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Abstract

In this dissertation, probabilistic aircraft conflict detection and resolution algorithms

in the presence of uncertainties are proposed. In order to accommodate the increasing

air traffic and alleviate the workload of air traffic controllers, the proposed conflict

detection and resolution algorithms can provide the automated advisories and conflict

resolution trajectories for the air traffic controllers and pilots and have a potential to

ultimately replace the tasks of the air traffic controllers. First, a spatially correlated

wind model is used to describe the wind uncertainty, which is the primary uncertainty

compared to other possible uncertainties such as navigation errors and pilots’ intents.

On the basis of stochastic aircraft dynamics containing the uncertainty, a proba-

bilistic conflict detection algorithm using the polynomial chaos expansion method is

proposed. The polynomial chaos expansion algorithm can quantify uncertainties in

complex nonlinear dynamical systems with high computational efficiency. In addition,

a numerical algorithm that incorporates the polynomial chaos expansion algorithm

into the pseudospectral method is proposed to solve the conflict resolution problem

as the stochastic optimal control problem. The stochastic optimal control method is

combined with the proposed conflict detection algorithm to solve the conflict resolu-

tion problem under the wind uncertainty. Moreover, a stochastic near-optimal control

method is proposed to generate conflict resolution trajectories and maneuvers in real

time without actually solving the computationally expensive stochastic optimal con-

trol problems. The proposed near-optimal conflict resolution algorithm is based on

a surrogate modeling technique called polynomial chaos kriging, which is used to

construct the surrogate models of the optimal conflict resolution trajectories from a

set of precomputed optimal solutions. The near-optimal conflict resolution trajec-
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tories can be accurately generated in real time from the surrogate models with the

information of current conditions (e.g., current states). The proposed near-optimal

conflict resolution algorithm has the feature of optimal feedback control. When the

states on the precomputed optimal trajectory deviate from the actual states due to

the uncertainties, the proposed near-optimal feedback control method can accurately

generate the near-optimal trajectory starting from the actual states in real time with-

out solving another stochastic optimal control problem to obtain the correct optimal

trajectory. Through illustrative aircraft conflict detection and resolution examples,

the performance and effectiveness of the proposed conflict detection and resolution

algorithms are evaluated and demonstrated.
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Chapter 1

Introduction

1.1 Motivation

More than a century has passed since the Wright brothers, Orville and Wilbur Wright,

invented and flew the first powered aircraft Wright Flyer in 1903, and it has been a

century since the first scheduled commercial airline flight took off with one passen-

ger on January 1, 1914. Starting from one passenger, one aircraft and one route in

January 1914, approximately 3.3 billion passengers flew with a fleet of about 25000

aircraft on almost 50000 routes in 2014 [1]. During the first century of commercial

flight, aviation has dramatically transformed the world around us (e.g., the economic,

social and cultural life) and has become an essential means of transportation. Accord-

ing to the International Civil Aviation Organization (ICAO) [2], an average annual

air traffic growth rate is approximately 4.6 % over the past 15 years and expected to

be about 4.5 % until 2030, and the air traffic demand is expected to double every 15

years.

The air traffic management (ATM) system is of vital importance for ensuring

safety of air transportation. Despite many scientific and technological advances such

as the flight management system (FMS), global positioning system (GPS) and au-

tomatic dependent surveillance-broadcast (ADS-B), the current ATM system has a

centralized (mostly human-operated) architecture. In the current ATM system, air

traffic controllers are ultimately responsible for safety, and the achievable capacity of
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the ATM system is limited due to the human-operated nature of the ATM system.

Since the air traffic has been growing rapidly over the past decades, the current ATM

system is under considerable stress. To accommodate the increasing air traffic, ICAO

published a new operational concept of global ATM in 2005 [3]. In order to sup-

port the new era of air transportation and the second century of commercial flight,

the Next Generation Air Transportation System (NextGen) [4], the Single European

Sky ATM Research (SESAR) [5] and the Collaborative Actions for Renovation of Air

Traffic Systems (CARATS) [6] are currently ongoing programs in the United States,

Europe and Japan, respectively. These new ATM programs are aimed at harmonizing

air traffic operations, reducing the heavy workload of the air traffic controllers and im-

proving the safety, efficiency, capacity and environmental impact of the current ATM

system. Some concepts of these ATM programs have already been implemented, and

various research and development activities are still in progress. Unlike the centralized

architecture of the current ATM system, the future ATM system has the decentral-

ized architecture so that aircraft (pilots) can take over some ATM tasks from the

air traffic controllers on the ground by sharing the information between aircraft. By

introducing the automated ATM system to assist and ultimately replace the tasks of

the air traffic controllers, it is believed that the performance and efficiency of the ATM

system can be improved and the tasks of the air traffic controllers can be simplified

and alleviated. Accordingly, the automated tools will allow the air traffic controllers

to handle the increasing air traffic demand and possibly enhance the safety level.

The primary concern of the ATM system and the air traffic controllers is to guar-

antee safety, and one of the major safety critical situations is an aircraft midair

conflict when two or more aircraft experience a loss of the minimum allowed separa-

tion. In order to ensure safety, there are two important procedures to avoid a midair

conflict: conflict detection and conflict resolution. Aircraft trajectories are predicted

to identify potential conflicts in the conflict detection phase, and conflict resolution

strategies are provided to avoid the predicted potential conflicts in the conflict res-

olution phase. Therefore, in this study, we focus on the aircraft conflict detection

and resolution problem and propose the automated conflict detection and resolution
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tools to support the air traffic controllers and provide the pilots with the automated

advisories and conflict resolution trajectories to avoid potential conflicts.

1.2 Literature Review

Many approaches have been proposed for conflict detection and resolution, and most

of the existing conflict detection and resolution algorithms can be categorized into two

classes: deterministic and probabilistic approaches [7]. In the deterministic conflict

resolution approaches, an artificial potential field algorithm [8] and game theory [9,10]

are used to determine conflict resolution maneuvers. Global optimization approaches

such as convex optimization [11] and mixed integer linear programming [12–14] are

also employed for deterministic conflict resolution. In addition, model predictive

control algorithms [15, 16] are proposed for determining optimal conflict resolution

trajectories. Other optimization-based approaches [17–19] and protocol-based ap-

proaches [20–22] in a deterministic setting have also been proposed up to now. Many

deterministic approaches mentioned above are well suited to real time applications for

conflict resolution. In reality, however, aircraft fly in the presence of various uncer-

tainties such as meteorological prediction errors, navigation errors and pilots’ intents,

and the deterministic approaches cannot provide robust conflict resolution trajecto-

ries at all under uncertain environments during the flight. Since aircraft trajectory

prediction is inexact due to various uncertainties during the flight and the accuracy

of aircraft trajectory prediction is significantly influenced by the uncertainties, it is of

vital importance to take into account the effects of uncertainties on conflict detection

and resolution. However, it makes the problem more complicated and computation-

ally intensive to consider uncertainties.

In a probabilistic setting, the research efforts have concentrated mainly on con-

flict detection rather than on conflict resolution due to the complexity of stochastic

dynamical models to quantify the effects of possible control inputs. For probabilistic

conflict detection in the presence of uncertainties, probabilistic aircraft dynamical

models incorporating uncertainties are used to predict future aircraft positions. As
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the probabilistic aircraft motion model, the empirical distribution model that simply

projects the current position of aircraft into the future is developed [23–27]. The dy-

namical model using stochastic differential equations is also proposed to incorporate

the uncertainties into the aircraft dynamics [28, 29]. In addition, the probabilistic

aircraft motion model based on the hybrid systems is developed to combine the con-

tinuous aircraft dynamics with the discrete aircraft’s intent information such as flight

plans [30, 31]. Using the probabilistic aircraft dynamical model, the conflict proba-

bility between aircraft is estimated to detect potential conflicts within a look ahead

time horizon. Moreover, the probabilistic conflict resolution problem is often for-

mulated as a stochastic optimal control problem to determine the optimal conflict

resolution trajectory in the presence of uncertainties during the flight. In the previ-

ous works, the probabilistic conflict resolution approaches are commonly based on the

time-consuming statistical methods such as Monte Carlo simulation [28], a Markov

chain Monte Carlo framework [32] and Bayesian optimal design with the sequential

Monte Carlo method [33]. Subliminal controller [34] and reachability analysis [35]

with Monte Carlo simulation are also applied for probabilistic conflict resolution. In

order to speed up stochastic simulations, computationally expensive sequential Monte

Carlo optimization is implemented on graphics processing units (GPUs)1 in the pre-

vious works [36, 37]. Although the computational cost can be drastically reduced by

using Monte Carlo methods implemented on GPUs [38,39], it depends completely on

GPU computing. Furthermore, instead of the time-consuming Monte Carlo meth-

ods, the stochastic optimal control problem for conflict resolution is also solved by

a Markov chain approximation and the Jacobi iteration [40]. However, as with the

probabilistic conflict resolution algorithms mentioned above, the problem becomes

intractable for the high-dimensional continuous state space and a large number of the

discrete states.

1The use of GPUs has become popular for scientific computing because of their massively parallel
processors, though GPUs are originally developed as the dedicated graphics cards for real time
graphics rendering.

4



1.3 Research Objectives and Scope

Conflict detection and resolution is currently performed at three different levels de-

pending on look ahead time horizons: long, medium and short terms. Long term

conflict detection and resolution is usually referred to as air traffic flow management

and performed for an entire airspace, over a time horizon of several hours. Long term

conflict detection and resolution is performed before take-off and aimed at scheduling

of aircraft routes and determining nominal flight plans. Medium term conflict detec-

tion and resolution is carried out by the air traffic controllers, over horizons of several

tens of minutes. The main purpose of medium term conflict detection and resolution

is to modify the preplanned flight plans in order to ensure safety and resolve potential

conflicts. Short term conflict detection and resolution is also carried out by the air

traffic controllers or on board the aircraft by the FMS, over horizons of seconds to

minutes; the short term conflict alert (STCA) system [41] on the ground and the

traffic alert and collision avoidance system (TCAS)2 [43] on board the aircraft belong

to this category.

In this dissertation, we propose novel probabilistic conflict detection and resolu-

tion algorithms in the presence of uncertainties, and focus on the short and medium

terms (10–15 min look ahead time horizon) conflict detection and resolution problem

especially for two kinds of conflicts: aircraft–aircraft and aircraft–weather3 conflicts.

The proposed conflict detection and resolution algorithms can provide the automated

advisories and conflict resolution trajectories for the air traffic controllers and pilots

and have a potential to ultimately replace the tasks of the air traffic controllers. On

the basis of a stochastic dynamical model that takes into account uncertainties during

flight, the possibility of future conflicts is evaluated. The proposed conflict detection

algorithm allows the pilots and air traffic controllers to make a decision in real time on

whether potential conflicts will occur within a look ahead time horizon. When the po-

tential conflicts are detected by the conflict detection algorithm, the optimal conflict

2Research and development of airborne collision avoidance system X (ACAS X) [42] is currently
underway to replace TCAS. ACAS X uses a probabilistic aircraft dynamical model in order to
consider uncertainties during flight.

3A moving convective weather region that should be avoided is considered.
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resolution strategy for an aircraft is determined to avoid other aircraft and a mov-

ing convective weather region by the conflict resolution algorithm. In particular, to

make suitable for the practical applications of the ATM system, we propose a novel

stochastic near-optimal control method to generate conflict resolution trajectories

and maneuvers in the presence of uncertainties in real time without actually solving

stochastic optimal control problems. The proposed near-optimal conflict resolution

algorithm enables the pilots to determine optimal conflict resolution trajectories and

maneuvers in real time based on the information of current conditions obtained from

onboard equipment such as ADS-B.

As to the uncertainties during the flight, various uncertainties such as the meteoro-

logical prediction error, navigation errors and pilots’ intents were studied in the previ-

ous works [23–28,30–32,34,35]. Among the various uncertainties, the wind prediction

error was considered as the primary uncertainty because it has significant influence

on the aircraft trajectory compared to other possible uncertainties. In this study,

the wind prediction error, especially the spatially correlated wind error [29, 30, 44],

is considered because the wind correlation usually has a significant effect on the tra-

jectories of aircraft that are close to each other, and therefore conflict detection and

resolution [30]. However, the aircraft dynamics containing the spatially correlated

wind prediction error become complex because of the complicated stochastic mod-

els, and nonlinear optimal control problems for such complex dynamical systems are

challenging to solve and require sophisticated optimization approaches. In this study,

we propose a novel probabilistic conflict detection algorithm by employing the poly-

nomial chaos expansion (PCE) method [45–47], which can quantify uncertainties in

the complex nonlinear dynamical systems with high computational efficiency. To

detect potential conflicts, the conflict probability between aircraft is estimated by

the probabilistic conflict detection algorithm based on the PCE method. For the

conflict resolution problem, we apply the pseudospectral method [48–50], which can

solve deterministic nonlinear optimal control problems effectively. A numerical al-

gorithm incorporating the PCE method into the pseudospectral method is proposed

to deal with stochastic elements and solve the challenging stochastic optimal control
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problems. The stochastic optimal control method is combined with the probabilis-

tic conflict detection algorithm to guarantee the resolution of potential conflicts in

the presence of uncertainties. Moreover, inspired by a spatial statistical approach

for synthesizing near-optimal feedback controllers [51,52], we propose a near-optimal

conflict resolution algorithm based on a recently developed surrogate modeling tech-

nique called polynomial chaos kriging [53]. The surrogate model, also known as the

response surface model and metamodel, can mimic the input-output behavior of an

original simulation, and an output can be obtained from a certain input without

actually executing the original simulation. Polynomial chaos kriging is a recently de-

veloped hybrid algorithm based on two surrogate modeling techniques: PCE [45–47]

and kriging [54,55]. In the previous work [53], the performance of the hybrid polyno-

mial chaos kriging algorithm is demonstrated using analytical benchmark functions,

and polynomial chaos kriging generally performs better than PCE or kriging does. In

this study, we apply the polynomial chaos kriging method to the practical engineering

problem, i.e., the optimal control problem for conflict resolution. By using the poly-

nomial chaos kriging method, the surrogate models of the optimal conflict resolution

trajectories are constructed from a set of the precomputed optimal solutions. The

near-optimal conflict resolution trajectories in the presence of uncertainties can be

accurately estimated in real time from the surrogate models with the information of

current conditions (e.g., current states) without actually solving the computationally

expensive stochastic optimal control problems. The proposed near-optimal conflict

resolution algorithm has the feature of optimal feedback control. When the states on

the precomputed optimal trajectory deviate from the actual states due to the uncer-

tainties, our proposed near-optimal feedback control method can accurately generate

the near-optimal trajectory starting from the actual states in real time without solving

another stochastic optimal control problem to obtain the correct optimal trajectory.

In order to consider more general conflict resolution problem, as to the uncertainties,

the airspeed measurement error and the uncertainty contained in the moving con-

vective weather region are considered as well as the spatially correlated wind error

for the near-optimal conflict resolution problem. Through numerical simulations, we
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demonstrate that the proposed probabilistic conflict detection and resolution algo-

rithms can provide the automated advisories and conflict resolution trajectories for

the air traffic controllers and pilots in real time.

1.4 Organization of Dissertation

The paper is organized as follows. Chapter 2 presents the stochastic aircraft dynam-

ics and the probabilistic conflict detection algorithm employing the PCE method. In

Chapter 3, the stochastic optimal control method for conflict resolution is developed.

In Chapter 4, the surrogate modeling technique is introduced to generate near-optimal

conflict resolution trajectories in real-time. In Chapter 5, the aircraft conflict detec-

tion and resolution problem is formulated and solved. Through numerical simulations,

the effectiveness and performance of the probabilistic conflict detection and resolution

algorithms are evaluated and demonstrated. The dissertation ends with conclusions

and future research directions in Chapter 6.
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Chapter 2

Probabilistic Conflict Detection

In this chapter, we introduce the stochastic aircraft dynamics including spatially

correlated wind uncertainty, and propose a conflict detection algorithm based on the

PCE method.

