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Taut Foliations of Torus Knot Complements

By Yasuharu Nakae

Abstract. We show that for any torus knot K(r, s), |r| > s > 0,
there is a family of taut foliations of the complement of K(r, s), which
realizes all boundary slopes in (−∞, 1) when r > 0, or (−1,∞) when
r < 0. This theorem is proved by a construction of branched surfaces
and laminations which are used in the Roberts paper [5]. Applying
this construction to a fibered knot K ′, we also show that there exists
a family of taut foliations of the complement of the cable knot K of
K ′ which realizes all boundary slopes in (−∞, 1) or (−1,∞). Further,
we partially extend the theorem of Roberts to a link case.

1. Introduction

In this paper, we discuss taut foliations of the complement of a torus

knot. A taut foliation of a 3-manifold is a codimension one foliation such

that there is a circle which intersects every leaf transversely. There are a

lot of studies on foliations of a 3-manifold, many of these indicate that the

structure of foliations reflects well the topology of a manifold. Novikov [3]

showed that if a 3-manifold other than S2×S1 possesses a foliation without

Reeb components, its fundamental group is infinite, the second homotopy

group π2 is trivial and its leaves are all π1-injective. Rosenberg [8] showed

that if a 3-manifold possesses a foliation without Reeb components, then

the manifold is irreducible. Combining theorems of Novikov and Rosenberg

with that of Palmeira [4], one can see that if a 3-manifold possesses a foli-

ation without Reeb components its universal cover is homeomorphic to R3.

Therefore the existence of “Reebless” foliations plays an important role in

studies of a 3-manifold. In fact, a Reeb component has no transverse circle

which intersects all leaves, and hence a taut foliation has no Reeb compo-

nent. Thus a taut foliation takes over the fruits of “Reebless” foliations

with respect to the topological properties.
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Rachel Roberts showed the following theorem.

Theorem 1.1 (Roberts [5]). Let M be an orientable, fibered compact

3-manifold with single boundary component, whose fiber is a surface of nega-

tive Euler characteristic with one puncture. Then there is an interval (−a, b)
for some a, b > 0 such that for any ρ ∈ (−a, b) there is a taut foliation which

realizes a boundary slope ρ.

The boundary of such manifold M is a torus, and the boundaries of

leaves of these taut foliations are parallel simple curves on the torus. Since

a torus is homeomorphic to the quotient space R2
/
Z2, a simple curve on

a torus is regarded as a straight line on the quotient space. Then the

boundary slope of a taut foliation means a slope of the simple curve which

is a boundary of a leaf of the foliation. If one performs the Dehn filling to

the manifold with that taut foliation by the slope ρ belonging to the interval

(−a, b) ∩ Q, a taut foliation of a closed manifold is obtained. Hence one of

the advantages of the theorem of Roberts is that one can estimate a range

of slopes in which a taut foliation survives after doing the Dehn filling.

Theorem 3.1 (Main Theorem). For any (r, s)-type torus knot K(r, s)

in S3, where r and s are relatively prime integers and |r| > s > 0, there

is a family of taut foliations in the complement of K(r, s) which realize all

boundary slopes in (−∞, 1) when r > 0, or (−1,∞) when r < 0.

Theorem 3.1 leads one to the conclusion that all the Dehn surgeries

along any torus knot by the slope belonging to these interval yield closed

3-manifolds with a taut foliation.

In [6] R.Roberts showed a condition that a fibered hyperbolic manifold

with a single boundary component has a family of taut foliations which

realizes any boundary slope in (−∞, 1) or (−1,∞). Since a torus knot is

not a hyperbolic knot, our main theorem indicates a condition for a non-

hyperbolic case in comparison with the theorem of [6].

Corrollary 4.3. Let K be a cable knot of a fibered knot in S3. Then

there is a family of taut foliations in the complement of K which realizes

all boundary slopes in (−∞, 1) or (−1,∞) according to the embedded torus

knot.
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Theorem 4.1. Each iterated torus knot Ki is fibered, and moreover

there is a family of taut foliations in the complement of Ki which realizes

all boundary slopes in (−∞, 1) or (−1,∞) according to the last embedded

torus knot.

We partially extend the theorem of Roberts to a link case as follows.

Theorem 5.1. Let M be an orientable, fibered compact 3-manifold

with two boundary components, whose fiber is a surface with two punctures

and its genus is more than two. If the monodromy of the fibration satisfies

the condition (1) of Lemma 5.5, then there are intervals (−ai, bi) for some

ai, bi > 0 and i = 1, 2 such that there is a family of taut foliations which

realizes all boundary slopes in each intervals, where i corresponds to each

torus boundary component of M .

2. Preliminaries

In this section, we review some definitions and explain backgrounds

which are necessary to understand the main theorem of this paper.

Throughout this paper, all manifolds and knots or links are oriented un-

less otherwise specified. For a manifold M and a submanifold B of M ,

N(B) denotes the regular neighborhood of B in M .

A branched surface B is a compact space modelled locally on the object

of Figure 1.

If B lies in a 3-manifold M , we denote a fibered regular neighbourhood

of B in M by N(B), locally modelled on Figure 1. When we regard that the

∂hN(B)
∂vN(B)

Figure 1.
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branched surface B is embedded in N(B), we consider that N(B) is fibered

by I-fibers normal to the branched surface B.

For such a fibered regular neighbourhood N(B), we denote the part

of ∂N(B) which lies in the set of end points of the I-fibers of N(B) by

∂hN(B), and the part of ∂N(B) which contains sub arcs of the I-fibers

by ∂vN(B) as in Figure 1. We call that ∂hN(B) is a horizontal boundary,

and ∂vN(B) is a vertical boundary. If M has boundaries and the branched

surface embedded in M intersects ∂M transversely, ∂M ∩B is a train track

τ , a space modelled locally on Figure 2. The train track on ∂M has also

a fibered regular neighbourhood N(τ) locally modelled on Figure 2 with I-

fiber, and then we denote similarly the part which intersects the endpoints

of I-fibers by ∂hN(τ) and the part which contains sub arcs of the I-fibers

by ∂vN(τ).

∂vN(τ)

∂hN(τ)

τ N(τ)

Figure 2.

If we denote the map which collapses all I-fibers by π : N(B) → B,

a branch locus is an arc on B which contains the image of the vertical

boundary ∂vN(B) under the collapsing map π.

The sectors {Si} of B are the closures of the components of

B \ {branch locus}. Now we put a weight {wi � 0} on each sector {Si}
of B, and we denote the correction of these weights by the vector w =

(w1, w2, . . . , wn). The branch equation is the equation among the sectors

which intersect at the branch loci locally modelled in Figure 3. If we assign

weights to sectors as in Figure 3, then the branch equations are d = e+ f ,

b = a + d and c = a + e. If the vector w satisfies the branch equations for

all branches, we call the vector w an invariant measure of B. The branched
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a
b c

d e

f

Figure 3.

surface B is called a measured branched surface if there is an invariant mea-

sure on B. The measures assigned on the sectors induce the measures on

the train track τ on the boundary ∂M . Therefore, if B is measured then

the train track τ has also an invariant measure. In this case we call that

the train track is a measured train track.

For a 3-manifold M we say λ is a lamination of M if λ is a foliation on

a closed subset of M . We see that the measured branched surface B with

positive integer weight carries a compact surface, then if we extend these

weights to real numbers there is a non-compact surface on N(B). These

non-compact surfaces are a source of a measured lamination on N(B).

We define that a lamination λ is carried by a branched surface B if it can

be isotoped into N(B) everywhere transverse to the fiber of the I-bundle,

λ is fully carried by B if it also intersects every fiber of the I-bundle.

Related to the main theorem of this paper, we introduce the definition

of affinely measured branched surface.

Definition 2.1. Let M be a compact 3-manifold and B be a branched

surface embedded in M . If there is a family of simple curves or simple

properly embedded arcs {γi}i=1,...,n such that B \
⋃n

i=1 γi has an invariant

measure w, then we call that B is affinely measured with respect to
⋃n

i=1 γi.

Let Mh be a surface bundle with monodromy h whose fiber is a once
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punctured oriented surface F of genus g. In fact we see that

Mh = F × [0, 1]
/
(x, 1) ∼ (h(x), 0).

We take a family of properly embedded arcs {αi}i=1,...,n in a fiber F and n

copies of the fiber,

F0 = F × {0} , F1 = F ×
{

1

n

}
, . . . , Fn−1 = F ×

{
n− 1

n

}
.

For the family of arcs {αi}i=1,...,n, we define the family of disks

D1 = α1 ×
[
0,

1

n

]
, D2 = α2 ×

[
1

n
,
2

n

]
, . . . , Dn = αn ×

[
n− 1

n
, 1

]
.

Then we construct a branched surface embedded in Mh by combining these

copies of fibers and disks whose branch loci are the arcs {αi}i=1,...,n. We

denote the branched surface B by

B = 〈F0, F1, . . . , Fn−1 ; D1, D2, . . . , Dn〉.

For any knot or link K in S3, there is a Seifert surface S of K such that

the boundary of S is equivalent to K, more precisely S intersects N(K)

in annuli whose boundary consists of K and an essential, simple closed

curves on ∂N(K). We call the latter curves S ∩ ∂N(K) longitude of K.

