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Abstract

Dimension reduction is an important tool used to describe the structure of complex

data (explicitly or implicitly) through a small but sufficient number of variables, and

thereby make data analysis more efficient. It is also useful for visualization purposes.

Dimension reduction helps statisticians to overcome the ‘curse of dimensionality’.

However, most dimension reduction techniques require the intrinsic dimension of the

low-dimensional subspace to be fixed in advance.

The availability of reliable intrinsic dimension (ID) estimation techniques is of

major importance. The main goal of this thesis is to develop algorithms for deter-

mining the intrinsic dimensions of recorded data sets in a nonlinear context. Whilst

this is a well-researched topic for linear planes, based mainly on principal compo-

nents analysis, relatively little attention has been paid to ways of estimating this

number for non–linear variable interrelationships. The proposed algorithms here

are based on existing concepts that can be categorized into local methods, relying on

randomly selected subsets of a recorded variable set, and global methods, utilizing

the entire data set.

This thesis provides an overview of ID estimation techniques, with special con-

sideration given to recent developments in non–linear techniques, such as charting

manifold and fractal–based methods. Despite their nominal existence, the practical

implementation of these techniques is far from straightforward.

The intrinsic dimension is estimated via Brand’s algorithm by examining the

growth point process, which counts the number of points in hyper-spheres. The
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estimation needs to determine the starting point for each hyper-sphere. In this

thesis we provide settings for selecting starting points which work well for most

data sets. Additionally we propose approaches for estimating dimensionality via

Brand’s algorithm, the Dip method and the Regression method.

Other approaches are proposed for estimating the intrinsic dimension by fractal

dimension estimation methods, which exploit the intrinsic geometry of a data set.

The most popular concept from this family of methods is the correlation dimension,

which requires the estimation of the correlation integral for a ball of radius tending to

0. In this thesis we propose new approaches to approximate the correlation integral

in this limit. The new approaches are the Intercept method, the Slop method and

the Polynomial method.

In addition we propose a new approach, a localized global method, which could

be defined as a local version of global ID methods. The objective of the localized

global approach is to improve the algorithm based on a local ID method, which

could significantly reduce the negative bias.

Experimental results on real world and simulated data are used to demonstrate

the algorithms and compare them to other methodology. A simulation study which

verifies the effectiveness of the proposed methods is also provided. Finally, these

algorithms are contrasted using a recorded data set from an industrial melter process.
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Chapter 1

Introduction

Nowadays estimating intrinsic dimension plays an important role in many statistical

applications such as pattern recognition or data mining algorithms. In this chapter

we investigate the importance of the intrinsic dimension methods and provide an

overview of the thesis.

1.1 Background and History

A real data set has to deal with very high-dimensional data which contains a large

number of variables. In order to handle this data properly, we need to investigate

whether or not it can be represented in a low-dimensional space. This step is very

important since it alleviates the curse of dimensionality [4] and other issues such as

increased computing time and data storage space.

The curse of dimensionality implies that several issues will arise when analyz-

ing and visualizing data sets in high-dimensional spaces that do not occur in low-

dimensional settings. The problems of high dimension are important in many fields

such as data mining and machine learning. The common theme of those problems

is that, when increasing number of variables one needs to adjust the sample size

which is necessary for the data analysis. Those issues prevent efficient data analysis

and organization. The technique to inhibit the curse of the dimensionality is to

minimize the input dimension of the function to be estimated, using a small number

of variables. Therefore, dimension reduction helps overcome the curse of dimension-

1
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ality. One can observe that a particular variable, which is a part of a larger set, may

contain information that is encapsulated in other variables too.

Dimension reduction models try to capture the significant information that is

embedded within the recorded data set. Dimension reduction is often applied as a

data pre–processing step or as a part of data analysis, capturing significant infor-

mation in the original data, and then supporting the creation of reduced dimension

data in the system. The main objective of dimension reduction is to transform the

data space from a high-dimensional variable space into a low-dimensional space, so

that the fundamental structure is easy to realize.

In 1901 Karl Pearson illustrated a technique to approximate data sets with

straight lines and planes. He proposed a Principal Component Analysis (PCA)

method, which is a fundamental of dimension reduction methods. Recently, several

literature and further development methods have been proposed to obtain reduced

dimension. Dimension reduction methods can be categorized as linear or nonlinear

methods. The first type linear methods try to search globally flat subspace such as

PCA. In the past few decades, various methods have been proposed for the linear

data structure and these are mostly related to the application of PCA with sev-

eral assumptions. The second type nonlinear methods try to search a locally flat

subspace, such as multidimensional scaling methods and ISOMAP. Such methods

require fixing the intrinsic dimension of the low-dimensional subspace in advance. As

illustration of this is when the data points lie on a smooth curve, one can state that

the intrinsic dimension equals 1 and that this is independent of the dimensionality

of data representation.

The intrinsic dimension (ID) of a data set Z ∈ R
D can be defined as the minimum

number of variables (d) necessary to describe the data without too much loss of

information [8] [32]. Historically the ID used to be defined as equal to d when the

data points lie entirely within an d-dimensional linear subspace of RD [8], which

is used to obtain ID for linear methods, for instances PCA, Factor analysis and

Independent component analysis. We have in this thesis a more general notion in

mind which comprises linear as well as nonlinear manifolds.

Intrinsic dimension methods try to eliminate the problem of high dimension.
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Their advantages [8] are:

• a reduction in the size of the data storage space needed,

• faster computation because of fewer variables,

• the use of vectors with smaller dimensions often leads to improvements in the

performance if further statistical inference, such as regression or classification,

is to be carried out.

ID estimation methods can be classified into two groups; local methods which

divide the data into small sub-regions, or provide a series of local ID estimates at

several target points, in order to arrive at a suitably averaged overall ID estimator.

Examples for such methods include Levina–Bickel’s Maximum Likelihood estimator

[60], Brand’s concept of ‘charting’ [6], among others [32] [72], which propose concepts

for estimating ID for subsets of a recorded data set.

In addition to local methods, a survey by Camastra [8] also emphasized that global

methods can be considered. Global methods try to estimate the dimension using the

whole data set, imposing the implicit assumption that the intrinsic dimension is

constant over the data set. The methods can be further categorized into projection

techniques, multidimensional scaling and fractal-based methods. It is interesting to

note that d ∈ R in a nonlinear context. This family includes purely linear methods

based on linear approximation (such as the ‘broken stick method’ and many other

stopping rules for principal component analysis [46] [56]), and also non–parametric

approaches such as fractal–based methods. The term ‘fractal’ is used since under

this sort of approach, the intrinsic dimensionality d does not need to be an inte-

ger. Camastra presented a useful survey on intrinsic dimension estimation methods

focusing on fractal-based methods [8] [9].

The most common route to fractal dimension estimation is via correlation di-

mension. The method requires the construction of a so–called correlation integral,

from which the ID is extracted using appropriate techniques.

Although nonlinear methods (global or local methods) are available, it seems that

not enough work has been devoted to practical implementations of the methodology

of dimensionality estimation on non-linear manifolds. Furthermore, as with many
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methods, there is not enough evidence that they work well practically. Such as

charting manifolds needs to satisfy target points. Additionally fractal methods re-

quire the construction of a correlation integral, from which the ID is extracted using

appropriate techniques. This step is not straightforward, since it requires counting

the number of data pairs within a ball of radius tending to 0.

1.2 Data

This section introduces some concepts in our approach to estimating intrinsic di-

mensionality. Let X = (X1, . . . , XD)
T be a random vector with mean and variance

of X denoted by m and Σ, respectively. The random vector X has a probability

density g(x). Now a sample of size N is drawn from the random vector X, yielding

data Z = {x1, . . . , xN} ∈ R
D, which are N independent and identically distributed

(iid) observations. The matrix Z has the following structure:

Z =



x11 x12 x13 . . . x1j . . . x1D

x21 x22 x23 . . . x2j . . . x2D

x31 x32 x33 . . . x3j . . . x3D
...

...
... . . .

... . . .
...

xN1 xN2 xN3 . . . xNj . . . xND


and could be written as

Z =


xT1
...

xTN


where D is the number of variables and N is the number of observations. The mean

of Z is denoted by

x̄ =
1

N

N∑
i=1

xi =
1

N

N∑
i=1


xi1
...

xiD

 =


x̄1
...

x̄D

 ,
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which is unbiased estimate of m. The maximum likelihood estimator of Σ is given

by

Σ̂ML =
1

N

N∑
i=1

(xi − x̄) (xi − x̄)T ,

while the sample variance matrix is given by

Σ̂sample =
1

N − 1

N∑
i=1

(xi − x̄) (xi − x̄)T =
N

N − 1
Σ̂ML,

which is generally used. In practice, for this real data Z, Σ needs to be replaced by

a suitable estimator Σ̂. In this thesis, we use the notation Σ whether or not Σ was

estimated.

1.3 General concepts

In this section the general definitions are briefly covered. In Subsection 1.3.1 the con-

cepts of supervised and unsupervised learning are explained. The Subsection 1.3.2

presents the general definition of the probability density function. The Subsection

1.3.3 defines the multivariate density. Kernel density estimation is illustrated in the

Subsection 1.3.4. Linear regression is briefly presented in the Subsection 1.3.5. The

Subsection 1.3.6 illustrates the definition of polynomial regression model.

1.3.1 Supervised and unsupervised learning

There are two general concepts that are commonly used in machine learning; super-

vised and unsupervised learning algorithms. Supervised learning algorithms suppose

that the observation is given in a training set of (input, output). Then the objective

is to determine the function of output for invisible input patterns, which is a way of

using concepts from Pearson’s linear regression [36].

In contrast in unsupervised learning, there is only a set of input observations

without a desired target [36]. Then one attempts to seek a good representation of

the data, such as a reduction in the number of variables. It is noted that unsu-

pervised learning can be much more challenging to manage than supervised learn-

ing [36]. The researcher in unsupervised learning usually faces a differentiation
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between representing the data as closely as possible and summarizing it as far as

possible [36]. Manifold learning is unsupervised learning where the objective is to

project the data into a new space (representation) which has a smaller dimension

than the input space [36].

1.3.2 The probability density function

The probability distribution of a continuous random variable X is denoted as g(x)

and defined as

P (a ≤ X ≤ b) =

∫ a

b

g(x)dx.

Then g(x) can be determined from a sample of data observations. This is done by

using parametric approach or non-parametric approach.

The parametric approach means estimating g(x) by assuming that X has prob-

ability distribution of one of a parametric distribution family. For instance one

assumes that X has a normal distribution with parameters µ and σ, then the pa-

rameters are estimated from data set Z. Usually, this approach obtains steady

estimates and is commonly used because it is easy to apply. The parametric ap-

proach has advantages as long as the assumption of the distribution is valid. Each

parametric distribution requires some restrictions on the shape of g(x), for instance

with normal distribution, where the density curve g(x) should be symmetric and

bell-shaped. This disadvantage leads the researcher to propose non-parametric ap-

proaches.

Non-parametric approaches try to estimate g(x) immediately from the data.

The family of this approach includes histogram and kernel density estimation. The

histogram is a commonly used and simple method. We will illustrate the kernel

density estimation in the Subsection 1.3.4.
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1.3.3 Multivariate probability density

As earlier we assume a random variableX, Section 1.2, which forms aD−dimensional

random vector and

x =


x1
...

xD


is a particular realization of X. The probabilistic behaviour of X is entirely deter-

mined by the distribution function of X,

G(x) = G(x1, · · · , xD) = P (X1 ≤ x1, · · · , XD ≤ xD).

For a continuous random variable X, then there exists a probability density

function g : RD → R [21], such that

G(x) =

∫ x

−∞
g(u) du =

∫ xD

−∞
· · ·
∫ x1

−∞
g(u1, · · · , uD) du1 · · · duD.

Then, for any subset S ⊂ R
D [21] one has

P (X ∈ S) =

∫
S

g(x) dx.

In particular, for S = R
D, ∫

RD

g(x) dx = 1.

1.3.4 Kernel density estimation

A univariate kernel density estimator for a random sample Z, defined in Section 1.2,

drawn from X of the function g(x) is defined as

ĝ(x;h) =
1

N

N∑
i=1

Kh (x− xi) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
,

where K(·) is the kernel function, which determines the shape of the weighting

function. The parameter h is the fixed bandwidth which is a positive and non-

random number. It determines the width of the weighting function and the amount

of smoothing in estimating g(x) [20]. Table 1.1 displays some of kernel functions.
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Kernel K(x)

Uniform 1
2

for |x| < 1, 0 otherwise

Triangle 3
4
(1− |x|) for |x| < 1, 0 otherwise

Epanechnikov 3
4
(1− x2) for |x| < 1, 0 otherwise

Gaussian 1√
2π

exp
(
−1

2
x2
)

Table 1.1: Some of Kernel functions.

In general the kernel functions are symmetric around 0 and integrate to 1 [37], and

the bandwidth h should be small in order to reduce the bias of estimation.

Hence, the D−dimensional multivariate kernel density estimator [20] for a ran-

dom sample x1, · · · , xN drawn from X, is

ĝ(x;H) =
1

N

N∑
i=1

KH (x− xi) ,

where x = (x1, · · · , xD)T and xi = (xi1, · · · , xiD)T , i = 1, 2, · · · , N , while KH(x) is

defined as

KH(x) = |H|−1/2K
(
H−1/2 x

)
.

and H can be set equal to H = diag(h2) if an equal degree of smoothing in all

directions is desired. Here KH is the scaled kernel and H is a D×D fixed bandwidth

matrix which is a symmetric and a positive number [20].

1.3.5 Linear regression

Linear regression is a statistical method used to study the linear relationship between

variables by fitting linear equations to the data points, based on the assumption that

the errors of linear models are normally distributed. The linear equation has the

form

y = b0 + b1x+ e,

where y is a scalar dependent variable and x is an explanatory variable. The pa-

rameters of the model are b0 and b1, where b0 is the intercept and b1 is the slope of

the line.
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Commonly, linear regression is fitted via the least squares method by minimizing

the sum of squares of the vertical deviation from each data point to the line. The

vertical deviations equals 0 when the data point lies on the fitted line. To display

the fitted model, the computed regression line is plotted over data points. Once

a regression model has been fitted then it could, with some caution, be used for

extrapolation, which means predicting values that are outside the range of data set.

1.3.6 Polynomial regression model

The polynomial regression model is regarded as a special case of the multiple re-

gression model when one independent variable is assumed. It can be considered as

a Taylor series expansion of the unknown function. The model could be used as

the approximation function of a complex nonlinear relationship. The polynomial

regression of order p takes the form

y = b0 + b1x + b2x
2 + b3x

3 + · · ·++ bpx
p + e.

To decide the suitable value of p one can use the ’Multiple R2’ or Multiple

correlation, where R2 is the fraction of variation y explained by regression. The

t-test is used to examine the significance of parameters.

1.4 Overview of the Thesis

Suppose d is the intrinsic dimension of the data set Z where d ≤ D. The work de-

scribed in this thesis develops algorithms for intrinsic dimension estimation methods

in a nonlinear context. The core aim is to provide approaches for the estimation of

intrinsic dimension. The proposed algorithms are based on the concept of charting

manifolds [6] and on the correlation-dimension concept, detailed in ref [9].

The first part of this thesis represents an overview of existing methods of dimen-

sion reduction and intrinsic dimension. This thesis continues with our approaches

towards ID estimation via correlation integral and charting manifold. The later

chapters carry out the application of the algorithms on experimental data sets and

adopt several methods to make comparisons. Various data examples are provided
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to illustrate the developed methodology, initially handling situations with intrin-

sic dimensionality equal to 1, and later proceeding to higher-dimensional examples.

Furthermore, simulation examples are presented to study the efficiency of the algo-

rithms. The algorithms also are implemented on recorded data from an industrial

glass melter process provided by Dr. Uwe Kruger.

The chapters structure is as follows. Chapter 2 introduces briefly the concepts

for linear methods; Principal component analysis, Independent component analy-

sis, Linear discriminant analysis method and Principal variables. We also present

the concepts for Nonlinear methods of dimension reduction; Nonlinear PCA, Prin-

cipal curves and manifolds, Multidimensional scaling and ISOMAP, Locally linear

embedding, Self-organising maps and Visualisation induced SOM. The relationship

between intrinsic dimension and some dimension reduction methods is illustrated.

Additionally we discuss the relationship between the algorithms and their compu-

tational cost.

Chapter 3 presents the concepts for local methods of dimensionality estimation

methods; Fukunaga-Olsen’s algorithm, The near neighbor algorithm, TRN-based

methods, Charting a manifold method and the Maximum likelihood estimation.

The concept of global methods of dimensionality estimation methods are explained;

Projection techniques, Multidimensional scaling methods, and Fractal-based meth-

ods. We also provide the implementation results of some of ID methods on the

artificial data sets. In addition, we present an overview of the intrinsic dimension

estimation methods by exploring the computation costs and other factors.

Building on these concepts, Chapter 4 introduces the algorithms developed and

the new approaches in this thesis. We also provide a discussion and illustration of

the approaches. This is followed by contrasting these algorithms in Chapter 5, which

summarize the application studies. We discuss the computational results for data

sets in multivariate space, and the effectiveness of our techniques. Finally, Chapter

6 contains a concluding summary and suggested areas for investigation in the future

work.



Chapter 2

Dimension Reduction Methods

2.1 Introduction

The aim of this chapter is to review the methods of dimension reduction. In many

applications which deal with high-dimensional data sets the researchers found that

not all variables are needed to represent the data. It is worth reducing the dimen-

sionality into a lower dimension in order to analyze the data set more efficiently

and accurately. This is done by using dimension reduction methods. Those tech-

niques are often applied as a data pre-processing steps or as part of data analysis

to simplify the data model. Dimension reduction techniques transform the data set

Z from high-dimensional variable space (D) (embedding space) onto a new data set

with low-dimensional space (d) (manifold space) such that d ≤ D.

Dimension reduction methods can be classified as linear and nonlinear methods.

Linear methods try to search a globally flat subspace such as principal component

analysis and projection pursuit. The aim of most of these methods is to reduce

dimensionality by a linear transformation of all original variables such as principal

component analysis (PCA). The linear methods are most widely used due to their

simplicity and are easier to compute and describe the mapping (representation).

Nonlinear methods try to search a locally flat subspace, such as multidimensional

scaling methods and ISOMAP. Usually nonlinear algorithms assume that the rela-

tionship between neighboring points holds more information than the information

from the relation between distant points [58].

11
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Section 2.2 discusses briefly existing dimension reduction methods using linear

approaches. Section 2.3 presents an explanation of nonlinear dimension reduction

methods. The relationship between the dimension reduction methods and the in-

trinsic dimension is discussed in Section 2.4. The comparison between linear and

nonlinear methods is explored in Section 2.5.

2.2 Linear Methods

In this section the linear dimension reduction methods are briefly reviewed. Firstly

principal component analysis method is explained in Subsection 2.2.1. Independent

component analysis technique is illustrated in Subsection 2.2.2. Linear discriminant

analysis method and principal variables method are presented in Subsection 2.2.3

and Subsection 2.2.4, respectively.

2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised feature extraction and the

most popular linear technique. It is also known as a proper orthogonal decompo-

sition or Karhunen Loeve transform in the machine learning literature. The PCA

technique reduces the number of variables and uses those few variables to explain

the significant information of the data set. The technique was first introduced by

Pearson in 1901, by finding lines and planes that present a good fit for given points

in multivariate data. Joliffe (2002) [48] developed an interesting illustration of PCA

properties and applications. The PCA is obtained via linear approximation and

decomposing variance techniques as following.

Linear approximation technique

Assume that X is a random vector, see Section 1.2, with mean m and variance Σ.

Then X is approximated through a single straight line by minimizing the expected

squared distances between X and their projection X ′ onto the line, i.e. minimize

E
(
XX ′2

)
[21]. By Pythagoras,

E
(
XX ′2

)
= E

(
mX

2
)
− E

(
mX ′2

)
,
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whereXX ′ denotes the length of the line segment connectingX andX ′, i.e. ∥X −X ′∥.

Here minimizing E
(
XX ′2

)
means maximizing E

(
mX ′2

)
which yielding to maxi-

mize var
(
γTX

)
[21], then

var
(
γTX

)
= λ,

where γis one of the orthogonal eigenvectors γ1, · · · , γD of Σ, and λ is one of the

D eigenvalues of Σ ∈ R
D×D such that λ1 ≥ λ2 ≥ · · · ≥ λD > 0. Therefore the

eigenvector γ1 is chosen corresponding to the largest eigenvalue λ1.

Now, γT1 X is the new random variable which is a linear combination of X with

maximal variance, it is also known as the first principal component of X. The

corresponding first principal component line is defined as the line

y1(p) = m+ pγ1, (p ∈ R),

where p is the Euclidean distance betweenm and x′ for a particular point x ∈ R
D [21].

Similarly, the j−th principal component is given by γTj X, and

yj(p) = m+ pγj

is the corresponding j−th principal component line. Note that the first principal

component is self consistent, which means that any point on the line is the condi-

tional expectation of X over the points of the space which project to this point [52].

The second principal component has the highest variance among all the linear com-

binations orthogonal to the first principal component, and so on. Figure 2.1 shows

an example of Horse mussels data cloud with two variables and its principal com-

ponents.

Decomposition of variance

An important characteristic of PCA is the decomposition of the variance of X. For

j−th eigenvector γj of Σ, one has

Σγj = λjγj j = 1, · · · , D,
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which can be written as [21]

Σ (γ1, · · · , γD) = (γ1, · · · , γD)


λ1

. . .

λD


Then,

ΣΓ = ΓΛ (2.1)

Σ = ΓΛΓ−1 = ΓΛΓT . (2.2)

This decomposition is called the eigen decomposition of Σ, we have

λj = var
(
γTj X

)
, for j = 1, . . . , D,

which means that λj provide some decomposition of variance, and their sum [21] is:

λ1 + · · ·+ λD = Tr (Λ) from Eq.(2.1)

Thus,

λ1 + · · ·+ λD = Tr
(
ΓTΣΓ

)
= Tr

(
ΓTΓΣ

)
= Tr (Σ) ≡ TV(X).

The trace of the variance matrix is called the total variance. Therefore,

λj
λ1 + · · ·+ λD

=
var
(
γTj X

)
TV(X)

,

2 3 4 5 6

4
5

6
7

8

H

L

1st principal component
2nd principal component

Figure 2.1: Principal component analysis from scaled Horse mussels data with two

variables.
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is the proportion of total variance explained by the j−th principal component [21].

Some software packages, such as R package [74], illustrate this decomposition by

plotting λj versus j using the scree plot tool, more details in Subsection 3.4.1.

Assume that PCA has been carried out on a data set Z (see Section 1.2) yielding

m, Σ, γ1, · · · , γD, λ1, · · · , λD. Now to compress the data Z to a smaller dimension

d ≤ D means to project all data points (N) onto the d-dimensional subspace spanned

by the d largest principal components:

Φ : RD → R
d, xi 7→ (γ1, · · · , γd)T (xi −m), i = 1, · · · , N. (2.3)

The Φ(xi) ≡ pi are called scores. It is obvious that the original data will not be

reconstructed exactly unless d = D. PCA applications are found in many fields,

such as pattern recognition [14], image processing [88], regression application [21]

and data mining. Practically the core point of the PCA method is that the user

needs to decide the number of components that reduce the variance. The methods

to select the significant variables will be briefly discussed in the next chapter.

Despite its wide use, the PCA technique implies an assumption of linearity and

can not capture nonlinear relationships of higher dimension than two [52] [95]. Those

problems are solved efficiently with nonlinear PCA methods, such as local PCA and

nonlinear PCA methods.

2.2.2 Independent Component Analysis

Jutten and Herault (1991) [44] [45] proposed Independent Component Analysis

(ICA) as an approach for analyzing multivariate data. Independent component

analysis is an unsupervised linear method. It reduces the dimension of a given data

set by computing linear projections. The ICA algorithm has a facility which enables

it to find the underlying components and sources that are mixed in the original data,

where in many cases the classical methods failed to compute them [45]. The algo-

rithm assumes that the components are independent and non-Gaussian. Hyvärinen

et al. [44] provided a comprehensive explanation of ICA and its applications.

As for the PCA method, assume that the data Z is modelled as a linear combi-
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nation of hidden variables s

xi =
d∑

j=1

wij sj, for i = 1, · · · , D, (2.4)

where xi are observed variables and both wij and sj need to be estimated. Addition-

ally, sj are independent components while the coefficients wij are called the mixing

coefficients. This estimation is also known as blind source separation [45].

Then, the model becomes

X = WS,

where X and S are random vectors, and W is an orthogonal matrix of parameters.

The algorithm assumes the following [45]:

• The components si have non-Gaussian distributions.

• The components si are mutually statistically independent.

• The matrix W is D ×D matrix.

ICA algorithm estimates the mixing matrixW based on a pre-whitening process,

which means that the data is linearly transformed by a matrix A, such that Y = AZ

where the matrix Y has zero mean and identity covariance matrix [45]. Then the

ICA model is

Y = AZ = AWS = W̃S. (2.5)

Hence, the matrix W̃ is an orthogonal matrix, which reduces the number of free

parameters in the model. The importance of whitening is illustrated by Hyvärinen

[45]. For Gaussian variables whitening exhausts all the dependence information in

the data. For non-Gaussian variables whitening does not imply independence.

