
Integrated Graphical Representations

for Development of Programs

with Real-world Input and Output
（実世界入出力を伴うプログラムの
画像表現を用いた開発支援手法）

by

Jun Kato

加藤淳

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 13, 2013

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Takeo Igarashi 五十嵐健夫

Professor of Computer Science

ABSTRACT

Programs that use real-world input and output (real-world I/O), including interactive
camera-based programs and robot applications, have different development and runtime
environments. While integrated development environments (IDEs) reside in the tradi-
tional desktop environment, the runtime environment is in the real world. Real-world
I/O may apply to specific situations and/or respond to dynamic changes that cannot
be represented intuitively by the existing text-based user interfaces of IDEs. Previous
efforts to eliminate the gap between the development and runtime environments include
Programming by Example (PbE), in which the user demonstrates operations to the sys-
tem and the system infers and executes a corresponding program. In PbE, the program
is specified using the runtime environment. The drawback is that the PbE system does
not allow the user to precisely describe the logic of the program.

In this dissertation, we coin the term “Programming with Example (PwE),” which
describes a hybrid approach combining PbE and text-based programming. It makes use of
example data retrieved from the real world during text-based programming. We propose
to integrate graphical representations, such as photos and videos, which represent real-
world I/O data, into text-based IDEs. In particular, we provide a model of the program
that deals with real-world I/O, that is, out = f(in, c), where c describes static parameters
provided prior to the execution of the program (i.e., constants), in and out are dynamic
input and output provided during the execution of the program (i.e., are variables), and
f is the specification of the program (i.e., the functionality). Accordingly, we discuss
three types of graphical representation.

First, we discuss the use of photos as graphical representations of situations in the real
world. As an experimental implementation, we present Picode IDE, which supports the
development of posture data processing applications that handle posture information of
humans and/or robots. It uses photos to represent the posture, where textual references
may not be very intuitive. It allows the programmer to take a photo of the subject
to automatically capture the posture information, supporting PwE by retrieving static
data from the real world. Photos are shown inline in the source code editor and provide
contextual information that facilitates visualization of the posture, providing an intuitive
coding experience.

Second, we discuss use of videos as a graphical representation of variables where the
contents are dynamically updated during the execution of the program. As an exper-
imental implementation, we present DejaVu IDE, which supports the development of
interactive camera-based applications. It provides visualization by automatically record-
ing the camera input, intermediate processing results, and window output. It supports
PwE to record and utilize the dynamic behavior of the program. The programmer can
replay the recorded data using an interface that resembles a video player to visualize the
behavior. It also allows the programmer to update all of the output from the program
by re-executing it using the recorded input data.

Third, we discuss a method to specify the behavior of the program with the help
of graphical editing. As an experimental implementation, we present VisionSketch
IDE, which supports development of image processing applications, detecting interest-
ing events from videos recorded with a fixed viewpoint. It requires the programmer to
specify the video source at the beginning of the development for PwE support. The
programmer can specify regions of interest in the example video to narrow down the
list of applicable image processing algorithms or to setup parameters of a selected image
processing algorithm.

These IDE implementations are designed for different target applications. However,
each of them supports the entire workflow of the programmer by integrating a graphical
representation into a text-based programming environment. Each graphical representa-
tion corresponds to I/O data sampled from the real world. While we focus on visual
information in this dissertation, there are other types of real-world I/O data, includ-
ing sound, haptic technology, smell and taste. We foresee that applications that make
use of such multi-sensory data will become increasingly important in the future. The
development of programs that deal with real-world I/O inherently benefits from PwE.
Therefore, we believe that the findings described in this dissertation will serve as an
important foundation to support the development of such applications.

論文要旨

カメラ映像のリアルタイム処理やロボットの制御のような実世界入出力を伴うプログラ

ムの開発では、統合開発環境 (IDE)がデスクトップにある一方で、実行環境は実世界であ

る。プログラムの入出力データは実世界における状況や状況の時間変化を表しており、文

字列表現ベースの既存の IDEでは直感的に表現できない。このような開発環境と実行環境

の溝をなくす試みとして、例示をもとにシステムがプログラムを推論及び実行してくれる

例示プログラミング (Programming by Example, PbE)が提案されている。PbEは、実行

環境においてプログラムを指示できるために前出のような問題が生じない一方、通常のプ

ログラミングのようにロジックを精密に設計することが難しい。

本論文では、文字列表現を用いたプログラミングにおいて、PbEのようにシステムに例

示した実世界入出力のデータを活用することを Programming with Example (PwE)と呼

ぶ。そして、PwEを支援するために、実世界入出力のデータを写真や動画のような画像表

現で表して IDEに統合する手法を提案する。とくに、実世界入出力を伴うプログラムを

out = f(in, c) というモデルで表し、定数 c、変数 inと out、そして関数 f のそれぞれに

対応する画像表現について議論する。

まず、実世界における状況を表す静的な定数 cを、写真を用いて表す手法について議論

する。試作システムとして、人やロボットの姿勢情報を処理できるアプリケーション開発

を支援する Picode IDEを提案する。文字表現が難しい人やロボットの姿勢データを写真

で表し、ソースコードエディタに直接貼れるようにした。また、写真撮影と姿勢データの

取得を同時に行うことで、静的データを活用する PwEを支援した。写真により実際の姿

勢を想像しやすくなるため、直感的なコーディングが実現できる。

次に、プログラム実行中に動的に変化する変数 inと outを、動画を用いて表す手法につ

いて議論する。試作システムとして、インタラクティブなカメラ入力を用いたアプリケー

ション開発を支援する DejaVu IDEを提案する。カメラ入力、変数およびウィンドウ出力

を可視化し、さらに自動的に録画することで、プログラムの動的な挙動を記録して活用す

る PwEを支援した。録画データを動画プレイヤーのように再生して挙動を深く理解した

り、修正したプログラムに入力データを再度与えてデバッグを行える。

さらに、プログラムの処理内容 f を、文字列ベースのソースコードだけでなく画像表現

に対する編集操作も利用しながら指定する手法について議論する。試作システムとして、

定点カメラで撮影された動画から有用な情報を抽出できる画像処理アプリケーション開発

を支援する VisionSketch IDEを提案する。プログラムを開発する際にまず入力データと

なる動画を指定することで、次のような PwEを実現した。すなわち、動画像のなかで興味

のある領域を図形ツールにより描画することで、適用可能な画像処理を絞り込んだり、画

像処理のパラメタを直感的に指定できる。

各 IDEは異なるアプリケーションを開発するための環境であるが、いずれも、実世界入

出力の例示データを表す画像表現を文字列ベースのプログラミングに取り入れることで、

プログラマのワークフロー全体を支援できている。本論文では実世界入出力のなかでも視

覚的な情報を扱ったが、その他の音や触感、匂いや味などを利用するアプリケーションが今

後重要性を増してくると考えられる。実世界入出力を伴うプログラムの開発では例示デー

タを活用するプログラミングが必要であるため、我々は、本研究の知見がそのようなプロ

グラムの開発支援手法における重要な基盤となると信じている。

Acknowledgements

This dissertation is the result of six years of research that has been supported
by many mentors and friends across multiple countries, too numerous to mention.
My thanks goes out to all the individuals that have had an influence on my work
that I cannot mention here.