The longitude is characterized up to isotopy, then we define the longitudinal

slope of K denoted by λ such that λ is represented by any longitude of K.

Now we prepare the convention for this paper. For given two oriented

simple closed curves α and β properly embedded in a surface F , we denote

the homological intersection number by 〈α, β〉 with the sign convention for

orientation such that if the positive vector of the first curve overlaps to the

next one by rotating clockwise by angle π
2 then 〈α, β〉 = 1 (see Figure 4).

For a torus boundary T of a 3-manifold M , we take distinguished two

simple closed curves µ and λ on T which satisfy 〈µ, λ〉 = 1. They are

called meridian and longitude when M is an exterior of a knot. The pair

µ and λ represents a basis of H1(T ), then we also write this basis by µ

and λ. Corresponding to this basis (µ, λ), for any given essential simple

closed curve γ in T we define the corresponding fraction of the slope which

represented by γ by the formula

slope γ =
〈γ, λ〉
〈µ, γ〉 .
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α

β 〈α, β〉 = 1

Figure 4.

Note that by the above definition the slope of λ corresponds to 0
1 , and the

slope of µ corresponds to 1
0 .

In this paper we mainly deal with a torus knot embedded in S3. For

a solid torus standardly embedded in S3, a simple closed curve γ on the

boundary T of this solid torus is represented by a form rµ+ sλ ∈ H1(T ; Z).

We call γ is a torus knot or link of type (r, s), and denote it K(r, s).

Note that if r and s are relatively prime, then γ is one simple closed

curve, thus K(r, s) is a knot embedded in S3. Otherwise K(r, s) is a link

embedded in S3, whose number of components is equal to the greatest com-

mon divisor between r and s. K(r, s) has properties that K(r, s) ∼= K(s, r)

and K(−r,−s) ∼= K(r, s), therefore we suppose |r| > s > 0. Although

K(−r, s) is a mirror image of K(r, s), we distinguish between these knots

in this paper.

For a knot K embedded in S3, K is called fibered if the exterior of K is

a surface bundle over a circle. It is well known that a torus knot is fibered.

We shall prove this fact by constructing a fiber bundle directly in the

exterior of the torus knot K(r, s) in Section 3, but usually it is a well

known fact by the theory of singularities of complex functions (see Milnor’s

book [2]).

3. Main Theorem

Theorem 3.1 (Main Theorem). Let K(r, s) be the torus knot of type

(r, s), where (r, s) is a pair of relatively prime integers and |r| > s > 0.

Then there is a family of taut foliations {Fx} of the exterior of K(r, s)

which realizes any boundary slope in the open interval (−∞, 1) when r > 0,

or (−1,∞) when r < 0.

This theorem is proved as follows. First we construct explicitly a fiber
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bundle structure of the exterior of the (r, s)-type torus knot K(r, s). Next

we choose an arc properly embedded in a fiber surface and then, by the

explicit construction of the fibration, we can see the image of this arc under

the action of the monodromy of this fibration. Finally, we shall prove that

this properly embedded arc and its image is a “good pair” in the sense of the

theorem of Roberts and we obtain the desired family of taut foliations {Fx}
with parameter x which realizes all boundary slopes in the open interval

(−∞, 1) when r > 0, or (−1,∞) when r < 0.

3.1. Constructing fibrations of the exterior of tours knots

In this subsection we construct a fibration as an extension of the example

for the trefoil in Rolfsen’s book (see [7] section 10.I). Let V be a solid torus

standardly embedded in the 3-sphere S3. We consider that the (r, s)-type

torus knotK(r, s) is a simple closed curve on the boundary ∂V of V . Cutting

V by a meridian disk D and joining infinitely many copies of this piece, we

get the universal cover Ṽ of V and the covering K̃ of K on ∂Ṽ . Ṽ becomes

a cylinder of infinite length, so we put Ṽ into R3 such that the x-axis is the

core of this cylinder. Notice that the number of components of K̃ is s, and

then let k1(x), k2(x), . . . , ks(x) be components of K̃.

These components k1(x), k2(x), . . . , ks(x) are the curves represented by

following formulae;

ki(x) = (x, cos
r

s
(x+

2(i− 1)π

r
), sin

r

s
(x+

2(i− 1)π

r
)) (i = 1, . . . , s).

Now we construct a surface in the cylinder Ṽ as follows. Let GB
i be

the twisted band embedded in the part of the cylinder Ṽ where x ∈ [0, 2π
|r| ]

represented by following formulae;

GB
i =

{
riki(x) + (1 − ri)ki−1

(
2π

|r| − x

)
+

(
2π

|r|n, 0, 0
)

∣∣∣∣ 0 � x � π

|r| , 0 < ri < 1, n = 0,±1,±2, . . .

}
(i = 1, . . . , s, k0 = ks) when r > 0,
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GB
i =

{
riki(x) + (1 − ri)ki+1

(
2π

|r| − x

)
+

(
2π

|r|n, 0, 0
)

∣∣∣∣ 0 � x � π

|r| , 0 < ri < 1, n = 0,±1,±2, . . .

}
(i = 1, . . . , s, ks+1 = k1) when r < 0.

For the parameter value x = π
|r| , there is a disk with s points removed

from the boundary. It is the regular polygon with s edges which are parts

of boundaries of these bands. Then let GP be the set of regular polygonal

disks embedded into the disks
{

( π
|r| + 2π

|r|n, y, z)
∣∣∣ y2 + z2 � 1, n =

0,±1,±2, . . .
}

such that the boundary edges of one of these disks Pn are

the arcs represented by the following formulae;

∂Pn =

s⋃
i=1

{
riki

(
π

|r| +
2π

|r|n
)

+ (1 − ri)ki−1

(
π

|r| +
2π

|r|n
) ∣∣∣ 0 < ri < 1

}

when r > 0,

∂Pn =
s⋃

i=1

{
riki

(
π

|r| +
2π

|r|n
)

+ (1 − ri)ki+1

(
π

|r| +
2π

|r|n
) ∣∣∣ 0 < ri < 1

}

when r < 0.

The regular polygonal disk Pn is bounded by the above arcs ∂Pn and

embedded in the disk
{

( π
|r| + 2π

|r|n , y , z) | y2 + z2 � 1
}

, therefore GP =⋃
n∈ZPn . Then the surface G which we want to construct in Ṽ is defined

as the union of the set GB = {Gi
B}i=1,...,s and GP .

Next we define the map Rθ : Ṽ −→ Ṽ given by

Rθ(x, y, z) =

(
x+

θ

r
, y cos

θ

s
− z sin

θ

s
, y sin

θ

s
+ z cos

θ

s

)
.

Lemma 3.2. Rθ turns Ṽ by the angle
θ

s
keeping components k1(x),

k2(x), . . . , ks(x) of K̃ invariant.
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Proof. Let ki(t) =

(
t, cos

r

s
(t+

2(i− 1)π

r
), sin

r

s
(t+

2(i− 1)π

r
)

)
be a component of K̃. Then

Rθ(ki(t)) = Rθ

(
t, cos

r

s
(t+

2(i− 1)π

r
), sin

r

s
(t+

2(i− 1)π

r
)

)
=

(
t+

θ

r
, cos

r

s
(t+

2(i− 1)π

r
) cos

θ

s

− sin
r

s
(t+

2(i− 1)π

r
) sin

θ

s
,

cos
r

s
(t+

2(i− 1)π

r
) sin

θ

s

+ sin
r

s
(t+

2(i− 1)π

r
) cos

θ

s

)
=

(
t+

θ

r
, cos (

r

s
(t+

2(i− 1)π

r
) +

θ

s
),

sin (
r

s
(t+

2(i− 1)π

r
) +

θ

s
)

)
=

(
t+

θ

r
, cos

r

s
((t+

θ

r
) +

2(i− 1)π

r
),

sin
r

s
((t+

θ

r
) +

2(i− 1)π

r
)

)
= ki(t+

θ

r
) �

We define Gθ = Rθ(G), 0 � θ � 2π.

Lemma 3.3. The family of surfaces {Gθ | 0 � θ � 2π} fills up Ṽ \
⋃
ki.

If θi, θj ∈ (0, 2π) and θi �= θj, then Gθi ∩Gθj = ∅.

Proof. Let p = (t, u, v) ∈ Ṽ ⊂ R3 be a point in Ṽ . At first we

suppose r > 0 and it is sufficient to prove when 0 � t � 2π

r
. Let Dt and

Dt
′ be the disks in Ṽ given by

Dt = {(t, y, z) | y2 + z2 � 1}, Dt
′ = {(t, y, z) | y2 + z2 < 1}.
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Now we define a flow ψ on Ṽ by ψ = {Rθ(w) | θ ∈ R}w∈D0 . We denote

ψ′ the flow ψ restricted to Ṽ ′ = {(x, y, z) | x ∈ R, y2 + z2 < 1}, G′ the

surface G restricted to Ṽ ′.

Claim. The intersection of a flow line l of ψ′|0� θ� 2π and a surface

G′|0�x� 2π
r

is one point.