Now the matrix W̃ is estimated by maximizing the ICA objective functions

rather than the covariance matrix of Z. Note that the objective functions could be

considered as high-order statistics, such as kurtosis and nonlinear correlations, which

are used to determine the non-Gaussianity of components. Then an optimization

method, such as the natural gradient method, is applied to optimize the objective

function [44] [45].
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2.2.3 Linear discriminant analysis

Linear discriminant analysis (LDA) is a supervised feature extraction method which

is used to find the best separation between given groups. The LDA technique re-

duces dimensionality while preserving most of the information of the groups. It

assumes that the data set is classified into two or more groups of objects. Similar to

PCA and ICA, LDA attempts to to find a linear transformation with the best data

representation. Furthermore, the technique considers the differences within-classes

and differences between-classes [16] [67]. Compared to PCA, LDA keeps the origi-

nal location of data points after the transformation [16] [67]. The LDA technique

transforms the data set with verification of the separation in the data.

LDA was developed by Fisher in 1936. Fisher’s LDA technique attempts to find

a transformation that maximizes the differences between-classes SB and minimizes

the differences within class SW . The maximization is called the Fisher criterion [30]

[16] [67]. Now, suppose there are c classes, let m be the overall mean of the data,

mi be the mean vector of all samples in class i, and ni be the number of samples

in class i, where i = 1, 2, · · · , c. The total number of samples is N =
∑c

i=1 ni. By

defining

SB =
c∑

i=1

(mi −m)(mi −m)T , (2.6)

SW =
c∑

i=1

ni∑
j=1

(xj −mi) (xj −mi)
T , (2.7)

m =
1

c

c∑
i=1

mi, (2.8)

LDA computes the ratio of the differences between-class and differences within-class,

then one has

wLDA =
wTSBw

wTSWw
, (2.9)

where wLDA is determined by the eigenvectors corresponding to the largest eigenval-

ues of S−1
W SB. Thus, there will be at most c− 1 non-zero eigenvalues [67]. In recent

papers nonlinear generalizations of LDA are proposed such as Kernel Discriminant

Analysis and Local Fisher Discriminant Analysis.
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2.2.4 Principal Variables

Principal variables (PV ) are a subset of the original data according to special cri-

teria. This subset performs the best representation and preserves the information

from the original variables. Consider a data matrix Z ∈ R
D consisting of N obser-

vations with sample covariance Σ and correlation matrix R. In the same manner

of [15] [68], assume that X is partitioned into subsets (X1, X2) where X1 consists of

m vectors of retained variables and X2 is a (D −m) vector of discarded variables.

Then the covariance matrix Σ is

Σ =

 Σ11 Σ12

Σ21 Σ22

 , (2.10)

where Σ11 is the m×m covariance matrix of X1, and there are 2D − 1 choices of set

selection for all m = 1, · · · , D. The partial covariance matrix for X1, given X2, is

Σ22.1 = Σ22 − Σ21Σ
−1
11 Σ12. (2.11)

The partial correlation matrix R22.1 is obtained by scaling Σ22.1 which gives unit

diagonal elements.

MacCabe(1984) proposed a number of optimal criteria for choosing principal

variables (PV ) selection [68]. He suggested 12 criteria which lead to the following

solutions:

M1. max |Σ11| ≡ min |Σ22·1| ≡ min
∏
i

λi.

M2. min tr(Σ22·1) ≡ min
∑
i

λi.

M3. min ∥Σ22·1∥2 ≡ min
∑
i

λ2i .

M4. max
k∑

i=1

ρ2i , with k = min(m,D −m),

where |A| and tr(A) are the determinant and the trace of the matrix A; ∥A∥2 is

the squared norm
(∑∑

a2ij
)
; λi are the eigenvalues of Σ22.1; and the ρi are the

canonical correlations between the selected and unselected variables [15]. Stepwise

selection is used to obtain the near-optimal subsets for M2 while for M1,M3,M4 the
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optimal subsets need to be evaluated for all possible subsets and become less easy

to compute with large variables [15] [68].

In 2007, Cumming and Wooff [15] proposed an alternative criterion based on

the spectral decomposition of the (D × D) correlation matrix. Assume that λ1 ≥

λ2 ≥ · · · ≥ λD > 0 are the ordered eigenvalues of R and a1, · · · , aD the associated

eigenvectors. Then the correlation matrix R can be written as

R =
D∑
i=1

λiaia
T
i = AΛAT , (2.12)

where A is a (D × D) orthonormal matrix with columns which are the ai and Λ

is (D ×D) diagonal matrix with entries λi [15]. Now, similar to criterion M3, the

∥R∥2 can be written as:

∥R∥2 =
D∑
i=1

λ2i =
D∑
j=1

D∑
i=1

(λiaji)
2 =

D∑
j=1

(
D∑
i=1

r2ij

)
=

D∑
j=1

hj, (2.13)

where

hj =
D∑
i=1

r2ij =
D∑
i=1

(λiaji)
2 .

Therefore, the first principal component is a linear combination of the original

variables. This component has a maximum contribution to ∥R∥2 while the remaining

principal components giving less contribution. The values of hj will be large when

variable xj has, on average, high loadings on important principal components [15].

Now, applying a stepwise algorithm for variable selection using the above criteria,

the technique searches for the m variables with highest values of hj, such that∑m
j=1 h(j) makes some predetermined proportionate threshold [15]. The technique

works as follows [15]: calculate the values of h for each variables xj for j = 1, · · · , D.

Then select the best variables with the largest values of hj and compute a partial

correlation matrix for the remaining variables, and repeat the process. This iteration

process makes sure that the chosen variable captures aspects of the variation which

are not represented by the previously selected variables [15].

Cumming and Wooff [15] showed that the extension method is suitable for de-

termining PV for repeated measures data, and it is also uncomplicated.
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2.3 Nonlinear Methods

In this section the nonlinear dimension reduction methods are briefly covered. The

nonlinear methods we illustrate in the subsections are used mainly for dimensionality

reduction and less for intrinsic dimension estimation. Besides the principal curves

and manifolds are not always suitable for all data structures. Firstly nonlinear PCA

is explained in Subsection 2.3.1. Principal curves and manifolds are illustrated in

Subsection 2.3.2. Multidimensional scaling and ISOMAP methods are presented in

Subsection 2.3.3 and Subsection 2.3.4, respectively. In Subsection 2.3.5 an illus-

tration of locally linear embedding method is presented. Self-organising maps and

visualisation induced SOM are discussed in Subsection 2.3.6 and Subsection 2.3.7,

respectively.

2.3.1 Nonlinear Principal Component Analysis

In 1980 the development of nonlinear PCA methods came under consideration.

Those methods addressed the linearity constraints of PCA. Nonlinear PCA tech-

niques can be divided into the utilization of autoassociative neural networks, prin-

cipal curves and manifolds, and Kernel approaches. Kruger et al. [58] presented a

review of existing nonlinear PCA techniques and also examined the needs of non-

linear PCA methods in practice. Kruger et al. [55] introduced a non linearity test

that studies the structure (linear or nonlinear) of a given data set by analyzing the

variables interrelationship. In the following the Kruger et al. [58] test is explained.

Firstly, the data operating region is partitioned into several disjoint regions,

where the first region is centered around the coordinate system origin, then the

PCA technique is applied on the data points of each region. In substance, dividing

the operating region into the disjoint regions is computed through a prior knowledge

of the process or by directly analyzing the recorded data. Using a prior knowledge

into the construction of the disjoint regions, requires the incorporation of knowledge

about distinct operating regions of the process [58]. In contrast, a direct analysis

by plotting scatter plots of the first few retained principal components could expose

patterns that are indicative of distinct operating conditions [58]. Practically, if the
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direct analysis does not yield any distinctive features, then the original operating

region could be divided into two disjoint regions initially, and applying the nonlin-

earity test to these two disjoint regions. Besides the number of regions is increased

incrementally and followed by a subsequent application of the test. Note that the in-

creasing of the number of disjoint regions leads to reduce the number of observations

in each region [58].

Finally the data structure is determined as follows. The accuracy bounds that

are based on the residual variance are computed for one of the PCA models, and

the residual variance of the remaining PCA models are benchmarked against these

bounds [58]. The test is completed if each of the PCA models has been used to de-

termine accuracy bounds which are then benchmarked against the residual variance

of the respective remaining PCA models.

Therefore the data has a linear structure when each residual variance is within

an accuracy bound. In contrast the data structure is nonlinear if at least one of the

residual variances is outside the accuracy bound. Additionally, when the accuracy

of the PCA model is smaller than the variation of the residual variances, one can

conclude that the data structure is nonlinear [58]. Obviously the number of PCA

models is equal to the number of disjoint regions. Kruger et al. [58] illustrated that

this test is obtained under special assumptions and the reason for using the residual

variance is because it is independent of the disjoint regions.

Nonlinear principal component algorithms have been proposed as an extension

of PCA. The algorithms have been developed by Schölkopf et al. (1998) [27]. The

following section reviews briefly nonlinear PCA techniques.

A. Autoassociative Neural Network Approach

In the early 1990s, Kramer [58] proposed a generalization of nonlinear PCA using an

Autoassociative Neural Network (ANN). The ANN projects the recorded data onto

a curve or surface [95]. The network consists of five layers: input layer, mapping

layer, bottleneck layer, demapping layer and output layer, as displayed in Figure 2.2.

The algorithm try to reconstruct the D network input variables using a reduced set

of bottleneck nodes, i.e. the reduced variables < D.
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Figure 2.2: Autoassociative neural network layers (taken from [58]).

The input layer is the first ANN layer from the left, where weighted values of

the original variable set Z are passed onto the second layer (mapping layer) [58]:

ξi =
D∑
j=1

wijxj + bi,

where wij are the weights for the first layer and bi is a bias term. The algorithm

produces nonlinear score variables in the middle layer, referred to as the bottleneck

layer. The input of the fourth layer -demapping layer - is a linear combination of

these nonlinear score variables. Finally, the nonlinear transformation provides the

reconstruction of the original variables by the output layer [58].

The technique performs identity mapping, which means that the number of out-

puts of the network is equal to the number of inputs [58]. Then the outputs of

the bottleneck layer, which is in the middle of the network, provide the nonlinear

principal components. The number of necessary components is estimated by min-

imizing the squared distances of the data points using the first nonlinear principal

component. The conjugate-gradient algorithm is an optimization algorithm of ANN

and is generally used [8]. ANN is successfully used for analyzing climate data [5],

and atmospheric and oceanic sciences data [79].

The technique is less effective for large data sets [8]. Other shortcomings are

discussed by Kruger [58]. Scholz et al. [79] proposed a comprehensive illustration of

autoassociative neural networks and studied the variants of networks with applica-
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tions in the field of biology.

B. Kernel PCA

Kernel principal component analysis is a more recent nonlinear generalization of

PCA. It is based on the use of the kernel function. The technique is proposed

by Schölkopf et al. [58] [80]. In Kernel PCA the data Z ∈ R
D is mapped into a

high-dimensional space, which is called the feature space, by a mapping function

Φ(Z). Then, the algorithm performs a linear separation in that space and makes a

nonlinear projection of the data set in a new space.

Thus

Z 7→ Φ(Z), where Φ : RD 7→ R
M ,

and M > D which means that Φ(Z) has a dimension considerably larger than D.

Then the principal component analysis is performed on Φ(Z). Therefore, the data

in the feature space is projected onto a low-dimensional subspace spanned by the

eigenvectors which capture most of the variance. Figure 2.3 delineates the difference

between linear PCA (Figure 2.3a) and Kernel PCA (Figure 2.3b). In (Figure 2.3b)

the data points have a nonlinear pattern in the original space (left), while in the

(right) the data points form a linear pattern in the high dimensional feature space.

(a) (b)

Figure 2.3: (a) The data points are projected using the linear PCA method, (b)

Kernel PCA, the data points in the original space are mapped into feature space by

the mapping Φ(Z) (taken from [80]).
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Now, following the explanation of the algorithm in [58], suppose that;

Φ(Z) = [Φ(x1)Φ(x2) . . .Φ(xN)]
T is the original centered feature matrices. Kernel

PCA tries to compute

ΣΦγi =
1

N − 1
Φ̄(Z)T Φ̄(Z)γi = λiγi, where i = 1, . . . , D, (2.14)

where Φ̄(Z) = Φ(Z) − 1
N
ENΦ(Z), with EN being a matrix of ones, is the original

centered feature matrix .

In contrast, it is difficult to extract the eigenvectors directly from the the covari-

ance matrix of Φ(Z) because Φ(Z) is an unknown formulation [58]. Therefore the

formulation of the kernel function is used to overcome this deficiency.

Hence, suppose G = Φ̄(Z) Φ̄(Z)T and is further defined as the Gram matrix [58]:

Φ̄(Z) Φ̄(Z)Tvi = ζi vi, (2.15)

where ζi and vi are the eigenvalue and its eigenvector, respectively. Now, by multi-

plying (2.15) by Φ̄(Z)T , then

Φ̄(Z)T Φ̄(Z) Φ̄(Z)Tvi = ζi Φ̄(Z)
Tvi, for i = 1, . . . , D. (2.16)

By comparing (2.14) and (2.16), it now follows that ζi/(D−1) and Φ̄(Z)Tvi/
∥∥Φ̄(Z)Tvi∥∥2

are also corresponding eigenvalues and eigenvectors of ΣΦ, that is:

λi = ζi/(D − 1),

γi = Φ̄(Z)Tvi/
√
ζi.

Now, the kernel function is defined as k(xi, xj) = Φ(xi)
TΦ(xj), and the Gram

matrix G can be constructed from a kernel matrix K(Z) ∈ R
N×N as [58],

G = K(Z)− 1

N
K(Z)EN − 1

N
EN K(Z) +

1

N2
EN K(Z)EN .

Note that the calculation of G is depending only on k(xi, xj). The most commonly

used kernel functions include polynomial, RBF and Sigmoid kernels [58].

In addition, the data points represented in the kernel matrix are assumed to be

centered in the feature space. The kernel matrix is a symmetric matrix with N ×N

and its elements are defined by the inner product of all pairs of points Φ(xi) and
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Φ(xj), where i, j = 1, . . . , N , in the feature space [58]. Then the reduced dimension

is obtained by computing the eigenvectors of the kernel matrix. The score variables

are derived such that the first one possesses a maximum variance, and the second

largest variance and so on [58].

The computational demand for this technique increases insignificantly for large

values of N . The drawback of the method is that it is dependent on the kernel

choice. Besides, it is necessary to neglect the eigenvalues whose magnitude is lower

than a threshold value that can only be fixed in a heuristic way [8]. Several papers

discuss the comparisons between several techniques of nonlinear PCA [58] [95].

2.3.2 Principal Curve and manifolds

Principal Curve (PC) is a nonlinear generalization of PCA created by forming an

embedded manifold, and by using standard geometric projections on the manifold.

This technique is known as a nonparametric smoothing method. The principal curve

is a smooth one-dimensional curve passing through the middle of a data cloud. Ad-

ditionally, it can be considered as a one-dimensional manifold embedded in high

dimensional data space [58]. Hastie and Stuetzle [38] [39] proposed this curve to ap-

proximate a one-dimensional nonlinear topological relationship of data points, which

is usually two variables. Their definition is based on the notion of self consistency.

Every point lying on the principal curve is the average (conditional mean) of all the

data points that are projected onto it [55].

Consider the data matrix Z in D−dimensional space, where f is a smooth curve

in RD parametrized by λ ∈ R. Let λf (x) denote the value for which f(λ) is closest

to x [38] [39]. The projection index λf (x) is defined by

λf (x) = sup
λ

{
λ : ∥x− f(λ)∥ = inf

µ
∥x− f(µ)∥

}
, (2.17)

where ∥.∥ denotes the Euclidean norm in RD.

Following Hastie and Stuetzle’s definition, a principal curve has the following

properties [52]:

• f does not intersect.
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Figure 2.4: Projecting points to a curve (taken from [52]).

• f has a finite length inside any bounded subset of RD.

• f is self-consistent, i.e. E (Z | λf (Z) = λ) = f(λ) .

Various algorithms developing the PC technique have been proposed, such as

Hastie and Stuetzle’s algorithm for constructing principal curves, abbreviated as

HSPCs for a given data distribution [58]. Cubic smoothing splines and kernel

smoothing can be used as a smoothing technique for the estimation of HSPCs [58].

The principal curve algorithms can be divided into two families (‘top-down’) or

(‘bottom-up’), see Einbeck et al. (2005) [27] . The ‘top-down’ algorithms start

with the first principal component of the data set as an initial line, then bend this

line until the resulting curve passes satisfactorily through the middle of the data,

and minimizes various global error criterion. However, in some cases the selection

of an initial line leads to some technical problems and inflexibility, such as bias.

There are various ways of tackling and solving this problem. For example, instead

of starting with a global initial line, another option is to look exclusively the data

in a local neighborhood for points in every step [26] [23]. This way the principal

curve is constructed in a ‘bottom-up’ manner. Local principal curve (LPC) is one

of the ‘bottom-up’ algorithms. It proceeds through the data and does not minimize

a global error criterion [27]. In the next section we demonstrate the LPC technique.
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Local Principal Curve

When we consider a data set Z with xi = (xi1, · · · , xiD)T , i = 1, · · · , N . The idea

of the algorithm is to seek a smooth curve passing through the middle of the data

cloud, where the curve is obtained by computing local centers of mass of the data.

This concept follows the proposed work of Einbeck et al. [27]. Figure 2.5 displays

the Hastie and Stuetzle principal curve and local principal curve on Spiral data.

The Local Principal Curve (LPC) algorithm works using the following steps [27]:

• Step 1: Choose a starting point x = x0 which is in or close to the data

cloud. This is done by choosing the point with the highest density or select it

randomly.

• Step 2: Compute a local mean µx around x, where µx is given by

µx =
∑N

i=1w
x
i xi, and w

x
i = KH(xi−x)xi∑N

j=1 KH(xj−x)
denotes an appropriate (bell–shaped)

weight function centered at x ∈ R
D, where H is a bandwidth matrix andKH(.)

a D−dimensional kernel function.

• Step 3: A local principal component analysis is fitted at x by computing the

first local eigenvector γx of Σx =
(
σx
jk

)
, j ≥ 1, k ≤ D, and

σx
jk =

N∑
i=1

wx
i

(
xij − µx

j

)
(xik − µx

k) ,

where µx
j is the j−th component of µx. Using z as step size, then step from

µx to x := µx + zγx.

• Step 4: Calculate the local mean µx.

Steps 3 and 4 are repeated until the algorithm produces approximately constant

values of µx. Then the results of series µx are connected through a cubic spline

and parametrized by its arc length. The series provide the local principal curve.

Therefore every data point is projected to its nearest point on the curve, and the

data is compressed corresponding to its projection index [27].

Principal curve algorithms provide a good representation for a given set of data,

with the minimum dimension closest to one. PC is used in different applications, for
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(a) (b)

Figure 2.5: HSPC and LPC are obtained for the Spiral data (taken from [23]).

instance speech recognition, freeway traffic streams and the identification of profiles

of ice floes in satellite images. The principal component can be considered as a

special case of principal curves when the recorded data has an ellipsoidal distribution

[95].

Local Principal manifold

Local Principal manifold (LPM) is a generalization of LPC algorithms proposed by

Einbeck et al. [24]. The algorithm produces a representation of low-dimensional la-

tent structures which could be used for data sets with 2 ≤ minimum dimension ≤ D

(Einbeck et al. [24]). Applications of LPM algorithm are used for density estimation

and classification on the manifold, and can also be used for studying the regression

problem. An extension of the LPM algorithm is a local principal surface (LPS)

which estimates a manifold of dimension d = 2. Further details on this technique

are found in Einbeck et al. (2010) [26].

The LPM steps 1 and 2 are similar to the LPC steps outlined above, as illustrated

in [24], and then

• Step 3: By extrapolating triangular surface, compute the direction of the

vector that connects to the previous and current µx.
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• Step 4: Adjust the principal curve towards the middle of the local data distri-

bution via a constrained local mean.

This algorithm is used for the data set where the minimum dimension equals 2.

2.3.3 Multidimensional Scaling

Multidimensional Scaling (MDS) is a nonlinear projection technique that projects

data points onto a two-dimensional manifold. MDS tends to provide a representation

of distance and similarity patterns among data sets. The technique attempts to

project the data set in such a way that preserves the pairwise distances between

data points [8]. A general fitness function or stress function is defined as [95]

S =

∑
i,j (d(xi, xj)−D(xi, xj))

2∑
i,j(D(xi, xj))2

, (2.18)

where d(xi, xj) is the dissimilarity of data points i and j in the original data space,

D(xi, xj) is the distance (usually Euclidean) between mapped points i and j in the

projected space (new space).

MDS maps the data with the least stress possible using an optimization al-

gorithm. Several methods of MDS with different cost functions and optimization

algorithms exist. The common algorithm used for this family is a gradient method.

When the stress value equals zero then a suitable mapping (projection) is obtained.

The well known stress function is proposed by Kruskal and Shepard [8] [72] and is

defined as

SKruskal =

[∑
i<j [rank(d(xi, xj))− rank(D(xi, xj))]

2∑
i<j rank(D(xi, xj))2

] 1
2

. (2.19)

Bennett’s algorithm and Sammon’s mapping are MDS methods that are closely

related to Kruskal and Shepard’s algorithm [8] [95] [72]. Bennett’s algorithm as-

sumed that the data has a uniform distribution in the sphere of radius r. The

inter-point distance (Euclidean distance) between two data points is computed [72]

as

E =
|x1 − x2|

2r
.
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Then the variance of E is a decreasing function of the dimension D and could

be expressed [72] as

D · var(E) ≈ constant

which means that the increasing of variance E will flatten the data set. The algo-

rithm works [8] as follows. Firstly, the patterns are moved to increase the variance

of E. Secondly, the position of the patterns is adjusted which makes the rank or-

ders of E the same in local regions. The process is iterated several times until the

variance of inter-point distances levels off. Then the covariance matrix of the data

set is computed, and the number of eigenvalues is obtained. This method tends to

overestimate the intrinsic dimension of a data set, and it also needs to fix a thresh-

old value. Fukunaga-Olsens algorithm faces a similar issue when it determines the

retained eigenvalue [8].

Sammon’s mapping is similar to Kruskal and Shepard’s algorithm where the

stress is minimized by the gradient–descent algorithm. Sammon’s stress is

SSammon =

[∑
i<j

(d(xi, xj)−D(xi, xj))
2

d(xi, xj)

][∑
i<j

d(xi, xj)

]−1

. (2.20)

In practice, with Kruskal’s method and Sammon’s method the stress is minimized

by moving all points simultaneously in the output (mapping) space [8] [72]. Another

stress function has been proposed by Chang et al. [12] which improved Kruskal’s

method and Sammon’s method. Chang’s method tries to minimize the stress by

moving two points at a time, which preserves the local structure. The issues with

this method are that it needs high computation resources, even for a moderate

number of data points. Furthermore, the results of Chang’s method are influenced

by the order in which the data points are taken as a pair [8] [72].

There are several other issues with the MDS method as follows [8] [95]:

• MDS is computationally intensive.

• It is difficult to display and analyze the data in a high-dimensional space.

• For each new set of data points the technique needs to compute every data

point again.
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The technique is widely used in the applications of visualization and data mining in

fields such as marketing and ecology.

2.3.4 ISOMAP

Isometric feature mapping method (ISOMAP) is a nonlinear method. It has been

proposed as an extension of metric MDS. Fundamentally ISOMAP uses geodesic

manifold distances between all data pairs instead of the Euclidean distance. Figure

2.6 displays the illustration between Euclidean and geodesic distance.

The technique was proposed by Tenenbuam et al.(2000) [84]. The ISOMAP

algorithm tries to construct a low-dimensional embedding of a set of data points

lying in high-dimensional space.

The technique used the input-space distances to estimate the geodesic distance

between distant points [84]. The ISOMAP algorithm, as explained in [84], works as

follows:
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(b) (c)

Figure 2.6: The difference between Euclidean and geodesic distances explained by

two points in a spiral of two-dimensional space (based on Lee et al. (2004) [59]).

(a) shows data points, (b) shows the Euclidean distance between the two points, (c)

shows the geodesic distance between them is the same as along the manifold, which

illustrates the intrinsic similarity of two points.
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A graph G is constructed by connecting all neighbouring points and labellings

all arcs with the Euclidean distance between the corresponding points, so the graph

edges are between neighbours and distance weights. Next, the geodesic distance

between two points is approximated by the sum of the arc lengths along the short-

est path connecting both points. Several algorithms are proposed to compute the

shortest paths, such as the algorithm of Tenenbaum, where the algorithm exploits

the sparse structure of the neighbourhood graph [84]. The final step of the ISOMAP

algorithm is to apply classical MDS to the approximated geodesic distance matrix,

which means computing their largest eigenvectors. The eigenvectors provide the

coordinates of the data points in the lower-dimensional space.