First and foremost, I would like to express my deepest appreciation to my su-
pervisor, Takeo Igarashi, who has supervised me throughout my research career.
I started my career as a research assistant at his JST ERATO Igarashi Design
Interface Project (Igarashi ERATO project) at the time of its launch. One year
later, I joined his research group at the University of Tokyo, completed the Mas-
ter’s program in two years, was admitted to the Doctor’s program, and spent three
years on research that would eventually make it into this dissertation. Through-
out the years, he has given me a supportive push forward to explore and focus on
what I can really be passionate about. Discussions with him have been always
fruitful and sometimes even magical, for instance, when a vague research ques-
tion suddenly becomes crystal clear. I would also like to thank my co-supervisor
Daisuke Sakamoto who has also mentored me for six years. He was initially my
mentor at Igarashi ERATO project and later became my co-supervisor of the
Doctor’s program. He has patiently guided me to be continuously productive
and has helped me attain a higher level of professionalism. I am sincerely grate-
ful to my committee members, Masami Hagiya, Shinichi Honiden, Shigeru Chiba,
Toshiyuki Masui, and Yoichi Sato for their constructive feedback on this disser-
tation. They provided me with many insightful comments in various academic
areas including Programming Language, Software Engineering, Computer Vision,
and Human-Computer Interaction.

I thank past and present members of Igarashi laboratory, especially Kenshi
Takayama, Nobuyuki Umetani, Hideki Todo, Sosuke Okamura, Yuji Yasuda, and
Makoto Nakajima, who spent a long time with me discussing interesting topics,
as well as giving me a comprehensive introduction to their own favourite research
topics. They also taught me practical ways to survive in the laboratory, and I
appreciate all the good times they spent with me. The same thanks go to visitors
to the laboratory, including Erik Andersen, Daniel Rea, and Lasse Laursen. I’m
always keen to improve my English, and as a result of frequent dialogues with
visitors to the lab, it is now better than ever. Outside the laboratory, I have also
had many fabulous mentors and friends. I would like to thank the members of
the Igarashi ERATO project, especially Masahiko Inami, Yuta Sugiura, Kohei
Matsumura, James E. Young, Ayumi Fukuchi, Charith Fernando, and Shigeo
Yoshida who helped me in various ways, including having constructive discus-
sions, managing workshops, and just laughing together. I also want to thank
Yutaka Ishikawa, who was the project manager for the Information-Promotion
Agency Mitoh program in which I built a software library used for the Picode
project. I am thankful to the members of Rekimoto laboratory who share multi-
ple research interests with our own laboratory, especially Kensaku Kawauchi and

Adiyan Mujibiya. My thanks also goes out to the members of the OpenPool de-
veloper team, which is a collaborative project that aims to provide an open-source
framework for augmenting a billiard table with interactive projection mapping. I
enjoyed contributing to the project by creating its initial prototype and writing
an academic paper on the prototyping process.

I have spent considerable time abroad, collaborating with fabulous mentors
at Microsoft Research and Adobe Research. I would especially like to thank
Xiang Cao who mentored me at Human-Computer Interaction (HCI) group, Mi-
crosoft Research Asia. He trusted me, discussed interesting topics with me so
often and showed an exceptional passion in research that helped me to com-
plete the DejaVu project and publish a UIST paper. He introduced me the other
mentor, Sean McDirmid, who taught me an exciting aspect of Programming Lan-
guage (PL) research. The collaboration with PL research repeated as I joined
TouchDevelop team of Research in Software Engineering group, Microsoft Re-
search Remond. Sebastian Burckhardt and Michal Moskal mentored me there
and Thomas Ball spent some time discussing the intersection of PL and HCI
research. This collaboration eventually became a PLDI paper. Throughout my
internships at Microsoft, Noboru Kuno guaranteed my comfortable experience,
for which I am grateful. When I presented the DejaVu project at UIST 2012,
Joel Brandt at Adobe Research kindly spared his time discussing research on
integrated development environments. This dialogue resulted in my internship
at Adobe Research mentored by Jovan Popovic and Joel Brandt. All of these
internships gave me new perspectives into research and opportunities to meet
new professors and friends, forming the essential part of my Doctor’s program
life. Among all professors abroad, I would like to thank Bjoern Hartmann at
University of California Berkeley, Robert C. Miller at Massachusetts Institute of
Technology (MIT), and Andrew J. Ko at University of Washington (UW), for
hosting my visit, discussing with me, and introducing fantastic students such as
Tom Lieber at MIT and Brian Burg at UW.

Finally, I would like to express my gratitude to my parents, Chieko and Ya-
suichiro Kato, and my wife, Nana Kato. Your love, and continuous support during
several overnight paper submission sessions, has made all of this possible.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Organization . 5

2 Background 7
2.1 Historical Perspective . 7
2.2 End-User Programming . 10

2.2.1 Visual Programming Environments 11
2.2.2 Programming by Example 13

2.3 Text-based IDE Enhancements . 15
2.3.1 Enhancement on Coding Experience 16
2.3.2 Enhancement on Debugging Experience 17
2.3.3 Live Programming . 18
2.3.4 Online Collaboration . 19
2.3.5 Domain-specific Support . 19
2.3.6 Graphical Representations in IDEs 21
2.3.7 Building Blocks . 22

2.4 Tool for Programming Physical Interactions 22
2.5 Summary . 23

3 Integrated Graphical Representations 25
3.1 Real-world Input and Output . 25
3.2 Programming with Example . 26
3.3 Integration of Graphical Representations into IDEs 28