Proof of Claim. Let proj : Ṽ |0�x� 2π
r
−→ D0

′ be the perpendicular

projection map given by proj(x, y, z) = (0, y, z). Then this map is shown

to be one to one and onto when it is restricted to G′ as follows. For a

point p ∈ G′, if p ∈ GP , the point p is written as p =
(
π
r , u, v

)
and then

proj(p) = (u, v) which belongs to the regular polygonal disk P on D0. If

p �∈ GP , let Gi
B
′
be the surface Gi

B restricted to Ṽ ′ and we set p ∈ Gi
B
′
. We

can write Gi
B
′
and ki(x) as follows;

Gi
B
′
=

{
riki(x) + (1 − ri)ki−1(

2π

r
− x)

∣∣∣ 0 < x <
π

r
, 0 < ri < 1

}
ki(x) =

(
x, cos

r

s
(x+

2(i− 1)π

r
), sin

r

s
(x+

2(i− 1)π

r
)

)
.

Then there are real numbers rp and tp such that 0 < rp < 1 and 0 < tp <
π
r ,

and we can write proj(p) as follows;

proj(p)

= proj

(
rpki(tp) + (1 − rp)ki−1(

2π

r
− tp)

)
=

(
rp cos

r

s
(tp +

2(i− 1)π

r
) + (1 − rp) cos

r

s
(
2π

r
− tp +

2(i− 2)π

r
),

rp sin
r

s
(tp +

2(i− 1)π

r
) + (1 − rp) sin

r

s
(
2π

r
− tp +

2(i− 2)π

r
)

)
=

(
rp cos

r

s
(tp +

2(i− 1)π

r
) + (1 − rp) cos

r

s
(
2(i− 1)π

r
− tp),

rp sin
r

s
(tp +

2(i− 1)π

r
) + (1 − rp) sin

r

s
(
2(i− 1)π

r
− tp)

)
.
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By putting γ = rp and ξ = 2(i−1)π
r ,

proj(p) =
(
γ cos

r

s
(tp + ξ) + (1 − γ) cos

r

s
(ξ − tp),

γ sin
r

s
(tp + ξ) + (1 − γ) sin

r

s
(ξ − tp)

)
= γ

(
cos

r

s
(tp + ξ), sin

r

s
(tp + ξ)

)
+ (1 − γ)

(
cos

r

s
(ξ − tp), sin

r

s
(ξ − tp)

)
.

Let α(t) and β(t) be the points on the boundary ∂D0 = {(y, z) ∈ D0 | y2 +

z2 = 1} such that

α(t) =
(
cos

r

s
(t+ ξ), sin

r

s
(t+ ξ)

)
β(t) =

(
cos

r

s
(ξ − t), sin

r

s
(ξ − t)

)
.

Then we can write the image of Gi
B
′
under the map proj as follows;

proj(Gi
B
′
) =

{
γα(t) + (1 − γ)β(t) ∈ D0

∣∣ 0 < t <
π

r
, 0 < γ < 1

}
.

Gathering this image for all i = 1, 2, . . . , s, these fill the complement of P

in D0
′. Thus we proved that the map proj is one to one and onto.

For a point p = (t, u, v) ∈ Ṽ ′|0�x� 2π
r

, let l be the flow line of ψ′

which contains the point p. By the constructions a flow line of ψ′ intersects

Gi
B
′
and GP transversely, and at its intersection point it always goes from a

negative side to a positive side if the orientation of these surface is induced

from the direction of x-axis. Since the perpendicular projection map is one

to one and onto by the above argument, the number of intersections between

a flow line and G′|0�x� 2π
r

is odd. By comparing the gradient direction of

a flow line and Gi
B
′

it can be seen that they have only one intersection

when 0 � x � 2π
r . Thus the flow line l intersects G′|0�x� 2π

r
at one point

p′ = (t′, u′, v′). By the definition of the flow ψ′, R t−t′
r

(p′) = p. Therefore

this point p exists on R t−t′
r

(G′) = G t−t′
t

′, so there is an unique θ such that

p ∈ Gθ.

For a point p = (t, u, v) = (t, cos τ, sin τ) ∈ (Ṽ \ Ṽ ′)|0�x� 2π
r
\
⋃
ki,
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there exist some i and a path l on the boundary ∂Ṽ such that

p ∈ l =

{
riki

(
s

r
(τ − 2(i− 1)π

r
)

)
+ (1 − ri)ki−1

(
2π

r
− s

r
(τ − 2(i− 1)π

r
)

) ∣∣∣ 0 < ri < 1

}
= R

(τ− 2(i−1)π
s

)

({
riki(0) + (1 − ri)ki−1

(
2π

r

) ∣∣∣ 0 < ri < 1
})

.

Since the path l is contained in R
(τ− 2(i−1)π

s
)
(Gi

B), the point p is contained

in this image. Therefore there exists an unique θ such that p ∈ Gθ.

The case when r < 0 is proved by the similar argument, then this com-

pletes the proof of Lemma 3.3. �

Adding some points to Gθ and modifying Gθ in a neighbourhood of ∂Ṽ ,

we see that the boundary of Gθ consists of k1(x), . . . , ks(x) and s lines

{li}si=1, where li =
{(

x, cos (2(i−1)π
s + θ

s ), sin (2(i−1)π
s + θ

s )
) ∣∣ x ∈ R

}
. By

the above explicit construction of Gθ on Ṽ , every Gθ is invariant under

the covering transformation of Ṽ . Then we can project Gθ to the surface

Fθ
′ = q(Gθ) on V by the covering map q : Ṽ → V . The family of surfaces

{Fθ
′ = q(Gθ) | 0 � θ < 2π} fills up V since all Gθ are disjoint by Lemma 3.3,

and each surfaces satisfy ∂Fθ
′ ⊃ K(r, s).

Next we define the s lines C̃1, C̃2, . . . , C̃i, . . . , C̃s on ∂Ṽ as follows;

C̃i =

{
(x, cos

2(i− 1)π

s
, sin

2(i− 1)π

s
)
∣∣∣ x ∈ R

}
, (i = 1, . . . , s).

We define the family of lines {C̃i
θ | 0 � θ < 2π} on ∂Ṽ by C̃i

θ =

Rθ(C̃i). Now we project this family to V , and get the family of curves

{Ci
θ = q(C̃i

θ) | 0 � θ < 2π} on ∂V . The boundary of Fθ
′ on ∂V consists of

the union of our torus knot K(r, s) and this family of curves, that is,

∂Fθ
′ = K(r, s) ∪

(
s⋃

i=1

Ci
θ

)
.

By definition, V is a solid torus standardly embedded into S3. So

let W be the complement of V in S3, then W also is a solid torus stan-

dardly embedded into S3. By the above construction, a curve of this family
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{C̃i
θ | 0 � θ < 2π} is a longitude curve on ∂V , then it is a meridian curve

on ∂W and we define the meridian disks Di
θ such that ∂Di

θ = Ci
θ.

Finally we define the surface

Fθ =

(
Fθ

′ ∪
(

s⋃
i=1

Di
θ

))
\K(r, s),

and the map p : S3 \ K(r, s) −→ S1 such that if x ∈ Fθ ⊂ S3 \ K(r, s),

p(x) = eiθ ∈ S1.

Lemma 3.4. This map p : S3 \ K(r, s) −→ S1 defines a fibration on

S3 \K(r, s) whose fiber is Fθ.

Proof. Since the surfaces Gθ are disjoint in Ṽ by Lemma 3.3 and q is

a covering map, the surfaces Fθ are disjoint each other in S3 \K(r, s). Let

I ⊂ S1 be an open interval on S1. By the definition of the map p, for x ∈ S1,

p−1(x) = Fx, and then Fx ∩ Fy = ∅ when x �= y. Thus p−1(I) =
∐
x∈I

Fx

which is a disjoint union of fibers. For any x ∈ S1, Fx is an open set in

S3 \K(r, s), so p−1(I) is open, thus the map p is continuous. As seen before

there is the flow ψ on Ṽ . If we project it to V and denote this flow by ψ̂,

the flow ψ̂ is transverse to Fθ
′ for any θ in V . The solid torus W is trivially

foliated by disks Di
θ, and there is a flow φ transverse to any disk Di

θ which

coincide with ψ̂ on the boundary ∂W . By gathering these transverse flows

ψ̂ and φ, we obtain the flow ϕ on S3 \ K(r, s) transverse to Fθ for any

θ. For any point x ∈ S1 and any interval x ∈ I ⊂ S1 we define a map

η : p−1(I) → Fx × I such that η(q) = (ϕτ (q), t) where the point ϕτ (q) is

the point on which the flow line of ϕ through q intersects Fx = p−1(x), and

t = p(q). Since ϕ is a transverse flow, the map η becomes a trivialization

map of this fibration. �

Thus we complete an explicit construction of a fibration for the torus

knot K(r, s).

3.2. Proof of Main theorem

We define the coordinate system on the torus boundary ∂M =

∂N(K(r, s)) by choosing two specific oriented simple closed curves λ and
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µ as follows. Let λ be a curve such that λ = ∂F0, and we call it a longi-

tude. The orientation of λ is induced from the orientation of F0. Let µ be

a curve on ∂M such that it satisfies 〈µ, λ〉 = 1 and bounds an essential disk

in N(K(r, s)). Let h : F0 → F0 be the monodromy map of this fibration.

This map is induced from the rotation map R2π on Ṽ .

From now on we shall construct a family of taut foliations by the same

way taken in the section 3 of [5].

Now we consider the complement M = S3 \N(K(r, s)) of the torus

knot K(r, s) as the quotient space of the product of the fiber F0 and a unit

interval I = [0, 1] ;

M = F0 × [0, 1]
/
(x, 1) ∼ (h(x), 0).

