al., 1999; Nihei et al., 2006), medaka Oryzias latipes (Ono et al., 2006) and 

torafugu Takifugu rubripes (Ikeda et al., 2007; Akolkar et al., 2010; Asaduzzaman et al., 2011, 2013). In rainbow 

trout, fast-type MYH was expressed initially in adaxial cells prior to the expression of slow-type MYH (Rescan et al, 

2001). Likely, adaxial cells were found to express fast-type MYH, myhc4, well before their radial migration in 

zebrafish (Bryson-Richardson et al., 2005). Elworthy et al. (2008) also showed that adaxial cells are the muscle 

pioneer cell that initially expresses slow-type MHY, smyhc1 and migrates towards the lateral surface of zebrafish 

myotome. Three genes namely mMYHemb1 in embryos and mMYHL1 and mMYHL2 in larvae are predominantly 

expressed during their development stage of medaka, (Ono et al., 2006). Recently, Jonston et al. (2009) have 

reported the up-regulation of fast type myhz1 in small diameter fibers of zebrafish fast muscle that were still 

recruiting myotubes. In common carp, two fast-type MYHs named MYHemb1 and MYHemb2 and their homolog 

Egg22 and Egg24 have been categorized during embryonic and larval development (Ennion et al., 1999; Nihei et al., 

2006; Ikeda et al., 2010). In torafugu, MYHM743-2 is found be predominantly expressed in fast muscle fibers whereas 

MYHM86-2 was found to be expressed in slow muscle fibers during embryonic and larval development 

(Asaduzzzaman et al., 2013). In zebrafish, torafugu MYHM72528-1 was also found to express both slow and fast 

muscle in relation with hyperplastic and indeterminate muscle growth (Ahammad et al., 2015). These base line 

informations point out the MYHs demonstrated strictly regulated temporal and spatial expression patterns mediating 

fish muscle development.  

 
 
 
1.1.6 Torafugu and zebrafish are experimental models  
 
The pufferfish known as the Fugu, Torafugu (Takifugu rubripes) is very popular in Japan and has a higher market 

price (Kikuchi et al., 2006). The genome of this species was the first vertebrate genome to be sequenced and made 

publicly available after the human genome. (Aparicio et al., 2002). Fugu genomes are identified as smallest genome 

size, only around 400 Mb (approximately an eighth the size of the human genome) due to its compact size (Aparicio 

et al., 2002). Thefore it became popular as appealing "model" vertebrates for genomic analysis in some way because, 
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their genomes have essentially the short introns and less percentage of repetitive sequences as other vertebrates 

(Brenner et al. 1993; Aparicio et al., 2002; Hedges and Kumar, 2002), making this organism an perfect tool for 

comparative genomics as well as for evolutionary research (Elgar et al., 1996; Venkatesh et al., 2000). The 

accessibility of the Takifugu genome sequence significantly make easy the identification of MYHs (Ikeda et al., 

2007) and comprehensive expression analysis confirmed their transient and stable expression pattern regulated in 

tissue- and development-specific manners (Asaduzzaman et al., 2013; Ahammad et al., 2015). However, the 

regulatory mechanisms involved in the spatio-temporal expression of MYHs are mostly unknown.  

The zebrafish (Danio rerio) is a full-fledged model organism for discovery in developmental biology. At present, 

the zebrafish has been exploited in studies of muscle genomics, somite formation, myotome development, muscle 

fiber specification, and muscle differentiation (Sparrow et al., 2008; Buckingham and Vincent, 2009). There are 

numerous salient features of zebrafish that acquire an ideal experimental model (Fig. 1-6). Therefore, male and 

female of zebrafish are easily been distinguished due to their external characters (Fig. 1-6A). In experimental 

purposes, one pair of zebrafish can produce around 30-50 embryos per spawning, likely 2-3 times a week, all over 

the year depending on the level of maturity (Fig. 1-6A). Zebrafish eggs are translucent and reasonably large (~0.7 

mm in diameter) contrast to other teleost of an alike size (Fig. 1-6A). Embryogenesis and organogenesis are quickly 

develop (Fig. 1-6A). For the period of the first 24 hours of development, the embryos are completely clear, 

permitting the sighting of developing organs, even deep inside living embryos. The generation time is also 

comparatively shortened dictating 3-4 months (Fig. 1-6A). Therefore, it was promising to use zebrafish for gene 

expression study that generated a huge number of stable transgenic lines with a variety of phenotypes (Fig. 1-6B). 

Consequently, zebrafish is an profitable animal models to create transgenic lines and are simply available to 

transient reporter analysis for quantification. In addition to its larger size (~8–10 cm), this species exhibits true 

indeterminate growth, augmenting musculature in the postlarval period through both nascent myofiber recruitment 

(hyperplasia) (Biga and Goetz, 2006). On top, transgenic zebrafish that conveyed enhanced green fluorescence 

protein (EGFP) in the control of particular gene are valuable tools for next to cell motility, spatio-temporal gene 

expression patterns, and dissecting cis-regulatory elements in vivo (Long et al., 1997; Motoike et al., 2000; Zhang 

and Rodaway, 2007). 
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Fig. 1-7: Diagram represents the utilization of zebrafish as model system. (A) General features of zebrafish that 

make them excellent laboratory models (Adapted from White et al., 2008; Lee et al., 2010; Asaduzzaman et al., 

2013). (B) Transgenic approaches in zebrafish embryos are possible (Adapted from Asaduzzaman et al., 2013). 