2.1 Stochastic Aircraft Dynamics

We consider the aircraft midair conflicts in the two-dimensional horizontal plane in

which the aircraft coming from different directions merge to the waypoint. Note that

though merging operations are considered for illustration, the proposed algorithm can

be applied to any phase of flight. The aircraft dynamics are given by the following

point mass model with three state variables x = (x, y, ψ)T and one control variable

u:

ẋ =
v cosψ + wx

3600
(2.1)

ẏ =
v sinψ + wy

3600
(2.2)

ψ̇ = u (2.3)

where x and y are the Cartesian coordinates in nautical miles (nmi); ψ is the heading

angle; v is the true airspeed in knots (kt); wx and wy are the stochastic wind veloc-

ities in knots (kt) in the x and y directions, respectively; and the constant values in
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Eqs. (2.1) and (2.2) are the unit conversion factors. As to the wind uncertainty, the

wind model contains the deterministic and stochastic components. The deterministic

wind component represents the meteorological predictions, e.g., the periodical me-

teorological prediction data provided by the Japan Meteorological Agency in Japan

and the rapid update cycle data from the National Oceanic and Atmospheric Ad-

ministration in the United States. The effects of the deterministic wind component

on the aircraft trajectory can be known a priori because the meteorological predic-

tion data can be obtained and considered for the aircraft trajectory prediction ahead

of time. In this study, the deterministic component representing the meteorological

prediction is ignored and set to zero for simplicity, because we are interested in the

effects of the stochastic nature of the wind model. The wind model accounts for only

the stochastic component, i.e., the wind prediction error representing the uncertainty

in the deterministic meteorological prediction. Thus, the wind velocities wx and wy

are referred to the wind prediction errors. The meteorological predictions and wind

errors are slowly changing with time in reality. Thus, the wind error is assumed to

be time-invariant, because the time horizon for conflict detection and resolution con-

sidered in this study is short (approximately 10 min) and the temporal change in the

wind error is small [40].

In order to describe the wind errors realistically, the spatially correlated wind

model is considered, because the wind correlation usually has a significant effect on

the trajectories of aircraft that are close to each other and therefore conflict detection

and resolution. From the correlated wind model [30], which is constructed based on

the comparison between the real historical air traffic data and wind forecast data [44],

wx(x, y) and wy(x, y) are assumed to be Gaussian random processes with zero mean

and the following exponential covariance function:

C ((x, y), (x′, y′)) = σ2
w exp (−µx|x− x′|) exp (−µy|y − y′|) (2.4)

where σw is the standard deviation of the wind error and set to 5.35 m/s (= 10.40 kt)

[30,56]; and the parameters µx and µy are set to the same value of 1/182 nmi−1 [30,44].
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σw is determined based on the comparison between the real historical wind forecast

data and aircraft reports collected by the aircraft communications, addressing, and

reporting system (ACARS) observations in the previous work [56]. Note that σw is

estimated in consideration of the errors in the ACARS observations [57], and the

ACARS observation errors and wind forecast errors are independent at the time of

their observations. As the distance difference increases, the correlation described in

Eq. (2.4) decays exponentially. The Gaussian random processes wx(x, y) and wy(x, y)

are approximated as a linear combination of deterministic functions multiplied by

independent random variables using the Karhunen–Loève (KL) expansion [62,63]:

wx(x, y) =

NKL∑
i=1

(√
λigi(x, y)Xx,i

)
(2.5)

wy(x, y) =

NKL∑
i=1

(√
λigi(x, y)Xy,i

)
(2.6)

where Xx,i and Xy,i (i = 1, . . . , NKL) are the independent standard Gaussian random

variables; NKL is the number of independent random variables for each of wx(x, y) and

wy(x, y); and λi and gi(x, y) (i = 1, . . . , NKL) are the eigenvalue and eigenfunction of

the following integral equation in descending order of the magnitude of the eigenvalue

λi, respectively:

λigi(x, y) =

∫
D

C ((x, y), (x′, y′)) gi(x
′, y′)dx′dy′

where x and y are defined over a given domain D. Thus, the wind error is repre-

sented as the spatially correlated wind error with the finite number of independent

random variables by using the KL expansion, and it makes the differential equations

in Eqs. (2.1) and (2.2) more manageable. (See Appendix A and [63] for more detailed

discussion of KL expansion.)

Various statistical wind models representing the wind errors are proposed and

mostly based on Gaussian random processes [30, 44, 58, 59]. The Gaussian process

model for the wind uncertainty [30] is widely used in ATM research such as air-
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craft trajectory prediction [60, 61] and conflict detection and resolution [30, 33–35].

However, to the best of the author’s knowledge, there is no conclusive experimen-

tal evidence to support this assumption, and it is obviously required to demonstrate

the validity of the wind model in future work. In addition, other wind models with

different probability distributions may be also needed for specific weather conditions

and terrains. We would like to note that our proposed algorithm can be extended to

these cases because it is based on the PCE method that can deal with the stochastic

models with various distributions.

A conflict between aircraft is defined as a situation where two or more aircraft

experience a loss of the minimum required separation established by ICAO [64]. Com-

puting the distance between each pair of aircraft, we can identify the potential con-

flicts. To avoid the conflict, the two aircraft need to satisfy the following safety

constraint:

dHmin ≤ Lij =
√
(xi − xj)2 + (yi − yj)2 (∀i, j ∈ {1, . . . , Na} : i < j) (2.7)

where the subscript i and j denote the ith and jth aircraft; Na is the total number

of aircraft; dHmin is the horizontal separation requirement; and Lij is the horizontal

distance between the ith and jth aircraft. Note that the shortest distance between

aircraft and the convective weather region is computed for the aircraft–weather con-

flict. The aircraft positions x and y in Eq. (2.7) become random variables because

Eqs. (2.1) and (2.2) contain the stochastic terms wx and wy. Since x and y are random

variables, the horizontal distance between aircraft L given by Eq. (2.7) also becomes

a random variable. Since there is not a simple closed-form expression for L, it can

only be computed numerically. In this study, we propose a novel conflict detection

algorithm based on the computationally efficient PCE method to calculate L. To

detect potential conflicts, L is computed by the PCE algorithm, which is described

in more detail in Section 2.2, and therefore the conflict probability between aircraft

can be estimated as described in Section 2.3.
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2.2 Polynomial Chaos Expansion

Wiener first introduced the homogeneous chaos, also known as the Hermite chaos, and

used Hermite polynomials to approximate Gaussian processes in the 1930s [65]. Ac-

cording to the Cameron–Martin theorem [66], the Hermite chaos converges in the L2

sense [62,67]. While the Hermite chaos is useful for the analysis of the stochastic pro-

cesses, it was applied to quantify uncertainties in physical applications. In particular,

Ghanem and Spanos pioneered to combine the Hermite chaos with a finite element

method for solid mechanics applications [63]. The Hermite chaos was extended as

the generalized polynomial chaos (gPC) method [45] for the analysis of various types

of stochastic processes using the corresponding orthogonal polynomials [68]. The

arbitrary polynomial chaos (aPC) method was also developed for arbitrary distribu-

tions with arbitrary probability measure [69]. The PCE method have been applied to

many engineering problems: solid mechanics [63, 70–73], fluid mechanics [74–78] and

multibody dynamics [79,80] to name but a few.

With the PCE method, the stochastic model response can be expanded as the

summation of the orthogonal polynomials of the independent random variables, which

can be described as the following equation:

Y (X) =
∞∑

m=1

CmΦm(X) (2.8)

where Y (X) ∈ R is the stochastic model response; X = (X1, . . . , XNX
)T ∈ RNX is

the independent random variables; Cm ∈ R is the unknown expansion coefficient to

be estimated; Φm(X) ∈ R is the multivariate orthogonal polynomial basis function;

and NX is the number of random variables. Φm(X) is obtained from the lith order

(li ∈ N) univariate polynomial basis function ϕ
(li)
i (Xi) ∈ R of each random variable

Xi (i = 1, . . . , NX) by the tensor product rule:

Φm(X) =

NX∏
i=1

ϕ
(li)
i (Xi) (2.9)
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Table 2.1: Probability distribution of random variable and corresponding polynomial
basis function [45]

Distributions Orthogonal polynomials
Continuous Gaussian Hermite

Uniform Legendre
Gamma Laguerre
Beta Jacobi

Discrete Poisson Charlier
Binomial Krawtchouk
Negative binomial Meixner
Hypergeometric Hahn

Note that a combination of li, (l1,. . . ,lNX
), is unique for each subscript m in Eq. (2.9).

The normalized orthogonal (orthonormal) polynomial is used by satisfying the fol-

lowing orthonormality condition:

E[ϕ
(j)
i (Xi)ϕ

(k)
i (Xi)] =

∫
ϕ
(j)
i (Xi)ϕ

(k)
i (Xi)ρi(Xi)dXi = δjk

where E[·] denotes the expectation operator; δjk is the Kronecker delta function that

takes 1 if j = k and 0 otherwise; and ρi(Xi) ∈ R is the probability density function

corresponding to the ith random variable Xi. Since Φm(X) in Eq. (2.9) is the product

of univariate orthonormal polynomials ϕ
(li)
i (Xi) (i = 1, . . . , NX), it is clear that:

E[Φj(X)Φk(X)] = δjk

The best choice of the orthonormal polynomials depends on the type of ρi(Xi) to

achieve better convergence [45], and some of the probability distributions and cor-

responding orthogonal polynomials are listed in Table 2.1. For example, Hermite

polynomials are used with the Gaussian random variables. (See [45] for more detailed

discussion.) In this study, the Gaussian random variables are considered for the wind

errors in Eqs. (2.5) and (2.6), and accordingly Hermite polynomials are used for the

basis functions. (See Appendix B for more information on the orthogonal polynomi-

als.)

For computational purpose, the infinite series in Eq. (2.8) is truncated in order
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to retain a finite number of terms. There are several ways to truncate the PCE in

Eq. (2.8) and select the number of polynomials or expansion coefficients, e.g., empir-

ical truncation scheme [85] and hyperbolic truncation scheme [47]. The commonly

used simple truncation scheme, which we employ in this study, is that the total de-

gree of polynomials is not larger than P ∈ N. That is, the maximum total degree

of polynomials is P , which is referred to as the P th order PCE approximation. The

P th order approximation of Y (X) is written as the following equation:

YP (X) =
M∑

m=1

CmΦm(X) = ΦT (X)C (2.10)

where YP (X) is the P th order approximation of Y (X); M is the total number of

polynomial basis functions or expansion coefficients; C = (C1, . . . , CM)T ∈ RM is the

vector of the expansion coefficients Cm (m = 1, . . . ,M); and Φ(X) = (Φ1(X), . . . ,

ΦM(X))T ∈ RM is the vector of the multivariate orthonormal polynomial basis func-

tions Φm(X) (m = 1, . . . ,M). In the truncation scheme, li in Eq. (2.9) satisfies the

following condition:

pm =

NX∑
i=1

li ≤ P

where pm (m = 1, . . . ,M) is the sum of the order of the univariate polynomial of

the ith random variable ϕ
(li)
i (Xi) in Eq. (2.9); and P is the approximation order of

Y (X) and the maximum total degree of the multivariate polynomial Φm. Note that

when m = 1, Φ1(X) is set to the zero-order polynomial basis (p1 = 0) that takes 1.

(See Appendix B.) In this truncation strategy, since the total degree of the polynomial

basis function pm (m = 1, . . . ,M) is not larger than P , the total number of polynomial

basis functions M is determined by the binomial coefficient: M =
(
NX+P
NX

)
.

The unknown PCE coefficient Cm in Eq. (2.10) can be estimated using either

an intrusive or a nonintrusive approach. With respect to implementation, a disad-

vantage of the intrusive approach using a Galerkin projection [45, 63] is that it can

be cumbersome and difficult to implement for complex nonlinear systems [81]. In

contrast, the nonintrusive methods are much more convenient to deal with general
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nonlinear problems [81]. There are various nonintrusive approaches: the projec-

tion approach [74, 75, 82], the stochastic collocation method [46, 81], the regression

approach [47, 83–86] and other approaches [87–90]. The nonintrusive approach is

straightforward to implement because it uses the sample points of input random

variables and repetitive executions of deterministic simulations. Therefore, in this

study, the nonintrusive PCE method is implemented to determine Cm. In particu-

lar, we employ two different forms of the PCE methods: the stochastic collocation

method [46, 81] and the least angle regression (LARS) algorithm [47]. For a small

number of input random variables, the stochastic collocation method is employed

because it uses the strategically selected sample points, i.e., collocation points, of

the random variables and a significantly small number of collocation points with the

sparse grid quadrature based on the Smolyak rule [91, 92]. On the other hand, the

LARS algorithm is a computationally efficient approach especially for a large number

of input random variables (more than 10 variables). Thus, we use either of these two

forms of the PCE methods according to the number of input random variables: the

stochastic collocation method is used for dealing with the wind errors and the LARS

method is employed for the input variables of the surrogate models.

2.2.1 Stochastic Collocation Method

With the stochastic collocation method [46,81], Cm in Eq. (2.10) can be obtained as

follows. Since Φm(X) is the orthonormal polynomial, Cm can be determined by the

following equation:

Cm = E[Y (X)Φm(X)] =

∫
Y (X)Φm(X)ρ(X)dX (2.11)

where ρ(X) ∈ R is the joint probability density function:

ρ(X) =

NX∏
i=1

ρi(Xi)
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Since X = (X1, . . . , XNX
)T are the independent random variables, ρ(X) is obtained

from the univariate probability density function by the tensor product rule. The

integral in Eq. (2.11) can be approximated by the Gaussian quadrature. On the

basis of the quadrature rule, a set of collocation points and quadrature weights is

chosen. The q-point univariate quadrature operator U q approximates the polynomial

ϕ(X) ∈ R by using the set of q collocation points X(j) ∈ R and associated weights

α(j) ∈ R (j = 1, . . . , q):

U q[ϕ(X)] =

q∑
j=1

ϕ(X(j))α(j) ≈
∫ ∞

−∞
ϕ(X)ρ(X)dX

As q gets larger, the accuracy of the quadrature can be increased. The collocation

points are the roots of the orthogonal polynomial, and the quadrature weight α(j)

satisfies the following condition:

q∑
j=1

α(j) = 1

Note that a set of collocation points and quadrature weights depends on the type of

ρ(X). (See Appendix B.) The NX-dimensional quadrature is readily derived from the

univariate quadrature by the tensor product rule:

T q,NX = U q
1 ⊗ · · · ⊗ U q

NX

where T q,NX is the NX-dimensional tensor grid quadrature operator based on the q-

point univariate quadrature; U q
i (i = 1, . . . , NX) is the q-point univariate quadrature

for the ith random variable Xi; and ⊗ denotes the tensor product. The total number

of collocation points is qNX (=
∏NX

i=1 q) determined by the tensor product rule. A

set of collocation points and weights is also determined by the tensor product rule.

In general, as the number of random variables NX gets larger, the tensor grid T q,NX

suffers from the curse of dimensionality. Thus, we employ the sparse grid quadrature

based on the Smolyak rule [46,91–93]. The sparse grid with Q collocation points X(j)
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and associated weights α(j) (j = 1, . . . , Q) consists of a much smaller number of col-

location points than that of the tensor grid, and it can reduce the computational cost

significantly. To reduce the number of collocation points, the Smolyak approach uses

a strategically chosen linear combination of the tensor grid while retaining the accu-

racy of the quadrature. On the basis of the Smolyak rule, the NX-dimensional sparse

grid quadrature is derived from the univariate quadrature, and the NX-dimensional

sparse grid quadrature operator S l,NX is given by either of the following two forms:

S l,NX =
∑

NX+1≤|k|≤NX+l

(∆k1 ⊗ · · · ⊗∆kNX ) (2.12)

S l,NX =
∑

NX+1≤|k|≤NX+l

(−1)NX+l−|k|

 NX − 1

NX + l − |k|

 (Uk1 ⊗ · · · ⊗ UkNX ) (2.13)

where l ∈ N is the accuracy level of the sparse grid; |k| =
∑NX

i=1 ki is the multi-index

(ki ∈ N); and ∆ki is given by ∆ki = Uki−Uki−1 and Uk0 = 0. The number of univariate

nodes qi for the ith random variable Xi is commonly set to 2ki−1 (i = 1, . . . , NX),

and the nested nodes [93] is employed in this study. As l gets larger, the accuracy

of the sparse grid quadrature can be increased. The number of collocation points Q

in the sparse grid quadrature is uniquely determined by the accuracy level l and the

dimension NX . The original stochastic problem is transformed into the deterministic

problem at each collocation point and can be solved by repetitive application of a

deterministic solver.

