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Abstract

In August 1997, we deployed a total of 24 broadband three-component velocity seismome-
ters temporarily around Aso volcano in Kyushu, Japan. Most of these stations were: located
within 1 km of the first crater of Naka-dake and provided good azimuthal coverage to constrain
the geometry of the source region of long-period (15s) tremors (LPTs). The spatial pattern of
the observed LPTs amplitude reveals that the source of LPTs consists of an isotropic expansion
(contraction) and an inflation (deflation) of an inclined tensile crack almost parallel to the chain
of craters of Naka-dake (Yamamoto et al., 1999). This report summarizes details of the observa-
tions, as well as some of the characteristics of the observed data from the ASOBOI 97 expedition.
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1. Introduction

Seismic signals observed in and around volcanoes contain many complicated
wave phenomena. A volcanic tremor is a type of seismic event that occurs only
near volcanoes. Since its first observation by Omori (1911, 1912), there have been
many speculations about the source mechanism of volcanic tremors and numerous
reports of observations at various volcanoes (e.g. Chouet, 1996).

At Aso Volcano in Kyushu, Japan, volcanic signals with unusually long period
(about 7 sec) have been observed since its discovery by Sassa (1935), and recent
advances in broadband seismometry revealed the existence of signals with an even
longer period (i.e.~15 sec) (Kaneshima et al., 1996; Kawakatsu et al., 1999). They are
called “long period tremors (LPTs)” by Kaneshima et al. (1996) (signals with a period
of 7 sec are named “the volcanic micro-tremors of the second kind” by Sassa (1935)).
A typical LPT has a short duration of several tens of seconds, and its spectrum shows
peaks at about 15 sec, 7.5 sec, 5 sec, and 3 sec (Fig. 1). LPTs are observed even when
there is no surface activity, and they have been emitted from the volcano continually
at least over the last several years.

Previously we attempted to locate the source of LPTs and to understand their
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Fig. 1. (a) Typical long-period seismograms observed at Aso. Vertical component
) band-pass filtered (10-30sec) displacement seismograms at HND for six hours starting
at 00: 00 on Nov. 25, 1998 (JST) are shown. - LPTs are seen as isolated wave packets.
Note that these records are not observed during ASOBOI97. = (b) Amplitude spectrum
of LPTs. Spectra of LPTs for stations HND and TAK are shown. These spectra are
obtained by stacking 176 FFT spectra for 15-minute long raw velocity seismograms of
March 22-28, 1998. Each spectrum shows several peaks at about 15sec, 7.5sec, 5sec,

and 3 sec.
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mechanism using methods such as ‘waveform semblance’ (Kawakatsu‘ et al., 1999) and
point source moment tensor waveform inversion (Legrand et .al, 1999). We have
shown that the source of LPTs (centroid location of moment release) is at a few
hundred meters southwest of the first crater at a depth of 1~1.5km; The resolved
seismic moment tensor corresponds to a combination of isotropic expansion (contrac-
tion) and inflation (deflation) of a vertical crack, but the significance of the crack
component was questionable because of the limited station coverage.

The purpose of our deployment of a dense broadband seismic network in 1997
was to constrain the geometry of this postulated crack component using the spatial
pattern of LPT amplitudes.

2. ASOBOI97 :

From August 24 to 30, 1997, we deployed a broadband seismic network named
ASOBOI 97! (Aso Seismic Observation with BrOadband Instruments 97) around Naka-
dake of Aso volcano. The network included ten Guralp CMG-3T (represnted by
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Fig. 2. ASOBOI97. Aso volcano is located in central Kyushu, Japan. Filled circles and
open circles represent stations with CMG-3T and CMG-40T, respectively. Three
permanent stations are represented by squares. Star indicates the location of the
active fumarole of the first crater of Naka-dake. Most of the stations are located
within 1 km from the first crater. Two stations (KSR and T00 in Table 1) are located
outside this figure. :