4 Using Photos to Understand Static Data 31
4.1 Posture Data Processing Applications 31
4.2 Related Work . 32

4.2.1 Graphical Representations in Code Editor 32
4.2.2 Tools for Posture Data Processing 33

4.3 Picode IDE . 33
4.3.1 Taking Photos . 35
4.3.2 Coding with Photos . 35
4.3.3 Running Program . 35

4.4 Implementation . 35
4.4.1 Overview . 36
4.4.2 Capture Window . 37
4.4.3 Pose Library for Managing Posture Data 39
4.4.4 Editor with Inline Photos 39
4.4.5 API for Both IDE and Applications 40

4.5 User Study . 42

vi

4.5.1 Preliminary Study of Pair-Programming 42
4.5.2 Workshop for Non-programmers 43

4.6 Discussion . 46
4.6.1 The Popularization of Source Code 46
4.6.2 Environment Information Expressed in Photos 46
4.6.3 Indications Expressed in Photos 48
4.6.4 Emotion Expressed in Photos 48
4.6.5 Robot Shape Information Expressed in Photos 49
4.6.6 Intrinsic Limitations of Photos 49
4.6.7 Utilizing Media Other Than Photos 50

4.7 Summary of Contributions . 51

5 Using Videos to Understand Dynamic Behavior 52
5.1 Background . 53
5.2 Interactive Camera-based Programs 53

5.2.1 A Representative Example 54
5.2.2 Attributes and Challenges 55

5.3 Related Work . 56
5.3.1 Tools for Building Computer Vision Applications 56
5.3.2 Prototyping and Development Tools for Other Domains . . 57
5.3.3 General Programming and Debugging Support 57

5.4 DejaVu IDE . 58
5.4.1 DejaVu Canvas . 58
5.4.2 DejaVu Timeline . 61
5.4.3 Example Use Case . 62

5.5 Implementation . 64
5.5.1 Overview . 64
5.5.2 Editor Capable of Dragging Variables 65
5.5.3 Canvas and Timeline . 65
5.5.4 API for Both IDE and Applications 67
5.5.5 Data Transfer between IDE and Applications 67
5.5.6 Recording a New Session 68
5.5.7 Replaying an Existing Session 70
5.5.8 Refreshing an Existing Session 71
5.5.9 Managing Existing Sessions 71

5.6 User Feedback . 72
5.7 Discussion . 73
5.8 Summary of Contributions . 74

6 Graphical Editing to Specify Program Behavior 75
6.1 Real-world Event Detection Applications 76
6.2 Related Work . 76

6.2.1 Tool Support for Example-Centric Programming 76
6.2.2 Visual Programming of Image Processing 77
6.2.3 Tools for Image Processing 78

6.3 VisionSketch IDE . 79
6.3.1 VisionSketch Canvas . 80
6.3.2 Visual Editor . 81
6.3.3 Code Editor . 83
6.3.4 Example Use Case . 84

6.4 Implementation . 86
6.4.1 Overview . 86

vii

6.4.2 VisionSketch Visual Programming Language 87
6.4.3 Integration of Visual and Text-based Programming 89

6.5 User Experience . 90
6.5.1 Setting . 90
6.5.2 Observations and User Feedback 90

6.6 Discussion . 93
6.6.1 Interaction with Photos . 94
6.6.2 Interaction with Videos . 94

6.7 Summary of Contributions . 95

7 Conclusions and Outlook 97
7.1 Summary of Contributions . 97
7.2 Future Outlook . 99

7.2.1 3D Graphical Representations 99
7.2.2 Multi-modal and Cross-modal Programming 100
7.2.3 Everyone as a Programmer 101
7.2.4 Live Programming with Live Feeling 102

References 103

viii

Chapter 1

Introduction

This chapter gives an overview of work described in the dissertation. First, we
briefly describe the motivation for this work and provide a context for it. Then,
we introduce our unique approach to integrated graphical representations and
summarize the main contributions of this work. Finally, we outline the structure
of the following chapters.

1.1 Motivation

An integrated development environment (IDE) is a set of user interfaces with
which the programmer can write, compile, execute and debug a program. The
most commonly used IDEs, including VisualStudio, Eclipse and Xcode, are all
text-based and used for development of any type of program. Most programmers
these days use text-based programming languages and use text-based develop-
ment environments to create programs.

Programmers are people, too. Therefore, it is important to think of human
factors in development environments to improve the productivity of programming
activities. One way of taking human factors of computer systems into account
is to consider the gulf of execution and evaluation [121]; i.e., the gap between
the user’s intention and the results of their actions. It may also be applied to
development environments [81]; when a programmer develops a program using a
text-based programming language, there may be a gulf of execution, as shown
in Figure 1.1. It is not straightforward to correctly translate the intent to the
text-based code. Code completion and interface builders aim to bridge this gap.
Furthermore, when a programmer debugs the program using a text-based de-
bugger, there is a gulf of evaluation. It is not easy to understand its dynamic

public static void
 main(String[] args) {
 // some code
 // to do novel stuff
}

Development environment

Brown fox j

CancelOK

OKBrown fox j ncel

Intermittent &
simple input

Runtime environment

Figure 1.1: Development of the programs with conventional input and output.

1

Image processing Posture data processing Mobile robot control Robot posture control

Figure 1.2: Examples of programs with real-world input and output.

behavior from textual information presented by the debugger. A debugger that
visualizes program execution [94] and one that helps reasoning errors [80] may
assist with this. As seen in these examples, a typical approach to bridge the gulf
of execution and evaluation in programming is to provide an appropriate graphi-
cal user interface (GUI), which provides visual cues in development environments
and connects the static description of the program and its resulting behavior.

Compared with the relatively conservative development of IDEs over the past
several decades, the variety of computer applications has grown considerably, and
this evolution has been accompanied by new input and output modalities. The
computer was invented as a machine to automate calculations, and the programs
were stored as punched cards and executed in a batch manner without user in-
teraction. The keyboard and display later provided scope for more interactivity
through character-based user interfaces (CUIs). Computers subsequently became
personal devices, following the realization of GUIs. In addition to the keyboard,
a mouse was used to provide information on the status of several buttons and
movement in two-dimensional space. The two-dimensional movement was explic-
itly bound to the movement of a pointer, which is part of a windows, icons, menus
and pointer (WIMP) environment. Numerous efforts have been made to improve
user interface tools [116], and event languages represent a successful standard-
ization of the user input, and map physical actions to GUI operations. Event
information is provided to the programs intermittently, each time user input oc-
curs. Post-WIMP paradigms include recognition-based interfaces [101] with new
devices, such as the Freeform User Interface with pen input [67], gesture-based
touch interface and voice recognition with a microphone. While these early at-
tempts made use of new input modalities to control GUI applications, recent
trends place more focus on physical interactions in the real world.