Figure 2-1 shows the collocation points for two-dimensional random variables

(X1, X2) obtained with the tensor and sparse grids. Figures 2-1a and 2-1b show

the two-dimensional collocation points based on the same univariate grids in the ten-

sor and sparse grids, respectively. Figures. 2-1c and 2-1d also show the collocation

points based on the same univariate grids. As shown in Fig. 2-1, it is clear that the

sparse grids consist of a much smaller number of collocation points than that of the

tensor grids. With the sparse grid quadrature based on the Smolyak rule, we can

reduce the computational cost compared with the tensor grid quadrature.
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Figure 2-1: Collocation points with tensor and sparse grids for two-dimensional ran-
dom variables.
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By using the stochastic collocation method based on the sparse grid quadrature

rule in Eq. (2.13), the approximation of Cm in Eq. (2.11) can be given by the following

equation:

Ĉm =

Q∑
j=1

Y (X(j))Φm(X
(j))α(j) (2.14)

where Ĉm is the approximation of Cm; and Y (X(j)) denotes the deterministic model

response at the jth collocation point X(j) (j = 1, . . . , Q). Thus, the approximate

stochastic model response YP (X) is determined by Eqs. (2.10) and (2.14) as the

orthonormal polynomials of the random variables X. As described in Eqs. (2.10) and

(2.14), YP (X) is the distribution function of X and can be evaluated for any given

random inputs.

The procedures to determine the stochastic model response Y (X) with the stochas-

tic collocation method are described as follows:

1. Generate a set of Q collocation points of random variables X(j) and associated

weights α(j) (j = 1, . . . , Q) based on the sparse grid quadrature in Eq. (2.13).

2. Calculate the value of the orthonormal polynomial Φm(X
(j)) at each collocation

point X(j) (j = 1, . . . , Q, m = 1, . . . ,M) in Eq. (2.9).

3. Determine the deterministic model response Y (X(j)) at each collocation point

X(j) (j = 1, . . . , Q).

4. Compute the PCE coefficient Ĉm (m = 1, . . . ,M) in Eq. (2.14).

5. Determine the approximate stochastic model response YP (X) in Eq. (2.10).

2.2.2 Least Angle Regression

Another approach to obtain C in Eq. (2.10) is the regression method [47, 83]. With

the regression method, C can be computed by minimizing the variance of the residual

Y (X)−ΦT (X)C:

Ĉ = arg min
C∈RM

E
[
(Y
(
X)−ΦT (X)C

)2]
(2.15)
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where Ĉ is the least squares estimate of C; and the mean of the residual is assumed

to be zero in the regression method. The solution of Eq. (2.15) can be given by the

following equation:

Ĉ =
(
E
[
Φ(X)ΦT (X)

])−1
E [Φ(X)Y (X)] (2.16)

In order to compute Eq. (2.16), we generate Ns sample points of random variables

X(j) and the corresponding deterministic model responses on the sample points

Y (X(j)) (j = 1, . . . , Ns). Using the Ns sample points and associated model responses,

Eq. (2.16) leads to the following equation:

Ĉ =

(
1

Ns

Ns∑
j=1

Φ(X(j))ΦT (X(j))

)−1(
1

Ns

Ns∑
j=1

Φ(X(j))Y (X(j))

)

which can be rewritten as:

Ĉ =
(
F TF

)−1
F TY (2.17)

where F is the matrix of the polynomial basis functions defined as F = (Φ(X(1)), . . . ,

Φ(X(Ns)))T ; and Y is the vector of the model responses defined as Y = (Y (X(1)), . . . ,

Y (X(Ns)))T .

When performing the regression approach, Ns should be larger than M , which is

the total number of the expansion coefficients C and determined by M =
(
NX+P
NX

)
in

the PCE truncation scheme. In practice, Ns is generally set to two to three times as

much as M [47]. As NX gets larger, the ordinary least squares regression approach

suffers from the curse of dimensionality. In addition, with the stochastic collocation

method, as NX increases, the number of collocation points is considerably larger

even though the sparse grid is used. Therefore, for a large number of input random

variables (NX ≥ 10), we employ the LARS method [47,94] to determine C with high

computational efficiency.

The LARS method is an efficient model selection algorithm especially for high-
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dimensional data. With the LARS algorithm, we can select the polynomial basis

functions (predictors) that have the greatest influence on the model response among

a large number of candidate predictors. In practice, the model response depends only

on a limited number of predictors, and it is not needed to contain all predictors to

express the model response [47]. The LARS method can select a limited number

of PCE coefficients C and polynomial terms Φ(X) in the approximate stochastic

model response YP (X) compared to the usual number of coefficients or polynomial

terms M =
(
NX+P
NX

)
. Accordingly, the LARS method can provide the sparse PCE

approximation.

We generate Ns sample points of random variables X(j) (j = 1, . . . , Ns) and the

corresponding model response vector Y =
(
Y (X(1)), . . . , Y (X(Ns))

)T
. The proce-

dures to determine the PCE coefficients C and polynomial terms Φ(X) with the

original LARS algorithm are described as follows [47,94]:

1. Initialize the PCE coefficients C and residual to zeros and Y , respectively.

2. Find the vector of the polynomials (predictor)Φj = (Φj(X
(1)), . . . ,Φj(X

(Ns)))T

that has the highest correlation with the current residual among the candidate

predictors Φm (m = 1, . . . ,M).

3. Move C
(1)
j (associated PCE coefficient of Φj) from zero to the least squares

coefficient of the current residual on Φj, until another predictor Φk, which has

as much correlation with the current residual as Φj does, can be found.

4. Move jointly C
(2)
j and C

(2)
k in the direction defined by their least squares coeffi-

cients of the current residual on Φj and Φk, until another predictor Φl, which

has as much correlation with the current residual, can be found.

5. Continue this way untilMLARS = min(M,Ns−1) predictors can be determined.

Ŷ (i) (i = 1, . . . ,MLARS) is the estimation of Y with selected i predictors, i.e.,

Ŷ (1) = C
(1)
j Φj in Step 3 and Ŷ (2) = C

(2)
j Φj +C

(2)
k Φk in Step 4. Ŷ (i) retains i predic-

tors, and eventuallyMLARS approximate model responses Ŷ (i) (i = 1, . . . ,MLARS) are
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constructed. Note that the last step of the LARS algorithm provides the ordinary least

squares solution if Ns ≥M . In this study, we use the hybrid LARS approach [47,94],

which is a variant of the original LARS method. In the hybrid LARS method, the

coefficients associated with the retained predictors C(i) ∈ Ri (i = 1, . . . ,MLARS) are

estimated by the ordinary least squares regression approach in Eq. (2.17). That is,

C
(1)
j in Step 3 and (C

(2)
j , C

(2)
k )T in Step 4 are computed by not the LARS approach but

the ordinary least squares regression approach (Eq. (2.17)). The hybrid LARS algo-

rithm selects only a set of predictors, whereas the original LARS algorithm provides

both the coefficients and predictors.

With the LARS method, MLARS approximate model responses Ŷ (i) (i = 1, . . . ,

MLARS) are constructed, and the optimal approximate model response among Ŷ (i)

(i = 1, . . . ,MLARS) can be determined by using the leave-one-out cross validation tech-

nique [47]. By using the leave-one-out cross validation approach, the optimal model

response that has the smallest leave-one-out error amongMLARS model responses can

be determined. The leave-one-out error Errloo is estimated as the following equation:

Errloo =
1

Ns

Ns∑
j=1

∆(j)2

where ∆(j) is the predicted residual defined as the following equation:

∆(j) = Y (X(j))− Ŷ (−j)(X(j)) (j = 1, . . . , Ns)

where Y (X(j)) is the exact model response at the jth sample point X(j); and

Ŷ (−j)(X(j)) is the approximate model response at X(j), which is built when removing

the jth sample point from all Ns sample points. In the case of linearly parametrized

regression, ∆(j) can be computed analytically as the following equation [47]:

∆(j) =
Y (X(j))− Ŷ (X(j))

1− hj
(j = 1, . . . , Ns)

where Ŷ (X(j)) is the approximate model response at X(j), which is built with all

Ns sample points; and hj is the jth diagonal term of the matrix F (F TF )−1F T
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(F =
(
Φ(X(1)), . . . ,Φ(X(Ns))

)T
). Thus, Errloo can be rewritten as the following

equation:

Errloo =
1

Ns

Ns∑
j=1

(
Y (X(j))− Ŷ (X(j))

1− hj

)2

(2.18)

By using the leave-one-out cross validation technique, the steps to determine the

optimal approximate model response Ŷ (i∗) and coefficients C(i∗) are listed as follows:

1. Select the predictors for the model responses Ŷ (i) (i = 1, . . . ,MLARS) by using

the LARS algorithm.

2. Estimate the coefficients associated with the retained predictors C(i) ∈ Ri for

each model response Ŷ (i) (i = 1, . . . ,MLARS) by using the ordinary least squares

regression approach in Eq. (2.17).

3. Compute the leave-one-out error Err
(i)
loo in Eq. (2.18) for each model response

Ŷ (i) (i = 1, . . . ,MLARS).

4. Find the optimal model response Ŷ (i∗) that has the smallest leave-one-out error

Err
(i∗)
loo : i

∗ = arg miniErr
(i)
loo.

5. Retain the optimal model response Ŷ (i∗), coefficients C(i∗) and corresponding

predictors.

Using the optimal coefficients C(i∗) and corresponding predictors, we can deter-

mine the approximate stochastic model response Ŷ (X), which is equivalent to YP (X)

in Eq. (2.10). With the LARS algorithm, we can select a limited number of predictors

that have the greatest influence on the model response. Thus, the LARS method is a

computationally efficient approach to compute the sparse PCE approximation Ŷ (X)

especially for high-dimensional input random variables X. By using the LARS algo-

rithm and the leave-one-out cross validation criterion, we can determine the approx-

imate stochastic model response Ŷ (X).
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2.2.3 Post-Processing

Once we compute the PCE coefficients C, we can obtain the approximate stochastic

model response YP (X) in Eq. (2.10). There are several post-processing techniques

using C and YP (X) as follows. As described in Eqs. (2.10) and (2.14), YP (X) is

the distribution function of X and can be evaluated for any given random inputs.

That is, YP (X) can be used as the surrogate model, and an output YP (X) can be

obtained from a certain input X without actually executing the original simulation.

By using the surrogate model of YP (X), the probability density function of YP (X)

can be readily estimated, though the actual one is unknown. Since YP (X) is given

by the polynomials of random variables in Eq. (2.10), the probability distribution of

YP (X) can be computed by Monte Carlo simulation of the input random variables

X.

In addition, the statistical moments of Y (X) can be derived analytically from

C given by Eq. (2.14). For instance, the expected value and variance of Y (X) are

described as the following equations:

E[Y (X)] =

∫ [ ∞∑
m=1

CmΦm(X)

]
ρ(X)dX

= C1 (2.19)

V[Y (X)] = E
[
(Y (X)− E[Y (X)])2

]
=

∫ [ ∞∑
m=1

CmΦm(X)− C1

]2
ρ(X)dX

≈
∫ [ M∑

m=2

CmΦm(X)

]2
ρ(X)dX

=
M∑

m=2

[Cm]
2 (2.20)

where V[·] denotes the variance operator. It should be noted that Φ1(X) = 1 because

Φ1(X) is set to the zero-order polynomial basis (p1 = 0). The higher-order moments
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such as the skewness and kurtosis as well as the expected value and variance can also

be obtained by using C [86].

Moreover, the PCE method can apply to the global sensitivity analysis, which

aims at quantifying the relative importance of each input random variable Xi (i =

1, . . . , NX) on the variance of the model response Y (X) [85, 95, 96]. The global

sensitivity indices called Sobol’ sensitivity indices [97] can be computed analytically

from the PCE coefficients C [85,95,96]. (See [85,95,96] for more detailed discussion

of the global sensitivity analysis.)

2.3 Conflict Probability Estimation

To detect potential conflicts between aircraft, we need to compute the distance be-

tween each pair of aircraft. Since the wind errors in Eqs. (2.5) and (2.6) are described

by random variables, the horizontal distance between aircraft L in Eq. (2.7) is also

a random variable. By using the PCE method mentioned in Section 2.2, L can be

solved and described as the orthonormal polynomials of the random variables repre-

senting the wind errors in Eqs. (2.5) and (2.6). As the post-processing of the PCE

method in Eqs. (2.19) and (2.20), the statistical information of L (E[L] and V[L])

can be computed.

The actual probability density function of L, ρ(L), is unknown; however, the

probability distribution of a random variable can be characterized by its moments, and

the unknown distribution can be estimated by the moment matching technique. Using

the statistical information of L, ρ(L) is approximated by the univariate Gaussian

distribution by matching the first two moments: L ∼ N (E[L],V[L]), where N (µ, σ2)

denotes the Gaussian distribution with mean µ and variance σ2. We demonstrate that

ρ(L) can be approximated accurately as the Gaussian distribution by the moment

matching technique in Section 5.1. Accordingly, on the basis of the safety constraint

in Eq. (2.7), the conflict probability between the ith and jth aircraft Pr [Cij] can be
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given by the following equation:

Pr [Cij] = Pr [Lij ≤ dHmin] = 1−
∫ ∞

dHmin

ρ(Lij)dLij (2.21)

where Pr[·] denotes the probability of an event; and Cij indicates the conflict between

the ith and jth aircraft. Since ρ(Lij) is approximated as the Gaussian distribution,

Pr [Cij] in Eq. (2.21) can be easily computed. It should be noted that the conflict

probability between aircraft and the convective weather region can also be estimated

by Eq. (2.21).

The steps to estimate the conflict probability between the ith and jth aircraft are

described as follows.

1. Compute the stochastic solution of the distance between aircraft Lij by using

the PCE method described in Section 2.2.

2. Calculate the statistical information of Lij (E(Lij) and V(Lij)) as the post-

processing of the PCE method in Eqs. (2.19) and (2.20).

3. Approximate the probability density function of Lij, ρ(Lij), as the Gaussian

distribution by the moment matching technique.

4. Estimate the conflict probability between aircraft Pr [Cij] in Eq. (2.21).

Using the probabilistic conflict detection algorithm mentioned above, the potential

conflicts can be detected. To resolve the potential conflicts, the stochastic optimal

control method is proposed to determine the conflict resolution trajectory in the

presence of uncertainty in Chapter 3.
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Chapter 3

Stochastic Optimal Control for

Conflict Resolution

In this chapter, a stochastic optimal control method incorporating the PCE algorithm

into the pseudospectral method is developed to solve the conflict resolution problem

in the presence of uncertainty.

3.1 Deterministic Optimal Control

Optimal control problems especially in aeronautics and astronautics are most often

solved numerically due to the complexity of the problems. Numerical methods for

solving continuous-time optimal control problems have been well developed closely

paralleled by advancements in aerospace technologies and powerful computational

tools. In general, numerical methods to solve continuous-time optimal control prob-

lems can be categorized into two classes: indirect and direct methods [98, 99]. In an

indirect method, the first-order optimality conditions are derived from the optimal

control problem using the calculus of variations and Pontryagin’s maximum (or min-

imum) principle [100]. The optimality conditions form the Hamiltonian boundary

value problem (HBVP), which is solved to find the optimal solution [101, 102]. The

indirect methods can provide a highly accurate solution and the assurance that the

solution satisfies the first-order optimality conditions. However, the indirect meth-
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ods require a good initial guess for the costate, a priori knowledge of the activeness

of inequality constraints, and the analytical derivation of the HBVP. On the other

hand, in a direct method, the continuous-time optimal control problem is transcribed

into the nonlinear programming (NLP) problem by discretization. Then, the NLP

problem can be solved numerically to satisfy the NLP optimality conditions, i.e.,

Karush-Kuhn-Tucker (KKT) conditions. Direct methods have the good convergence

and robustness properties compared to indirect methods.

There are several direct methods to transcribe the optimal control problem into

the NLP problem: direct shooting methods [98,99], direct collocation methods [98,99]

and pseudospectral methods [103–106]. In a direct shooting method, only the con-

trol variables are discretized and parametrized, and an explicit numerical integra-

tion method is applied to satisfy the differential constraints. In a direct collocation

method, both the state and control variables are discretized and parametrized, and

the differential equations are approximated using the piecewise polynomials at spe-

cific points called collocation points. Although the scale of the NLP problem in direct

collocation methods becomes large compared to direct shooting methods, the direct

collocation methods have an advantage that they can avoid the numerically intensive

explicit numerical integration in a direct shooting method.

In a pseudospectral method, which has increased in popularity for solving non-

linear optimal control problems, the state and control variables are discretized and

parametrized using global polynomials, and the differential equations are approxi-

mated using orthogonal polynomials. Pseudospectral methods have advantages of

an exponential convergence rate [107] and a highly accurate costate mapping from

KKT multipliers of the NLP problem due to the equivalence between the KKT condi-

tions and the HBVP optimality conditions [48,49,108,109]. Therefore, in this study,

we employ the pseudospectral method for solving continuous-time nonlinear optimal

control problems.