ISOMAP produces globally optimal mapping which is low-dimensional compared

to PCA and MDS. Increasing the sample size provides a better approximation of

the intrinsic geodesic distances [84].

2.3.5 Locally Linear Embedding

The Locally Linear Embedding method (LLE) is an unsupervised learning algorithm.

Both the LLE and ISOMAP methods are known as a new generation of dimension

reduction methods. The LLE algorithm has been proposed by Roweis and Saul

(2000) [76]. It has several advantages over ISOMAP, including an ideal method to

preserve the local geometry structure of the data. The LLE technique determines

every data point and its k-neighbors, then uses the same weights to compute the

low-dimensional embedding.

Consider data consisting of N real-valued vectors xi, each of dimensionality D,

and they lie on or near a smooth nonlinear d-dimensional manifold with d << D.

The aim is to map the high dimensional coordinates to low dimensional global

internal coordinates on the manifold. In the same manner as Roweis and Saul

(2000), the algorithm works using the following steps [76]:

• Step 1: Assign the neighbors of each data point xi. To do this, calculate the

Euclidean distances between all data points, and for each data point select the

k nearest neighbors.
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• Step 2: Calculate the weight matrixW , where wij summarizes the contribution

of the jth data point to the ith reconstruction. Measure the reconstruction

errors using the following cost function:

ϵ(w) =
N∑
i

∣∣∣∣∣xi −
N∑
j

wijxj

∣∣∣∣∣
2

. (2.21)

The cost function Eq.(2.21) is governed by two restrictions: first, data points

in xi are reconstructed from its neighbors (i.e. wij = 0 when xj not belongs

to neighbor of xi). Second, the sum of weights equal to one (i.e.
∑

j wij = 1).

Then use a Lagrange multiplier to minimize the reconstruction error.

• Step 3: Map each xi to a low-dimensional (embedded coordinates) yi in global

internal coordinates on the manifold. This mapping is achieved by minimizing

the following cost function,

Φ(w) =
∑
i

∣∣∣∣∣yi −∑
j

wijyj

∣∣∣∣∣
2

. (2.22)

In this final step, the algorithm reconstructs the local geometry represented

by the weight matrix W in low-dimensional Euclidean space.

LLE has been applied to various applications, such as images of lips and facial

expressions [76]. LLE works well with other methods in data analysis and statistical

learning, and also the method achieves efficient computation.

2.3.6 Self-Organising Maps

Self-Organising Maps (SOM) is an unsupervised learning algorithm. The SOM tends

to provide a representation of similarity patterns among a data set. The Kohonens

Self-Organising Map proposed by Teuvo Kohonen is the most common model of a

neural network. The technique attempts to project the data set in such a way that

preserves the distances between data points as much as possible. It is also known

as the topology preserving mapping of the original data space. Therefore the data

points that are closest to each other in the original data space RD are mapped to

nearby neurons (nodes) in the new space [94] [95].
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The SOM consists of a set of neurons that are arranged in a low-dimensional

rectangular or hexagonal grid, to form a discrete topological mapping of an input

space. In the same manner as Yin [95] described the algorithm, suppose the number

of neurons equals m. wzi is the weight vector of dimension D and associated with

neuron i, where zi is the location vector of neuron i on the grid and i = 1, 2, · · · ,m.

In the beginning of the learning, all the weights {wz1, wz2, · · · , wzm} are initialized to

small numbers randomly. Hence, following the illustration of the algorithm in [95],

the SOM algorithm works as follows:

• Step 1: Determine the input x(t), where x(t) is an arbitrarily chosen element

of data Z, and the winner for any time t,

υ(t) = argmin
a∈Ξ

∥x(t)− wa(t)∥ ,where Ξ is the set of neuron indexes. (2.23)

• Step 2: The neighbors of the winner and their weights is updating as,

∆wa(t) = α(t) η(υ, a, t) [x(t)− wυ(t)] . (2.24)

• Step 3: The process is repeated until the map converges.

where η(υ, a, t) is the neighborhood function and could be a Gaussian function, i.e.

η(υ, a, t) = exp
[
−∥υ−a∥2

2σ(t)2

]
, and σ is the changing effective range of the neighborhood.

The coefficients {α(t), t ≥ 0} are scalar learning rate and monotonically decreasing,

and satisfy [95]

1. 0 < α(t) < 1,

2. limt→∞
∑
α(t) → ∞,

3. limt→∞
∑
α2(t) <∞.

Now, if the inner product similarity measure is used,

υ(t) = argmin
a∈Ξ

[
wT

a x(t)
]
,

then the corresponding weight updating will become [95]:

wa(t+ 1) =


wa(t)+α(t)x(t)

∥wa(t)+α(t)x(t)∥ a ∈ ηυ

wa(t) a /∈ ηυ
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This form is often used in text and document mining applications [95]. The SOM is

used in many applications such as data visualization, clustering and classification.

The drawback of the SOM is that the algorithm needs to mark the distance between

neurons [95].

2.3.7 Visualisation induced SOM

Visualisation induced SOM (ViSOM) is the generalization (extension) of the SOM. It

is proposed by Yin [94] [95] to overcome the drawbacks of the SOM. The method tries

to preserve the inter-neurons distances on the map, by placing the nodes uniformly

and smoothly in the nonlinear manifold. Therefore the distances will be the same

between any two neighboring neurons, and the map will be a smooth manifold

embedded into the data space [95]. Although the structures of the ViSOM and

SOM are similar, the ViSOM method helps preserve a local inter-neuron distance

on the map [95].

The ViSOM algorithm works, as illustrated in [95], by decomposing x(t)−wa(t)

into two elements [x(t)− wυ(t)]+ [wυ(t)− wa(t)], where the first element illustrates

the updating force from the winner υ to the input x(t), and the second element is

a lateral contraction force where neighboring neuron a is brought to the winner υ.

The lateral contraction force is constrained or regulated in order to help maintain

a unified local inter-neuron distance ||wυ(t)wa(t)|| on the map [95]. One has the

update rule

∆wa(t+ 1) = wa(t) + α(t) η(υ, a, t) {[x(t)− wυ(t)] + β [wυ(t)− wa(t)]} . (2.25)

such that

β =
dυa
Dυaρ

− 1,

where dυa is the distance of neuron weights in the input space, Dυa is the distance

of neuron indexes on the map, and ρ is a (required) resolution constant [95]. The

contraction force is computed such that the distances between the nodes on the map

are analogous to the distances of their weights in the data space [95]. The ViSOM

algorithm tries to adjust inter-neuron distances on the map in proportion to that of

the original space, so Dυaρ ∝ dυa [95].
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Compared to Sammon mapping, the ViSOM preserves the original space as Sam-

mon mapping and deals with training data and new input data points in a simple

computational way [94]. Therefore the visualisation will be more direct, quanti-

tatively measurable, and visually appealing. In addition, the map resolution may

be developed by interpolating a trained map or incorporating local linear projec-

tions [95].

The SOM and ViSOM are similar in cases when the data is distributed uniformly,

and also when the number of nodes becomes very large, in which case both the SOM

and ViSOM will closely approximate the principal curve/surface [95].
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2.4 The relationship between intrinsic dimension

and dimension reduction

Dimension reduction describes the structure of complex data (explicitly or implic-

itly) through a small but sufficient number of variables. Most dimension reduction

methods require the intrinsic dimension of the low-dimensional subspace to be fixed

in advance. The intrinsic dimension (ID) is defined as the minimum number of

variables which are necessary (suffice) to describe the data without much loss of in-

formation. For illustration consider the Spiral data with a two-dimension space, as

in Figure 2.5. Consider also the principal curve which is a smooth one-dimensional

curve passing through the middle of a data cloud, as shown in Subsection 2.3.2. In

order to fit the principal curve to the Spiral data, the user has firstly to decide that

the ID is equal to 1, as displayed in Figure 2.5.

Next, we demonstrate the relationship between intrinsic dimension and some

of dimension reduction methods. For linear dimension reduction methods, such as

principal component analysis (PCA), the data Z is compressed to a smaller dimen-

sion d ≤ D. This means projecting all data points (N) onto the d-dimensional

subspace spanned by the d largest principal components, as shown from 2.3 in Sub-

section 2.2.1. Then PCA reveals implicitly the intrinsic dimension estimate during

the dimension reduction process. The number of significant variables represents

the estimate of intrinsic dimension. For linear discriminant analysis (LDA) and in-

dependent component analysis (ICA) methods, as shown in Subsections 2.2.2 and

2.2.3, the user has to determine, in a similar way to PCA method, the eigenvectors

corresponding to the largest eigenvalues. This step leads to estimate the intrinsic

dimension.

For application of the principal curve method, the user needs to deduct firstly

that the intrinsic dimension equals 1. Additionally the local principal manifold

(LPM) which is an extension of principal curves, as shown in Subsection 2.3.2,

produces a low-dimension representation and is used for the data where the minimum

dimension equals 2. Then the user should decide that the ID equals 2 before fitting

the local principal manifold. With the ANN method, the algorithm projects the
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recorded data onto a curve or surface, as shown in Subsection 2.3.1. In this method,

the user needs to decide the dimension of the output space, fixing ID=1 or 2, as

pre-processing step, before fitting the algorithm.

The multidimensional scaling (MDS) method projects data points onto a two-

dimensional manifold, as shown in Subsection 2.3.3. This means that in the be-

ginning the user sets the ID as equal to 2. On the other hand, its generalization

method ‘ISOMAP’ produces globally optimal mapping, which is low-dimensional

compared to PCA and MDS. ISOMAP constructs a low-dimensional embedding of

a set of data points lying in a high-dimensional space, as shown in Subsection 2.3.4.

The user should decide the dimensionality d of the manifold before applying the

ISOMAP method. The most common setting is at ID=2.

The LLE method assumes the data points lie on or near the smooth nonlinear d-

dimensional manifold with d << D, as in Subsection 2.3.5. The LLE method aims to

map the data from high dimensional coordinates to low dimensional global internal

coordinates on the manifold. In this case the user needs to know the dimension d of

the manifold at the beginning.

To sum up, most dimension reduction methods require an explicit definition of

the intrinsic dimension of the manifold. There have been few attempts dedicated to

determining the estimate of the intrinsic dimension of data in this context.
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2.5 Conclusion

In this section, we have given an overview of the methods of dimension reduction by

exploring the relationship between the algorithms and their computational cost.

Figure 2.7: Dimension reduction methods

Figure 2.7 displays a taxonomy of techniques for dimension reduction which de-

lineates that the core distinction between techniques is linear and nonlinear meth-

ods. Linear methods assume that the data set has a linear structure and the methods

try to search for globally flat subspaces. Nonlinear methods for dimension reduction

try to search for locally flat subspaces, and are not dependent on the assumption of

linearity. The methods are used to embed the data in low-dimensional space.

Several other approaches to dimension reduction have been proposed. It is worth

mentioning Laplacian eigenmaps (Belkin and Niyogi [3]) and Hessian eigenmaps

(Donoho and Grimes [17]) which are motivated by spectral theory in the continuum.

Laplacian eigenmaps are the predecessor of the next method – Hessian eigenmaps,

which overcome the convexity limitation.
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Next, the relationship between the algorithms and their computational cost is dis-

cussed. Firstly, the algorithms relationship is assessed. It become clear that several

algorithms examined in Section 2.2 and 2.3 are related to each other. For instance

linear PCA is a special case of the Kernel PCA with a linear kernel. ISOMAP is a

special case of MDS which uses geodesic distances. Furthermore MDS is a special

case which uses ISOMAP with k (number of nearest neighbors) equal to N − 1.

Secondly, the computation cost is explored. Practically the computation cost

and the method’s memory capacity are determined by looking at the data prop-

erties, such as the original data set dimensionality D and the the number of data

points N . Usually increasing N or even D leads to increase the computational cost

proportionally. The computational cost is shaped by the number of parameters in

the technique and the number of times iteration is needed. Most of the nonlinear

methods have parameters which need to be optimized, for instance techniques that

are based on neighbors such as ISOMAP and LLE. In addition to the technique’s

parameters, the nonlinear methods have higher computation costs than the linear

methods, although this is outweighed by improvements in performance.



Chapter 3

Estimation Methods of Intrinsic

Dimension

3.1 Introduction

This chapter introduces intrinsic dimension (ID) and examines the methods that are

used to estimate it. The estimation of intrinsic dimension is an essential step in the

dimension reduction process, because most dimension reduction methods require the

intrinsic dimension of the low-dimensional subspace to be fixed in advance. When

this is done the researcher can then deal with a space with a much lower dimension

than the dimension of the original data set, such as a nonlinear manifold. Ideally

the dimension should be reduced in a way which captures significant information

embedded within the data set.

The word dimension has various definitions such as topological, intrinsic, fractal,

and manifold dimension. These dimensions can be estimated for data sets. The

d-dimensional manifold is a D-dimensional space Rd with dimension d [78]. The

topological dimension of a topological space is either defined as the set of dimension

D which can be divided into small sets as efficiently as possible, or as the dimension

of the manifold that the data lies on [78].

Hausdorff dimension dH - this is the first definition of a dimension [78] [8].

The D-dimensional Hausdorff measure ΓH(r) of a set is defined as:

41
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ΓH(r) = lim
r→0

inf
si

∑
i

(ri)
D, (3.1)

where the set is covered by small sets (cells) si with variable diameter ri , such that

all diameters satisfy ri < r. The D-dimensional Hausdorff measure generalizes the

usual notion of the total length, area and volume of simple sets [8]. Hausdorff [8]

proved that

ΓH(r) =

 +∞ if D < some critical value dH

0 if D > dH
,

where the critical value dH is defined as the Hausdorff dimension of the set.

The definition of intrinsic dimension is delineated in the Section 3.2. This chapter

is organized as follows. Section 3.3 briefly defines local concepts. An implementa-

tion of one of the local methods on artificial data sets is presented in Subsection

3.3.6. The main features of global concepts are briefly introduced in Section 3.4. An

implementation of one of the global methods on artificial data sets is discussed in

Subsection 3.5.2. An overview of intrinsic dimension estimation methods based on

an exploration of computation costs and other factors is presented in Section 3.6.

3.2 Intrinsic dimensionality techniques

Assume the intrinsic dimension (ID) of a data set Z is given by a value d where

d ≤ D, which effectively captures the minimum number of variables necessary to

describe the data without much loss of information [8] [32]. Camastra illustrated

that the ID= d is obtained when the data points lie entirely within a d-dimensional

linear subspace of RD [8]. This ‘linear ID’ is extracted by linear methods such as

PCA, Factor analysis and Independent component analysis. Fukunaga’s notion of

ID [32] is as follows:

“The geometric interpretation is that the entire data set lies on the

topological curve of d or less dimensions.”

This motivates the nonlinear techniques used in Fukunaga-Olsen’s algorithm,

Multidimensional scaling and fractal based methods. Following this concept, we
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have in this chapter a general notion of ‘subspace’ in mind which comprises linear

as well as nonlinear manifolds.

Several papers such as Levina and Bickel [60] categorize the methods for the

estimation of intrinsic dimension into two different groups, which are projection

techniques and geometric approaches [60]. Following Camastra’s survey [8], ID es-

timation methods can be classified into two groups. Local methods divide the data

set into small subregions, or provide a series of local ID estimates at several target

points, in order to arrive at a suitably averaged overall ID estimator. Examples

to such methods include Levina–Bickel’s maximum likelihood estimator [60], and

Brands’ concept of ‘charting’ [6], among others [8]. On the other hand, global meth-

ods try to estimate the dimension using the whole data set, imposing the implicit

assumption that the intrinsic dimension is constant over the data set. Examples to

such methods include projection methods, MDS and fractal-based method. The core

aim of ID methods is to capture significant information that is embedded within the

recorded set. Figure 3.10 illustrates the relationship between local, global, linear,

and nonlinear ID methods.

Next assuming the relationship between the variables of a given data set are

defined by a general model which describes, for each x ∈ R
d generated by a random

vector X, a linear form

x = As+∆x, (3.2)

then following this linear model, one can define the nonlinear model as

x = ψ (s) + ∆x. (3.3)

Here, x and ∆x ∈ R
D while s ∈ R

d. The general assumptions imposed on the data

model for both Eq. (3.2) and (3.3) [28], include

•
∥∥x∥∥≫

∥∥∆x∥∥,
• E

{
x
}
= E

{
∆x
}
= 0,

• and AE
{
s
}
= E

{
ψ
(
s
)}

= 0.

where
∥∥ ·∥∥ and E

{
·} are the norm of a vector and the expectation operator, respec-

tively. Following the discussion in [32] [8], ensuring that the loss of information is
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insignificant, the assumption
∥∥x∥∥ > ∥∥∆x∥∥ is imposed on the data realization. For

some realizations, the more restrictive assumption
∥∥x∥∥ ≫

∥∥∆x∥∥ is considered [56].

Moreover, the assumption E
{
s
}

= 0 does not represent a restriction of general-

ity [28].

One can consider Eq.(3.2) as a function that explains a linear relationship be-

tween s and significant information in x through the use of a model plane that is

defined by the column space of A. On the other hand, Eq.(3.3) is considered as

an extension of Eq. (3.2) in a nonlinear sense, where the nonlinear transformation

of s explains significant information in x. Then the objective is to estimate the

dimension of s and determine the significant information.

Several approaches have been proposed for the linear structure. Most of them

are related to the application of the PCA method by estimating the column space

of A, and rely on various assumptions.

It is important to note, however, that a consistent estimation of d is only guar-

anteed under the assumption that E
{
s∆xT

}
= 0 [28]. In contrast to the well-

established techniques to estimate d for Eq.(3.2), the research community has de-

voted comparatively little attention to estimating d in Eq.(3.3) [28]. Global ID es-

timation methods, such as projection techniques, tend to produce an explicit model

surface and/or a reduced set of source signals. In contrast, non–parametric methods,

such as fractal methods, generally only provide the ID estimate by itself, without

recovering the source signal. The term ‘fractal’ is used since, under this sort of

approach, the intrinsic dimensionality d does not need to be an integer. Next, the

following sections briefly discuss the techniques for each ID method.
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3.3 Local methods

In this section the local intrinsic dimension methods are covered. These methods

attempt to estimate the intrinsic dimension by analyzing subsets of the data set.

Camastra [8] defined the local methods as the methods that try to estimate the

topological dimension of the data manifold where the topological dimension pro-

duces a lower bound of ID [8]. Several methods have been proposed to estimate

ID locally such as Near neighbor algorithm and Charting a manifold. It is essential

to identify a suitable number of subsets (samples) with a small size which ideally

lie on the same manifold [54]. In Subsection 3.3.1 the explanation of Fukunaga-

Olsen’s algorithm is briefly presented. The Near neighbor algorithm and Topology

representing network based method are illustrated in Subsection 3.3.2 and Subsec-

tion 3.3.3, respectively. In Subsection 3.3.4 the explanation of Charting a manifold

method is outlined. Subsection 3.3.5 presents the maximum likelihood estimation

method. An implementation of one of the local methods on artificial data sets is

presented in Subsection 3.3.6.

3.3.1 Fukunaga-Olsen’s algorithm

This algorithm is proposed by Fukunaga and Olsen [72] as the basic algorithm to use

to obtain a topological dimension. The feature of the algorithm is the linearization

of functions in local regions [32]. The intrinsic dimensionality of the data is obtained

by finding the number of random variables d from observed samples.

The algorithm assumes that the data vectors are embedded locally in linear

space [8]. In this technique the data set is divided into small regions, which construct

linear variable relationships in each region. Practically, it is important to ensure that

there are adequate data vectors in each local region. It is also important to note that

the estimated dimensionality is too large in the local regions for a limited data set.

This is due to that a local region with sufficient points is too large for the surface

convolutions at that point [32].

Fukunaga-Olsen’s algorithm has the ability to vary the size of the local regions.

Fukunaga stated that this variability is critical as the practical problem to obtain the
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dimensionality depends on the size and number of samples in the local regions [32].

Next, the ID is derived by computing the number of normalized eigenvalues of the

covariance matrix which are greater than a threshold [8]. Practically, the eigenvalues

are normalized by dividing them by the largest eigenvalue [8]. The drawback of the

algorithm is that its computation is complicated [72] and the value of the threshold

has to be fixed heuristically.

3.3.2 The Near Neighbor Algorithm

Trunk (1976) used near neighbor techniques to estimate the ID [8] [72]. This algo-

rithm attempts to identify k nearest neighbors for each pattern in the recorded data

set, where k is an integer value, and then for each pattern it constructs the subspace

which contains data vectors from ith pattern to its k nearest neighbors [8]. The an-

gle is computed between the subspace of ith pattern and the (k+1)th near neighbor

for all i [8]. The ID estimation is equal to k if the average of these angles is less than

a threshold. Otherwise k is increased by 1 and the process is replicated [8] [72]. The

drawback of this method is that the choice of the threshold is not quite clear [8].

Pettis et al. [72] improved the technique based on density estimation by assuming

that the data has a locally uniform distribution. This technique depends on some

factors such as the number of patterns and the maximum value of near neighbors

used [72]. The ID is obtained [8] as

ID =
µk

(µk+1 − µk) k
, (3.4)

where µk is the mean of the distances from each pattern to its k nearest neighbors.

The ID estimate looks biased when this is done [8]. Another algorithm has been

proposed by Verveer and Duin [89], which provides a non-iterative solution for ID

estimation by fitting a regression line to µk as a function of (µk+1 − µk) k in case

of observing µk for k = km to k = kM [8]. The values k = km and k = kM should

be small. Both Pettis’ and Verveer and Duin’s algorithms are influenced by outliers

which tend to affect ID estimation significantly [8], and are also affected by the edge

effect [8]. This means that the data points which lie close to the cluster boundary are

not uniformly distributed [8]. To overcome this problem, the user needs to eliminate
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those boundary points and select km > 1 [8].

3.3.3 TRN-based methods

Martinetz and Schulten (1994) [66] [8] propose the topology representing network

(TRN) which is an unsupervised neural network. The algorithm preserves the orig-

inal topology of the data in the map. The idea is to use Hebbian adaptation rule

to form Delaunay triangulation to construct a comprehensive topology representing

network [66].

Several papers use TRN techniques to improve other techniques. Bruske and

Sommer [8] improved Fukunaga-Olsen’s algorithm using TRN. Bruske and Sommer’s

algorithm performs Voronoi tessellations of the data space, and determines a PCA in

each Voronoi set. The method has some limitations. It is necessary to use heuristic

thresholds to state the significance of the eigenvalue [8]. Frisone et al. [8] used the

TRN method to obtain an ID estimate directly. The ID of a data set is determined as

the number n of cross-correlations learnt by each neuron of the TRN. He suggested

that, in the Sphere Packing Problem (SPP), the number of n cross-correlations is

approximately equal to the number k of spheres which touch a given sphere [8].

Frisones algorithm is limited since the number k is needed to be measured. This

is difficult because k is only known for few dimensions. In addition, the number k

increases exponentially as the dimensions increase [8].

3.3.4 Charting a manifold

Charting a manifold is a new generation of nonlinear intrinsic dimension estimation

methods proposed by Brand [6], which considers the noise around the manifold.

The technique assumes that the data lies on or close to a low-dimensional manifold

embedded in the high-dimensional space, and that a 1-to-1 nonlinear transformation

is mapped between the high dimensional data space and the manifold (vector space)

[90] [6].

The basic idea is as follows [6]. Suppose a data set Z where the data points are

sampled from a manifold M with the intrinsic dimensionality d where d ≤ D. The



3.3. Local methods 48

mapping to Rd should provide a smooth curve which guarantees that the mapping

from M to Rd is linear in some neighborhoods on the manifold [6]. Hence, assume a

circle of radius r, placed somewhere in the center of the data cloud, contains N(r)

data points. Brand argues that [6], if the underlying manifold is sufficiently smooth,

there will be a scale r at which the the manifold is locally approximately linear. At

the local linear scale, N(r) grows ∝ rd, while at noise level, the number of points

N(r) will grow ∝ rD. We may refer to the former radius, say r0, as the signal level,

at which the points are distributed only in the directions of the local tangent space

of the manifold.

Increasing the radius further, the curvature becomes visible so that N(r) will

increase at a rate between rd and rD. When reaching the boundary that encloses

all data, N(r) eventually flattens. Brand’s expression is

G(r) =
∂ log

(
r
)

∂ log
(
N
(
r
)) (3.5)

that determines the radius r0 to derive the intrinsic structure best, and ∂ is a

derivative symbol. Hence, according to above considerations [6]:

• at noise scales G(r) ≈ 1
D
< 1

d
,

• at the scale where the curvature becomes significant G(r) < 1
d
.

• at the locally linear scale, the process peaks at G(r), with maximum

G(r0) = 1/d.

Hence, one can read the intrinsic (topological) dimension d directly from the

graph (r,G(r)). Although this concept is appealing in practice, its implementation

is nontrivial.