Interactive programs that deal with real-world input and output (real-world
I/O) are growing in popularity. Such applications include camera-based interac-
tions, augmented reality, tangible user interfaces, physical computing, and user
interfaces for robots. Examples are shown in Figure 1.2. In these applications,
there are no standardized I/O events. Raw I/O data are received from sensors
and sent to actuators, and have to be processed by the program continuously in
real time. In particular, this dissertation focuses on a certain kind of real-world
I/O whose data is best represented visually by photos and videos. Potential ap-
plication of our method to other kinds of real-world I/O such as audio, tactile
sensation and smell will be discussed in Subsection 7.2.2 but is not our main
contribution.

When the program deals with real-world I/O, the gulf of execution and eval-
uation becomes wider. This results from the use of different development and
runtime environments, as shown in Figure 1.3. When the program uses a conven-
tional CUI or GUI, the development environment shares the same I/O devices
as the runtime environment, as shown in Figure 1.1. The programmer uses the

2

Runtime environmentDevelopment environment

public static void
 main(String[] args) {
 // some code
 // to do novel stuff
} Cam1

LocX

Img1

Val2

Continuous &
complex input

Figure 1.3: Development of the programs with real-world input and output.

mouse and keyboard to both develop and run the program. In this case, input
to and output from the program can be intuitively represented and reproduced
by the user interface, using either a CUI or GUI. For instance, a keystroke can
be represented by a character code and the movement of a mouse can be repre-
sented by change of the location of two-dimensional coordinates. The primary
difficulty in bridging this gulf was how to visualize and provide intuitive navi-
gation over complex data structures and the dynamic behavior of the program.
However, when the program deals with the real-world I/O, the development en-
vironment typically employs conventional CUI or GUI with a mouse, keyboard
and display, yet the runtime environment may involve physical movements of one
or more of users, objects or robots, which cannot be represented well by the ex-
isting user interfaces of IDEs. Therefore, it is difficult to develop and debug such
programs. Please note that the scope of this dissertation is to aid development of
interactive programs by filling the gap between the I/O modalities. While there
have been much work on remote debugging tools that aims to fill the gap be-
tween a computer that develops the program and the other computer (typically
a microcomputer) that runs the program, our work assumes that the program is
developed and ran on the same computer but with different set of I/O devices.

Existing approaches to address this gulf include programming by example
(PbE), in which the user demonstrates operations to the system and the system
guesses the program [33, 93]. When it is applied to the development of programs
that deal with real-world I/O, it can eliminate the need for explicit program-
ming, and the user does not require prior knowledge of programming. In PbE
systems, the program is specified using the runtime environment; in other words,
there is no distinction between the development environment and the runtime
environment. Therefore, the user does not need to alternate between different
modalities, and the gulf of execution and evaluation of programming can be re-
moved. The drawback is that it does not allow the user to precisely describe the
logic of the program. While it may be sufficient for end users, another gulf of
execution and evaluation arises for the programmer who wants complete control
over the resulting program. It is difficult for him to infer what kind of and how
many examples are sufficient to realize his intent. It is also difficult to test the
outcome logically. The programmer has to give more and more examples to test
whether the program functions as intended.

3

1.2 Contributions

The work in this dissertation addresses the issues described above. The main
contributions are:

1. Observation of the programmer’s workflow to develop programs with real-
world I/O, termed “Programming with Example”.

2. A model of programs with real-world I/O built from observation.

3. Three kinds of integrated graphical representations in text-based IDEs,
which provide distinctive support for every component of the model.

We coin the term “Programming with Example (PwE)”, which describes a
hybrid approach combining PbE and text-based programming. It is supported
by enhancements to existing text-based IDEs, which integrate graphical repre-
sentations of the real world. First, the programmer demonstrates interactions
in the real world to the IDE, which are recorded as example data. Then, he
writes text-based code with the help of the example data, exposed as graphical
representations, including photos and videos. The proposed integration method
combines abstract textual representations and example graphical representations,
which complement each other to enhance productivity of the programmer. Our
approach is an attempt to bridge the gap between the development environment
and the runtime environment in a similar manner to PbE; however, it still allows
the programmer to explicitly describe the logic of the programs using text-based
programming.

To investigate how integrated graphical representations may assist the work-
flow of programming with examples, we first provide a model of the program
that deals with real-world I/O. Then, we provide a graphical representation for
each component of the model, which supports programming using examples. The
output of this approach can be described using the following model:

out = f(in, c)

where c describes static parameters provided prior to the execution of the pro-
gram (i.e., constants), in and out are dynamic input and output provided during
the program execution (i.e., variables) and f is the specification of the program
(i.e., functions). Accordingly, we propose three types of graphical representation.

First, we discuss graphical representations of constants, which represent situa-
tions in the real world at a certain moment. As an experimental implementation,
we present Picode IDE [72], which supports intuitive programming using inline
photos that represent posture data. It deals with static complex data used in the
program, specifically, data describing the posture of humans and robots. Such
data are commonly used to handle gesture input and control robots. Static com-
plex data in general are better understood using visual representation than tex-
tual references such as a filename. Sikuli [150] addresses this issue by introducing
an editor with inline images, which serve as the API arguments. We developed
Picode by applying a similar concept to posture data.

Second, we discuss graphical representations of variables, the content of which
come from the real world, and are dynamically updated during execution of
the program. Graphical representations of constants help the programmer to
understand the static part of the source code; however, there remains a difficulty
in understanding the dynamic behavior. When the program deals with real-world

4

I/O, such as images from a camera, it is almost impossible to read the source code
to imagine exactly what happens in the program. Therefore, the programmer
must execute the program and monitor continuous visual data, and this kind of
functionality is not supported by current mainstream IDEs. As an experimental
implementation, we present the DejaVu IDE [70], which addresses this issue by
providing two interlinked components that record and visualize program input
and output.