We consider the following continuous-time deterministic optimal control problem:

determine the state variables x(t) ∈ RNx , the control variables u(t) ∈ RNu , the initial

time t0 ∈ R and the terminal time tf ∈ R on the time interval t ∈ [t0, tf ] that minimize
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the cost functional:

J = gM(x(t0), t0,x(tf ), tf ) +

∫ tf

t0

gL(x(t),u(t), t)dt (3.1)

subject to the dynamic constraints:

dx

dt
= fS(x(t),u(t), t) (3.2)

the boundary conditions:

bmin ≤ b(x(t0), t0,x(tf ), tf ) ≤ bmax (3.3)

the path constraints:

cmin ≤ c(x(t),u(t), t) ≤ cmax (3.4)

where gM ∈ R and gL ∈ R define the Mayer and Lagrange terms in the cost function,

respectively; fS ∈ RNx is the system dynamics; b ∈ RNb expresses the boundary con-

dition functions; c ∈ RNc defines the path constraint functions; Nx is the number of

state variables; Nu is the number of control variables; Nb is the number of boundary

conditions; and Nc is the number of path constraints. We introduce a new time inter-

val τ ∈ [−1, 1], which can be transformed to t ∈ [t0, tf ] via the affine transformation:

t =
tf − t0

2
τ +

tf + t0
2

The continuous-time optimal control problem of Eqs. (3.1)–(3.4) is then modified in

terms of τ as follows: determine the state variables x(τ) ∈ RNx , the control variables

u(τ) ∈ RNu , the initial time t0 and the terminal time tf on the new time interval

τ ∈ [−1, 1] that minimize the cost functional:

J = gM(x(−1), t0,x(1), tf ) +
tf − t0

2

∫ 1

−1

gL(x(τ),u(τ), τ ; t0, tf )dτ (3.5)
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subject to the dynamic constraints:

dx

dτ
=
tf − t0

2
fS(x(τ),u(τ), τ ; t0, tf ) (3.6)

the boundary conditions:

bmin ≤ b(x(−1), t0,x(1), tf ) ≤ bmax (3.7)

the path constraints:

cmin ≤ c(x(τ),u(τ), τ ; t0, tf ) ≤ cmax (3.8)

In the pseudospectral method1, the continuous optimal control problem (Eqs. (3.5)–

(3.8)) is discretized and transcribed into the NLP problem. We firstly select the Np

collocation points τi ∈ [−1, 1] (i = 1, . . . , Np). Note that the end points are not

included in the set of the collocation points. The states x(τ) and controls u(τ) are

approximated and parametrized using Np + 1 Lagrange basis polynomials:

x(τ) ≈ X(τ) =

Np∑
i=0

X(τi)Lx,i(τ) (3.9)

u(τ) ≈ U (τ) =

Np∑
i=1

U(τi)Lu,i(τ)

where X(τ) and U(τ) denote the polynomial approximations; and Lx,i(τ) and Lu,i(τ)

represent the Lagrange interpolating polynomials for the states and controls, respec-

tively. Lx,i(τ) and Lu,i(τ) are defined as the following equations:

Lx,i(τ) =

Np∏
j=0,j ̸=i

τ − τj
τi − τj

(i = 0, . . . , Np)

Lu,i(τ) =

Np∏
j=1,j ̸=i

τ − τj
τi − τj

(i = 1, . . . , Np)

1Note that as an example, we discuss the Gauss pseudospectral method [48, 108, 109] in this
section.
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It should be noted that Lx,i(τj) and Lu,i(τj) take 1 if i = j and 0 otherwise. Differ-

entiating Eq. (3.9) with respect to τ , the approximation of Eq. (3.6) can be obtained

as the following equation:

d

dτ
x(τ) ≈ d

dτ
X(τ) =

Np∑
i=0

X(τi)
d

dτ
Lx,i(τ)

The derivatives of the Lagrange polynomials at the collocation points can be repre-

sented in a differentiation matrix D ∈ RNp×(Np+1) with the (k, i)th component Dki:

Dki =
d

dτ
Lx,i(τk) =

Np∑
l=0

∏Np

j=0,j ̸=i,l(τk − τj)∏Np

j=0,j ̸=i(τi − τj)
(k = 1, . . . , Np, i = 0, . . . , Np)

The dynamic constraints in Eq. (3.6) can be discretized and transcribed into the

algebraic constraints using the differentiation matrix D:

Np∑
i=0

DkiXi −
tf − t0

2
fS(Xk,Uk, τk; t0, tf ) = 0 (k = 1, . . . .Np) (3.10)

where Xk = X(τk) and Uk = U(τk) (k = 1, . . . , Np). Note that X(τ) and U (τ) are

not collocated at the end points, and the terminal state Xf = X(1) is defined via

the Gaussian quadrature:

Xf = X0 +
tf − t0

2

Np∑
k=1

wkfS(Xk,Uk, τk; t0, tf ) (3.11)

where X0 = X(−1) is the initial states; and wk is the Gaussian quadrature weight

(k = 1, . . . , Np). The cost functional in Eq. (3.5) is also discretized and approximated

using the Gaussian quadrature:

J = gM(X0, t0,Xf , tf ) +
tf − t0

2

Np∑
k=1

wkgL(Xk,Uk, τk; t0, tf ) (3.12)

Furthermore, the discretized form of the boundary conditions in Eq. (3.7) is given by
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the following equation:

bmin ≤ b(X0, t0,Xf , tf ) ≤ bmax (3.13)

The path constraints in Eq. (3.8) can be discretized as the following equation:

cmin ≤ c(Xk,Uk, τk; t0, tf ) ≤ cmax (k = 1, . . . .Np) (3.14)

Thus, the continuous-time optimal control problem (Eqs. (3.5)–(3.8)) can be dis-

cretized and transcribed into the nonlinear programming (NLP) problem, which is

defined by the discretized cost functional in Eq. (3.12) and the algebraic constraints

in Eqs. (3.10), (3.11), (3.13) and (3.14). Then, an NLP solver such as sequential

quadratic programming (SQP) is applied to compute the optimal solution. It should

be noted that we can deal with the multiple-phase optimal control problem by divid-

ing the problem into the multiple phases, where the dynamics are discretized within

each phase and then connected to each other by the phase linkage constraints.

There are several software packages that have been developed to solve the continuous-

time optimal control problems: DIDO implements the Legendre pseudospectral method

[110]; and the General Pseudospectral Optimization Software (GPOPS) [111] imple-

ments the Radau pseudospectral method2 [49, 50, 114, 115]. In this study, we employ

GPOPS [111], which is performed in MATLAB and using SNOPT [116, 117] as the

NLP solver. By using GPOPS, the continuous-time optimal control problem is trans-

formed into the NLP problem for the SNOPT NLP solver which finds the optimal

solution.

3.2 Stochastic Optimal Control

The following continuous-time stochastic optimal control problem is considered: de-

termine the state variables x(t), the control variables u(t), the initial time t0 and the

2The software originally implemented the Gauss pseudospectral method [48, 108, 109, 112], and
GPOPS-II [113] is recently developed.
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terminal time tf on the time interval t ∈ [t0, tf ] that minimize the cost functional:

J = E

[
gM(x(t0), t0,x(tf ), tf ,X) +

∫ tf

t0

gL(x(t),u(t), t,X)dt

]
(3.15)

subject to the dynamic constraints:

dx

dt
= fS(x(t),u(t), t,X) (3.16)

the boundary conditions:

bmin ≤ E [b(x(t0), t0,x(tf ), tf ,X)] ≤ bmax (3.17)

and the chance constraints [118–120]:

ηmin ≤ Pr [cmin ≤ c(x(t),u(t), t,X) ≤ cmax] ≤ ηmax (3.18)

where X is the random variables; and η ∈ RNc is the confidence level. In this study,

the conflict probability is formulated as the chance constraint in Eq. (3.18), which

is proposed in the previous studies [118–120]. It should be noted that the expected

values of the cost functional and boundary conditions in Eqs. (3.15) and (3.17) are

considered for the stochastic optimal control problem.

To deal with the stochastic elements and solve the stochastic optimal control prob-

lem, the PCE method is applied in the previous works [121–125], and the stochastic

solution including the statistical information is approximated by the theory of the

PCE method. In this study, we also incorporate the PCE algorithm into the pseu-

dospectral method to deal with the stochastic elements. Within the framework of

the pseudospectral method described in Section 3.1, the state and control variables

are approximated and parametrized using Lagrange basis polynomials, and the cost

functional and the constraints are discretized using orthogonal polynomials based

on a quadrature rule. Thus, the continuous-time optimal control problem can be

discretized and transcribed into the NLP problem, and the optimal solution can be
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computed by using the NLP solver. Therefore, by incorporating the PCE algorithm

into the pseudospectral method, we can deal with the stochastic elements and solve

the stochastic optimal control problem. As mentioned in Section 3.1, we employ

GPOPS [111] with the NLP solver SNOPT [116, 117]. Unlike the previous stud-

ies [121–125], we consider the chance constrained stochastic optimal control problem

of Eqs. (3.15)–(3.18) for conflict resolution. To solve the conflict resolution problem,

the stochastic optimal control method is combined with the proposed probabilistic

conflict detection algorithm to guarantee the resolution of potential conflicts in the

presence of uncertainty. By solving the stochastic optimal control problem for conflict

resolution, the optimal conflict resolution trajectory in the presence of uncertainty.
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Chapter 4

Stochastic Near-Optimal Control

for Conflict Resolution

By using the stochastic optimal control method mentioned in Section 3.2, we can

generate the optimal conflict resolution trajectory starting from a given initial condi-

tion. However, the states on the precomputed optimal trajectory may differ from the

actual states due to the uncertainties during the flight. In this case, another optimal

control problem starting from the actual states is necessary to be solved to obtain the

correct optimal trajectory. In this section, we propose a near-optimal control method

for generating conflict resolution trajectories in real time by constructing surrogate

models based on the recently developed polynomial chaos kriging method. Polyno-

mial chaos kriging is a hybrid algorithm based on two surrogate modeling techniques:

PCE and kriging. We first introduce kriging, and then present the hybrid polyno-

mial kriging method. After that, we propose the near-optimal conflict resolution

algorithm based on polynomial chaos kriging. Constructing the surrogate models of

the optimal conflict resolution trajectories from a set of precomputed optimal solu-

tions, the approximate optimal conflict resolution trajectories can be obtained in real

time based on the information of the current conditions without actually solving the

computationally expensive stochastic optimal control problems.
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4.1 Kriging

A surrogate modeling technique has been widely used in engineering applications,

especially design optimization problems [54, 126–129]. A surrogate model can ap-

proximate the input-output behavior of an original simulation, and an output can

be obtained from a certain input in real time without actually executing the origi-

nal simulation. There are various surrogate modeling methods1 such as polynomial

response surface models [130], radial basis functions [131], multivariate adaptive re-

gression splines [132], support vector regression [133], moving least squares [134–136]

and kriging (also known as Gaussian process regression) [54, 55, 137, 138]. Among

these surrogate modeling techniques, the kriging approach2 is a stochastic interpo-

lation method, which can provide exactly the same output values at the observed

sample points as the observations. In addition, the kriging model provides the best

linear unbiased prediction, i.e., the expected value of the error is zero and the variance

of the error is minimized.

The kriging model is assumed that the model response is the realization of the

Gaussian process with a priori covariance matrix, and the mathematical form of the

kriging model is expressed as the following equation:

Y (X) = µ(X) + Z(X) (4.1)

where X = (X1, . . . , XNX
)T ∈ RNX is the vector of the input variables; Y (X) ∈ R

is the model response; µ(X) ∈ R is the regression function, also known as the trend

function; Z(X) ∈ R is the realization of the Gaussian process; and NX is the number

of the input variables. µ(X) provides a global trend of the design space, and Z(X)

creates local deviations or residuals so that the kriging model interpolates the sampled

observations by quantifying the correlation of nearby sample points. In classical

kriging methods, the ordinary kriging method assumes that the trend function µ(X)

1Surrogate models can also be classified into three classes: parametric, non-parametric and semi-
parametric models.

2Kriging, named after a South African mining engineer Daniel G. Krige, was originally developed
in geostatistics for predicting mineral resources based on sampled sites in the 1950s.
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is an unknown constant value to be estimated, and the universal kriging approach

assumes that µ(X) is a linear combination of polynomials. Since ordinary kriging is

the specific case of universal kriging, we discuss the universal kriging model in this

study. In universal kriging, µ(X) is described as the following equation:

µ(X) =
M∑

m=1

βmfm(X) = fT (X)β (4.2)

where f(X) = (f1(X), . . . , fM(X))T ∈ RM is the vector of trend basis functions

fm(X) (m = 1, . . . ,M); β = (β1, . . . , βM)T ∈ RM is the vector of unknown regression

coefficients βm (m = 1, . . . ,M) to be estimated; and M is the number of the trend

basis functions. In order to determine the kriging model in Eqs. (4.1) and (4.2),

we consider Ns sample points of the input variables X(j) and corresponding model

responses (observations) Y (X(j)) (j = 1, . . . , Ns). Z(X) in Eq. (4.1) is the Gaussian

process with zero mean and the following covariance matrix:

Cov[X(i),X(j)] = σ2Rij = σ2R(X(i),X(j)) (∀i, j = {1, . . . , Ns}) (4.3)

where Cov[·] denotes the covariance operator; σ2 is the process variance; X(i) and

X(j) are the ith and jth sample points, respectively; and Rij = R(X(i),X(j)) is the

spatial correlation function between X(i) and X(j). There are various formulations of

correlation functions, and some of the commonly used correlation functions [53, 137]

are listed as follows:

the Dirac’s delta function:

Rij =

NX∏
l=1

δ(X
(i)
l −X

(j)
l )

the linear function:

Rij =

NX∏
l=1

max
(
0, 1− θl|X(i)

l −X
(j)
l |
)
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the exponential function3:

Rij = exp

(
−

NX∑
l=1

θl|X(i)
l −X

(j)
l |λl

)

the Gaussian function:

Rij = exp

(
−

NX∑
l=1

θl|X(i)
l −X

(j)
l |2

)
(4.4)

and the Matérn function:

Rij =

NX∏
l=1

1

2ν−1Γ(ν)

(√
2νθl|X(i)

l −X
(j)
l |
)ν
κν

(√
2νθl|X(i)

l −X
(j)
l |
)

where δ(·) is the Dirac’s delta function that takes 1 if X
(i)
l = X

(j)
l and 0 otherwise;

ν is the shape parameter for the Matérn function (ν ≥ 1/2, ν = 3/2 and ν = 5/2

are the most popular forms); Γ(·) is the Gamma function; κν(·) is the modified

Bessel function of the second kind, also known as the Bessel function of the third

kind and the Hankel function; X
(i)
l is the lth input variable of the ith sample point

X(i) = (X
(i)
1 , . . . , X

(i)
NX

)T ; and θl ∈ R and λl ∈ R (l = 1, . . . , NX) are the unknown

correlation parameters to be estimated, also known as the hyperparameter (θl > 0

and typically 1 ≤ λl ≤ 2). It should be noted that the accuracy of the kriging model

highly depends on the choice of the correlation functions because the influence of

the observed values is determined by the correlation functions. In a wide range of

physical applications, the correlation function Rij is set to be the Gaussian function

in Eq. (4.4), which is employed in this study.

We introduce the matrix of the basis functions F = (f(X(1)), . . . ,f(X(Ns)))T , the

vector of the model responses at the sample points Y = (Y (X(1)), . . . , Y (X(Ns)))T ,

the correlation matrix R4 with the (i, j)th component Rij = R(X(i),X(j)) and the

correlation vector r(X) = (R(X,X(1)), . . . , R(X,X(Ns)))T to express the correlation

between a new input vector X and each sample point X(j) (j = 1, . . . , Ns). The

3Note that the exponential function is equivalent to the Gaussian function when λl = 2.
4R is the symmetric matrix (Rij = Rji) with ones on the diagonal because of Rii = 1.
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predicted response of the kriging model Ŷ (X) for a new input vector X can be given

by the following equation:

Ŷ (X) = fT (X)β̂ + rT (X)R−1(Y − F β̂) (4.5)

where β̂ is the least squares estimate of β and can be estimated by the following

equation:

β̂ = (F TR−1F )−1F TR−1Y (4.6)

The process variance σ2 in Eq. (4.3) can be calculated by the following equation:

σ̂2 =
(Y − F β̂)TR−1(Y − F β̂)

Ns

where σ̂2 is the estimation of σ2.

