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Chapter 1

Introduction

1.1 Introduction

1.1.1 The nuclear fusion reaction

Recently, many new energy research have been developed in the world. The
energy which generates large electricity and doesn’t have environmental in-
fluence (e.g. doesn’t emit CO2) has been expected. In particular, the devel-
opment of the alternative energy to the nuclear fission reactor has become
urgently wanted because of Fukushima accident. Nuclear fusion reactor is
one of such energy. It makes electricity from the nuclear fusion reaction. The
fuel of the nuclear fusion reactor can be obtained from water, and the reactor
doesn’t emit CO2 and high level radioactive waste. The research has been
done in all over the world to realize the nuclear fusion reactor. The typical
nuclear fusion reaction are shown from eq. (1.1) to eq. (1.4) [1–3].

D +D → T (1.01MeV ) + p(3.03MeV ) (1.1)

D +D → He3(0.82MeV ) + n(2.45MeV ) (1.2)

D + T → He4(3.52MeV ) + n(14.06MeV ) (1.3)

D +He3 → He4(3.67MeV ) + p(14.67MeV ) (1.4)

In this article, DT reaction (eq. (1.3)) is discussed. To construct the
commercial reactor, these reactions have to be occurred with high efficiency.
The nuclear fusion fuel (i.e. D, T) should become plasma state to make high
efficient reaction. J. D. LAWSON established the criterion about the nuclear
fusion reactor [4], and the equation (1.5) shows the necessary condition of
the fusion core plasma [1],

nτe >
12κT

ηQNF < σv >
, (1.5)
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where n, T, and τe are the plasma density, temperature, and confinement
time respectively, and η, QNF and < σv > show the efficient of external
heating and the power generation, the fusion power, and the reaction ratio
respectively, and κ is Boltzmann constant. Equation (1.5) shows that to get
the high efficient nuclear fusion power, high plasma density and the temper-
ature is needed. The dependence of the fusion cross section σ on the kinetic
energy and the dependence of the fusion ratio < σv > on the ion temperature
are shown in Fig. 1.1 [1, 5–7].

Figure 1.1: (a) The dependence of the fusion cross section on the kinetic
energy of the colliding nucleous (b) The dependence of the fusion ratio on
the ion temperature [1, 5–7]

In nuclear fusion reactor, the D-T plasma is assuming to be used because
of its high reaction ratio, and because D and T can be obtained from the
water easily.

1.1.2 The concept of the tokamak fusion reactor

Figure1.2 shows the typical tokamak reactor ITER [8], and the cross section
of the tokamak reactor.

The plasma is the aggregate of the charged particles (i.e. electron and
ion), thus, each particle moves circle orbit around the magnetic line. Because
of this characteristic, the plasma can be trapped with magnetic line. In
tokamak reactor, the magnetic line is generated from the TF (Toloidal Field)

10



Figure 1.2: ITER [8] and the cross section of the tokamak

coils and the PF (Poloidal Field) coils and the plasma current induced from
the CS (Central Solenoid) coil. The plasma is trapped in the center of the
reactor, and the fast neutrons is generated from the fusion reaction in the
plasma. The kinetic energy of the neutrons are changed to the heat energy
in the blanket, and from this heat energy, the electricity is generated.

1.2 Recent fusion research

The beginning of the fusion reactor research is not clear and said to be 1940’s.
The preliminary study are introduced in ref [9–11]. The tokamak reactor is
the mainstream method of the nuclear fusion reactor. The word ’tokamak’ is
from the Russian words ’Toroidalnaya Kamera and Magnitnaya Katushka’,
and it means the toroidal chamber and the magnetic coil. ITER is 6m size
tokamak experiment machine and it is under construction in France [8, 12].
It is expected to make the 500MW fusion power with the condition that
Q ≃ 10. Q represents the ratio of the fusion power to the external input
power. ITER is also expected to link to the design, and the operation of the
Demo or Commercial reactors.
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1.2.1 Reactor design

It is quite important to know the relationship between the physical or the
engineering parameters and the reactor performance to design the future
reactors. The study about this with the simulation code is called reactor
design. The simulation codes of the reactor design are classified broadly into
two groups. First is called system code, and it calculates the roughly reactor
parameter set which satisfy the constraint condition in the plasma physics,
reactor engineering and cost. Second is called detailed analysis code, and
it calculates the strictly parameter set in each subject. From these reactor
design studies, the Demo or the Commercial reactor is designed. In this
subsection, the summary of the reactor design is shown [13].

The system code

The system code is used to find the self-consistent design points of the fusion
reactor. FUSAC [14–16] is one of the typical system code in Japan. This
code has three parts, i.e. the plasma physics part, the engineering part and
the cost part. The plasma physics part calculates the plasma parameters
including the fusion power based on the ref. [17]. From these parameters,
the engineering part calculates the parameters of the TF coils, CS coils,
blanket, backing cylinder and so on. Finally, the cost analysis is done in the
cost part. The calculation flow is shown in Fig. 1.3.

The engineering design parameters are calculated as the radial build. The
radial build represents the size and the location of each component on the
radial direction shown as fig 1.4. CREST [18] is designed from the FUSAC
analysis. As the similar work, the ARIES team make the their own reactor
design with their system code [19], Slim-CS [20] is designed at JAEA and so
on.

Coil design

In the tokamak reactor, there are three main coils (CS, TF, PF), and the
parameters about the coils should be determined. The size of the CS coil
is important factor to determine the reactor size. As written in previous
section, CS coil induces the plasma current, but, the NBI or the RF also
drive the current. Thus, the size of the CS coil is determined from the ratio
of the induced plasma current. Additionally, CS coil is used to keep the
plasma equilibrium with the PF coils. The CS coil size have to be designed
from these conditions. VECTOR [21] has no CS coil and is designed as quite
small size tokamak reactor. The size and the location of the TF coils are
determined from the necessary toroidal magnetic field and the strength of

12



Figure 1.3: The calculation flow of FUSAC [14]

Figure 1.4: The example of the radial build
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the TF coil. Considering the TF current, the hoop force, the centripetal
force and the inversion force are exerted on the TF coils. SCONE code [22]
is the detail analysis code of the TF coil. This code calculates the maximum
magnetic field which the coil can generate from the shape of the TF coil with
considering the strength of the coil and the condition of the superconducting.
The location and the size of the PF coil is determined from the equilibrium
analysis. TOSCA [23] code is one of the equilibrium analysis codes. This
code solves the Grad-Shafranov equation from the input data, and calculates
the necessary PF coil current. Using this code, the optimum position and
the size of the PF coils can be determined. In ref. [24], the auto positioning
of the PF coils are tried with the integration of the system code and the
equilibrium analysis code.

Blanket design

To design the blanket, the following conditions have to be considered,

• it has to withstand the high heat and neutron flux

• it has to breed the enough tritium

• it has to withstand the electromagnetic force

• it has to be attached and detached easily in the maintenance

The first step of the blanket design is to determine the ratio of the breeding,
the cooling and the constructional material. After that, the detailed design
of the blanket is done. In Slim-CS, the blanket is designed as the separated
module form for the easy maintenance.

Divertor design

The divertor have to be designed to withstand the quite high heat flux.
In the case of ITER, the fusion power is 500MW and the heat flux of the
divertor is 10MW/m2, and in the case of the demo or the commercial reactor,
it will be higher. Thus, several design concept of the divertor have been
researched [25–27].

Integrated design code

In ref. [28], the concept of the integrated design code, which is the integration
of the system code and the detailed analysis code is introduced, and in ref.
[24], the example of the integration, i.e. the integration of the equilibrium
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code and the system code is demonstrated. Using this integrated design code,
more detailed and broad parameter surveys may become possible.

1.2.2 The necessity of the control research

To operate the Demo and Commercial reactors, not only the reactor design
research but also the research about the plasma control is important issue,
and the two big problems have to be considered to control the future plasma.
First, the future plasma is MIMO (Multi-Input Multi-Output) system. For
example, to keep the electricity supply, the fusion power have to be controlled,
or to keep the plasma stability, the plasma current or current profile have
to be controlled, and many other parameters should be under controlled to
operate the fusion reactor. Additionally, the actuators are not one-to-one
correspondence to the controlled parameters, e.g. the typical actuator NBI
has the effect to both the fusion power and the plasma current.

Second, because of high heat and neutron flux, the actuators and the
diagnostics which can be installed will be limited. To address these problems,
what parameters have to be controlled, and what actuators or diagnostics
can be installed have to be discussed and determined. The reactor design
research is expected to contribute to this discussion. From this discussion,
the controller should be designed and in reverse, constraint conditions from
the point of view of control engineering will also contribute to this discussion.
Figure 1.5 shows the concept of these issues.

Figure 1.5: The factors of the reactor controller design research [29]

The issue 1 and the issue 2, has been discussed but the conclusion has
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not been made and it will vary with the design concept [30–35]. Because
of this, the construction of the controller design method that has the broad
utility (i.e. the method which can deal flexibly with the control parameters,
actuators and diagnostics) will be needed.

1.3 Plasma control research

In this section, the review of some typical previous control researches is
shown.

1.3.1 SISO control with classical control theory

In JT-60U, burn control simulation experiments have been done [36, 37].
In the future reactor, D-T reaction will be used, and the alpha particles
generated from D-T reaction which have 20 percent of the total fusion power
heat the plasma. In this experiment, D-D plasma is used and to simulate
the alpha heating in the burning plasma, NB is injected with proportional to
the neutron generation ratio from the D-D reaction. With this plasma, the
burning plasma control has been simulated. This scheme is shown in Fig.
1.6, and this figure is referred from Fig.1 of ref. [36].

Figure 1.6: Schematic drawing for a burning plasma simulation scheme in
JT-60U [36].

The feedback control scheme is applied to the ELMy H-mode plasma
(Ip=1.0MA, Bt=2.1T, and q95=4.1) and the reversed shear plasma with the
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internal transport barrier (Ip=1.0MA, Bt=3.7T and q95=6.8). In both plas-
mas, the total stored energyW is controlled by the NBI, and the controller is
PD control. The proportional gain and the differential gain are determined
from the response characteristics. With this controller, the stored energy is
well controlled in both cases.
The PID controller and the method to determine the PID gains from the re-
sponse characteristics of the system are the quite broadly used in the world.
These method can be categorized as classical control theory, and it is for SISO
(Single-Input Single-Output) system. Thus, it is not clear that the classical
control theory is suitable to the future reactor which is MIMO system.

1.3.2 MIMO control with classical control theory

In JT-60U, the MIMO control (2 inputs and 2 outputs) experiment is also
demonstrated by Dr. suzuki [38,39]. For the plasma instability, safety factor
profile control is quite important, and from this point of view, minimum
safety factor qmin is controlled in this experiment. Additionally, the ion
temperature gradient (ITG) which has the large effect to the ion transport
barrier and plasma confinement is also controlled in this experiment. These
2 parameters are controlled by the NBI and the LHCD. The LHCD is off-
axis and it can control qmin efficiently, but it has less effect on the plasma
heating and the ITG in this experiment. On the other hand, NBI is on-axis
perpendicular and it can heat the plasma efficiently and control the ITG,
but it has little effect in current drive. Thus, the qmin is controlled by LHCD
and the ITG is controlled by NBI simultaneously in this experiment. In
this case, LHCD is PI controller and the NBI is PID controller, and the
gains are determined from the response characteristics of the qmin and ITG
respectively. These control systems are applied to the ELMy H-mode plasma
(Ip=0.8MA, Bt=2.2T, and q95=5.2). In this experiment, the ITG follows
the reference value and the qmin also follows the reference value with little
undershoot. This result is shown in Fig. 1.7, and this figure is referred from
Fig. 2 of ref. [38].

In this experiment, MIMO control is demonstrated with classical con-
trol theory. Dr. Suzuki suggests that in this case, the actuators are not
strongly coupled and the controller which is designed without considering
the coupling effect worked fine, and he also suggest that for the future reac-
tor, the controller for the plasma with considering the coupling effect should
be designed.

17



Figure 1.7: Waveforms of discharge for simultaneous real-time control of Td
(t=7-10.3 s) and qmin (t=5.5-11 s). (a) Ion temperature at two channels
(ch1: r/a 0.3, ch4: r/a 0.57) used by real-time control. Ti measurement
was terminated at t 10.3 s due to the stop of diagnostic NB due to interlock
on temperature of NB facing tiles. (b) Difference of ion temperature Td
(hatched in Fig. 2(a)) and its reference value (Td,ref). (c) total NB heating
power controlling Td. Hatched part of the total NB power is the fixed base
component. (d) qmin and its reference value (qmin,ref = 1.5). (e) LHCD
power controlling qmin [38].

1.3.3 Model based current profile control

Dr. Moreau did the current profile control experiment in JET [42, 43] with
the model based controller design method. In this research, 5 points safety
factor profile is controlled by the NBI, LHCD and ICRH, this is the 3 inputs
5 outputs MIMO system. In this research, the relationship between the
current density profile and the each actuator’s deposition is written as the
integral equation form, and the controller is designed from the equation.
This equation is the function of the time and the radius. In this research,
the equation is changed to the function of the time with the singular value
decomposition (SVD), and the basis function decomposition. Using these
methods, the relationship between the inputs (NBI, LHCD and ICRH) and
the outputs (safety factor at each point) can be written. In this experiment,
the number of output parameters is larger than that of input parameters.
Thus, it is impossible to control all output parameters to any reference values.
In this case, the controller is designed to minimize the mean square integral
of the error between the reference values and the outputs values. Finally,
with this criterion and the relationship of the parameters, the controller is
designed as the PI controller. The PI gain is formed 3 × 5 matrix. With
this controller, the safety factor profile is well controlled in this experiment.
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The results are shown in Figs. 1.8 and 1.9 [42], and these figures are referred
from Figs. 6 and 7 of ref. [42].

Figure 1.8: (a) Time evolution of the plasma current, Ip, coupled lower hybrid
power, PLHCD, ICRH power, PICRH, NBI power, PNBI, central electron
density, ne0, and temperature, Te0, central ion temperature, Ti0, surface
loop voltage, Vloop, normalized β, βN, and Dα emission (pulse #58474,
BT = 3 T). (b) Real-time control of the q-profile using LHCD, NBI, and
ICRH (pulse #58474, BT = 3T, Ip = 1.8/1.5 MA). The profile is shown at
four different times between 7 and 12 s. Pluses represent the five q-set points
at r/a = [0.2 0.4 0.5 0.6 0.7] [42].

The current profile control research with other approach is also done in
ref. [40,41]. In the future reactor, however, the current profile will not be able
to be measured because of the limitation of the diagnostics. Thus, it can be
considered that these method can’t be applied to the future reactor directly.
For this reason, the simulation code which can estimate the unmeasurable
parameters will be needed.

1.3.4 The plasma position control with robust control
theory

In ref. [44], the plasma position control in TCV is simulated with the robust
control theory. The robust control theory is one of the model based control
method. The difference between the real system and the physical model of
the system is called model error in the robust control theory. In the robust
control theory, the effect of the model error is treated as the disturbance
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Figure 1.9: (a) Time evolution of the safety factor at the five radii selected
for the real-time control experiment of figure 6 (pulse #58474, BT = 3T,
Ip = 1.8/1.5 MA). The set point values are indicated with dotted lines. (b)
Time evolution of the requested (dotted traces) and delivered (full traces)
LHCD, NBI, and ICRH powers during the real-time control experiment of
figure 6 (pulse #58474, BT = 3T, Ip = 1.8/1.5 MA). Note that the LHCD
request is applied on the generator power, contrary to NBI and ICRH [42].
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and the controller is designed to minimize the effect. In this simulation,
H-infinity theory which evaluates the effect of the model error as H-infinity
norm is used. The detail of the H-infinity theory is shown in chapter 4.
In the model to design the controller, the plasma is assumed as the aggregate
of the circular ring current. From this assumption, the equation of motion of
the plasma and the PF coils is derived. This equation of motion is changed
to the time differential equation form which represents the relationship be-
tween the input parameters and the output parameters. The controller is
designed from this differential equation, and in this case, the output param-
eters are plasma current, plasma vertical position, plasma radial position,
the outboard field curvature and the inboard field curvature, and the input
parameters are plasma current in the 18 PF coils. The typical cross section
of the TCV plasma is shown in Fig. 1.10, and this figure is referred from
Fig.4 of ref. [44].