1Tn the local dialect, “aso-boi” means ‘let’s play together’
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filled-circles in Fig. 2) and three Guralp CMG-40T (open-circles in Fig. 2) seismometers
with natural periods of 100 sec and 30 sec, respectively. Each CMG-3T sensor was
placed in a 0.5 m-deep hole and entirely buried after installation (Photo. 1). Some of
CMG-40T sensors were buried and the others were placed on the ground surface
directly. Their velocity outputs were recorded continuously using portable record-
ers (Data Mark LS 8000 WD for CMG-3T, Data Mark LS 8000 SH for CMG-40T) whose
clocks were locked with GPS. Due to the limited storage of LS 8000 SH, and in order
to avoid artificial noise, recording for CMG-40T was restricted to overnight from 22:
00 to 07: 00 (JST); After each one-night session, three stations with CMG-40T changed
their locations, and a total of eleven stations were set up during August 26-29.
Besides this temporary seismic-network, our analysis also includes data recorded at
permanemt stations HND (with CMG-3T), SUN (with Streckkeisen STS-2), and NAR
(STS-2). Sensor orientations of the stations of the network were obtained by field
measurements with compasses first, and later measured using a gyroscope. Station
calibration (in terms of amplitude) and sensor orientations were also checked by
comparing three-component waveforms and amplitudes of a filtered (10-30 sec)
teleseismic surface wave from a Mw 5.9 earthquake occurred in Vanuatu region on
August 27.

Twenty-two of these 24 stations (including three permanent stations) are located
within 15 km from the first crater of Naka-dake (for example, T 18 station was set at
the bottom of the second crater which is only 250 m from the active fumarole of first
crater), and provided good azimuthal coverage (Fig. 2). Further details of the net-
work are given in Table 1. Although a similar broadband seismic network around
Aso volcano was operated in 1994 (Kaneshima et al., 1996; Kawakatsu et al., 1999),
their stations were more sparse and more distant from the crater than this network.

3. Data
3.1 Observed data
Fig. 3 shows examples of the ground displacement signals after integrating and
applying a 10-30 sec band-pass filter to the observed raw velocity data to eliminate
microseismic noise in which the long period signals are covered. On filtered records,
LPTs are seen as isolated wave packets of only a few cycles. Note that during the
observation we recorded these LPT signals continuallvy, although Aso volcano was
not so active and there was no major surface activity around the crater. Visual
comparison of these filtered signals shows strong similarity of LPTs at all stations
and at all events, although the signal amplitudes vary from event to event. The fact
that the waveforms of all events are almost identical suggests the source process of
LPTs is repetitive and not so destructive. On the other hand, the similarity in shape
from station to station is attributed to the fact that static displacement dominates in
such a near-field (Legrand et al., 1999). All these observations are consistent with
our earlier observation (Kaneshima et al., 1996; Kawakatsu et al., 1999).
3.2 Stacking of LPTs
The most remarkable observation is the spatial variation of LPT amplitudes (Fig. 3).
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Photo. 1. Observation scenery. (a): Station T18. The depression seen above is the first

crater. (b) Installation of a CMG-3T seismometer in a hole.
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Table 1. Network information.