Since it is a local method, the technique needs to be repeated over several target

points (corresponding to the centers of the r-balls), and the resulting local IDs

need to be averaged. The choice of target point is important, since the topological

dimension at the boundaries is smaller than that of the manifold itself. We discuss

the choice of target points in Chapter 4 and show how the ID can be obtained from

the log-log plot using nonparametric or parametric regression approaches.
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3.3.5 Maximum Likelihood Estimation

Maximum Likelihood estimation method (MLE) was proposed by Levina and Bickel

[60] to obtain the intrinsic dimension of a data set. Levina and Bickel also studied the

statistical properties of the estimator. This technique assumes that the observations

are independent, and it applies the principle of maximum likelihood to the distances

between close neighbors [60]. As for the k-NN algorithm, those neighbors lie on the

same manifold [54]. The observations in the ball are treated as a homogeneous

Poisson process and the ID estimate is derived by maximizing the log-likelihood

function. The dimensionality is estimated by computing the number of neighbors

contained in a sphere [60]. The sphere is assumed to be small enough and to contain

enough data points.

Similarly as in charting a manifold, suppose a sphere of radius r is around a fixed

point x. The ML estimator works as follows [60]. Let k be the number of nearest

neighbors to the point xi. Then, for fixed k, define the quantity

dk
(
xi
)
=

[
1

k − 1

k−1∑
j=1

log

(
Tk
(
xi
)

Tj
(
xi
))]−1

, (3.6)

where Tk
(
xi
)
and Tj

(
xi
)
are the Euclidean distance between xi and the kth and

jth nearest neighboring samples, respectively. One can divide by (k − 2) instead

of (k − 1) to obtain an asymptotic unbiased estimator [60]. The method assumes

that all the data points come from the same manifold, and therefore average over all

observations [60]. Now the ID is obtained locally at every data point by computing

the average dimension estimation within the data sphere as:

dk =
1

N

N∑
i=1

dk(xi),

The process is repeated for each value of k within the range. Finally, the intrinsic

dimension for a data set Z can be obtained by averaging over a range of k:

d (Z) =
1

k2 − k1 + 1

k2∑
k=k1

dk. (3.7)

The method produces satisfactory results on a range of simulated and real data

sets [60]. The drawback of this method is that the estimator suffers from a negative
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bias for large values of k [60]. This bias decreases with the growing of sample

size [60]. On the other hand the bias increases with high dimension because it needs

a very large data sample in the sphere [60]. Furthermore, the negative bias could

be caused by edge effects.

Mackay and Ghahramani [63] discussed the bias in the estimated dimension

and suggested a bias correction of MLE by averaging the inverse of the estimator.

Adapting to Levina and Bickel’s work, we propose to replace Eq.(3.7) by the median,

and illustrate the performance of this technique in Chapter 4.

3.3.6 Experiments of local method on artificial data sets

In order to evaluate the performance of a local method, the MLE method is imple-

mented in the R software [74] and applied to two artificial data sets: Spiral data and

Swissroll data. The data set is scaled to mean 0 and variance 1. Note that when

applying MLE to a data set, the choice of the parameter k is very important, where

k is the selection of the number of nearest neighbors. Practically, for small numbers

of neighbors k, the MLE algorithm provides an unreasonable value of dimension

estimation. This leads one to infer that the algorithm has not yet worked. Further-

more, the intrinsic dimension estimation is frequently low when k increases. We use

a reasonable range of k between 10 and 20 as advised by Levina and Bickel [60].

In addition, we test the sample size effect on the MLE method by computing the

dimensionality at several sample sizes. In practice, for simplicity and computation

time, a maximum sample size value of 300 data points is taken.

MLE applied to Spiral data and Swissroll data

The Spiral data consists of points randomly sampled from a one-dimensional non-

linear manifold embedded in a two-dimensional space. The data consists of 300 data

points, as displayed in Figure 3.1a, which illustrates that the intrinsic dimensionality

of data is equal 1. On the other hand, the Swissroll data consists of three variables

with 300 data points. It is generated by adding the uniform variable to a Spiral

data, as displayed in Figure 3.2b, which delineates that the intrinsic dimensionality

of this data equals 2.
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Figure 3.1: (a) A 2D scatter plot of scaled Spiral data, (b) The dimensionality

estimation of scaled Spiral data via maximum likelihood estimation with 300 data

points.
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Figure 3.2: (a) A scatter plot matrix of scaled Swissroll data, (b) A 3D scatter plot

of scaled Swissroll data.
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Figure 3.3: The ID estimation of scaled Swissroll data via maximum likelihood

estimation with 300 data points.

Sample size

Data set D True (ID) 50 100 150 200 300

Spiral 2 1 1.73 1.71 1.80 1.73 1.84

Swissroll 3 2 2.87 2.69 2.52 2.47 2.51

Table 3.1: The MLE estimate for artificial data sets in different sample sizes.

In Table 3.1, the ID estimates are obtained via the MLE method using different

sample sizes. From table 3.1 we observe that the performance of MLE is influenced

by the sample size and the parameter k. Besides the computation time of implemen-

tation increases when increasing the sample size. The resulting estimate is depicted

in Figure 3.3, which shows different estimations over the range of k of Swissroll data

with sample size 300, and the final estimator is 2.51. Levina and Bickel [60] observe

that, for dimension estimates equal to 2, the required sample size has to be 1000

to obtain an estimate near to the true value (In this context, 300 is small sample

size). We observe that MLE method gives a visual impression of positive bias but

is consistent with the scree-plot (linear PCA). Further more, the computation time

of implementation increases exponentially as the sample size increase.
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3.4 Global Methods

The majority of methods used for estimating the ID depend on global techniques,

such as PCA or maximum likelihood PCA [87] [47] [56]. These methods try to

estimate the ID by studying the structure of the entire data set. Global methods try

to estimate the dimension using the whole data set [8], and imposing the implicit

assumption that the intrinsic dimension is constant over the data set. The core

concept is to unfold or flatten the data in a high-dimensional space. Global methods

can be grouped [8] into projection techniques, multidimensional scaling methods and

fractal-based methods. In Subsection 3.4.1 the projection techniques are illustrated,

by the example of linear and nonlinear PCA methods. Multidimensional scaling

methods are briefly presented in Subsection 3.4.2. Fractal-based methods and their

estimation methods are discussed in Subsection 3.4.3. An implementation of one of

the global methods on artificial data sets is discussed in Subsection 3.5.2.

3.4.1 Projection techniques

Projection or eigenvalue techniques are based on PCA techniques, where PCA

projects the data points onto lines or planes spanned along the direction of maximal

variance. Then one computes the eigenvalues and the eigenvectors of the covariance

matrix of the recorded data. These methods can be divided into linear and nonlinear

methods, as previously explained in Chapter 2.

A. Linear PCA

Linear PCA is a simple transformation carried out in order to minimize the mean

square reconstruction error. The ID is obtained as the number of eigenvalues of

Σ greater than a given threshold [60]. Several approaches determine the number

of (retained) components derived by PCA, such as cross–validation, the scree plot

and the broken–stick model. Some of the stopping rules are briefly illustrated below.

Stopping rules for linear PCA method

Jackson (2003) [46] presented a survey on several stopping rules in PCA analysis
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and provided a comparison between those rules. The objective of stopping rules is

to determine the number of principal components that should be retained. Those

approaches are cross–validation, the scree plot, the broken–stick model and the

proportion of total variance. Other approaches are included in Jackson [46] and

Kruger et al. [56].

a. Scree plot - this is the plot of each eigenvalue λj against the component index

j in descending order. Cattell [56] illustrated that the scree plot displays two sets.

The first set is of the first few eigenvalues that decrease sharply, while the second set

is the remaining eigenvalues which decreases slowly. Then the retained eigenvalues

are the first set which includes the first eigenvalue of the second set [46] [56]. The

drawback of this method is that it often overestimates the number of components

that are retained [46].

Another way to detect the retained components is based on visual impression by

determining the knee of the scree plot, which is done by eye.

b. Broken-stick - this method is proposed by Frontier and based on the eigenvalues

from random data. The model assumes that the eigenvalues distribution follows

a broken-stick distribution when the total variance is divided randomly amongst

the different components [46]. Therefore, the significant eigenvalues are those that

override the generating eigenvalues via the broken-stick model, where the generating

eigenvalues could be computed as [46]

τk =
D∑
i=k

1

i
,

where the number of variables is denoted as D and λk is the size of eigenvalues

for the kth component under the broken-stick model. Compared to other statistical

approaches, this method presents an accurate dimensionality estimation [46].

c. Proportion of total variance - in general the sum of the variances of the

data variables is equal to the sum of the eigenvalues of the data covariance matrix.

One can decide the portion of total variance to be preserved, then the retained

principal component included all the components up to some proportion of total

variance [46]. If one chooses a threshold, for example 95% or 99%, then the number

of components can be selected that exceed this threshold. Although this method is
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simple to implement, the selection of the threshold is arbitrary and could lead to an

underestimation of ID [46].

Figure 3.4a displays an example of the scree plot approach on the Gaia data [25]

with 19 variables, the scree plot shows that three components explain 89% of the

total variance of the scaled data, while four components explain 94% of the total

variance. This example will be discussed in details in Chapter 5. In contrast Figure

3.4b shows an example of broken-stick method on Gaia data, it shows the first few

eigenvalues fall sharply while the smallest eigenvalues tend to lie along a straight

line (black line).

On the other hand, the linear PCA method that is based on linear approximation

and its stopping rules [46] [56] fail for nonlinear manifolds.
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Figure 3.4: Gaia data; (a) eigenvalue λj against the principal component index j, (b)

the black line represents eigenvalue λj against the component index when applying

PCA on original data, the red line represents eigenvalue λj against the component

index when applying PCA on randomly generated data .
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B. Non–Linear PCA

Nonlinear PCA methods have been suggested to solve the limitations of PCA. There

are three approaches of nonlinear PCA: principal curve, autoassociative neural net-

work and kernel PCA. Principal Curve (PC) is a smooth one-dimensional curve

passing through the middle of a data cloud. The concept of principal curve assumes

that the intrinsic middle structure of data is a curve rather than a straight line. An

autoassociative neural network (ANN) is determined by means of a five-layer neural

network. The layers are: input layer, mapping layer, bottleneck layer, demapping

layer and output layer. The ID is determined from the number of the neurons in

the bottleneck layer [8]. Although this method performs better than PCA, it has

some limitations. The projections are suboptimal and unsuccessful when curves or

surfaces intersect themselves [8]. The Kernel PCA approach maps the data Z ∈ R
D

into a high-dimensional feature space Z 7→ Φ(Z). Then the principal component

analysis is performed on Φ(Z). The method makes a nonlinear projection of the

data set in a new space. Then the eigenvalues of the covariance matrix are calcu-

lated. Therefore, the ID is obtained as the number of non-null eigenvalues [8]. The

Kernel PCA technique is influenced by the kernel choice, and due to noise, the last

eigenvalues are not null. Therefore, similar as for linear PCA, it is better to neglect

the eigenvalues whose magnitude is lower than a threshold value [8].

For these techniques various approaches to determine d have been considered,

including cross-validation [82], an analysis of the residual variance [56] and the H

principle [43].

3.4.2 Multidimensional scaling method

Multidimensional Scaling (MDS) is a nonlinear projection technique. The technique

attempts to project the data set in such a way that preserves the pairwise distances

between data points [8]. A brief review on MDS algorithms is presented in Chapter

2. Now consider Kruskal stress as explained in Section 2.3.3. The dimensionality is

obtained by plotting the minimum stress against the dimensionality of new (output)

space. Therefore the ID is the value for which there is a knee or a flattening of the



3.4. Global Methods 57

curve [8]. The drawback of this algorithm is that in some cases the knee does

not exist [8]. Camastra explained that with Bennett’s algorithm, see Section 2.3.3,

the patterns in the input space are moved to increase the variance of the interpoint

distances. Then adjust the position of the patterns which make the rank of interpoint

distances the same in all local regions. The process is iterated until the variance

of the interpoint distances levels off [8]. The covariance matrix is computed by the

previous steps. Therefore, the ID is derived as the number of significant eigenvalues

of the covariance matrix [8].

3.4.3 Fractal-based methods

In this Section we introduce the concept of fractal dimension. Fractal is a term for

the geometrical structure of an item, with self-similarity and symmetry properties

which imply that the original data structure can be divided into substructures with

the same form at any selected scale [65]. To put the analogy into a statistical

perspective: while fractals can be considered as mathematical sets with non–integer

dimension, in fractal dimension estimation we deal with data sets of non–integer

intrinsic dimension.

As illustration, the Koch curve can be divided into small copies of itself, the

number of copies N = 4 with scaling factor r = 1
3
, displayed in Figure 3.5. Then

the intrinsic dimension of the curve is

d =
log(4N)

log(3N)
=
N log(4)

N log(3)
≈ 1.2619,

and one can infer that the curve is expected to be more than a line and less than

a plane. Practically, large values of fractal dimensions indicate that the objects are

roughly irregular whilst small values indicate that the objects are smooth [7]. Fractal

applications are widely used in many natural applications such as snow accumulation

in forests [73], tree crowns [96], recognition of computer vision [13] [71], chaos theory

[85] and in time series analysis [18]. Although fractal dimension methods are useful,

many literature have found that sometimes it is difficult to explain the different

(biased) results that are provided by the dimension estimators [7].

Fractal dimension is a measure that describes the geometry of an irregular object
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Figure 3.5: Koch curve construction (taken from [65]), there are 4N line segments

with length 1
3N

and for N → ∞ then the fraction (4
3
)N → ∞.

(here: a data set) by an estimated real number. It describes the filling of the fractal

object’s space, which can be used to construct ID estimators. Various fractal-based

methods have been proposed, including quantization estimator [75], kernel corre-

lation [41] method, horizontal structuring element, box-counting and correlation

dimension [91] [96] [69]. Camastra surveyed intrinsic dimension methods with focus

on fractal-based methods [8] [9]. Box-counting and correlation dimension methods

are most commonly used and provide non-linear methods.

It is noted that the Hausdorff dimension is bounded above by the box-counting

dimension. The box-counting dimension is preferable in practical applications be-

cause it is easier to evaluate [78] [8] [9].

Box-counting dimension - the approach is also referred to as the capacity

dimension of a data set [85]. It is the more popular with scientists because of its

simplicity and because it requires less computational time. The idea is as follows.

For any bounded subset Z of RD, partition the embedding space RD into a grid of

boxes of side-length r, where each box contains at least one data point. Let N(r)

be the number of boxes that are required to cover the object’s space with r being

the box size. Then the box-counting fractal dimension is defined as
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dbox = lim
r→0

log(N(r))

log(1
r
)

= − lim
r→0

log(N(r))

log(r)
, (3.8)

where the negative sign is necessary as the numerator is positive and the denominator

is negative. Obviously the number of boxes N(r) increases proportional to the scale

r, i.e. N(r) ∝ rdbox . In practice, the fractal dimension is determined by using a

loglog plot where a curve of log(N(r)) is plotted versus log(r). Then the dimension

is estimated as the slope of the linear part of the curve [8].

Although the algorithm is easy to use there are some drawbacks. All boxes should

be the same size which could lead to an empty box. Furthermore it increases the time

of computation since the program has to determine the nonempty boxes for each

data point [85]. Therefore the technique’s complexity will increase exponentially

with the dimensionality of data set. More generally, for those reasons, Box-counting

dimension can be computed for low-dimensional embedding space [8].

Correlation dimension - this is commonly used to estimate the fractal di-

mension. The idea of the correlation dimension method is to estimate the intrinsic

dimension via a pairwise distances algorithm which counts the number of point pairs

that are closer to each other than a given radius. Grassberger and Procaccia [35]

introduced the correlation integral algorithm, named the GP method, which is used

to define the correlation dimension estimation from a given data set. Now the corre-

lation integral, according to GP method [9], is defined as the proportion of distance

points less than r, that is

C(r) = lim
N→∞

2

N(N − 1)

N∑
i=1

N∑
j=i+1

I (∥xj − xi∥ ≤ r) , (3.9)

where I(.) is an indicator function, and ∥xj − xi∥ denotes the Euclidean distance

between data points, xj and xi. Note also that the number of data pairs which

can be formed from N points is given by

 N

2

 = 1
2
N(N − 1), which is just the

inverse normalizing constant, so that clearly 0 ≤ C(r) ≤ 1. Now Let

D(r) =
logC(r)

log(r)
,

then the correlation dimension is defined by:

dcor = lim
r→0

D(r). (3.10)
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Therefore, for small r, the dimensionality can be obtained as the slope of the

(linear part of) the ‘loglog’ curve of log(C(r)) versus log(r) [8].

In addition, although the method is simple it has drawbacks. Some papers discuss

the challenges that arise with box-counting and correlation dimension methods [93]

[69].

Theiler [85] outlined the following:

• For very small r, meaning that the circle contains few data points, the number

of pairs inside the sphere is influenced quickly by the noise. In addition, one

could get a negative slope in the loglog plot.

• An accurate dimension estimation requires large N and it is difficult to deal

with large N since we consider the error of estimate.

• The dependency of C(r), i.e. C(r +∆r) is dependent on C(r).

• The error in the estimation can not be computed from the loglog plot.

It is worth mentioning that some relevant literature has underestimated those

problems in view of the ease of implementation. Grassberger at al. present improve-

ments to the correlation integral C(r) which tackle some of those issues [93]. Several

techniques have been proposed to compute an optimal estimate of the correlation

dimension. Taken’s method [83] used the Fisher’s maximum likelihood rule to ob-

tain the correlation dimension with minimal standard error. He used a finite set of

distances pairs and presented the way to choose the scale radius. In addition, when

drawing a loglog plot of C(r) and r, one notices that the curve at the upper end,

when r increases to a certain value, bends down and becomes a plateau and C(r)

approaches 1 [69].

Generally, the fractal dimension of a data set is affected by several factors: the

relationship among variables, data dimensionality, the intrinsic dimension of the

data set, the portion of distance pairs that are used for calculation, and the sample

size N [69]. Notably the definition (3.9) of the correlation integral would require

an infinitely sized data set. In order to arrive at an accurate dimension estimation

the number of data points needed is estimated as N = 10D/2 [8]. Compared to the
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box–counting dimension, the correlation dimension is in practice less demanding

about the sample size, and has a larger dynamical range of O(N2). Furthermore, it

can be evaluated for smaller values of r [85] [35].

The main problem with the practical implementation of the correlation dimen-

sion is that the correlation integral needs to be estimated for a ball of radius tending

to 0. Clearly, the radius r can not be equal to zero because this implies that there

are no data points in the circle, yielding “NAN” at C(0). Hence, one needs to

decide on a suitable range of values of r which is used to arrive at an estimate of

the ID [85].

With our techniques we try to capture the distance pairs of C(r) in a more

effective way which is consistent with the GP method. The algorithms achieve the

estimation of the ID of a given data set at radius r = 0. The improved methods are

described in the following Chapter.

3.5 Remarks on global methods

3.5.1 Justification of correlation integral

It is important to reflect why (3.10) is a sensible expression to define. To this end,

consider a structure with lies (perfectly) on some (linear or nonlinear) subspace of

Z. Then it is easy to see (we discuss this later in Remark 2 below) that C(r) ∝ rd

for sufficiently small r. In other words, one has

C(r) = c · rd,

where d is the intrinsic dimension and c is constant. Now, applying the logarithm

to the above equality, we get

log(C(r)) = log(c) + d log(r).
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By substituting into equation (3.10), one finds

dcor = lim
r→0

log(C(r))

log(r)

= lim
r→0

log(c) + d log(r)

log(r)

= lim
r→0

log(c)

log(r)
+ d

log(r)

log(r)
= d, (3.11)

that is, the correlation dimension indeed recovers the intrinsic dimension of the data

set [28].

Further, we need to justify why, for data of intrinsic dimension d, one should

expect C(r) ∝ rd. With Subsection 3.3.4 in mind, this may appear counter–intuitive,

since one may feel that, if the number of points within the r–ball increases with rd,

then the number of pairs should increase with order O((rd)2) ∝ r2d. This apparent

contradiction is resolved by realizing that in Subsection 3.3.4 we deal with a local

method, where the r− ball is successively expanded starting from some target point

on the manifold, while, under the scenario of this subsection, we are not tied to a

target point, but count pairs globally. To make this plain, consider a simple scenario

with N data points sitting at discrete positions (with distance 1) along a line:

• • • • · · · • •

Then, for r = 0, the double sum in the numerator of (3.9) is 0. For r = 1, this

sum is N − 1, and for r = 2, it is (N − 1) + (N − 2). Eventually, for general r, this

sum is (N − 1) + (N − 2) + · · · + (N − r) ≈ Nr ∝ r for large N , confirming the

alleged statement in the case d = 1 [28]. For non-linear structures, this statement

would still hold for sufficiently small r.

3.5.2 Experiments of global methods on artificial data sets

In this section, the implementation of linear PCA, nonlinear PCA (Kernel PCA) and

Multidimensional Scaling (MDS) are provided to determine the intrinsic dimension

as global methods. In addition, we provide an implementation of the LLE method

on the data sets. We mentioned in Subsection 3.3.6 that the intrinsic dimension of

Spiral data is equal to 1 while for Swissroll data the intrinsic dimension equals 2.

The linear PCA, Kernel PCA , LLE and MDS methods are implemented in software
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Figure 3.6: Spiral data: (a) Principal Components Graph, (b) Scree plot of linear

PCA from scaled Spiral data.

R [74]. More precisely, the code of Kernel PCA is available in the ‘kernlab’ Package,

the MDS code is available in the ‘MASS’ Package and the code for the LLE method

is found in the ‘lle’ Package. The methods are applied to two artificial data sets:

Spiral data and Swissroll data, where both data sets are scaled with mean 0 and

variance 1.

Firstly, the linear PCA is implemented on the Spiral and Swissroll data sets.

The results are displayed in Figure 3.6 and Figure 3.8, respectively. Figure 3.6a

illustrates the first two components for the Spiral data which explain 58% and 42%

of the total variance, as shown in Figure 3.6b. One can conclude that the (linear)

ID for this data set is 2. The ratio between the eigenvalues of the components is

equal to 1.36.

For the Swissroll data, Figure 3.8a shows that two principal components explain

69% of the total variance. Consequently, one can conclude that the (linear) ID of

the Swissroll data set is 3.

Secondly, the application of Kernel PCA on the Spiral data is discussed. Figure

3.7a shows the output after Kernel PCA is applied. We use the polynomial ker-
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Figure 3.7: Spiral data: (a) The dimensionality via Kernel PCA method, (b) The

output after applied LLE method.

nel function with degree 2 and scale 2. The ratio between the eigenvalues of the

components is equal to 1.22, which is less than for the linear PCA. The result illus-

trates that the two eigenvalues for Kernel PCA method are even more equal than

for PCA, which means that KPCA has failed totally to identify the one-dimensional

curvilinear substructure in this data. It is important to note that the performance

of Kernel PCA is affected by the kernel function and the parameter changes of the

function.

In addition, the LLE method is applied to Spiral data. Figure 3.7b shows the

output after LLE is applied, which produces nicely following colors from left to right.

The result confirms that the LLE method has identified correctly ID =1, which is

the true ID.

Now, consider Swissroll data. Practically, Kernel PCA does not provide satis-

factory results and problems arise when standard kernel functions are used. It is

known that the method performs poorly on the Swissroll manifold. Consequently,

the MDS algorithm is used to obtain a 2D embedding, using Sammon stress. We

used R function sammon in Package ‘MASS’ [74]. The result is displayed in Figure
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Figure 3.8: Swissroll data: (a) Scree plot of linear PCA from scaled data, (b) The

output of reduced data after the MDS method is applied on the scaled data.

3.8b. Now, to obtain the ID, as illustrated in Subsection 3.4.2, plot the minimum

stress against the dimensionality of new (output) space, and the ID is the value for

which there is a knee, here equal to 2, as shown in Figure 3.9a. In addition, Figure

3.9b shows the embedding result of the LLE algorithm. We can observe that LLE

unrolls the 3D data set into a plane. We observe that techniques, such as PCA

and Nonlinear PCA that do not employ neighborhood graphs, provide unreasonable

results on these data sets, and that the MLE method, as shown in Subsection 3.3.6,

provides an overestimated ID. In addition, the methods implemented previously are

basically used as dimension reduction methods.

To summarize, the bias in the ID results came from different reason. MLE

method provide bias, as shown in Subsection 3.3.6, because the neighbors need to

contain sufficient data points which is difficult for a finite sample size. On the other

hand for PCA the bias appears due to the linearity constraint. For Kernel PCA, the

bias comes from the specific nonlinearity constraint imposed, which is influenced by

the kernel function and the parameter changes of the function. More discussion will

be presented in Chapter 5 and 6.
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Figure 3.9: Swissroll data: (a) The dimensionality via MDS method, (b) The output

of reduced data after applied LLE method.

3.6 Conclusion

In this chapter we presented an overview of the intrinsic dimension estimation meth-

ods. Figure 3.10 displays a classification of techniques for estimating dimensionality.

It represents the distinction between techniques due to global and local methods. It

is worth highlighting that while the intrinsic dimension in the left-bottom column

of Figure 3.10 provides an integer value, it may be both a real number or an integer

in the right-bottom and middle columns. As for fractal methods the non-integer

character of dimension is made explicit through the term ‘fractal’.

