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The automorphic forms to be considered in this paper are the holomorphic
ones on the upper half plane $={z=C|Im(z)>0} with respect to a congruence
subgroup of the multiplicative group B* of an indefinite quaternion algebra B
over Q. As shown in our previous papers, we have the notion of rationality
of such forms over the algebraic closure @ of Q. Let f be such a form of
weight 2k with 0<k<=Z which is a @-rational eigenform of Hecke operators.
Then we shall define two “fundamental periods” #.(f) and u_(f) which are
nonzero complex numbers determined up to algebraic factors with the property
that all the periods of f belong to Qu.(f)+Qu-(f). It can be shown that
zlf, >/Tus(fiu(F)] is an algebraic number, where <f, f> is the normalized
Petersson inner product (Theorem 4.4). Now it is well known that there is an
elliptic cusp form g belonging to the same eigenvalues for Hecke operators as f.
The main purpose of the present paper is to show that under certain assump-
tions on f, both u.(f)/u.(g) and u_(f)/u-(g) are algebraic numbers (Theorem
4.7). We obtain this result by first generalizing the integrals considered by
Shintani in [16] and applying our results of [14] and [15] to the generalized
integrals. It should be noted that the algebraicity of < 1 >/Kg, g> was proved
in [15, II] in a more general case. Let us now give a summary of the contents.

We start with a somewhat more general setting with a totally real algebraic
number field F of degree n as a basic field. We take a quaternion algebra B
over F which is unramified at » archimedean primes of F with 0<r=n. Fora
cusp form f of “even weight” with respect to a congruence subgroup I” of B,
we consider an integral of the form

Mz, )= 0 w) fw) Im )t dpt) (D=1

with a certain theta function 6(z, w) on $*x$. We shall show that M(z, f)is
a Hilbert cusp form of half-integral weight and its Fourier coefficients are given
by the “periods” of f (Theorems 2.2 and 3.1). Specializing this to the case
F=Q, we shall show that

Mz, FIT(pN=M(z, HIT(P"
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for every odd prime p, where T(p) and T(p?) are Hecke operators (Theorem 3.2).
These generalize the results of Shintani [16] which deal with the case B=My(Q).
Our methods of proof are simpler than those of [16]. The quantities u.(f) and
u_(f) will be defined in Section 4 by means of the cohomology groups attached
to I’ We shall show that the Fourier coefficients of M(z, f) are u.(f) times
algebraic numbers if f is “primitive”. This fact combined with several results
of arithmeticity proved in [15, II] and [14] concerning inner products will yield
the algebraicity of wu.(f)/u.(g) and u_(f)/u_(g) under the assumption that
L(z, f)+0.

1. Automorphic forms on 9.

The symbols 9, @, F, and n will have the same meaning as in the introduc-
tion throughout the paper. We denote by 7, -+, 7, the embeddings of F into
R, and by Iy the free Z-module generated by 7, -+, 7»; We put Clp=IR;C
=3 Cr,, We embed F into R” by the map a—(a™, -, a’®) and identify
F®eR and FReC with R™ and C™ through the map. If p=2", p,r,€1p and
z=(z1, -, 2y C™®, we put zP=J[,z¥"; this is meaningful for p=Cly if 0<z,
=R for all v. We use the letter F also for the element 3,z, of Ir; thus zF
=z, -z, ; in particular, a”=Nga) for a=F. We put also

(1.1) e(x)=exp(2rnix) for xC,
(1.2) en(z)=e(Xi,z,) for z=(z, -, z))EC".
We write x>0 and also 0« x for an element x=(x4, --+, xa)E R if x2,>0 for
all v.
Let B be a quaternion algebra over F unramified at zy, -, 7 and ramified

at Treq, -+, Tn; We assume 0<r=<n; Mx(F) is included as a special case. Put
Br=B®eR. Then there is an isomorphism

(1.3) By —> M(RYxH"",

which sends an element x of F to (x7%, ---, x°»), where H denotes the Hamilton
quaternions. For every a< Bz, we denote by a, its projection to the p-th factor
of My(RYXH"". Thus a, belongs to My(R) or to H according as y=r or y>7.
In particular, x,=x™ for x&F.

For every integer m=0, we obtain an R-rational polynomial representation
6m: H*— GLn.(C) by composing an injection of H* into GL,(C) with the re-
presentation of GL, by symmetric tensors of degree m; we understand that o,
is the trivial representation. Changing it for an equivalent representation, and
choosing a suitable isomorphism (1.3), we may assume:

(14) @, has algebraic entries for every a€B and every v=r;
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(1.5) owla,) has algebraic entries for every a B>, every v>r, and every m=>0;
(1.6) on(x)=ton(x) for all x=H".

Here and throughout the paper, ¢ denotes the main involution of any quaternion
algebra (B, M.(R), H, etc.). For an element a of By or M,(R) or H, we put
Ma)=aa* and Tr(e)=a+a’. We let an element « of By act on (C\U{co} ) by
the rule

alzy, =, z)=(a:21, =+, 2,
a, b,
az,=(a,2,+b)coz,+d)t for a,= .
N6y dy
We denote by By, the set of all « of By such that N(a)>0, and put Bi=BNBj..
Let k=X k€l and k=211 £,7,S]r with £,=0. We define a factor
of automorphy J(«, z)* and a representation o, : B — G L (C) with d=T[,>,(x,-1)
by

* ES
L7 Je, ) =TT | Nlan) | ~**(e 2,4 d)P (aEBé, zelr, a»Z( J ))
Cy v

(18) Ux(a>:0'xr+l(ar+l)® ®an<an> .

For a C%valued function f on " and an element « of Bjs., we define a C¢
valued function f{|; @ on & by

(flls )@= ATL>r Ma,)™*} - Jla, 2) "o (@) *f(az) .

Let r denote the maximal order of F and o a maximal order of B. For
every positive integer N, put

Fy={reo|N(¢)=1, y—1<No}.

By a congruence subgroup of B, we understand a subgroup I” of B’ such that
I'vc@'and [I'v*: I'yv*]<co for some N. We then denote by #; .(I") the set
of all C?%-valued holomorphic functions f on $ which are holomorphic at every
cusp (if any), and which satisfy f|l,, ,r=f for all yeI'. (The cusp condition is
necessary only when B=M,y(Q).) The subspace of M, (") consisting of the
cusp forms (that is, the elements vanishing at all cusps) is denoted by Su.
naturally S, ,=M,,. if B is a division algebra. We write simply #,, S;, and
Slar for Mo, Si,o and fll;,o7. We define a measure g on § by

(1.9) dp@)=II5-1 ¥ %dxdy,  (2=x,+1y,)
and the inner product {f, g> of two elements f and g of S, (") by

(1.10) D= y(D)-ISDtmg(z) m()tduz)  (D=I\9).

If B=My(F), we can introduce the notion of (Hilbert) modular forms of half-
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integral weight as follows. Put

0r(2)=S v (D1 x%2,)  (2=(z1, =+, 22)EDH),

a b
(1.11) Iy= eSLz(r)\CEALD ,
¢ d
where b denotes the different of F. Then we have, as shown in [13, p. 342],
(1.12) 0:r2)=41, D0:2), 7, =Clez+d)*  (ely)

with a root of unity {,, and moreover

A7 b z=(L)<cz+d)F/2 it 0<d=1 (mod 4d)
d ’ dr R ’

4

where (—) denotes the quadratic residue symbol in F. Now let h=>2 h,r,€
(1/2)I, with h, satisfying 2h;= - =2h,=1 (mod 2), and let 4 be a congruence
subgroup of I',, Then we denote by Mn(4) the set of all holomorphic func-
tions f on $* holomorphic also at the cusps such that

fr2)=7@, 2)cz+d)""F®f(z)  for every r=< é )eﬁ-
C

The subspace of M,(d) consisting of the cusp forms is denoted by S,(d).
We now define a 3-dimensional subspace V of B over I by

(1.13) V={aeB|Tr(a)=0}
and an F-valued F-bilinear symmetric form S on V by
(1.14) S, By=Tr(ap)=—af—fa (a, V).