Third, we discuss graphical representations of functions, each of which deals
with real-world I/O. The graphical representations in the previous two cases
primarily serve as visual aids that assist in understanding the program; they do
not directly support building the program. In contrast, graphical representations
of functions can be manipulated interactively by the programmer to change the
behavior of the program. As an experimental implementation, we present the
VisionSketch IDE, where every function of an image-processing program has its
own graphical representation, and some of the arguments can be specified by
editing the graphical representation.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we de-
scribe the background for this work. We begin with a historical perspective on
IDEs, where we introduce related work that provides support for programming
activities. This includes end-user programming, visual programming environ-
ments, programming by example, and previous efforts on enhancements to text-
based IDEs, including enhancements to editors and debuggers. It also includes
tools for the programmer, which provide explicit support for the development of
programs with real-world I/O.

In Chapter 3, we describe the terminology, and explain the model for a pro-
gram that deals with real-world I/O. We detail our assumptions and define our
goals, which will be examined in the subsequent three chapters. Programs that
use real-world I/O tend to widen the gulf of execution and evaluation, since they
are typically developed and executed using different environments. While the
development resides in the traditional desktop WIMP environment, the runtime
environment is in the real world. In such a case, programming activity inherently
involves sampling and handling real-world I/O data. We call this “programming
with example” and aim to improve productivity by providing enhancements to
existing text-based IDEs.

Chapters 4-6 describe our attempts to achieve this goal. We suppose that this
gap can be addressed by providing proper graphical representations of the real
world in the development environment. We provide a model of the program, i.e.,
out = f(in, c), and map graphical representations to each component. Within
this model, the constants described by c are discussed in Chapter 4, the vari-
ables in and out are discussed in Chapter 5, and the functions f is discussed in
Chapter 6.

In Chapter 7, we analyze the contributions made using our approach, de-
scribe the limitations of it, and identify directions for future development. We
aim to show that graphical representation in text-based IDEs can aid the devel-
opment of programs that deal with real-world I/O through distinctive support
for programming with examples. While we focus on two-dimensional graphical
representations, investigation of three-dimensional graphical representations may
be desirable. Real-world I/O is not restricted to visual information, which is the
focus of the work described in this dissertation, but also includes sound, haptic

5

technology, smell and taste. We foresee that future IDEs will be equipped not
only with graphical interfaces but also with multimodal interfaces to bridge the
gap between the development and runtime environments. When IDEs become
more accessible through such enhancements, we expect that end-users will be
able to learn to program more easily, opening up a future in which everyone can
be a programmer. Research on live programming has recently focused on techni-
cal contributions, but our work suggests that there is also much left to do from
Human-Computer Interaction perspective.

6

Chapter 2

Background

In this chapter, we discuss the background to this dissertation. Related work on
how to develop programs is described and compared with our attempts to support
the development of programs with real-world input and output (real-world I/O).
In Section 2.1, brief history of integrated development environments (IDEs) is
given to provide a historical context to the following sections. In Section 2.2,
end-user programming (EUP) is introduced, which aims to reduce the threshold
for programming. Examples of EUP are given, including visual programming
environments and programming by example. In Section 2.3, enhancements to
text-based IDEs are introduced. Recently, live programming environments that
aim to eliminate the gulf of execution have attracted attentions, and these are
explained. Then, online collaborations on text-based IDEs and domain-specific
text-based IDEs follow. Next, the integration of graphical representations into
text-based IDEs is introduced. Building blocks for these IDEs that accelerate
research are also covered. In Section 2.4, tools for the development of programs
that deal with real-world I/O are introduced, highlighting the requirement to
support the whole of the workflow.

2.1 Historical Perspective

An IDE is an environment equipped with a set of interactive user interfaces with
which the programmer can write, execute, and debug a program. It contains
programming languages, compilers, debuggers, toolkits and other tools that may
be used for programming. In this dissertation, we focus on discussing the envi-
ronment rather than each tool. The environment supports the entire workflow of
programming activity, while the tool for programming usually covers a subset of
programming activities.

Figure 2.1: Traditional text-based integrated development environments. Left:
Dartmouth BASIC, Right: Eclipse [42].

7

In the early days of computer programming, there were very few interactive
user interfaces. The programmer used punched cards to write machine code to
provide commands to the computer. Punching cards was a physical task, and
there was no computational support.

The first IDE is commonly said to be Dartmouth BASIC as shown in Fig-
ure 2.1, which was developed in 1964, after character-based user interfaces and
high-level text-based programming languages had appeared. It was equipped
with a text-based editor, as well as a compiler, which could compile and run a
program within the environment. At this time, computers were not personal,
rather shared by a number of users in a similar manner to the way in which
supercomputers are used today. Dartmouth BASIC was an environment for the
Dartmouth Time Sharing System (DTSS), and everyone using this system was
a professional programmer. Much of the pioneering work on the interactive fea-
tures that are widely considered to be essential prerequisites for modern IDEs was
carried out in the 1970s, and details of this work can be found in the book In-
teractive Programming Environments [8], including the appearance of integrated
debuggers, program analysis tools and structured editors. Providing a more in-
teractive develop environment was thought to be important for productivity. For
instance, Interlisp, an IDE with a built-in debugger and analysis tools, was ac-
tively developed from 1967 into the 1970s at Xerox PARC. The Cornell Program
Synthesizer and MENTOR were IDEs equipped with structured editors for the
PL/I and Pascal programming languages, respectively.

In the 1980s, human factors in programming began to receive greater atten-
tion. This followed IBM’s introduction of the IBM Personal Computer in 1981,
as the number of novice programmers and end-users with little knowledge of
programming increased significantly. Some researchers who were interested in
human factors began to focus on end-user programming and graphical user inter-
faces (GUIs), which can be used without prior knowledge of programming. Major
forums for research into human–computer interaction (HCI) were born of this age,
including the ACM SIGCHI Conference on Human Factors in Computing Sys-
tems (called simply CHI since 1982) and ACM Symposium on User Interface
Software and Technology (UIST, where the first workshop was held in 1982).
Forums specific to programming also appeared in the 1980s, including the Work-
shop on Empirical Studies of Programming (1986–1999) and the IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC since 1984).
Research into software engineering and programming language design was also
growing rapidly at this time. The International Conference on Software Engineer-
ing (ICSE) has been the premier software engineering conference, and has been
cohosted by the ACM and the IEEE since 1975. Programming language design
remains an ongoing research topic, with forums including the ACM SIGPLAN
conference on Programming Language Design and Implementation (PLDI), the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), and the ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). While there
have been some research projects aiming to enhance text-based IDEs, this area
of research has received less interest than programming language design. De-
sign principles for text-based programming languages, such as those described
in Hoare’s paper [66], are readily available. It is more difficult to find work dis-
cussing the design of development environments; however, some examples will be
covered later in this subsection.