Station | Operation | Sensor Recorder Sampling Longitude Latitude Elevation
frequency (deg) (deg) (km)
T00 8/25-30 CMG-3T | LS8000WD | 100 — 20Hz 131.1033 32.8933 0.98
To1 8/25-30 CMG-3T | LS8000WD | 100 — 20Hz 131.0929 32.8834 1.37
TO05 8/24-30 CMG-3T | LS8000WD | 100 — 20Hz 131.0825 32.8876 117
T07 8/24-30 CMG-3T | LS8000WD | 100 — 20Hz 131.0758 32.8824 1.12
Tib 8/24-30 CMG-3T | LS8000WD | 100 — 20Hz 131.0849 32.8803 1.26
T18 8/24-30 CMG-3T | LS8000WD | 100 — 20Hz 131.0898 32.8782 1.24
T30 8/24-30 CMG-3T | LS8000WD | 100 — 20Hz 131.0914 32.8810 1.28
T34 8/25-30 CMG-3T | LS8000WD | 100 — 20Hz 131.0898 32.8738 1.25
T35 8/24-30 CMG-3T | LS8000WD | 100 — 20Hz 131.0940 32.8751 1.25
KSR 8/24-30 CMG-3T | LS8000WD | 100 — 20Hz 131.0558 32.8825 1.24
112 8/28-29 CMG-40 | LS8000SH | 100 — 20Hz 131.0819 32.8777 1.10
113 8/28-29 CMG-40 | LS8000SH | 100 — 20Hz 131.0833 32.8790 1.24 v
117 8/28-30 CMG-40 | LS8000SH | 100 — 20Hz 131.0861 32.8784 1.27
121 8/25-27 CMG-40 | LS8000SH | 100 — 20Hz 131.0884 32.8720 1.24
122 8/25—27 CMG-40 | LS8000SH | 100 — 20Hz 131.0864 32.8734 1.24
123 8/25-27 CMG-40 | LS8000SH | 100 — 20Hz 131.0829 32.8743 1.19
131 8/27-28 CMG-40 ( LS8000SH | 100 — 20Hz 131.0934 32.8785 1.25
132 8/27-28 CMG-40 | LS8000SH | 100 — 20Hz 131.0927 32.8735 1.24
133 8/27-28 CMG-40 | LS8000SH | 100 — 20Hz 131.0913 32.8718 1.24
141 8/29-30 CMG-40 | LS8000SH | 100 - 20Hz 131.0826 32.8815 1.22
142 8/29-30 CMG-40 | LS8000SH 100 — 20Hz 131.0788 32.8824 1.16
HND | continuous | CMG-3T | REFTEK 20Hz 131.0798 32.8752 1.14
SUN | continuous | STS-2 | REFTEK 20Hz 131.0893 32.8700 1.24
NAR | continuous | STS-2 | REFTEK 208z 131.0924 32.8865 127
1t — — — — 131.0879 | 32.8819 1.15
crater

Because of the slow fall-off of the anti-alias filter used in LS8000WD and
LS8000SH, data streams from CMG-3T were recorded at a sampling rate of 100
Hz, and, after their collection, resampled at 20 samples/sec after applying the
FIR filter whose coefficients are same as those used in PASSCAL instruments
installed at HND and SUN. “first crater” in this table points at the location
represented as “11547” on the volcanic base map by Geographical Survey In-
stitute, Japan (1982).

However, signal amplitude of each LPT measured directly from records may be
polluted by random noise. Indeed, the quality of the observed raw data is variable,
and the relatively small amplitude of LPTs during our observation makes the
signal-to-noise ratio low. To avoid the effects of noise, rather than using observed
raw signals, we use stacked signals with an improved signal-to-noise ratio to see this
pattern of amplitudes in more detail. We determine the reference times for stacking
as follows (Fig. 4);

1. first prepare a “reference LPT” waveform by stacking 10 filtered (10-30 sec)
LPTs observed at HND (our reference station).

2. then cross-correlate the filtered seismograms observed at HND with these
reference LPTs and determine the maximum cross-correlation coefficients and the
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Fig. 3. Observed LPTs. Top: Vertical component band-pass filtered (10-30'sec) displace-
ment seismogram for one hour starting at 01: 00 on Aug. 26, 1997 (JST). Bottom:
Examples of seismograms observed at different stations. All traces are drawn in the
same scale and for same time window. These seismograms are obtained by integrat-
ing the observed velocity records.
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Fig. 4. Schematic illustration of the picking procedure (see text for details).
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corresponding time lags.