We are going to apply our results of [13] and [15] to this form S. Asin [13,
§37], we denote by V, the completion of V at r,, and by S, the C-bilinear ex-
tension of S to V,®rC. The space 3, of [13, (2.6)] in the present case is
isomorphic to §. We define a map p:C — Mx(C) by

w —uw?
(1.15) plw)= (wel).
1 —w
The restriction of » to § is essentially a special case of [13, (2.7)]. If Im (w)+0,
we have

(1.16) ro(w)r'=(cw+d?pyw)  for T=(* Z)eGLz(R).
c

We also put

0 1
(1.17) [a, wl=(w 1)50((? >, 52( ) 0) (wel, acsV,Qr0).
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Then S,(«, p(w))=Lea, w] for v=r. For acsV, w=(w,, , w,)eC?, and kelp
as above, we put

(1.18) Lo, wl*=IL=[ay, w,1*.

If Im (w,)#0 for all v, we have

(1.19) [Baf, wl*=INBI* B, w)*la, fwl* (a€V, B,
(1.20) [Bap, wl*=IN(BI*JB, w)*[a, wl* (acV, f=BY).

For 2=2 >, Ar,€1r with 4,20, let 2; denote the vector space over C of all
polynomial functions on V,,;X -+ XV, which are S,-harmonic (in the sense of
[13, p. 3227) and homogeneous of degree 4, on V,. Define the action of B* on
P; by

1.21) tH)=t(B.,filsr)  (BEB, a€lls:V,, tEP)).
LeEMMA 1.1. The above representation of B* on P; is equivalent to o¢,;.

Proor. It is sufficient to prove the corresponding assertion for G L,(C) and
its representation on the space 2; of homogeneous harmonic functions of
degree 1 on the 3-dimensional space {xcM,(C)|Tr(x)=0}. To p=P) assign
a function p* on C? by p*(x)=p(e*x-'x) for x=C?% It can easily be shown
that p—p* gives an isomorphism of <} onto the space of all homogeneous
polynomial functions on C* of degree 21, which commutes with the action of
GL(C).

Thus we can find a C?-valued function u on Il,>, V, whose components form
Q-rational basis of @, over C such that

(1.22) w(Bap)=cu(Bule) (xcV, f=B).

If 2=0, we understand that u is the constant 1.

2. A generalization of the Shintani integral.

In order to state our first main theorem, it is necessary to normalize Haar
measures of certain subgroups of SL,(R). Put

t 0 1 s cos § sin g
ay= y Neg= ’ k0: .
0 ? 01 —sin @ cos @
(0+teR,s=sR, 0= R),

A={a.[0<teR}, A'={a.,|0+I€R]},
N={ns|s= R}, K={ky|0=E}.
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Let H be a subgroup of SL,(R) such that 7*HJ for some 8&SL.(R) coincides
with A, A’, N, N{=1}, or K. Then we define an invariant measure dh on H
so that: the whole measure of H is 1 if 7 HB=K;

S?@(ﬁazﬁ_l)l‘“ldt it BHB=A,
(2.1) [, etan=
S_w§0<18at/3_l)lf_lldl‘ if BHB=A'.

Notice that this is independent of the choice of 8. If B*Hp=N or N{x1}, we
fix an arbitrary invariant measure on H. In particular, if H=N, we take d(ng)
=ds. Since SL,R)=ANK, we define an invariant measure dg on SL,(R) as
usual by d(ank)=dadndk (a= A, nEN, k€K). This can also be characterized by

22) [op.e, $ONg=(1/2)] @02

for an integrable function ¢ on §. We shall consider the product SL,(R)" and
its subgroups H such that g~*HB for some S&SLy(R)" is a product of copies of
A, A’, N, N{=1}, or K. We normalize Haar measures on G=SL,(R)" and such
H by taking the product of the above measures. If C is a discrete subgroup of
H, then we normalize a measure d(Ch) on C\H so that

[ eman={  Secotchiach.

A measure on H\G ¢an be normalized in a similar way. We shall simply write
dg for d(Hg) if there is no fear of confusion.

We now take a congruence subgroup I” of B* such that N(y)=1 for all ye [,
and let " act on V by a—yay™ for acV and y=l. Put

(2.3) V¥={acV|N(,)<0 for all v=r}.

This is stable under I Identify B with a subset of M,(R)" through the map
a—(ay, -, a), and put, for each eV, #0,

(2.4) H,={geSLARY|ga=ag), I.=H.NI.

Given fE€S8s;,.2(7) and 0=acV, we put

@2.5) P(f, a, F>=gmh Ca, hwl*- (@) fhw)d(Tah) (wedh,

where % is the function of (1.22). Notice that the integrand is in fact [o,-
invariant. Obviously H, is a subgroup of SL.(R)" of the above type, and there-
fore the measures of H, and I',\H, can be normalized in the above described
manner.
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LEMMA 2.1. Integral (2.5) is convergent and independent of w. Moreover, it
is 0 unless asV*

ProOF. Postponing the proof of convergence, let us prove here only the
independence from w and the vanishing. Call the right-hand side of (2.5) ¢(w).
Then ¢ is holomorphic in w, and e(hw)=¢(w) for all he H,, and hence ¢ must
be a constant. Now (1.19) shows that

o=La, wl| i, w) -0 fhw)d(Tah)

\Hg

Suppose N(a,)>0 for some v=r. Since Tr(a,)=0, we have a,(w,)=w, for some
w,=H. With this choice of w,, we have [a, w]*=0, and hence ¢=0. Next
suppose N(a)=0. This happens only when B=M,y(F). We can find an element

5 of SL,(F) such that 5‘10(5:(8 1())) with 0 pe F. Put H'—=3-H,8, ["=5-T.4,
and f'=fll,,0. Then

(—p)tp@w)=|, | Jh3, w) fhow)dlT )

|

[ oo JOR, ) f(GR W) )

I

[, PR wAd7RY.

Observe that H’'=({+1}N)". Since f’ is a cusp form, the last integral is 0.
This completes the proof.
We note here a few easy relations:

(2.6) P(f, Baf™, IN=P(fllss,2:8, &, p7IB) (B,
2.7 P(f, a, T=[T,: T, JP(f, a, I'y if [I':1"]<c0,
(2.8 P(f, ca, IN=c**P(f, a, I" if ce(RM™.

A C-valued function » on V is called locally constant if there are two Z-
lattices L and M in V such that y5(v)=0 for v& L and »(w)=x(") for v—v'eM;
further we say that % is [-invariant if pw)=yGovr™) for all yl.