 

1.6.7 Mechanisms underlying expression of transcription factors in teleost 

Myogenic regulatory factors (MRFs) are basic helix-loop-helix (bHLH) transcription factors that 

regulate myogenesis which include myogenic factor 5 (Myf5), myogenic differentiation 1 (Myod1, also known as 

MyoD), Myf6 (also known as Mrf4) and myogenin (Myog) within nascent and differentiating myoblasts (Perry and 

Rudnick, 2000). During myogenesis, the transcription factors Myf-5 and MyoD are essential for the primary 

determination of the myogenic lineage. In zebrafish, after knockdown of Myf-5 morpholino has been shown to 

induce defects in myogenesis (Chen and Tsai, 2002). As well, expression of myogenin and Mrf4 is prompted during 

myoblast differentiation (Rhodes and Konieczny, 1989; Wright et al., 1989; Miner and Wold, 1990; Edmondson and 

Olson, 1993; Pownall et al., 2002), and myogenin and Mrf4 perhaps have joint functions with MyoD and Myf-5 as 

transcription factor regulators for the activation of muscle contractile protein genes (Lassar et al., 1991). In addition 

to MRFs, the paired domain and homeobox-containing transcription factors paired box gene 3 (Pax3) and 7 (Pax7) 

control different phases of myogenesis in the embryo and adult. Further important transcription factors in 

differentiation of skeletal muscle fibers are the myocyte enhancer factor 2 (MEF2) family members, which bind to 

an A/T-rich sequence existing in many muscle-specific promoters and enhancers (Jordan et al., 2004; Berkes and 

A 
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Tapscott, 2005). An additional important transcription factor hypothesized as having a regulatory role in fiber type-

specific gene expression is the NFAT (nuclear factor of activated T cells)   (Chin et al., 1998). On the other hand, 

MEF2 is also activated by NFAT (nuclear factor of activated T cells) (Wu et al., 2000, 2001). So far, transcriptional 

regulatory regions have been recorded for a few numbers of skeletal muscle-specific MYHs in fish. 

 
 
1.2 Objectives of the study 

Many teleost fish represents indeterminate growth and exhibit good models for understanding vertebrate myogenesis, 

while myotomal muscle fibers are to be found in distinct layer and their development plasticity is continued from 

early developmental stages to adult stage, (Weatherley and Gill, 1987; Johnston et al., 2003). A significant outcome 

of indeterminate growth is that the number of fibres needs to increase throughout the life cycle as the muscle mass 

increases, involving a prolonged period of postembryonic hyperplasia (Greer-Walker, 1970; Stickland, 1983). 

Indeterminate muscle growth of fish has been mostly examined with zebrafish particularly alarm on the specific 

genes expression and cis-regulatory elements that control the gene expression in connection with myotube 

production (Johnston et al., 2011). Myosin is the eukaryotic motor proteins that generate the force cellular 

movements which necessitates various MYHs expression during muscle development. In contrast to mammalian 

skeletal muscles, vertebrate MYHs genes are as well expressed in a chronological way during muscle development. 

The tiger puffer genome has been anticipated as a model organism for fast categorization of vertebrate genes due to 

its negligible size among vertebrates (Brenner et al., 1993). Thus, the association of the MYHs in the fugu genome 

database has been examined, enlightening that it contains 20 sarcomeric MYHs which shaped four clusters on the 

genome (Watabe and Ikeda, 2006; Ikeda et al., 2007).  

 

Their comprehensive expression analysis of torafugu MYHs demonstrated their complicated expression outlines 

harmonized in tissue specific and hyperplastic manner (Akolkar et al., 2010; Asaduzzaman et al., 2013; Ahammad et 

al., 2015). Albeit a substantial achievement has been consummated in explicating the molecular genetics covers the 

developmentally regulated MYHs expression in mammals, miniature is now kenned concerning the molecular 

mechanisms regarding hyperplastic MYHs expression in fish is mostly remain unknown. Therefore, present study 

was undertaken in order to comprehend the following concerns in torafugu by using zebrafish embryos for transient 

and transgenic analysis. Whether or not the 5’-flanking sequences of MYHs of fish, which are phylogenically far 
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from zebrafish in teleost lineage, would function similarly in zebrafish model system for functional genomics 

studies? What are the distinguishing factors regulating the expression of MYHs in different muscles in fish to 

provide clear insight into how these muscles are developed? Whether the similar or dissimilar transcription factors 

regulate the different fiber type-specific expression of MYHs in the same species of fish? Whether or not the MYHs 

are involved in secondary muscle development and indeterminate growth by hyperplasia in fish and how are their 

expressions regulated transcriptionally? The areas involved in the present study are as follows-  

i. To identify the 5’-flanking sequence of torafugu MYHM2528-1 whether could induce MYH expression in 

zebrafish embryos by using in vivo reporter assay; 

ii. To demonstrate MYHM2528-1 role in the activation of gene expression in neonatal muscle fibers 

produced by muscle hyperplasia  

iii. To identifying cis-acting elements responsible for its expression in relation to indeterminate muscle 

growth in zebrafish 

 

1.3 Outline of the thesis 

This thesis is composed of a general introduction (Chapter 1), two research chapters (Chapters 2 and 3) and a 

general discussion (Chapter 4). Chapter 1 briefly reviewed the structural arrangement of teleost myotomal muscle, 

muscle fiber type specification of Teleost, vertebrate skeletal muscle myogenesis- have to highlight sarcopenia, 

distinctive feature of Myosin heavy chain, expressional regulation of Myosin heavy chain in fish, experimental 

model vertebrates: Torafugu and zebrafish and mechanisms underlying transcriptional regulatory gene expression in 

fish. The research (Chapter 2-3) pursued a step-wise approach. The first approach (Chapter 2) documented the 

regulation of gene expression mediating indeterminate muscle growth in teleosts. Here, we investigate the 2,100 bp 

to examine the spatial and temporal regulation by using transgenic and transient expression techniques through an in 

vivo reporter assay in zebrafish. The results of this chapter clearly demonstrated promoter involved in teleost 

indeterminate muscle growth and conserved between large (torafugu) and small (zebrafish) fish. As well, several 

transcription factors including NFAT may be involved in promoter activity. The next step (Chapter 3) was multiple 

cis-elements in the 5’-flanking region of slow and fast-type of torafugu, MYHM2528-1, function in the transcriptional 

regulation of its expression. In this chapter, we described the MyoD, Pax3 and MEF2 mediated hyperplastic 

expression in relation with indeterminate muscle growth in teleost. We further discovered that NFAT binding 
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elements play a key role in the transcriptional regulation of MYHM2528-1 expression. In the general discussion 

(Chapter 4), major conclusions of the previous chapters were incorporated and concluded, strength and weaknesses 

of the pursued approaches were outlined and suggestions for further studies were given.  