Figure 1.10: TCV equilibrium 13 333 [44].

This is 18 inputs and 5 outputs MIMO system. The controller is tested in
the simple simulation code which model is same to the model used to design
the controller. After this test simulation, the controller is applied to the
nonlinear tokamak simulation code, which can represent the TCV plasma.
In this simulation, each parameter can be controlled to the reference value.
The controller is designed from the simple model, but the controller can
control the parameters in the non-linear tokamak simulation code. This
results shows the robust performance of the controller.
In ref. [45], the J-TEXT plasma vertical position control simulation is done
and the controller is designed with the µ synthesis theory. The detail of the µ
synthesis is shown later. In this simulation, the vertical position is controlled
by one vertical field coil. This is SISO system. In this research, the robust
controller shows the higher disturbance suppression performance than the
traditional PID controller.
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1.3.5 Other control researches

In this section, some typical control researched are introduced. Other than
those above, in ref. [46, 47, 49], the burning plasma control simulation with
the 0-D model is done. In ref. [46], the helical burning plasma control at
the unstable operation point simulation is demonstrated, and the controller
is designed from the physical model. in ref. [47], the controller is designed
with H2 control theory [48] which is one of the robust control theory. In the
H2 control theory, the effect of the model error is evaluated as H2 norm. In
ref. [49], non-liner stabilizing theory is used.

1.4 The purpose of this research

The controller design from the response characteristics is quite familiar method
for the SISO system, but for the MIMO system with the coupling effect, it
is not clear that this method is suitable or not. Thus, for the future reactor,
the controller concept shown in Fig. 1.11 is suggested in this research.

Figure 1.11: The concept of the future reactor controller

Figure 1.11 suggests that in the future reactor, the simulator is used to
estimate the unmeasurable parameters (e.g. current profile or safety factor
profile), and the controller is designed from the physical model.

In previous researches, the used controller design method is for each ex-
perimental machine or situation. In this research, the novelty exists in the
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point that the the constructed method can design the controller according
to the situation.

In this research, to make the controller design method, the modern control
theory and the robust control theory is applied to the fusion reactor, and the
method is benchmarked with the plasma control simulation. The modern or
the robust control theory is the part of the control engineering theory, and
in these theory, the controller is designed from the physical model.

In chapter 1, the review of the tokamak reactor , the control engineering
and the previous research are shown. Chapter 2 shows the control simulation
of 1 dimensional code. Chapter 3 demonstrates the model based controller
design and the MIMO plasma PID control simulation. Chapter 4 shows the
example of the robust controller design and the simulation, and shows the
comparison of this robust H-infinity controller and the MIMO PID controller.
In chapter 5, the concept of plasma profile control and the simulation is
shown. Summary and discussion is shown in chapter 6.
There are some nuclear fusion reactor concepts. In this research, Unless
otherwise specifically noted, tokamak fusion reactor is discussed.

1.5 The review of the control engineering

In this research, modern control theory and the robust control theory is used.
In this section, the review of these control theories and the position of these
in control engineering are shown [50–52].

1.5.1 Stability

The control theory is said to be made by J. C. Maxwell [53]. In ref. [53], the
motion if the controlled object is expressed into a linear differential equation,
and the stability of the system is discussed. In the case that the answer of
following differential equation is closer to 0 independently of an initial state,
the system is defined asymptotically stable,

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = 0 (1.6)

The condition that the system is stable, is shown by Rauth and Hurwitz
[54, 55]. Lyapunov also researched about the stability [56]. Equation (1.6)
can be written as follows,

ẋ = Ax (1.7)
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x =


y
y′

...
yn−1

 (1.8)

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

−an −an−1 −an−2 · · · −a1

 (1.9)

The condition that the system is stable is that all real part of the eigenvalues
of A is negative. These stable theories are the foundation of the control
theory.

1.5.2 Classical control theory

Nyquist and Bode made the base of the classical control theory [57, 58]. In
this subsection, some important concept in the classical control theory are
introduced.

Transfer function

Defining the output of the system is y(t) and the input is u(t), the general
linear system model can be written as follows,

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any =

dmu

dtm
+ b1

dm−1u

dtm−1
+ · · ·+ bmu (1.10)

In classical control theory, equation (1.10) is Laplace transformed and ex-
pressed as follows (assuming all initial states are 0),

(sn + a1s
n−1 + · · ·+ an)Y (s) = (sm + b1s

m−1 + · · ·+ bm)U(s) (1.11)

G(s) =
Y (s)

U(s)
=
sm + b1s

m−1 + · · ·+ bm
sn + a1sn−1 + · · ·+ an

(1.12)

where, Y (s) and U(s) are the Laplace transformation of y(t) and u(t) respec-
tively and G(s) is called transfer function of the system. In the case that
n > m, the system is called proper. Here, Laplace transformation is defined
as follows,

Y (s) =
∫ ∞

0
y(t)e−stdt (1.13)
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Block diagram

Considering the system expressed as G(s) and the following feed back control,

U(s) = K(s)Y (s) (1.14)

the total feed back system can be expressed as Fig 1.12.

Figure 1.12: The example of the block diagram

This expression is called block diagram. Using the block diagram and the
transfer function, the control system can be expressed quite simple form.

Frequency response

In the case that the system is stable and proper, the transfer function can
be changed with partial fraction decomposition as follows,

G(s) =
sm + b1s

m−1 + · · ·+ bm−1s+ bm
sn + a1sn−1 + · · ·+ an−1s+ an

=
(s− z1)(s− z2) · · · (s− zm)

(s− p1)(s− p2) · · · (s− pn)

=
c1

s− p1
+

c2
s− p2

+ · · ·+ cn
s− pn

(1.15)

Considering the sin wave input X(s) = L[A sin(ωt)] = Aω
s2+ω2 , the output can

be written as follows,

Y (s) = G(s)× A
ω

s2 + ω2

=
d1

s− p1
+ · · ·+ dm

s− pm
+

k1
s− iω

+
k2

s+ iω
(1.16)

Here, multiplying the the product of the denominators (s−p1) · · · (s−pm)(s2+
ω2), and substituting s = iω,−iω, k1 and k2 can be lead as follows,

k1 =
G(iω)A

2i
(1.17)
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k2 =
G(−iω)A

−2i
(1.18)

With the inverse Laplace transformation, the output signal y(t) can be writ-
ten as follows,

y(t) = L−1[Y (s)] =
m∑
i=1

die
pit + k1e

iωt + k2e
−iωt (1.19)

Here, G(s) is stable and the first term of the equation is closer to 0. Thus,
at the steady state, y(t) can be written as follows,

y(t) = k1e
iωt + k2e

−iωt (1.20)

Substituting the following expression,

G(iω) = |G(iω)|e−iϕ, G(−iω) = |G(iω)|eiϕ (1.21)

finally, y(t) can be written as follows,

y(t) = |G(iω)|A
[
ei(ωt−ϕ)

2i
− e−i(ωt−ϕ)

2i

]
= |G(iω)|A sin(ωt− ϕ) (1.22)

This means that the amplitude of the output signal is |G(iω)| times of the
input signal, and the phase shifts by the argument of |G(iω)|.

Bode diagram

The frequency response of the linear system is the function of ω, and |G(iω)| is
called gain, and arg|G(iω)| is called phase. The graph representing 20log10|G(iω)|[dB]
and arg|G(iω)|[degree]on the vertical axis and ω on the horizontal axis is
called Bode diagram. The Bode diagram is quite useful to understand the
system characteristics. Figure 1.13 shows the example of the bode diagram.

This figure is the bode diagram of the following transfer function,

G(s) =
1

s+ 1
(1.23)

PID control theory

The idea of PID theory is born by Minorsky [59], and Callender made the
demo machine [60]. Ziegler and Nichols suggested the method to adjust the
PID controller [61]. PID controllers are widely used and its use rate is over
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Figure 1.13: The example of the bode diagram

90 percent [62]. PID means proportional, integral and differential, and the
PID controller is formed as follows,

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t)

= Kp

(
e(t) +

1

Ti

∫ t

0
e(τ)dτ + Td

d

dt
e(t)

)
(1.24)

where, e(t) is the difference between the controlled value and the reference
value, Kp, Ki and Kd are called proportional gain, integral gain and differ-
ential gain respectively, and Ti and Td are called integral time and differ-
ential time respectively. The PID controller is extremely practical. Using
the Ziegler-Nichols’ Ultimate Gain method or Ziegler-Nichols’ Process Re-
action Curve method [61], the PID gain can be adjusted from the response
characteristics without the physical model of the system.

Ultimate Gain method

The ultimate gain method is done with the following steps [50,61,63]

• Set the system under the P control, with small gain

• Increase the P gain until the output starts oscillating

• Define the P gain at that time as Kc and the oscillating period as Tc

• Adjust the PID gain as table 1.1

27



Table 1.1: PID gain definition in the ultimate gain method [63]
Controller P gain Integration time Differential time
P 0.5Kc 0 0
PI 0.45Kc 0.833Tc 0
PID 0.6Kc 0.5Tc 0.125Tc

Process Reaction Curve method

In the process reaction curve method, the step response of the system is
used [50, 61, 63]. The step response is the output when the input is step
signal. The step signal is defined as follows,

u(t) =

{
0 (t < tc)
uc (t ≥ tc)

(1.25)

where, uc and tc is constant. In most cases, the step output is formed as Fig.
1.14.

Figure 1.14: The example of the step response

With the parameters L and R, the PID gains are defined as table 1.2

Table 1.2: PID gain definition in the process reaction curve method [63]
Controller KpRL Ti/L Td/L
P 1 0 0
PI 0.9 3.33 0
PID 1.2 2 0.5

1.5.3 Modern control theory

With the classical control theory, it is difficult to control the Multi-Input
Multi-output system. The modern control system is mainly for the MIMO
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system, and it is started from Kalman [64]. In classical control theory, the
physical model is used and it is formed as transfer function. In modern control
theory, however, they are considered in not frequency region but time region
as eq. (1.26) and eq. (1.27),

d

dt
x = F(x,u) (1.26)

y = G(x,u) (1.27)

they are called ’state equation’ and x,uandy are called state vector, actuator
vector, and output vector respectively. They are written in general form, and
in usual, they are linearized and written as the form of eq. (1.28) and eq.
(1.29)

d

dt
x = Ax+Bu (1.28)

y = Cx+Du (1.29)

the equation (1.28) and equation (1.29) are called LTI (Linear Time Inde-
pendent) state equation. Using this state equation, the control problem can
be dealt as the linear algebra problem.

The answer of the LTI state equation

From the following state equation (the order of x is n),

d

dt
x(t) = Ax(t) +Bu(t) (1.30)

the answer of this differential equation when u(t) = 0 can be written as
follows,

x(t) = eAtC0 (1.31)

where, C0 is the n th order vector corresponding to the integral constant,
and eAt is called transition matrix (n× n). The transition matrix is defined
as follows,

eAt = I+A
t

1!
+A2 t

2

2!
+ · · ·An t

n

n!
· · · (1.32)

d

dt
eAt = AeAt (1.33)

eA(t1+t2) = eAt1eAt2 (1.34)

(eAt)−1 = e−At (1.35)
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Assuming thatC0 is the function of time, the equation can written as follows,

d

dt
x(t) = AeAtC0(t) + eAt

d

dt
C0(t)

= Ax(t) +Bu(t) (1.36)

and、
d

dt
C0(t) = e−AtBu(t) (1.37)

Finally, with the initial state x(0), the answer can be written as follows,

x(t) = eAt
{
x(0) +

∫ t

0
e−AτBu(τ)dτ

}
(1.38)

Transfer function matrix

the Laplace transformation of the state equation can be written as follows,

sX(s)− x(0) = AX(s) +BU(s) (1.39)

Y(s) = CX(s) +DU(s) (1.40)

Thus, considering the initial state x(0) = 0, the transfer function matrix can
be defined as follows,

G(s) = C(sI−A)−1B+D (1.41)

The block diagram of the transfer function matrix is shown in Fig. 1.15

Figure 1.15: The Transfer function of the state equation

Stability

The stability of the system represented by eq. (1.28) and eq. (1.29) can be
evaluated with the Lyapunov method [56]. As written in previous section,
the condition that the system is stable is that all real part of the eigenvalues
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of A is negative, and such matrix is called stable matrix. Here, matrix P(t)
is defined as follows (Q > 0),

P(t) =
∫ t

0
eA

tτQeAτdτ (1.42)

Thus, the following relationship can be written

AtP(t) +P(t)A =
∫ t

0

(
AteA

tτQeAτ + eA
tτQeAτA

)
dτ

=
∫ t

0

(
deA

tτ

dτ
QeAτ + eA

tτQ
deAτ

dτ

)
dτ

=
∫ t

0

d

dτ

(
eA

tτQeAτ
)
dτ

= eA
ttQeAt −Q (1.43)

When A is stable, the first term of the right hand side is closer to 0, and
P = P(∞) exists. Thus, P satisfies the following equation,

AtP+PA = −Q (1.44)

Equation (1.44) is called Lyapunov equation. When the A is stable, equation
(1.44) has the answer P > 0 to the arbitrary Q > 0. In reverse, when the
P > 0 and Q > 0, considering the eigen value of A is λ, and eigen vector
is x, multiplying x from left and x from right to eq. (1.44), the following
equation can be written,

(λ+ λ)xPx = −xQx (1.45)

In this case, λ+λ is negative because P > 0 and Q > 0. This means the real
part of the λ is negative and A is stable. Thus, the necessary and sufficient
condition for the stability of A is that equation (1.44) has the answer P > 0
to the arbitrary Q > 0.

Similarity transformation

Considering the following transformation,

x2 = Tx (1.46)

equation (1.28) and equation (1.29) can be changed as follows,

d

dt
x2 = A′x+B′u (1.47)
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y = C′x2 +D′u (1.48)

where T is regular matrix, and A′ = TAT−1, B′ = TB, C′ = CT−1 and
D′ = D. This transformation is called similarity transformation. Here, the
transfer function can be written as follows,

G′(s) = C′(sI−A′)−1B′ +D′

= CT−1(sI−TAT−1)−1TB+D

= CT−1(sTT−1 −TAT−1)−1TB+D

= CT−1
[
T(sI−A)T−1

]−1
TB+D

= CT−1T(sI−A)−1T−1TB+D

= C(sI−A)−1B+D

= G(s) (1.49)

This means that with the similarity transformation, the transfer function
doesn’t change, and that the choice of the state vector has the flexibility.

Controllability

In the case that in the system of eq. (1.28) and eq. (1.29), to the arbitrary
initial state x(0), the input [u(t); (0 < t < T )] which makes x(T ) = 0 exists
at the time T > 0, the system eq. (1.28) and eq. (1.29) is called controllable.
This has other expression that (A,B) is controllable. The condition of the
controllability can be written as follows,

rank
[
B AB · · · An−1B

]
= n (1.50)

where n is the size of A. The equivalent condition is that the following
Lyapunov equation has the answer P > 0,

PAt +AP = −BBt (1.51)

Observability

In the case that in the system of eq. (1.28) and eq. (1.29), to the arbitrary
time T > 0, the initial state x(0) can be uniquely determined from the input
and output date [u(t), y(t)] (0 < t < T ), this system is called observable.
This has other expression that (A,C) is observable. The condition of the
observability can be written as follows,

rank
[
Ct AtCt · · · (At)n−1Ct

]
= n (1.52)
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where n is the size of A. The equivalent condition is that the following
Lyapunov equation has the answer P > 0,

PAt +AP = −CtC (1.53)

Zeros and Poles

Considering the following equation,

f(s) =
p(s)

q(s)
(1.54)

where p(s) and q(s) are the polynomial equations, the values of s which
makes p(s) = 0 are called zeros, and q(s) = 0 are called poles. Considering
the transfer function matrix, the poles of the transfer function can be lead
as follows,

G(s) = C(sI−A)−1B+D

=
1

det(sI−A)
Cadj(sI−A)B+D (1.55)

thus, the poles of the transfer function G(s) are the s values that makes
det(sI−A) = 0, i.e. the eigen values of A.