THEOREM 2.2. Let k=2 _, kv, and A= 1r11 AT, be elements of Ip with £,>0
and 2,=0. Further let I' be a congruence subgroup of B* such that N(y)=1 for
all yel, f an element of Sei.2(I), 7 a [-invariant locally constant function on
V, and g an element of F such that ¢*>0 for v=r and ¢~<0 for v>r. Let
R(I") be a complete set of representatives of V* modulo the action a—yay™? for
all yel. Then an infinite series
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2.9) Saercrs 7() | N@)| #2P(f, a, [ex(—gN(a)2)

is convergent and defines a Hilbert cusp form of weight h (that is, an element of
Su(d) with a congruence subgroup 4 of SLy(F)), where §=3_,7,, and

kyv+(Q1/2)  for v=r,

(2.10) h=30"1hyty, hy:{
A,+(3/2) for v>r.

REMARK. That each term of (2.9) depends only on the class of &« modulo I”
follows from (2.6). Series (2.9) is only superficially dependent on the choice of
I In fact, p(I'\H")* times (2.9) depends only on f, 7, and g, and is independent
of I This will follow from our proof of the theorem; it can easily be derived
also from (2.7).

Our proof requires a theta function on $*x$" we introduced in [13] and
[15], whose explicit form is

(211)  6(z, w, )=0(z, w, t; 7, ¢
=342 Im (w)"2* Teer plai(a)a, wl*e(Xlk, g R.[a, 2z, w])
(ZE@’”’, we‘bry tE-C—PX) )
{N(au)ZHr(i/’Z)yyIm(wy)‘zl[aw w112 (w=r),
(2.12) Rla, z, wl=
Na,)z, w>r).

Here y,=Im(z,); %, 7, £, and ¢ are the same as in the theorem. This is es-
sentially the same as [15, I, (6.6)] specialized to the case m=1. Notice that the
present R, is 1/2 times R, of [15, I, (6.7)] with —Z in place of z. Now [15, I,
(6.10)] in the present case becomes

(2.13) 0z, Bw, t; 9, Q=N(B*J(B, w)?*0(z, w, t*; 7f, N(B)¢)  (B=B5),

where 'qﬁ(a):p(ﬁaﬁ’). Our ¢ is also a special case of [13, (7.6)], and therefore,
by [13, Proposition 7.17, it satisfies

(2.14) 00z w, =5 (1, 2)cz+d)" 0z, w, 1)

* *
for every r:( )eA,

¢ d
where 4 is a congruence subgroup of SL,(F), j(7, z) is defined by (1.12), and h
is defined by (2.10) (cf. [15, I, (6.11)]). We now define O(z, w; 7, ¢), or simply
O(z, w), to be a column vector whose components are 6(z, w, t:; 7, q) for
i=1, ---, d, with components ¢, ---, {; of the column vector u of (1.22). From
(2.13) we obtain

2.15) Oz, pw;n, Q=N (B, wite.(BOG, w; P, N(Byq)  (BEBI).
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Given [ f, and » as in the theorem, we consider an integral
(2.16) SD‘@(Z, w) f(w) Im (w)**d p(w) (D=I"\9).

This can be written u(D)XO(z, w), f(w)y. Since fis a cusp form, the conver-
gence of (2.16) is straightforward. Now our theorem will follow from

PROPOSITION 2.3. Series (2.9) is equal to 27¢%* times (2.16).

ProOF. Let R’ be a complete set of representatives of ¥V—{0} modulo I’
Since

VA0 =Veer {rtarlrel\},

integral (2.16) times y~¢/* is equal (at least formally) to

Saew 7@ Srerpr | Lo, w]H @) fwe(— S . RE, 2 wDd ()

=2lach U(Q)SD Lo, wi*fo(w)e(—20 . R a, z, wldp(w),

where De=I7\9" and f.(w)="ula) f(w). This termwise integration will be jus-
tifled later. For simplicity, put G=SLy(RY and i=(, -, ) (€9). By (22),
the integral over D, can be written in the form

2 Ta gil*fulgbe(— S0 Fa 2, Gde
zzrgﬂ SR, 7 gl gi]){gpa\ﬁm[a, hgil*fa(h gi)dh}d g

=2P(f, 0, 1)\, e(—Sig.Rila 2 glds

Ha\

By Lemma 2.1, we may assume that a=V* The last integral over H,\G is
equal to

(217) e(—2u§r q::N((Xp>§y_Ev>rq;;N<ay)zy)
xgym\a exp(—z2io1 gy Im (g [as, gi]|Pdg .

Take fe=G so that (faf™), is diagonal for every v<r, and put H=pH,87.
Then H=A"". Changing g for 87'g, we find that the last integral over H,\G
is equal to

@17 |, exp(—4x 21 0. IN@) 3. Im () 2.1

Observe that if ¢ is an H-invariant function on §7, then
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2 dladdg=|_gli-tudu.
Applying this to (2.17"), we find that (2.17) is equal to

27 gN(a)y | ~*"*ex(—qN(a)z) .
Thus (2.16) is equal to

277g 7 N serery pla) IN(@)| 2P (f, o, Ien{—gN(e)z),

and hence we obtain our proposition.

Now (2.14) shows that (2.16) as a function of z behaves like a Hilbert modular
form of weight A under 4. It remains to show that the transform of (2.16)
under every element of SL,(F) has a Fourier expansion with constant term 0.

Take an arbitrary a:(j ;)est(m. By [13, Prop. 7.17, (cz+d)*8(az, w) is
a finite linear combination of functions of the form 6(bz, w, ¢; ', ¢) with O0<beF
and locally constant functions »” on V. As can be seen from [13, p. 340], this
expression is independent of t. Therefore (2.16) transformed by « is a finite
linear combination of integrals of the above type, and hence has a Fourier ex-
pansion with constant term 0. This completes the proof of Theorem 2.2.

Let us now justify the termwise integration in the above proof and prove
the convergence of (2.5) and (2.9). We consider here only the case B=M,(F),
since the case of division algebra can be treated in a similar and easier way.
Write the variable w on 9* as w=u-+7v, and recall that D (=I"\$") is con-
tained in the union of a compact subset K of $" and \Uger (W), where T is a
finite subset of SL,(F), and

W= {u-+ived||u,|<a, v,>1 for all v}

with a positive constant a. Observe that w,/v, belongs to a compact subset of
$ if weW. Fix one 7. Then we see that

Im(R,[a, z, pwh)=Im(R,[B'aB, z, wl)=v;?y,Pla] for all weW
with a positive definite quadratic form P, independent of w. Similarly

n(ala, pwl* =9 af, wl*J(B, w)™* | =v** gla)| KB, w)|**

for all weW with a polynomial function g on V. Thus 8(z, Bw, ?) has a
majorant

YFI2 P er glad exp (—2x 21 ¢y, P La )| (B, w) |

on W, where L is a lattice of V. Multiply each term by (f{w)r**)-8 and in-

tegrate over W. Since [(fl2:f)(w)} =M exp(—2A™™) on W with positive con-
stants M and A, each integral is majorized by
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2.18) MyFeg(a) SW exp(— "/ —27 S g, 9,05 P La )t dudy .

We now need an elementary

LEMMA 24. Let 0<aeR, 0<b=R, and reR. Then for every g R, >0,
there exists a constant C depending only on a, g, r such that

Sm exp(—ax*"—bx Hx"dx<Ch™9.
1

PrOOF. Put p=r+2¢+(1/2). Then the Schwarz inequality shows that the
square of the integral in question is majorized by

r exp(—Zax“”)x“’dxX? exp(—2bx Hx ™ dx .,

1

Putting x~*={, we see that the last integral is smaller than
1/2) S:e“mtzq‘ldt:(l I 2920y,

which proves our assertion.