17 | P a g e  
 



Chapter 2 Regulation of gene expression 
 

 
CHAPTER 2 

 
 
 
 
 
 
 
 
 
 
 
 
Regulation of gene expression mediating indeterminate muscle 

growth in teleosts 

 

 

 

 

The content of this chapter was published as: 

 

 

 

 

A. K. Shakur Ahammad, M. Asaduzzaman, S. Asakawa, S. Watabe and S. Kinoshita. 2015. 

Regulation of gene expression mediating indeterminate muscle growth in teleosts. Mechanism of 

Development,  (in press) pii: S0925-4773(15)00026-X. doi: 10.1016/j.mod.2015.02.006. 
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Abstract 

Teleosts are unique amongst vertebrates due to their indeterminate muscle growth, i.e., continued production of 

neonatal muscle fibers until death. However, the molecular mechanism(s) underlying this property is unknown. Here, 

we focused on the torafugu (Takifugu rubripes) myosin heavy chain gene, MYHM2528-1, which is specifically 

expressed in neonatal muscle fibers produced by indeterminate muscle growth. We examined the flanking region of 

MYHM2528-1 through an in vivo reporter assay using zebrafish (Danio rerio) and identified a 2100bp 5'-flanking 

sequence that contained sufficient promoter activity to allow specific gene expression. The effects of enhanced 

promoter activity were observed at the outer region of the fast muscle and the dorsal edge of slow muscle 

inzebrafish larvae. At the juvenile stage, the promoter was specifically activated in small diameter muscle fibers 

scattered throughout fast muscleand in slow muscle near the septum separating slow and fast muscles. This spatio-

temporal promoter activity overlapped with known myogenic zones involved in teleost indeterminate muscle growth. 

A deletion mutant analysis revealed that the-2100~-600bp 5'-flanking sequence of MYHM2528-1 is essential for 

promoter activity. This region contains putative binding sites for several representative myogenesis-related 

transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration 

of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion 

constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the 

involvement of specific transcription factors in indeterminate muscle growth. 
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2.1 Introduction 

Skeletal muscle comprises a large portion of the mass of vertebrates. The bulk of vertebrate growth, therefore, 

depends on an increase in skeletal muscle mass during a species’s lifespan. Skeletal muscles display two types of 

growth patterns, hypertrophy and hyperplasia. The former is characterized by an increase in the size of existing 

muscle fibers (myocytes) while the latter results in an increase in the number of muscle fibers. In mammals, 

however, the contribution of hyperplasia to muscle growth is quite small in the postnatal period and further growth 

primarily depends on hypertrophy (Rowe &Goldspink, 1969), resulting in limited growth and a definitive body size. 

Production of new muscle fibers after the neonatal period in mammals is observed only in the regeneration of 

injured muscle (reviewed by Dhawan & Rando, 2005). Conversely, in teleost skeletal muscles, both hyperplasia and 

hypertrophy occur throughout the organism’s lifespan (Mommsen, 2001; Johnston et al., 2001). This ‘indeterminate’ 

muscle growth provides teleosts with a vast potential to increase their body size, in some cases from a few 

milligrams to a hundred kilograms (Johnston, 2001). In addition, the degree of muscle growth is highly variable 

amongst teleost species, resulting in a magnitude of differences in adult body size. Thus, the indeterminate 

production of muscle fibers is an important phenomenon that dictates teleost growth. 

 

The mechanisms underlying indeterminate muscle growth are also relevant to understanding age-related muscular 

disorders in mammals. Mammalian skeletal muscles undergo marked senescence called sarcopenia, the loss of 

muscle mass due to an age-associated decrease in the number and size of muscle fibers. Sarcopenia in humans is a 

severe problem globally, associated with increasing age (Clark & Manini, 2008, 2010). Various studies using 

mammalian models such as mice and rats have identified several genes involved in senescence, with relevant genetic 

modifications resulting in a marked delay in the senescence of various organs, including skeletal muscle (Froehlich 

et al., 2013a). However, these modified mammalian models merely display a delay in senescence and eventually still 

achieve a severe sarcopenia phenotype. In this regard, teleosts are an attractive model because the naturally 

negligible senescence of their skeletal muscles presents a potentially powerful system through which a method to 

inhibit sarcopenia can be discovered (Froehlich et al., 2013a). However, the molecular mechanisms responsible for 

the indeterminate muscle growth found in teleosts are completely unknown. 
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Myosin heavy chain (MYH) is a subunit of myosin, the most abundant protein in skeletal muscle. Many isoforms of 

MYH exist, and their variation in expression is the primary determinant of the differential physiological properties 

of muscle fibers, such as slow vs. fast twitch (Weiss et al., 1999). The expression patterns of MYH isoforms also 

change along with the progression of growth stages such as embryonic, neonatal, and adult (Berg et al., 2001). 