3. when the correlation coefficient exceeds 0.98, the corresponding time lag is

assigned to the reference time for stacking

This picking calculation is done against-data obtained during the period when

stations with CMG-40T (hereafter noted as mobile array) were in operation (i.e. from
22: 00 to 07: 00 of August 26-29). After this procedure, we visually check the wavef-

orms around these time marks and finally select 340 reference times. Once
reference times are determined, signals at each station are stacked using this time
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Fig. 5. Results of stacking. (a) Samples of stacked LPTs obtained by stacking 1
records. Left: Raw stacked data (all traces are drawn to the same scale). Righ
Bandpass filtered (10-30 sec) stacked data (each trace is scaled by its maximum to sho
the similarity of the waveforms).
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information. Note that stacking for each station is performed using the same time
marks, and signals are neither normalized nor filtered prior to stacking. For each
stacked trace, peak-to-peak amplitudes are measured after applyving a 10-30 sec
band-pass filter, and then relative amplitudes to that of HND are estimated. Exam-
ples of the results of stacking are shown in Fig. 5. To estimate the standard errors
of obtained relative amplitudes, we use the bootstrap method (Efron and Tibshirani,
1993); The stacking described above in which we randomly selected events is repeat-

ed 100 times. Resultant values of the standard errors are listed in Table 2. Due to
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the low signal-to-noise ratio, we could not obtain reliable relative amplitudes of
horizontal components for stations with CMG-40T (i.e., stations of the mobile array).
3.3 Amplitude variation

Obtained relative amplitudes of the vertical component are listed in Table 2, and
their spatial pattern is illustrated in Fig. 6 (a). The pattern shows the characteristic
where by amplitudes are small along the chain of craters of Naka-dake, and are large
around the southwest of the edifice.. The smaller amplitude observed at the bottom
of the second crater, which is only a few hundred meters away from the first crater,
was rather unexpected (see the signal at T18 in Fig. 3). Fig. 6 (b) also shows a
two-dimensional projection of this spatial pattern of amplitude onto a vertical plane
perpendicular to the chain of craters. On this projection, the amplitudes at stations
within 0.35km from the line A-A’ (between two broken lines) show a simple pattern.
This pattern invokes the idea of a crack-like source of LPTs with a node along the
chain of craters. In addition, from the fact that amplitudes at all stations have the
same sign, we expect that the source of LPTs consists of not only an inflation
{deflation) of a crack but also an isotropic expansion (contraction).

4. Detection of a crack-like conduit
We try to explain the obtained spatial pattern of the amplitude of LPT using a

Table 2. Relative amplitudes.

Station | Longitude Latitude | Elevation Relative amplitude (HND = 1)
(deg) (deg) (km) vertical (UD) | horizontal (NS) | horizontal (EW)
TO01 131.0929 32.8837 1.37 0.62 & 0.01 -0.45 + 0.16 -0.41 + 0.06
T05 131.0825 | 32.8876 1.17 0.42 & 0.01 -0.38 + 0.12 -0.11 £+ 0.07
To07 131.0758 32.8824 1.12 0.67 £ 0.01 -0.66 £ 0.07 0.66 + 0.02
T15 131.0849 32.8803 1.26 0.69 £ 0.01 -0.28 £+ 0.06 -0.23 + 0.03
T18 131.0898 32.8782 1.24 0.28 + 0.01 -0.30 &+ 0.07 -0.26 & 0.03
T30 131.0914 32.8810 1.28 0.43 £+ 0.01 -0.17 &+ 0.09 -0.16 + 0.03
T34 131.0898 32.8738 1.25 0.36 & 0.01 -0.21 + 0.09 -0.35 + 0.08
T35 131.0940 32.8751 1.25 0.31 £ 0.01 -0.25 £+ 0.11 -0.26 £+ 0.07
112 131.0819 328717 | 110 1.10 + 0.02 — —
113 131.0833 32.8790 1.24 1.04 &+ 0.09 —_— e
117 131.0861 32.8784 1.27 0.74 &+ 0.06 — —
122 131.0864 32.8734 1.24 0.75 + 0.02 — —
123 131.0829 32.8743 - 1.19 0.88 + 0.07 — —
141 131.0829 32.8815 1.22 1.00 + 0.05 — _—
142 131.0788 32.8824 1.16 0.79 + 0.02 — —
HND 131.0798 32.8752 1.14 1.00 1.00 1.00
SUN 131.0893 32.8700 1.15 0.48 + 0.01 0.63 £+ 0.04 -0.23 £+ 0.03
NAR 131.0924 32.8865 1.27 0.60 + 0.01 — —
st 131.0879444 | 32.88194444 1.15 —_— — —
crater