This lemma shows that the integrals of (2.18) as well as their sum over all
asL are convergent. The same can be shown for the integrals over X in a
similar and simpler way. This justifies the termwise integration in the proof
of Proposition 2.3, and at the same time proves the convergence of (2.9), provided
P(f, a, I') is convergent. As for P(f, a, I'), if F[a7 is a field or N(a)=0, we
see easily that /,\H, is compact, so that there is no problem. If Ma)#0 and
F[a] is not a field, then N(a)<0 and F[a] is isomorphic to FBF. Before treat-
ing this case, let us first express P(f, a, I") for each a=V* as an integral of a
holomorphic r-form over a cycle.

Given acV*, take B=SL,(R)" so that (Baf™Y),= c(;, —(c}) for v=1, -, r

with 0<¢,eR. Then BH,B'=A". Now F[a] is either a quadratic extension
of For FQF. If F[a] is a field, it has exactly 27 real archimedean primes,
and hence its unit group has rank n+4r—1; therefore {+1} 1,/ {1} is isomorphic
to Z". Define an isomorphism o of (R*)" onto H, by

ol el O
. w(s)= ;31<O - ﬁl; y Pr 0 st ‘Br

for s=(s;, -+, s,)=(R*), and put v(s)=w(s)® with a point »° of H7. Let X be
a fundamental domain of (R*)"/w™*(I,). Then, with f,=‘ula)f, we have

(2.20) P(f, a, F):Sr o, [ B TEfalh)dh
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={ _Ta, o9 fae(s) 15 5,17 dss - s
We have Bu(s),=s¥pv"),, so that

(2.21) J(B, v(s)tdu(s),=2s,(fv)ds, .
On the other hand, by (1.20),

T, v(s)L=J(B, v(sNLPaf?, Bu(s)l=—2c,sBv"), J(B, v(s)) .
This combined with (2.21) yields

(2.22) La, v(s)si ds,=—c.dvls),,

and hence

@23)  P(f, @ D=(—1yIN@I¢e|  [a, wI*-a@) f@)dw. A = Adw,

with a suitable orientation of v(X).
Next let us assume that Flal=F@F. This happens only when B=MyI).

¢ _8) with ceF. Observe

Then we may assume that 8&SLy(F) and ﬁaﬂ‘1:<0

S 0
e e
0 st

with a subgroup U of t* of finite index. Defining again w(s), v(s), and X in the
same fashion as above, we see that (2.23) holds also in the present case. Now
the convergence of P(f, a, I') can be shown by decomposing X into two parts
corresponding to |s; -+ s,]=1 and |s; - s,]=1. The integral over the first part
is convergent, since f is rapidly decreasing at the cusp 7oo. The convergence
01

1 o7
We now state special cases of some results of [15] concerning © with later
applications in view. :

that

of the other part can be seen by the transformation w:+ e(w) with ez(__

PROPOSITION 2.5. Let 4 be a congruence subgroup of SLy(F) for which (2.14)
holds. For ge (), put

f(W)=g¢g(2)@(z, w;y, m@"duz (=AD"
Then [ Mo, 2(I") with a congruence subgroup I' of B*.
PrOOF. The function 6(—Z%, w, t; 7, q) is a finite linear combination of func-

tions of [15, I, (6.6)]. Therefore, changing z for —Z, we obtain our assertion
immediately from [15, I, Theorem 6.2].
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Let us now assume

(2.24)  F has a subfield E such that [E:Ql=vr and the restrictions of s, -, Ty
to E are all different.

Let zi, -+, 77 be the restrictions of zj, -+, 7 to E. Define a function @*(z, w)
on $ X9 by

%z, w)=y'0*, w; 1, q),
23‘2{ q ™z, if v=r,
g™z, if vy>r and <,=7; on £E,
where ¢ is an element of (1/2)I; defined by
o=Respz(A)+B/2)([F: E]—1) X7l
Define also an element g of (1/2)I5 by
=231 (k42— Resp p(D)—G/2) I E1 X7y

It can easily be seen that

® %
Oz, )=, 2)(cZ+d)*~E»O*, w) for every 7’:< J )E_/i’
c
with a congruence subgroup 4’ of SL.(E).

PROPOSITION 2.6. For ge M (d') with such a 4, put
fw={, 6205 win@rdue)  (@=4\9).

Then f& Mop,.27) with a congruence subgroup I’ of B*. Moreover, if g has
algebraic Fourier coefficients, then f is arithmetic in the sense of [15, II, §21.

Proor. Our assertions follow immediately from [15, I, Theorems 6.3 and
64]. It should be noted that the Q-rationality of f defined on [13, p. 329] is
consistent with that of [15, II, § 2] as can easily be shown.

We conclude this section by giving transformation formula (2.14) in a more
explicit form, which will be needed in the next section. The symmetric form
S being as in (1.14), choose a basis {8;, 8., fs} of V over Fso that ¢S(8;, Byt
for all 7 and j with an element ¢ of F as in Theorem 2.2; put L=X%,r8; and
use the same letter S to denote the matrix (S(B;, §8;)) of size 3. For u, veV,
put

(2.25) flz, wiu, v

=942 1Im (w)** ¥ ,-ver €r(gS(a, () e, W]*e(Z g, R.[a, z, w]).
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;)) eSLy(1); sup-

pose bg{S}=0 2dY), cg {57} =0 (2b), cg™'S™'=0 (b), and 0« d=1 (4b), where {S}
denotes the vector whose components are the diagonal elements of S. Then
20089 Y 2+ e 0f e, w3, v)

with u'=au+tcv, v'=bu+dv, and X=(1/2) Trpo(gS(u, v)—¢Sw’, v")). This fol-
lows from [13, Lemma 7.2].

This is a special case of (2.11) and of [13, (7.6)]. Let r:(f

(2.26) Frz ws u, v=(

3. The commutativity with Hecke operators.

Let us now assume F=@. We are going to specialize Theorem 2.2 to this
case and then study the behavior of (2.9) under Hecke operators. For each prime
p,let Z, and @, be the p-completions of Z and Q. We fix a maximal order »
in B, and put B,=BR®eQ,, V,=V®eQ, For every lattice a in B, we denote
by a, its p-closure in B,. Let e be the discriminant of B, that is, the product
of all primes p ramified in B. If pte, we can find an isomorphism g, of B,
onto My(Q,) such that p,(0,)=M,(Z,). Then

a b
gp(Vp)={< )eMz(Qp)}.
¢ —a

Let us fix a positive integer m prime to ¢ and define an “order of level m” to
be the lattice o’ contained in o such that

a b
(¢S
(3.1 D},Z{ c d

cemZp} if ple,

0p if ple.
We put then
(3.2) I ={reo |N()=1},
1 =
(3.3) sz{rel’,; yp(r)z< 01 )(mod mo,) for all p lm}.

These groups will be denoted simply by I” and /" when m is fixed. To define
Hecke operators, let Y, or simply Y, be the set of all « in BiNo’ such that

a * . . . .
yq(a)z(* >k) (mod mo,) for every prime factor ¢ of m with an integer « prime

to m. Given a Dirichlet character ¢ modulo m, we define a map ¢y:Y —C™ by
or(e)=¢(a)™" for such @ and a. Then, for a positive integer h, we denote by
Sx(I", @) the vector space of all cusp forms g on $ such that gl.r=er()g
for all yeI”. Now, for each prime number p, there is an element § of ¥ such
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that
I"BI"={E€Y |NE)=p}.

Let I"BI"=\U,I"B; be a disjoint coset decomposition. Then a Hecke operator
T(p) acting on S,(I”, ¢) is defined by

(34 AT@)=p ™ 35 0e(B) fnBs (FESKI, 0)).