For local methods, divide the data set into small subregions, or provide a series of

local ID estimates at several target points, in order to arrive at a suitably averaged

overall ID estimator. In practice the ID methods are influenced by several factors,

such as computation time, limited size of the data set and noise. It is necessary

to insure that the local region contains enough data points to analyze, and with a

limited data set it is possible that the local region is too large, which could lead to

an overestimation of the dimensionality. On the other hand, the small local region

will decrease the eigenvalues due to the noise point [32].
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Figure 3.10: Intrinsic dimension methods

Local methods suffer from the presence of the outliers, because the outliers are

linked to their k nearest neighbors. To deal with these issues the outliers can be

removed before analysis by using the edge points by some criterion, or by using

the points that have the highest density, as described later in this thesis. From

our experimental results, local methods lead to high computational costs because

they determine the dimensionality for each subset. Furthermore, local methods are

influenced by the structure of the data (linear, connected two branches). Some

methods need to fix the value of the threshold heuristically such as in Fukunaga–

Olsen’s algorithm, and Bennett’s algorithm. Besides the main drawback with the

topological dimension is that it is difficult to estimate ID with a finite sample.

Global methods try to estimate the dimension using the whole data set, and

imposing the implicit assumption that the intrinsic dimension is constant over the

data set. Global methods are extensively used in the manner of projection meth-

ods such as PCA, although both these and MDS are dimension reduction methods
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rather than dimensionality estimation methods. Other methods of dimensionality

estimation are indeed only used to estimate, rather than reduce, dimensionality.

These include Brand’s algorithm, the MLE approach and fractal-based methods.

In general all methods, local and global, suffer from a negative bias of high

dimension, where the bias appears to be due to inadequate sampling. This occurs

when the sample is from the region near the edges or boundaries of a manifold [54].

With global methods, these regions provide a too low-dimensional ID estimate and

a strong negative bias [54]. On the other hand, the correlation dimension has the

smallest bias and the MLE has the next smallest bias [60]. Lastly all methods require

large samples in high–dimensions which could increase the computational cost.



Chapter 4

Implementation for Methodology

of ID Estimation Methods

In this chapter we introduce new approaches that improve the practical algorithms

which determine the estimation of dimensionality whether the underlying data struc-

ture is a linear or nonlinear structure, with special consideration for recent devel-

opments in non-linear techniques. Our approaches focus on the algorithms based

on the concept of charting manifolds (local method) and the correlation-dimension

concept (global method), and also deal with their issues that were discussed earlier

in this thesis.

4.1 Introduction

For ID estimation, a few approaches exist which, similarly to linear principal compo-

nent analysis, propose to estimate d, where d ≤ D, by analyzing the entire data set.

In contrast, local methods operate at a specific target point which we denote by x,

where x = (x1, . . . , xD)
T . However, even for local methods, some researchers state

that some sort of averaging over different subregions or target points is essential in

order to determine the intrinsic dimension of the full data set [85]. Arguably this

averaging step gives local methods a global character as well, though we continue to

refer to them as local methods in this presentation. A brief review of the algorithms

is provided in Chapter 3.

69
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As far as we know although various nonlinear methods, global or local methods,

are available, it seems that not enough work has been done on implementing the

methodology of dimensionality estimation of non-linear manifolds. Furthermore,

with many methods there is not enough evidence that they work well practically.

One example is charting manifold where one needs to select the target points. Fur-

thermore fractal methods require the construction of the correlation integral, from

which the ID is extracted using appropriate techniques. This step is not straight-

forward, since the number of data pairs within a ball of radius tending to 0 need to

be counted.

In this chapter we will explore new approaches for computing the estimation of

dimensionality. The algorithms can be regarded as nonparametric methods. The

techniques will implement some ID estimation methods and obtain the accurate

ID. Moreover these approaches address the issues that arise out of counting the

number of data points, or numbers of data pairs, which fall within certain balls of

given radius r. The new approaches obtain the ID via Brand’s charting manifold

and via the fractal-based-method, which are nonparametric and nonlinear intrinsic

dimension estimation methods. Generally, the nonparametric technique is used

if the parametric technique is not sufficiently flexible, and it allows a reduction

of the possible modelling biases of parametric techniques. Specifically, the Dip

and Regression methods are variants of Brand’s algorithm which are considered as

local ID methods. The improved methods of correlation dimension, which are the

Intercept, the Slope and Polynomial methods, are global ID methods. The localized

correlation integral method is an approach that could be defined as a local version

of global ID methods. All these techniques provide a reasonable ID estimate when

there are a sample of observations or full data set.

The new approaches will be delineated in detail in the next few sections. The

improved methods – Dip method and Regression methods – are discussed in Section

4.2. Section 4.3 describes the Intercept methods, Slope method and Polynomial

method. Localized correlation integral is explored in Section 4.4. The computation

on maximum likelihood estimation is discussed in Section 4.5. An implementation

of our approaches on artificial data sets is presented in Subsection 4.6. Section
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4.7 presents a brief explanation of software that used in the thesis. Section 4.8

presents a discussion on our approaches that proposed for estimating the intrinsic

dimension. The applications of the methods and the results will be outlined in next

chapter to demonstrate the working of the approaches. We begin with the practical

computation of a local method with charting a manifold.

4.2 Intrinsic dimension via Brand’s charting man-

ifold

Brand [6] proposed a concept based on a charting manifold where the intrinsic

dimension is obtained by examining the growth rate of samples in hyper-spheres [6].

The algorithm considers the number of data points N(r) who have fallen in certain

hyper-spheres. The Subsection 3.3.4 has briefly reviewed concepts of the Brand’s

algorithm. The technique is implemented using the following steps:

• Step 1: Begin at target points x.

• Step 2: Compute the Euclidean distances between the data points and the

selected target point.

• Step 3: Calculate the following equation

G(r) =
log(r)

log(N(r))
, (4.1)

• Step 4: Sketch the loglog plot.

These steps are demonstrated in detail in the Subsection 4.2.3. In practice, the

practical implementation of Brand’s algorithm requires the following issues to be

considered:

1. The choice of target point x. It is obvious that the more central observations

lead to higher ID.

2. The determination of the range of r values.

3. How to deal with the appearance of multiple peaks in the loglog graph.
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4. The possibility that the expression log(N(r)) in the denominator could be

undefined for small r.

5. How to derive the ID estimation of the entire data set by the individual IDs

obtained at different target points.

Our approaches to Brand’s algorithm illustrate how to deal with these issues in a

suitable way. The next section explains the settings used to choose the target point.

4.2.1 The choices of the target points

Our initial aim is to identify some suitable target points for Brand’s algorithm. The

key question is over which target points this averaging is performed. The main

issue that one should be aware of is that points close to the boundaries will lead to

smaller estimated IDs. In order to avoid sampling from boundary points, one needs

to identify a set of reasonably central target points. We propose two settings as

follows:

• Setting A: This setting considers only potential target points x residing in the

region

{x| ĝ(x;H) > c} ,

where c is a density ‘threshold’ above which data points are considered to be

central (with ĝ being a kernel density estimator applied onto the data Z, see

Section 1.2 and Subsection 1.3.4). While several choices of c are justifiable, we

used 75% of the maximum density, i.e. c = 0.75×max{ĝ(xi;H)| 1 ≤ i ≤ N},

which achieved a good compromise between capturing sufficient structure and

dismissing boundaries. A convenient sample, with respect to the number of

data observations, of size 10 or 20, unless stated otherwise, can then be chosen

from this region, and the median of the obtained values gives the overall ID

estimator. We will illustrate in Section 4.6 that the number of sampled target

points does not affect strongly the estimate of dimensionality.

• Setting B (just for testing the method): The principal curves are smooth

curves through ‘the middle of the data cloud’ so they should do a good job in
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identifying central points. Then, if one has a prior evidence (e.g: from a visual

impression) that the ID of a data set is approximately equal to one, then one

may find central points through the ‘local centers of mass’ of a local principal

curve (LPC) using function lpc in the ‘LPCM’ package [25]. In the case of

‘LPC’, the smoothing parameter is the bandwidth h that controls the degree

of smoothing. This technique is not applicable for all data structures, because

in some cases the principal curve does not fit well.

Comparing two settings, setting A works well for all data structures, as will

be shown in the next chapter. In addition, this setting alleviates issue 1. In the

following section we propose two variants of Brands algorithms which try to estimate

the loglog curve, and, then we extract the ID locally under this scenario.

4.2.2 Variants of Brand’s algorithm

Theiler [85] stated that ID estimation always requires some sort of averaging. While

for global methods the averaging happens implicitly, for local methods this has to be

done retrospectively using the ‘local’ IDs estimated at several target points. We use

this technique with our new approaches to improve the practical implementation of

Brand’s algorithms.

Dip method

In order to obtain the intrinsic dimension, Brand proposed using the derivative

function G(r) which implies that the first peak in the function G(r) is inspected.

Practically, we found that the intrinsic dimension can be obtained by the inverse

function of G(r) which means direct use of the derivative

H(r) =
∂ (logN(r))

∂ (log r)
, (4.2)

which is easier to interpret, implement and alleviates issue 4.

Then it becomes obvious that finding the first peak of G(.) is equivalent to iden-

tifying the first dip, say r0, of H(.). Note again that at the local linear scale, i.e. in

a neighborhood of r0, one has

N(r) ∝ rd,
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or we can write

N(r) = c · rd.

where d is the intrinsic dimension and c is constant. Applying the logarithm to the

this equality, we get

logN(r) = log(c) + d log(r). (4.3)

By substituting into the derivative operator H(.), one finds that, at r = r0,

H(r0) =
∂ (logN(r))

∂ (log(r))

∣∣∣∣
r=r0

=
∂ (log(c) + d log(r))

∂ (log(r))

∣∣∣∣
r=r0

=
∂ (log(c))

∂ (log(r))
+ d

∂ (log(r))

∂ (log(r))

∣∣∣∣
r=r0

so that

H(r0) = d.

Therefore, if the process H(r) takes a dip at r0 then the ID is given by the

value H(r0). In practice, the derivative H(r) can be estimated by applying a local

polynomial smoother of degree 2 onto the function of logN(r) versus log r. We

used R function locpoly in the ‘KernSmooth’ Package [74]. The local polynomial

fitting is a nonparametric method with a kernel weight. It can be used to estimate

either density, regression function or their derivatives. The degree of smoothing is

determined by the bandwidth of the local polynomial, and it is chosen such that the

curve passes well through the central part of the curve. Moreover, if the smoothing

parameter ‘bandwidth’ is very small it produces a wiggly curve, and if the bandwidth

is too big the resulting curve is very smooth. Therefore we choose a bandwidth of

derivative higher than the local polynomial estimate to produce a smooth curve.

We suggest a bandwidth parameter 0.15 unless stated otherwise. This bandwidth

should work well universally provided that the data is scaled.

Next the ID is obtained by tracing the first derivative of the local polynomial

curve and looking at the first dip in it. The intrinsic dimension is determined by

the value of this dip on the vertical axis, which alleviates the issue 3. It is noted

that the first derivative function might be thought of as the slope of function of the
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original graph. It also studies the relative change ∂ (logN(r))
∂ (log(r))

of N(r) when increasing

or decreasing r by small value ∂ log(r).

Regression method

This method uses linear regression to fit a line onto the curve of logN(r) versus

log r. To motivate this method, start again from (4.3), but consider now, similarly

as for the fractal method, the limit for r −→ 0 instead of the derivative at r = r0.

Then

H(r) = lim
r−→0

logN(r)

log(r)
= lim

r−→0

log(c) + d log(r)

log(r)
.

H(r) = lim
r−→0

log(c)

log(r)
+ d

log(r)

log(r)
= d. (4.4)

So, taking the limit r −→ 0 also extracts the ID. This shows, in comparison with

(4.6), that the same methods that are used to extract the ID from the correlation

integral can in principle be used here as well, but using N(r) in lieu of C(r). Formal-

izing the loglog method [8] known from fractal ID estimation, the ID is estimated

as the slope b of

log(N(r)) = b log r + a,

using a reasonable default range of small values of r. The conceptual downside of

this method is that the neighborhood of r0 in which (4.3) is valid almost certainly

does not extend until r = 0, so derivation (4.4) is only of approximation character.

Furthermore, this method comes with all problems associated with the estimation

at r = 0 mentioned earlier in the context of fractal methods.

It should also be emphasized that the two approaches, Dip method and Regres-

sion method, are local methods, which need to be repeated for each target point, and

then averaged over all target points. We summarize the implementation of Brand’s

algorithm in the following section.

4.2.3 Summary: Computation of Brand’s charting manifold

• Step 1: Begin with the target points that are selected by one of our settings

(see Section 4.2.1).
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• Step 2: Choose a suitable range of radius r, where the radius expands for

every target point. Practically our software provides a function that computes

the minimum value of the radius that contains at least two points, to avoid

an empty ball, while the maximum value of r is holding all data points. In

addition, if the user chose setting B to select the target point, we provide a

function that computes the distances matrix for all LPC points to keep away

from boundary point.

• Step 3: For each value of data points, calculate an Euclidean distance between

the data points and a selected (target) point, i.e.

∥xi − x∥ , where i = 1, · · · , N. (4.5)

Then count the number of data points inside the ball to get N(r), and sketch

the loglog plot.

• Step 4: Estimate the intrinsic dimension ‘locally’ by using one of our ap-

proaches of variants of Brand’s algorithm, see Subsection 4.2.2.

• Step 5: Repeat steps 2-4 at different target points in order to look at the

intrinsic dimensionality development along the data cloud.

Finally, in order to capture the intrinsic structure of data, the median overall ID

estimates is computed while reducing boundary effects. If desired, one can round

the value to the nearest integer. To sum up the issues discussed in Section 4.2, the

step1 and 2 attempt to overcome issues 1 and 2. Step 3 alleviates the issue 3. The

Dip regression technique alleviates the issue 4. By taking the median over all ID

estimates one deals with issue 5.
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4.3 Intrinsic dimension via correlation dimension

Correlation dimension is used to obtain the fractal methods that describe the at-

tractor dimension. It is a global dimensionality estimation method. This method

differs from Brand’s charting manifold by counting the pair distances rather than

points. Again, the correlation dimension is defined as

dcor = lim
r→0

log (C(r))

log(r)
, (4.6)

where according to the GP method, the quantity C(r) is obtained as:

C(r) = lim
N→∞

2

N(N − 1)

N∑
i=1

N∑
j=i+1

I (∥xj − xi∥ ≤ r) (4.7)

The implementation of the correlation dimension method requires consideration

of the following factors:

1. Original data dimensionality.

2. The correlation between the variables.

3. The determination of range of r.

4. The portion of distance pairs that are used for calculation (the sample size

needs to be so large).

In addition to these factors the core problem is that the practical computation

of the correlation dimension is far from straightforward. This is due to the fact that

the correlation integral needs to be estimated for a ball tending to 0, and there are

no data positioned within that ball. Then, one needs to decide on a suitable range

of values of r which is used to arrive at an estimate of the ID [85]. Furthermore, it

is obvious that in practice infinite sample sizes cannot be achieved when the limit

of N → ∞ in Eq.(4.7) is concerned.

Our approaches try to minimize the demand on those factors and provide the best

result. We try to capture the distance pairs of C(r) in a more effective way which is

consistent with the GP method. The algorithms achieve the estimation of the ID of

a given data set at radius r = 0. The developed algorithms are Intercept method,
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Slope method and Polynomial method. While the Slope method is effectively an

implementation of the loglog technique described above, which makes use of the

approximately linear part of the correlation integral curve, the other two methods

are entirely new and tackle the problem by direct exploitation of the features of

the function log(C(r))
log(r)

and C(r), respectively. All three approaches are based on the

concept of linear regression. The improved methods are described in the following

subsection.

4.3.1 The implementation of Correlation dimension

Intercept method

It is obvious that the radius r can not be equal to zero, which would mean that there

are no data points in the circle, yielding ‘NAN’ for C(r). The Intercept method

estimates the fractal dimension not through direct evaluation of C(r) at r ≈ 0,

but through linear extrapolation of the graph (r,D(r)), where D(r) = log(C(r))
log(r)

. In

practice, the curve D(r) is plotted versus the radius r. Then a grid of values of r,

say rj, j = 1, . . . , s is chosen which is positioned close to 0 and contains a sufficient

number of data points. In practice choices like 0.3 ≤ r ≤ 0.5, with a grid size of

s = 30, work well. Hence, it is only necessary to compute the correlation integral

for a portion of data pairs which reduces the computational time.

This approach is motivated through similar ideas proposed by Rummel [77], who

suggested backwards extrapolation to obtain regression estimates under covariate

measurement error (‘SIMEX’). Following this idea, we predict the intrinsic dimension

by extrapolating a linear regression line (fitted to the values (rj, D(rj)), j = 1, . . . , s)

to r → 0. The intrinsic dimension is then obtained as the intercept of the fitted

linear equation. Specifically, consider a linear regression with least squares estimator

a (intercept) and c (slope). Then the correlation dimension can be approximated as

D(r) = a+ c r,

which at r = 0 gives

dcor = D(0) = a.
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Using this method, the fractal dimension is defined as the intercept part of a

linear equation at r = 0. It is obvious that for a loglog plot we can not calculate

the correlation dimension at r = 0.

Through experimental analysis it is shown that this approach improves the cor-

relation dimension calculation for any type of data set. In addition, this approach

requires fewer data points and less demand on sample size.

Slope method

In this section we exploit the previously stated properties of the loglog curve of the

correlation integral. Hence, suppose the high-dimensional data set Z has an intrinsic

dimension d. If the sample size is large enough then the number of distance pairs

will increase due to the increase of r, and since C(r) is a function of r, then as r

increases C(r) will increase proportionally with rd. As we illustrated in Subsection

3.5.1, At r → 0, dcor = d, which means that the correlation dimension is a good

estimate of the intrinsic dimension of the corresponding data set.

Now, to obtain the estimate of intrinsic dimension, we plot the curve of log(C(r))

versus log(r) and the slope value is computed using a simple linear regression method

which fits a line on the curve of log (C(r)). This is done by assuming that the

equation of the regression line is:

log(C(r)) = b log(r) + a,

where a is the intercept and the slope of the equation (b) is the estimate of the

intrinsic dimension, i.e. dcor = b. For the choice of interval in which the linear

regression is fitted, we recommend 0.3 ≤ r ≤ 0.5 again.

Polynomial method

This section provides a potential model for the correlation integral based on the

relationship between the correlation integral C(r) and the radius r. We develop an

approach in which C(r) is explicitly modelled through a higher–order polynomial,

considering the following condition:

• at r = 0,⇒ C(0) = 0.
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We state the following general result (see appendix for proof): For a polynomial

with degree p, let C(r) = apr
p + · · ·+ a2r

2 + a1r + a0, and subject to constraint

C(0) = 0: one has

1. If a1 exists then d = 1,

2. For a1 = 0, then d = 2,

3. For a2 = a1 = 0, then d = 3,

4. For ap−1 = · · · = a2 = a1 = 0, then d = p.

The correlation dimension can be obtained using multiple linear regression (e.g.

function lm in R), and as a default we assume that C(r) = a4r
4+a3r

3+a2r
2+a1r (the

polynomial degree would need to be increased in order to detect IDs with d ≥ 5).

Then one examines the significance of parameters by t-test and the ID is the first

significant parameter. In practice, we recommend leaving the significance level of

this test unspecified and determining the ID by the most significant parameter, that

is, the parameter with the largest t-value or the smallest p-value.

4.3.2 Summary: Computation of Correlation dimension

The following shows how the ID is computed via correlation dimension approaches.

• Step 1: Define the range of radius r as follows. For the Intercept method

and the Slope method we choose a range of r between 0.3 and 0.5 which is a

portion of the data range. At that range the curve of C(r) often looks roughly

linear and we can avoid outlying values. For the Poly method, we define a

function which scans all the distances between two data points to determine

the minimum radius r such that the circle holds at least two points. This

step is important before picking a sequence of r to avoid the interruption of

process, otherwise one gets ‘NAN’ at C(r), when calculating the correlation

dimension.
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• Step 2: For a specific distance r, count the number of pairs of data points,

such that the Euclidean distance between two data points is less than r, i.e.

N∑
i=1

N∑
j=i+1

I (∥xj − xi∥ ≤ r) .

• Step 3: Calculate the correlation integral C(r) as a function of r, for fixed N

C(r) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

I (∥xj − xi∥ ≤ r) .

• Step 4: Draw various plots which have been generated according to the meth-

ods applied, and then the ID for the data set is obtained.

The step 3 to 4 are applied on Intercept method and Slope method, while for

Polynomial method we apply the steps in this way.

• Step 3: Calculate the correlation integral C(r) as a higher–order polynomial

C(r) = a4r
4 + a3r

3 + a2r
2 + a1r

This is done by using R function lm with order 4 as a default [74].

• Step 4: Determine the ID by looking at the most significant parameter.
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4.4 Intrinsic dimension via a local version of a

global method

This section introduces an alternative approach that estimates the ID if the global ID

methods are implemented on the subregion of the data set. This method attempts

to overcome several issues such as bias, computational cost and dependence on data

structure. It is noted that the correlation dimension provides the smallest bias [60].

The objective of the localized global approach is to improve the algorithm based on

a local ID method (such as Brand’s algorithm), which could significantly reduce the

negative bias. This can be justified as follows.

Let us tentatively define C̃(r) as the number of pairs situated within a ball of

radius r around a certain target point x. Then

C̃(r) =

 N(r)

2

 ∝ rd(rd − 1)

2
= O(r2d)

would (at signal scale) increase with r2d, so that the resulting intrinsic dimensionality

estimate obtained through this route would need to be divided by 2. We do not

pursue this route further in this manuscript, but this aspect is important for our

understanding the difference charting makes to the correlation dimension. We used

this concept to illustrate new approach (charting with pairs) which will be introduced

next.

By dividing the data region into several separated subregions, a correlation di-

mension approach can be derived from the data of each of these disconnected subre-

gions. With respect to the number of disconnected subregions, this would produce

as many ID estimates as the number of subregions. The process is completed if the

number of remaining data points is zero or less than 3. The detailed explanation

of the localized global approach in this section is structured as follows. Subsection

4.4.1 explains the strategies of estimate the ID via a local version of a global method.

4.4.1 Computation of localized correlation integral method

In this section we introduce two possible ways of implementing the localized global

method. We illustrate two possible techniques: Charting by pairs and Localized
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correlation integral methods. In practice we have actually only implemented the

second one.

This section explains how to construct the subregions and how many discon-

nected regions could be considered. In practice, dividing the operating data range

into disconnected regions can be conducted by directly analyzing the data set. This

analysis is based on determining the number of data points that lie within a spe-

cific radius for each subregion. The manner of ID estimation via localized global

approach is explained as follows.

Charting with pairs method

• Step 1: Choose a starting point as in Subsection 4.2.3.

• Step 2: Choose a suitable range of radius r, where the radius expands for

every starting point. The range of r is selected by determining the minimum

radius that contains at least two points and the maximum value of r contains

all data points.

• Step 3: For each value of data points, calculate an Euclidean distance between

the data points and a selected target point as Brand’s algorithm implementa-

tion as (4.5), i.e.

∥xi − x∥ ,where i = 1, · · · , N. (4.8)

• Step 4: Count the number of data pairs inside the ball, and compute

C(r) = lim
N→∞

2

N(N − 1)

N∑
i=1

N∑
j=i+1

I (∥xj − xi∥ ≤ r) . (4.9)

• Step 5: Obtain ID by using one of our approaches of variants of Brand’s

algorithm, see Section 4.2.2.

• Step 6: Iterate steps 2-5 at different target points. Then compute the median

of ID estimates.

The dimensionality estimation via Charting with pairs method should satisfy the

concept of Subsection 3.5. As it is not entirely clear how to connect (4.8) and (4.9),

we provide an alternative approach to implementing this concept.
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Localized correlation integral

The idea of this approach is prompted through similar ideas suggested by Fukunaga

[32], who proposed an algorithm that obtained ID locally by minimizing the local

region size until reaching the limited dimensionality.

• Step 1: Choose some arbitrary points.

• Step 2: Choose a suitable range of radius r that contains sufficient data points

in the neighborhood of one of the arbitrary points (x), such as 20 - 30 points.

• Step 3: Carry out the correlation dimension methods, Subsection 4.3.1, in this

neighborhood.

• Step 4: Construct a matrix of a temporary data set which consists of all the

original data points. Discard the points that are in the neighborhood (step 2).

• Step 5: Repeat steps 1-4 by using a temporary data set.

The process is iterated until the temporary data set is empty, or it only contains

a few disconnected points. The considerations provided at the beginning of this

subsection would suggest to divide the ID result by 2. Further discussion is provided

in Chapter 5. The ID is obtained by computing the median over all ID estimates

which is consistent with other approaches. It is important to note that the value

of ID varies depending on the counting of data points in each subregion and the

selection of the arbitrary points. It should be emphasized that it is important

to select sufficient data points which prevent the crash of the process, i.e. if the

remaining subregion contains too few data points, the process will stop.
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4.5 Computation of maximum likelihood estima-

tor

Suppose k is the number of nearest neighbors and Tk(x) is the Euclidean distance

from the data point x to its k−th nearest neighbor in the sample. We apply the

maximum likelihood estimation (MLE) algorithm (see Subsection 3.3.5) as outlined

in the following steps:

• Step 1: Determine a suitable range of k. We choose k which is small enough

to have enough points in the sphere, and k is increased sequentially.