Note that the boundary ∂M is homeomorphic to a torus since the boundary

of F0 is a circle and h maps this circle to itself. The positive side of F0 is

defined by a positive direction of the unit interval [0, 1].

Next we choose three properly embedded arcs α and β± on the fiber F0.

Let α̃ and β̃± be the arcs on ∂Ṽ such that

α̃ =

{
(t, 1, 0) ∈ ∂Ṽ

∣∣∣ 0 � t � 2π

|r|

}
,

β̃+ =

{
(t, cos

2π

s
, sin

2π

s
) ∈ ∂Ṽ

∣∣∣ 2π

|r| � t � 4π

|r|

}
,

β̃− =

{
(t, cos

2π

s
, sin

2π

s
) ∈ ∂Ṽ

∣∣∣ − 2π

|r| � t � 0

}
.

We define the three arcs α and β± on the fiber F0 so that α = q(α̃), β+ =

q(β̃+) and β− = q(β̃−), and give an orientation to these three arcs induced

from the orientation of α̃ and β̃± defined by the increasing direction of t. The

fiber F0 is an open surface, but attaching a copy of our torus knot K(r, s) to

it we regard it as a compact surface whose boundary is on ∂N(K(r, s)). If we

regard the fiber as a compact surface, these three arcs α and β± are properly

embedded arcs whose each end points ∂α and ∂β± sit on ∂N(K(r, s)). In

the later argument, we always regard a fiber surface as a compact surface

whose boundary is on ∂N(K(r, s)). By the construction of the fibration,

the monodromy h maps α to β±, i.e. h(α) = β+ when r > 0 and h(α) = β−
when r < 0.
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Using the unit interval [0, 1], we define a disk D in M such that D =

α × [0, 1]. Note that the boundary ∂D of the disk consists of four arcs, α,

β+ or β− on F0 and ∂α× [0, 1] on ∂M .

Now we define the branched surface B− such that B− = 〈F0;D〉. We

shall prove that this branched surface B− carries a family of laminations

{λx} which realize all boundary slopes in (−∞, 0], and then these lamina-

tions λx extend to taut foliations Fx by filling up complementary regions.

In order to prove the Main theorem, we recall a definition of “good pair ”

stated in [5], and need some lemmas.

Definition 3.5. Let F be a compact surface with a single circle

boundary component and negative Euler characteristic, and δ and δ′ be

simple arcs properly embedded in F . The pair (δ, δ′) is called good if δ and

δ′ are disjoint on F , and their endpoints alternate along ∂F as are shown

in Figure 5.

δ

δ′

∂F

Figure 5.

Note that for a good pair (δ, δ′), each simple arc is non-separating on F .

Lemma 3.6. Let α and β± be the simple arcs on F0 defined above, then

(α, β+) and (α, β−) are a good pair.

Proof. The arc α is a part of the boundary of D1
0 and both β± are a

part of the boundary of D2
0. Since Di

0 ∩D
j
0 = ∅ if i �= j, and each disk Di

0 is

a meridian disk of W , then clearly α and β± have no self intersection and

are disjoint each other.
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Let ∂1α̃ be the point on ∂Ṽ such that ∂1α̃ = (0, 1, 0) ∈ Ṽ ⊂ R3. It is

one of the end points of α̃ and is on the component k1(x) of K̃(r, s). ∂1α̃ can

move along k1(x) in the direction induced by the rotation map Rθ, then ∂1α̃

meets one end point of β̃±. We denote this point by ∂1β̃±. The other end

point ∂2α̃ of ∂α̃ also meet the other end point of β̃±, denoting ∂2β̃±. Then

on ∂V we can see that ∂1β± = q(∂1β̃±) is next to ∂1α = q(∂1α̃) along the

knot K(r, s) and also ∂2β± = q(∂2β̃±) is next to ∂2α = q(∂2α̃). Therefore

the end points ∂α and ∂β± alternate along the knot K(r, s). �

By the construction of the fibration and the definition of the orientation

of the arcs α and β±, the situation of arcs with an orientation near the

boundary ∂F0 is pictured as in Figure 6.

α

β+

γ+

∂F0

β−

γ−

α

∂F0

r > 0 r < 0

Figure 6.

In order to make branched surfaces which we need to prove the Main

theorem we define a convention for the branching direction of the sector

which made from an arc properly embedded in a fiber surface and an inter-

val. For an arc α with a given orientation we can take a sector D = α×I as

defined in Section 2 where I = [a, b] is an interval. We define a branching

direction of D which corresponds to the orientation of α×∂I as in Figure 7.

In the neighbourhood of α × {a}, the sector D comes down from the left
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∂F ∂F

α× {a}

α× {b}

D

D

Figure 7.

side of the arc α × {a}, and in the neighbourhood of α × {b}, D comes up

from the right side of the arc α× {b}.
Next we choose properly embedded arcs γ± on F0 which satisfy a con-

dition that

[γ±] = −[α] + [β±] ∈ H1(F0, ∂F0).

and its boundary points are on ∂F0 as pictured also in Figure 6. Taking a

disk D = α×[0, 1] ⊂ M = F0×[0, 1]
/
∼, we define two branched surface such

that B+
− = 〈F0;D〉 when r > 0 and B−

− = 〈F0;D〉 when r < 0. Then by

the construction we can see that these two branched surface B±
− are affinely

measured with respect to γ± respectively in the same way as the proof of

Lemma 4.3 of [5].

For these branched surface B±
− with measures, these boundaries τ±− =

∂B±
− become a train track with the affine measure which induced from the

modified measures on B±
− made by a scaling map on γ± × I such that

f : γ± × [0, 1] → γ± × [0, 1] : (p, t) �→ (p, (1 + x)t)

where p is a point of γ±, x is the weight parameter defined on B±
− . We

denote the lamination on the neighbourhood of the train track τ±− induced

by these measures by τ±− (w). Then these measured train tracks τ±− are

pictured in Figure 8.

Putting the meridian-longitude pair (µ, λ) as also in Figure 8, we can

calculate the intersection number at each intersection point between (µ, λ)



Taut Foliations of Torus Knot Complements 49

λ

µ

λ

µ

x

1 + x

x

1

1 + x

1

x

x

1 + x

1 1

1 + x

1

1 + x

1 + x

r > 0 r < 0

Figure 8.

and the measured lamination τ±− (w) as follows.

When r > 0,

〈µ, τ+
− (w)〉 = 1, 〈τ+

− (w), λ〉 =
x

1 + x
− x, then

slope τ+
− (w) =

〈τ+
− (w), λ〉

〈µ, τ+
− (w)〉

=
x

1 + x
− x =

−x2

1 + x
.

When r < 0,

〈µ, τ−− (w)〉 = 1, 〈τ−− (w), λ〉 = − x

1 + x
+ x, then

slope τ−− (w) =
〈τ−− (w), λ〉
〈µ, τ−− (w)〉

= − x

1 + x
+ x =

x2

1 + x
.

Letting x range over [0,∞) for the above formulae, we conclude that

the family of laminations {λx} ⊂ N(B±
−) carried by B±

− with a measure

parameter x realizes all boundary slopes in (−∞, 0] when r > 0, or in

[0,∞) when r < 0. Similar to the proof of Theorem 4.1 of [5], the family

of laminations {λx} extends to the family of taut foliations which realize

slopes in the same interval.
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In order to complete the proof of Main theorem, we define two branched

surfaces B±
+ as follows. We take three fibers F0 = F0 × {0}, F1 = F0 × {1

3}
and F2 = F0 × {2

3}. For the branched surface B+
+ , we take three pair of

arcs on each Fi for i = 0, 1, 2 such that (β+,−α) on F0, (−α,−β+) on F1

and (−β+, α) on F2. Using these pairs of arcs we put three sectors such

that D+
1 = −α × [0, 1

3 ], D+
2 = −β+ × [13 ,

2
3 ] and D+

3 = α × [23 , 1]. For the

branched surface B−
+ , we also take three pairs of arcs (β−,−α), (−α,−β−)

and (−β−, α), and take three sectors D−
1 = −α× [0, 1

3 ], D−
2 = −β− × [13 ,

2
3 ]

and D−
3 = α× [23 , 1]. By these settings we define two branched surfaces such

that

B±
+ = 〈F0, F1, F2;D

±
1 , D

±
2 , D

±
3 〉

whose branch direction on each sectors is defined by our convention. As

same as the case of B±
− we can take properly embedded arcs γ±0 on F0,

γ±1 on F1 and γ±2 on F2, then we can see that the branched surfaces B±
+

are affinely measured with respect to γ±0 ∪ γ±1 ∪ γ±2 . The measured train

tracks τ±+ = ∂B±
+ which are the restriction of B±

+ on the boundary ∂M are

pictured in Figure 9.

Putting the meridian-longitude pair (µ, λ) as also in Figure 9, we can

calculate the intersection number at each intersection point between (µ, λ)

and the measured lamination τ±+ (w) as follows.

When r > 0,

〈µ, τ+
+ (w)〉 =

1

1 + x
+ 1 + (1 + x) =

x2 + 3x+ 3

1 + x

〈τ+
+ (w), λ〉 = − x

1 + x
+ x =

x2

1 + x
then,

slope τ+
+ (w) =

〈τ+
+ (w), λ〉

〈µ, τ+
+ (w)〉

=
x2

x2 + 3x+ 3
.