Pole placement method

The output signals of the transfer functionG(s) is the form of the summation
of the exponential functions, and each time constant is same to the pole of
G(s). Thus, poles are quite important parameters to determine the system
performance. Considering the following feedback control,

u(t) = −Fx+ u0 (1.56)

the state equation can be written as follows,

d

dt
x = Ax+B(u0 − Fx)

= (A−BF)x+Bu0 (1.57)

With the feedback control, the poles of the system are changed from the
poles of A to A − BF. The method to determine the feedback gain F to
place the poles which satisfy the design specification is called pole placement
method [65].
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Optimal control

In the optimal control theory, the system performance is evaluated with the
evaluate function, and the performance is optimized [66,67]. Considering the
following state equation and the evaluate function,

d

dt
x = f(x,u) (1.58)

J = L0(x, tf ) +
∫ tf

0
L(x, u)dt (1.59)

the optimal case is defined that J is minimized. Here, in the interval [t, tf ],
the minimum value of J is defined as follows,

V (x, t) ≡ min
u

{
L0(x, tf ) +

∫ tf

t
L(x, u)dτ

}
. (1.60)

Dividing the interval [t, tf ] to [t, σ] and [σ, tf ], V (x, t) can be written as
follows,

V (x, t) ≡ min
u

{
L0(x, tf ) +

∫ σ

t
L(x, u)dτ +

∫ tf

σ
L(x, u)dτ

}
= min

u

{∫ σ

t
L(x, u)dτ + V (x, σ)

}
(1.61)

Considering σ → t, i.e. (σ − t) = δt→ 0, V (x, t) is written as follows,

V (x, t) ≡ min
u

lim
δt→0

{L(x, t)δt+ V (x+ f(x,u)δt, t+ δt)} (1.62)

In the case that V (x, t) can be differentiated, the following equation can be
written,

V (x+ f(x,u)δt, t+ δt) = V (x, t) +
∂V t(x, t)

∂x
f(x,u)δt+

∂V (x, t)

∂t
δt (1.63)

Thus, the following condition can be lead,

min
u

[
∂V t(x, t)

∂x
f(x,u) +

∂V (x, t)

∂t
+ L(x, t)

]
= 0 (1.64)

From eq. (1.64), optimal input u(t) can be lead. Next considering the fol-
lowing state equation and the evaluate function,

d

dt
x = Ax+Bu (1.65)
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J = minu

∫ ∞

0

(
xtQx+ utRu

)
dt (1.66)

this is called optimal regulator problem. In this case, minimum evaluate
function value V (x, t) is expected to be following form,

V (x, t) = xtP(t)x. (1.67)

Then, assuming the terminal state (i.e. d/dt = 0), equation (1.64) can be
written as follows,

min
u

{2xtP(Ax+Bu) + xtQx+ utRu} = 0. (1.68)

From the differential of this equation with respect to u, the condition of the
optimal u can be written as follows,

2BtPx+ 2Ru = 0 (1.69)

Thus, the optimal u can be written as follows,

u = −R−1BtPx (1.70)

Substituting this to eq. (1.68), the condition that P has to satisfy can be
written as follows,

AtP+PA−PBR−1BtP+Q = 0 (1.71)

1.5.4 Robust control theory

The modern control theory can deal the MIMO system, and design the high
performance controller theoretically and analytically, but to design the con-
troller, the physical model expressed by the state equation is needed. Addi-
tionally, the performance of the modern controller designed from the state
equation is ensured theoretically only to the system which satisfies the state
equation. Generally, the physics of the system is quite complex and can’t be
expressed such a simple form. Thus, in most case, the state equation is the
extremely roughly approximation of the physics, and it is impossible to check
whether the controller is suitable for the system without the experiment or
the strictly simulation. The difference between the state equation and the
real system is called model error. The postmodern control theory or the ro-
bust control theory is the theory for making the controller which performance
is ensured to the model error and it is said to be born in 1981 [68–70]. In the
robust control theory, the new variable w and z are added to the eqs. (1.28)
and (1.29) and the system physics are written as follows,

d

dt
x = Ax+B1w +B2u (1.72)
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z = C1x+D11w +D12u (1.73)

y = C2x+D21w +D22u (1.74)

where, z is the parameters which is wished to be minimized, and w is a dis-
turbance including the effect of the model error. They are called ’generalized
plant’. Using this generalized plant, variable control problems can be dealt.

H∞ control theory

H∞ control theory is the typical robust control theory. In this theory, the
effect of the model error is evaluated with the H∞ norm. The H∞ repre-
sents the maximum gain of the system. In this theory, the model error is
represented as follows,

Ptrue(s) = P0(s) +∆(s) (1.75)

or
Ptrue(s) = P0(s)(I+∆(s)) (1.76)

where, Ptrue is the real system, and P0(s) is the approximated model (e.g.
state equation) which is used to control design, and ∆(s) is the model error.
P0(s) is called nominal model. This concept is also shown in Fig. 1.16.
In H∞ control theory, ∆(s) is estimated from the experimental date or the
strictly physical model and the effect of the ∆(s) is substituted into the w
in eqs. (1.72) to (1.74). The controller is designed to minimize the H∞ norm
of the transfer function from w to z. The detail is shown in chapter 4.

Figure 1.16: The concept of the model error

µ synthesize

In H∞ control theory, the model error is represented as the form of fig 1.16.
In many systems, however, it is difficult to represent the model error as these
forms. For example, considering the system shown in Fig. 1.17,

the model error expression of the H∞ theory is written as follows [71],

Ptrue = P0 +∆a (1.77)
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Figure 1.17: The example of the multiple model error

∆a = P0∆1 +∆2P0 +∆2P0∆1. (1.78)

In this case, the model error ∆a seems to be larger than the true model
errors ∆1 and ∆2. To deal the such situation, µ-analysis and synthesize
have been developed [72, 73]. In µ-analysis theory, the group of the model
errors are expressed as Fig. 1.18.

Figure 1.18: The concept of the structured uncertainty

In Fig. 1.18, the general form of ∆ can be written as follows,

∆ =
{
diag[δ1Ir1, · · · , δsIrs,∆1, · · · ,∆F] : δi ∈ C,∆j ∈ Cmj×mj

}
(1.79)

where δiIri are called repeated scalar block, and ∆i are called full block.
This model error expression is called structured uncertainty. Assuming that
∆(s) and M(s) in fig 1.18 are stable, in the case that det|I−M∆| = 0, the
system in fig 1.18 is unstable [74]. To consider the smallest ∆ which makes
the system with M is unstable, the structured singular value µ is defined as
follows,

µ∆(M) =
1

min{σ̄(∆) : det|I−M∆| = 0}
(1.80)
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Using this µ, the condition that the system is stable for all ∆ can be written
as follows,

µ∆{M(iω)} < 1 ∀ω (1.81)

The analytical method to find the controller which satisfies this condition
have not been found yet, but some practical method have been developed [72].
D-K iteration is the typical µ-controller design method. D-K iteration is done
with following steps

• Using the H∞ control theory, find the controller Ki(s) which minimize
∥Di(s)M(s)D−1

i (s)∥∞ (D1 = I).

• Find theDi+1(iω) for each ω, which minimize σ̄{Di(iω)M(iω)D−1
i (iω)},

and see the condition min{σ̄} < 1; ∀ω. If the condition is satisfied,
stop, and else if not satisfied, go to next step.

• Approximate each Di+1(iω) with the function Di+1(s), make i→ i+1
and return to step1.

D is called scaling matrix and formed as follows,

D = diag{D1, · · · ,Ds, d1Ip1, · · · , dfIpf} (1.82)

where, Di ∈ Cri×ri : D∗
i = Di > 0 and di ∈ R : Di > 0. The detail of D-K

iteration is introduced some textbook [71,74].
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Chapter 2

one dimensional plasma control
simulation

2.1 Introduction of this chapter

In ref. [38], the control experiment that the minimum safety factor and the
ITG (Ion Temperature Gradient) are controlled by the NBI and LHCD is
demonstrated. In this experiment, the tangential NBI has the large effect on
the ITG, but not so much on the safety factor, while LHCD has the large
effect on the safety factor but not so much on the ITG. Thus, in this case,
the parameters can be controlled as two SISO system. References [38, 39]
suggests the necessity for the MIMO system control with the coupling.
In this chapter, the control simulation with the 1-D code that the fusion
power and the minimum safety factor are controlled by the gas-puff and the
NBI is demonstrated. In this case, the parameters have large coupling effect.
The part of this chapter is published as ref. [75]

2.2 1-D code

In this simulation, the 1-D code is used. The fundamental equations are
follows,

∂nj
∂t

=
1

V ′
∂

∂r
Γj+ < Sj > (2.1)

3

2

∂pj
∂t

=
1

V ′
∂

∂r

(
qj +

3

2
ΓjTj

)
+ < Qj > +

3

2
< TjSj > (2.2)

Sj(r, t) = SjNBI(r, t) + Sjntr(r, t) (2.3)
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∂ν

∂t
= − 1

2ϕar

∂

∂r

[
η∥

T < R >−2

(
< J ·B > − < J ·B >bs − < J ·B >ext

)]
(2.4)

ν =
dψ

dϕ
(2.5)

Ψ =
1

2π

∫ ψ

ϕaxis
BpdSp (2.6)

Φ = 2π
∫ ψ

ϕaxis
BtdSt (2.7)

Equations (2.1), (2.2) and (2.4) are the equation of continuity, energy conser-
vation law and the poloidal flux diffusion equation respectively. The particle,
and hear flux are as follows,

Γjion(r, t) = V ′ < |∇r|2 >
(
Dj

∂nj(r, t)

∂r
+ vjnj(r, t)

)
(2.8)

Qj = V ′ < |∇r|2 >
(
χj
∂pj
∂r

+ pjvj

)
(2.9)

where Dj and χj are diffusion coefficient. The particle source term is calcu-
lated from the neutral particle Bolzman equation as follows,

∂fj(r⃗, v⃗, t)

∂t
+ v⃗ · ∇fj(r⃗, v⃗, t) = −(σei + σii)vfj(r⃗, v⃗, t)

+
∑
k

∫
d3v′σcx|v⃗ − v⃗′|

(
fj(r⃗, v⃗′, t)fk(r⃗, v⃗, t)− (fj(r⃗, v⃗′, t)fk(r⃗, v⃗, t)

)
(2.10)

the first term of right hand side is the ionization, and the second term is
charge exchange reaction. The alpha particle heat source is calculated from
the Fokker Plank equation as follows,

τs
∂fα

∂t
=

1

v2
∂

∂v

[
∂

∂v
(Â(v)fα) + B̂(v)fα

]
− τs
ταL
fα +

τsS
α

4πv2
δ(v − vα) (2.11)

and

Â(v) =
∑
j

3
√
π

4

me

Mα

v3e
Z2
j nj ln Λj

ne ln Λe

1

2

vj
xj
ω(xj) (2.12)

B̂(v) =
∑
j

3
√
π

4

me

Mα

v3e
Z2
j nj ln Λj

ne ln Λe

((
Mα

mj

+
1

2x2j

)
ω(xj)−

2√
π
xje

−x2
)
(2.13)

ω(xj) =
2√
π

∫ xj

0
ey

2

dy − 2√
π
xje

−x2j (2.14)
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xj =
v

vj
, vj =

√
2Tj
mj

(2.15)

ταs =
3π

√
πϵ20Mαmev

3
e

Z2
i e

4ne ln Λe
(2.16)

1

2
Mαv

2
α = 3.5MeV. (2.17)

The NBI heating and current source is also calculated from Fokker Plank
equation.

2.3 Fusion power control

2.3.1 Input parameters

In this simulation, the following input parameters are used,
RP = 6.3m, aP = 1.75m,κ = 1.8, δ = 0.4
IP = 9MA,Bt = 4.76T
Pnbi = 70MW,Enbi = 1MeV
where Enbi is the energy of the NBI. The position of the NBI device is
(x, y, z) = (21.70m, 4.80m, 0.00m). The diffusion coefficients are as follows,
Dj =

0.02
ne

(1020m−3)

χj = 0.08 Te(keV )
ne(1020m−3)

2.3.2 PID control simulation

PID theory

To control the fusion power, PID control theory is used in this simulation.
PID theory is one of the most usual feedback control theory, and the actuator
value is defined as the linear sum of the proportional, differential and integral
value of the error between the reference value and the parameter. In this case,
the fusion power is controlled by the gas-puff, and the system is SISO.

Simulation test

With the Ziegler-Nichols ultimate gain method, The gas-puff amount is de-
termined as follows,

flxpuf [sec−1] = 0.3×1017
(
Kp+Ki

∫
dt+Kd

d

dt

)
(dnl fb[MW ]−dia pfus[MW ])

(2.18)
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and
Kp = 21, Ki = 1.4, Kd = 65.625 (2.19)

Using these gains, the simulation results are shown as follows.

Figure 2.1: The result of the fusion power control test simulation

In Fig. 2.1, pfus is the true fusion power, and dia pfus represents the
measured fusion power which is determined from the line integrated plasma
density. The fluxfD is the deuterium gas-puff amount and it is the same
value of the tritium gas-puff amount (sec−1) and they are normalized by 1019

in Fig. 2.1. The pwnbi is the deposition value from the NBI power. The
reference value is dnl fb and in this simulation, the dia pfus is controlled to
the dnl fb. Figure 2.1 shows that the overshoot exists and the error between
the measured value and the true value of the fusion power is about 100MW.
To improve the control performance, the PID gains should be adjusted.
The other parameters in this simulation is shown in Figs. 2.2 to 2.5.

In Fig. 2.2, qmin is the minimum value of the safety factor, and roqmin
is the position of qmin. The plasma temperature, density and the q profile
time dependence are shown in Fig. 2.3 to Fig. 2.5.

Final result of the fusion power control

After some try and error, the PID gains are determined as follows,

Kp = 45, Ki = 0.56, Kd = 131.25 (2.20)
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Figure 2.2: The qmin time dependence in the test simulation

Figure 2.3: The electron density profile in the test simulation
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Figure 2.4: The temperature profile in the test simulation

Figure 2.5: The safety factor profile in the test simulation
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Figure 2.6: The result of the fusion power single control simulation [75]

The simulation results are shown in Fig. 2.6 to Fig. 2.8.
Figure 2.6 shows that in this simulation, the fusion power is kept to

350MW and it means that the state Q > 5 can be kept. Figure 2.7 shows
that the position of the qmin is about r/a = 0.45, and current profile is
negative shear type. Figure 2.8 shows the current profile at 1000sec, and
in this figure, the ohmic current is nearly 0. It means that this simulation
represents the steady state operation.

2.4 Minimum q value control

In this section qmin is controlled by the NBI. It is also SISO system. In this
simulation, the gas-puff amount is kept to 8.0× 1020/sec and the controller
is designed with the same method with last section. Finally, the NBI power
is determined as follows,

Pnbi[MW ] =

(
Kp+Ki

∫
dt+Kd

d

dt

)
(qrefmin − qmin) (2.21)

Kp = 60, Ki = 1.5, Kd = 600. (2.22)

45



Figure 2.7: The qmin time dependence in the fusion power single control
simulation [75]

Figure 2.8: The current profile at the steady state in the fusion power single
control simulation [75]

46



Figure 2.9: The result of the qmin single control simulation [75]

Figure 2.10: The fusion power time dependence in the qmin single control
simulation [75]
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Figure 2.11: The current profile at the steady state in the qmin single control
simulation [75]

The simulation results are shown in Fig. 2.9 to Fig. 2.11
In Fig. 2.9, the qmin can be kept to the reference value, but in Fig 2.10,

it is not Q > 5 state, and Figure 2.11 shows that the ohmic current is not
nearly 0 and shows it is not non-inductive operation.
In Fig. 2.9 and Fig. 2.10, final NBI power is 80MW and qmin = 1.6, while in
Fig. 2.7 and Fig. 2.10, the NBI power is 70MW and the qmin = 2.1. This is
because difference of the bootstrap current ratio. The gas-puff amount has
the large effect on the bootstrap current ratio and the qmin.