• Step 2: Define a function which computes the distance from x to each different

data point and define the distance matrix.

• Step 3: Define a function that calculates MLE for dimension d as,

dk(x) =

[
1

k − 2

k−1∑
j=1

log
Tk(x)

Tj(x)

]−1

.

• Step 4: Obtain the ID locally at every data point by computing the average

dimension estimation within data sphere as,

dk =
1

N

N∑
i=1

dk(xi),

• Step 5: The process, step 2-4, is repeated for a set of values of k, say k1, · · · , kz
within the data range. Practically the suitable range of k is 10 to 20

• Step 6: We obtain the ID over the entire data set by computing the median

of dk over a range of different k to neglect the effects of k.

In step 6 we propose to use the median, in contrast to Levina and Bickel’s algorithm

for MLE estimation who use the mean. The median is applied to derive an ID

consistent with our approaches via the correlation dimension and Brand’s algorithm.

Note that for the choice of range of k, it is important not to choose a very small

k which could lead to unreasonable estimates and not to choose a very large k which

could result in an estimate with a negative bias.
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4.6 Experiment on Artificial data sets

In this section we discuss the effectiveness of our techniques, variants of Brand’s

algorithm and correlation dimension methods, and the computational results for ar-

tificial data sets. These are Spiral data and Swissroll with known intrinsic dimensions

which equal 1 and 2, respectively. In Subsection 3.3.6 and 3.5.2 we implemented

MLE (local ID method), and also global ID methods (linear PCA, Kernel PCA and

MDS) to those data sets.

For the variants of Brand’s method, known as the Dip method and the Regression

method, the sequence of the radius r is selected such that the lower point is the

minimum r that contains at least two data points, while the upper point holds all

the data points.

For the implementation of correlation dimension, Intercept method and Slope

method, the reasonable sequence of r is 0.3 to 0.5. In contrast, for the Polynomial

method, the lower point is the minimum value of r that contains at least one distance

pair, which is consistent with the minimum r selected for Brand’s algorithm, and

the upper point of r equals 1.

Finally, a comparison is made with the principal component analysis (PCA),

Kernel PCA, MDS and the MLE methods. Next, the analysis begins with the

implementation of methods on Spiral data.

4.6.1 Spiral data

As we mentioned in Subsection 3.3.6, the Spiral data consists of two variables with

300 data points. Figure 4.1a illustrates that the intrinsic dimensionality of data

is equal to 1, while the ID estimate via MLE method (Median ID=1.84) at k =

10, . . . , 20, and the implementation of linear PCA and Kernel PCA in Subsection

3.5.2 indicates that the ID equals 2.

Now, we compare these results to the estimated dimensionality via Brand’s al-

gorithm and correlation dimension estimation methods.

For Brand’s algorithm implementation, the intrinsic dimension is derived using

the Dip method and the Regression method. (a). For the application of the Dip
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Figure 4.1: (a) A 2D scatter plot of scaled Spiral data, (b) The ID estimate of Spiral

data via Dip method at 24 target points. .

method, we consider the target points according to the highest–density–criterion

outlined earlier. The first derivative estimator is found using a local polynomial

smoother with the bandwidth 0.15 for a sample of size 24 chosen from the higher

density points, as shown in Figure 4.1b. The median of all different ID estimations

is 0.9138581. To demonstrate the effect of the sample size of target points, we select

40 target points from higher density points. The median of all different ID estima-

tions is 0.8257418, which clarifies that the ID estimates are not influenced strongly

by the sample size of target points.

(b). For the Regression method, we estimate the ID for each hyper–sphere of previ-

ous (24) target points by fitting a linear regression. The local ID is obtained from

the slope of the regression line. Then, the ID is estimated by computing the median

of the ID estimates, which is equal to 1.019648. Both techniques provide results

which are lower than the MLE result.

Next, the ID is obtained via the correlation dimension:

(a). Intercept method - We plot c(r) versus versus r. Figure 4.2a shows that the

curve of the correlation dimension is mostly linear in the chosen range of r. Figure
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4.2a displays the fitted regression line D(r) = a + c r on the correlation dimension

curve. Therefore ID = 1.50, which is the intercept value in the linear equation of

y = 1.495580 + 3.939566 (r).

(b). Slope Method - The linear regression is fitted through the curve of log(C(r))

in the loglog plot as shown in figure 4.2b. The linear equation is y = −1.292517 +

1.640014 log(r), so the intrinsic dimension is equal to b = 1.64. The result is rea-

sonably close to the Intercept method.

(c). Polynomial method - The ID is derived by considering the largest t-value of

parameters. For a polynomial of degree 2, one observes from Table 4.1 that the

t-value for a1 is slightly larger than a2, so the intrinsic dimension of 1 is clearly

identified.

We find that the techniques (Dip, Regression and Polynomial methods) arrive

at sensible results which broadly agree with each other, and are consistent in line

with the visual impression. While the result using Intercept and Slope method are

consistently with MLE, linear PCA and Kernel PCA methods. All these methods

provide an overestimated ID.

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5

Plot of Correlation dimension verses r

r

 D
im

en
si

on
 e

st
im

at
io

n

regression line

(a)

−1.2 −1.1 −1.0 −0.9 −0.8 −0.7

−
3.

2
−

3.
0

−
2.

8
−

2.
6

log−log plot

log(r)

 lo
g(

C
(r

))

regression line

(b)

Figure 4.2: Spiral data; (a) the plot of D(r) versus r which is roughly linear for a

reasonable range of r, (b) the log-log plot of correlation integral versus r.
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_________________________________________________________________________

Coefficients:

Estimate Std. Error t value Pr(>|t|)

re 0.105756 0.006520 16.22 9.08e-16 ***

I(re^2) 0.122408 0.008282 14.78 9.43e-15 ***

---

Signif.codes:0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.005282 on 28 degrees of freedom

Multiple R-squared: 0.9982, Adjusted R-squared: 0.998

F-statistic: 7577 on 2 and 28 DF, p-value: < 2.2e-16

_________________________________________________________________________

Table 4.1: Spiral data: the result of fitting a polynomial of degree 2.

4.6.2 Swissroll data

The Swissroll data consists of three variables with 300 data points, see Subsection

3.3.6, with known intrinsic dimensionality equal to 2. Both of the MLE method

at k = 10, . . . , 20 (Median ID=2.51), and linear PCA in Subsection 3.5.2 provide

estimated IDs equal to 3. Using the MDS method, the ID is equal to 2.

We now compare these results to the estimated dimensionality via Brand’s algo-

rithm and correlation dimension estimation methods.

The Intrinsic dimension estimation obtained using Brand’s method; Firstly, for the

implementing of the Dip method, we choose a sample of size 24 of target points

according to the highest–density–criterion outlined earlier. The ID is estimated for

each target point by computing the first derivative with bandwidth 0.15 as shown in

Figure 4.3b. The median of all different ID estimations is 1.544308. Secondly, with

the Regression method, the ID is estimated by fitting the linear regression method

on the previous target points and determining the slope of the regression. Then the

ID is derived as the median of the ID estimates which is equal to 1.751609. This
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Figure 4.3: (a) A 3D scatter plot of scaled Swissroll data, (b) The ID estimate of

Swissroll data via dip method at 24 target points.

value is close to the dimension value estimated by the Dip method. Both methods

provide reasonable ID compared to MLE, which provides overestimated ID.

Next, the intrinsic dimensionality is estimated via correlation dimension:

Firstly, the Intercept method implementation. We study the correlation dimension

curve with radius r. Here, as shown in Figure 4.4a the curve of correlation dimension

looks reasonably linear in the chosen range of r. Figure 4.4a displays the fitted

regression line D(r) = a + c r on the correlation dimension curve. Then, ID = 2.46

which is the intercept value in the linear equation of y = 2.456139 + 6.581708 (r).

Secondly, we test the Slope method. The plot in Figure 4.4b displays the curve

of log(C(r)) versus log(r) with a fitted linear regression. Therefore, the estimated

intrinsic dimension is equal to 2.69 where the linear equation is y = −2.167556 +

2.688537 log(r). This value is slightly larger than the dimension value estimated by

the Intercept method.

Finally, using the Polynomial method, the ID is derived via a series of t− tests



4.6. Experiment on Artificial data sets 91

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
Plot of Correlation dimension verses r

r

 D
im

e
n
s
io

n
 e

s
ti
m

a
ti
o
n

regression line

(a)

−1.2 −1.1 −1.0 −0.9 −0.8 −0.7

−
5

.4
−

5
.2

−
5

.0
−

4
.8

−
4

.6
−

4
.4

−
4

.2
−

4
.0

log−log plot

log(r)

 l
o

g
(C

(r
))

regression line

(b)

Figure 4.4: Swissroll data; (a) The correlation dimension curve with range of r, (b)

The log-log plot of correlation integral versus r.

on the model parameters. We assume that the correlation integral is modelled by a

polynomial of degree 3. The results are shown in Table 4.2 with the upper value of r

equal to 1. From table 4.2, the most significant parameter is a2, and hence, ID = 2.

We find that there is some discrepancy in the observed dimension estimates.

While the intuitive scree-plot based solution of ID = 2 is backed up by the Polyno-

mial method, we observe a larger value of ≈2.4 and 2.6 via the Intercept and Slope

method, respectively. In addition, we obtain smaller values of 1.54 and 1.75 from

the Dip method and Regression method, respectively.

4.6.3 Discussion of bias

In this section, we discuss the bias of the estimators regarding to our approaches.

The bias is defined as the difference between the estimator’s expected value and the

true value of the estimator. In most cases it would be desirable to use the estimator

with less bias. It is important to note that all ID estimation methods suffer from

bias.

In practice, we take 100 samples of 200 data points generated from Swissroll
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_________________________________________________________________________

Coefficients:

Estimate Std. Error t value Pr(>|t|)

re -0.016099 0.001331 -12.097 2.06e-12 ***

I(re^2) 0.106844 0.004060 26.318 < 2e-16 ***

I(re^3) -0.007204 0.002955 -2.438 0.0217 *

----------

Signif.codes:0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0004309 on 27 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999

F-statistic: 7.688e+04 on 3 and 27 DF, p-value: < 2.2e-16

_________________________________________________________________________

Table 4.2: Swissroll data; the result of fitting a polynomial of degree 3.

data. Then we compute the mean value of the ID estimates which are derived by

using Dip, Regression, Intercept, Slope and Polynomial method. In addition, the

ID is obtained via MLE by computing the median of dk over a range of different k,

as shown in Section 4.5. We provide a box-plot of the ID estimates for 100 Swissroll

data sets. The plot in Figure 4.5 illustrates that our methods obtain a reasonable

estimate of the intrinsic dimension, with the Intercept method achieving results

(median: 2.10301) which are closer to 2 than the Slope method (median: 2.386272),

while the median of the IDs via MLE is 2.798521. Comparing those methods with

the other local approaches via the Dip method and the Regression method, the

median ID using the Regression method is 1.696434, which is closer to 2, while the

median using the Dip method is 1.427049, which means it provides underestimated

ID. In contrast, the Polynomial method has returned ID = 2.

Figure 4.5 shows that the Intercept method has the smallest bias compared to all

other our approaches, even though it has slightly a larger variance (variance(IDs)=

0.05) than other approaches. The local methods, Dip and Regression methods,

provide a negative bias. We observe that the bias in the Dip and Regression meth-

ods (Local method) due to the limited data size. One could consider the under–
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Figure 4.5: A box plot of ID estimates via Intercept, Slope, Dip, Regression and

MLE methods of 100 data sets generated from Swissroll data.

estimation is simply a feature of the local methods, which estimate the topological

dimension along the data.

On the other hand, the Intercept, Slope and Polynomial methods have a smaller

computation time than the Dip and Regression methods. It is clear that for the

Dip and Regression methods the technique should obtain the ID for each sphere,

then average overall ID estimates. To sum up, it is noted that the ID local method

always provides a lower bound of ID estimates. Furthermore, the ID global methods

provide an estimate greater than the estimate provided by local methods. We can

conclude that the Intercept method provides a suitable result with a small bias and

less computation.
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4.7 Software

The statistical computing software R [74] has been used to execute all the practical

implementations of the dimensionality estimation. The R programs are used to

compute the examples and the simulation study. The code of the principal manifold

is taken from package ‘lpmforge’ (unpublished) version 0.0− 8. The examples data

are taking from the following Packages:

• Horse mussels data from package forward [70].

• Oceanographic data from package LPCM [25].

• Gaia data from package LPCM [25].

• Fuel consumption data and industrial melter data are provided in txt file.

• Spiral data is provided in dta file.

The industrial melter data was provided by Dr. Uwe Kruger. The spiral data was

provided by Dr. Balász Kégl (https://www.lri.fr/ kegl/researchUdeM/research/pcurves/).

The necessary modification to the programs is made as in demand. Our own code ex-

plaining how we implemented our new approach is available in http://www.maths.dur.ac.uk/∼dma0je/zakiah.

4.8 Conclusion

In this chapter the practical implementation of dimensionality estimation was ex-

plored. The intrinsic dimension was estimated via Brand’s algorithm by scrutinising

the growth point process, which counts the number of points in hyper-spheres. Using

correlation dimension the intrinsic dimension was obtained via a pairwise distances

algorithm, which counts the number of point pairs that are closer to each other than

a given radius.

The ID was obtained via the MLE method by investigating the number of ob-

servations falling in a small sphere. Thus we can deduce that the MLE method has

properties of both local and global methods when used to estimate ID. This is to

some extent true for Brand’s algorithm as well, though this requires the selection
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of a few target points which make such methods less ‘global’ in comparison to the

MLE method, for which each data point is a target point.

The correlation method and the MLE method require large sample sizes for high-

dimensional data. Maximum Likelihood estimation is influenced by the number of

nearest neighbors. Novel approaches for the implementation of these techniques

were supplied.

The intrinsic dimension was estimated locally via Brand’s algorithm. Two set-

tings were provided to select the target point and suggest the range of the radius

of the hyper-sphere. Two approaches to estimate ID from the loglog curve were

proposed: the Dip method and the Regression method. The intrinsic dimension of

the data set was determined by computing the median over all IDs estimates.

Regarding our approaches for computation of the correlation dimension, we put

forward three approaches: the Intercept method, the Slope method and the Poly-

nomial method. In contrast to the Intercept and Slope methods, the Polynomial

method provides an integer ID estimator (so, the estimated ID is not really ‘fractal’

in a strict sense). For the regression step, we suggested using an interval of r values

ranging from the value of r that contains one distance pair as a minimum point and

increases to the value point of r = 1. This ensures that the radia are close to 0 but

hold sufficient data points.

Compared to our other approaches, the Regression, the Intercept and the Slope

methods, the Polynomial method needs additional data points, because it fits a

more complex model. Therefore, a larger upper r is needed in comparison to these

other methods. We should note that increasing the polynomial degree beyond p = 4

sometimes leads to unclear results, since the higher–degree polynomials correlate in

a complex manner with each other, which dilutes the distinctiveness with which the

intrinsic dimension is identified.

We have observed the values of PCA-based ID to be often larger than those

obtained by nonparametric ID estimation methods. Additionally, we found the IDs

obtained by the global methods (Intercept, Slope) often to be more accurate than

those by local methods (Regression, Dip), with the Dip method quite persistently

underestimating the ID. The ML method produced generally reasonable ID esti-
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mates, which were often (atypically for a local method) close to the result by PCA,

and sometimes even larger which may be a sign for a tendency to overestimate the

true ID.

To sum up, it is noted that the ID local method always provides a lower bound

of ID estimates. On the other hand, the ID global methods provide an estimate

greater than the estimate provided by local methods. We can conclude that the

Intercept method provides a suitable result with a small bias and less computation.



Chapter 5

Experimental Results

5.1 Introduction

In Chapter 4 we demonstrated our new approaches for computing dimensionality

estimation via charting manifold and fractal-based methods, also the approach via

a local version of a global method. In this chapter we discuss the computational

results for data sets in multivariate space, and the effectiveness of our techniques.

To illustrate the performance of the methods under investigation, we provide

simulation examples and applications to several experimental data sets. The exper-

imental data sets describe different phenomena and are available in the literature,

in R packages [74] [70] [25]. In addition we provide a recorded data set from an

industrial glass melter process. When a subsample of the full data set (size N) is

taken, then we denote the subsample size by n. Section 5.3 illustrates the applica-

tion of the ID estimation approaches to Horse mussels data (D = 4), Oceangraphic

data (D = 3), Airquality data (D = 4), Gaia data (D = 19) and Fuel data (D = 4).

For Gaia data we take a sample of data points to simplify the implementation of

the MLE method. A comparison of the experimental results with other methods is

discussed in Section 5.4. Section 5.5 presents studies of simulation. An analysis of

the industrial melter data (D = 21) is carried out in Section 5.6. Eventually the

conclusion is presented in Section 5.7.

97
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5.2 Preliminary concepts

We verify our methods on real data sets in multivariate spaces. All data are scaled to

zero mean and unit standard deviation before implementation. We provide scatter

plots of the data to represent the structure of the data sets. In practice, for the

variants of Brand’s method, known as Dip method and Regression method, the

sequence of the radius r is selected such that the lower point is the minimum r that

contains at least two data points, with the upper point that holding all the data

points.

For the implementation of correlation dimension, Intercept method and Slope

method, the reasonable sequence of r is 0.3 to 0.5. In contrast, for the Polynomial

method, the lower point is the minimum value of r that contains at least one pair

distance, which is consistent with the minimum r selected for Brand’s algorithm,

and the upper point of r equals 1.

As a proof of concept, for the Horse mussels data and Oceangraphic data, we

implement the Dip method and the Regression method by using setting B to select

the target points. Postulating that the data possesses an ID of about 1, one should be

able to recover this one–dimensional structure using adequate dimension reduction

tools. We use this setting only for validation of our approaches (Dip method and

Regression method). When d = 1, the principal curve should pass through the

middle of the data points and so be useful for identifying central points.

We also test the Localized correlation integral method on Horse mussels and

Airquality data. The algorithm is iterated until the subregion set contains two data

points. For simplicity, the data structure is partitioned into ten subregions with

radius equal to 1. Each subregion contains n data points. The Intercept method

(correlation dimension approach) is implemented on each subregion.

Eventually, a comparison is made with the principal component analysis (PCA)

and the MLE methods.

For the PCA method we use R function prcomp [74] to produce a scree plot

which provides the (linear, PCA-based) intrinsic dimension. The PCA is obtained

via this function using a singular value decomposition of a scaled data matrix rather

than the covariance matrix of a data set. Now, to plot this object we use one of the
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two functions scree plot and plot [74] which plot the variances versus the number

of principal components. The option (scale=TRUE) indicates that the variables

are scaled to have unit variance before the analysis. It should be emphasized that

the intrinsic dimension (ID) arrived at through PCA method is usually larger (one

could say an ‘upper bound’) than the nonparametric methods of intrinsic dimension

estimation.

For MLE we use our practical implementation of the ID estimator by Levina and

Bickel [60] (Section 4.5). We apply the algorithm of maximum likelihood estimation

to different ranges of (k), where k is the selection of the number of nearest neighbors.

In practice for small numbers of neighbors k the MLE algorithm provides an unrea-

sonable value of dimension estimation. This leads one to infer that the algorithm

has not worked yet. In addition the intrinsic dimension estimation is frequently low

when k increases. We use a reasonable range of k between 10 and 20 as advised by

Levina and Bickel [60].

The following section presents a description of data sets with the computational

results for each set of data shown separately.
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5.3 Applications

5.3.1 Horse mussels data

In this section we discuss the Horse mussels data (sampled from Marlborough

Sounds, New Zealand) with 82 observations on five variables; shell width (W ), height

(H), length (L), mass (S), and the mass of mussels (M). The data is available in

the package ‘ forward’ [70], and we will only consider four variables: height, length,

mass and width. To gain an insight into the structure of the data, we plot the

scatter matrix plot of the four (scaled) variables as shown in Figure 5.1a.
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Figure 5.1: Horse mussels data; (a) Scatter plot matrix. (b) Scree plot of linear

PCA.

We first estimate the dimensionality via linear PCA. Figure 5.1b illustrates the

result of a principal component analysis on the (scaled) data set. The first and

second components of PC explain 94% and 3%, respectively, of the total variance.

Clearly, when performing linear dimension reduction via PCA, users decide the

dimension according to how much variance they want to preserve. Hence, depending

on this choice (common default choices would be 90% or 95%), we can conclude that

the (linear) ID for this data set is 1 or 2, which matches the visual impression from
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Figure 5.1a .

Next we estimate the ID using our approaches. Firstly, proceeding with the im-

plementation via Brand’s algorithm, we choose the target points according to the

LPC setting (setting B in section 4.2.1). The LPC is fitted as shown in Figure 5.2a

which is close to the scatter-plot of the raw data. The LPC is fitted with a starting

point x0 = (0.970037, 1.343527, 0.4350951, 1.341437)T and bandwidth h = 0.2. The

fitted LPC is one curve through a four−dimensional space. As target points for

the ID estimation we use the local means. Then,

(a). Using the Dip method. The first derivative estimator is derived using a local

polynomial smoother with bandwidth = 0.15. Each curve in Figure 5.2b represents

the first derivative estimation for some selected LPC points. The median of all the

different intrinsic dimension estimations is 0.8119179. (b). Now, the implementa-

tion using Regression method. We estimate the ID for each hyper-sphere of previous

target points. By fitting linear regression the local ID is obtained as the slope of

the line. Then the dimensionality is derived by computing the median of the ID

estimates which is equal 1.52486. Both methods provide a reasonable estimate of

ID.

Secondly, estimate the dimensionality via correlation dimension.

(a). The implementation of the Intercept method. We start the implementation

by studying the correlation dimension curve with radius r. Here Figure 5.3a illus-

trates that the curve is given by a grid on the right side, and the curve looks to be

reasonably linear from 0.3 to 0.5. Figure 5.3a displays the fitted linear regression

D(r) = a+cr on the correlation dimension curve. Therefore, the intrinsic dimension

estimation equals a = 2.17461, which is the intercept value in the linear equation of

y = 2.17461 + 3.06748 (r).

(b). Now, the implementation of the Slope method. Figure 5.3b displays the plot-

ted curve of log(C(r)) versus log(r) with a fitted linear regression. The estimated

intrinsic dimension is equal to b = 2.264904. This value is close to the dimension

value estimated by the Intercept method.

(c). Using the Polynomial method. We test the significance of parameters using a

polynomial fit to C(r) with degree 4. The results of the polynomial regression are
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Figure 5.2: Horse mussels data; (a) The fitted LPC- here is the plot of the

two−dimensional pairwise projections onto the respective coordinate axes. (b) The

ID estimations via Dip method.
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Figure 5.3: Horse mussels data; (a) Correlation dimension curve with a range of r

from 0.3 to 0.5, (b) Log-log plot of correlation integral versus radius.
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provided in Table 5.1. The most significant parameter is a2, and hence, ID = 2,

although the significance of a1 is of similar magnitude, so there may also be evidence

for ID = 1.
_________________________________________________________________________

Coefficients:

Estimate Std. Error t value Pr(>|t|)

re -0.07117 0.01076 -6.617 5.11e-07 ***

I(re^2) 0.57974 0.05712 10.150 1.55e-10 ***

I(re^3) -0.26064 0.09447 -2.759 0.0105 *

I(re^4) -0.02289 0.04897 -0.468 0.6440

---

Signif.codes:0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.001684 on 26 degrees of freedom

Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998

F-statistic: 4.026e+04 on 4 and 26 DF, p-value: < 2.2e-16

_________________________________________________________________________

Table 5.1: Horse mussels data; Summary table of the output of the Polynomial

method.

Thirdly, the ID is estimated using a localized correlation integral method. The

algorithm partitions the data set into several subregions. For this data the method

constructs only three subregions. The ID is estimated for each subregion by applying

the Intercept method and, as motivated in Section 4.4, the ID result is divided by

2. The ID estimate for the first subregion equals 0.5718384 with n1 = 27, while for

the second subregion the ID=1.2595886 with n2 = 27 and the ID of third subregion

is equal to 1.2225285 with n3 = 23. Final, the median over all ID estimates equals

1.222528.

The next implementation is the MLE technique. We choose k between 10 and 20

where the algorithm presents reasonable ID estimates. Figure 5.4 shows the different

estimations over the range of k, and the median ID is 2.504651.
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Figure 5.4: Horse mussels data; The dimensionality estimation via Maximum likeli-

hood estimation.

We find that our approaches shows the dimensionality estimation of the Horse

mussels data is 1 or 2, which is reasonable and matches the visual impression and

scree–plot.