When r < 0,

〈µ, τ−+ (w)〉 =
1

1 + x
+ 1 + (1 + x) =

x2 + 3x+ 3

1 + x

〈τ−+ (w), λ〉 =
x

1 + x
− x =

−x2

1 + x
then,

slope τ−+ (w) =
〈τ−+ (w), λ〉
〈µ, τ−+ (w)〉

=
−x2

x2 + 3x+ 3
.
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x

1 + x
xx

r > 0 r < 0

λ

µ

λ

x

1 + x

1
1

1 + x

1 + x
1

x

1 + x

x
1

1 + x
1

1 1 + x

x

1 + x x

1 + x
1

1

1 + x 1

1
1

1 + x

1 1 + x
x

1 + x

x

1

1 + x 1

1

1 + x

x
x

1 + x

1
1 + x

1
1

1 + x

µ

Figure 9.

Letting x range over [0,∞) for the above formulae, we conclude that

the family of laminations {λx} ⊂ N(B±
+) carried by B±

+ with a measure

parameter x realizes all boundary slopes in [0, 1) when r > 0, or in (−1, 0]

when r < 0. This family of laminations {λx} also extends to the family

of taut foliations which realize slopes in the same interval. Combining the

intervals formerly obtained with these intervals, the proof of Main theorem

is completed.

4. Iterated Torus Knot Case

In this Section, we extend the result of section 3 to an iterated torus

knot. To define an iterated torus knot, at first we define a sequence of solid

tori {Ti} and knots {Ki} embedded in S3 as follows. The first solid torus
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T0 is standardly embedded in S3 and let K0 be a simple closed curve on

the boundary ∂T0. We called K0 a torus knot before, now we will call it a

standard torus knot. A regular neighbourhood of K0 is also a solid torus,

and we denote this solid torus by T1 which is embedded in S3. Then we

define a new knot K1 which is a simple closed curve on the boundary ∂T1.

By iterating this construction, the knot Ki−1 has a regular neighbourhood

Ti homeomorphic to a solid torus and there is a new knot Ki which is a

simple closed curve on the boundary ∂Ti. To avoid complicated arguments,

we assume that each Ki is not homotopic to a meridian curve or a longitude

curve on ∂Ti.

To construct a taut foliation made as a modification of fibration, we

define these {Ki} precisely and construct a fibration of its complement.

Let T0 be a solid torus standardly embedded in S3 and K0(r0, s0) a

simple closed curve on ∂T0 which has a homological representation r0m0 +

s0l0 ∈ H1(∂T0), where m0 is the standard meridian and l0 is the standard

longitude of ∂T0. Let T1 be a regular neighbourhood ofK0. The complement

M0 = S3 \N(K0) has the fibration ξ0 as seen before, then we define that

the longitude l1 of ∂T1 is a simple closed curve which coincides with the

boundary of a fiber of the fibration ξ0, and we define the meridian m1

such that m1 intersects l1 transversely at one point and m1 bounds a disk

in T1. For this meridian-longitude pair we define a new knot K1(r1, s1)

which is a simple closed curve on ∂T1 and has a homological representation

r1m1 + s1l1 ∈ H1(∂T1).

In Section 3.1, we construct a sub surface Fθ
′ in the solid torus V and

prove that the family of surfaces {Fθ
′ | 0 � θ < 2π} fills up V . The

boundaries of Fθ
′ consist of circles {Ci

θ}i=1,...,s and the torus knot K(r, s)

on ∂V . By the construction, the circles {Ci
θ}i=1,...,s are parallel on ∂V .

Then we replace T1 by this solid torus V so that the circles {Ci
θ}i=1,...,s

coincide with the curves parallel to the longitude l1 and the torus knot

K(r, s) on ∂V coincides with K1(r1, s1), that is, r = r1 and s = s1. Since

any boundary of fibers of ξ0 is a curve on ∂T1 which parallel to a longitude,

any surface of the family {Fθ
′ | 0 � θ < 2π} is connected to a fiber of

ξ0 via the boundary circles {Ci
θ | i = 1, . . . , s1, 0 � θ < 2π}. Let F 1

θ

be one of the surfaces made by this construction. F 1
θ consists of one sub

surface Fθ
′ and s1 copies of a fiber of ξ0 which are connected to Fθ

′ on

the circles {Ci
θ}i=1,...,s1 . Since the family {Fθ

′} fills up the solid torus T1
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and M0 is fibered, the family of surfaces {F 1
θ | 0 � θ < 2π} fills up the

complement M1 = S3 \N(K1(r1, s1)). Similar to the proof of Lemma 3.3,

we can see that surfaces of the family {F 1
θ } are disjoint. Then the map

p : M1 → S1 : x ∈ F 1
θ �→ θ defines the fibration ξ1.

Therefore, K1(r1, s1) is a fibered knot embedded in S3. Let T2 be a

regular neighbourhood of K1(r1, s1). We define the longitude l2 on ∂T2 so

that its homology class coincides with the homology class of a curve which is

the boundary of a fiber of the fibration ξ1, and define the meridianm2 so that

it intersects l2 at one point and bounds a disk in T2. Then we define a new

knot K2(r2, s2) which is a simple closed curve on ∂T2 whose homology class

is represented by r2m2 + s2l2 ∈ H1(∂T2). Replacing the solid torus T2 by

the same V , we can construct the fibration ξ2 on M2 = S3 \N(K2(r2, s2)).

Iterating this construction, we can get the sequence of knots {Ki(ri, si)},
and then we call it an iterated torus knot sequence. Simply, we call Ki(ri, si)

an iterated torus knot. By this construction, the complement Mi of every

iterated torus knot is fibered with the fibration ξi.

For every iterated torus knot, we can extend the result of Theorem 3.1.

Theorem 4.1. Let Ki(ri, si) be the iterated torus knot defined as above

and we assume |ri| > si > 0. Then there is a family of taut foliations {Fx}
of the exterior of Ki(ri, si) which realizes any boundary slope in the open

interval (−∞, 1) when ri > 0, or in (−1,∞) when ri < 0.

We shall prove this theorem by the same steps as in the proof of Theo-

rem 3.1. First we define two arcs on the fiber of fibration ξi. Let α̃ and β̃±
be the arcs on ∂Ṽ similarly in previous section such that

α̃ =

{
(t, 1, 0) ∈ ∂Ṽ

∣∣∣ 0 � t � 2π

|ri|

}
,

β̃+ =

{
(t, cos

2π

si
, sin

2π

si
) ∈ ∂Ṽ

∣∣∣ 2π

|ri|
� t � 4π

|ri|

}
,

β̃− =

{
(t, cos

2π

si
, sin

2π

si
) ∈ ∂Ṽ

∣∣∣ − 2π

|ri|
� t � 0

}
.

We define the three arcs α and β± on the boundary of ∂V so that α = q(α̃)

and β± = q(β̃±) where the map q : Ṽ → V is the covering map. Since α and

β± are the arcs on C1
0 and C2

0 respectively, α and β± are properly embedded
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in the fiber F0 of the fibration ξi, and these end points are on the boundary

of a regular neighbourhood of the iterated torus knot Ki(ri, si).

Let h : F0 → F0 be the monodromy map of the fibration ξi. The rotation

map Rθ : Ṽ → Ṽ defined in previous section induces the map R̂θ : V → V

by composition with the covering map q, R̂θ = q ◦ Rθ ◦ q−1. We define a

map h′ : V → V by h′ = R̂2π. By the construction of the fibration ξi,

the map h′ maps the subsurface F0 ∩ V to F0 ∩ V . If we define the map

h′ on complementary region of V such that for k = 1, . . . , si, h
′ maps the

fiber F i−1
k of the fibration ξi−1 connected with F0

′ via Ck
0 to the fiber F i−1

k+1

of ξi−1 connected with F0
′ via Ck+1

0 , we can extend h′ to the monodromy

h. Because of this extension, we can see that h(α) = β+ when ri > 0 or

h(α) = β− when ri < 0.

Now we consider the complement Mi = S3 \N(Ki(ri, si)) of the torus

knot Ki(ri, si) as the quotient space of the product of the fiber F0 and a

unit interval I = [0, 1] ;

Mi = F0 × [0, 1]
/
(x, 1) ∼ (h(x), 0).

We define the orientation of F0 such that the positive side is the positive

direction of the unit interval [0, 1].

We choose the meridian-longitude pair (µ, λ) on ∂Mi = ∂N(Ki(ri, si))

so that λ is the boundary of ∂F0 and µ satisfies that 〈µ, λ〉 = 1 and µ bounds

an essential disk in N(Ki(ri, si)). In this definition, the orientation of λ is

induced from the orientation of F0.

Lemma 4.2. The pairs of properly embedded arcs (α, β±) defined above

are a good pair.

Proof. By the construction of ξi, for some parameter k, k′ ∈ [0, 2π),

α is a part of the boundary of the fiber F i−1
k of the fibration ξi−1 and β± are

a part of the boundary of the fiber F i−1
k′ . Since F i−1

k and F i−1
k′ are disjoint,

α and β± have no self intersection and are disjoint.

