τ π	ಹ	油	#2		
研	穷	2	速	報	

気泡駆動型熱輸送管のマイクロ・フレキシブル化に関する研究

The Study of Micro-Flexible-bubble-driven heat-transport tubes (MF-BD-HTTs)

白樫 了*・高 暁*・西 尾 茂 文*
Ryo SHIRAKASHI, GAO Xiao and Shigefumi NISHIO

1. 背景と目的

2006年には50 W/cm²に達するという予測もあるように 半導体素子の発熱密度は急速に増大しており,高性能ヒー トシンクが必要となっている.また,notebook PC など情 報機器のコンパクト化が著しく進むに伴い半導体素子冷却 に許容される空間も限定されてきている.このような状況 に伴い,容積をとらず輸送経路に制約の少ない高性能なフ レキシブル細径熱輸送管やそれを内蔵した熱拡散板あるい は革新的冷却技術の開発が不可欠となっている.本研究で 課題とした熱輸送管については,ヒートパイプが半導体素 子冷却に既に利用されているが,細径化に伴い熱輸送限界 が急速に低下し,上記の動向に対応できない可能性が高 い.

一方, 筆者らの研究対象である閉ループ式熱輸送管は, 加熱・冷却部間を蛇行する閉ループ管に液体を所定の体積 割合で封入した単純な構造であるため,輸送管のフレキシ ブル化や細管化が可能であると考えられる.本研究では, 輸送管の細管化(φ1.1 mm)とフレキシブル化(ポリプロ ピレン製マイクロラインチューブ)による熱輸送特性に及 ぼす影響を調べた.即ち, notebook PCへの導入を念頭に おき,加熱面と放熱面のなす角度θを変化させたときの熱 輸送量を, 種々の加熱面温度について測定した.

2. 実験装置と実験方法

Fig. 1 に装置概略を示した.本体は,8 往復16本の輸送 管と銅細管からなる加熱部/冷却部で構成されており,加 熱部/冷却部の銅細管は銅板に半田付されている.加熱部/ 冷却部の銅細管は,全長 670 mm,管内径 ϕ 1.1 mm,フレ キシブル輸送管部は,長さ 300 mmで,中央部で Fig. 2の 様に折り曲げることで加熱面/冷却面の角度 θ をかえるこ とができる.熱輸送量 Q は,加熱面にとりつけたヒータ

*東京大学生産技術研究所 第2部

の出力で与えられ、冷却部を冷却水により一定温度(20°C) に保ち、加熱部/冷却部の細管壁にとりつけられた熱電対 で加熱部温度 Th,冷却部温度 Tc を測定することで、実効 熱伝導率を求めた、測定にあたっては、装置本体をアクリ ル製の断熱容器内に設置することで、熱輸送管外へのヒー トロスを抑えた、測定は、加熱面/冷却面の角度 $\theta = 90$,

52巻4号(2000.4)

120, 150°とし,加熱面が常に水平になるようにした.また、参考の為、 θ = 180°で加熱面/冷却面が鉛直方向になるボトムヒート条件での測定もおこなった.試験液体は、ラプラス長さが短いエタノールを用い、作動流体の封入率は40%とした.

3. 実験結果

3.1 熱輸送量Qに対する角度 θの影響

Fig. 3に本実験装置で得られた熱輸送量Qを,3種類の 角度 θ について示した.温度差 Δ Tに対してほぼ直線関係 にあるが、 Δ Tが高い場合は、輸送熱量が直線よりやや高 くなる.熱輸送量は、 $\theta = 90^{\circ} \ge 120^{\circ}$ では、垂直姿勢と比 べてやや低くなるが大差がなかった.一方、 $\theta = 150^{\circ}$ の場 合は熱輸送能力が極端に下がり、今回の実験では安定した 作動が得られず加熱面温度が上昇し続けた.

3.2 実効熱伝導率 k_{eff} に対する角度 θ の影響

Fig. 4 に実効熱伝導率 k_{eff} を,3種類の角度 θ について示した. 既報の研究結果と同様に, ΔT が大きくなると k_{eff} も大きくなる傾向がある.また,既報⁽¹⁾の管径 ϕ 2.4 mmの結果と比べて k_{eff} の値が約1桁小さい.

3.3 管内壁面熱流束 q_wに対する角度 θ の影響

Fig. 5 に管内壁面熱流束 $q_w \varepsilon$, 3 種類の角度 θ について 示した. 既報の結果によれば、輸送熱量の限界は、管内壁 面の熱抵抗により決まっている可能性が高い. 従って、 q_w を測定することで、加熱・冷却面における細管の配置がわ かれば、輸送可能な熱量をほぼつかむことができると考え られる.