2.5 Simultaneous control simulation

To make the ideal ignition condition, the parameters simultaneous control
is needed. In this section, the simulation of the fusion power and the qmin
control is demonstrated.
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2.5.1 The case of only diagonal term

The simultaneous controller can be written as the form of eq. (2.23).(
a11 a12
a21 a22

)(
Pfus − P ref

fus

qmin − qrefmin

)
=

(
Ppuff
Pnbi

)
(2.23)

In the case that the effect from the gas-puff to the qmin, and from the
NBI to the fusion power is enough small, only diagonal term of eq.(2.23) have
to be considered. The last two controller, however, can’t control the fusion
power and the qmin because of the coupling effect. Thus, the PID gains of
NBI (i.e. a22 of eq. (2.23)) is re-adjusted with some try and error and finally,
the NBI gains are determined to Kp = 54, Ki = 0.15, Kd = 3560. Using this
controller, the fusion power and the qmin are controlled simultaneously. The
results are shown later.

P ref
fus = 350MW, qrefmin = 1.6

The results are shown in Fig 2.12 to Fig 2.15.

Figure 2.12: The fusion power time dependence in the simultaneous control
simulation without the off-diagonal term (P ref

fus = 350MW, qrefmin = 1.6)

In this case, the fusion power and the qmin are following to the reference
value, but the fusion power oscillates and the current profile is not negative
shear type.
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Figure 2.13: The qmin time dependence in the simultaneous control simula-
tion without the off-diagonal term (P ref

fus = 350MW, qrefmin = 1.6)

Figure 2.14: The q profile in the simultaneous control simulation without the
off-diagonal term (P ref

fus = 350MW, qrefmin = 1.6)
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Figure 2.15: The current profile at the steady state in the simultaneous
control simulation without the off-diagonal term (P ref

fus = 350MW, qrefmin =
1.6)

P ref
fus = 350MW, qrefmin = 1.8

The results are shown in Fig. 2.16 to Fig. 2.19.
In this case, both of the fusion power and the qmin are following near the

reference value, but they are kept oscillated. Additionally, the current profile
is not negative shear.

2.5.2 The case with the off-diagonal term

Using the controller with only a11 and a22 of eq. (2.23), the parameter
oscillation occurred. To prevent this, the off diagonal term seems to be
needed. At first, in this case, a21 is added, i.e. to determine the NBI power,
not only the PID of qmin but also PD of the fusion power is used. The
simulation results are shown in Fig. 2.20 to Fig. 2.22.

In this case, both of the fusion power and the qmin are controlled to the
reference values and they don’t oscillate. Figure. 2.20 shows, however, that
there are some offset of the fusion power, and Figure 2.22 shows that the
current profile is not negative shear and the large ohmic current is needed.
There is a possibility that the controller performance becomes higher with
a12, but this is future issue.
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Figure 2.16: The fusion power time dependence in the simultaneous control
simulation without the off-diagonal term (P ref

fus = 350MW, qrefmin = 1.8)

Figure 2.17: The qmin time dependence in the simultaneous control simula-
tion without the off-diagonal term (P ref

fus = 350MW, qrefmin = 1.8)
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Figure 2.18: The q profile in the simultaneous control simulation without the
off-diagonal term (P ref

fus = 350MW, qrefmin = 1.8)

Figure 2.19: The current profile at the steady state in the simultaneous
control simulation without the off-diagonal term (P ref

fus = 350MW, qrefmin =
1.8)
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Figure 2.20: The fusion power time dependence in the simultaneous control
simulation with the off-diagonal term [75]

54



Figure 2.21: The qmin time dependence in the simultaneous control simula-
tion with the off-diagonal term [75]

2.6 Summary

For the future reactor, the MIMO controller design is needed. In this chapter,
the fusion power and the qmin simultaneously control simulation is demon-
strated with 1-D code. In this case, the controller is designed from the
response characteristics. The results of this simulation show the difficulty of
the simultaneous control and the controller design. Especially, the controller
design has the high difficulty because of parameters coupling effect. Thus,
from the simulation, it seems to be difficult to design the controller from the
response characteristics.
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Figure 2.22: The current profile at the steady state in the simultaneous
control simulation with the off-diagonal term [75]
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Chapter 3

Model based PID control

3.1 Introduction

In previous chapter, the PID controller designed from the response character-
istics is used in the 1-D plasma control simulation. From this simulation, the
difficulty of the plasma MIMO controller design from the response character-
istics is suggested. Thus, this research offer that for the future reactor, the
controller should be designed from the physical model. In this chapter, the
0-D plasma MIMO control simulation with the model based PID controller
is demonstrated. The part of this chapter is published in as. [29].

3.2 0-D plasma model

To design the controller from the physical model is usual method in the
control engineering, and it is called modern control theory. In modern control
theory, the physical model is written as the form of time differential equation,
and this is called state equation. In this section, the plasma state equation
is introduced from the plasma physics [1–3].

3.2.1 Energy equation

For simplification, following approximation is used.

2nD = 2nT = ne ≡ n (3.1)

TD = TT = Te ≡ T (3.2)

and

W =
3

2
nDTD +

3

2
nTTT +

3

2
neTe = 3nT (3.3)
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p = pD + pT + pe = 2nT (3.4)

From the equations, energy conservation law can be written as follows,

3

2

∂p

∂t
+

3

2
∇ · pv⃗ + p∇ · v⃗ +∇ · q⃗ = S (3.5)

This equation is time and space differential equation, thus, to get the state
equation, the volume integral of this equation is needed. First, the term of q⃗
is the heat diffusion and this is defined as follows,

1

V

∫
V
∇q⃗dr⃗ = 1

V

∫
S
q⃗dS⃗ ≡ W

τe
. (3.6)

Second, from the following relation,

∇pv⃗ = p∇ · v⃗ + v⃗ · ∇p (3.7)

the following equation can be gotten.

3

2
∇ · pv⃗ + p∇ · v⃗ =

5

2
∇· pv⃗ − v⃗ · ∇p (3.8)

The integration of this term is written as follows,∫
V
∇ · pv⃗dr⃗ =

∫
S
pv⃗ · n⃗dS (3.9)

and at the surface, v⃗ · n⃗ = 0, thus, this term is equal to zero, and v⃗ · ∇p can
be approximated to zero [2]. Finally, the volume integration can be written
as follows.

dW

dt
+
W

τe
= Se (3.10)

The source term Se is discussed later.

3.2.2 Density equation

This is from the following continuous equation,

∂n

∂t
+∇ · (nv⃗) = Sp (3.11)

Defining the particle confinement time as follows,

1

V

∫
V
∇ · (nv⃗)dr⃗ = 1

V

∫
S
nv⃗dS⃗ ≡ n

τp
(3.12)

the volume integral can be written as follows,

dn

dt
+
n

τp
= Sp (3.13)
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Current equation

The differential equation of the plasma current can be written from the torus
circuit equation. The circuit equation is written as follows,

Lp
d

dt
Ip = −Rp(Ip − ICD)−

d

dt
ΦCS (3.14)

where, Lp, Rp, ICD and ΦCS are the plasma inductance, plasma resistance,
driven current and the CS coil flux respectively. From this equation, the
plasma current equation can be written as follows,

d

dt
Ip = −Ip − ICD

τj
+ Iind (3.15)

where ICD is the induced current.

3.2.3 Source term

In this case, the source term and loss term are determined as follows [16],

IBS = Cbsϵ
0.5βpI[MA] (3.16)

INBI =
γ

n20R
PNBI [MW ] (3.17)

Sp = Npuff (3.18)

Lp =
n2

2
< σv > V (3.19)

Sα =
Eα
4
n2 < σv > V (3.20)

SB = CBn
2
20T

1/2
10 V (3.21)

Sh = PNBI (3.22)

and

T =
W

3N
(3.23)

59



3.3 First PID control simulation

3.3.1 State equation

From the previous section, the plasma 0-D state equation can be written as
follows,

d

dt

 I
N
W

 =


− I
τj
+ 1

τj

(
Cbsϵ

0.5βpI +
γ

n20R
PNBI

)
+ İind

−N
τp
− n2

2
< σv > V +Npuff

−W
τe

+ Eα

4
n2 < σv > V − CBn

2
20T

1/2
10 V + PNBI


= F⃗ (x⃗, u⃗) (3.24)

The output vector, state vector and actuator vector are as follows,

y⃗ =

 Ip
Pfus
ne

 =

 Ip
EαN2

V
< σv >
N
V

 = G⃗(x⃗) (3.25)

x⃗ =

 Ip
N
W

 (3.26)

u⃗ =

 İind
PNBI
Npuff

 (3.27)

The parameters are as follows [76],

γ = 0.25, Cbs = 0.782, Cb = 0.032 (3.28)

τp = 1sec, τj = 100sec (3.29)

βp = 0.7, BT = 5.3T (3.30)

R = 6.2m, a = 2.0m,κ = 1.7 (3.31)

V = 830m3, Ai = 2.5 (3.32)

τe = HH × 0.0562A0.19
i R1.39

p a0.58κ0.78B0.15
T I0.93P n0.41

19 P−0.69
tot

= HH × 2.453I0.93P n0.41
19 P−0.69

tot (3.33)
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This state equation is nonlinear, and linearization is needed. Assum-
ing the reference value equals to the equilibrium value, the linearized state
equation can be written as follows,

d

dt
∆x = A∆x+B∆u (3.34)

∆y = C∆x (3.35)

∆k = k− kref (k = x,u,y) (3.36)

F(xref ,uref ) = 0 (3.37)

yref = G(xref ) (3.38)

A =
∂F(x,u)

∂x

∣∣∣∣∣
x=xref ,u=uref

(3.39)

B =
∂F(x,u)

∂u

∣∣∣∣∣
x=xref ,u=uref

(3.40)

C =
∂G(x)

∂x

∣∣∣∣∣
x=xref

(3.41)

The controller is designed from this linear state equation.

3.3.2 Controller design

To control the y to the yref , the ∆y have to be zero. In this case, the ∆y is
required to be moving as follows,

d

dt
∆y = −K∆y (3.42)

where K is determined as follows,

K =

 0.01 0 0
0 1 0
0 0 1

 (3.43)

Each diagonal term is determined near the inverse of each parameter’s time
constant to make the each reference error of the parameter decays to zero
with these time constant. to The time differential of the ∆y also can be
written as follows,

d

dt
∆y =

d

dt
C∆x = C

d

dt
∆x (3.44)
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and
d

dt
∆y = CA∆x+CB∆u (3.45)

and
d

dt
∆y = CAC−1∆y +CB∆u (3.46)

From eqs. (3.42) and (3.46), the necessary actuator value can be gotten as
follows,

∆u = (CB)−1
(
K+CAC−1

)
(y − yref ) (3.47)

This is just a proportional controller.
Only with the P control, the reference error or the effect of the disturbance
can’t be canceled out. Because of this, the integral and differential term
should be added. In this case, the following controller is used.

∆u = (CB)−1
(
K+CAC−1

)
(y− yref )−

(CB)−1K2

∫ t

0
(y− yref )dτ −

(CB)−1 K3
d

dt
(y− yref ), (3.48)

where

K2 =

 0.001 0 0
0 0.1 0
0 0 0.1

 , (3.49)

K3 =

 1.5× 10−4 0 0
0 0.015 0
0 0 0.015

 . (3.50)

The K2 and the K3 are determined to make the integral, and the differ-
ential terms comparable to the proportional term. In this case, A,B and C
in eq. (3.48) are the differential value of eq. (3.24) at the reference point.
Thus, they depend on the reference values, i.e. the PID gains in eq. (3.48)
changes when the target values change in the operation.

3.3.3 Result

In this simulation, the time dependence of eq. (3.24) is solved with the
software MATLAB/SIMULINK [77], the actuator value is determined as eq.
(3.48). The result is shown in Figs. 3.1 and 3.2
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Figure 3.1: The time evaluation of the plasma current Ip, the fusion power
Pfus and the plasma electron density < ne >. Ip and < ne > is kept in the
constant target value. Pfus follows the target value from 400MW to 500MW
at 250sec and is recovered from the disturbance at 300sec [29].

In this simulation, the initial value of yref and x are as follows,

y =

 Ip
Pfus
< ne >

 =

 15MA
400MW

1.0× 1020/m3

 . (3.51)

x =

 Ip
N
W

 =

 15MA
8.3× 1023

300MJ

 . (3.52)

During t=0sec to 250sec, each parameter is kept to the reference value. At
t=250sec, the fusion power reference is changed to 500MW, then, the fusion
power follows to the new reference value smoothly, and the plasma current
and the density are kept constant. In this case, the NBI power changed from
66MW to 87MW, and to keep the current, the ohmic current is changed.
The gas-puff also changed to keep the density.

At t=300sec, the HH factor changed from 1 to 0.95. At this time, the
fusion power decreased around 10 percent, and recovered to the reference
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Figure 3.2: The time evaluation of the induced current İcs, the NBI power
and the gas-puff amount. The NBI power changes to take the fusion power to
the target value at 250sec and 300sec, at the same time, other two actuators
changes to keep the Ip and < ne > constant [29].

value within a time of 40 sec. At the same time, the actuators changed to
keep the other parameters constant.

3.3.4 Summary of this section

With the 0-D plasma model, 3-input(i.e. the ohmic current, the NBI and the
gas-puff) 3-output(i.e. the plasma current, the fusion power and the plasma
density) control simulation is demonstrated. In spite of this system has the
large coupling effect, the fusion power can be controlled independently, and
this simulation shows that the high target following performance and the
disturbance inhibiting performance. This result suggests the effectiveness of
the modern control theory to the plasma control.

In this simulation, however, the model and the method of the controller
design has the room of improvement. The improved model, and the controller
is discussed in next section.
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3.4 PI control simulation with the pole as-

signment method

3.4.1 Model improvement

The previous simulation is to confirm the effectiveness of the modern control
theory, thus the simulation model is quite simple form, and in future, the
simulation with the strictly model or the experiment with the controller
designed from the modern control theory is needed. In this subsection, as
the preparation, equation (3.24) is changed to more strictly model. In this
case, τj, CB, Cbs, γ is re-adjusted to the ITER, and τp is changed to the
proportional value of the τe.