Interestingly, several studies have reported that new muscle fibers (neonatal muscle fibers) produced by post-

embryonic hyperplasia express specific MYH isoforms in common carp (Ennion et al., 1995), sea bream (Rowlerson 

et al., 1997), and zebrafish (Rowlerson et al., 1997). Our previous studies also identified a MYH gene (MYH), 

MYHM2528-1, in the torafugu (Takifugu rubripes) and is expressed in neonateal muscle fibers produced by muscle 

hyperplasia at the larval, juvenile and adult stages (Akolkar et al., 2010; Asaduzzaman et al., 2013). This recent 

study (Asaduzzaman et al., 2013) reported that at larval stages of torafugu, MYHM2528-1 is expressed in dorsal and 

ventral extreme regionby stratified hyperplasia and subsequently the generation of fast fiber with small diameter by 

mosaic hyperplasia in a sequential fashion at the juvenile stages (Asaduzzaman et al., 2013). In the case of adult T. 

rubrifes, both fast and slow muscles expressed different MYHs among which MYHM2528-1 was expressed in juvenile 

fast fibres with relatively small diameters and slow fibres with relatively large diameters, implying that this gene is 

associated with muscle hyperplasia (Akolkar et al., 2010).Therefore, the better understanding the mechanisms of 

MYHM2528-1 transcription regulation will provide a basis to dissect the molecular network involved in the production 

of neonatal muscle fibers through hyperplasia in fish. To the best of our knowledge, there are no published report on 

the isolation and characterization of 5’-flanking region of any MYH functioning in the formation of neonatal muscle 

fibers to understand the molecular mechanism responsible for its transcriptional regulation in fish to date. Therefore, 

in the present study, we examined the torafuguMYHM2528-1 promoter via an in vivo reporter assay using zebrafish and 

demonstrated its role in the activation of gene expression specifically in neonatal muscle fibers produced by larval 

and post-larval muscle hyperplasia amongst different fish species. 

 

2.2 Materials and methods 

2.2.1. Experimental fish 

The dorsal fin of an adult torafugu T. rubripes (body mass ~ 1 kg) was used for the extraction of genomic DNA. 

Torafugu larvae at 10 days post-fertilization (dpf) were supplied by the Oshima Fishery Hatchery Co., Ltd, Nagasaki, 

Japan.Adult zebrafish D. rerio were raised at the zebrafish rearing facility at the Department of Aquatic Bioscience, 
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The University of Tokyo. Fish were maintained at 28°C with a photoperiod of 14 h light and 10 h dark in small 

aquariums supplied with continuous freshwater in a recirculatory system. Spawning of zebrafish was carried out by 

placing a pair of males with a pair of females. Embryos and larvae were maintained at 28°C as described previously 

(Westerfield, 1995). 

 

2.2.2. Determination of the transcription start site of MYHM2528-1 

The 5'-flanking sequence of MYHM2528-1 retrieved from the Ensemble Fugu Genomic Database (FUGU4.0). A 

GeneRacer kit (Invitrogen, Carlsbad, CA, USA) was used to define the transcriptional start site of MYHM2528-1 

through RNA ligase-mediated rapid amplification of 5'cDNA ends (RLM-RACE). Total RNA from torafugu larvae 

at 10 dpf was extracted with ISOGEN solution (Nippon Gene, Tokyo, Japan) and treated with calf intestinal 

phosphatase (CIP). Dephosphorylated RNA was then decapped using tobacco acid pyrophosphatase (TAP) and 

ligated with GeneRacer RNA oligomers according to the manufacturer’s instructions. The 5'cDNA end was 

amplified by PCR using a MYHM2528-1-specific reverse primer (Table 2-1) with the GeneRacer 5'primer (Invitrogen) 

included in the kit. Amplified 5'cDNA fragments were subcloned into the pGEM-T vector (Promega, Madison, WI, 

USA) and sequenced with an ABI 3100 genetic analyzer (Applied Biosystems, CA, USA) after labeling with the 

ABI PRISM BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). Screening of putative 

transcription binding sites in the 5'-flanking region was carried out by Genomatix (http://www.genomatix.de), the 

TFSEARCH program (www.cbrc.jp/research/db/TFSEARCH.html) and the manual identification. 

 

2.2.3. Construction of reporter vector 

To identify the minimal promoter, a series of 5'deletion constructs within the 5,000 bp flanking region from the start 

codon of MYHM2528-1 was generated by PCR using torafugu genomic DNA as a template. A total nine forward 

primers and one reverse primer were designed (Table 2-1) to amplify the 5,000 bp and a series of 5'distal deletion 

regions. All of these amplified PCR products were inserted individually into the BamHI-XhoI site of the Tol2-EGFP 

reporter vector named pT2AL200R150G (courtesy of Dr. Koichi Kawakami) by In-Fusion Advantage PCR Cloning 

(Clontech, CA, USA). The plasmid DNA for microinjection was isolated from each deletion construct using the 

GenEluteTM plasmid mini-prep kit (Sigma-Aldrich, Steinheim, USA). These constructs were named as P5000, 

P4000, P3000, P2500, P2300, P2100, P1500, P1000, and P600, where the numbers refer to the nucleotide positions 

22 | P a g e  
 

http://www.genomatix.de/
http://www.cbrc.jp/research/db/TFSEARCH.html


Chapter 2 Regulation of gene expression 
 

upstream of the MYHM2528-1 start codon (Fig. 1). All constructs contained a MYHM2528-1 flanking region conjugated 

with the EGFP reporter gene, SV40 polyA signal, and Tol2 transposase binding sites. 