The hyperparameters θ = (θ1, . . . , θNX
)T ∈ RNX in Eq. (4.4) are needed to be

estimated for computing the krging model Ŷ (X) in Eqs. (4.5) and (4.6). θ can be

obtained by either of the following two methods: maximum likelihood estimation and

cross validation [139, 140]. In the maximum likelihood estimation, one of the core

assumptions is that the observations are derived from a Gaussian process. In this

study, θ is estimated by using the maximum likelihood estimation and solving the

following nonlinear optimization problem:

θ̂ = arg max
θ∈RNX

−Nsln(σ̂
2) + ln(det(R))

2
(4.7)

where θ̂ is the maximum likelihood estimate of θ; and det(·) is the determinant oper-

ator of a matrix. In Eq. (4.7), both σ̂2 and det(R) are the functions of θ. The optimal

kriging model can be determined by solving the NX-dimensional unconstrained non-

linear optimization problem in Eq. (4.7). The optimization problem in Eq. (4.7) is

highly nonlinear and potentially multimodal, i.e., the solution space contains multi-

ple local maxima. Several methods for solving the optimization problem in Eq. (4.7),

e.g., the Hooke–Jeeves method [141], a genetic algorithm [128,138] and the Broyden–
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Fletcher–Goldfarb–Shanno (BFGS) algorithm [142], have been proposed. Moreover,

there are several software packages that have been developed to solve the optimiza-

tion problem in Eq. (4.7) and determine the kriging model: DACE [141] is performed

in MATLAB; and DiceKriging [142] is written in R. In this study, we use a hybrid

optimization approach that combines the genetic algorithm with the SQP method.

The genetic algorithm can be used to find the optimal solution globally and the SQP

method search for the optimal solution locally. (See Refs. [54,55,137] for more detailed

derivation and discussion of kriging.)

4.2 Polynomial Chaos Kriging

Polynomial chaos kriging is a recently developed hybrid algorithm based on two sur-

rogate modeling techniques: PCE and kriging [53]. PCE can provide a global trend of

the model response, and kriging (especially a Gaussian process term) can create local

deviations to interpolate the sampled observations by quantifying the correlation of

nearby sample points. Combining these two methods, the hybrid surrogate modeling

technique called polynomial chaos kriging has an advantage of providing both the

global behavior of PCE and the local behavior of kriging. In the previous work [53],

the performance of the hybrid polynomial chaos kriging algorithm is demonstrated

using analytical benchmark functions, and polynomial chaos kriging generally per-

forms better than PCE or kriging does. In this study, we apply the polynomial chaos

kriging method to the practical engineering problem, i.e., the optimal control problem

for conflict resolution.

On the basis of the mathematical forms of the PCE model in Eq. (2.10) and the

kriging model in Eqs. (4.1) and (4.2), the hybrid polynomial chaos kriging model can

be described as the following form:

Y (X) =
M∑

m=1

CmΦm(X) + Z(X) = ΦT (X)C + Z(X) (4.8)

where Y (X) ∈ R is the model response; X = (X1, . . . , XNX
)T ∈ RNX is the vector of
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the input variables; C = (C1, . . . , CM)T ∈ RM is the vector of the PCE coefficients

Cm (m = 1, . . . ,M); Φ(X) = (Φ1(X), . . . ,ΦM(X))T ∈ RM is the vector of the

multivariate orthonormal polynomial basis functions Φm(X) (m = 1, . . . ,M); Z(X)

is the Gaussian process with zero mean and the covariance matrix given by Eqs. (4.3)

and (4.4); M is the number of the PCE coefficients or polynomials; and NX is the

number of the input variables. As mentioned in Section 4.1, Z(X) is characterized

by the unknown hyperparameters θ = (θ1, . . . , θNX
)T ∈ RNX in Eq. (4.4).

As described in Eq. (4.8), the polynomial chaos kriging model uses the PCE

terms in Eq. (2.10) as the trend function µ(X) of the kriging model in Eq. (4.1).

Therefore, Φ(X) and M can be determined within the PCE framework, and C and

θ can be computed within the kriging framework. Since the stochastic collocation

approach of the PCE method is computationally efficient when the number of random

variables or input variables is small, we employ the stochastic collocation method for

dealing with the wind errors. However, as the number of input variables increases,

the number of collocation points is considerably larger even though the sparse grid is

used. We consider a large number of input variables for the surrogate models (more

than 10 variables), which becomes computationally laborious and intractable with

the stochastic collocation method. Therefore, to reduce the computational cost for

constructing the surrogate models, we employ the PCE method based on the LARS

algorithm. With the LARS method, the sparse PCE terms can be provided. As

mentioned in Section 2.2.2, the LARS method is a computationally efficient model

selection algorithm for high-dimensional data.

The hybrid polynomial chaos kriging algorithm consists of two steps: in the first

step, the set of polynomials Φ(X) and the number of polynomials M can be deter-

mined within the PCE framework, i.e. the LARS algorithm; and in the second step,

the hyperparameters θ can be computed by using the maximum likelihood estima-

tion in Eq. (4.7) and the PCE coefficients C can be estimated by Eq. (4.6) within the

kriging framework. Although C as well as Φ(X) can be estimated within the PCE

framework, C is computed and given by Eq. (4.6) within the kriging framework. The

LARS algorithm selects the optimal set of the polynomial basis functions Φ(X).
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The procedures to construct the polynomial chaos kriging model Ŷ (X) are listed

as follows:

1. Generate Ns sample points of input variables X(j) and corresponding model

responses Y (X(j)) (j = 1, . . . , Ns).

2. Determine the optimal set of the polynomial basis functions Φ(X) and the

number of the polynomials M with the PCE method based on the LARS algo-

rithm.

3. Compute the hyperparameters θ by using the maximum likelihood estimation

in Eq. (4.7).

4. Estimate the PCE coefficients C by Eq. (4.6).

5. Determine the polynomial chaos kriging model Ŷ (X) by Eq. (4.5), which is

equivalent to the approximation of Eq. (4.8).

4.3 Stochastic Near-Optimal Control

The surrogate models of the optimal conflict resolution trajectories are constructed

based on the polynomial chaos kriging method for generating near-optimal conflict

resolution trajectories in real time. The discrete time steps, t0 = T1 < · · · < TNt+1 =

tf , are considered, and the surrogate models are built at each time step. The inputs

of the surrogate models X(Tk) are the current condition (e.g., current states and pa-

rameters for a convective weather region) at the current time step Tk (k = 1, . . . , Nt).

The outputs are the optimal states x∗
k+1(X(Tk)) at the next time step Tk+1, optimal

controls u∗
k(X(Tk)) at the current time step and optimal terminal times t∗f,k(X(Tk))

at the current time step. We construct these surrogate models of the optimal conflict

resolution trajectories by using a set of precomputed Ns optimal solutions, which

are obtained by solving Ns stochastic optimal control problems starting from the

different initial conditions X(j)(t0) = X(j)(T1) (j = 1, . . . , Ns). Once the surrogate

models are constructed using the polynomial chaos kriging method, the approximate
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optimal conflict resolution trajectories on the time interval between the current time

and the terminal time can be obtained as the functions of the current conditions.

Thus, the near-optimal solutions can be estimated in real time by using the surrogate

models with the information of the current conditions without actually solving the

computationally expensive stochastic optimal control problems.

The procedures to generate the near-optimal conflict resolution trajectory by con-

structing the surrogate models are listed as follows:

1. Generate Ns sample points of the initial condition X(j)(t0) = X(j)(T1) (j =

1, . . . , Ns).

2. Solve Ns stochastic optimal control problems starting from the different initial

conditions X(j)(T1) (j = 1, . . . , Ns) by using the stochastic optimal control

method mentioned in Section 3.2.

3. Determine the optimal states x∗
k+1(X

(j)(T
(j)
k )), optimal controls u∗

k(X
(j)(T

(j)
k ))

and optimal terminal times t∗f,k(X
(j)(T

(j)
k )) at each sample point X(j)(T

(j)
k )

and time step T
(j)
k (j = 1, . . . , Ns, k = 1, . . . , Nt). (Note that T

(i)
k /T

(i)
Nt+1 =

T
(j)
k /T

(j)
Nt+1 (∀i, j ∈ {1, . . . , Ns}, k = 1, . . . , Nt).)

4. Construct the surrogate models of the optimal conflict resolution trajectories

(inputs: the current condition at the current time step X(Tk); outputs: the

optimal states at the next time step x̂∗
k+1(X(Tk)), optimal controls at the cur-

rent time step û∗
k(X(Tk)) and optimal terminal times at the current time step

t̂∗f,k(X(Tk))) at each time step Tk (k = 1, . . . , Nt) from the set of the pre-

computed optimal solutions in Step 3 by using the polynomial chaos kriging

method.

5. Generate the near-optimal states x̂∗
k+1(X(Tk)), controls û

∗
k(X(Tk)) and termi-

nal times t̂∗f,k(X(Tk)) of the conflict resolution trajectories from the surrogate

models with any given inputs of the current condition X(Tk) at the current

time step Tk.
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In Step 5, the near-optimal states, controls and terminal times on the time interval

between the current time and the terminal time can be successively generated from

the surrogate models with the inputs of the current condition at the current time step,

and these near-optimal solutions can be updated at the next time step based on the

information of the condition at the next time step. With respect to implementation,

though Steps 2 and 4 could be computationally expensive, Ns stochastic optimal

control problems can be solved in parallel in Step 2 and the surrogate models can

also be constructed in parallel in Step 4. While Steps 1–4 can be computed offline,

Step 5 can be applied online by using the surrogate models already constructed by

Steps 1–4. After constructing the surrogate models, each aircraft can determine its

own conflict resolution trajectory based on the information obtained from onboard

equipment such as ADS-B5.

5It is better for each aircraft to have the same surrogate models in order to obtain the same
output with a certain input, and the surrogate models are built on the ground (under centralized
ATM architecture). Once the surrogate models are constructed and transferred to aircraft, air-
craft can determine their own conflict resolution trajectories from the surrogate models based on
the information of current conditions obtained from onboard equipment (under decentralized ATM
architecture).
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Chapter 5

Numerical Simulations

In this chapter, numerical simulations of the two-dimensional conflict detection and

resolution problem are conducted to demonstrate the performance and effectiveness of

the proposed conflict detection and resolution algorithms. First, the conflict detection

problem is solved by the probabilistic conflict detection algorithm based on the PCE

method. After that, the conflict resolution problem is solved by the stochastic optimal

control method. Lastly, the near-optimal control problem for conflict resolution is

formulated and solved. The simulations are performed on a computer with a 3.20

GHz Intel Xeon E3-1225 v2 processor and 32 GB RAM.

5.1 Probabilistic Conflict Detection

5.1.1 Problem Description

As shown in Fig. 5-1, we consider the two-dimensional conflict scenario between two

aircraft, labeled 1 and 2. A conflict is defined by the minimum separation requirement

dHmin established by ICAO [64], which is set to 5 nmi in en route airspace. As shown

in Fig. 5-1, we consider two aircraft flying toward the merging point (x, y) = (0, 0 nmi)

without any maneuvers or control inputs. Both aircraft fly level at the same altitude

and the same constant airspeed v of 400 kt. The heading angle ψi (i = 1, 2) (−π/2 ≤

ψi ≤ π/2) is randomly set to a constant value: ψ1 = 0.49 and ψ2 = −0.34. In
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Figure 5-1: Conflict scenario for conflict detection problem.

addition, as shown in Fig. 5-1, tflight is the nominal flight time to the merging point

for aircraft 1 in the absence of the wind field and set to 10 min. In the absence of the

wind field, aircraft 1 reaches the merging point after tflight min flight, and the nominal

separation between aircraft 1 and 2 after tflight min flight dsep (0 ≤ dsep ≤ 5 nmi) is

randomly selected: dsep = 3.72 nmi, as shown in Fig. 5-1. The initial positions are

determined geometrically in the absence of the wind field.

As described in Section 2.1, the spatially correlated wind model is considered

by using the KL expansion. In Eqs. (2.5) and (2.6), the number of independent

random variables NKL is set to three, and accordingly the total number of random

variables is six. To compute the KL expansion, x and y are defined over the domain

D: |x| ≤ 150 nmi and |y| ≤ 150 nmi. Figure 5-2 shows the comparison between the

exact covariance function C((x, y), (x′, y′)) in Eq. (2.4) and the covariance function

C̃((x, y), (x′, y′)) obtained with the KL expansion, where C̃((x, y), (x′, y′)) is given by

the following equation1:

C̃((x, y), (x′, y′)) =

NKL∑
i=1

λigi(x, y)gi(x
′, y′)

The root mean square (RMS) error between the exact covariance function and the

covariance function obtained with the KL expansion is 0.0334, which is small enough

1See Appendix A and [63].
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Figure 5-2: Comparison between exact covariance function and covariance function
obtained with KL expansion.

to suggest that the covariance function obtained with the KL expansion has a good

approximation. In general, asNKL gets larger, the covariance function can be obtained

more accurately with the KL expansion. However, when the total number of random

variables increases, the computational cost is considerably higher. Thus, in this study,

NKL is set to three, and the total number of random variables is six.

To demonstrate the effectiveness and performance of the conflict detection algo-

rithm, the statistical information of the distance between aircraft L (E[L] and V[L]) is

computed on the time interval t ∈ [0, tflight] by the PCE algorithm with the stochas-

tic collocation method and MC method, and the results are compared with each

other. In addition, we also demonstrate that the probability distribution of L can be

approximated as a Gaussian distribution.
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5.1.2 Simulation Results

The conflict detection problem mentioned in Section 5.1.1 is solved by the probabilistic

conflict detection algorithm, and the statistical information of the distance between

aircraft L (E[L] and V[L]) is computed. Figures 5-3 and 5-4 show the normalized

RMS errors in E[L] and V[L] (at time instant t = tflight = 10 min), respectively. The

normalized RMS errors are computed by the PCE algorithm with the stochastic col-

location method and MC method with different numbers of sample points. The circle

marker on the blue solid line is the normalized RMS error with the PCE algorithm.

For the PCE algorithm, the approximation order P is set to three, and the accuracy

level l of the sparse grid is set to two to six. As l gets larger, the number of collocation

points increases: 13, 73, 257, 749 and 2021 (l = 2–6). The cross marker on the red

dashed line indicates the normalized RMS error obtained by conducting 100 runs of

the MC simulation. The number of sample points is set to 10, 100, 1000, 10000, and

100000. To compute the normalized RMS errors, the true values of E[L] and V[L] are

assumed to be the mean values obtained by conducting 100 runs of the MC simulation

with 100000 sample points, and the RMS errors are normalized to the true values.

The computation times (average time for each run) are proportional to the number

of sample points in Figs. 5-3 and 5-4. As shown in Figs. 5-3 and 5-4, to generate a

solution with the same accuracy, the PCE algorithm uses a much smaller number of

sample points than the MC method. The PCE algorithm requires only 73 collocation

points (accuracy level l = 3) and approximately 0.9 s to obtain a good approximate

solution. On the other hand, the MC method requires over 100000 sample points and

correspondingly over 1000 s to yield the same accuracy as the PCE method. There-

fore, the PCE method provides an accurate approximate solution while dramatically

reducing computational cost. Compared with the MC method, which is computa-

tionally expensive and intractable especially when used within the iterative process

such as optimization process mentioned in Section 5.2, our proposed algorithm based

on the PCE method can dramatically reduce the computational cost and therefore

greatly enhance the computational efficiency.