Then similar to the proof of Lemma 3.6, tracing four end points ∂α,

∂β± along Ki(ri, si) with the orientation induced by the orientation of Ṽ ,

we can see that the pairs are a good pair. �

Using these pairs of arcs (α, β+) for ri > 0 and (α, β−) for ri < 0,

by the same steps of the proof of Theorem 3.1 we complete the proof of

Theorem 4.1.
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The method of the proof of Theorem 4.1 also gives the following Corol-

lary.

Corollary 4.3. Let K be a fibered knot embedded in S3, and ∂T be

a boundary of the regular neighbourhood T of K. Let K̂(r, s) be a simple

closed curve on ∂T whose homology class is represented by rm+sl ∈ H1(∂T )

where (m, l) is the meridian-longitude pair of ∂T , r and s are relatively

prime integers. We suppose |r| > s > 0. Then there is a family of taut

foliations {Fx} of the exterior of K̂(r, s) which realizes any boundary slope

in the open interval (−∞, 1) when r > 0, or in (−1,∞) when r < 0.

Proof. Since K is a fibered knot embedded in S3, there is a fibration

ξ in M ′ = S3 \N(K). We define a longitude curve l on ∂T as the boundary

of a fiber of ξ and a meridian curve m such that m intersects l at one point

and bounds a disk in N(K). We replace the solid torus T by the solid torus

V defined before such that the circles {Ci
θ}i=1,...,s coincide with the parallel

curves of the longitude l. By joining the internal surfaces in V and original

fiber surfaces of ξ along the family of circles {Ci
θ | i = 1, . . . , s, 0 � θ < 2π},

we obtain a fibration ξ̂ on M = S3 \ K̂(r, s).

Next we take the pairs of arcs (α, β±) properly embedded in a fiber of ξ̂

as defined in this section. Then by the same proof of Theorem 4.1 we can

conclude the statement of the Corollary. �

5. Extension to a Link Case

In this section, we partially extend the theorem of Rachel Roberts (The-

orem 4.1 in [5]) to a fibered link case.

We denote a surface whose genus is i and has j boundaries by Σi,j . Let

M be an oriented, compact, fibered 3-manifold with a monodromy h and

an orientable fiber Σi,j . Any boundary component of M is homeomorphic

to a torus. We suppose that j = 2 and i is more than or equal to two, for

simplicity we write Σi,2 by F , and the monodromy h maps each boundary to

itself. We consider M as a quotient space; M = F × [0, 1]
/
(h(x), 0) ∼ (x, 1)

where x ∈ F . The orientation of F is defined by the increasing direction of

this interval [0, 1]. For this orientation of F we define a coordinate system

(µ, λ) for each component of ∂M such that λ is a component of ∂F with

the orientation induced from F and µ satisfies that 〈µ, λ〉 = 1.
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Let α be a simple non-separating arc properly embedded in F × {0}.
Setting D = α× [0, 1] we consider that D is properly embedded in F × [0, 1]

such that ∂D consists of four arcs, ∂α× [0, 1] on ∂F × [0, 1], α+ on F ×{0}
and α− on F × {1}. In order to prepare for the later section where we will

construct a branched surface by these fibers and disks, we take the same

convention for the orientation of D defined in Section 3 as seen in Figure 7.

For this settings, we state the theorem extended to a link case.

Theorem 5.1. For i = 1, 2, let αi be simple non-separating arcs prop-

erly embedded in F such that the end points of each αi are on one compo-

nent of ∂F and αi are disjoint each other. Let Di be disks in M such that

Di = αi × [0, 1]. If the arcs αi and the monodromy h satisfy the condition

(1) of Lemma 5.5, there is a branched surface which is made from a split-

ting of B = 〈F ;D1, D2〉 such that it carries a family of laminations {λx}
realizing all boundary slopes in (−ai, bi) for some ai, bi > 0, i = 1, 2 where i

corresponds to the component of the torus boundaries of M . Moreover, these

laminations λx extend to taut foliations Fx with same property of slopes.

We shall prove Theorem 5.1 by the same steps in the proof of Theorem

4.1 of [5] with some modification.

Recall that a pair of arcs δ and δ′ properly embedded in a surface F is

good if they are disjoint and their end points alternate along the boundary

of F . For the sequence σ = (α0, α1, . . . , αn) of arcs properly embedded in

F , if each pair (αk, αk+1) for 0 � k < n is good we say that the sequence σ

is a good sequence.

Lemma 5.2. Let σi = (h(αi
n) = αi

0, α
i
1, . . . , α

i
n), i = 1, 2 be good se-

quences and we suppose that four arcs (α1
k, α

1
k+1) and (α2

k, α
2
k+1) are disjoint

(k = 0, . . . , n− 1). For 1 � k � n, we take disks {Di
k} in M such that

Di
k = αi

k ×
[
k − 1

n
,
k

n

]
.

We fix an orientation for each αi
k and define the orientation on Di

k by our

convention. We define the branched surface

B = 〈F0, F1, . . . , Fn−1;D
1
1, D

2
1, D

1
2, D

2
2, . . . , D

1
n, D

2
n〉.
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Then there is a family of simple arcs {γik} properly embedded in each Fk

for 0 � k � n− 1, i = 1, 2, such that B is affinely measured with respect to⋃
i=1,2

⋃n−1
k=0 γ

i
k.

Proof. We denote each boundary of the fiber Fk by ∂iFk for i = 1, 2.

For 0 � k � n − 1 and i = 1, 2, there is a regular neighbourhood T i
k

of αi
k ∪ αi

k+1 ∪ ∂iFk which is homeomorphic to a torus with two boundary

components in each Fk. Since the pairs (αi
k, α

i
k+1) are mutually disjoint and

non-separating, the region Fk \ (T 1
k ∪T 2

k ) is connected for each k. Therefore,

by assigning a weight 1 for each regions Fk \ (T 1
k ∪ T 2

k ) we can prove this as

an extension of the proof of Lemma 4.3 of [5]. �

Lemma 5.3. Let α1 and α2 be two disjoint non-separating simple arcs

properly embedded in F such that the boundary points ∂α1 are on ∂1F and

∂α2 are on ∂2F . Then there are good sequences

σi = (h(αi) = αi
0, α

i
1, . . . , α

i
n = αi), i = 1, 2,

such that for 0 � k � n−1, four arcs (α1
k, α

1
k+1) and (α2

k, α
2
k+1) are disjoint.

Proof. We suppose the arcs α1 and α2 are in the configuration shown

in Figure 10.

Lickorish proved in [1] that the group of orientation preserving automor-

phisms Aut+(F ) of the surface of genus g is generated by the set D of Dehn

twists with respect to the curves A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Cg−1 in Fig-

ure 10. We denote the Dehn twist along these curves also by

A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Cg−1, then D = {A1, . . . , Ag, B1, . . . , Bg,

A1

B1

C1

Ag

Bg

Cg−1

α1 α2

Figure 10.
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γ

JJ(γ)

∂F

Figure 11.

C1, . . . , Cg−1}. Let γ be a properly embedded arc in F whose endpoints

are on one boundary component. If γ intersects only one of the curves of D
which we denote by J , then we easily see that (γ, J(γ)) is a good pair by

isotoping J(γ) slightly in the neighbourhood of γ ∪ J (see Figure 11).

Let J be any element of D. If J = B1, (α1, A1J(α1)) is a good pair,

and also (A1J(α1), (A1
−1)A1J(α1) = J(α1)) is a good pair. Then

(α1, A1J(α1), J(α1)) is a good sequence. By the same considerations,

(α2, Bg(α
2), (JBg

−1)Bg(α
2) = J(α2)) is a good sequence. If J = Bg,

by a symmetrical argument, (α1, B1(α
1), J(α1)) and (α2, AgJ(α2), J(α2))

are good sequences. If J �= B1 and Bg, (α1, B1(α
1), J(α1)) and

(α2, Bg(α
2), J(α2)) are good sequences. In all cases, there are good se-

quences σ̂1 : α1 → J(α1) and σ̂2 : α2 → J(α2) with the same number of

terms.

Now we decompose the monodromy h into compositions of elements of

D, h = Jm ◦ Jm−1 ◦ · · · ◦ J1 where Ji ∈ D. By the above argument, there

are good sequences

σ̂i
k : αi → Jk(α

i)

for each i = 1, 2 and k = 1, . . . ,m. Now we can apply the method of proof

of Lemma 4.4 in [5] for each good sequences σ̂i
k : αi → Jk(α

i), then the

proof is completed. �

In Lemma 5.4, we shall construct two branched surfaces such that the

one of them carries the family of laminations which realizes all boundary

slopes in negative part of the interval of the conclusion of Theorem 5.1, the
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other carries positive part. In order to define these specific branched sur-

faces, we recall some notation for orientations of simple arcs on the surface

defined in [5].

Let α and β be simple arcs properly embedded in F and we suppose the

pair (α, β) is good. If we give the orientations for α and β, there are two

cases for the orientation of the pair (α, β) in the neighbourhood of ∂F as in

Figure 12.

∂F

α

β

(a) (b)

∂F

α

β

Figure 12.

According to the definition in [5] we call a good pair (α, β) is a negatively

oriented pair if it is oriented as in Figure 12 (a), otherwise if it is oriented

as in Figure 12 (b) we call it a positively oriented pair. For a good sequence

σ = (α0, α1, . . . , αn), we call σ is a negatively oriented good sequence if each

pair (αi−1, αi) is a negatively oriented pair for i = 1, 2, . . . , n, and we call

σ is a positively oriented good sequence if each pair (αi−1, αi) is a positively

oriented pair.