The end-user typically uses a program as it is. Therefore, they must map their
intention to existing commands, and often must repeat such commands many

8

times. To avoid such tedium, they may wish to create, modify or extend existing
programs. End-user programming is a research topic that addresses many of the
difficulties that such end-users and novice programmers have with programming.
We can identify two approaches: one is to make programming easier, and the
other is to eliminate explicit programming completely. For instance, research into
structured text editors and visual programming falls into the first category and
research on programming by example falls into the second category. These will be
described in Subsection 2.2.1 and Subsection 2.2.2. The taxonomy is explained
well in Myer’s survey paper on visual programming and program visualization
[114].

While visual programming languages usually come with their own graphical
development environments, text-based IDEs have retained a similar look since the
days of BASIC. They include a file manager, a text-based code editor, and a text-
based debugger. For instance, Eclipse [42] is shown in Figure 2.1. There are few
graphical representations. While tools for programmers have previously focused
on providing supplemental features that are not supported by text-based IDEs,
the text-based IDEs themselves have not significantly changed. User interface
toolkits have been widely studied [116]; however, text-based IDEs remain the
primary means of programming for most professional programmers.

Throughout the 1990s, programming became more complex and involved.
For instance, it is not straightforward to specify a GUI using solely a text-based
approach. Visual Basic 1.0 [31] was released in 1991 and addressed this issue
by integrating a graphical GUI builder into a text-based IDE. It allowed the
programmer to seamlessly move between the interface design and implementing
functionality. In 1995, Lieberman applied the famous concept of Norman’s gulf
of execution and evaluation [121] to programming. He pointed out difficulties
in understanding the dynamic behavior of a program from the static text-based
source code. To address this issue, he proposed a visual debugger, integrated with
a text-based IDE [94, 92] which shows the programmer the relationship between
an expression in the source code and its output at runtime.

In the 2000s, many enhancements to text-based IDEs appeared. These IDEs
will be reviewed in detail in Section 2.3; however, one of the most prominent
projects in the enhancement of text-based IDEs is the Natural Programming
project [117], which was initiated by Myers and colleagues in 1998. Their pre-
vious work highlighted usability issues for novice programmers in programming
language design [124], and the Natural Programming project places more empha-
sis on the IDE and accompanying libraries. Their work takes a human-centered
approach: they first investigate the programmer’s behavior and then address
the difficulties. For instance, they studied six learning barriers in end-user pro-
gramming systems [81] and discussed the gulf of execution and evaluation, which
develops some of Lieberman’s ideas [94]. Various technical contributions were
made following the study.

Three factors made the proliferation of such ideas feasible. First, the Internet
has enabled new ways of collaboration between programmers, and given rise to
the remarkable growth in open-source technologies. This is discussed in Sub-
section 2.3.4. This work includes collecting, analyzing and utilizing anonymized
usage data of IDEs to identify areas for improvements and provide targeted sup-
port for cooperative work through the Internet. Second, the variety of programs
has continued to evolve, and has done so at an ever-increasing rate, with growing
emphasis on physical interaction, including interactive camera applications and
robotics applications. The development of such programs requires tool support,
and enhancements to IDEs, which will be discussed in Subsection 2.3.5. Third,

9

several technological shifts have made IDEs more extensible as explained in Sub-
section 2.3.7, including extension frameworks, open-source distribution of IDEs,
and instrumentation features of programming languages, such as application pro-
gramming interface for reflection. They allowed the programmer to concentrate
on the improvements and leave the rest as provided by the existing IDEs.

Although text-based IDEs have been the dominant means of programming for
the professional programmer, until recently most of the user interfaces have re-
mained unchanged. Making enhancements has now become more feasible thanks
to the technological shifts described above. New kinds of programs, especially
those with real-world I/O have led to demand for enhancements to IDEs. In this
dissertation, we aim to respond to such demands by enhancing text-based IDEs
in the context of HCI.

2.2 End-User Programming

An end user is any computer user (either a programmer or non-programmer) who
accesses a piece of software at the end of the process of development and does
not have access to modify the original code. Programs are typically packaged
by their creators and are not written to fit a given end-user’s particular require-
ments. EUP was originally a term describing techniques to bridge this gap by
allowing the end-user to create, modify or extend the program. This topic will
be covered in detail in this section. The phrase was popularized by Nardi in her
book published in 1993, discussing the topic based on her experience of EUP
systems for spreadsheets and computer-aided design scripts [119]. Early (yet still
effective) attempts include application-specific scripting languages, such as those
used in spreadsheet and word processing applications for writing formulas and
macros. They aim to make programming easier to use or to understand for a
broader group of users. Usability issues for novice programmers are discussed in
Ref. [124]. Unlike these attempts, which require some knowledge of program-
ming, programming by example (PbE), which we will describe in Subsection 2.2.2
eliminates the requirement to write code. Using a PbE system, the end-user does
not need to learn any basic programming concepts, and may simply demonstrate
pairs of example input and desired output to the system. The system then in-
fers the program, which can take new inputs. Throughout the history of EUP,
making use of visual representations has been thought to be of benefit to the
user. Therefore, it includes many visual programming environments, which will
be discussed in Subsection 2.2.1.

The number of end-user programmers has increased recently, and is expected
to be significantly greater than the number of professional programmers (a 2005
analysis predicted that, in the United States, there would be over 13 million
end-user programmers in 2012, compared with less than 3 million professionals
[133]). End-user programmers have been defined as those who are “programming
to achieve the result of a program primarily for personal, rather public use” [75].

Various popular applications, including Microsoft Office (which includes Word
for word processing, Excel for spreadsheet editing, and PowerPoint for creating
presentations), Adobe Creative Cloud (including Photoshop for raster graphics
editing, Illustrator for vector graphics editing, and AfterEffects for video com-
position), and Maya for three-dimensional computer graphics, are equipped with
built-in scripting environments with which the end-user can automate simple
tasks. These days, the World Wide Web has become a platform for various ap-
plications. Standardized and machine-readable specifications, including HTML
and HTTP, have opened a new opportunity of EUP. For instance, Chickenfoot

10

[13] provides a scripting environment that allows automation of repetitive opera-
tions, integrating features of multiple websites, and customizing the appearance
of websites.