This is meaningful for all primes p including those dividing me. (For details,
see [15, II, §17. The present definition is different from that of [157 by a factor
pM®-Ly If B=My(Q), Iy, and I', coincide with the groups

b
1}(;@:{( ¢ ; >65L2<Z);cgo (mod m)},
c

a b
n(m):{( ) >en,(m)| a=d=1 (mod m)} :
c

In this case, we write S(m, ¢, k) for S,(I'n, @). Then (3.4) coincides with the
classical T(p) defined by Hecke.

Let N be a positive integer divisible by 4, y a character modulo N such that
¥(—=1)=1, and & an odd positive integer. We then denote by SN, ¥, £/2) the
space of cusp forms f satisfying
*

foa=y(d)j(r, 2)°f(z)  for every 7:(
where j is defined by (1.12).

To state a special case of Theorem 2.2, we consider 8 of (2.11) with g=1
and {=1. Thus it has a simpler form

ES
)efo(N),
d

[4

(3.5) 0(z, w; D=y ey pla)la, Wl*e(Rla, z, w])
(z€9, wed, y=Im(z), v=Im(w)).

We now take an explicitly defined » as follows. Let o* be the maximal order
in B such that o}=0, for all » prime to m and

a b/m

o§={aeBp|,up(a)=( ) ) with a, b, c, dezp}

cm
for every p|m. Given a=o* we can find an integer b such that

% b/m

M(a)E( ) (mod o%)  for every plm.

% *

For a Dirichlet character ¢ modulo m, we then define a locally constant function
ng on V by p4la)=¢(b) for such a contained in 0*N\V and 7,4(a)=0 for aso*NV.
(We put ¢(b)=0 for (b, m)+1.) For simplicity, we fix ¢ throughout the rest of
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this section and write simply 7 for 7.

THEOREM 3.1. Let m be a positive integer prime to the discriminant e of B,
and ¢ a character modulo m. For f€S,(Im, ¢*) with a posilive integer k, put
(3.6) L(z, f)=QuI'\D))* Zaercrs n(a) | N(a)| 2P(f, a, Ie(—N(a)z)
with I'=I"n and with the above 3, where P(f, a, I') and R(I") are defined as in

(2.5) and Theorem 2.2. Suppose ¢(—1)=(—1)*. Then L(z, f) as a function of z
belongs to SN, y, 2k+41)/2), where N is 2me or 4dme according as me is even or

odd, and x<d>=(:})k¢(d>.
Proor. By Proposition 2.3, we have
3.7 Lz, f)=#(D)‘ISD0(Z, w; 7) fw)Im (w)**d p(w)

=0z, w;n), fr (D=I\D).
Let L=0'"V. Consider the matrix S relative to this L as defined at the end
of §2. Observe that det(S)=2m?%?, {S}=N{S5"% =0 (mod2), and (N/2)S! is in-
tegral. ‘Therefore, from (2.26), we obtain 6(rz, w; ﬁ):m_j(T, 20z, w; )

for every r:(j DEE’(N) when 0<d=1 (mod4). Since I(N) is generated by

such 7 and —1, the formula is true for all elements of I,N). On the other

hand, we can easily verify that »(dad=)=¢(0) *y(a) for every 01", and hence,
by (2.13), we have

(3.8) 0(z, dw, =gy J(8, w)**6(z, w; ) for every odel”.
Therefore we obtain our assertion from Theorem 2.2 and Proposition 2.3.

REMARK. Series L(z, f) and € can be defined for an arbitrary character ¢
modulo m. It can easily be seen, however, that they are equal to 0 if ¢(—1)
#(—1),

For each prime number p, a Hecke operator T(p*) acting on S(N, y, (2k--1)/2)
was defined in [8]. If g(z)=25-1a(n)e(nz)=S, ¥, (2k4-1)/2), we have g|T(p?
=> -1 b(n)e(nz) with

(3.9) bm=o(ptn)-+y ()5 )p (w25 a o™ n),

where ;((n)z(_Tl)kx(n); we understand that a(p~?n)=0 if ne p*Z and y'(n)=
¥(n)=0 if n is not prime to N (see [8, Theorem 1.7]).
THEOREM 3.2. For every odd prime p and for every fESo(Im, ¢%), we have

Lz, NIT(p*)=L(z, fIT(p)).

The same relation holds also for p=2 if me is even.
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PrROOF. Define a locally constant function %’ on V by

7@=1 ()" (3 Y P el DY+ 5 ()

if Ma)eZ and 5'(a)=0 if N(a)& Z, where y'(n)=d¢(n) if n is prime to 2me and
¥/ (n)=0 otherwise. In view of (3.9) and (2.8), we see easily that L(z, TP
is given by the right-hand side of (3.6) with n replaced by »’. Let us first as-
sume p is prime to Zme. Then we have

Lz, fIT(pN=X0z, w;n), FITOP=(py<0(z, w; PIT(p), />
(cf. [15, I, Lemma 1.37). Taking {8;]0=<2=p} as in (34), we have, by (2.13),
0z, w; PIT(P)=21, o Pr(B1)2p* 1y 02 p(Bra D e, W]*e(p*Rl e, 2z, w]).
Substituting p~'a for a, we find that 6(z, w; PIT(P)=0(z, w; n*) with
PHO= D" Sho (B 7 Brafr).

Observe that »'(yar ")=¢y(1) 2y (@) and p*rar-)=¢w(7) *p*a) for yeI”, and
hence L(z, /)IT(p* and L{z, fIT(p)) are given by the right-hand side of (3.6)
with 7 replaced by 7’ and ¢(p)*»*, respectively. We shall therefore prove the
desired equality by showing

(3.10 7' ()=¢(p)n*(a)

for all aeV with N(a)<0. For this purpose, we first observe that 7(a)#0 or
¥ a)#0 only if Ma)eZ and pacso*,

LEMMA 3.3. Let p be a prime not dividing 2me, and let
W={BeVNnpo*|0>N(B)eZ}.

Then for every BEW, there exists an element v of I such that a=yBr™" belongs
to the following three types:

W M@:(;p _f’fz’) with a, b, c€Z,, c& pZ, ;

@) ﬂp(m:(j _;’) with a, b, c€Zy, ¢& pZy;

(3) aespo*.

Proor. We first note a simple fact: for every x=Z,, there exist elements
J and e of I" such that

10 0 —1
(3.11) /@(5)5( 1 ), pzp(s)E( _ ) (mod po,).
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This follows from the strong approximation theorem due to Eichler [1, Satz 5].

4 b). Then
c —a

a?+bc=p®n. Suppose plb. Then pla but p [ c since a& oy, SO that p%{b. Thus
« has form (1). If pfb, choose xeZ so that a=bx (mod pZ,) and take sel’

as in (3.11). Then

Now, given acW, suppose a0, Put Na)=—n and pyp(a)r-(

a—bx

b
p/,zp(éaﬁ‘l)z( ) (mod poy).
*

X
Replacing « by dad™!, we may assume that pla. Then p*lc. Take ¢ as in
(3.11). Then we find that eae™? has form (1). Next suppose a&op, & p0y. Put

,,cp(m:(z _Z) Take § as in (3.11). Then pp((?aﬁ“):(:, ") with ¢’=c--2ax

—bx® (mod pZ,). Since a< po, and p>2, we can choose x so that cEpL .
Then dad-! has form (2). Finally if aep~o* and a<po,, then a< po*, which
completes the proof.