As the error, the standard errors of 100 stacked LPTs estimated by Boot-
strap method are listed in this table. The standard errors are calculated by

OB R DL
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Fig. 6. Spatial pattern of the relative amplitudes of vertical components and their
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Fig. 7. Comparison of static displacement and bandpass filtéred signal in the near-field.
Left: Isotropic point source at a depth of 1km. Right: Vertical tensile point source at
a depth of 1km. Solid line, dashed-line, diamond, and square represent the vertical
and radial components of the static displacement and bandpass filtered “signal,
respectively. Amplitudes are normalized by the amplitude of the vertical component
at a distance of 1km.

simple model, which consists of an isotropic point source and an inclined tensile
crack by a grid-search calculation. In our model search, we assume that the ampli-
tude of the long period signal observed in the near-field is proportional to that of
static displacement (Legrand et al., 1999), and use a code of Okada (1992) to calculate
the static displacement due to a source in a half space. In Fig. 7, the amplitude
variation of the static-displacement and its band-pass (10-30 sec) filtered version due
to point sources is shown as a function of the epicentral distance in the near-field.
The synthetic signals used for the band-pass filtered signals are obtained by‘convolv-
ing a step function with a Green’s function for a homogeneous-half space (Johnson,
1974). 4 '

Analyses of these data are given in Yamamoto et al. (1999) where the presence of
a crack-like conduit beneath the active crater is clearly demonstrated. Table 3 and
Figs. 8 and 9 summarize the results of Yamamoto et al. (1999).

5. Summary

From a dense broadband seismic observation named ASOBOI 97, the presence of
a crack-like conduit beneath the active crater at Aso volcano was revealed by
Yamamoto et al. (1999). The spatial variation of LPT amplitude was used to con-
strain the geometrical parameters of the LPT source. Similar observations at other
volcanoes may reveal unraveled sub-surface structures under active volcanoes.
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Fig. 8. Definition of the parameters for the model grid-search.
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Appendix
To represent the LPT: activity of Aso volcano during ASOBOI97, band-pass
filtered records at HND station are shown.
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craters. Bottom: The observed and the model-predicted amplitudes are respectively
represented as red and blue circles whose radii are proportional to the values of the
amplitudes. In this figure, a smaller circle is put onto a larger one, thus the width of

the ring represents the misfit, which is very small
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filtered (10-30sec) velocity seismograms at HND on (1) Aug. 26, 1997 (JST), (2) Aug. 27,
1997 (JST), (3) Aug. 28, 1997 (JST), and (4) Aug. 29, 1997 (JST). Horizontal scale is one
hour and the beginning time of each trace is indicated at the left of the plot.




ASOBOI97: Aso Seismic Observation with Broadband Instruments
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ASOBOI9T7: Aso Seismic Observation with Broadband Instruments

97082900

97082901

97082902

97082903

97082905

97082906

87082807

97082908

87082809

97082910

97082911

97082912

97082913

97082914

97082915
97082916
97082917
97082918
97082919
97082920
97082021

|
l
} 97082004
|
i

97082922

97082923

| AL B L L ML
0 600 1200 18& 4 T 3000 3600

{sech