49



In addition, we demonstrate that the probability distribution of L can be approx-

imated as the Gaussian distribution. Although the actual probability distribution of

the stochastic solution is unknown, it can be estimated by the Monte Carlo simulation

as the post-processing of the PCE method. Since L is approximated as the function of

the random variables of the wind errors in Eq. (2.10), L can be used as the surrogate

model (input: random variables of the wind errors, output: L). Thus, by the Monte

Carlo simulation of the random variables in Eq. (2.10), the histogram of L, accord-

ingly the probability distribution of L, can be easily estimated. We use the simulation

results of the conflict detection problem to compute the probability distribution and

histogram of L. Figure 5-5 shows the Gaussian distribution obtained by the moment

matching technique and the histogram of L computed by the Monte Carlo simulation

with 100000 sample points. The mean and variance of the Gaussian distribution are

3.7240 nmi and 0.0418 nmi2, respectively. It should be noted that the probability

density is proportional to the frequency. As shown in Fig. 5-5, the Gaussian distri-

bution can accurately approximate the histogram of L representing the probability

distribution of L. Therefore, we have demonstrated the accuracy of approximating

the probability distribution of L as the Gaussian distribution. By approximating the

probability distribution of L as the Gaussian distribution, we can readily compute

the conflict probability between any pair of aircraft given by Eq. (2.21). Although

the Gaussian approximation can be employed for probabilistic conflict detection and

resolution in this study, it should be noticed that if the distance between aircraft

is much smaller (e.g., in the case of collision avoidance), the Gaussian approxima-

tion may deteriorate the estimation of conflict (or collision) probability and different

distributions may be better.
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Figure 5-3: Normalized root mean square (RMS) errors in expected value of distance
between aircraft.
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Figure 5-4: Normalized root mean square (RMS) errors in variance of distance be-
tween aircraft.
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Figure 5-5: Comparison between Gaussian distribution (mean: 3.7240 nmi, variance:
0.0418 nmi2) and histogram computed by Monte Carlo simulation with 100000 sample
points for probability distribution of distance between aircraft.
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5.2 Stochastic Optimal Control for Conflict Reso-

lution

5.2.1 Problem Description

We consider the conflict resolution problem in two-dimensional horizontal plane in

which the aircraft coming from different directions merge to the waypoint. As shown

in Fig. 5-6, we consider two conflict scenarios: aircraft–aircraft conflict resolution

problem in case 1; and aircraft–aircraft and aircraft–weather conflict resolution prob-

lem in case 2. Three aircraft are considered in case 1, and two aircraft and the

moving convective weather region (cell) are considered in case 2. We assume that the

shape of the convective weather cell is an ellipse as shown in Fig. 5-6b. An aircraft–

aircraft conflict is defined by the required minimum separation standard established

by ICAO [64], and the horizontal separation requirement between aircraft dHaamin is

set to 5 nmi for the en route airspace. The required minimum separation between air-

craft and the convective weather cell dHawmin is set to 0 nmi. It should be noted that

the distance between aircraft and the convective weather cell is the shortest distance

between the aircraft position and the ellipse representing the weather cell.

The merging point is set to (x, y) = (0, 0 nmi) in both cases, and the initial

condition xi(0) (i = 1, 2, 3 in case 1 and i = 1, 2 in case 2) is determined geometrically

by the initial heading angle ψi(0) (−π/2 ≤ ψi ≤ π/2) and the direct distance between

the initial position and the merging point di (65 ≤ di ≤ 70 nmi):

xi(0) = (−di cosψi(0),−di sinψi(0), ψi(0))
T (5.1)

ψi(0) and di are randomly selected, and the values of the parameters are shown in

Tables 5.1 and 5.2. We assume that the subscript i indicates the aircraft sequences of

reaching the merging point in ascending order of value i. Before solving the optimal

control problem, the arrival sequences of aircraft are predetermined in ascending order

of the magnitude of di, where di is given by satisfying the following condition: di ≤ dj

(∀i, j ∈ {1, 2, 3} in case 1 and ∀i, j ∈ {1, 2} in case 2 : i < j). In case 2, as shown in
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Figure 5-6: Conflict scenarios for conflict resolution problem.
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Table 5.1: Parameters for conflict resolution problem in case 1

Parameters Values
ψ1(0) 0.11
ψ2(0) 1.19
ψ3(0) −0.45
d1, nmi 66.88
d2, nmi 68.27
d3, nmi 68.41

Table 5.2: Parameters for conflict resolution problem in case 2

Parameters Values
ψ1(0) 0.42
ψ2(0) −0.23
d1, nmi 68.66
d2, nmi 69.06
xw, nmi −30
yw, nmi −10
aw, nmi 15
bw, nmi 10
θw π/3
vw, kt 50
ψw π/4

Fig. 5-6b, the shape of the convective weather cell is described as the ellipse with the

rotation angle θw = π/3, major radius aw = 15 nmi and minor radius bw = 10 nmi,

and the initial position of the center of the ellipse is set to (xw, yw) = (−30,−10 nmi).

The weather cell is moving with a constant velocity vw of 50 kt, and the heading angle

ψw of π/4. The values of these parameters for the moving convective weather cell

are also shown in Table 5.2. We assume that the weather cell is not affected by the

wind uncertainty and moves deterministically; however, the uncertainty contained in

the moving weather cell is considered for the near-optimal conflict resolution problem

in Section 5.3. In addition, the airspeed v is set to the same constant value of 400

kt, but the airspeed measurement error is also considered for more general conflict

resolution problem in Section 5.3.
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The terminal condition xi(tfi) is given by the following equation:

E [xi(tfi)] = (0, 0, 0)T (5.2)

where tfi is the terminal time (time of arrival at the merging point): tfi ≤ tfj

(∀i, j ∈ {1, 2, 3} in case 1 and ∀i, j ∈ {1, 2} in case 2 : i < j). Since xi(t) contains the

wind errors, the terminal condition in Eq. (5.2) is considered as the expected value.

As to the wind uncertainty, to quantify the effects of the wind correlation on the

optimal conflict resolution trajectory, we consider the two different wind error models:

the spatially correlated and non-correlated wind models. In the correlated case, the

spatially correlated wind model is considered by using the KL expansion described

in Section 2.1. As in the numerical simulations of conflict detection, the number of

independent random variables NKL in Eqs. (2.5) and (2.6) is set to three, and the

total number of random variables is six. On the other hand, the wind correlation

is completely ignored in the non-correlated case, which represents a simple baseline

for comparison. The non-correlated wind error model is also widely used in ATM

research because of its simplicity. In the non-correlated case, the wind error is assumed

to be the Gaussian random variable with zero mean and the standard deviation

σw = 10.40 kt [56], which is independent in the x and y directions and each aircraft.

For the non-correlation model, the total number of independent random variables is

six. For applying the PCE algorithm, on the basis of the numerical simulations of

conflict detection in Section 5.1.22, the approximation order P is set to three and the

accuracy level l is set to three. Accordingly, the number of collocation points is 73

for six random variables in both the correlated and non-correlated cases.

The aircraft dynamics are given by Eqs. (2.1)–(2.3), and the constraints on the

variables are given as follows: −π/2 ≤ ψ ≤ π/2 and −π/120 ≤ u ≤ π/120 s−1. We

2Even though constant ψ simplifies the problem and the stochastic solution in Section 5.1, the
problem is still nonlinear and reasonably complex due to the spatially correlated wind error in-
troduced in Eqs. (2.5) and (2.6). We are also able to obtain a good approximate solution when
applying the proposed algorithms to a more complicated case in this section for a more general
conflict resolution problem with the same number of collocation points as the simplified case in
Section 5.1.
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consider the stochastic safety constraint condition that the required minimum conflict

probability is 0.1 to yield the effective conflict resolution trajectory [23]:

Pr [Cij] ≤ 0.1 (∀i, j ∈ {1, 2, 3} : i < j) in case 1 (5.3)

Pr [Cij] ≤ 0.1

Pr [Cwi] ≤ 0.1

 (∀i, j ∈ {1, 2} : i < j) in case 2 (5.4)

where Pr [Cij] is the conflict probability between the ith and jth aircraft; and Pr [Cwi]

indicates the conflict probability between the ith aircraft and the convective weather

cell. Both Pr [Cij] and Pr [Cwi] are given by Eq. (2.21). For solving the stochastic

optimal control problem to determine the conflict resolution trajectory, the following

cost function J is minimized:

J =
Na∑
i=1

(
tfi + 103

∫ tfi

0

|ui(t)|2dt
)

(5.5)

where Na is the number of aircraft: Na = 3 in case 1 and Na = 2 in case 2. Note

that the cost function in Eq. (5.5) is a specific realization of the general form of a

cost function in Eq. (3.15).

As described in Eqs. (5.1)–(5.5), the multiple-phase (three-phase in case 1 and

two-phase in case 2) optimal control problems are formulated. In case 1, three air-

craft (i = 1, 2, 3) and three conflicts (C12, C13, C23) are considered in the first phase

(t ∈ [0, tf1]); two aircraft (i = 2, 3) and one conflict (C23) are considered in the sec-

ond phase (t ∈ [tf1, tf2]); and one aircraft (i = 3) is considered in the third phase

(t ∈ [tf2, tf3]). In case 2, two aircraft (i = 1, 2) and three conflicts (C12, Cw1, Cw2) are

considered in the first phase (t ∈ [0, tf1]); one aircraft (i = 2) and one conflict (Cw2)

are considered in the second phase (t ∈ [tf1, tf2]). We apply the proposed stochastic

optimal control method to the conflict resolution problem described in Section 5.2.1.

With the stochastic optimal control method based on the pseudospectral method, the

nonlinear optimal control problem can be solved, and the dynamic variables including

the conflict resolution trajectory and maneuvers are optimized. Through the numer-
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ical simulations, the effectiveness and performance of the stochastic optimal control

method are evaluated and demonstrated.

5.2.2 Simulation Results

Figure 5-7 shows the expected values of the conflict resolution trajectories including

the aircraft positions at time instant t = tf1 in case 1. Figures 5-8 and 5-9 show the

time histories of the heading angles and controls in case 1. Figure 5-10 shows the

expected values of the conflict resolution trajectories including the aircraft positions

at time instant t = tf1 in case 2. The time histories of the heading angles and control

variables in case 2 are shown in Figs. 5-11 and 5-12. Tables 5.3 and 5.4 indicate the

terminal time at the merging point for each aircraft in cases 1 and 2, respectively.

The characteristics of the conflict resolution trajectories in the correlated and non-

correlated cases are similar to each other. In case 1, as shown in Fig. 5-7, aircraft 2

(i = 2, green line) and 3 (i = 3, red line) take a detour to avoid the potential conflicts,

while aircraft 1 (i = 1, blue line) does not take a detour and flies toward the merging

point without any conflict resolution maneuvers in both the correlated and non-

correlated wind cases. The time histories of the heading angles and control variables

of aircraft 1 in the correlated and non-correlated wind cases are also almost the same,

as shown in Figs. 5-8 and 5-9. In addition, as shown in Table 5.3, the terminal time

of aircraft 1 in the correlated and non-correlated wind cases are almost the same. It

indicates that the trajectory of aircraft 1 is not affected by resolving conflict and these

conflict resolution trajectories can minimize the cost function in Eq. (5.5). On the

other hand, the conflict resolution trajectories of aircraft 2 and 3 in the correlated and

non-correlated cases are also similar to each other. However, as shown in Fig. 5-7, the

conflict resolution trajectories of aircraft 2 and 3 with the non-correlated wind model

require a longer detour than the correlated one. Moreover, as shown in Table 5.3,

the terminal times of aircraft 2 and 3 in the non-correlated wind case are also longer

than that in the correlated one. It indicates that the distance between aircraft in the

non-correlated wind case is necessary to be larger than the correlated wind case to

guarantee safety and the resolution of the potential conflicts. That is, the distance
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between aircraft can be smaller under the correlated wind uncertainty, which is the

more realistic wind error model than the non-correlated one. The wind correlation

can have a significant effect on the distance between aircraft and therefore the optimal

conflict resolution trajectory.

In case 2, the characteristics of the conflict resolution trajectories in the correlated

and non-correlated cases are also similar to each other. As shown in Fig. 5-10, aircraft

1 (i = 1, blue line) and 2 (i = 2, red line) take a detour to avoid the potential

conflicts in both the correlated and non-correlated wind cases. Aircraft 1 in case

2 takes a detour to resolve the aircraft–weather conflict in contrast to aircraft 1 in

case 1 that does not take a detour and flies toward the merging point without any

conflict resolution maneuvers. The conflict resolution trajectories of aircraft 1 in

the correlated and non-correlated wind cases are almost the same, and the conflict

resolution trajectory of aircraft 2 with the non-correlated wind model requires a longer

detour than the correlated one. In addition, as shown in Table 5.4, the terminal time

of aircraft 2 in the non-correlated wind case is longer than the correlated one, while

the terminal times of aircraft 1 in the correlated and non-correlated wind cases are

almost the same. It indicates that the wind correlation can have a significant effect

on the distance between a pair of aircraft but less effect on the distance between

aircraft and the weather cell. This is because the moving convective weather cell is

not affected by the wind uncertainty.

Moreover, the separation margins are optimized to satisfy the stochastic safety

constraint described in Eqs. (2.21), (5.3) and (5.4). Figure 5-13 shows the expected

values of the separation margins in case 1, which are computed as E[L] − dHmin.

Figure 5-14 shows the variances of the separations V[L] in case 1. Figure 5-15 shows

the expected values of the separation margins in case 2, and Fig. 5-16 shows the

variances of the separations in case 2. Figures 5-13 and 5-15 also indicate the standard

deviation (SD) of the separation margin, where the SD (error bar) is obtained from

V[L] in Figs. 5-14 and 5-16. Tables 5.5 and 5.6 show the minimum values of the

expected values of the separation margins in Figs. 5-13 and 5-15. Since our proposed

stochastic optimal control method incorporates the PCE algorithm, the expected
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value and variance of the separation are easily computed. As shown in Figs. 5-14

and 5-16, the variance of the separation increases with time because the effect of

the wind uncertainty accumulates over time, and the magnitude of the variance of

the separation represents the effects of the wind uncertainty and correlation on the

separation between aircraft. In the correlated wind case, the variance of the separation

between the pair of aircraft can be smaller than the non-correlated wind case, because

the wind errors experienced by any two aircraft are correlated with each other. On

the other hand, the completely independent wind error in the non-correlated model

leads to the much larger variance of the separation between the pair of aircraft than

the correlated wind model, as shown in Figs. 5-14 and 5-16. Accordingly, as shown

in Figs. 5-13 and 5-15, the SD of the separation in the non-correlated wind case is

also much larger than the correlated wind case. As shown in Figs. 5-15 and 5-16, the

variances and SDs of the separations between aircraft and the weather cell are much

larger than those of the separations between the pair of aircraft in the correlated case,

and the variances and SDs of the separations between aircraft and the weather cell in

the correlated and non-correlated cases are similar to each other. This is because the

weather cell is not affected by the wind uncertainty and the wind correlation can have

less effect on the separation between aircraft and the weather cell. Thus, as shown in

Figs. 5-13 and 5-15 and Tables 5.5 and 5.6, the separation margin between the pair of

aircraft in the non-correlated wind case is necessary to be larger than the correlated

wind case to satisfy the stochastic safety constraint described in Eqs. (2.21), (5.3) and

(5.4), i.e., to guarantee the resolution of the potential conflicts. This results in an

overestimation of the conflict probability in the non-correlated wind case. Therefore,

using the correlated wind error model, which is the more realistic wind uncertainty

than the non-correlated one, we can reduce the conservativeness in the estimation

of the conflict probability and the separation margin under the non-correlated wind

uncertainty.

To generate the optimal conflict resolution trajectory, the computation times for

solving the stochastic optimal control problems for conflict resolution are approxi-

mately 38 s and 231 s in cases 1 and 2, respectively, by employing the computa-
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tionally efficient PCE algorithm. According to the results of the conflict detection

problem mentioned in Section 5.1.2, it can be computationally intractable to use the

MC method instead of the PCE algorithm. Our proposed stochastic optimal control

method that incorporates the PCE algorithm into the pseudospectral method can

optimize the dynamic variables including the conflict resolution trajectory and ma-

neuvers, and the resolution of the potential conflicts is guaranteed by incorporating

the conflict detection algorithm and considering the stochastic safety constraint de-

scribed in Eqs. (2.21), (5.3) and (5.4). The stochastic optimal control method can

provide the effective separation margin and conflict resolution trajectory that can

be guaranteed to avoid potential conflicts under the wind uncertainty. When the

stochastic wind model is not considered, the separation between aircraft has no mar-

gin from the required minimum separation, which is not the robust conflict resolution

trajectory at all under uncertain environments during the flight. In contrast, by con-

sidering the wind uncertainty, the stochastic optimal control method can provide the

effective separation margins and conflict resolution trajectories that can be guaran-

teed to avoid potential conflicts under the wind uncertainty. In particular, using the

correlated wind model, which is the more realistic wind uncertainty than the non-

correlated one, we can reduce the conservativeness of separation distances under the

non-correlated wind uncertainty by approximately 2.8 nmi on average. Accordingly,

we can mitigate the air traffic congestion and increase the throughput capacity of the

air traffic by using our proposed stochastic algorithms.
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Figure 5-7: Optimal conflict resolution trajectory in case 1.
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Figure 5-8: Time history of heading angle in case 1.
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Figure 5-9: Time history of control variable in case 1.
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Figure 5-10: Optimal conflict resolution trajectory in case 2.
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Figure 5-11: Time history of heading angle in case 2.
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Figure 5-12: Time history of control variable in case 2.
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Table 5.3: Terminal time at merging point in case 1

Variables Correlated wind Non-correlated wind
tf1, s 601.97 601.97
tf2, s 648.70 671.06
tf3, s 695.78 742.23

Table 5.4: Terminal time at merging point in case 2

Variables Correlated wind Non-correlated wind
tf1, s 640.61 641.60
tf2, s 689.13 712.24
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Figure 5-13: Time history of expected values and standard deviation (error bar) of
separation margin in case 1.