We are going to prove (3.10) for the elements a of types (1), (2), (3) of the
above lemma. First let a be of type (1). Then y()=p* n(pa)=p**¢(p)n(a).
We can take {§;} of (34) so that

12
( (0=2<p)
0 p

(3.12) poBa)= 5 0 (mod p*0)
( (A=p).
01

Then we find that B;af7*co* if and only if 2=0. Therefore 7*(a@)=7p""¢x{Bo)’

p(Boa 7). For a prime factor ¢ of m, let pq(a)=<::n bi”;) and /lq(‘BO):<t:n ;)
Then

x  ¥2b/(pm)
(3.13) yq(ﬁoaﬁa‘E( ) (mod og),

and hence 7(BoaBe)=e(p) *Px(Bo) 2n(a). This shows that 7*(a)=p**¢(p) " n(e).
Next suppose « is of type (2); let n=—N(a). Then

7 @)=g(p)p* (5 )r(@rtp ().

Put /,ep(a)—:(;l _2) Then B,afi'co* if and only if b—2a2—c°EpZ,, AFD.
The number of such 2 is (%)—1—1. We have again 7(8:a8:)=¢(p)*¢r(f1)*n(a),
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so that ﬂ*(a):pk”(l—!—(%))gb(p)'lp(a), which proves (3.10). Finally suppose
acs po*, Then p?|N{a), and

n'(@)=p*d(p*)nla/ p)+ p*n(pa)=(p+1)p* P pIn(a).

In this case Bapiieo* for all 4, so that ¥ a)=p* ' (p+1(p)*nla). Thus
(3.10) is true for all «=W. This proves the equality of Theorem 3.2 for p not
dividing 2me.

Suppose plm. Then p'(a)=p* n(pa) if N(a)eZ. Let § be an element of

Y such that N(6)=p and yq(5)5<é 2) (mod p*mo,) for all prime factors g of m.

Then we have fIT(p)=p* 821 fI8; with {6;} such that I6r'=\UriI's,. Let
p=6" and I'BI'=\U23} I'B;. Then we have

Lz, fIT(p)=X0(z, w; n), fITP»
=pE 2Oz, w B, £

by [7, Prop. 3.39], and hence, by (2.13),

Liz, fIT(pN=<0(z, w; 7™, />
with p*(@)=p* 20 n(B:af7?). Now we can take §; so that /,zq(ﬁk)z(;:n (1)>
(mod p*mog) for all prime factors ¢ of m. For the same reason as in the case
p 4m, it is sufficient to prove that p*(a)=7"(a) for « in a suitably chosen R(I").
We may naturally assume that N{a)eZ. First suppose acpo* and put pple)y=
<* r/:q) Then 7’(a)=0 and ﬂp(ﬁzaﬁil)5<* j)r/m) (mod po,), so that 7*(a)=0.

% % *

a b/m

cm —a
¥ a)=n(a)=0 for the same reason. Therefore assume be pZ, Take x€Z so

Next suppose a& o* and put p-pp(a):( ) If bepZ, we have again

that a—bxepZ,, and take yel’ so that ﬂp(r)z<xlm (1)) (mod mo¥). ‘Then
p-yp(rar-l):c b im) with V& pZ,, a’epZ, Replacing «a by yar~', we may
assume that a<pZ,. Since a*+bce p®Z, we see that p*lc. Now a direct cal-
culation shows that f,afz'eo* if and only if 2=0, and
alp b/m
cem/pt —a/p
A similar congruence can be found for each prime factor ¢ of m. We then
obtain p*(a)=p* p(pa)=79"(a).

Let us finally consider the case ple. We have again p’(a)=p*"p(pa). Take
peo’ so that N(B)=p. Then f|T(p)=p*'¢u(B)2fiB, so that

ﬂp(ﬁoaﬁﬁl)5< ) (mod o).
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Lz, FIT(oN=p""dx(p)*<0(z, w; 7), fIB>
=p*igy(B) Oz, wi I, [r=X0G=, wi9™), 7

with p*(@)=p*"'¢y(B) (8 *apf). A relation similar to (3.13) shows that n(f~'ap)
=¢y(B)n(pa) and hence p*=x’. This completes the proof of Theorem 3.2.

As mentioned in the introduction, Theorems 3.1 and 3.2 were given by Shin-
tani in the case B=M,(Q) (with minor differences in formulation; see [16,
Theorem 27). His proof of the commutativity with Hecke operators relies on the
theory of binary quadratic forms. Here we have presented a shorter and simpler
proof which requires only local computations.

4. Main theorem on the periods.

Still with F=@, for an arbitrary congruence subgroup /" of B*, let Al
denote the field of all Ilinvariant (meromorphic) automorphic functions on $
which take algebraic values at CM-points on . Take an element g of A
other than the constants. We call an element f of #,(I") arithmetic (or Q-
rational) if #*(dg/dz)""f? belongs to A(["). (The arithmeticity can be defined
in the general case with an arbitrary F. For details, see [12, §7], [13, §§4, 5],
[15, 11, §27.) It can be shown that S,(I'n, ¢) is spanned by arithmetic elements
(see [15, II, Lemma 2.3]); moreover Hecke operators send the set of arithmetic
elements into itself.

We say that an element f of $,(I") is primitive if there exists m and ¢ with
the following properties:

41) fesSyIm, @); f is an eigenform of all Hecke operators T(p) (of level m);

(4.2) if 1 is a divisor of m smaller than m and g is an element of Sull'l, @)
which is an eigenform of T(p) for almost all p, then the eigenvalues of
T(p) for g are different from those for f for infinitely many p.

Then f is said to be of type (m, e, ¢, h), where e is the discriminant of B
defined in §3. Now the theory of Jacquet-Langlands in [2] (which sharpens
that of Shimizu [5]) combined with the result of Miyake [3] shows the follow-
ing facts.

(4.3) If f is a primitive form of type (m, e, @, h), then there is a primitive form
g of type (me, 1, ¢, h) with the same eigenvalues of Hecke operators
Moreover, if fi is an element of Sy(lm, @) which is an eigenform of Hecke
operators T(p) for almost all p with the same eigenvalues as those for f,
then f1 is a constant multiple of f.

As a consequence, every primitive form has a constant multiple which is arith-
metic.
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We shall now define the “fundamental periods” of a primitive form. This
requires the cohomology group associated with S$,(I"). We first identify By with
My(R) and consider B a subring of M,(R). Then

Ve=V Qe R={x e M,(R)| Tr(x)=0}

for V defined by (1.13). Let (: _i) be the variable element of Vi For each

integer £=0, we denote by % the vector space over R of all R-valued homo-
geneous polynomial functions § on Vy of degree x such that (6%/0r>+406%/0s01)%
=0. (This is similar to ¢; of Section 1, which was defined at the archimedean
prime ramified in B.) We put then ®{=P4®zC and define a representation p,
of GL(R) on @% by

(44 LopI@=0G6r)  (hePE, rEGLAR), E€Vp).

For the same reason as in Lemma 1.1, p, is equivalent to the representation of
G Ly(R) by symmetric tensors of degree 2¢. Obviously @% is stable under O
It I'is a congruence subgroup of B*, we can let I"act on @ through p,. There-
fore we can define the (first) cohomology group

H(I, @)=Z(I, @3)/BU, %)

with Z({I', #%) and B, ®%) given as follows (cf. [6], [7, Ch. 81). An element
t of Z(I, P%), called a cocycle, is a Pi-valued function on I” such that

4.5) =y +p0)  for every y,del,
(4.6) Ho)ell—-plo)1P: for every parabolic element o of I.