 

Table 2-1: Neocletide sequence of oligonucleotide primers for various experiments 

Experiment Primer 
Name Neolceotide Sequence (5′……..…3′) Length 

(bp) 

Generation of 
deletion 

constructs 

P5000F TTGGGCCCGGCTCGAGGACCAGTGCGGAGGGACAGA 36 
P4000F TTGGGCCCGGCTCGAGTGTAGGATTCCAACCTATTTGGTCT 41 
P3000F TTGGGCCCGGCTCGAGCCACTGTGATACTGAATAATAAGGG 41 
P2500F TTGGGCCCGGCTCGAGGAAGATACATAAGATGTCCCTGACT 41 
P2300F TTGGGCCCGGCTCGAGCAAGGGGCAAACCTCCAGCACT 38 
P2100F TTGGGCCCGGCTCGAGGCTGCAGAATTAGTGTGAATGACATAT 43 
P1500F TTGGGCCCGGCTCGAGATTATATCTTGCTGGTAATCACTTCAGAATTTC 49 
P1000F TTGGGCCCGGCTCGAGTACTGCCAAAGAGCATAAAAGAGATGC 43 
P600F TTGGGCCCGGCTCGAGTGCACAAGCGCAGCACAACCC 37 

Reverse GGCGACCGGTGGATCCGATGGCTCTTTACTGCACAAGCACAAA 43 

Transcription
al start site 

MYHM2528-

1 specific 
reverse 
primer 

GAA GAT TTC ATC GTC TTT CAC AGT G 
 25 

Insert Check 
PCR 

Tol2 
Insert F TTTACGTCGCCGTCCAGCTC 20 

Tol2 
Insert R TGGGCTTGCTGAAGGTAGGG 20 

 
 

2.2.4. In vivo reporter assay 

Each EGFP reporter construct was diluted to 100 ngμL-1with sterile distilled water containing 0.025% phenol red 

and injected into fertilized zebrafish eggs at one- to two-cell stages. Microinjection was performed using the IM300 

microinjector (Narishige, Tokyo, Japan). Embryos were reared at 28°C and EGFP expression patterns were 

observed under a MVX10 macro-zoom microscope (Olympus, Tokyo, Japan) and a FV1000 confocal laser scanning 

microscope (Olympus). Fish were anesthetized with 0.6 μM tricainemethane-sulfonate (Sigma-Aldrich) to inhibit 

movement during observation.  

 

2.2.5. Generation of theTg:MYHM2528-1:EGFP transgenic line 

RNA encoding a functional Tol2 transposase enzyme was transcribed in vitro from pCS-TP vector (Kawakami et al., 

2000, 2004). The Tol2-based construct (P2100) was co-injected with transposase mRNA into one- to two-cell stage 

embryos. At 8-10 h post-microinjection, embryos were subjected to Transient Embryonic Excision Assay (TEEA) to 

confirm whether the excision occurred properly. Following a successful TEEA, the EGFP-positive embryos were 
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identified at 1 dpf and then transferred into the fish rearing unit at the Department of Aquatic Bioscience, The 

University of Tokyo, until sexual maturity. Individual founder fish were outcrossed with wild-type fish for 

examination of EGFP-positive expression in the offspring. EGFP-positive offspring of selected founder lines were 

raised to establish the F1 generation. The F2 generation was then established by intercrossing F1 fish. 

 

2.2.6. Immunohistochemistry and antibodies 

For immunohistochemistry, larvae and juveniles of the transgenic line were fixed with 4% PFA in Tris-buffered 

saline (25 mMTris-HCl[pH 7.4], 137 mMNaCl, 2.7 mMKCl) containing 0.1% Tween 20 (TBSTw) overnight at 4°C. 

Fixed samples were washed with TBSTw and blocked using a 1.5% blocking reagent (Roche Applied Science) in 

TBSTw. Transverse sections were prepared at a thickness of 16 µm with a cryostat Tissue-Tek Cryo3 (Sakura 

Finetech, Tokyo, Japan) at -20°C before the first immunoreactions. The primary antibodies used in this study were 

as follows: the EGFP antibody (Clontech, CA, USA) was used at a dilution of 1:1,000 in the blocking solution, and 

F310 (fast muscle fiber-specific), F59 (slow muscle fiber-specific), and MF20 (striated muscle-specific) antibodies 

supplied by Developmental Studies Hybridoma Bank (Iowa city, IA, USA) at 1:20. Immunoreaction with the 

primary antibody was performed overnight at 4°C. After incubation, embryos were washed with TBSTw and labeled 

with the secondary antibodies, anti-mouse IgG Alexa Fluor 555 and anti-rabbit IgG Alexa Fluor 488 (Invitrogen), at 

a dilution of 1:250 overnight at 4°C. The embryos were subsequently washed with TBSTw and labeled with DAPI 

(Invitrogen). EGFP was also observed using staining of the tissue section with 5 mM BODIPY TR ceramide 

(Molecular Probes) at room temperature for 30 min. The signals in the cryosection samples were viewed using an 

Olympus FluoView1000 confocal laser scanning microscope (Olympus). 

 

2.2.7. Cyclopamine treatment 

Tg:MYHM2528-1:EGFP embryos at two- to four-cell stages were transferred into 2, 4, 6, and 10μg mL-1 cyclopamine 

solution (Wako, Otsu, Japan) containing 0.2%, 0.4%, 0.6% and 1.0% ethanol and incubated at 28.5°C. Control 

embryos were developed in 0.02, 0.04, 0.06 and 0.1% ethanol, respectively, containing water without cyclopamine. 

EGFP expression in cyclopamine-treated and untreated control embryos was observed from 2–3dpf using a MVX10 

macro-zoom microscope (Olympus) 
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2.2.8. Data and statistical analyses 

To compare the percentages of embryos with EGFP expression in skeletal and craniofacial muscles in various 

constructs and the relative quantification of target gene, statistical analyses were conducted using a one-way analysis 

of variance (ANOVA) followed by Tukey's test in the Statistical Package for Social Science (SPSS) version 11.5. 

Data were represented as the mean ± SD and the differences were considered significant at P<0.05. 