0 100 200 300 400 500 600 700 800
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time, s

V
ar

ia
n
ce

 o
f 

se
p
ar

at
io

n
 V

[L
],

 n
m

i2

 

 

C12

C13

C23

(a) Correlated wind

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

Time, s

V
ar

ia
n
ce

 o
f 

se
p
ar

at
io

n
 V

[L
],

 n
m

i2

 

 

C12

C13

C23

(b) Non-correlated wind

Figure 5-14: Time history of variance of separation in case 1.
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Figure 5-15: Time history of expected values and standard deviation (error bar) of
separation margin in case 2.
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Figure 5-16: Time history of variance of separation in case 2.
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Table 5.5: Minimum separation margin (expected value) in case 1

Pairs Correlated wind Non-correlated wind
C12 (aircraft 1 and 2) 0.15 nmi 3.04 nmi
C13 (aircraft 1 and 3) 4.95 nmi 7.68 nmi
C23 (aircraft 2 and 3) 0.23 nmi 3.26 nmi

Table 5.6: Minimum separation margin (expected value) in case 2

Pairs Correlated wind Non-correlated wind
C12 (aircraft 1 and 2) 0.38 nmi 3.22 nmi
Cw1 (weather and aircraft 1) 0.99 nmi 1.67 nmi
Cw2 (weather and aircraft 2) 1.79 nmi 2.21 nmi
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5.3 Stochastic Near-Optimal Control for Conflict

Resolution

5.3.1 Problem Description

On the basis of the problem formulation for probabilistic conflict resolution described

in Section 5.2, the near-optimal control problem for conflict resolution is formulated

and solved. As shown in Fig. 5-6, we consider two conflict scenarios based on the

conflict situations in Section 5.2: aircraft–aircraft conflict resolution problem in case

1; and aircraft–aircraft and aircraft–weather conflict resolution problem in case 2.

In order to consider more general probabilistic conflict resolution problem, as to

the uncertainties, we deal with the airspeed measurement error and the uncertainty

contained in the moving convective weather cell as well as the spatially correlated

wind uncertainty.

The surrogate models of the optimal conflict resolution trajectories are constructed

by using the polynomial chaos kriging algorithm. We consider the discrete time steps:

t
(p)
0 = T

(p)
1 < · · · < T

(p)
Nt+1 = t

(p)
f , where Nt is set to 20; and p denotes the phase

(p = 1, 2, 3 in case 1 and p = 1, 2 in case 2). Note that the multiple-phase (three-

phase in case 1 and two-phase in case 2) optimal control problems are formulated as

described in Section 5.2, and t
(p)
0 and t

(p)
f are the initial and terminal times in the pth

phase, respectively (t
(p)
f = t

(p+1)
0 ). The surrogate models are built at each time step Tk

(k = 1, . . . , Nt). The input variables of the surrogate models X(Tk) are the current

condition at the current time step Tk: the current state variables xi(Tk) and airspeed

vi(Tk) (i = 1, 2, 3) in case 1; and the current state variables xi(Tk), airspeed vi(Tk)

(i = 1, 2) and parameters for the convective weather cell (xw, yw, aw, bw, θw, vx, ψw)

at the current time step Tk in case 2. In case 1, the total numbers of the input

variables are 12, 8 and 4 in the first, second and third phases, respectively. In case

2, the total numbers of the input variables are 15 and 11 in the first and second

phases, respectively. The outputs of the surrogate models are the optimal states

x∗
i,k+1(X(Tk)) at the next time step Tk+1, optimal controls u∗i,k(X(Tk)) at the current
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Table 5.7: Standard deviations for variables of initial conditions in case 1 (i = 1, 2, 3)

Parameters Values
xi, nmi 1
yi, nmi 1
ψi π/36
vi, kt 5.38

Table 5.8: Standard deviations for variables of initial conditions in case 2 (i = 1, 2)

Parameters Values
xi, nmi 1
yi, nmi 1
ψi π/36
vi, kt 5.38
xw, nmi 1
yw, nmi 1
aw, nmi 1
bw, nmi 1
θw π/36
vw, kt 5
ψw π/36

time step and optimal terminal times t∗fi,k(X(Tk)) at the current time step (i = 1, 2, 3

in case 1 and i = 1, 2 in case 2).

For applying the polynomial chaos kriging algorithm, the sample points of the

initial conditions are generated by the Latin hypercube sampling method [143, 144].

The number of sample points Ns is set to 100, 200 and 300, and the surrogate models

constructed with the different numbers of sample points are compared with each

other. By using the stochastic optimal control method, Ns stochastic optimal control

problems starting from the different initial conditions X(j)(0) = X(j)(T
(1)
1 ) (j =

1, . . . , Ns) are solved for constructing the surrogate models of the optimal conflict

resolution trajectories. The variables of the initial conditions are assumed to be

Gaussian, and the means are consistent with the values of the initial conditions given

by Eq. (5.1) and Tables 5.1 and 5.2 in Section 5.2. The standard deviations of

these variables in cases 1 and 2 are shown in Tables 5.7 and 5.8, respectively. In

Tables 5.7 and 5.8, the standard deviation of v, 5.38 kt, is determined based on the
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speed measurement error and the air temperature error [30]. The airspeed indicators

typically have errors with the standard deviation of 5 kt to the airspeed, and the air

temperature error has the standard deviation of approximately 2 K, which leads to

the airspeed error of about 2 kt. Assuming these two errors are independent, the

standard deviation of 5.38 kt can be obtained. It should be noted that the airspeed

measurement error is assumed to be constant in time.

The surrogate models are built with the set of Ns precomputed optimal solutions.

Once the surrogate models are constructed, the near-optimal conflict resolution tra-

jectories on the time interval between the current time and the terminal time can be

obtained as the functions of the current conditions. Thus, the near-optimal solutions

can be generated in real time from the surrogate models with the information of the

current conditions without actually solving the computationally expensive stochas-

tic optimal control problems. For assessing the surrogate models, we consider the

randomly generated 100 different cases as the inputs of the surrogate models. Using

these 100 cases, the near-optimal solution generated from the surrogate models and

the exact optimal solution obtained by actually solving the optimal control problem

are compared with each other.

5.3.2 Simulation Results

The near-optimal conflict resolution trajectories are generated from the surrogate

models constructed by using the polynomial chaos kriging algorithm with the differ-

ent numbers of sample points Ns = 100, 200, 300. In order to build the surrogate

models, the stochastic optimal control problems starting from Ns selected initial con-

ditions are solved. Figures 5-17 and 5-18 show the optimal solutions for the chosen

Ns = 200 initial conditions in cases 1 and 2, respectively. By using the polynomial

chaos kriging method, the surrogate models of the optimal conflict resolution trajec-

tories are constructed from the set of the precomputed optimal solutions. Tables 5.9

and 5.10 indicate the maximum and RMS errors of the outputs of the surrogate mod-

els between the near-optimal and optimal solutions among 100 different cases and

the comparison between the errors of the surrogate models built with the different
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numbers of sample points. As shown in Tables 5.9 and 5.10, when Ns increases, the

maximum and RMS errors generally become smaller, that is, the near-optimal solu-

tions can be obtained more accurately. However, the increase of Ns from 200 to 300

does not provide significant improvements and changes in the maximum and RMS

errors. It indicates that the maximum and RMS errors obtained by polynomial chaos

kriging with 200 sample points are small enough to suggest that the surrogate models

provide the approximate optimal conflict resolution trajectories accurately. In addi-

tion, the near-optimal solutions are generated from the surrogate models constructed

by using three different surrogate modeling techniques, the polynomial chaos krig-

ing, PCE and ordinary kriging methods, with Ns = 200 sample points. Tables 5.11

and 5.12 show the maximum and RMS errors of the outputs of the surrogate models

between the near-optimal and optimal solutions among 100 different cases and the

comparison between the errors of the surrogate models built with three different sur-

rogate modeling techniques: the polynomial chaos kriging, PCE and ordinary kriging

methods. As shown in Tables 5.11 and 5.12, the polynomial chaos kriging algorithm

generally performs better than the PCE or kriging does. In reality, we do not have a

prior knowledge that which approach performs better, PCE or kriging. The polyno-

mial chaos kriging method can build more accurate surrogate models than either of

the PCE or kriging method does. Therefore, the polynomial chaos kriging algorithm

can perform better than the PCE or kriging does, and provide the highly accurate

near-optimal solutions.

Tables 5.13 and 5.14 indicate the RMS errors of the expected values of the separa-

tions between the near-optimal and optimal solutions among 100 different cases. The

near-optimal solutions are constructed by polynomial chaos kriging with Ns = 200

sample points. In Tables 5.13 and 5.14, the RMS errors are small enough to indicate

that the surrogate models can generate the near-optimal solutions accurately. In ad-

dition, in all 100 cases, the near-optimal solutions also satisfy the stochastic safety

constraint described in Eqs. (2.21), (5.3) and (5.4) as well as the optimal solutions.

Thus, the near-optimal solutions can be guaranteed to avoid the potential conflicts

without actually solving the stochastic optimal control problems, and it indicates that
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the near-optimal solutions can be obtained accurately from the surrogate models.

In order to demonstrate the accuracy and robustness of the near-optimal con-

flict resolution algorithm, Figs. 5-19 and 5-20 show several realizations of the near-

optimal, optimal and nominal conflict resolution trajectories at the time steps t =

T
(1)
1 , T

(1)
4 , T

(1)
7 , T

(1)
10 , T

(1)
13 , T

(1)
16 in case 1. Figures 5-21–5-24 show the time histories

of the near-optimal, optimal and nominal heading angles and controls at the time

steps t = T
(1)
1 , T

(1)
4 , T

(1)
7 , T

(1)
10 , T

(1)
13 , T

(1)
16 in case 1. Figures 5-25–5-30 also show sev-

eral realizations of the near-optimal, optimal and nominal conflict resolution tra-

jectories and the time histories of the near-optimal, optimal and nominal heading

angles and controls at the time steps t = T
(1)
1 , T

(1)
4 , T

(1)
7 , T

(1)
10 , T

(1)
13 , T

(1)
16 in case 2.

The surrogate models are constructed by the polynomial chaos kriging method with

Ns = 200 sample points. The solid lines denote the near-optimal solutions gen-

erated from the surrogate models with the current conditions (at the time steps

t = T
(1)
1 , T

(1)
4 , T

(1)
7 , T

(1)
10 , T

(1)
13 , T

(1)
16 ). The dashed lines are the optimal solutions ob-

tained by actually solving the stochastic optimal control problems. The dotted lines

indicate the nominal solutions, which are the optimal solutions in Section 5.2 rep-

resenting a simple baseline for comparison. The circle markers denote the current

conditions. In Figs. 5-19–5-24, the blue, green and red lines indicate the solutions of

aircraft 1, 2 and 3 (i = 1, 2, 3) in case 1, respectively. In Figs. 5-25–5-30, the blue

and red lines are the solutions of aircraft 1 and 2 (i = 1, 2) in case 2, respectively.

As shown in Figs. 5-19–5-30, the near-optimal and optimal solutions closely match

each other, and the near-optimal conflict resolution trajectories and maneuvers can

be obtained accurately from the surrogate models with the information of the current

conditions. The near-optimal solutions on the time interval between the current time

and the terminal time can be generated from the surrogate models with the inputs of

the current conditions, and these near-optimal solutions can be updated at the next

time step based on the information of the conditions at the next time step. As shown

in Figs. 5-19–5-30, we can obtain the different near-optimal solution depending on the

current condition at each time step, which is also guaranteed to avoid the potential

conflicts as well as the optimal solution. When the states on the precomputed optimal
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trajectory deviate from the actual states due to the uncertainties, our proposed near-

optimal feedback control method can accurately generate the near-optimal trajectory

starting from the actual states in real time by using the surrogate models with the

information of the actual states without solving another optimal control problem to

obtain the correct optimal trajectory.

To generate the near-optimal conflict resolution trajectories, the computation

times for constructing one surrogate model from a set of precomputed Ns = 200

optimal solutions by the polynomial chaos kriging method are approximately 46 s

and 59 s on average in cases 1 and 2, respectively. In order to reduce the total com-

putational cost, as mentioned in Section 4.3, the surrogate models can be built in

parallel, and the stochastic optimal control problems can also be solved in parallel.

Once the surrogate models are computed offline, the near-optimal solutions can be

generated online from the surrogate models with the information of the current condi-

tions. The surrogate models constructed by the polynomial chaos kriging method can

accurately provide the approximate optimal conflict resolution trajectories that are

guaranteed to avoid the potential conflicts without actually solving the computation-

ally expensive stochastic optimal control problems. After constructing the surrogate

models, each aircraft can determine its own conflict resolution trajectory based on the

information of current conditions obtained from onboard equipment such as ADS-B.

Through the numerical simulations, the effectiveness and performance of our proposed

near-optimal conflict resolution algorithm are evaluated and demonstrated.
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Figure 5-17: Precomputed optimal solutions in case 1 (Ns = 200).
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Figure 5-18: Precomputed optimal solutions in case 2 (Ns = 200).
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Table 5.13: Root mean square (RMS) errors of expected values of separations (Ns =
200) in case 1

Pairs RMS errors, nmi
C12 (aircraft 1 and 2) 1.31× 10−2

C13 (aircraft 1 and 3) 1.56× 10−2

C23 (aircraft 2 and 3) 1.07× 10−2

Table 5.14: Root mean square (RMS) errors of expected values of separations (Ns =
200) in case 2

Pairs RMS errors, nmi
C12 (aircraft 1 and 2) 4.23× 10−2

Cw1 (weather and aircraft 1) 2.22× 10−2

Cw2 (weather and aircraft 2) 4.04× 10−2
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Figure 5-19: Near-optimal, optimal and nominal conflict resolution trajectories in
case 1 (at time instant t = T

(1)
1 , T

(1)
4 , T

(1)
7 ).
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Figure 5-20: Near-optimal, optimal and nominal conflict resolution trajectories in
case 1 (at time instant t = T

(1)
10 , T

(1)
13 , T

(1)
16 ).
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Figure 5-21: Time histories of near-optimal, optimal and nominal heading angles in
case 1 (at time instant t = T

(1)
1 , T

(1)
4 , T

(1)
7 ).
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Figure 5-22: Time histories of near-optimal, optimal and nominal heading angles in
case 1 (at time instant t = T

(1)
10 , T

(1)
13 , T

(1)
16 ).
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Figure 5-23: Time histories of near-optimal, optimal and nominal controls in case 1
(at time instant t = T

(1)
1 , T

(1)
4 , T

(1)
7 ).
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Figure 5-24: Time histories of near-optimal, optimal and nominal controls in case 1
(at time instant t = T

(1)
10 , T

(1)
13 , T

(1)
16 ).
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Figure 5-25: Near-optimal, optimal and nominal conflict resolution trajectories in
case 2 (at time instant t = T

(1)
1 , T

(1)
4 , T

(1)
7 ).
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Figure 5-26: Near-optimal, optimal and nominal conflict resolution trajectories in
case 2 (at time instant t = T

(1)
10 , T

(1)
13 , T

(1)
16 ).