Spreadsheet systems are also a popular EUP environment. They are typi-
cally capable of managing multiple sheets, each of which is a collection of cells
in a grid of rows and columns. The user can input simple textual types of num-
bers and strings into cells for computation. Some research prototypes go be-
yond this standard form. For instance, there is a development environment that
uses a spreadsheet interface to build information visualization applications [28].
Forms/3 [22, 19] is a spreadsheet-based visual programming language. It does
not have a grid of rows and columns, but still provides cells for computation,
which can be placed anywhere on the screen. It is also capable of handling in-
teractive graphical objects within the spreadsheet paradigm. Graphical objects
can be created by drawing gestures, and can be edited by direct manipulation.
Properties, such as the radius of a circle, are dynamically linked to spreadsheet
cells, and are shown in text format.

With the increasing capability of EUP environments, many end-user program-
mers face very similar software engineering challenges as professional program-
mers. These challenges span the entire workflow of the programming activity,
rather than merely the design and specification of a program, which can be ad-
dressed, for instance, by PbE. Challenges include determining the requirements
of the program, and testing, verifying and debugging the program. End-user soft-
ware engineering (EUSE) is an emerging field that aims to address these issues
by applying software engineering techniques to the end-user by a human-centered
approach [21, 75].

When a new type of program is introduced, every programmer is a novice
in the development thereof. Therefore, in such a case, the design process of the
programming tools for the professional programmer should be similar to or the
same as that for the end-user programmer. Patel pointed out this parallelism,
and took a human-centered approach to improve the productivity of the devel-
opment of machine learning applications [126]. He observed the workflow of the
programmer, and designed and evaluated an IDE to support that workflow. In
this dissertation, we take a similar approach to the development of programs that
deal with real-world I/O. For each example project, we first define the target ap-
plications and analyze their development workflow; we then design and evaluate
an IDE that supports that specific workflow.

2.2.1 Visual Programming Environments

One of the major approaches to end-user programming is the use of graphical
programming environments. Advantages are expected because of the ability to
specify the program in a two- (or higher) dimensional fashion. Conventional
text-based programming is one-dimensional in the sense that it is processed by
a compiler or interpreter as a single line of text. However, the programmer may
prefer to visualize the program in a structured manner, which may be properly
indented multi-line text, or a flowchart. We discuss structured editors in Sec-
tion 2.3 in the context of text-based IDEs.

Most visual programming languages are characterized by “icons on strings”
[89] or box-and-line notations as a set of iconic pictures as shown in Figure 2.2,
which are usually static and have a one-to-one mapping with concepts that make
up the program, and connections between them, which are usually rendered as
lines or arrows and represent relationships between those concepts. They are

11

Figure 2.2: An example of symbolic visual programming languages, LabView
[68].

symbolic representations of the program code and relations between program
modules. Typically, they are also capable of “direct manipulation” [136] of the
program, which allows the programmer to use the mouse to visually add, edit
or remove the iconic pictures or their connections. These methods are described
well in the surveys by Shu and Myers [137, 115]. LabView [68] is one of the most
popular commercial implementations of such a system of programming.

Later, evaluations of such systems from a psychological perspective became
available [147]. Green and Petre conducted a usability analysis of visual pro-
gramming environments [50]. Their reflections led to a more general framework
for evaluating user interfaces [12] and further end-user programming research,
which was introduced at the beginning of this section. For instance, there was
a tendency for the research community to believe that “icons on strings”-style
visual programming languages were naturally superior to textual programming
languages. This attitude has subsequently been criticized [10], and a balance be-
tween textual and visual representations has been found to be desirable, rather
than aiming for a purely visual environment, which has been shown to have a
number of shortcomings. For instance, with a purely visual representation, it
is more difficult to understand and use screen space efficiently [119]. They are
not suitable for large realistic programming problems [20]. Visual components
require layout rearrangement when there is any change, which is often tedious
[50]. Recent discussions provided detailed guidance of when to use the various
types of metaphorical graphics in visual programming systems [11].

There have also been attempts to go beyond symbolic notation as shown in
Figure 2.3, adding more meaning to the temporal changes by considering the spa-
tial positions of the components. Among all visual programming environments,
systems that belong to this category are the most relevant to our approach.
The difference is that we aim to investigate ways in which graphical representa-
tions can be seamlessly integrated with text-based programming environments,
whereas existing systems focus on the visual representations themselves. BitPict
[45] uses grids of pixels rather than a box-and-line notation. It allows the user to
specify pixel-rewriting rules, which are pairs of small input and output bitmaps.

12

Figure 2.3: An example of visual programming languages going beyond symbolic
notation. Pixel-rewriting rules of BitPict [45].

When the user provides a bitmap to the system, it looks for a match between
the bitmap and the pixel-rewriting rules; when a match is found, it rewrites the
bitmap. With the iterative cycle of pixel rewriting, meaningful operations can be
carried out, such as numerical computation, graphical animation, or filling a re-
gion inside a closed contour. Dominoes [89] in the Mondrian system [90] are pairs
of two thumbnails representing a specific sequence of graphical editing commands.
The two thumbnails represent an example before and after applying a sequence of
commands. The domino icons can be expanded to a storyboard, which shows the
entire sequence of commands. Unlike other visual programming languages, which
use static iconic pictures, the Mondrian system automatically constructs a graph-
ical representation of operations from visual examples to represent user-defined
functions. The Agentsheets system [131] replaces the box-and-line system with a
sheet of agents placed spatially in a two-dimensional grid. In Agentsheets, agents
react to user input or information from other agents to change their status. Each
agent has a graphical representation of its status, which is visible to the user. Us-
ing a domain-specific set of predefined agents, simple simulation applications can
be implemented, such as an electric circuit, pieces of water pipes, or an animated
ecosystem of animals.

Visual programming environments use visual components to represent the
logic of the program or the pixel-based information used in the program. In this
dissertation, we investigate the use of photos and videos to represent specific
situations or dynamic changes of situations in the real world.

2.2.2 Programming by Example

Programming by example (PbE), also known as programming by demonstration
(PbD), is a popular approach to end-user programming. It aims to eliminate the
need for explicit coding by inferring the program specification from examples or
demonstrations provided by the end-user. It is different to visual programming
in that there is no explicit programming activity; however, there are a number
of similarities. For instance, both achieve “programming in the user interface”,
which is a term coined by Dan Halbert [56], and the distinction between the
programming environments and the resulting program is unclear. The program
is constructed by manipulating the user interface, which typically supports direct
manipulation. As a consequence, many PbE systems are also visual programming
environments.