 

2.3 Results 

2.3.1. Determination of the MYHM2528-1 transcription start site 

We first determined the transcription start site to characterize the 5'flanking region of MYHM2528-1. Based on the 

5'RACE, the transcription start site was determined to be 502 bp from the start codon (Fig. 2-1). Exons 1 and 2 are 

transcribed as an untranslated region, and the start codon is located in exon3 (Fig.2-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2-1. Schematic of reporter constructs used in this study where a genomic region located 5000 bp upstream from 

the start codon of torafugu MYHM2528-1 amplified by PCR and inserted into an EGFP reporter vector (P5000). Serial 

deletion constructs containing 4000 (P4000), 3000 (P3000), 2500 (P2500), 2300 (P2300), 2100 (P2100), 1600 

(P1600), 1000 (P1000), and 600 (P600) bpof the 5'-flanking sequence from the start codon, respectively, were also 

constructed. All constructs contain the 5' untranslated region of MYHM2528-1 encoded by exons one, two, and part of 

three. Putative binding sites of representative muscle differentiation-related transcription factors, nuclear factor of 

activated T-cell (NFAT), MyoD, myocyte enhancer element 2 (MEF2), and paired box 3 (Pax3), are plotted on the 

P2100 ~ P600 constructs. 
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2.3.2. The 2100bp 5′-flanking region of torafugu MYHM2528-1 is the minimal promoter            

necessary to induce gene expression in zebrafish skeletal muscle 

To map the minimal promoter necessary to induce expression of MYHM2528-1, a series of 5'distal deletion constructs 

of the flanking sequence of MYHM2528-1, namely P5000, P4000, P3000, P2500, P2300, P2100, P1500, P1000, and 

P600, respectively, were microinjected into fertilized eggs of zebrafishas an in vivo reporter assay. For P5000, ~ 

97% of the injected embryos displayed strong EGFP expression along skeletal muscle fibers (Fig. 2-2A-B and Fig. 

2-3A). The EGFP expression was detected at 1 dpf and continued to be expressed in the whole myotomal region of 

larva at 2dpf (Fig. 2-4A-E). At 3 dpf, EGFP was found to be expressed in the craniofacial and myotomal muscles 

(Fig. 2-2K, Fig. 2-4E). In the myotomal region, both slow and fast muscle fibers expressed EGFP (Fig. 2-5).  

 

 

Although almost the same expression pattern was observed in zebrafish larvae injected with P5000 through P600 

(Fig. 2-2), 5'flanking regions shorter than 2,100bp resulted in a significant reduction in EGFP expressionin the 

myotomal muscle fibers (Fig. 2-2M-R, Fig. 2-4). As shown in Fig. 2-3A, the ratio of EGFP-expressing larvae per 

injected larvae of P1500 ~ P600 was significantly reduced compare with those of P5000 ~ P2100 injected larvae. In 

addition, the number of EGFP-positive muscle fibers per embryo was markedly reduced in P1500 ~ P600 injected 

larvae (Fig. 2-3B, Fig. 2-4F-N). This finding indicates that cis-acting element(s) in between -2,100 to -600 bpin the 

5'flanking region participate in the promoter activity of MYHM2528-1. We screened for the putative binding sites of 

several myogenesis-related transcription factors within the 2100bp sequence and found two MyoD, four myocyte 

enhancer element 2 (MEF2), two paired box 3 (Pax3), and three nuclear factor of activated T-cell (NFAT) binding 

sites (Fig. 2-1). The reduced promoter activity (Fig. 2-3) for the successive deletion of 5’ flanking region from 

P2100 indicating that any or combination of these cis-elements might be involved in the transcriptional regulation of 

MYHM2528-1. 
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Fig. 2-2. EGFP expression in zebrafish larvae injected with MYHM2528-1 reporter constructs. A-R, EGFP expression 

in myotomal skeletal muscle of zebrafish embryos injected with reporter constructs, P5000 (A,B), P4000 (C,D), 

P3000 (E,F), P2500 (G,H), P2300 (I,J), P2100 (K,L), P1500 (M,N), P1000 (O,P) and P600 (Q,R). Head to left in all 

panels. Right side panels are the magnified view of boxed areas of the left side panels. Scale bars: 100 μm. 
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Fig. 2-3. Bar graph showing the promoter activity of the reporter constructs where EGFP expression was observed 

in the myotomal compartments of zebrafish larvae at 3dpf. A, percentages of larvae that express EGFPin the 

myotomal compartments following injection of each construct and the total number of larva injected with each 

construct are shown in parentheses. Differences are significant via ANOVA followed by Tukey’s test at 

*P<0.05.B,the number of EGFP-expressing muscle fibers per larva in different constructs. Fiber numbers per larva 

are categorized into 5 classes (very high ~ very low) by colors. 
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Fig. 2-4. EGFP expression patterns in the myotomal region of the zebrafish through reporter construct (A-N). A 

zebrafish embryo (1 dpf, A, B) and larva (2 dpf, C; 3dpf, D) injected with the P2100 reporter construct. D-E, EGFP 

expression patterns in craniofacial muscles in zebrafish larvae at 3 dpf. As well, zebrafish embryo (1dpf, F), (1dpf, I), 

(1dpf, L) and larva (2dpf,G; 3dpf,H), (2dpf, J; 3dpf,K), (2dpf,M; 3dpf,N) injected with P1500, P1000, P600 reporter 

constructs, respectively. Scale bars: 100 μm. 
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Fig. 2-5. Immunohistochemistry localizing EGFP expression in both fast and slow muscle fibers of P2100-injected 

zebrafishlarvae. A-C, slow muscle fibers expressing EGFP as reacted with F59 antibody (A, F59 antibody view; B, 

F59 with EGFP; and C, F59 and EGFP with DAPI) in a P2100-injected larva at 3 dpf. D-F,fast muscle fibers 

expressing EGFP as reacted with F310 antibody in a P2100-injected larva at 3 dpf (D, F310 antibody stained view; 

E, F310 with EGFP; F, F310 and EGFP with DAPI). Scale bars: 50 μm. 