B(I', ¢%) consists of all ¢, called coboundaries, for which there exists an element
v of P% such that

4.7 WN=Ll—=p)y  for all yel.

In the present setting, however, it is more convenient to view such a cocycle
or a coboundary as an R-valued function (7, &) with variables y=l'and £ Vp.
Then (4.5), (4.6), and (4.7) can be written as

(4.5") 170, E)=x(r, )+, r&r) (1, 0€l’; £€Vr);
4.6 o, =43, —3,(07€a) with 3, =Py for each parabolic element o of I';
4.7 Wy, O)=9&)—y(rér)  with yHePk.

We can similarly define the modules Z, B, H with @% instead of %% ; obviously
HI, @6)=H{T, #)QgC. For an element a of Z(I, %) or H(I, Pg), its complex
conjugate, real part, and imaginary part can be defined in an obvious way ; they
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are denoted by @, Re(a), and Im(a). If a=Z{, P%), we denote by cl(a) its co-
homology class.

Let us now investigate certain integrals attached to the elements of S,x(")
and their periods. We first observe that for every we®, [£, wl® as a function
of £V 5y belongs to @4 Given fe8.,(IN), ve$, £V, and r<l, put

XG, &, f, =] T8, v fwdn  @=9),
0, & f,u=Xv, & f, v).

These as functions of & belong to @' It can easily be seen that
Xz, & f, =Xz, %7, [, v+, & £, v);

Uy, & f, v) as a function of (7, &) belongs to Z(I', P§*); moreover, its cohomology
class is independent of v. (For the treatment in a more general case, the reader
is referred to [6] and [7, Chapter 81.) We put then ¢[ f1=cl(7, &, f, v)).

PROPOSITION 4.1. The map f—Re(c[f]) gives an R-linear isomorphism of
Sox(I") onto H(I, Pi4).

This is a special case of [6, Théoréme 1] and of [7, Theorem 8.4]. In fact,
we can assign to each peP%* a homogeneous function p* on R? by p¥(x)=
ple~tx-tx) for x= R? as in the proof of Lemma 1.1. Obviously Re(p*)=(Re(p)*.
Therefore f—Re(c[ f]) is essentially the same as the maps of [6, Théoréme 1]
and [7, Theorem 8.47.

To simplify our notation, with fixed I’ and &, let us write H(R) and H(C)
for H(I, 5% and H(, %7, and further denote by H(®) the submodule of
H(C) consisting of all cohomology classes represented by the cocycles ¢ such
that (7, &)eQ for all yel and all V.

PROPOSITION 4.2. There exists a C-valued C-bilinear alternating form A on
H(C) with the following properties:

(4.8) ip(DXS, g>=A(c[[1], cLgl) for f, g€Ss:(I), where D=I'\H,
4.9)  iwD)YKS, @>—<g, [}=4ARe(c[f]), Re(c[gl) for f, g&€Sull);
4100 A is R-valued on H(R) and @-valued on H(Q).

Proor. This is an easy consequence of [6]. In fact, by virtue of Proposi-
tion 4.1, we can define an R-valued alternating form A on H(R) so that (4.9)
holds. As shown in [6, §4], A(cl(a), cl(8)) can be explicitly expressed in terms

of a(y) and B(y) with finitely many elements 7 of I and some quantities deter-
mined at the cusps. If we extend A to H(C) C-linearly, then the computation
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of [6, §4] shows that (4.8) holds. Assertion (4.10) can be proved by the same
argument as in the proof of [6, Théoréme 2].

Let us now consider the case where I'is the group I, defined by (3.3).
For each prime number p, we can find an element 8 of ¥, such that M(8)=p»

and yq(ﬁ)5<(l) 2) (mod mpy) for all prime factors ¢ of m. Let I'BI=\U,;I8, be

a disjoint coset decomposition. Then it can be shown that f|T(p)=p** X, fll:xf2
for every feS.,(I"). Now we can define the action of I'81" on H(C) and on
H(R) in a purely algebraic way as in [7, §8.3]; we denote this action also by
T(p). Then we have c[ f|T(p)]=c[f1]T(p). This is proved in [7, Prop. 85]
with Re(c) instead of ¢; the proof can easily be seen to be valid for ¢. We

can also find an element ¢ of o such that N(d)=—1 and yq(ﬁ)z(_(l) (1)> (mod mo,)

for all prime factors g of m. Then §2<l;, 6167 *=1, 8I"67*=1" and ¢y(ad™?)
=pyp(a) for all a€Y, where I is defined by (3.2) and ¢ is a character modulo
m. Now, for feS,,(I"), we put

41D (fIoYw)=J@, w)y**fow)  (wed).

Then f|ld€S:4(I7); moreover f16€S. (7, 3) if fe8.(I7, ¢); further (f10)| T(p)
=(f{T(p))|8 for every prime p. We can also define the action of d on Z(I', 2%*)
by

(4.12) ¢lo)r, §)=(—D"6779, 67€0),

which induces an action on H(C) in a natural way. A direct calculation shows
that

(4.13) cLro=cLflo].

Let f be a primitive form of type (m, ¢, ¢, 2k) which is arithmetic, and let
FIT(p)=24,f with ,&C for each prime p. We have (f|8)|T(p)=1,(f10). Now,
as to the nature of {1,}, the following two cases can occur.

Case 1. 1,=1, for all p. (This is so if 1,=2, for almost all p.)
Case 1. 2,#1, for infinitely many p.

In Case I, we have f|d=bf with a constant b. Then bb=1. By [15, I, Lemma
4.27, 16 is arithmetic, so that b=@Q. Taking e¢=@ so that b—=a/d and replac-
ing f by af, we may assume that f|d=f. Therefore we shall always assume
F16=f in Case I in the following treatment. In Case II, f and f|é are linearly
independent over €. Put, in either case,

Ue={zcH(C)\z|T(p)=2pz for all p},
U=Us;NH@).
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Obviously Ueg=U&RgzC.

LEMMA 4.3, If f is a primitive form as above, c[ f] and c[ f1|0 form a basis
of U¢ over C. Furthermore, U has a basis {a, 8} over @Q such that ajd=a and
B|o=—".

ProoF. In Case I, Proposition 4.1 shows that Re(c[f]) and Im(c[f]) form
a basis of U over C, and hence ¢[f] and ¢[f] (=c[f]id) form a basis of Uc
over C. In Case lI, we see again from Proposition 4.1 that Re(c[ f]), Im (c[fD),
Re(c[f]6]), Im(c[f]8]) are linearly independent over C, and hence c¢[f] and
c—[—fm (=c[ f119) form a basis of Ug over €. In either case, § has eigenvalues
+1 on U, with multiplicity one, which proves the second assertion.

With a fixed arithmetic primitive element f as above, we take a and 5 as
in Lemma 4.3. Since ¢[ f]eU¢, we can put

(4.14) cLfI=us(flatu()b

with complex numbers u,(f) and u.(f). We call these numbers the fundamental
periods of f. They are determined by {4}, up to algebraic factors. We have

(4.15) cLrTod=clf1lo=u(fla—ufb,

so that u (f)u_(f)#0 in view of Lemma 4.3. In Case I, U is stable under the
complex conjugation, and hence we can take a and b to be real; then u.{ ) is
real and u.(f) is pure imaginary.