90



0 100 200 300 400 500 600 700 800
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time, s

H
ea

d
in

g
 a

n
g
le

 ψ

 

 

(a) t = T
(1)
1

 

Near−optimal (aircraft 1, i=1)

Near−optimal (aircraft 2, i=2)

Optimal (aircraft 1, i=1)
Optimal (aircraft 2, i=2)

Nominal (aircraft 1, i=1)

Nominal (aircraft 2, i=2)

0 100 200 300 400 500 600 700 800
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time, s

H
ea

d
in

g
 a

n
g
le

 ψ

 

 

(b) t = T
(1)
4

0 100 200 300 400 500 600 700 800
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time, s

H
ea

d
in

g
 a

n
g
le

 ψ

 

 

(c) t = T
(1)
7

Figure 5-27: Time histories of near-optimal, optimal and nominal heading angles in
case 2 (at time instant t = T

(1)
1 , T

(1)
4 , T

(1)
7 ).
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Figure 5-28: Time histories of near-optimal, optimal and nominal heading angles in
case 2 (at time instant t = T

(1)
10 , T

(1)
13 , T

(1)
16 ).
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Figure 5-29: Time histories of near-optimal, optimal and nominal controls in case 2
(at time instant t = T

(1)
1 , T

(1)
4 , T

(1)
7 ).
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Figure 5-30: Time histories of near-optimal, optimal and nominal controls in case 2
(at time instant t = T

(1)
10 , T

(1)
13 , T

(1)
16 ).
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Chapter 6

Conclusions

6.1 Research Summary

In this dissertation, we have proposed the probabilistic aircraft conflict detection and

resolution algorithms in the presence of uncertainty, especially for two kinds of con-

flicts: aircraft–aircraft and aircraft–weather conflicts. As the uncertainties during

the flight, the wind prediction error, airspeed measurement error and the uncertainty

contained in the moving convective weather region were considered. As to the wind

uncertainty, the spatially correlated wind error was considered, and the Karhunen–

Loève expansion was used to describe the correlated wind error. To detect aircraft

midair conflicts, the statistical information of the distances between the pair of aircraft

and between aircraft and the convective weather region was accurately computed by

employing the polynomial chaos expansion (PCE) algorithm, and the conflict proba-

bilities between the pair of aircraft and between aircraft and the convective weather

region were computed by the conflict detection algorithm. Compared with the Monte

Carlo method, which is computationally expensive and intractable especially when

used within the iterative optimization process, the proposed algorithm based on the

PCE method dramatically reduced the computational cost and greatly enhanced the

computational efficiency.

In addition, the stochastic optimal control method combining the computationally

efficient probabilistic conflict detection algorithm with the pseudospectral method was
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applied to the two-dimensional aircraft–aircraft and aircraft–weather conflict resolu-

tion problem. The stochastic algorithm could generate the optimal conflict resolution

trajectories for the correlated and non-correlated wind error models. By comparing

the optimal conflict resolution trajectories for the correlated and non-correlated wind

error models, the wind correlation could have significant effects on the separation

between aircraft and the optimal conflict resolution trajectory, and the separation

between aircraft under the correlated wind error could be smaller than that under

the non-correlated error. Using the correlated wind model, we could reduce the con-

servative separation under the non-correlated wind uncertainty. Accordingly, we can

mitigate the air traffic congestion and increase the throughput capacity of the air

traffic.

Furthermore, we have proposed the stochastic near-optimal control method for

conflict resolution based on the polynomial chaos kriging method. The near-optimal

control method was also applied to the aircraft–aircraft and aircraft–weather conflict

resolution problem. The polynomial chaos kriging method could accurately construct

the surrogate models of the optimal conflict resolution trajectories from a set of the

precomputed optimal solutions. Using the surrogate models, the approximate optimal

conflict resolution trajectories on the time interval between the current time and the

terminal time were obtained as the functions of the current conditions (i.e., the current

states, airspeed and parameters for the convective weather cell). Once the surrogate

models were constructed offline, the near-optimal conflict resolution trajectories could

be obtained online from the surrogate models with the information of the current

conditions without actually solving the computationally expensive stochastic optimal

control problems. The proposed near-optimal conflict resolution algorithm could have

the feature of optimal feedback control. When the states on the precomputed optimal

conflict resolution trajectory deviate from the actual states due to the uncertainties,

the proposed near-optimal feedback control method can accurately generate the near-

optimal trajectory starting from the actual states in real time by using the surrogate

models with the information of the actual states without solving another stochastic

optimal control problem to obtain the correct optimal trajectory. Comparing the
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near-optimal solutions generated from the surrogate models and the optimal solutions

obtained by actually solving the stochastic optimal control problems, the near-optimal

conflict resolution trajectories were accurately generated and guaranteed to avoid

potential conflicts as well as the optimal solutions. Moreover, comparing the surrogate

models built with three different surrogate modeling techniques, the polynomial chaos

kriging, PCE and ordinary kriging methods, the polynomial chaos kriging method

generally performed better than the PCE or kriging method did. Once the surrogate

models are constructed and transferred to aircraft, aircraft can determine their own

conflict resolution trajectories from the surrogate models based on the information

of current conditions obtained from onboard equipment such as ADS-B. Through

numerical simulations, the performance and effectiveness of the probabilistic conflict

detection and resolution algorithms have been evaluated and demonstrated.

The proposed conflict detection algorithm allows the pilots and air traffic con-

trollers to make a decision in real time on whether potential conflicts will occur

within a look ahead time horizon, and the proposed near-optimal conflict resolution

algorithm enables the pilots to determine optimal conflict resolution trajectories and

maneuvers in real time. Consequently, our proposed probabilistic conflict detection

and resolution algorithms can provide the automated advisories and conflict reso-

lution trajectories for the pilots and air traffic controllers and have a potential to

ultimately replace the tasks of the air traffic controllers.

6.2 Future Work

The accuracy and convergence rate of the proposed algorithms mainly depend on

the structure of the wind model. The proposed algorithms require that the wind

model is constructed by using random variables with known probability distributions.

In addition, when the number of random variables for the wind model increases,

the complexity of the problem increases. Although the wind error was assumed to

be time-invariant in this study, the temporal variations in the wind model need to

be considered for longer term conflict detection and resolution. If we consider not
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only the spatial correlation but the temporal correlation in the wind model, the

number of random variables and complexity of the problem will increase. Although

the Gaussian random process model was used for the wind uncertainty in this study, a

possible future research direction is to demonstrate the validity of the wind model by

comparing the real historical aircraft reports and wind forecast data, and it may also

be required to deal with other wind models with different probability distributions,

unknown arbitrary wind models and the spatiotemporal correlation in the wind model.

In addition, on the basis of an extensive literature review, the wind prediction error

was considered as the primary uncertainty during flight compared to other possible

uncertainties such as navigation errors and pilots’ intents. Although the wind error is

one of the most important factors that have significant influence on the accuracy of

aircraft trajectory prediction and conflict detection and resolution, an investigation

of the relative contributions of the different possible input uncertainties may also be

necessary.

Furthermore, another possible research direction is to further extend our proposed

algorithms for the aircraft arrival sequencing in terminal areas. The most common

conventional sequencing strategy is the first come, first served rule, however, the op-

timal sequences (in terms of fuel consumption or air traffic congestion) depend on

multiple factors such as initial aircraft positions, aircraft weights, airspeeds and air-

craft types. A probabilistic optimal aircraft sequencing algorithm can be investigated

in future work.
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Appendix A

Karhunen–Loève Expansion

With the Karhunen–Loève (KL) expansion [62, 63], the Gaussian random process

Z(x,X) with zero mean and a covariance function C(x,x′) can be expanded as the

following equation:

Z(x, X) =
∞∑
i=1

√
λigi(x)Xi (A.1)

where x ∈ RNx is the position vector defined over the domainD; Xi is the independent

Gaussian random variable; and λi and gi(x) are the eigenvalue and eigenfunction of

the following integral equation in descending order of the magnitude of the eigenvalue

λi, respectively:

λigi(x) =

∫
D

C(x,x′)gi(x
′)dx′

The covariance function C(x,x′) can be decomposed by the following equation:

C(x,x′) =
∞∑
i=1

λigi(x)gi(x
′) (A.2)

For computational purpose, the infinite series in Eq. (A.1) is truncated in order to

retain a finite number of terms:

Z(x, X) =

NKL∑
i=1

√
λigi(x)Xi
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where NKL is the number of terms. Accordingly, the covariance function C(x,x′) in

Eq. (A.2) is given by the following equation:

C(x,x′) =

NKL∑
i=1

λigi(x)gi(x
′)

We firstly consider the univariate Gaussian random process with zero mean and

the following exponential covariance function:

C(x, x′) = exp(−µx|x− x′|)

where µx is the parameter with the same unit as x−1 (µx > 0), which is referred to the

correlation length. It is assumed that the random process is defined over the range

[−Tx, Tx], and the eigenvalues and eigenfunctions are the solutions of the following

integral equation:

λigi(x) =

∫ Tx

−Tx

exp(−µx|x− x′|)gi(x′)dx′ (i = 1, . . . , NKL) (A.3)

Eq. (A.3) can be rewritten as the following equation:

λigi(x) =

∫ x̄

−Tx

exp(−µx(x− x′))gi(x
′)dx′ +

∫ Tx

x̄

exp(µx(x− x′))gi(x
′)dx′ (A.4)

Differentiating Eq. (A.4) with respect to x, we can obtain the following equation:

λi
d

dx
gi(x) = −µx

∫ x̄

−Tx

exp(−µx(x− x′))gi(x
′)dx′ + µx

∫ Tx

x̄

exp(µx(x− x′))gi(x
′)dx′

Differentiating again with respect to x, the following equation can be obtained:

λi
d2

dx2
gi(x) = (−2µx + µ2

xλi)gi(x) (A.5)

The following new variable ωi is introduced:

ω2
i =

2µx − µ2
xλi

λi
(A.6)
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Using ωi in Eq. (A.6), Eq. (A.5) can be rewritten as the following equation:

d2

dx2
gi(x) = ω2

i gi(x) (−Tx ≤ x ≤ Tx) (A.7)

The boundary conditions associated with Eq. (A.7) can be given by the following

equations:

µxgi(Tx) +
d

dx
gi(Tx) = 0 (A.8)

µxgi(−Tx)−
d

dx
gi(−Tx) = 0 (A.9)

It can be assumed that the solution to Eq. (A.7) has the following form:

gi(x) = Acos(ωix) +Bsin(ωix)

where A ∈ R and B ∈ R are the unknown variables. Applying the boundary con-

ditions given by Eqs. (A.8) and (A.9), we can obtain the following transcendental

equations:

µx − ωitan(ωiTx) = 0 if i is odd (A.10)

ωi + µxtan(ωiTx) = 0 if i is even (A.11)

ωi is the solution to either of Eqs. (A.10) and (A.11), and the resulting eigenfunction

gi(x) is given by either of the following equations:

gi(x) =
cos(ωix)√
Tx +

sin(2ωiTx)
2ωi

if i is odd

gi(x) =
sin(ωix)√

Tx − sin(2ωiTx)
2ωi

if i is even

The corresponding eigenvalue is given by the following equation:

λi =
2µx

ω2
i + µ2

x
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Again, it should be noted that λi and gi(x) are given in descending order of the

magnitude of λi.

We further consider the two-dimensional Gaussian random process with the fol-

lowing covariance function:

C((x, y), (x′, y′)) = exp(−µx|x− x′|)exp(−µy|y − y′|)

where µx and µy are the parameters with the same units as x−1 and y−1, respectively

(µx > 0 and µy > 0). We would like to note that this form of the Gaussian random

process is equivalent to the spatially correlated wind error model considered in this

study. The random process is defined over the domain D (x ∈ [−Tx, Tx] and y ∈

[−Ty, Ty]), and the eigenvalues and eigenfunctions are the solutions of the following

integral equation:

λigi(x, y) =

∫
D

exp(−µx|x− x′|)exp(−µy|y − y′|)gi(x′, y′)dx′dy′ (i = 1, . . . , NKL)

(A.12)

It is assumed that λi and gi(x, y) have the following forms, respectively:

λi = λx,jλy,k (A.13)

gi(x, y) = gx,j(x)gy,k(y) (A.14)

The combination of (j, k) is unique for each i, and the number of combinations is

NKL. Eq. (A.12) can be rewritten as the following equation:

λx,jλy,kgx,j(x)gy,k(y) =

∫ Tx

−Tx

exp(−µx|x−x′|)gx,j(x′)dx′
∫ Ty

−Ty

exp(−µy|y−y′|)gy,k(y′)dy′

(A.15)

The solution to Eq. (A.15) is the product of the two individual solutions to the
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following equations:

λx,jgx,j(x) =

∫ Tx

−Tx

exp(−µx|x− x′|)gx,j(x′)dx′ (A.16)

λy,kgy,k(y) =

∫ Ty

−Ty

exp(−µy|y − y′|)gy,k(y′)dy′ (A.17)

Both Eqs. (A.16) and (A.17) are equivalent to Eq. (A.3) for the univariate Gaussian

random process. Therefore, by differentiating Eqs. (A.16) and (A.17) twice with

respect to x and y, respectively, we can obtain the following eigenvalues:

λx,j =
2µx

ω2
x,j + µ2

x

(A.18)

λy,k =
2µy

ω2
y,k + µ2

y

(A.19)

The associated eigenfunctions gx,j(x) and gy,k(y) are given by the following equations:

gx,j(x) =
cos(ωx,jx)√
Tx +

sin(2ωx,jTx)

2ωx,j

if j is odd (A.20)

gx,j(x) =
sin(ωx,jx)√
Tx − sin(2ωx,jTx)

2ωx,j

if j is even (A.21)

gy,k(y) =
cos(ωy,ky)√
Ty +

sin(2ωy,kTy)

2ωy,k

if k is odd (A.22)

gy,k(y) =
sin(ωy,ky)√
Ty − sin(2ωy,kTy)

2ωy,k

if k is even (A.23)

In Eqs. (A.18)–(A.23), ωx,j and ωy,k are the solutions to the following transcendental

equations:

µx − ωx,jtan(ωx,jTx) = 0 if j is odd

ωx,j + µxtan(ωx,jTx) = 0 if j is even

µy − ωy,ktan(ωy,kTy) = 0 if k is odd

ωy,k + µytan(ωy,kTy) = 0 if k is even
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Therefore, λi and gi(x, y) in Eqs. (A.13) and (A.14) can be obtained by Eqs. (A.18)–

(A.23). It should be noted that when µx = µy, λi and gi(x, y) in Eqs. (A.13) and

(A.14) are given by the following equations:

λi = λx,jλy,k = λx,kλy,j

gi(x, y) =
1√
2
(gx,j(x)gy,k(y) + gx,k(x)gy,j(y))

Again, note that λi and gi(x, y) are given in descending order of the magnitude of λi.
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Appendix B

Orthogonal Polynomials

There are several types of the orthogonal polynomials [145] such as Hermite and

Legendre polynomials. Since only the Hermite polynomials are used in this study, we

discuss the Hermite polynomials. The Hermite polynomial Hen(x) (n ∈ N) is given

by the following differential equation:

d2

dx2
Hen(x)− x

d

dx
Hen(x) + nHen(x) = 0 (B.1)

Hen(x) is orthogonal with respect to the weight function w(x):

∫
Hem(x)Hen(x)w(x)dx = n!δmn

where δmn is the Kronecker delta function that takes 1 if m = n and 0 otherwise;

and the weight function w(x) is given by the standard Gaussian probability density

function:

w(x) =
1√
2π

exp

(
−x

2

2

)
When x is the standard Gaussian random variable, Hen(x) satisfies the following

condition:

E[Hem(x)Hen(x)] = n!δmn

105



It should be noted that in this study we use the orthonormal Hermite polynomial

given by the following equation:

hen(x) =
1√
n!
Hen(x)

where hen(x) denotes the orthonormal Hermite polynomial.

In practice, Hen(x) can be generated by the following recurrence relation:

He0(x) = 1 (B.2)

Hen+1(x) = xHen(x)− nHen−1(x) (B.3)

Note that Eqs. (B.2) and (B.3) are equivalent to Eq. (B.1). By using the recurrence

relation in Eqs. (B.2) and (B.3), the first six Hermite polynomials are given by the

following equations:

He0(x) = 1

He1(x) = x

He2(x) = x2 − 1

He3(x) = x3 − 3x

He4(x) = x4 − 6x2 + 3

He5(x) = x5 − 10x3 + 15x
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Table B.1: Collocation points and weights

Number of points Collocation points Weights
1 0 1
2 ±1 0.5
3 (±1.7321, 0) (0.1667, 0.6667)
4 (±2.3344, ±0.7420) (0.0459, 0.4541)
5 (±2.8570, ±1.3556, 0) (0.0113, 0.2221, 0.5333)

Accordingly, the first six orthonormal Hermite polynomials are also given by the

following equations:

he0(x) = 1

he1(x) = x

he2(x) =
1√
2
(x2 − 1)

he3(x) =
1√
3!
(x3 − 3x)

he4(x) =
1√
4!
(x4 − 6x2 + 3)

he5(x) =
1√
5!
(x5 − 10x3 + 15x)

In addition, in the Gaussian quadrature rule, n collocation points are the roots

of the nth order orthogonal polynomials, and the associated weights are given by the

following equation:

α(j) =
n!

n2(Hen−1(x(j)))2
(j = 1, . . . , n)

where x(j) is the jth collocation point; and α(j) is the associated weight. α(j) satisfies

the following condition:
n∑

j=1

α(j) = 1

Table B.1 shows the collocation points and corresponding weights (n = 1, 2, 3, 4, 5).
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