The current diffusion time

The τj can be lead from the following circuit equation,

Lp
dIp
dt

= −RpIp (3.53)

where Lp and Rp are the plasma inductance and the plasma resistance re-
spectively. From this equation, τj can be written as follows,

τj = Lp/Rp (3.54)

The plasma resistivity can be written as follows [1, 2],

η = 1.65× 10−9lnΛZeff (Te[keV ])−1.5 (3.55)

and each parameter is defined as follows [76],

< Te >= 8.8keV (3.56)

Zeff = 1.66 (3.57)

lnΛ = 20. (3.58)

From these parameters, η is gotten as follows,

η = 2.098× 10−9[Ωm] (3.59)

With the parameters R = 6.2m, a = 2m and κ = 1.6, finally, plasma resis-
tance can be lead as follows,

Rp = 3.516× 10−9[Ω] (3.60)
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The plasma inductance is written as follows,

Lp = µ0R

(
ln
8R

a
+
li
2
− 2

)
(3.61)

where li is internal inductance, and in this case, defined as li = 0.84, and Lp
is lead as follows,

Lp = 1.271× 10−5[H] (3.62)

Finally, τj can be written as follows,

τj = 3615[sec] (3.63)

The NBI current drive efficiency

The γ is derived from refs. [16, 78]. Assuming the D beam, the Ab and the
Zb is defined Ab = 2, Zb = 1, and each parameter can be lead as follows,

Ecrit = 0.1× AbT10 = 0.176[keV ] (3.64)

G =

(
1.55 +

0.85

Zeff

)(
ϵ

2

)0.5

−
(
0.2 +

1.55

Zeff

)(
ϵ

2

)
= 0.645 (3.65)

F = 1.0− Zb
Zeff

(1−G) = 0.786, (3.66)

where ϵ is the inverse of the aspect ratio. Assuming Eb = 1[MeV ], the
following parameters can be written as

x =
(
Eb
Ecrit

)0.5

= 2.384 (3.67)

y =
12Zeff
5Ab

= 1.992 (3.68)

J =
x2

4 + 3y + x2(x+ 1.39 + 0.61y0.7)
= 0.153 (3.69)

and with the definition that Rtang = R,n20L = 1,

db = 2R

(
(1 +

a

R
)2 −

(
Rtang

R

)2
)0.5

= 10.73 (3.70)

fsb = exp

(
−(n20Ldb)

(
0.775

Eb

)0.78
)
= 1.514× 10−4 (3.71)

66



can be lead. Finally, with the profile parameter αn = 0.5, αT = 1.0, the γ
can be written as follows,

Adb = 0.11(1−0.35αn+0.14α2
n)× (1−0.21αT )(1−0.2Eb+0.09E2

b ) = 0.0665
(3.72)

γ = 5× AdbT10(1− fsb)
Rtang

R
× J

0.2
F = 0.176 (3.73)

The ratio of the boot strap current

The new model of boot strap current is from ’ITER Physics design guideline’,
and it is as follows,

IBS = CBS(ϵ
0.5β∗

p)
1.3Ip (3.74)

CBS = 1.32− 0.235

(
q95
q0

)
+ 0.0185

(
q95
q0

)2

= 0.7815 (3.75)

in this equation, from ref. [76], q95/q0 = 3 is used. The β∗
p can be written as

follows [78],

β∗
p = βT

(
BT

Ba

)2

(3.76)

Ba =
µ0Ip

2πapκ0.5
(3.77)

BT = 5.3 (3.78)

βt = βth + βα (3.79)

βth =
(ne + ni)Te[eV ]

B2
T/2µ0

(3.80)

βα = fαβth (3.81)

fα = 0.029(fD + fT )(Te[keV ]− 3.7) (3.82)

Bremsstrahlung radiation

CB is defined as follows

CB =
0.16Zeff (1 + αn)

1.5 × (1 + αn + αT )
0.5

1 + 2αn + 0.5αT
= 0.031 (3.83)

The particle confinement time

Considering the particle recycling, the τp is defined as follows,

τp = ατe (3.84)

where α is the proportional constant.
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3.4.2 PI controller design

The method to define the P gain in section 3.3 is near the pole assignment
method [65], and the I and D gain is not determined theoretically. In this sec-
tion, with the pole assignment method, both the P and I gain is determined.
From the new model and the following equation point,

y =

 14.9452MA
400.0611MW

10.0611× 1019/m3

x =

 14.9452MA
8.3507× 1022

363.9389MW

u =

 0.0026MA/sec
69.9981MW

0.3632× 1022/sec


(3.85)

the linearized state equation formed as follows can be gotten,

d

dt
∆y = A′∆y +B′∆u (3.86)

A′ = CAC−1, B′ = CB (3.87)

From eq. (3.86), the following extended state equation can be written,

d

dt

(
∆y∫
∆ydt

)
=

(
A′ 0
I 0

)(
∆y∫
∆ydt

)
+

(
B′

0

)
u (3.88)

Considering the PI control, u can be written as follows,

u =
(
−Kp −Ki

)( ∆y∫
∆ydt

)
(3.89)

Using the actuator eq. (3.89), equation (3.88) can be written as follows,(
∆y∫
∆ydt

)
=

(
A′ −B′Kp −B′Ki

I 0

)(
∆y∫
∆ydt

)
(3.90)

The solution of eq. (3.90) is linear sum of the exponential functions which
time constant equal to the eigen value of the coefficient matrix of eq. (3.90).
These time constant is called ’pole’. From the requirement of the ’pole’, Kp

andKi can be gotten. The algorithm of the pole assignment method is shown
in ref. [65]. In this case, to make the high target following performance, with
try and error, following pole is used,

pole = ( −1 −1 −1 −0.1 −0.1 −0.1 )t (3.91)

and the Kp and the Ki are determined as follows,

Kp =

 1.0994 0 −0.0003
28.6635 1.0115 35.3735
0.0658 0.0011 0.9568

 , Ki =

 0.1 0 0
0 0.1094 2.9683
0 0.0002 0.0877


(3.92)
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Figure 3.3: The result of the PI control simulation

3.4.3 Result

The simulation result is shown in Fig 3.3. The higher target following perfor-
mance and the disturbance inhibiting performance than the previous section
is shown.

3.5 Summary

In this chapter, the 3 inputs and 3 outputs plasma control simulation is
demonstrated with the 0-D plasma model. In this simulation, the controller
is designed from the physical model with the modern control theory. The
controller is well worked in 0-D plasma model, and this results suggests the
effectivity of the modern control theory for the plasma operation. To check
the performance of the controller in the more strictly simulation, or the
experiment is the future work.
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Chapter 4

H infinity control

4.1 Introduction

In the previous chapter, the model based controller design, and the plasma
MIMO control simulation is demonstrated. The model, however, doesn’t
represent the real plasma strictly. Thus, the model error between the real
plasma and the controller model exists. The plasma physics is extremely
complex and the model error will be large. For this reason, the controller
should be designed taking the model error into consideration.

The robust control theory is to minimize the effect of the model error. In
this chapter, the typical robust control theory ’H-infinity theory’ is used.

4.2 The concept of the H-infinity theory

In H-infinity control theory, the extended state equation as follows is used
[51,74,79,80],

d

dt
x = Ax+B1w +B2u (4.1)

z = C1x+D11w +D12u (4.2)

y = C2x+D21w +D22u (4.3)

where z is the value which should be minimize, e.g. the reference error or
the actuator value, and w is the uncontrollable input, e.g. the effect of the
model error or the disturbance. This extended state equation can be changed
the form of transfer function as follows,(

z
y

)
=

(
G11(s) G12(s)
G21(s) G22(s)

)(
w
u

)
(4.4)
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This extended state equation and the transfer function are called ’generalized
plant’. Considering the feedback control as u = K(s)y, the transfer function
from w to z can be written as follows,

Φ(s) = G11(s) +G12(s)K(s)(I−G22(s)K(s))−1G21(s) (4.5)

In H-infinity theory, the controller K(s) is designed to minimize the ’size’
of Φ(s) and the ’size’ is evaluated as ’H-infinity norm’. The definition of
H-infinity norm is shown as follows,

∥
↔
F (s)∥∞ = sup

ω
σ
(

↔
F (iω)

)
(4.6)

This means the maximum gain of the transfer function.

4.3 The theory to solve the H-infinity control

problem

The theory to get the H-infinity controller is quite complex. In this section,
the summarize of the theory is introduced [51].

4.3.1 Chain-scattering representation

In the case that G21 has the inverse, eq. (4.4) can be changed as follows,(
z
w

)
=

(
G12 −G11G21

−1G22 G11G21
−1

−G21
−1G22 G21

−1

)(
u
y

)

= Σ(s)

(
u
y

)
= CHAIN(G)

(
u
y

)
(4.7)

This CHAIN(G) is called chain-scattering matrix. This transformation is
shown in Fig. 4.1.

Figure 4.1: The concept of the chain-scattering representation
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Using this chain-scattering representation, the star product can be written
in simple form. The star product of G and U is defined as follows,(

G11 G12

G21 G22

)
⊗
(

U11 U12

U21 U22

)

=

(
G11 +G12U11(I−G22U11)

−1G21 G12(I−U11G22)
−1U12

U21(I−G22U11)
−1G21 U22 +U21(I−G22U11)

−1G22U12

)
(4.8)

The meaning of the star product is shown in Fig. 4.2.

Figure 4.2: The concept of the star product

With the chain-scattering representation, the star product can be written
as follows,

CHAIN(G⊗U) = CHAIN(G) · CHAIN(U) (4.9)

This equation represents Fig. 4.3.

4.3.2 J-lossless matrix

Figure 4.4 shows the concept of the solution of the H-infinity control problem.
In Fig. 4.4, Θ(s) is called J-lossless matrix. J-lossless matrix is the chain-

scattering representation of the lossless matrix. The lossless matrix is defined
as follows,

Lossless matrix

In the case that the matrix S(s) satisfies the following conditions, S(s) is
called lossless matrix.

I− St(−s)S(s) = 0, ∀s (4.10)
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Figure 4.3: The chain-scattering representation of the star product

Figure 4.4: The concept of the H-infinity controller
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I− S∗(s)S(s) ≥ 0, ∀Re[s] ≥ 0 (4.11)

This means that the gain of the lossless matrix is 1.
In fig 4.4, S(s) is called bounded matrix, and this is defined as follows,

Bounded matrix

In the case that the matrix S(s) is stable, and satisfies the following condition,
S(s) is called bounded matrix.

S∗(s)S(s) ≤ I, ∀Re[s] ≥ 0 (4.12)

Figure 4.4 means that in the case that the chain-scattering representation
of the generalized plant Σ(s) can be divided with the J-lossless matrix Θ(S)
as follows,

Σ(s) = Θ(s)Π(s) (4.13)

the chain scattering representation of the H-infinity controller can be written
with the arbitrary bounded matrix S(s) as follows,

K(s) = Π−1(s)S(s). (4.14)

Thus, the H-infinity controller problem equals to find the suitable J-lossless
matrix.

4.3.3 J-lossless conjugation

To find the suitable J-lossless matrix, the J-lossless stabilizing conjugator
and the J-lossless anti-stabilizing conjugator are defined as follows,

J-lossless stabilizing conjugator

With the matrix G(s), in the case that the J-lossless matrix Θ(s) satisfies
the following conditions,

• G(s)Θ(s) is stable

• The order of the Θ(s) equals the number of the unstable poles of the
G(s)

the Θ(s) is called J-lossless stabilizing conjugator of the G(s), and the op-
eration to multiply the Θ(s) is called J-lossless stabilizing conjugation.
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J-lossless anti-stabilizing conjugator

With the matrix G(s), in the case that the J-lossless matrix Θ(s) satisfies
the following conditions,

• G(s)Θ(s) is unstable

• The order of the Θ(s) equals the number of the stable poles of the G(s)

the Θ(s) is called J-lossless anti-stabilizing conjugator of the G(s), and the
operation to multiply theΘ(s) is called J-lossless anti-stabilizing conjugation.

The condition of the J-lossless conjugator exists

The conditions that the system G(s) = D+C(sI−A)−1B has the J-lossless
(anti-) stable conjugator are as follows,

• The riccati equation

XA+AtX−XBJBtX = 0 (4.15)

has the solution X ≥ 0, and

Â = A−BJBtX (4.16)

is (anti-) stable.

In this case, the J-lossless (anti-) stable conjugator Θ(s) is written as follows,

Θ(s) = (I− JBt(sI+At)−1XB)Dc (4.17)

where Dc is arbitrary J-unitary matrix. The J-unitary matrix is the matrix
which satisfies the following equation,

Dc
t(−s)JDc(s) = J, ∀s (4.18)

and J is as follows,

J =

(
I 0
0 −I

)
(4.19)

4.3.4 J-lossless dividing

Using the J-lossless conjugator, the J-lossless matrix which can divide the
generalized plant G(s) can be found. With the J-lossless anti-stabilizing
conjugator Θ+(s) of the Gt(−s)J, and the J-lossless stabilizing conjugator
Θ−(s) of the {J(Θt

+(−s)JG(s))}−1, G(s) can be divided as follows,

G(s) = Θ+(s)Θ−(s)Π(s) = Θ(s)Π(s) (4.20)
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4.3.5 The condition of the H-infinity control problem
can be solved

To find the H-infinity controller, the J-lossless matrix which can divide the
generalized plant have to be found, and to find the J-lossless matrix, 2 J-
lossless conjugator are needed. To get the J-lossless conjugator, one riccati
equation have to be solved. Thus, to get the H-infinity controller, 2 riccati
equation have to be solved. The detail theory of the riccati equation is
introduced in ref. [81].

In the case that the system of eqs. (4.1) to (4.3) satisfies the following
conditions, the system is called standard plant.

• (A,B2) can be stabilized, and (C2,A) can be measured

• rankD12 = p(full rank), rankD21 = q(full rank), and

rank

(
A− iωI B2

C1 D12

)
= n+ p, ∀ω (4.21)

rank

(
A− iωI B1

C2 D21

)
= n+ q, ∀ω (4.22)

In the case that the system is the standard plant, the conditions that the
H-infinity controller exist can be written as follows,

• γ2Ir −D11
t(Im −D12(D12

tD12)
−1D12

t)D11 > 0

• γ2Im −D11
t(Ir −D21

t(D21D21
t)−1D21)D11 > 0

• The riccati equation

XA+AtX− (Cz
tDz +XB)(Dz

tJγDz)
−1(Dz

tCz +BtX) +Cz
tCz = 0
(4.23)

has the solution X ≥ 0 and the matrix

AF = A+BF (4.24)

is stable, where

F = −(Dz
tJγDz)

−1(Dz
tCz +BtX) (4.25)

• The riccati equation

YAt+AY−(BwDw
t+YCt)(DwJ

′
γDw

t)−1(DwBw
t+BY)+BwBw

t = 0
(4.26)
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has the solution Y ≥ 0 and the matrix

AL = A+ LC (4.27)

is stable, where

L = −(BwDw
t +YCt)(DwJ

′
γDw

t)−1 (4.28)

• λmax(XY) < γ2

where,

Cz =

(
C1

0

)
(4.29)

Dz =

(
D11 D12

Ir 0

)
(4.30)

Bw =
(
B1 0

)
(4.31)

Dw =

(
D11 Im
D21 0

)
(4.32)

Jγ =

(
Im 0
0 −γ2Ir

)
(4.33)

J′
γ =

(
Ir 0
0 −γ2Im

)
(4.34)

In the case that these conditions are satisfied, the controller can be written
as follows,

dxk

dt
= (A+BF)xk +U((B2 + LzD12)ξ − Lyη) (4.35)

u = Fuxk + ξ (4.36)

η = y − (C2 +D21Fw)xk (4.37)

U = (I− γ−2YX)−1 (4.38)

ξ = H(S)η (4.39)

H(S) = −(V21S+V22)(V11S+V12)
−1 (4.40)

V =

(
V11 V12

V21 V22

)
(4.41)

F =

(
Fw

Fu

)
(4.42)
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L =
(
Lz Ly

)
(4.43)

where, S is the arbitrary transfer function which satisfies ∥S∥∞ < 1 and V
is the conversion matrix which satisfies the following equation,

−VtDu
t(DwJ

′
γDw

t)−1DuV = Jpq (4.44)

4.4 Mixture sensitivity function problem

Considering the control of fusion reactor, both of the servo performance (i.e.
the target following performance) and the robust performance (i.e. the effect
of the model error mitigation performance) are needed.

4.4.1 Sensitivity function

Figure 4.5 shows the closed loop system, where K is controller, P is the
nominal model (i.e. the model for the controller design) and ∆ is the model
error.

Figure 4.5: The system with the model error

To get the high servo performance, the H-infinity norm of the transfer
function from r to e should be minimized. This transfer function is formed
as follows,

S(s) = (I+PK)−1. (4.45)

This equation is called ’sensitivity function’.