 

2.3.3. MYHM2528-1 promoter activity in zebrafish larvae 

To confirm the specific activity of the MYHM2528-1 promoter in post-embryonic muscle hyperplasia, a stable 

transgenic zebrafish line, Tg:MYHM2528-1:EGFP, was established using the P2100 construct and temporal and spatial 

EGFP expression was analyzed. Similar to the in vivo reporter assay (Fig. S2), Tg:MYHM2528-1:EGFP displayed 

EGFP expression at 1 dpf (Fig. 2-6A-B). After hatching at 2dpf, EGFP continued to be expressed in the whole 

myotomal region of the larva (Fig. 2-6C). Observation with a fluorescent microscope also confirmed that 

Tg:MYHM2528-1:EGFP expressed EGFP in the whole myotomal region (Fig. 2-6D) and craniofacial muscles (Fig. 2-

6E) at 3 dpf.  
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Fig. 2-6. Expression patterns of EGFP in theTg:MYHM2528-1:EGFP stable transgenic line embryo and larva. A stable 

line was established by injecting the P2100 construct. EGFP expression was observed in the whole myotomalregion 

at 1dpf (A,B), 2dpf (C), and 3dpf (D). In addition to myotomal skeletal muscle, the craniofacial muscle also 

expresses EGFP at 3dpf (E). Scale bars: 100 μm. 

 

 

In teleosts, slow and fast muscle fibers occupy distinct regions of the myotomal skeletal muscle (Bone, 1978). Fast 

muscle fibers comprise the deep portion of the myotome, which makes up most of the trunk musculature. Slow 

muscle fibers are segregated into a wedge-shaped region of the myotome surface at the lateral end of the horizontal 

myoseptum. Furthermore, fast and slow muscles have distinct developmental lineages (Devoto et al., 1996) and 

patterns of post-embryonic growth. In fast muscles of teleost larva, the apical surface region actively produces 

neonatal muscle fibers via hyperplasia (Rowlerson et al., 1994). On the other hand, the slow muscles of teleost larva 

form a monolayer at the myotome surface, and the dorsal and ventral edge of the layer produce neonatal muscle 

fibers via hyperplasia (Baressi et al., 2001).  

 

 

Figure 2-7 shows the immunohistochemistry of Tg:MYHM2528-1:EGFP at the larval stage (3dpf) to clarify the type 

and position of EGFP-positive muscle fibers. Slow muscle fibers at this stage formed a monolayer at surface of 

myotome (Fig. 2-7A-C) as described above. Most slow muscle fibers were EGFP negative, but a fiber at the dorsal 

edge expressed EGFP (Fig. 2-7D-F, arrowhead). In fast muscle, many muscle fibers expressed EGFP, but their 
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distribution was predominant in the apical surface region (Fig. 2-7G-I). In Fig. 2-7K and 2-7L, the slow muscle 

fibers at the dorsal edge (not stained in red by F310 antibody) also expressed EGFP, as indicated by arrowheads. 

Consequently, the distribution of EGFP-expressing muscle fibers was consistent with the above-mentioned 

myogenic zone via hyperplasia at the teleost larval stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2-7. Localization of EGFP-expressing myotomal muscle fibers in Tg:MYHM2528-1:EGFP larvae (A-L). A-F, 

transverse section of myotomal region of Tg:MYHM2528-1:EGFP at 3dpf. A-C, slow muscle fibers were stained red 

with a F59 antibody (A, F59 antibody; B, EGFP; C, merged view). D-F, the magnified view of boxed areas of panels 

A-C. G-L, fast muscle fibers were identified with a F310 antibody (G, F310 antibody; H, EGFP; I, merged view). 

The dotted line in panel I indicates the middle of the myotomal compartment. EGFP-positive fast muscle fibers are 

predominantly distributed in the outer region. J-L, the magnified view of boxed areas of panels G-I. EGFP-

expressing slow muscle fibers are indicated by arrowheads in panels A-F,H,I,K,L Scale bars: 50 μm 
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2.3.4. MYHM2528-1 promoter activity in juvenile and adult zebrafish 

After the larval stage, fast and slow muscles of teleosts still show different hyperplastic growth patterns. In fast 

muscle, myogenic cells scattered amongst existing muscle fibers produce neonatal muscle fibers. This growth 

pattern is termed mosaic hyperplasia (Rowlerson et al., 1995; Rowlerson & Veggetti, 2001). On the other hand, in 

slow muscle, the myogenic region is positioned near the septum between slow and fast fibers and produces neonatal 

slow muscle fibers (Rowlerson et al., 1995). Figure 2-8A illustrates the distribution of slow and fast muscles in a 

transverse section of the teleost trunk. It should be noted that the duration of post-embryonic muscle hyperplasia 

also differs between fast and slow muscles. Recruitment of neonatal muscle fibers in fast muscle ceases at a 

definitive size (Weatherley, 1988; Johnston et al., 2001; Fernandes et al., 2005). In contrast, the number of slow 

muscle fibers continually increases with fish length (Johnston et al., 2001). In the case of zebrafish, post-larval 

muscle hyperplasia in fast muscle stops at approximately 17mm standard length (SL) (Fig. 2-8B) (Lee, 2010). 

 

 

Immunohistochemistry was performed to clarify the position of EGFP-positive muscle fibers at post-larval 

(juvenile) and adult stages of Tg:MYHM2528-1:EGFP. At the early juvenile stage (20 dpf, 10mm SL), EGFP 

expression in fast muscle was observed in small diameter fibers between large existing muscle fibers (Fig. 2-

8C,D,G,H). In the lateralis slow and elector-depressor (ED) slow muscles of both the early and late juvenile stages 

of zebrafish development, EGFP expression was observed near the septum of slow and fast muscles (Fig. 2-8E-F). 