For the pair of good sequences σ = (σ1, σ2) defined in Lemma 5.2, we

denote the branched surface defined in Lemma 5.2 by Bσ, and we consider

that each sector of Bσ constructed from {Di
k} has the orientation induced

from the arcs {αi
k} with our convention defined before. We denote the

two boundaries of M by ∂iM for i = 1, 2, which corresponds to ∂iF ×
[0, 1]

/
(h(x), 0) ∼ (x, 1) where x ∈ ∂iF .

Lemma 5.4. For α1 and α2 defined in the proof of Lemma 5.3, if σ1 =

(h(α1) = α1
0, α

1
1, . . . , α

1
n = α1) and σ2 = (h(α2) = α2

0, α
2
1, . . . , α

2
n = α2)

are both negatively oriented good sequences, then the branched surface Bσ
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carries the family of laminations {λx} which realizes all boundary slopes of

∂iM in (−ai, 0] for some ai > 0. If σ1 and σ2 are both positively oriented

good sequences, Bσ carries the family of laminations {λx} which realize all

boundary slopes of ∂iM in [0, bi) for some bi > 0.

Proof. Let τσi be the train track on ∂iM such that τσi = Bσ ∩ ∂iM

for i = 1, 2. By Lemma 5.2 there is a family of properly embedded arcs {γik}
such that Bσ is affinely measured with respect to

⋃
i=1,2

⋃n−1
k=0 γ

i
k. Then each

train track τσi for i = 1, 2 has the affine measure induced from Bσ and we

see that there is an interval in which τσi realizes all slopes on each boundary

component by the same way of proof of Lemma 4.5 in [5]. �

Lemma 5.5. Let σi = (h(αi
n) = αi

0, α
i
1, . . . , α

i
n), i = 1, 2 be good se-

quences and we suppose that four arcs (α1
k, α

1
k+1) and (α2

k, α
2
k+1) are dis-

joint for 0 � k � n. Then we can modify the sequence σ = (σ1, σ2) into

σ̄ = (σ̄1, σ̄2) with one of the following two properties,

(1) both of σ̄1 and σ̄2 are either positively oriented good sequences or neg-

atively oriented good sequences,

(2) σ̄ = (σ̄1, σ̄2) has the property that (α1
n−1, α

1
n) is a positively oriented

good pair and (α2
n−1, α

2
n) is a negatively oriented good pair, or

(α1
n−1, α

1
n) is a negatively oriented good pair and (α2

n−1, α
2
n) is a pos-

itively oriented good pair. Other pairs (αi
k−1, α

i
k), k = 1, . . . , n − 2,

i = 1, 2 are either all positive or all negative pair.

Proof. For the original good sequences

σ1 = (α1
0, α

1
1, . . . , α

1
n)

σ2 = (α2
0, α

2
1, . . . , α

2
n),

there are the following eight cases:

(NP )Pk : For 0 � j < k and i = 1, 2, each pair (αi
j , α

i
j+1) is positively

oriented; (α1
k, α

1
k+1) is negatively oriented and (α2

k, α
2
k+1) is pos-

itively oriented.

(NP )Nk : For 0 � j < k and i = 1, 2, each pair (αi
j , α

i
j+1) is negatively

oriented; (α1
k, α

1
k+1) is negatively oriented and (α2

k, α
2
k+1) is pos-

itively oriented.
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(PN)Pk : For 0 � j < k and i = 1, 2, each pair (αi
j , α

i
j+1) is positively

oriented; (α1
k, α

1
k+1) is positively oriented and (α2

k, α
2
k+1) is nega-

tively oriented.

(PN)Nk : For 0 � j < k and i = 1, 2, each pair (αi
j , α

i
j+1) is negatively

oriented; (α1
k, α

1
k+1) is positively oriented and (α2

k, α
2
k+1) is nega-

tively oriented.

(NN)Pk : For 0 � j < k and i = 1, 2, each pair (αi
j , α

i
j+1) is positively

oriented; (α1
k, α

1
k+1) is negatively oriented and (α2

k, α
2
k+1) is neg-

atively oriented.

(NN)Nk : For 0 � j < k and i = 1, 2, each pair (αi
j , α

i
j+1) is negatively

oriented; (α1
k, α

1
k+1) is negatively oriented and (α2

k, α
2
k+1) is neg-

atively oriented.

(PP )Pk : For 0 � j < k and i = 1, 2, each pair (αi
j , α

i
j+1) is positively

oriented; (α1
k, α

1
k+1) is positively oriented and (α2

k, α
2
k+1) is posi-

tively oriented.

(PP )Nk : For 0 � j < k and i = 1, 2, each pair (αi
j , α

i
j+1) is negatively

oriented; (α1
k, α

1
k+1) is positively oriented and (α2

k, α
2
k+1) is posi-

tively oriented.

For each of eight cases, we define operations as follows.

For the case (NP )Pk , we replace the pair (α1
k, α

1
k+1) by the sequence

(α1
k,−α1

k+1, −α1
k, α

1
k+1), and replace the pair (α2

k, α
2
k+1) by the sequence

(α2
k, α

2
k+1,−α2

k,−α2
k+1) and rewrite −α2

k+1 to α2
k+1, i.e. we reverse the

orientation of α2
k+1. Then we can see that (α1

k,−α1
k+1,−α1

k, α
1
k+1) and

(α2
k, α

2
k+1,−α2

k, α
2
k+1) are positively oriented good sequences. Then all pairs

before αi
k+1 are positive good pairs. It means that we modify the cases

(NP )Pk into the cases (NP )Pk+1, (PN)Pk+1, (PP )Pk+1, or (NN)Pk+1.

For other cases, the operations are as follows.

(NP )Nk : (α1
k, α

1
k+1) → (α1

k, α
1
k+1,−α1

k,−α1
k+1) and rewrite the last term,

(α2
k, α

2
k+1) → (α2

k,−α2
k+1,−α2

k, α
2
k+1).

(PN)Pk : (α1
k, α

1
k+1) → (α1

k, α
1
k+1,−α1

k,−α1
k+1) and rewrite the last term,

(α2
k, α

2
k+1) → (α2

k,−α2
k+1,−α2

k, α
2
k+1).
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(PN)Nk : (α1
k, α

1
k+1) → (α1

k,−α1
k+1,−α1

k, α
1
k+1),

(α2
k, α

2
k+1) → (α2

k, α
2
k+1,−α2

k,−α2
k+1) and rewrite the last term.

(NN)Pk : (α1
k, α

1
k+1) → (α1

k,−α1
k+1,−α1

k, α
1
k+1),

(α2
k, α

2
k+1) → (α2

k,−α2
k+1,−α2

k, α
2
k+1).

(NN)Nk : no operations.

(PP )Pk : no operations.

(PP )Nk : (α1
k, α

1
k+1) → (α1

k,−α1
k+1,−α1

k, α
1
k+1),

(α2
k, α

2
k+1) → (α2

k,−α2
k+1,−α2

k, α
2
k+1).

By doing these operations, in each case the resultant sequences satisfy

the condition of one of the cases (NP )Pk+1, (NP )Nk+1, (PN)Pk+1, (PN)Nk+1,

(NN)Pk+1, (NN)Nk+1, (PP )Pk+1, (PP )Nk+1. Therefore if we iterate these op-

erations, finally we reach one of the following situations:

(1a) the resultant sequences σ̄1 and σ̄2 are both positively oriented.

(1b) the resultant sequences σ̄1 and σ̄2 are both negatively oriented.

(2a) For 0 � k � n − 1 and i = 1, 2 each pair (αi
k, α

i
k+1) is positively

oriented but (α1
n−1, α

1
n) is negatively oriented and (α2

n−1, α
2
n) is posi-

tively oriented, or (α1
n−1, α

1
n) is positively oriented and (α2

n−1, α
2
n) is

negatively oriented.

(2b) For 0 � k � n − 1 and i = 1, 2 each pair (αi
k, α

i
k+1) is negatively

oriented but (α1
n−1, α

1
n) is negatively oriented and (α2

n−1, α
2
n) is posi-

tively oriented, or (α1
n−1, α

1
n) is positively oriented and (α2

n−1, α
2
n) is

negatively oriented.

Hence the cases (1a) and (1b) is the case (1) of the conclusion of this

lemma, and the cases (2a) and (2b) is the case (2). �

Lemma 5.6. Let λx be the lamination obtained in Lemma 5.4. Then

the lamination λx extends to a taut foliation Fx with the same boundary

slope property.

Proof. For any point x1 on α1
k and any point x2 on α2

k, let δ be a

simple arc on Fk−1 whose end points are ∂1δ = x1 and ∂2δ = x2 and such
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that δ does not intersect α1
k and α2

k. Since α1
k and α2

k are disjoint and both

non-separating, there is such a simple arc δ. Let Fk−1
′ be a sub surface

which is a metrically completed surface of the open surface Fk−1 \ (α1
k∪α2

k).

Then we can regard that δ is properly embedded in Fk−1
′. The boundaries

of the sub surface Fk−1
′ has four components, two of them are copies of α1

k

and the others are copies of α2
k. We denote these boundaries by αi+

k and

αi−
k for i = 1, 2, where the signs mean that the copy with + sign is on the

right side of the original arc with respect to the orientation of original arc,

the sign − means that it is on opposite side.