THEOREM 44. If f is an arithmetic primitive element as above,
alf, {o/TulHu-(f)] is an algebraic number.
PrRoOOF. Put u=u.(f) and v=u_(f) for simplicity. By (48), we have
ip(DYf, fr=A(ua-+vh, ua+vb),
iu(DX f19, f18>=A(ua—vh, ua—uvb).
Since <f, f>=<f|0, 16>, we have
(4.16) iw(DXF, fr=uvAa, 0)+udAb, a).
In Case |, a, b, u, and 7v are real, so that
417 i(DX S, f>=2usA(b, a).
In Case II, we have

(4.18) 0=i(D)f18, f>=A(ua—vb, ua+vh)=2uvAa, b).
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Now Re(c[f+f|6))=ua+tua and Re(c[ f—f10])=vb+3b. Since {f+f|8, f—f|o)
=0, we obtain, from (4.9) and (4.18),

0= A(ua--za, vo-+ob)=udA(a, b)+avA, b).

This combined with (4.16) yields again (4.17), which proves our assertion, since
w(D)/n and A(a, b) are algebraic.

PROPOSITION 4.5. For an arithmetic primitive f of type (m, e, ¢*, 2k) with
e>1, put 2u(I\D)L(z, )= ane(nz) with I=Iy and with L(z, f) of (3.6).
Then an/us(f)EQ for all n.

PrOOF. Let 7 denote the order of IM{+1}. Given a=R(I") such that n=
—N(a), let 7 be an element of I, which generates I, {+1}/{x1}. Define an
isomorphism » of R* onto H, as in (2.19). In the present situation, we have

n1/2

0 —nir

with f=SLy(R). Changing 7 for y* if necessary, we may assume that y=w({)
with t>0. Then (2.20) together with (2.22) shows that

s 0
ﬁaﬁ“=( ) w(s>=ﬁ‘1( )ﬁ (se R
0 st

P(f, @ Dy=—@n/o) | "L, wlt-fwidw,
with ve9. Let r be a cocycle in the class ¢[f]. Since ya=ay, we sse that
1(7, «) depends only on ¢[f], and

n2P(f, a, IN=—2/tx(, o).
Put ay=0"'ad, 7,=06"'rd. Then pla)=¢(—1n(a) and
n2P(f, ey, IN=—(2/0x(r1, a)=—Q/0)x|0)7r, a).
Since ¢(—1)=(—1)*, we have
(4.19) e)n 2P(f, a, I)+nla)n *P(f, oy, I')
=—Q/t)ple)lx(r, a)+1a)r, a)l.

If « and «; are not conjugate under [/, this sum is a part of the coefficient an.
Suppose sae '=a; with e=I"; then ¢(—1L)p(a)=nla;)=7(a), so that n(a)=0 or
H(—1=1; thus (4.19) is 0 or its half contributes to a,. Now, with a cocycle
a, in the class a as in (4.14), we have

(7, )+ 10Xy, a)=2u+(flasy, a).

Since a(7, ) is algebraic, we see that (4.19) is u.(f) times an algebraic number,
which completes the proof.
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For an elliptic modular form g(z)=X5.1b.e(nz) and a Dirichlet character &,
put

D(s, g, §)=25-16(n)ban™°.

Suppose that g is a primitive element of type (N, 1, ¢, &) with b,=1. As shown
in [107, there exist two constants v.(g) and v-(g) with the following properties:
for teZ, 0<t<k, one has

v(g) if E(—L=(-1),
vlg)  if E(=D=(-1)"1,
4.21) g, go~vi{ghv-(g).

Here and henceforth, we write a~b for two complex numbers a and b if b+0
and a/bsQ.

(4.20) = 'D{t, g, E)’V{

LEMMA 4.6. If k is even, v:(g)~vi(g) and v(g)~v(g); if k is odd, v(g)
~v-(g).

PROOF. Put g'=31%.,b.e(nz). Since b,=¢(n)b, for (n, N)=1, we have
(4.22) D, g, &)=a-Dt, g, §¢)

for 0<t<k with ¢=@ (depending on #). If k£>2, the quantities of (4.22) are not
0 for t=k—1 by [9, Prop. 2] (cf. also [11, Prop. 4.16]). 1f k=2, we have to
choose & so that (4.22) is not 0 for t=1, but this is guaranteed by [10, Theorem
2]. In any case, we have v,(g")~vi(g) and v-(g")~v-(g) if & is even, and v.(g")
~v.(g) if k£ is odd. As shown in [10, Theorem 1], vi(g)~vi(g") and v{g)~
v-(g"), and hence we obtain our lemma.

We are now ready to state and prove our main theorem.

THEOREM 4.7. Let ¢ be a character modulo m such that gb(—l):(—l)k, and
f an arithmetic primitive form of type (m, e, ¢, 2k) with e>1. Further let g
be the primitive form of type (me, 1, % 2k) whose first Fourier coefficient s 1
and whose eigenvalues for Hecke operators ave the same as those for f. Suppose
L(z, f) defined by (3.6) is not identically equal to 0. Then both us(f)/v:(g) and
u-(f)/v-(g) are algebraic numbers.

PrOOF. Put h(z)=u(f) 'l =\D)L(f, z). By Proposition 4.5, h is Q-rational,
and by Theorems 3.1 and 3.2, heS(N, y, Qk+1)/2) and h|T(p*)=2,h for all odd
primes p. We have also

ui h= TG P [ m @) dpw)  (D=T:\9)
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as in (3.7). Put
q(w):gv W20z, w: ) Im @ duz)  (D=TANN\D).

Then
w(Dyur( f)h, h>=ngmSD0(z, w ;) fw)Im (wk Im (2)* 2 d p(w)d ()

=w(D)q, f>.

By Proposition 2.6, ¢ is Q-rational and by (3.8) belongs to &;,(I7). Since f is
primitive, we have g=bf-+r with b=@Q and an element r of S,x(I7) orthogonal
to f. Thus

(DU (f )R, By=p(DW< £, [r~u(fHu-(f).

Now Theorem 1 of [14] asserts that n<h, h>~v_(g), and hence u_( f)w?;_—(g)w
v-(g) by Lemma 4.6. On the other hand, <{f, f>~<{g, g> by [15, I, Theorem 3.8],
and hence u.(f)u_(fy~v+(gw-(g) by Theorem 4.4 and (4.21), so that u.(f)~v.(g).
This completes the proof.

Let us now add a few concluding remarks. In the case e=1 (i.e. if B=
MAQ)), we may put f=g. Then it can be shown that w.(f)~v.(f) and u-(f)
~v_(f) more directly by the same technique as in the proof of [10, Theo-
rem 3.

Recently, Ribet proved in [4] that the jacobian of I'\ is isogenous over @
to the primitive part of the jacobian of Iy(e)\$. We can derive from this the
conclusion of the above theorem when %2=1 and m=1. Conversely, if we could
prove the rationality of u.(f)/v+(g) and u_(f)/v-(g) over a specific number field,
that would extend the result of Ribet to the case of arbitrary m.

In the above theorem, we assumed that m is prime to ¢ and L(z, /)#0. It
is naturally desirable to remove these conditions.

We treated in this section only the case F=@. It seems that our methods
can be generalized to a totally indefinite B over a fleld F of higher degree.
The case of a partially definite B (i.e. the case with »<n), however, is not so
transparent. The periods of the elements of Sp,22(") in this case seem to be
related to the inner products of the nonholomorphic pullback of a Hilbert modular
form of half-integral weight with holomorphic forms, which are similar to the
inner products considered in [15, I, Theorems 3.6 and 3.7].
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