5.3.2 Oceanographic data

The Oceanographic data was collected by the German vessel, Gauss, in the North

Atlantic, and retrieved from the World Ocean Database. The data is available in

the package ‘LPCM’ under the names Gvessel data [25]. The data frame has 643

observations which were taken over nine days in May 2000. The Oceanographic data

consists of seven variables, and for simplicity we will consider only three numeric

measurements of variables salg, depthg and oxyg. The variables operate on different

scales/units, salg is the ratio of electrical conductivity against a standard solution,

due to the Practical Salinity Scale (PSS); depthg is the water depth in meters; and

oxyg measures oxygen content in milliliters per liter of water. Figure 5.5a displays

the scatter matrix of the three (scaled) variables.

A common starting point for the application is the scree plot as shown in Figure

5.5b. The three components of the PCA explain 65%, 28%, and 6% of the total
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variance. One can conclude that the (linear) ID for this data set is about 2. However,

closer inspection reveals that the cloud lies roughly on a curvilinear string through

3D space. Hence, we would intuitively expect its (nonlinear) ID not to be much

larger than 1. This is plausible since linear ID estimates can be considered as an

upper bound of their nonparametric counterparts.

Firstly, the application of Brand’s algorithm. As motivated earlier we fit the LPC

to this data cloud, displayed in Figure 5.6a. An LPC is fitted through the data cloud

with a starting point x0 = (35.7145, 48.39, 5.872)T and bandwidth h = 0.11. The

local centers of mass which define this curve are ‘central’ enough to avoid boundaries

and provide good ID estimates. Hence, applying the above ID estimation routines

on these local centers of mass, should on average, reproduce ID values which are

close to 1. The ID is derived using the following methods.

(a). Dip method. Each curve in figure 5.6b represents the first derivative estima-

tion for some selected LPC points. The median of all different ID estimations is

0.3088748. (b). Regression method. Next we estimate the ID for each hyper–sphere

of previous target points. By fitting linear regression to where the local ID is ob-
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Figure 5.5: (a) 3D scatter plot of scaled Oceanographic data, (b) Scree plot of linear

PCA from scaled Oceanographic data.
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Figure 5.6: Oceanographic data; (a) Fitting principal curve, (b) intrinsic dimension

estimations at different target points (Brand’s algorithm).

tained as the slope of the line, the ID is then derived by computing the median of

the ID estimates which is equal to 1.423849.

Secondly, the implementation of ID estimation via the correlation dimension.

(a). Intercept method - We plot D(r) versus versus r. Figure 5.7a shows that the

curve looks to be reasonably linear from 0.3 to 0.5. Figure 5.7a displays the fitted

regression line D(r) = a + c r on the correlation dimension curve. Therefore ID =

a = 1.289286, which is the intercept value in the linear equation of y = 1.289286 +

4.027558 (r). (b). Slope method - The linear regression is fitted through the curve

of log(C(r)) in the loglog plot as shown in Figure 5.14b. As the linear equation is

y = −1.329790 + 1.427811 log(r), the intrinsic dimension is equal to b = 1.427811.

The result is reasonably close to the Intercept method. (c). The implementation

of the Polynomial method - We examine the parameter that has the largest t-value

using a polynomial with degree 4. From the summary provided in Table 5.2 we

immediately see that the largest parameter is a2, and, hence, the estimated intrinsic

dimension is equal to 2, i.e. ID = 2.

Next we consider the MLE implementation. For computational reasons, we take
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Figure 5.7: Oceanographic data; (a) D(r) curve versus r, which is roughly linear for

a reasonable range of r, (b) Log-log plot of correlation integral versus r.

_________________________________________________________________________

Coefficients:

Estimate Std. Error t value Pr(>|t|)

re 0.031923 0.002515 12.70 1.19e-12 ***

I(re^2) 0.577557 0.013434 42.99 < 2e-16 ***

I(re^3) -0.603392 0.022371 -26.97 < 2e-16 ***

I(re^4) 0.211102 0.011660 18.11 2.93e-16 ***

---

Signif.codes:0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0004065 on 26 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: 1

F-statistic: 6.997e+05 on 4 and 26 DF, p-value: < 2.2e-16

_________________________________________________________________________

Table 5.2: Oceanographic data; Summary table of the output of Polynomial method.
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Figure 5.8: Oceanographic data; The dimensionality estimation via maximum like-

lihood estimation.

a sample of n = 300 data points and the range of k is 10 . . . 20, where for the

very small value of k1 = 1 the dimension estimator is −0.00762866. The resulting

estimate is depicted in Figure 5.8, which shows different estimations over the range

of k, and the final estimator 2.021688.

To sum up, the result of Dip method shows that the method fails for this data.

In contrast the result from the MLE method agrees with the results of all other our

approaches which are reasonable, and are consistent with the visual impression and

the scree–plot.

5.3.3 Air Quality data

Air Quality data is based on the a daily measurement of air quality recorded in

New York, during May to September 1973. Air quality data consists of numerical

measurements of six variables: mean ozone(Ozone), solar radiation (Solar.R), av-

erage wind speed (Wind), maximum daily temperature (Temp), month, and day.

We will only consider the first four measurements here. To gain an insight into the

structure of the variables of the data, a pairwise plot of four-dimensional variable

characteristics is provided in Figure 5.9a with 111 observations. In Figure 5.9b, the
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Figure 5.9: Airquality data; (a) Pairwise plots, (b) Scree plot of four measurements

of airquality data.

scree plot shows that three components explain 93% of the total variance of the

scaled data, so depending on where one places the cut point, one would opt for IDs

of 3 or 4. This result is intuitive when considering the data, which do not possess

a very pronounced inner structure. Now, we compare these results to the estimated

dimensionality via the Brand’s and correlation dimension estimation methods.

Brand’s algorithm - the intrinsic dimension is derived using the Dip method and

the Regression method. Firstly, for the application of the Dip method, we consider

the target points according to the highest–density–criterion outlined earlier. The

first derivative estimator is derived using a local polynomial smoother with the

bandwidth 0.15 for a sample of size 20 chosen from the higher density points as

shown in Figure 5.10a. The median of all different ID estimations is 1.230157.

Secondly, for the Regression method, we estimate the ID for each hyper–sphere of

previous target points by fitting linear regression. The local ID is obtained as the

slope of the regression line. Then, the ID is estimated by computing the median of

the ID estimates which is equal to 1.638437. Both techniques provide results less

than the result of MLE (Median ID=3.004193) at k = 10, . . . , 20, as displayed in
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Figure 5.10b.

Next, the ID is obtained via the correlation dimension:

(a). Intercept method - We plot c(r) versus versus r. Figure 5.11a shows that the

curve of the correlation dimension is mostly linear in the chosen range of r. Figure

5.11a displays the fitted regression line D(r) = a + c r on the correlation dimension

curve. Therefore ID = 3.438883, which is the intercept value in the linear equation

of y = 3.438883 + 7.127591 (r). (b). Slope Method - The linear regression is fitted

through the curve of log(C(r)) in the loglog plot as shown in Figure 5.11b. The

linear equation is y = −2.279512 + 3.764282 log(r), so the intrinsic dimension is

equal to b = 3.764282. The result is reasonably close to the Intercept method.

(c). Polynomial method - The ID is determined by investigating the significance

of parameters using a polynomial with degree 4. From provided ∗ symbols in the

summary (Table 5.3) we see immediately that the most significant parameter is a3,

and, hence, the estimated ID is equal to 3.

Thirdly, the ID is estimated using a localized correlation integral method. For

this data the algorithm is iterated till the last subregion contains 18 data points.

The method constructs four subregions and estimate ID locally using the Intercept
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Figure 5.10: Airquality data; (a) ID via dip method, (b) ID via MLE.
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Figure 5.11: Airquality data; (a) the plot of D(r) versus r which is roughly linear

for a reasonable range of r, (b) the log-log plot of correlation integral versus r.

_________________________________________________________________________

Coefficients:

Estimate Std. Error t value Pr(>|t|)

re 0.0001382 0.0021715 0.064 0.949745

I(re^2) -0.0084240 0.0114175 -0.738 0.467237

I(re^3) 0.0771618 0.0187070 4.125 0.000337 ***

I(re^4) -0.0120179 0.0096240 -1.249 0.222886

---

Signif.codes:0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0003192 on 26 degrees of freedom

Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998

F-statistic: 4.24e+04 on 4 and 26 DF, p-value: < 2.2e-16

_________________________________________________________________________

Table 5.3: Airqualty data: the result of fitting a polynomial of degree 4.
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method. The ID result is divided by 2. Now, the ID estimate for the first subregion

equals −0.7279828 with n1 = 22, while for the second subregion the ID=2.4132869

with n2 = 39 and the ID of third and fourth subregion is equal to 0.6577156 and

0.6912542 with n3 = 24 and n4 = 18, respectively. Final, the median over all ID

estimates equals 0.6744849. In this case, we observe that the technique has correctly

worked for the second subregion, for which the ID estimate is acceptable.

We find that the techniques (Intercept, Slope, Polynomial and MLE methods) ar-

rive at sensible results which broadly agree with each other, and are consistent in line

with the visual impression and the scree–plot. While the results using Dip method,

Regression method and localized correlation integral provide underestimated ID.

5.3.4 Gaia data

Gaia is an European Space Agency (ESA) space observatory mission. It aims to

collect data about the 1 billion stars in our Galaxy, and extragalactic objects. Gaia

will provide comprehensive astrophysical information for each star, including its

mass, temperature and chemical composition, among others. One of its major goals

is to determine the distances, positions and annual proper motions of stars [2].

The data is available in the package ‘LPCM’ [25]. Gaia consists of two telescopes

providing two observing directions with a fixed, wide angle between them. This

samples the spectral energy distribution at 96 points across the optical and near-

infrared wavelength range (3301000nm). The measurements themselves are photon

counts (energy flux). Therefore each star can be represented as a point in a 96-

dimensional data space.

We are going to analyze a simplified version of such data, which is generated by

computer models. Our data set consists of photon counts measured in 16 (rather

than 96) wavelength bands with 8286 observations. Additionally we include the

three astrophysical parameters of temperature, metallicity, and gravity (which form

the input space of the computer model) in our data set, giving a total of D = 19

dimensions for the raw data. For simplicity, Figure 5.12a displays the structure of

only five variables of the data set. We begin our analysis by providing a scree plot

in Figure 5.12b. The quickly falling curve starting in the left top provides the share
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Figure 5.12: Gaia data; (a) Scatter-plot matrix of five variables, (b) Scree plot of 19

variables.

of total variance explained by the respective principal component. The common

way of interpreting this plot is by identifying sudden breakpoints, which separate

the informative from the noise-carrying components. One finds here that there are

two possible interpretations for this data set. There is a first break point at about

3 components, and a second (weaker) break point between 5 and 6 components.

Alternatively, when performing linear dimension reduction via PCA, users can decide

the dimension by how much variance they want to preserve. In the first case, 89%

of the total variance is explained, while in the second case about 98% is explained.

Note that the result d = 3 is backed up by the broken stick method, discussed in

Subsection 3.4.1.

Now, we compare these results to the estimated dimensionality via Brand’s and

correlation dimension estimation methods.

Firstly, the ID estimation via Brand’s algorithm. We take a sample of 20 data

points as target points according to the highest–density–criterion. Then:

(a). Dip method. The first derivative estimator is derived using a local polynomial

smoother with bandwidth h = 0.15, as shown in Figure 5.13a. The median of all
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different ID estimations is 1.328673. (b). Regression method. We estimate the ID

for each hyper–sphere of previous target points by fitting linear regression and the

local ID is obtained as the slope of the regression line. Then, the ID is estimated by

computing the median of the ID estimates which is equal 1.515386. The ID results

using both are underestimated comparing to the ID results using the MLE method

(Median ID = 2.949778), as shown in Figure 5.13b.

Hence, the estimated dimensionality via the correlation dimension.

(a). Intercept method. We study the correlation dimension curve D(r) as a function

of radius r. As shown in Figure 5.14a, the curve of the correlation dimension looks

to be reasonably linear in the chosen range of r. Figure 5.14a also displays the fitted

regression line D(r) = a + c r on the correlation dimension curve. Then the ID

= 5.401008 which is the intercept value in the linear equation of y = 5.401008 +

7.298104 (r).

(b). Slope method. The plot in Figure 5.14b displays the curve of log(C(r))

versus log(r) with a fitted linear regression. Therefore the estimated intrinsic di-

mension is equal b = 5.657659, this value is close to the dimension value estimated
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Figure 5.13: Gaia data; (a) The implementation of Dip method, (b) ID via Regres-

sion method.
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Figure 5.14: Gaia data; (a) The implementation of Intercept method ‘D(r) curve

versus r’, (b) Log-log plot of correlation integral versus r.

by the Intercept method.

(a). Polynomial method. The ID is derived by considering the largest t-value

of parameters. For a polynomial of degree 4, one observes from Table 5.4 that the

parameter with the largest t-value is a3, so the intrinsic dimension of 3 is clearly

identified.

We find that our approaches of implementation via correlation dimension indi-

cate that the estimated intrinsic dimension for the Gaia data could be either at

about 3 or at about 6, which are sensible results, and agree with the two possi-

ble interpretations from the PCA. Our variants of Brand’s algorithm, Dip method

and Regression method, representing a local ID estimation technique, produce an

ID value of about less than 3 for this data and hence, favor the alternative PCA–

based interpretation. In general, local methods will provide smaller IDs than global

methods, since they are able to resolve the local data structure more flexibly [51].

It should also be noted that the results have a plausible physical interpretation.

Since the input space is three-dimensional, and since the remaining 16 variables are

generated from this input space, there is a strong argument for an intrinsic dimension
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_________________________________________________________________________

Coefficients:

Estimate Std. Error t value Pr(>|t|)

re 0.0021728 0.0008447 2.572 0.0162 *

I(re^2) -0.0245780 0.0043751 -5.618 6.64e-06 ***

I(re^3) 0.0681822 0.0070749 9.637 4.55e-10 ***

I(re^4) -0.0262428 0.0036026 -7.284 9.79e-08 ***

---

Signif.codes:0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0001133 on 26 degrees of freedom

Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998

F-statistic: 4.127e+04 on 4 and 26 DF, p-value: < 2.2e-16

_________________________________________________________________________

Table 5.4: Gaia data; the result of fitting a polynomial of degree 4.

of 3. On the other hand, the 16-dimensional data cloud of photon counts, which

has been simulated in some complex manner from the APs, will arguably increase

the ID of the whole data set at least to some extent, where it is known that this

increase should be less than three, since the first three principal component scores

of the 16–dimensional photon counts are strongly correlated [23]. This is reflected

in the ID of 5 obtained through the correlation dimension technique.

5.3.5 Fuel consumption data

Fuel consumption data consists of nine variables collected in n = 48 states of the

United States of America. To determine the ID we consider only four continuous

variables, these are TAX by cents per gallon, DLIC is the percentage of population

who have driving licenses, INC the average income in $1000s, and ROAD number

of miles of road in thousands. Figure 5.15a displays a scatter-plot matrix, the scree

plot of fuel consumption data and an example of point growth data at a random

sample point above the density threshold. It clearly shows that the data has no

specific structure with moderate noise. Here the three components explain 91% of
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Figure 5.15: Fuel consumption data; (a) Scatter-plot matrix, (b) Scree plot, (c) ID

via MLE.

the total variance of the scaled data, therefore, depending on where one places the

cut off point one would decide that the (linear) ID is about 3. Figure 5.15c illustrates

the ID estimation via MLE = 3.122107, for range of k between 10 and 20, where at

k = 1 we get −0.009722454.

Firstly, the implementation via Brand’s algorithm. It is obvious that due to

n = 48, the number of highest–density data points is small, less than 20. We take a

sample of 10 data points as target points according to the highest–density–criterion.

The result of the implementation is provided in Table 5.5 below.

Variants of Brand’s algorithm ID

Dip method 1.210457

Regression method 1.821634

Table 5.5: The estimated IDs via Brand’s algorithm.

Secondly, the implementation via correlation dimension. In practice, for this

data, the requirement of having at least two data points within the sphere leads to a

minimum r equal to 0.34, then the range of r between 0.34 and 0.5. In addition, for

the Polynomial method we take the maximum point of r equals 2. At this point the
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result looks reasonable. The results of the three techniques are provided in Table

5.6 below.

Variants of correlation dimension ID

Intercept method 3.518778

Slope method 4.072675

Polynomial method 3

Table 5.6: The estimated IDs via correlation dimension algorithms.
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5.4 Comparisons

In this section we provide comparative experimental results on the data set which

compare the scree plot (global linear ID method), MLE (local nonlinear ID methods)

and MDS method (global nonlinear ID methods) regarding to our approaches. The

results are summarized in Table 5.7.

Data set

Method Horse mussels Oceanographic Air qual. Gaia Fuel cons.

D 4 3 4 19 4

N 82 643 111 8286 48

Dip 0.82 1.41 1.5 1.33 1.21

Regression 1.55 1.19 1.64 1.52 1.82

Intercept 2.17 1.29 3.44 5.4 3.52

Slope 2.26 1.43 3.76 5.66 4.07

Polynomial 2 2 3 5 or 6 3

MLE 2.50 2.02 3.00 2.95 3.12

Scree Plot ≈ 1 ≈ 2 or 3 ≈ 3 or 4 ≈ 3 or 5− 6 ≈ 3

MDS – – 2 – 2

Table 5.7: The estimated IDs for several data sets (where Air qual.: Air quality

data and Fuel cons.: Fuel consumption data).

Figure 5.16 illustrates the ID estimates via multidimensional scaling method

(MDS) for Oceangraphic, Airquality and Fuel consumption data. It is important

to note that the MDS method usually projects data points onto a two-dimensional

manifold, which means that it is assumed that the ID = 2 in the algorithm. We

apply the MDS algorithm and the intrinsic dimensionality is obtained by plotting

the minimum stress versus the dimensionality. Then the ID value is shown as a knee

or a flatting of the curve (see Subsection 3.4.2). For Oceanographic data, Figure

5.16a indicates that the knee does not exist to obtain ID, which is the drawback of

the MDS algorithm, see Subsection 3.4.2. Similar unsatisfactory results using the

MDS method were obtained for the Gaia and the Horse mussels data (graphs not
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Figure 5.16: The ID estimate via MDS method; (a) Oceanographic data(b) Air

quality data, (c) Fuel consumption.

shown).

From the results in Table 5.7, we make three observations. First, we find that

our techniques (Dip, Regression, Intercept, Slope and Polynomial methods) arrive

at sensible results which, apart from a few exceptions, broadly agree with each

other. The performance for our approaches on the expermintal data sets is the

same compared to the performance of these methods on artificial data sets. Second,

the results of the implementation via correlation dimension are consistent with the

visual impression and the scree plot, which tends to suggest slightly larger IDs. In

contrast, our variants of Brand’s method, local methods, provide a reasonable but

possibly underestimated ID estimate since they estimate the ID of the subregion of

the data set. Third, we observe that the implementation via correlation dimension

is faster than using variants of Brand’s methods.

To sum up, our methods estimate ID using the geometric properties of the data,

and do not require the parameters to be set. The Experimental results on both

artificial data, as shown in Section 4.6, and real data illustrate that our approaches

enable us to estimate ID. In the next section we provide a simulation study in the

next section which will be more conclusive in terms of the actual performance of the

methods.
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5.5 Simulation studies

The purpose of this section is to present the precision of our approaches. We generate

data sets of known ID and try to identify their ID through MLE method, Brand’s

method and correlation dimension by considering three cases for d = 1, 2 and 4.

As illustration we provide box-plots which show the median and distribution of

ID estimates via the MLE method, the Dip method, the Regression method, the

Intercept method and the Slope method, while the results for the Polynomial method

will be presented in tabular form.

Firstly (a), a data set of size n = 200 with dimension D = 4 is generated from

a multivariate Gaussian distribution with parameters m = (9, 5, 6, 4), where the

diagonal of the covariance matrix Σ is equal to (50, 50, 50, 50). Since this data do

not possess any inner structure, we would assume the ID to be equal (or close to)

4 in this case. We generate 100 data sets in this manner, and for each sample we

calculate the ID estimate. The result in Figure 5.17a indicates that the methods

provide reasonable ID estimates. In fact the slope method overshoots slightly with

a median slope estimate of 4.086142, while the median of the IDs obtained via

the Intercept method is 3.655468, and the median of the IDs using MLE is equal

3.919751. Also the Figure 5.17a shows that the ID via the Regression method is

equal (median = 2.782664), while the median using Dip method is equal 1.997086,

perhaps indeed a bit underestimated. Note that the polynomial method provides

an integer ID, rather than continuous values. From Table 5.8 we see that both the

median and mode of the estimated ID values take the value 4, closely followed by an

estimated dimension of 3, which confirms the results of the other techniques nicely.

Secondly (b), the data is generated by adding four–variate Gaussian noise e to

data distributed uniformly on a straight line (think of a long cigar–like object in 4D

space), with zero mean vectors and unit covariance matrices such that E
(
eeT
)
=

0.0025I. We would assume this data has an ID roughly equal to 1. Again, we provide

a box-plot of the ID estimates for 100 simulated data sets. The plot in Figure 5.17b

illustrates that our methods obtain a good estimate of the intrinsic dimension, with

the Slope method achieving results (median: 1.020941) which are closer to 1 than
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Figure 5.17: Simulation study; box plot of ID estimates via Intercept, Slope, Dip,

Regression and MLE methods of 100 data sets generated from multivariate Gaussian

distribution. (a) First case, (b) Second case.

the Intercept method (median: 0.8794059), while the median of the IDs via MLE

is 1.124016. Comparing those methods with the other local approaches via the Dip

method and the Regression method, the median ID using the Regression method is

0.9652246, which is closer to 1, while the median using the Dip method is 0.5461858,

which means it has underestimated ID. The Table 5.8 shows that the Polynomial

method returned the correct ID of 1 throughout.

Thirdly (c), we use the simulation setup that was provided by Liu et al. [62].

Consider a process of five–variate Gaussian noise z is constructed as a linear com-

bination of s = (s1, s2, s3) such that:

s1(i) = 2 cos(0.08 i) sin(0.06 i),

s2(i) = sign[sin(0.03 i) + (9 cos(0.01 i))],

s3(i) ∼ N(0, 0.25).

where i is a sampling index. Assume the process is x = y + e and y = Bs that is, a

model of type 3.1, where
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B =



0.860 0.790 0.670

−0.550 0.650 0.460

0.170 0.320 −0.280

−0.330 0.120 0.270

0.890 −0.970 −0.740


,

E
(
eeT
)

= 0.0025I, and E (e) = 0. Now we should suppose that the data

have ID = 3 or smaller. A total of 100 samples were simulated from that process.

Figure 5.18 displays the box-plot of the ID estimates (Intercept, Slope and MLE),

the result provides reasonable ID estimates, with the Intercept method achieving

results (median= 2.440109) which are close to the Slope method (median= 2.60165),

whereas the median ID estimated via MLE is 3.919751. While the results via the

Dip method and the Regression method present an underestimated ID, the median

is 0.9651418, 1.031972, respectively. As seen from Table 5.8, the polynomial method

has returned ID = 2, in 100% of the simulation runs.
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Figure 5.18: Simulation study; The box plot of ID estimates via Intercept, Slope,

Dip, Regression and MLE methods of 100 data sets generated from multivariate

Gaussian distribution for the third case.
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estimated ID

Sim. 1 2 3 4

a) 0 2 47 51

b) 100 0 0 0

c) 0 100 0 0

Table 5.8: Summary of results of polynomial method for simulations (a), (b),

and (c). The bold number shows the proportion of ‘correctly’ identified intrinsic

dimensions.

5.5.1 Discussion of Bias and sample size

In this section, in terms of the performance of the methods, we discuss the bias of

the estimators and the effect of the sample size on the accuracy of the ID estimates

using simulation data. Firstly, the effect of bias. From results in Figures 5.17a, 5.17b

and 5.18, we observe that the Slope method provides an overestimated ID for the

first case, while it has the smallest bias for the second cases. Though the Intercept

method appears slightly negatively biased, its ID estimates of mostly ≤ 4 are more

plausible than those of the slope method. Even though both Intercept and Slope

methods have a larger variance for the first case. For the third case of simulation,

both Intercept and Slope methods achieve similar results, of plausible magnitude,

about 2.5. Compared to other approaches the Dip method has the the largest bias

and the Regression method is the next largest bias. Note that the under–estimation

is a feature of the local methods. In contrast, MLE has the largest bias for the third

case, and it is known that its bias increases with high dimension because it needs

a very large data sample in the sphere [60]. These results are consistent with the

discussion of results on artificial data (Section 4.6.3).

Secondly, the effect of the sample size N . For simplicity and computation time,

we will discuss the performance with first case (case (a)) and second case (case (b)).

We provide box plots of ID estimates for different simulation sample sizes for both

cases, as shown in Figures 5.19, 5.20, 5.21, 5.22 and 5.23. In addition, the median is
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computed over all ID estimates for each sample size, and the results for both cases

are displayed in Tables 5.9 and 5.10. The results in the figures and tables show that

our approaches do not depend on sample sizes and the results do not differ much for

each sample size. As we mentioned in Subsection 4.6.3, the local methods provide

an under–estimation (a lower bound) ID, since it needs to estimate the ID for each

sphere. In contrast, the global ID methods provide an estimate greater than the

estimate provided by local methods.