4.4.2 Complementary sensitivity function

Figure 4.5 can be changed to Fig. 4.6.
In Fig. 4.6, T is written as follows,

T(s) = (I+PK)−1PK (4.46)

This is called ’complementary sensitivity function’. In the case that |∆T|∞ <
1, the effect of the model error (i.e. the signals from ∆) is converged to 0.
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Figure 4.6: The concept of the small gain theory

This is called ’small gain theory’. For the reason of this, to get the high
robust performance, the H-infinity norm of T have to be small.

4.4.3 Mixture sensitivity problem

To get the high servo performance, S(s) have to be small, and to get the
high robust performance, T(s) have to be small. They have, however, the
trade-off relationship as follows,

S(s) +T(s) = 1 (4.47)

Equation (4.47) means that it is impossible to minimize both of S(s) andT(s)
at the same frequency band. Thus, using the weight function, to minimize the
S(s) at some frequency band, and to minimize the T(s) at other frequency
band are the usual method to tackle this problem. In most case, the servo
performance is required at the low frequency, and the effect of the model
error becomes large at the high frequency. Thus, with the low-pass weight
function Ws(s) and the high-pass weight function Wt(s), the controller is
designed to satisfy the following condition,∣∣∣∣∣ Ws(s)S(s)

Wt(s)T(s)

∣∣∣∣∣
∞
< γ (4.48)

where γ represent the performance of the controller.
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4.5 Robust servo controller design

In the mixture sensitivity problem, the figure of the generalized plant is
shown in Fig. 4.7.

Figure 4.7: The block diagram of the robust servo problem

To converge the reference error to 0, the controller has to have the inte-
grator, i.e. 0 pole. The controller K(s) has the same pole of Ws(s). Thus,
to design the robust servo controller, Ws(s) has to have the 0 pole. It is,
however, not standard H-infinity problem. In this research the controller is
designed with the Dr. Mita’s method [74,82,83]. This is one of the methods
of solving the un-standard H-infinity problem. Other methods have been
researched [84–86]

4.5.1 Weight function selection

To converge the reference error, Ws(s) is determined to has the integrator as
follows,

Ws =

 1/s 0 0
0 1/s 0
0 0 1/s

 . (4.49)

In the case that ∆ can be estimated from the experiment or the strictly
simulation, Wt(s) is determined from ∆. In this simulation, Wt(s) is de-
signed from some try and error and not from ∆. The estimation of ∆ is the
future work. In this case, the following Wt(s) is used.

Wt =


5s

s+100
0 0

0 0.1s
s+300

0

0 0 5s
s+100

 (4.50)
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This is designed to make the H-infinity problem has the solution, and to
suppress the actuator values to the low values.

The theoretical method of determine the weight function have been re-
searched [87–90].

4.5.2 Controller design

Solving the two riccati equations

In Fig. 4.7, P(s) is the nominal plant, and it is written with the coefficient
matrix of the linearized state equation as follows,

P(s) = C0(sI−A0)
−1B0 (4.51)

The Ws(s) and the Wt(s) also can be written as follows,

Ws(s) = Cs(sI−As)
−1Bs (4.52)

Wt(s) = Ct(sI−At)
−1Bt +Dt (4.53)

As = Ds = 0 (4.54)

Bs = Cs = I (4.55)

At =

 −100 0 0
0 −300 0
0 0 −100

 (4.56)

Dt =

 5 0 0
0 0.1 0
0 0 5

 (4.57)

Bt = I (4.58)

Ct = AtDt (4.59)

Finally, the generalized plant can be written as the following form,

ẋ =

 0 0 BsC0

0 At 0
0 0 A0

x+

 Bs

0
0

w+

 0
Bt

B0

u (4.60)

z =

(
Cs 0 0
0 Ct 0

)
x+

(
0
0

)
w+

(
0
Dt

)
u (4.61)

y =
(
0 0 C0

)
x+ Iw+ (0)u (4.62)
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To solve the H-infinity control problem, the following variables are defined
from the generalized plant.

A =

 0 0 BsC0

0 At 0
0 0 A0

 (4.63)

B1 =

 Bs

0
0

 (4.64)

B2 =

 0
Bt

B0

 (4.65)

C1 =

(
Cs 0 0
0 Ct 0

)
(4.66)

C2 =
(
0 0 C0

)
(4.67)

D12 =

(
0
Dt

)
(4.68)

D21 = I (4.69)

D11 = D22 = 0 (4.70)

and
D†

12 =
(
0 D−1

t

)
(4.71)

D⊥
12 =

(
I 0

)
(4.72)

D†
21 = I (4.73)

D⊥
21 = 0 (4.74)

From these variables, the first riccati equation is written as follows,

AX+XAT −XB̃R−1B̃
T
X+Q = 0 (4.75)

where
B̃ =

(
B1/γ B2D

−1
t

)
(4.76)

R =

(
−I 0
0 I

)
(4.77)

82



Q = (D⊥
12C1)

T (D⊥
12C1) (4.78)

and in this case, γ = 0.5. The answer of this equation is as follows,

X = 1.0e+ 03×

0.0127 −0.0000 −0.0004 0.1208 −0.0000
−0.0000 0.0001 0.0000 −0.0000 0.0001
−0.0004 0.0000 0.0045 −0.0038 0.0002
0.1208 −0.0000 −0.0038 1.2665 −0.0002
−0.0000 0.0001 0.0002 −0.0002 0.0003
−0.0036 −0.0008 0.0416 −0.0348 −0.0001
0.0061 0.0000 −0.0002 0.0602 0.0000
−0.0002 −0.0003 0.0018 −0.0016 −0.0003
−0.0000 0.0000 0.0000 −0.0000 0.0000

−0.0036 0.0061 −0.0002 −0.0000
−0.0008 0.0000 −0.0003 0.0000
0.0416 −0.0002 0.0018 0.0000
−0.0348 0.0602 −0.0016 −0.0000
−0.0001 0.0000 −0.0003 0.0000
0.5127 −0.0018 0.0227 −0.0003
−0.0018 0.0030 −0.0001 0.0000
0.0227 −0.0001 0.0017 −0.0001
−0.0003 0.0000 −0.0001 0.0000


(4.79)

The second riccati equation is written as follows,

Y(A−B1D
†
21C2)

T+(A−B1D
†
21C2)Y+Y(CT

1C1/γ
2−CT

2C2)Y = 0 (4.80)

This equation has no stable answer, thus, the quasi-stable answer have
to be used and lead from following method.

First, finding the matrix U which satisfies the following condition,

U(A−B1D
†
21C2) = AqU (4.81)

UB1D
⊥
21 = 0 (4.82)

UB2 = 0 (4.83)

in this case, Aq = 0 and U can be determined as follows,

U = ( I 0 0 ) (4.84)
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With the U and the suitable co-basis matrix H, the regular matrix T can
be defined as follows,

T =

(
H
U

)
=

 0 0 I
0 I 0
I 0 0

 (4.85)

In this case, T−1 = TT = T. With T, following variable transformation can
be done,

Ã = T−1(A−B1D
†
21C2)T =

 A0 0 0
0 At 0
0 0 0

 (4.86)

A1 =

(
A0 0
0 At

)
(4.87)

C̃1 = T−1CT
1 =

 0 0
0 CT

t

CT
s 0

 (4.88)

C11 =

(
0 0
0 CT

t

)
(4.89)

C̃2 = T−1CT
2 =

 CT
0

0
0

 (4.90)

C22 =

(
CT

0

0

)
(4.91)

Ỹ = TTYT (4.92)

Then, multiplying Tt from left and multiplying T from right to eq. (4.80),
following riccati equation can be lead.

ỸÃ
T
+ ÃỸ+ Ỹ(C̃1C̃

T

1 /γ
2 − C̃2C̃

T

2 )Ỹ = 0 (4.93)

The answer of this equation can be written as the following form,

Ỹ =

(
Y1 0
0 0

)
(4.94)

where Y1 is 6× 6 matrix. Finally, following lower order riccati equation can
be gotten,
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Y1A
T
1 +A1Y1 −Y1( C11/γ C22 )

(
−I 0
0 I

)
( C11/γ C22 )TY1 = 0

(4.95)
In this case, finally the Y becomes as follows,

Y = 0 (4.96)

Controller design

With X,Y from the previous subsection, the following variables are defined.

E12 = DT
12D12 (4.97)

E21 = D21D
T
21 (4.98)

and
Z = (I−YX)−1 (4.99)

L∞ = −B1D
†
21 −YCT

2E
−1
21 (4.100)

F∞ = −D†
12C1 − E−1

12 B
T
2X (4.101)

Ĉ2 = C2 +D21B
T
1X (4.102)

B̂2 = B2 +YCT
1D12 (4.103)

Â = A+B1B
T
1X+B2F∞ + ZL∞Ĉ2 (4.104)

In this research, the central solution is used, and the answer is written as
follows,

−K(s) = −F∞(sI− Â)−1ZL∞ (4.105)

Finally, as the form of the state equation, the controller is designed as
follows,

ẋk = Âx+ ZL∞(r− y) (4.106)

u = F∞xk (4.107)

and

Â =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−5.0766 −0.0026 −0.0521 −53.0950 −0.0008
1.0700 −10.2211 −25.2942 −1.2812 −27.6691
0.0511 0.0387 −1.9509 0.1999 0.0077
−5.0766 −0.0027 −0.0523 46.9049 0.0013
0.0494 0.0549 −1.9109 0.2019 −0.4235
0.3317 −3.1686 −7.8412 −0.3972 84.4228
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0 0 0 0
0 0 0 0
0 0 0 0

0.2045 −2.5360 0.0018 −0.0019
−0.4424 −2.1633 29.9877 −4.1031
−23.9901 0.0065 −1.2449 0.0070
0.2045 −2.5364 0.0020 −0.0019
76.0106 0.0303 −1.2919 0.0121
−0.1371 8.2151 12.2580 −1.4474


(4.108)

ZL∞ =



−1 0 0
0 −1 0
0 0 −1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


(4.109)

F∞ =

 −5.0766 −0.0026 −0.0521 46.9050 −0.0008
1.0700 −10.2211 −25.2942 −1.2812 272.3309
0.0511 0.0387 −1.9509 0.1999 0.0077

0.2045 −2.5360 0.0018 −0.0019
−0.4424 −2.1633 29.9877 −4.1031
76.0099 0.0065 −1.2449 0.0070

 (4.110)

4.6 Simulation result

The condition of the simulation is same to the simulation in chapter 3, and
the results are shown in Fig. 4.8 and Fig. 4.9.

In Fig. 4.8, the higher robust and servo performance are shown than
chapter 3. Figure 4.9 shows, however, that at the time that the reference
value changes or the disturbance occurred, the actuators get the severe re-
quest. In this case, the request of the NBI power is over 700MW but the
limitation of the NBI is set to 150MW.
In this simulation, the controller is designed from the linearized model of 0-D
plasma model, but the time development of the parameters are solved from
the nonlinear model. Thus, this result shows the robustness of the controller.
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Figure 4.8: The result of the H∞ robust servo simulation (controlled param-
eters)

Figure 4.9: The result of the H∞ robust servo simulation (actuators)
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4.7 Comparison of the H-infinity and PI con-

troller

4.7.1 The simulation conditions

To compare the performance of the H-infinity controller and the PI controller,
the following 96 simulations with the PI and H-infinity controller are done.

• The limit of the NBI power = 150MW, 100MW, 85MW, 70MW

• α = τp/τe = 5, 10 , 20

• The reference value of the Pfus changes from 400MW to 320MW and
480 MW

• The reference value of the < ne > changes from 1.0 × 1020/m3 to
0.8× 1020/m3 and 1.2× 1020/m3

• HH factor changes from 1 to 0.9 and 1.1

• α changes from each value to its 0.8 and 1.2 times value

In each simulation, the H-infinity controller designed in section 4.5 is used,
and the following PI controller is used.

Kp =

 2.0010 0 −0.0003
28.6635 7.4989 35.3735
0.0658 0.0011 1.7599

 (4.111)

Ki =

 0.0011 0 0
0 1.3273 2.9683
0 0.0002 0.0170

 (4.112)

In this case, the pole of the system is as follows,

pole = ( −7.2530 −2.0011 −1.9949 −0.0005 −0.1771 −0.0094 )t

(4.113)
This PI controller is re-designed from the controller in chapter 3 to conform
the diagonal low frequency component of the PI controller’s bode diagram
to that of H-infinity controller shown as Fig. 4.10. In Fig. 4.10, the blue
line represents the H∞ controller and the green line represents the MIMO
PI controller, and the parts surrounded by the red circle show the diagonal
bode diagrams(i.e. the bode diagram from the reference error of Ip to the
Ioh, the Pfus to the Pnbi and the < ne > to the Npuff ) of both controllers are
same in the low frequency band.
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Figure 4.10: The bode diagram of the PI (green line) and the H-infinity (blue
line) controller

4.7.2 Simulation results

In the cases of α = 5, 10, 20, the behavior of the controllers are not difference,
thus, only the results of the case that α = 10 are shown in this subsection.

The case with the change of the Pfus reference

Figure 4.11 shows the NBIlim = 150MW and P ref
fus increases pattern sim-

ulation. Both with the H-infinity controller and the PI controller, Pfus fol-
lows the new reference value, and the following time is about 1 sec. The
NBIlim decrease, the following time becomes longer. Figure 4.12 shows the
NBIlim = 85MW case simulation. This shows that the following time is
about 15sec, and the perturbation of the density in the case of the H-infinity
controller is larger than that of the PI controller.

Figure 4.13 shows the NBIlim = 150MW and P ref
fus decreases pattern

simulation. The controller behavior in the other NBIlim case, are not differ-
ence from this case. In this case, both of PI and H-infinity controller make
the NBI power to 0 and the Pfus decrease as the same time constant and the
perturbation of the density in the case of the H-infinity controller is larger
than that of the PI controller.
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Figure 4.11: The case that NBIlim = 150MWandP ref
fus increases

Figure 4.12: The case that NBIlim = 85MWandP ref
fus increases

90



Figure 4.13: The case that NBIlim = 150MWandP ref
fus decreases

The case with the change of the < ne > reference value

Figure 4.14 shows that the case of NBIlim = 150MW and the reference
value of < ne > increases. Both of the PI and the H-infinity control, < ne >
changes to the reference value at about 1sec. In this case, the NBI power
increases to keep the temperature constant. Thus, the NBIlim decrease, the
fusion power changes. Figure 4.15 shows that the case of NBIlim = 70MW .
In Fig. 4.15, in the case of PI controller, the fusion power undershoots
and recovers about 15sec, while H-infinity controller, the parameters are not
controlled.

Figure 4.14: The case that NBIlim = 150MWand< ne >ref increases
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Figure 4.15: The case that NBIlim = 70MW and < ne >ref increases

Figure 4.16 shows that the case of NBIlim = 150MW and the reference
value of < ne > decreases. In both cases, the Npuff becomes 0 and < ne >
decreases at the same time constant.

Figure 4.16: The case that NBIlim = 150MW and < ne >ref decreases

HH change case

Figure 4.17 shows the case that HH decreases, and Figure 4.18 shows the
case that HH increases. In both case, each parameter is kept constant.
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Figure 4.17: The case that NBIlim = 150MW , HH decreases

Figure 4.18: The case that NBIlim = 150MW , HH increases
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α change case

Figure 4.19 shows the case that α decreases, and Figure 4.20 shows the case
that α increases. In both case, each parameter is kept constant.

Figure 4.19: The case that NBIlim = 150MW , α decreases

Figure 4.20: The case that NBIlim = 150MW , α increases

4.7.3 discussion

In this comparison, both controllers have almost same performance, and
against the actuator limitation, the PI controller seems to be more robust
than H-infinity controller. This results suggests that the PI controller may
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have enough performance to control the reactor and that the suitable feed
back gain can be designed from the H-infinity theory. The H-infinity con-
troller, however, is not designed from the estimation of the model error, thus,
more high performance or the more suitable H-infinity controller may be able
to be designed.