The distribution of EGFP-positive muscle fibers overlaps the above mentioned myogenic regions at the post-larval 

stage, as well as the expression pattern of endogenous MYHM2528-1 in the torafugu (Akolkar et al., 2010; 

Asaduzzaman et al., 2013).  
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Fig. 2-8. Localization of EGFP-expressing myotomal muscle fibers in Tg:MYHM2528-1:EGFP zebrafish (A-Q). (A) 

Cross-section of zebrafish. (B) body size-related increase in muscle fiber numbers in slow and fast muscles of 

zebrafish. Data cited from Lee (2010). (C-H) early, (I-N) late juvenile & (O-Q) adult stages. Scale bar: 50 µm 
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Consistent with the difference in the growth pattern between slow and fast muscles (Fig. 2-8B), promoter activity 

was not observed in fast muscle (Fig. 2-8I,J,L,M,O) but in slow muscle (Fig. 2-8K,N,P, Q) at the late juvenile (40 

dpf, 17mm SL) and adult stage (60dpf, 25mm SL), respectively. Taken together with the EGFP expression pattern in 

the larvae and juveniles of Tg:MYHM2528-1:EGFP, we concluded that 2100bp from the start codon of MYHM2528-1 is 

enough functional promoter to allow gene expression specifically in neonatal muscle fibers produced by larval and 

post-larval muscle hyperplasia. 

 

 

2.3.5. MYHM2528-1 promoter works in secondary myogenesis 

In zebrafish embryo, adaxial cells to be found adjacent to the axial midline which form superficial momolayer of 

slow muscle fibers through primary myogenesis (Devoto et al., 1996).  Here, we observed that Tg:MYHM2528-

1:EGFP transgenic fish did not show any EGFP in the adaxial cells meaning that it is not involved in primary 

myogenesis (Fig. 2-9).   

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-9. Immunohistochemistry of Tg:MYHM2528-1:EGFP transgenic embryo at 10 somite stage. A-D, adaxial cell 

does not expressed EGFP as not reacted with F59 antibody (A, 10 somite stage Tg:MYHM2528-1:EGFP transgenic 

embryo; B, F59 antibody view; C, EGFP; and D, F59 and EGFP) in a at 10 somite stage embryo. Scale bars: 50 μm. 
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As well, Hedgehog (Hh) signaling is important for slow muscle development in vertebrates. In zebrafish embryos 

and larva, fast muscle fibers formed in absence of Hh signaling and slow muscle fibers are subdivided into two 

components, according to their dependence on Hh signaling (Elworthy et al., 2008). One component consists of 

primary slow muscle fibers that differentiated from adaxial cells at embryonic development and require Hh signaling. 

After formation of the primary slow muscle, secondary slow muscle fibers are produced without Hh signaling via 

post-embryonic muscle hyperplasia. We examined the Hh signaling dependency of EGFP-expressing muscle fibers 

in Tg:MYHM2528-1:EGFP larvae to confirm whether the fibers are produced by secondary slow muscle formation. 

Cyclopamine is a well-known inhibitor of Hh signaling (Incardona et al., 1998; Chen et al., 2002). After treatment 

with cyclopamineat 2.0, 4.0, 6.0 and 10μg mL-1, where no change was observed in the survival rate of embryos. By 

treatment with cyclopamine, zebrafish embryos showed fused-eye, a representative phenotype by hedgehog 

signaling inhibition (Fig. 2-10D). Cyclopamine treated embryos showed very little change of EGFP expression 

compared to the control wild embryos treated with only ethanol (Fig. 2-10B,C,E,F). Depending on the dose, the rate 

of embryos showing EGFP expression in the muscle fibers varies from 47.39% (2.0 µg/ml), 47.09% (4.0 µg/ml), 

44.88% (6.0 µg/ml) and 42.35% (10.0 µg/ml) compared to 49.71% in those without cyclopamine treatment (Fig. 2-

10G).  

 

 

Furthermore, immunohistochemistry was performed on the cross section by using 10μg mL-1 cyclopamine treated 

larvae to confirm its expression in the secondary slow muscle fibers. In 10μg mL-1 cyclopamine treated larvae, all 

primary muscle fibers along the lateral superficial regions disappeared and only secondary slow muscle fiber stained 

with F59 antibody (Fig. 2-10H,J). The EGFP expressing fiber was detected at only dorsal extreme of the myotome 

and is secondary slow muscle fiber (Fig. 2-10I,K). Finally, we can conclude that Tg:MYHM2528-1:EGFP larvae 

treated with 10μg mL-1 cyclopamine showed EGFP in secondarily derived slow fiber, indicating that MYHM2528-1 is 

involved in by secondary myogenesis.  
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Fig. 2-10. Influence of Hedgehog (Hh) signaling pathway on the MYHM2528-1 promoter and immunohistochemistry 

(A-K). Hh signaling was inhibited by cyclopamine treatment. Fertilized eggs of Tg:MYHM2528-1:EGFP were 

transferred into 2 – 10.0μg mL-1cyclopamine solution. Control embryos were developed without cyclopamine. A-F, 

morphology and EGFP expression of control (A-C) and 10.0μg mL-1 cyclopamine-treated (D-F) transgenic line. A,D, 

ventral views of head of zebrafish larvae at 3dpf. Inhibition of Hh signaling resulted in a fused-eye phenotype (D). 

EGFP expression in larvae at 2 dpf (B,E) and 3 dpf (C,F). Cyclopamine-treated larvae displayed a curled body 

phenotype resulting from Hh signal inhibition but maintained normal EGFP expression in fast and slow muscle 

fibers. G, the rate of zebrafish embryos expressing EGFP in the larvae at 3dpf with and without cyclopamine 

treatment. H-K, transverse section of myotomal region of 10.0μg mL-1 Cyclopamine-treated larvae of Tg:MYHM2528-

1:EGFP at 3dpf. H, all primary slow muscle fibers disapper and only secondary muscle fiber stained with F59 

antibody. I, merged figure showed reacted with F59 antibody and EGFP expressing fibers are located at the dorsal 

extreme region. J-K, the magnified view of boxed areas of panels H-I. Scale bars: 100 μm. 

 

 

2.4 Discussion 

Skeletal muscles are not only important as the primary organ involved in mobility but are also being recognized as a 

prominent tissue with the capacity to influence aging and lifespan (Demontis et al., 2010, 2013). It has been shown 
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