既報によれば、作動流体が水の場合、式(1)で示すラ

プラス長さ λ_0 (20°C) で無次元化した値 D/ $\lambda_0 > 1$ では作動しなかったが⁽¹⁾,本熱輸送管は D/ λ_0 が約 0.6 であるにも関わらず作動したことを考えると,可動する限界最小径は, ラプラス長さのみでは決定されないことが示唆される.

(但し, σ は作動液の表面張力, P_l は作動液の密度, P_v は 作動液の飽和蒸気密度)

今回の実験では,角度θが150°以上では作動しなかった.これはこの種の熱輸送管が作動姿勢(重力)の影響を受けることを示している.重力の影響を見るために,冷却面と水平部分である加熱面のヘッド差を計算すると,垂直の場合はフレキシブルチューブの部分で300 mm,90°で

Fig. 5 Heat flux at inner tube surface

188 52巻4号(2000.4)

150 mm, 120°で 129 mm, 150°で 75 mm となっており, 150°の場合のみ, ヘッド差が他の条件の約半分以下になっている. 作動した条件(特に 90°と 120°)では熱輸送量 の差が殆どないことをあわせ考えると,本熱輸送管では, 高温部と低温部のヘッド差が作動限界の条件の一つになっ ている可能性がある.

実験に用いたものと同じ構成(管径・チューブ長さ・冷 却/加熱部の伝熱面積比)の熱輸送管を CPU の冷却に適応 した場合の冷却能力の計算を試みる.本熱輸送管の熱抵抗 は、以下の式で表現できる.

但し、 $\mathbf{R}_{wh} \geq \mathbf{R}_{wc}$ は加熱・冷却部における管肉厚熱伝導抵抗、 $\mathbf{R}_{hi} \geq \mathbf{R}_{lci}$ は加熱・冷却部における管壁と作動液体間の熱抵抗、 \mathbf{R}_{k} は管軸方向の作動流体の熱抵抗、 \mathbf{R}_{ww} は管壁の管長方向熱抵抗である。Fig. 4 は \mathbf{R}_{k} が \mathbf{R}_{ww} に比べて十分に大きいことを示している。また、従来の研究によれば、作動流体がエタノールの場合、熱抵抗が最も高い場所は、管壁と作動液体間の熱抵抗であることから⁽¹⁾、限界の熱流束で決まると考えられる。従って、Fig. 6 のように内径 D、肉厚 w の管を隙間なく加熱面一面に敷き詰めた場合、N 層(高さN·(D+2w))では、

 $q_p = q_w \frac{\pi D}{D + 2w} N \qquad (3)$

と表せる.従って、Fig. 5より、加熱面の単位 cm²では、 高さ約1mm (一層) で加熱面温度70°C では2.5 W/cm²程 度である. ϕ 1.1 の熱輸送管で50 W/cm²をまかなう場合は、 ヒートシンクの高さは、管を細密配置して高さ約20 mm 程度になる.但し、処理できる熱流束は、管径Dに比例 するので、管径に対する q_w の変化が小さい場合は、管径 を細くするほどコンパクトにできる.

Fig. 6 Allocation of MF-BD-HTTs on plate

5.まとめ

マイクロ・フレキシブル化した閉ループ式輸送管につい て,熱輸送量の角度 θ に対する影響を調べた.その結果, 以下のことがわかった.(1)作動限界は,加熱部と冷却部 のヘッド差の影響を受けるが,可動している条件では,熱 輸送能力は大きく変化しなかった.(2)ラプラス長さより 小さい管径においても作動するが,熱輸送能力(q_w比較) は,管径 φ2.4 の場合に比べて一桁低くなった.(3) φ1.1 の 熱輸送管を CPU の冷却に適用した場合,50 W/cm²を得る には高さ 2 cm 程度のヒートシンクになることが推定され た.

以上の結果より、本熱輸送管をよりコンパクトで高性能 なものに設計する為には、作動限界を与える最小ヘッド 差・最小管径や、管径が熱輸送量に及ぼす影響を実験から 明らかにし、作動原理の理論を構築する必要がある.

猶,本研究および関連の平成12年生産研究2月号の研 究の一部は,平成10年度の選定研究の補助によりおこな われたものである.

(2000年1月31日受理)

参考文献

 例えば,西尾,永田,沼田,白樫,機論 B Vol. 65 No. 640, (1999) p. 4077-4083,西尾,白樫,生産研究, Vol. 52 No. 1, (2000).