4.8 Summary

In this chapter, the H-infinity robust servo theory is used and the plasma
control simulation is done with the 0-D plasma model. In this simulation,
the higher robust and servo performance is demonstrated than in chapter
3. Additionally, with the MIMO PI controller which is re-designed from the
H-infinity controller shows the same performance. These results suggests the
effectivity of the H-infinity theory for the plasma control and the controller
design. The H-infinity controller design with the estimated model error is
the future work.
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Chapter 5

Profile control

5.1 Introduction

In chapter 3 and chapter 4, the 0-D plasma parameter control is demon-
strated. Additionally, for the future reactor, the profile control will be
needed. To do so, 1-D differential equation (i.e. the equation of the time
and the space) has to be re-written to the 0-D state equation. In this chap-
ter, the state equation modeling for the profile control, and the controller
design is discussed.

5.2 Basic policy

The modeling is started from the diffusion equation which represents the
parameter’s time and space evolution. In this research, assuming the profile
with well known function, the space term is vanished. The two methods are
discussed in this chapter. The first method is from considering the diffusion
equation as follow,

∂

∂t
f(r, t) = −D∇ · (∇f(r, t)) + S(r, t) (5.1)

where f, S,D are the controlled parameter, the source term and the diffusion
coefficient. With the assumption that

f(r, t) = f0(t)g(r) (5.2)

where g(r) is the well known function, eq. (5.1) can be changed as follows,

g(r)
d

dt
f0(t) = −Df0(t)∇ · (∇g(r)) + S(r, t). (5.3)
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Integrating this equation with r, the time differential equation of f0(t) can
be lead, and the profile can be represent with f0(t) and g(r). This method is
quite simple and easy. The controller designed from this method, however,
can only one profile parameter. For example, the controller can control only
qmin, and can not control qmin and its location simultaneously.

The second method is also started from eq. (5.1). Using the profile
form assumption and basis functions gk(r), equation (5.1) can be divided
approximately as follows,

n∑
k=0

d

dt
fk(t)gk(r) =

n∑
k=0

Dkfk(t)gk(r) +
n∑
k=0

Sk(t)gk(r) (5.4)

Because of gk(r) are the basis function, each profile parameter’s time differ-
ential equation can be gotten as follows,

d

dt
fk(t) = Dkfk(t) + Sk(t) (k = 0 · · ·n) (5.5)

The controller designed from this method, can control the multiple profile
parameters, but it will be hard work to find the general suitable basis func-
tions. In this chapter, the current profile (q profile) control is discussed. In
refs. [42,43], the similar method is used. In these research, the basis functions
are determined from the machine experimental data.

5.3 Modeling for the current

5.3.1 Modeling for the diffusion equation

To make the current diffusion equation, start from the generalized Ohm’s
low and Maxwell equation.

E = η(j− jni) (5.6)

∇×B = µ0j (5.7)

∂B

∂t
= −∇× E (5.8)

where jni is non-inductive current. Additionally, from these equations,

B = ∇×A (5.9)

E = −∂A
∂t

(5.10)

97



the following equation can be written.

j =
E

η
+ jni = ∇×∇×A (5.11)

Using the cylindrical coordinate and assuming that the current is only toroidal
direction and the function of minor radius, the following equation can be
written,

j(r, t) =
E(r, t)

η(r, t)
+ jni(r, t) = − 1

µ0

1

r

∂

∂r

(
r
∂Aϕ
∂r

)
(5.12)

Additionally, following relationship is used.

Φ(r) =
∫
S
BdS =

∫
S
∇×AdS =

∫
C
Adl ≃ 2πRAϕ(r) (5.13)

2πRE = Vloop = −∂Φ
∂t

(5.14)

From these equations, following magnetic flux diffusion equation can be writ-
ten.

− 1

η(r, t)

∂Φ

∂t
+ 2πRjni(r, t) = − 1

µ0

1

r

∂

∂r

(
r
∂Φ

∂r

)
(5.15)

Here, the total flux is the summation of the plasma flux and the CS coil’s
flux as follows,

Φ(r, t) = ΦCS(t) + Φp(r, t) (5.16)

Finally, the diffusion equation can be written as follows,

∂Φp

∂t
=

η

µ0

1

r

∂

∂r

(
r
∂Φp

∂r

)
+ 2πRηjni − Φ̇CS (5.17)

This equation equals to the following circuit equation,

∂Φp

∂t
= −2πRη(j − jni)− Φ̇CS (5.18)

In this research, the non-inductive current is assumed as follows,

jni = jbs + jnbi + jRF (5.19)

where, Jbs, jNBI , jRF are bootstrap current, NBI current, RF current respec-
tively.
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Figure 5.1: The assumption of the current profile

5.3.2 The assumption of the current profile

To represent the flux profile with the equation, the assumption of the current
profile is used. Assuming the current profile as Fig. 5.1, and the profile is
represented with 4th order equation.

Assuming the following conditions,

j(rp, t) = jp(t) (5.20)

j(0, t) = j0(t) (5.21)

j(a, t) = 0 (5.22)

∂

∂r
j(0, t) = 0 (5.23)

∂

∂r
j(rp, t) = 0 (5.24)

the current profile can be written as follows,

j(r, t) = −kr4+
(
2krp −

2(jp − j0)

r3p

)
r3−

(
kr2p −

3(jp − j0)

r2p

)
r2+ j0 (5.25)

where,

k =
1

a4 − 2rpa3 + r2pa
2

(
−2(jp − j0)

r3p
a3 +

3(jp − j0)

r2p
a2 + j0

)
. (5.26)
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Using the following variable transformation,

jp = (cj + 1)j0 (5.27)

rp = cpa (5.28)

the current profile is written as follows,

j(r, t) =
j0

(1− cp)2

{
−
c3p + 3cjcp − 2cj

a4c3p
r4 +

2(c4p + 2cjc
2
p − cj)

a3c3p
r3

−
c4p + 4cjcp − 3cj

a2c2p
r2 + (1− cp)

2

}
(5.29)

Finally using the normalized variable ρ = r/a, the following function can be
lead,

j(ρ, t) = j0[MA/m2]

(
−
c3p + 3cjcp − 2cj

c3p(1− cp)2
ρ4 +

2c4p + 4cjc
2
p − 2cj

c3p(1− cp)2
ρ3

−
c4p + 4cjcp − 3cj

c2p(1− cp)2
ρ2 + 1

)
= j0[MA/m2](cj1ρ

4 + cj2ρ
3 + cj3ρ

2 + 1) (5.30)

and
cj3 = −(1 + cj1 + cj2) (5.31)

The variables cj, rp, j0 can be changed to cj1, cj2, j0.

5.3.3 Change of the circuit equation

To make the state equation, equation (5.18) is changed from the current
profile equation.

Flux form

From Biot-Savart law, the magnetic flux passing through the Z = 0 and
minor radius r circle made by the plasma current is written as follows,

Φp(r) =
∫ a

0

∫ 2π

0
µ0κj(r

′)r′
√
(R0 + r′cosθ)(R0 − r)

×
{(

2

k
− k

)
K(k)− 2

k
E(k)

}
dθdr′ (5.32)
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where, K(k), E(k) are first and second complete elliptic integral, and

k2 =
4(R0 + r′cosθ)(R0 − r)

(2R0 − r + r′cosθ)2 + r′sin2θ
(5.33)

Using the large aspect approximation, this equation can be changed as fol-
lows,

Φp(r) ≃
∫ a

0

∫ 2π

0
µ0κj(r

′)r′R0

{
ln
(
8R0

δ

)
− 2

}
dθdr′ (5.34)

δ =
√
r2 + r′2 + 2rr′cosθ (5.35)

adn also changed to as follows,

Φp(r) ≃ µ0R0

(
ln
(
8R0

a

)
− 2

)
Ip(t)− κµ0R0

∫ a

0

∫ 2π

0
j(r′)r′ln

(
δ

a

)
dθdr′

(5.36)

The first term of this equation is the function of t, and second term is the
function of t and r. Second term can be changed as follows,

Second term = κµ0R0a
2
∫ 1

0

∫ 2π

0
j(ρ′)ρ′ln(δρ)dθdρ

′ (5.37)

ρ′ = r′/a (5.38)

δρ =
δ

a
=
√
ρ2 + ρ′2 + 2ρρ′cosθ (5.39)

This can’t be solved analytically, thus, consider from other point of view.
The following relationship between the j0 and the Φp can be written approx-
imately,

j(r, t) = − 1

µ0

1

r

∂

∂r

(
r
∂A

∂r

)

= − 1

2πRµ0

1

r

∂

∂r

(
r
∂Φ

∂r

)

= − 1

2πRµ0

1

r

∂

∂r

(
r
∂Φp

∂r

)
(5.40)

and

j(ρ, t) = − 1

2πR0µ0a2
1

ρ

∂

∂ρ

(
ρ
∂Φp

∂ρ

)
(5.41)

After integration, the following form can be written,
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Φp(ρ, t) = −2πRµ0a
2
(
cj1
36
ρ6 +

cj2
25
ρ5 +

cj3
16
ρ4 +

1

4
ρ2 + α(t)

)
j0(t) (5.42)

where α(t) is integral constant. From this equation and eq. (5.36), the
following form can be written,

Φp(ρ, t) = −2πRµ0a
2
(
cj1
36
ρ6 +

cj2
25
ρ5 +

cj3
16
ρ4 +

1

4
ρ2 + α(t)

)
j0(t)

+ µ0R0

(
ln
(
8R0

a

)
− 2

)
Ip(t) (5.43)

and

Ip =
∫ a

0
2πκrj(r)dr = 2πκa2

∫ 1

0
ρj(ρ)dρ

= 2πκa2
(
cj1
6

+
cj2
5

+
cj3
4

+
1

2

)
j0(t) (5.44)

To estimate the α(t), the following boundary condition is used,

Φp(1, t) = µ0R0

(
ln
(
8R0

a

)
− 2 +

li

2

)
Ip (5.45)

From this equation and eq. (5.43), the following relationship can be written,

µ0R0

2
liIp = −2πRµ0a

2
(
cj1
36

+
cj2
25

+
cj3
16

+
1

4
+ α(t)

)
j0(t) (5.46)

and

li = −
2
(
cj1
36

+ cj2
25

+ cj3
16

+ 1
4
+ α(t)

)
κ
(
cj1
6
+ cj2

5
+ cj3

4
+ 1

2

) (5.47)

The internal inductance li can be written from the poloidal magnetic flux
density Bp. Bp can be lead as follows,

j(r, t) =
1

µ0

∇×B =
1

µ0

1

r

∂

∂r
(rBp) (5.48)

and

Bp(ρ, t) = µ0aj0(t)
(
cj1
6
ρ5 +

cj2
5
ρ4 +

cj3
4
ρ3 +

1

2
ρ
)
. (5.49)

From Bp, li can be written as follows,
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li =
2a2

∫ 1
0 ρB

2
p(ρ)dρ

a2B2
p(1)

=
2
∫ 1
0 ρ

(
cj1
6
ρ5 + cj2

5
ρ4 + cj3

4
ρ3 + 1

2
ρ
)2
dρ(

cj1
6
+ cj2

5
+ cj3

4
+ 1

2

)2 (5.50)

Finally, with this equation and eq. (5.47), α(t) can be written as follows,

α(t) = −


κ
∫ 1
0 ρ

(
cj1
6
ρ5 + cj2

5
ρ4 + cj3

4
ρ3 + 1

2
ρ
)2
dρ(

cj1
6
+ cj2

5
+ cj3

4
+ 1

2

) +
cj1
36

+
cj2
25

+
cj3
16

+
1

4


(5.51)

In the case that the typical parameter jp = 2j0, rp = 0.5a are constant,
cj1 = 12, cj2 = −28, cj3 = 15 and

Ip(t)[MA] = 8.32πj0(t) (5.52)

α(t) = −0.7987. (5.53)

To do the first method, this value is used later. To do the second method,
α(t) is linearized around these values and written as follows,

α(t) ≃ ∂α

∂cj1
(cj1 − 12) +

∂α

∂cj2
(cj2 + 28) +

∂α

∂cj3
(cj3 − 15)− 0.7987

= −(0.00378cj1 + 0.0258cj2 + 0.0693cj3 + 0.4346) (5.54)

Then, Φp(ρ, t) can be written as follows,

1

2πRµ0a2
Φp(ρ, t) ≃

[
− 1

36
ρ6 +

κ

6

{
ln
(
8R

a

)
− 2

}
+ 0.00378

]
cj1j0

+
[
− 1

25
ρ5 +

κ

5

{
ln
(
8R

a

)
− 2

}
+ 0.0258

]
cj2j0

+
[
− 1

16
ρ4 +

κ

4

{
ln
(
8R

a

)
− 2

}
+ 0.0693

]
cj3j0

+
[
−1

4
ρ2 +

κ

2

{
ln
(
8R

a

)
− 2

}
+ 0.4363

]
j0

≡
(
α1(ρ) α2(ρ) α3(ρ)

) cj1j0
cj2j0
j0

 (5.55)
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Temperature, and density profile

To determine the plasma resistivity profile and the bootstrap current profile,
the temperature and the density profile is needed. In this research, following
assumption are used,

Te = Ti = T0(t)

(
1− r2

a2

)αT

(5.56)

ne = ni = n0(t)

(
1− r2

a2

)αn

(5.57)

Using these, following relationship can be lead

< n >=
1

πκa2
2πκ

∫ a

0
rn(r, t)dr =

n0

αn + 1
(5.58)

< T >=
1

πκa2
2πκ

∫ a

0
rT (r, t)dr =

T0
αT + 1

(5.59)

N = 2πR× 2πκ
∫ a

0
rn(r, t)dr = 2π2κRa2

n0

αn + 1
(5.60)

W [MJ ] = 2πR× 1.6× 10−222πκ
∫ a

0
r3n(r, t)T (r, t)dr

= 9.6× 10−22π2κRa2
n0T0

1 + αn + αT
(5.61)

In addition, the plasma resistivity is determined as follows,

η = 1.65× 10−9lnΛZeff (Te[kev])
−1.5 = kηT

−1.5
e (5.62)

bootstrap current

In this research, the bootstrap current is formed as follows [2, 91]

jbs = −4.71q(r)
(
R0

r

)0.5 T

B0

(
∂n

∂r
+ 0.04

n

T

∂T

∂r

)
(5.63)

and the safety factor profile is written as follows (the derivation is written
later).

q(ρ, t) =
κBt

Rµ0j0(t)× 106
×
(
cj1
6
ρ4 +

cj2
5
ρ3 +

cj3
4
ρ2 +

1

2

)−1

(5.64)
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Finally, jbs can be written as follows,

jbs(r, t) =
4.71R0.5

Bt

r0.5q(r, t)
2

a2
(αn + 0.04αT )

(
1− r2

a2

)αn+αT−1

n0T0 × 1.6× 10−22

(5.65)

and the unit is MA/m2.