In particular, our experimental results establish that the main weakness of local

techniques for dimensionality estimation is the requirement to estimate the ID at

several subregions which leads to increased computation time. We may suggest a

technique that does not rely on the data’s local properties. It has been suggested

that the dimensionality estimation could be obtained by applying global ID methods

at subregions, as shown in Section 4.4. The main value of local ID methods for

dimensionality estimation is that they can be applied on data sets where we do not

have enough information about the global structure available, such as Melter data

(Section 5.6).

In this piece of research comparisons between variants of Brand’s algorithms

(Dip and Regression methods) and the correlation dimension (Intercept, Slope and

Polynomial methods) show that the Intercept and the Slope methods behave simi-

larly, and consistently give ID estimates which are closer to the real ID than other

methods. Furthermore, the results of the experiments carried out on the previous

data sets seem to suggest the same conclusion.
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Figure 5.19: Box plots of ID estimates via our approaches of different sample sizes

for the first case: (a) Using Intercept method, (b) Using Slope methods.
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Figure 5.20: Box plots of ID estimates via our approaches of different sample sizes

for the first case: (a) Using Dip method, (b) Using Regression methods.
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Figure 5.21: Box plots of ID estimates via our approaches of different sample sizes

for the second case: (a) Using Intercept method, (b) Using Slope methods.
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Figure 5.22: Box plots of ID estimates via our approaches of different sample sizes

for the second case: (a) Using Dip method, (b) Using the Regression methods.
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Figure 5.23: Box plots of ID estimates via MLE method with different sample sizes;

(a) the first case, (b) the second case.

Methods

N Intercept Slope Polynomial Dip Regression MLE

100 3.66 4.09 4 1.99 2.78 3.92

200 3.70 4.07 4 1.95 2.73 3.93

300 3.60 3.97 4 1.97 2.74 3.95

400 3.69 4.04 4 1.95 2.73 3.94

500 3.67 3.78 4 1.94 2.73 3.90

Table 5.9: The median(ID) over all ID estimates via our approaches at several

sample size for the first case (true ID=4).

5.6 Melter data

The Melter data are industrial data measured within a glass melter at high tem-

peratures. The data consists of 21 variables with N = 17280 data points. The

variables are: the measurements of fifteen temperature sensors, the electric power
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Methods

Sample size Intercept Slope Polynomial Dip Regression MLE

100 0.88 1.02 1 0.55 0.97 1.12

200 0.88 1.01 1 0.59 0.89 1.13

300 0.84 0.98 1 0.55 0.81 1.14

400 0.84 0.98 1 0.55 0.81 1.14

500 0.84 0.98 1 0.55 0.81 1.14

Table 5.10: The median(ID) overall ID estimates via our approaches at several

sample sizes for the second case (true ID=1).

measurements of four induction coils, the viscosity of the molten glass, and the

electric voltage. We are going to analyze this data by only considering a sample of

n = 2000 data points. For simplicity, Figure 5.24 displays a scatter plot of only 12

variables of Melter data.

We establish our analysis by providing a scree plot in Figure 5.25a. The quickly

falling curve starting in the left top provides the share of total variance explained

by the respective principal component. One can infer here that there is a break

point at about two components. With two components, 88% of the total variance is

explained, while with four components 95% is explained. Note that the result d = 2

is backed up by the broken stick method. Now, for simplicity we take a subsample

of n′ = 300 data points and the ID is derived locally using MLE method. The plot

in Figure 5.25b displays ID estimation at the selected k from 10 to 20, and, the

median of all ID estimates equals 4.662585.

We now compare these results to the estimated dimensionality via Brand’s algo-

rithm and correlation dimension.

Intrinsic dimension estimation obtained using Brand’s method. Firstly, for the Dip

method, we choose a sample of size 50 of target points according to the highest–

density–criterion outlined earlier. The ID is estimated for each target point by

computing the first derivative with bandwidth 0.15 as shown in Figure 5.26. The
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Figure 5.24: Scatter-plot matrix of 12 variables of Melter data.

median of all different ID estimations is 2.900821. Secondly, the Regression method,

the ID is estimated by fitting linear regression method on the previous target points

and determining the slope of the regression. Then the ID is derived as the median

of the ID estimates which is equal 1.1548.

Next, the dimensionality is estimated via correlation dimension. Firstly, Intercept

method implementation. We study the correlation dimension curve with radius

r. Here, as shown in Figure 5.27a the curve of correlation dimension looks to be

reasonably linear in the chosen range of r. Figure(5.27a) displays the fitted regression
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Figure 5.25: (a) Scree plot of Melter data with 21 measurements, (b) The dimen-

sionality estimation of Melter data via MLE method.

line D(r) = a + c r on the correlation dimension curve. Then, ID = 1.483556

which is the intercept value in the linear equation of y = 1.483556 + 14.102666 (r).

Secondly, the testing of the Slope method. The plot in Figure 5.27b displays the curve

of log(C(r)) versus log(r) with a fitted linear regression. Therefore, the estimated

intrinsic dimension is equal to b = 1.913968. This value is close to the dimension

value estimated by the Intercept method.

Finally, using the polynomial method. The ID is derived via a series of t− tests

on the model parameters. We assume that the correlation integral is modelled by

a polynomial of degree 4. The results are shown in Tables 5.11 and 5.12 with

the upper value of r equal to 1 and another trial with equal to 1.5, respectively.

From Table 5.11, the most significant parameter is a1, and hence, ID = 1. Now,

with upper point of r equals 1.5, Table 5.12, we choose the parameter that has the

largest t-value rather than the smallest p-value, since the p-values are too small to

be distinguished. Therefore a3 has the largest t value, so may also be evidence for

ID = 3. In addition, for polynomial of degree 7 with the upper value of r equal

to 1.7, the parameters a1 and a4 provide similar magnitude, one can infer that ID
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Figure 5.26: Melter data; The estimated dimension via Dip method

could be either 1 or 4 as displayed in Table 5.13.

We find that there is some discrepancy in the observed dimension estimates.

While the intuitive scree-plot based solution of ID ≈ 2 is backed up by the dip

method and the correlation-based techniques, we observe a larger value of ≈ 4.7

via the ML method, and a smaller value of ≈ 1 for the regression method and

the polynomial method. It appears that the latter, very small, ID estimates are

possibly flawed and the polynomial method tends to be especially fragile for large

data dimension. As far as the correlation methods are concerned, Camastra and

Vinciarelli [9] observe that, for small sample sizes, the correlation integral tends

to underestimate the true ID (in this context, 2000 is still a ‘small’ sample size),

and provide a ‘reference curve’ which is supposed to remove the downwards bias.

However, for very small correlation dimensions (such as 1 or 2) this concept appears
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unsuitable (since the reference curve would deliver an ID of 0 in this case). The

MLE solution of 4.7 appears overestimated given the evidence provided by all other

techniques.

Motivated by the results of this section, we attempted to model the melter data

through a 2-dimensional principal manifold. We used the experimental R package

‘lpmforge’ (Evers, 2013) [29], which implements the extension of the local principal

curve method illustrated in Section 2.3.2 to ‘local principal manifolds’. In the special

case d = 2, the manifold is a ‘surface’. The resulting surface is displayed in Figure

5.28 that shows that the assumption of ID=2 appears plausible. The ID may actually

be higher in the denser part, which could explain the different results of the ID

estimation.

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

Plot of Correlation dimension verses r

r

 D
im

en
si

on
 e

st
im

at
io

n

regression line

(a)

−1.2 −1.1 −1.0 −0.9 −0.8 −0.7

−6
.8

−6
.6

−6
.4

−6
.2

−6
.0

log−log plot

log(r)

 lo
g(

C
(r)

)

regression line

(b)

Figure 5.27: Melter data; (a) The correlation dimension curve with range of r, (b)

The log-log plot of correlation integral versus r.
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_________________________________________________________________________

Coefficients:

Estimate Std. Error t value Pr(>|t|)

re 0.0099929 0.0009256 10.796 4.20e-11 ***

I(re^2) -0.0405625 0.0049430 -8.206 1.09e-08 ***

I(re^3) 0.0592029 0.0082274 7.196 1.21e-07 ***

I(re^4) 0.0040489 0.0042861 0.945 0.354

---

Signif.codes:0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0001472 on 26 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9998

F-statistic: 4.824e+04 on 4 and 26 DF, p-value: < 2.2e-16.

_________________________________________________________________________

Table 5.11: Melter data; At upper point of radius equals 1 the result of fitting a

polynomial of degree 4.

Figure 5.28: Melter data; The principal manifold implementation
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_________________________________________________________________________

Coefficients:

Estimate Std. Error t value Pr(>|t|)

re 0.0135155 0.0008451 15.99 5.7e-15 ***

I(re^2) -0.0677897 0.0030088 -22.53 < 2e-16 ***

I(re^3) 0.1111882 0.0033387 33.30 < 2e-16 ***

I(re^4) -0.0243939 0.0011595 -21.04 < 2e-16 ***

---

Signif.codes:0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0002015 on 26 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: 1

F-statistic: 3.99e+05 on 4 and 26 DF, p-value: < 2.2e-16.

_________________________________________________________________________

Table 5.12: Melter data; the result of fitting a polynomial of degree 4 with upper

point of radius equals 1.5.

5.7 Conclusion

In this chapter, we assessed the effectiveness of the proposed algorithms in the light of

real data examples. A simulation study was also provided. A comparison was made

with the PCA method, MLE and MDS methods. PCA provides an upper bound

dimension, that is, the value of the dimension is often larger than in nonparametric

ID estimation methods.

In contrast, local ID methods provide a lower bound of ID since they estimate the

ID of subregion of the data set. The localization also leads to increased computation

time.

In practice, with the variants of Brand’s algorithm, it is noted that besides the

choice of the target point, the range of the sequence of radius and the length of the

grid of the radius value could effect the graph and the estimation of ID. However,

all those factors do not seriously affect the ID estimation.

Regarding our approaches to the computation of the correlation dimension method,

it is clear that the chosen range of r is influenced by the part of the correlation di-
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_________________________________________________________________________

Coefficients:

Estimate Std. Error t value Pr(>|t|)

re 0.003348 0.001890 1.771 0.0898 .

I(re^2) 0.013330 0.019298 0.691 0.4966

I(re^3) -0.113297 0.073874 -1.534 0.1388

I(re^4) 0.261343 0.137319 1.903 0.0696 .

I(re^5) -0.176941 0.132921 -1.331 0.1962

I(re^6) 0.048531 0.064405 0.754 0.4588

I(re^7) -0.003823 0.012335 -0.310 0.7594

---

Signif.codes:0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0001063 on 23 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: 1

F-statistic: 8.189e+05 on 7 and 23 DF, p-value: < 2.2e-16

_________________________________________________________________________

Table 5.13: Melter data; the result of fitting a polynomial of degree 7.

mension curve that looks linear. Our methods reduce the computation time since

we consider the small r that is our main interest, and avoid counting pairs with

large r.

The correlation dimension occupies the middle ground between purely linear

methods (such as PCA) and purely topological methods (which average over lo-

calized IDs representing the dimension of the tangent space along the manifold).

Indeed, the IDs obtained via the correlation dimension are generally equal to or

smaller than the ID suggested by a scree plot (broken stick, etc · · · ), and larger

than the estimates obtained through local (topological) techniques, such as Brand’s

(2003) algorithm.

For our approaches, the comparisons between variants of Brand’s algorithms

(Dip and Regression methods) and the correlation dimension (Intercept, Slope and

Polynomial methods) show that the Intercept and the Slope methods behave simi-
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larly, and consistently give ID estimates which are closer to the real ID than other

method. Furthermore, the results of the experiments carried out on the previous

data sets seem to suggest the same conclusion.

For our implementation of the Localized correlation integral method, we have no

actual justification that the ID needs to be divided by 2, even if our considerations

at the beginning of Section 4.4 makes this a plausible thing to do. The results

are based on an experimental implementation of the localized correlation integral

method, and further research would be necessary to investigate whether the results

do indeed give reliable ID estimates.



Chapter 6

Discussion and Future work

6.1 Summary of the Thesis

Dimension reduction is a key concept in many real-life statistical applications such as

data mining and pattern recognition. Most dimension reduction methods require an

explicit definition of the intrinsic dimension (ID) of the low-dimensional subspace, as

shown in Section 2.4. Additionally, we illustrated the relationship between intrinsic

dimension and some dimension reduction methods in Section 2.4. As an example,

in order to fit the principal curve to the Spiral data, within a two-dimensional

space, the user firstly has to decide that the ID is equal to 1, as displayed in Figure

2.5. This means that the intrinsic dimension should be fixed in advance before

applying dimension reduction methods. There have been few attempts dedicated to

determining how to estimate the ID of data in this context. This thesis develops

methods on the basis of the existing concepts.

Firstly, a brief review of dimension reduction methods was given in Chapter 1.

Dimension reduction methods can be categorized as linear or nonlinear methods.

Linear methods try to search a globally flat subspace, such as principal component

analysis. Nonlinear methods try to search a locally flat subspace, such as multidi-

mensional scaling methods and ISOMAP. Several dimension reduction methods are

related to each other. For instance linear PCA is a special case of the kernel PCA

with a linear kernel, ISOMAP is a special case of MDS by using geodesic distances,

and MDS is a special case using ISOMAP with k (the number of nearest neighbors)

138
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equal to N − 1. The computation cost is influenced by the number of parameters

of the technique and the number of iterations required. Most nonlinear methods

have parameters which need to be optimized, for instance techniques that are based

on neighbors such as ISOMAP and LLE. Although nonlinear methods have higher

computational costs than linear methods, these costs are offset by improvements to

the performance of sub-sequential statistical inference.

The estimation of intrinsic dimension is very useful for dealing with real-life

data with high dimensions, such as a data set Z = {x1, . . . , xN} ∈ R
D which we

assume to be scaled, i.e. each variable has been divided by its standard deviation.

When the intrinsic dimension of Z is given as a value d, this gives effectively the

minimum number of variables necessary to describe the data without much loss

of information [8] [32]. ID estimation methods can be classified into two groups:

local methods which divide the data into small subregions and estimate the ID

in each subregion, and global methods which try to estimate the dimension using

the whole data set. An overview of methods of intrinsic dimension estimation was

presented in Chapter 2. The global method is widely used in the manner of PCA.

Projection methods and MDS are used as dimension reduction methods rather than

dimensionality estimation methods.

On the other hand, local and global ID methods suffer from a bias of high

dimension, where the bias appears to be due to inadequate sampling. This occurs

when the sample is from the region near the edges or boundaries of a manifold [54].

It is noted that the correlation dimension has the smallest bias and the MLE has the

next smallest bias [60]. All methods also require large samples in high–dimensions

which could increase the computational cost.

From the implementation on the artificial data, we observe that techniques (such

as PCA and Nonlinear PCA, that do not employ neighborhood graphs) provide

unreasonable ID results. The bias in the PCA method appears due to the linearity

constraint. Regarding the Kernel PCA, the bias comes from the specific nonlinearity

constraint imposed, which is influenced by the kernel function and the parameter

changes of the function. These methods implemented previously are basically used

as dimension reduction methods.
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In addition, we observe that MLE method gives a visual impression of positive

bias, but is consistent with the scree-plot (linear PCA). The bias in the MLE method

occurs because the neighborhoods need to contain sufficient data points, which is

difficult for a finite sample size.

As far as we know, although nonlinear methods, global or local methods are

available, it appears that not enough work had been done on implementing the

methodology of the estimation of dimensionality on non-linear manifolds. Further-

more, as with many methods, there is not enough evidence that they work well prac-

tically. For instance, Charting a manifold method needs to identify target points.

Also fractal methods require the construction of a correlation integral, from which

the ID is extracted using appropriate techniques. This step is not straightforward,

since it requires counting the number of data pairs within a ball of radius tending

to 0.

The objective of this thesis has been to provide new approaches for the calcu-

lation of ID via Brand’s algorithm and correlation dimension. We have proposed

algorithms which are versions of Brand’s algorithm, and the ID is obtained locally

via Dip and Regression methods. The Intercept, Slope and Polynomial methods

estimate the ID globally via correlation dimension. All these methods could be

classified as nonparametric methods, as opposed to linear methods such as PCA.

Conceptually, the ‘linear’ intrinsic dimension should provide an upper bound for IDs

achieved via nonlinear methods, and in fact, we observed that the values suggested

by PCA-based ID are often larger than those obtained by nonparametric ID esti-

mation methods. To be even more precise, within the nonparametric methods, we

found that global methods tend to produce larger IDs than local methods.

The correlation dimension occupies some middle ground between purely linear

methods (such as PCA) and purely topological methods (which average over lo-

calized IDs representing the dimension of the tangent space along the manifold).

Indeed, the IDs obtained via the correlation dimension are generally equal to or

smaller than those suggested in a scree plot (broken stick, etc · · · ), but larger than

the estimates obtained through local (topological) techniques, such as Brand’s al-

gorithm. In addition, we have also estimated the ID by computing the median of
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Maximum likelihood estimates for a data set. A discussion of the practical imple-

mentation of the methods (artificial data sets, experimental data sets and simulation

data) is given in Chapters 4 and 5.

The concepts introduced in this thesis are not restricted to a particular type of

application. We have given different examples – from the environmental and physical

sciences – where the methods were clearly useful. They could also be applied to data

sets of any kind, including, for instance, data (bases) which are created and collected

on the internet.

For the Dip and Regression methods, it is clear that not only the choice of target

points, but also the starting point of the sequence of radius and the length of the

grid of radius values could impact upon the graph and the estimation of ID.

For the approaches via correlation dimension we have investigated three tech-

niques, two of which are novel, to implement fractal ID estimation via the correlation

integral. Both the Intercept and Slope methods provide non-integer ID estimates,

while the Polynomial method provides an integer value. The Polynomial method is

novel and appealing, but difficult to use for data sets in high dimension D, because

a polynomial degree d ≤ p ≤ D needs to be chosen. The proposed techniques, the

Intercept and Slope methods, require relatively few data points and are not demand-

ing on the sample size. Examples with real data verify the concept of estimating

correlation dimension at exactly r = 0.

For the Intercept and Slope method, the chosen range of r is motivated by

the part of the respective curve that looks approximately linear. These regions of

linearity may differ between different data sets, but we have provided default choices,

which, according to our experience, work well for a wide range of data sets.

For the Polynomial method, we have to be close to 0, but not too close, as we

need more data, because we are fitting a more complex model. Hence we need a

larger upper r as compared to these other methods. The Polynomial method is of

theoretical appeal and the result needs to be extracted manually from the regression

output.

In particular, our experimental results establish that the main weakness of local

techniques for dimensionality estimation is the requirement to estimate the ID at



6.1. Summary of the Thesis 142

several subregions, which leads to increased computation time. We suggest a tech-

nique that does not rely on the data’s local properties. It has been suggested that

the dimensionality estimation could be obtained by applying global ID methods at

subregions, such as the proposed method Localized correlation integral. The main

value of local ID methods for dimensionality estimation is that they can be applied

on data sets where we do not have enough information about the global structure

available, such as the Gaia and Melter data sets.

The Localized correlation integral is proposed by implementing the Intercept

method locally on disconnected subregions of data sets. In our implementation of

the Localized correlation integral method, we have no actual justification that the ID

needs to be divided by 2. However our considerations at the beginning of Section 4.4

justify that this a plausible thing to do. The results are based on the experimental

implementation of the localized correlation integral method, and further research

would be necessary to investigate whether the results do indeed give reliable ID

estimates.

In summary, a simulation study has confirmed that the Intercept, Slope and

Polynomial methods provide ID estimates which, on average, are close to the un-

derlying ’true’ ID. Additionally, the Intercept and Slope methods are compared and

shown to behave similarly, and consistently give ID estimates which are closer to

the real ID than other method. Furthermore, the results of the experiments carried

out on the previous data sets seem to suggest the same conclusion. However, the

ID estimate via the Dip method underestimates the ID and the Regression method

also tends a little bit to underestimate the ID. In addition, the simulation study

indicates that the MLE is biased when applied to high-dimension data set. It must

be noted that all this is non-causal. The value d may underestimate the number of

variables needed for applications such as regression.

The overall conclusion reached is that all the methods we have proposed in this

thesis are easy to implement and apply, and the experimental analysis indicates

that these methods are suitable for dealing with various types of data, including

linear and non–linear structures. Our own code for the implementation of our new

approach is available in
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http://www.maths.dur.ac.uk/∼dma0je/zakiah.

Chapters 4 and 5 are my original research. Section 4.2 was presented in the ISM

conference [51] while Section 4.3 was discussed at the ICSSBE2012 conference [50]

and published in [22]. A further manuscript [28] is in preparation. Each of these

four papers use selected examples presented in Chapter 5.

6.2 Suggestion for future research

The process of developing this thesis has led me understand that there are other

ways of taking the research forward and building upon it. The following points

summarize several possible areas for investigation in the future:

1. Explore other ways to estimate the ID by applying nonlinear global methods

locally on subregions, and then obtain the ID for the data set by averaging

over all ID estimates.

2. Investigate other suitable ways to select the target point of Brand’s algorithm.

For example, by taking the points that are close to the mode or the median of

the data set.

3. Exploring further experimental implementation on the Charting with pairs

approach in order to investigate whether the results do indeed provide robust

and reliable ID estimates, and then compare these to the experimental results

of the localized correlation integral.

4. Exploring whether a nonlinear correlation coefficient could be useful for non-

linear ID estimation.

5. Investigate ID estimation when the focus is not on unsupervised learning, but

on a particular inferential problem, such as regression. The question to ask

would be: what is the ‘best ID’ to use to predict a certain response variable?



Appendix A

Math

A.1 Abbreviations and Symbols Used

X: A D-variate random vector.

g(x): Probability density distribution.

ĝ(x): Kernel density estimator of g(x).

Ω: Ω = {x1, . . . , xN} ∈ R
D is a sample of size N is drawn from the random vector

X.

Σ: Variance covariance matrix.

Σ̂ML: Maximum likelihood estimator of Σ.

Σ̂sample: Sample variance matrix estimator of Σ.

N : Sample size.

n: Subsample size.

ID: Intrinsic dimension.

PCA: Principal component analysis.

G(r): Brand’s expression.

MLE: Maximum Likelihood Estimator.

dH : Hausdorff dimension.

dbox: Box-counting fractal dimension.

dcor: Correlation dimension.

C(r): Correlation integral which is the proportion of distance pairs.

N(r): Number of data points in sphere of radius r.
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H(r): The inverse function of G(r).

dk(x): MLE for dimension d.

ICA: Independent component analysis.

LDA: Linear discriminant analysis.

PV : Principal variables.

ANN: Autoassociative neural network.

PC: Principal Curve.

LPC: Local Principal Curve.

LPM: Local Principal manifold.

MDS: Multidimensional Scaling.

ISOMAP: Isometric feature mapping method.

LLE: Locally Linear Embedding method.

SOM: Self-Organising Maps.

ViSOM: Visualisation induced SOM.

TRN: Topology representing network.
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A.2 Proof of the result in Section 4.3.1

Assume that C(r) is a polynomial with degree p ≥ 1. Hence, let

C(r) = apr
p + ap−1r

p−1 + . . .+ a3r
3 + a2r

2 + a1r + a0.

Considering the condition C(0) = 0, we get a0 = 0. Then C(r) can be written as

C(r) = apr
p + ap−1r

p−1 + . . .+ a3r
3 + a2r

2 + a1r.

The estimate of d via correlation dimension, according to Eq. (4.6) where dcor = d,

becomes:

dcor = lim
r→0

log (apr
p + . . .+ a3r

3 + a2r
2 + a1r)

log(r)
.

Next, applying l’Hopital’s rule we get:

dcor = lim
r→0

r (papr
p−1 + . . .+ 3a3r

2 + 2a2r + a1)

aprp + . . .+ a3r3 + a2r2 + a1r

= lim
r→0

papr
p + . . .+ 3a3r

3 + 2a2r
2 + a1r

aprp + . . .+ a3r3 + a2r2 + a1r
.

Applying l’Hopital’s rule a second time we get:

dcor = lim
r→0

p2apr
p−1 + . . .+ 9a3r

2 + 4a2r + a1
paprp−1 + . . .+ 3a3r2 + 2a2r + a1

.

at r → 0, then

dcor =
a1
a1

= 1.

Now, suppose that a1 = 0 and a0 = 0, then

C(r) = apr
p + . . .+ a3r

3 + a2r
2.

Then, substitute to dcor gives:

dcor = lim
r→0

log (apr
p + . . .+ a3r

3 + a2r
2)

log(r)

Applying l’Hopital’s rule for three times and when r → 0, then

dcor =
4a2
2a2

= 2.

Hence, suppose that a2 = a1 = a0 = 0, then C(r) = apr
p + . . .+ a3r

3.

Again, substitute to dcor gives:

dcor = lim
r→0

log (apr
p + ap−1r

p−1 + . . .+ a3r
3)

log(r)
.
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Applying l’Hopital’s rule for four times, then we get at r → 0:

dcor =
18a3
6a3

= 3.

As a result, we can conclude if ap−1 = . . . = a1 = a0 = 0. and by applying l’Hopital’s

rule p times on dcor we get dcor = d = p at r → 0.
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