Since we construct the disks {Di
k} by using the sub interval [k−1

n , kn ], we

denote the image of ∂iδ on Fk induced from this construction of disks by ∂iδ̄

for i = 1, 2, and by the same construction we can consider the image of δ on

Fk, we denote it by δ̄. The arcs α1
k and α2

k also separate the surface Fk into

sub surface Fk
′ with four boundary components αi+

k and αi−
k for i = 1, 2.

In order to specify these arcs we denote them by ᾱi+
k and ᾱi−

k . Because of

our convention for the orientation of the disks {Di
k}, we can see that αi−

k

corresponds to the vertical boundary ∂vN(Bσ) near the surface Fk−1 and

ᾱi+
k corresponds to ∂vN(Bσ) near the surface Fk.

There are four cases related to the endpoints condition of δ. If ∂1δ ∈ α1+
k

and ∂2δ ∈ α2+
k , then ∂1δ̄ ∈ ᾱ1+

k and ∂2δ̄ ∈ ᾱ2+
k . In this case, by the condition

of the orientation of disks {Di
k}, we can modify δ by sliding the end point

∂1δ to the point ∂1δ̄ along the disk D1
k and ∂2δ to the point ∂2δ̄ along the

disk D2
k. The resultant arc is smooth arc on Bσ with endpoints on ᾱ1+

k

and ᾱ2+
k . By the same argument, if ∂1δ ∈ α1+

k and ∂2δ ∈ α2−
k , then there

is a smooth arc on Bσ with endpoints on ᾱ1+
k and α2−

k ; if ∂1δ ∈ α1−
k and

∂2δ ∈ α2+
k , then there is a smooth arc on Bσ with endpoints on α1−

k and

ᾱ2+
k ; and if ∂1δ ∈ α1−

k and ∂2δ ∈ α2−
k , then there is a smooth arc on Bσ with

endpoints on α1−
k and α2−

k . In all cases, each end points of the modified arc

δ corresponds to the points on ∂vN(B).

Therefore we can foliate the complementary region Fk−1 × [k−1
n , kn ] \

◦
N(Bσ) by the product foliation Fk−1

′ × [0, 1] with the property that the

vertical boundaries of Fk−1
′× [0, 1] are connected to the vertical boundaries

∂vN(Bσ). Filling the complementary region of the lamination λx in N(Bσ)

with parallel leaves, we can extend λx to a foliation Fx. In the boundary

∂M a meridian curve intersects all leaves of Fx transversely, thus Fx is a

taut foliation. �
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In summary, we proved the existence of the good sequences σ = (σ1, σ2)

in Lemma 5.3 and we modify these sequences suitable for the assumption

of Lemma 5.4. By Lemma 5.2 and Lemma 5.4, for these modified good

sequences with good property there are two branched surfaces Bσ− and Bσ+

which carry the families of laminations {λx} which realize all boundary slope

in (−ai, 0] and [0, bi) on ∂iM for some ai > 0 and bi > 0, i = 1, 2 respectively.

Then the lamination λx is extended to the taut foliations Fx by Lemma 5.6,

we complete the proof of Theorem 5.1.

Example 5.7. Now we calculate these intervals of slopes for the com-

plement of (6, 4)-torus link. First we propose an explicit construction of the

fibration on the complement of (6, 4)-torus knot as similar to the construc-

tion established in Section 3.1.

Let K be the (6, 4)-torus link which is a pair of simple closed curves on

the solid torus V standardly embedded in S3. We denote these components

by K1 and K2. Taking the infinite cover Ṽ of V with the covering map

q : Ṽ → V , we denote the cover of K on Ṽ by K̃. Then Ṽ is a cylinder of

infinite length, and K̃ has four components. If we embed Ṽ into R3 in the

same way as in section 3.1, these components are the curves represented by

the following formulae;

k1
i (x) = (x, cos

3

2
(x+

2(i− 1)π

3
), sin

3

2
(x+

2(i− 1)π

3
)) (i = 1, 2),

k2
i (x) = (x, cos

3

2
(x+

2(i− 1)π

3
+
π

3
),

sin
3

2
(x+

2(i− 1)π

3
) +

π

3
) (i = 1, 2),

where each kji (x) projects to Kj by the covering map q.

Now we construct a surface in Ṽ as follows. We define twisted bands

Gi,j
B by the following formulae;

GB
1,1 =

{
rk1

1(x) + (1 − r)k2
2

(
2π

6
− x

)
+

(
2π

3
n, 0, 0

)
∣∣∣ 0 � x � π

6
, 0 < r < 1, n = 0,±1,±2, . . .

}
,

GB
1,2 =

{
rk2

2(x+
2π

6
) + (1 − r)k1

2

(
4π

6
− x

)
+

(
2π

3
n, 0, 0

)
∣∣∣ 0 � x � π

6
, 0 < r < 1, n = 0,±1,±2, . . .

}
,
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GB
2,1 =

{
rk2

1(x) + (1 − r)k1
1

(
2π

6
− x

)
+

(
2π

3
n, 0, 0

)
∣∣∣ 0 � x � π

6
, 0 < r < 1, n = 0,±1,±2, . . .

}
,

GB
2,2 =

{
rk1

1(x+
2π

6
) + (1 − r)k2

2

(
4π

6
− x

)
+

(
2π

3
n, 0, 0

)
∣∣∣ 0 � x � π

6
, 0 < r < 1, n = 0,±1,±2, . . .

}
,

GB
3,1 =

{
rk1

2(x) + (1 − r)k2
1

(
2π

6
− x

)
+

(
2π

3
n, 0, 0

)
∣∣∣ 0 � x � π

6
, 0 < r < 1, n = 0,±1,±2, . . .

}
,

GB
3,2 =

{
rk2

1(x+
2π

6
) + (1 − r)k1

1

(
4π

6
− x

)
+

(
2π

3
n, 0, 0

)
∣∣∣ 0 � x � π

6
, 0 < r < 1, n = 0,±1,±2, . . .

}
,

GB
4,1 =

{
rk2

2(x) + (1 − r)k1
2

(
2π

6
− x

)
+

(
2π

3
n, 0, 0

)
∣∣∣ 0 � x � π

6
, 0 < r < 1, n = 0,±1,±2, . . .

}
,

GB
4,2 =

{
rk1

2(x+
2π

6
) + (1 − r)k2

1

(
4π

6
− x

)
+

(
2π

3
n, 0, 0

)
∣∣∣ 0 � x � π

6
, 0 < r < 1, n = 0,±1,±2, . . .

}
.

The boundaries of these bands bound the squares {Pk} on each disk

Dk = {(x, y, z) |x = 2k+1
6 π, y2 + z2 � 1}, k ∈ Z. Then we define a surface

G in Ṽ as the union of all Gi,j
B and Pk. Next we define the map Rθ : Ṽ → Ṽ

given by

Rθ(x, y, z) =

(
x+

θ

6
, y cos

θ

4
− z sin

θ

4
, y sin

θ

4
+ z cos

θ

4

)
.

As seen in Section 3.1, Rθ keeps the components kji (x) invariant and

rotates Ṽ by angle π
2 , moreover if we set Gθ = Rθ(G), 0 � θ � 2π, the

family of surfaces {Gθ | 0 � θ < 2π} fills up Ṽ and all Gθ are disjoint. Gθ

has four line boundaries {C̃i
θ}i=1,2,3,4 on ∂Ṽ . We set Fθ

′ = q(Gθ) and then

the family of surfaces {Fθ
′ | 0 � θ < 2π} fills up V . The images of C̃θ are

four longitudinal circles {Ci
θ}i=1,2,3,4 on ∂V . Since the complement of V is
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also a solid torus, we connect meridian disks of the complement to each Cθ

along its boundaries, then we obtain a surface Fθ in S3 \K. The family of

surfaces {Fθ | 0 � θ < 2π} fills up S3 \ K, and as seen in Section 3.1, the

map p : S3 \K → S1 defines a fibration.

Next we take two arcs. Let α̃1 and α̃2 be arcs on ∂Ṽ such that

α̃1 =

{
(t, 1, 0) ∈ ∂Ṽ | 0 � t � 2π

3

}
α̃2 =

{
(t, 1, 0) ∈ ∂Ṽ | π � t � 5π

3

}
.

We project each arc to V and denote their images by α1′ and α2′. These

arcs are on the circle C0, then we modify these arcs slightly in the neigh-

bourhood of C0 such that we fix each end points and shift each center of arcs

forward to the direction of the center of the meridian disk whose boundary

is C0, so that each arc does not intersect the link K in its interior. We

denote the resultant arcs by α1 and α2.

Let h be the monodromy of the fibration, and set β1 = h(α1) and

β2 = h(α2). These arcs β1 and β2 are on the meridian disk whose boundary

is C2π, then four arcs are on the one fiber surface F0. The four arcs are

mutually disjoint, and each arc is non-separating on the fiber. The pair

(α1, β1) is a good pair, and so is (α2, β2). Hence by tracing the method of

Section 3.2, we can construct the branched surfaces, then we obtain a family

of taut foliations {Fx} such that Fx realizes all boundary slope in (−∞, 1)

on each boundary component.
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