NBI and RF current

The NBI and RF current profile is assumed as follows,

jnbi(ρ, t) = jnbi0(t)exp(−5ρ0.75) (5.66)

jRF = − jRFp
0.3087

(ρ4 + 0.4ρ3 − 1.4ρ2) (5.67)

The NBI current is assumed to be peaked at ρ = 0, and RF current is
assumed to be peaked at ρ = 0.7. The current drive efficient is assumed as
follows,

ICD[MA] = 0.11[A/W ]PCD[MW ] (5.68)

q profile

The safety factor can be derived from the following equations,

j(r, t) =
κBt

Rµ0

1

r

∂

∂r

(
r2

q(r, t)

)
(5.69)

and
j(ρ, t) = j0(t)(cj1ρ

4 + cj2ρ
3 + cj3ρ

2 + 1) (5.70)

Finally, q profile can be written as follows,

q(ρ, t) =
κBt

Rµ0j0(t)× 106
×
(
cj1
6
ρ4 +

cj2
5
ρ3 +

cj3
4
ρ2 +

1

2

)−1

(5.71)

In this case, the position of minimum safety factor can be written as follows
(0.54 < ρmin < 0.74),

ρmin =
3

4cj1

−3

5
cj2 −

√
9

25
c2j2 −

4

3
cj1cj3

 (5.72)
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5.4 The particle and the energy modeling

The differential equations of the plasma energy and the particle is written as
the same form of previous chapters.

d

dt

(
N
W

)
= −N

τp
− n2

2
< σv > V +Npuff

−W
τe

+ Eα

4
n2 < σv > V − CBn

2
20T

1/2
10 V + PNBI + PRF


(5.73)

5.5 First method controller design

5.5.1 The state equation

j0 differential equation

Determining the typical parameter jp = 2j0, rp = 0.5a are constant, then
cj1 = 12, cj2 = −28, cj3 = 15 and the diffusion equation can be written as
follows,

f0(ρ)
d

dt
j0(t) ≃ −2πR

(
T−1.5
0 (t)j0(t)f1(ρ)−

n0T
−0.5
0

j0
f2(ρ)

− T−1.5
0 (t)PNBI(t)f3(ρ)− T−1.5

0 (t)PRF (t)f4(ρ)
)

(5.74)

where

f0(ρ) = −2πRµ0a
2
(
1

3
ρ6 − 28

25
ρ5 +

15

16
ρ4 +

1

4
ρ2 − 0.7987

)
+ 8.32πµ0R0

(
ln
(
8R0

a

)
− 2

)
(5.75)

f1(ρ) = kη(1− ρ2)−1.5αT (12ρ4 − 28ρ3 + 15ρ2 + 1) (5.76)

f2(ρ) = 1.6×10−28(1−ρ2)αn−0.5αT−1(αn+0.04αT )
9.42κkηρ

0.5

R0.5µ0a1.5

(
2ρ4 − 28

5
ρ3 +

15

4
ρ2 +

1

2

)−1

(5.77)

f3(ρ) = 0.11kη(1− ρ2)−1.5αT exp
(
−5ρ0.75

)
(5.78)

f4(ρ) = −0.02676kη(1− ρ2)−1.5αT (ρ4 + 0.4ρ3 − 1.4ρ2) (5.79)
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In this case, ΦCS is assumed 0.
Integrating this equation with r, the approximated differential equation

of j0 can be lead. Defining the following coefficient,

C1 = 2πR

∫ 0.95
0 f1(ρ)dρ∫ 0.95
0 f0(ρ)dρ

(5.80)

C2 = 2πR

∫ 0.95
0 f2(ρ)dρ∫ 0.95
0 f0(ρ)dρ

(5.81)

C3 = 2πR

∫ 0.95
0 f3(ρ)dρ∫ 0.95
0 f0(ρ)dρ

(5.82)

C4 = 2πR

∫ 0.95
0 f4(ρ)dρ∫ 0.95
0 f0(ρ)dρ

(5.83)

the differential equation can be written as follows,

d

dt
j0(t) ≃ −C1T

−1.5
0 (t)j0(t) + C2

n0T
−0.5
0

j0
+ C3T

−1.5
0 (t)PNBI(t) + C4T

−1.5
0 (t)PRF (t) (5.84)

qmin

Using this assumption, the qmin can be written as follows,

rmin = 1.2876 (5.85)

qmin = 1.1067
κBt

Rµ0

× 1

j0 × 106
(5.86)

Pfus and < ne >

The fusion power and the plasma density are defined as follows,

Pfus =
5EαN

2

4V
< σv > (5.87)

< ne >=
N

V
(5.88)
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The state equation of the first method

Finally, the state equation can be written as follows,

d

dt

 j0
N
W

 = A0

 j0
N
W

+B0

 Pnbi
PRF
Npuff

 (5.89)

 qmin
Pfus

< ne >

 = C0

 j0
N
W

 (5.90)

The equilibrium point is used as follows,

x0 =

 0.3488MA/m2

6.0333× 1022

312.0219MJ

 , u0 =

 23.0219MW
30.0219MW

0.4503× 1022/sec

 , y0 =

 3.8105
403.9781MW

7.7028× 1019/m3


(5.91)

Other input parameter set is as follows [76],

αT = 3, αn = 0.1 (5.92)

Zeff = 2.07, lnΛ = 20, κ = 1.85 (5.93)

R = 6.35m, a = 1.85m, Bt = 5.18T (5.94)

HH = 1.57,
τp
τe

= 5 (5.95)

5.5.2 Controller design and the result

Using the same method of the pole placement PI control in Chapter 3, the
controller is designed. the pole is used as follows,

pole = ( −1 −1 −1 −0.1 −0.1 −0.1 ) (5.96)

In this case, Kp and Ki are determined as follows,

Kp = 103×

 2.2714 0.0013 0.0439
−2.3579 −0.0003 −0.0118
−0.0003 0.0000 0.0009

 , Ki =

 218.7891 0.1413 3.1150
−218.7891 −0.0384 −0.8461

0 0.0003 0.0844


(5.97)

The simulation result is shown in Fig. 5.2. The qmin follows the target
value (the green dashed line), and the fusion power and the density are kept
constant at the same time. To keep the fusion power constant with the change
of the qmin, the ratio of the NBI power and the RF power are changed.
In chapter 3, chapter 4 and this case, the number of controlled parameters
and that of actuators are same, i.e, the system is 3 inputs and 3 outputs. In
next section, the case that they are different is discussed.

108



Figure 5.2: The result of the profile control simulation with first method

5.6 Second method controller design

The differential equation of Φp derived in previous section is formed as fol-
lows,

∂Φp(ρ, t)

∂t
= f(ρ, t) (5.98)

This equation can be divided approximately with the basis function as Fig.
5.3

2∑
k=0

Φ̇p(0.33k, t)ϕk(ρ) =
2∑

k=0

f(0.33k, t)ϕk(ρ) (5.99)

In this case, the number of the profile parameter is three (i.e. j0, cj1 and
cj2), for this reason, it seems to be suitable to use three basis functions. The
basis functions shown in Fig. 5.3 are not orthogonal function, but they are
linearly independent.

Thus, the following differential equations can be written,

d

dt
Φp(0.33k, t) = f(0.33k, t) (k = 0 · · · 2) (5.100)
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From eq. (5.55), the differential equations can be written as follows, α1(0) α2(0) α3(0)
α1(0.33) α2(0.33) α3(0.33)
α1(0.66) α2(0.66) α3(0.66)

 d
dt

 cj1j0
cj2j0
j0



≃ 1

2πRµ0a2

 f(0, t)
f(0.33, t)
f(0.66, t)


(5.101)

From this equation, the following differential equation be written,

d
dt

 cj1j0
cj2j0
j0



=
1

2πRµ0a2

 α1(0) α2(0) α3(0)
α1(0.33) α2(0.33) α3(0.33)
α1(0.66) α2(0.66) α3(0.66)


−1 f(0, t)

f(0.33, t)
f(0.66, t)


(5.102)

Figure 5.3: The basis function used to divide the equations

5.6.1 The state equation

From the second method, the following linear state equation can be written,

d

dt


cj1j0
cj2j0
j0
N
W

 = A0


cj1j0
cj2j0
j0
N
W

+B0


Pnbi
PRF
Npuff

Φ̇CS

 (5.103)
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
Ip
rmin
qmin
Pfus
ne

 = C0


cj1j0
cj2j0
j0
N
W

 (5.104)

In this case, this state equation can be written as following state feedback
form,

d

dt
y = C0A0C0

−1y +C0B0u (5.105)

The equilibrium point is used as follows,

x0 =


−0.0317
−1.8640
0.5278

5.5054× 1022

290.7816[MJ ]

 ,u0 =


4.425[MW ]
45.575[MW ]

0.4057× 1022/sec
−0.0054× 10−7[Wb/sec]

 ,y0 =


9.0627[MA]

0.6046
3.9269

337.0793[MW ]
6.9370× 1019[m−3]


(5.106)

5.6.2 Controller design

In this case, the number of controlled parameters is larger than that of ac-
tuators. Thus, they are not controllable. In this research, optimum control
theory is used. In the optimum control theory, the feedback gain is deter-
mined to minimize the evaluation function as follows,

J =
∫ ∞

0
[xtQx+ utRu]dt (5.107)

where QandR are weight functions. Then, the feedback gain F（i.e. the F
used as u = −Fx）is determined as follows,

F = R−1BtP (5.108)

where P is the answer of the following riccati equation,

PA+AtP−PBR−1BtP+Q = 0 (5.109)

In this simulation, the following 2 weight function and the feedback gain sets
are used,
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Case1

R = diag(1, 1, 1, 10) (5.110)

Q = diag(1000, 10, 10, 0.001, 0.1) (5.111)

and

F =


5.0878 −13.3675 3.8563 0.0023 0.0537
5.0616 −2.5062 2.0369 0.0025 0.0572
4.7531 3.1651 0.4125 0.0056 0.9247
−9.4882 1.3300 0.0540 −0.0004 −0.0113

 (5.112)

Case2

R = diag(1, 1, 1, 10) (5.113)

Q = diag(100, 10, 10, 0.001, 0.1) (5.114)

and

F =


2.2834 −10.9948 3.1230 0.0023 0.0527
1.5119 −1.6294 1.5686 0.0024 0.0556
3.7898 2.9066 0.3119 0.0055 0.9239
−2.8173 0.3696 0.5176 −0.0003 −0.0085

 (5.115)

5.6.3 Result

The simulation results are shown in Fig. 5.4 and Fig. 5.5. In Fig. 5.4, the
target value of the qmin is changed, and the qmin follows to the target value.
Ip and Pfus are kept nearly constant at the reference values. The reference
error of the ρmin and the < ne > is larger than other three parameters. In
Fig. 5.5, because of the change of the weight function, the reference error
of the < ne > becomes smaller. To find the suitable weight function is the
future work.

5.7 Summary

In this chapter, the controller design for the current profile control is dis-
cussed, and the test simulation of the profile control is demonstrated. For
the future reactor, the controller for the situation that the number of the
controlled parameters are larger than that of the actuators will be needed.
In this chapter, the example of the control simulation in such a situation is
also demonstrated. The next issue is to check the effectivity of the method
in this chapter with the experiment or the strictly simulation code.
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Figure 5.4: The profile control result with second method (case1)
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Figure 5.5: The profile control result with second method (case2)

114



Chapter 6

Conclusion

For the future fusion reactor operation, the core plasma control is one of
the most important issue, and there are some subjects to be resolved. For
example, multiple parameters have to be controlled simultaneously, and the
actuators are not one-to-one correspondence to the parameters. In addition,
the actuators and the diagnostics, which can be installed, will be limited
because of the high neutron and heat flux. Thus, the discussion about what
parameters have to be controlled, and what devices can be installed is quite
important. While, since the future fusion reactor system is not fully estab-
lished, flexible control system should be considered for various applications.
The purpose of this research is to suggest the basic policy of the future reactor
controller design which has the broad utility.

Chapter 2 discuss on the PID controller design based on the response char-
acteristics of the fusion core plasma. In industrial world, the most broadly
used controller is, in general, the PID controller which is designed from the
response characteristics, and it is same in plasma experiments. In the PID
theory, the actuator is defined as the linear sum of the proportional, integral
and differential values of the difference between the target value and the con-
trolled value. The controller is designed by adjusting the each coefficient. For
PID controller design, the useful method of the adjusting from the response
characteristics exists. In this method, the physical model of the controlled
system is not necessary. This is the reason that the PID theory is popular.
This method, however, is for SISO (Single-Input Single-Output) system. The
future reactor plasma is MIMO (Multi-Input Multi-Output) system, thus, it
is not clear that the method is suitable or not for the plasma control. In this
research, it is examined that this method is suitable for the plasma control
with the one-dimensional plasma simulation. In this simulation, the fusion
power and the minimum q-value are controlled by the NBI and the gas-puff.
In this case, 3 gain matrices∈ R2×2 have to be adjusted. To control the
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parameters, the adjustment requires the considerable try and error. In the
future reactor, more parameters have to be controlled, thus, it seems to be
unsuitable to design the PID controller from the response characteristics.

Chapter 3 shows the possibility that the multiple plasma parameters in
the future reactor which have the large coupling effect can be controlled in-
dependently with the modern control theory. The modern control theory
based on the physical model is applicable for the MIMO system. The physi-
cal model is, in general, expressed with the time differential equation, which
is called state equation. In this chapter, the zero-dimensional plasma model
is established from the plasma energy, momentum, and particle conservation
law, and the 3-inputs 3-outputs control simulation with the model is demon-
strated. In this simulation, the plasma current, the fusion power and the
plasma density are controlled by the NBI, the ohmic current and the gas-
puff. The control system is formed with PI controller, and each coefficient
matrices are determined from the 0-D model with the pole placement method.
The controller shows the high servo performance and the disturbance inhibit-
ing performance. This result shows the effectiveness of the modern control
theory.

Chapter 4 shows the applicability of the H-infinity control theory for the
reactor control, especially paying attention to the possibility that the appro-
priate adjusted PI controller can have enough robust and servo performance.
In the modern control theory, the physics model is needed but the plasma
physics is quite complex. Thus, when the approximation model for the con-
troller design is made, the effect of the difference between the real plasma
and the model might be large. The post modern control theory or the robust
control theory is made in 1980’s for these situations. In the robust control
theory, the effect of the model difference is dealt as the disturbance, and the
controller is designed to minimize the effect of this. For these reasons, the
robust control theory is expected to the most suitable method for the fusion
reactor. In this chapter, the controller is designed with the H-infinity control
theory which is one of the typical robust control theory. The control simula-
tion with this controller shows the higher robust and servo performance than
previous chapter. Next, the comparison of the H-infinity control and the PI
control is demonstrated. In this case, the PI controller is re-adjusted to fit
the diagonal low frequency band of the bode diagram of the PI controller to
that of H-infinity controller. In this comparison, the PI controller and the H-
infinity controller show the almost same performance. This result shows the
possibility that the PI controller can show the enough robust performance.
In this study, however, the concrete model difference or uncertainty of the
system is not estimated. The controller design with the estimated model
uncertainty is the future issue.
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Chapter 5 suggests the basic policy for the plasma profile control. For the
future reactor, plasma parameter profile should be controlled for the plasma
stability. To use the modern or the post modern control method, the physical
model have to be expressed as the time differential equation, but the model
including the profile information is the time and space differential equation.
In this study, two methods to make the state equation for the profile control
have been suggested. The first method is to assume the parameter profile
perfectly, and make the one profile parameter time differential equation. For
example, assuming the current profile, and the time differential equation of
the minimum q-value can be made. With this method, however, the multiple
profile parameters can ’t be controlled, for example, the minimum q-value
and its location can ’t be controlled simultaneously. The second method is
to assume the parameter profile with some well-known function, and divide
the equation with the base functions. For example, assuming the current
profile as the 4th order polynomial and using the base functions, the time
differential equation of each coefficient of the polynomial can be gotten. In
the second method, the number of the controlled parameters is depend on
the profile assumption and the choice of the base functions. Thus, in most
case, the number of the controlled parameters is larger than the number of
the actuators. In this case, the system is uncontrollable, i.e. the controller
can ’t make all parameters to the target values. Thus, in this study, the
use of the optimal controller is suggested. The optimal control theory is one
of the modern control theory, and the controller is designed to minimize the
some evaluate function such as the summation of the reference errors. In this
chapter, 4 inputs and 6 outputs simulation is demonstrated with the optimal
control theory, and the possibility of the future profile control is shown.

In this research, the prototype control algorithms for the plasma MIMO
control in the future reactor (i.e. MIMO PI controller, H-infinity controller
and the profile controller) are designed and the benchmark of these controllers
are carried out with the 0-D and 1-D plasma simulation. Although the
controller design with the estimated model uncertainty, or the confirmation
of the effectivity of this method with the 1-dimensional simulation or the
experiment is the future issue, these simulations suggests the effectivity of
the modern control theory and the robust control theory for the future reactor
control. The controller design method used in this research is expected to be
applied to the future reactor.
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