While PbE systems are typically designed for end-users, the concept was
first realized for programmers. PbE for programmers is more closely related
to the work that forms this dissertation in that they both aim to benefit from

13

Figure 2.4: An example of programming by example systems. Metamouse ob-
serving user’s operation and repeating it [104].

concrete examples to build programs. We name this approach “programming
with examples”, and it is discussed in detail in Section 3.2. The very first PbE
system is thought to be Pygmalion [138]. Instead of writing abstract program
code, it allows the programmer to start building a program by giving concrete
input data. For instance, he can start building a program to compute factorials
by giving a specific number, for example, 6. Then, he specifies the procedure to
process that number. The system assumes that the user is a programmer and
must generalize the program himself. In this case, he is writing a program that
handles the number 6, and must anticipate that the program will handle other
numbers and specify a conditional expression that tests whether the input is 1.
Tinker [91] is a PbE system for the novice Lisp programmer, which allows him to
begin writing programs by giving concrete examples of input data. Tinker allows
the programmer to provide multiple examples, which are used to infer conditional
statements. In this way, he can concentrate on the current example, which is an
improvement compared with Pygmalion.

The original idea behind PbE for end-users was an extension of the idea of
macro recorders. The macro recorder records the user’s operations and replays it
so that they do not have to repeat the same operation for many times. PbE goes
beyond a macro recorder by generalizing the user’s operations. Metamouse [104]
shown in Figure 2.4 allows the user of a drawing program to use an “instructible
agent” to automate repetitive editing tasks. Instead of text-based programming,
the user teaches the agent, named Basil, and when the user tells Basil to record
his operations, it may ask him to help to generalize the operation, detect repet-
itive actions, and predicts what the user wants to do next. Eager [32] applies
similar idea to generalize applications such as HyperCard and Claris Resolve
(a spreadsheet application). Unlike Metamouse, it does not require the user to
explicitly declare the beginning of the operation. It continuously observes the
user’s operations, detects repetitive actions, and makes predictions. When the
user begins to repeats an operation, it automatically executes the operation to
the end. Dynamic Macro [103] automatically creates a keyboard macro by de-
tecting repetitive operations in the Emacs text editor. It provides a “PREDICT”
button to switch between multiple prediction results and a “REPEAT” button
to repeat the most recent repetitive operations. Chimera is a graphical edit-
ing application that implements several ideas of PbE to achieve a history-based
macro-by-example system. Chimera is capable of graphical search and replace
[84], whereby it searches for a specific visual component and replaces all occur-
rences with another visual component. For instance, the user may replace all
of the oak leaves in a picture with maple leaves. This feature is later extended
with the idea of constraint-based search and replace operations [85]. Rather than

14

searching for a specific visual component, it searches for all visual components
that satisfy a given set of constraints. The constraints can be defined using a
set of parameters, such as the angle and the distance to nearby components.
Chimera also allows the user to specify constraints from multiple snapshots [86].
For instance, three snapshots of a Luxo lamp can be given to show how the lamp
moves at its joints and how the direction of the light is changed. The lamp can
then form an interactive object. Chimera is closely related to Mondrian [90] (see
Subsection 2.2.1), in that both provide thumbnails of graphics before and after
the operations, representing the history of graphical editing. The difference is
that Chimera’s history is editable [83]; the user can go back to the specific entry
of the history, apply a new operation, and redo all the rest entries in the history.

More recent PbE systems are likely to be integrated into larger systems and
used with other user interfaces to achieve domain-specific tasks. Such systems
include text input [102], computer-aided design [47], mashups of user interfaces
[44], automation of collecting useful information from websites [96] and robot
programming [129].

Most of the systems introduced above are heavily dependent on heuristics
with domain-specific knowledge; however, there is also a more general approach to
PbE that aims to automatically generate programs from high-level specifications
without writing source code. Genetic programming [82] generates programs with
some randomness, evaluates the outcome using a specific value function, and
creates new individual programs based on programs that achieved good scores.
Another successful example is program synthesis [53], which has recently been
applied to text editing in Excel [58], a popular commercial spreadsheet software
package. It uses formal reasoning to synthesize small programs from a set of
example input and output, which can process input text to produce edited text.

Most PbE systems aim to eliminate the need for programming. Some initial
attempts were designed for programmers and involve programming activity, en-
abling “Programming with Example.” In this dissertation, we propose systems
for “Programming with Example”; however, unlike PbE systems, these do not
infer the programmer’s intent. It is the responsibility of the user to explicitly
describe the logic of the program. Examples will be discussed in Section 3.2.

2.3 Text-based IDE Enhancements

As discussed in Section 2.1, standard components of text-based IDEs, such as in-
tegrated debuggers, program analysis tools and text editors with syntax-checking
features, first appeared in the 1970s, and the development of IDEs has been con-
servative. Since the birth of personal computers, researchers in the domain of
programming languages, software engineering, and HCI, have tended to work sep-
arately. However, since the 2000s, there have been many projects among these
fields to enhance text-based IDEs.

In this section, we review work related to enhancements of text-based IDEs.
Enhancements to text-based IDEs for coding are discussed in Subsection 2.3.1,
and to debugging are covered in Subsection 2.3.2. Attempts to bridge the gap be-
tween coding and debugging — so-called “Live programming” — are introduced
in Subsection 2.3.3. Comparison between support for exploratory programming
and one for reliable software development is also discussed. Online collaborations,
made feasible through recent advances in the Internet and related technologies,
are discussed in Subsection 2.3.4. Text-based IDEs for the development of appli-
cations in specific domains are described in Subsection 2.3.5. Finally, we intro-
duce existing work on integrated graphical representations in text-based IDEs in

15

Subsection 2.3.6, followed by practical references to research on text-based IDEs
in Subsection 2.3.7.

2.3.1 Enhancement on Coding Experience

A recent observation of a group of programmers revealed that, although they
can benefit from structured editors, tend to favor the capability of character-
by-character edits provided by a conventional text editor [76]. Barista [79] is a
framework for implementing structured editors, which is highly visual and inter-
active. The resulting editors are capable of conventional text-editing and code
completion; however, also support drag and drop and other alternative views of
coding.

Quack [97] is an Eclipse plugin for sloppy keyword programming. It uses
keywords to populate possible choices of complete code snippets and allows
the programmer to choose the appropriate one. For instance, the program-
mer can pass the keywords “add line” to direct the code completion and in-
put “lines.add(in.readLine())”. Brandt coined the term “opportunistic program-
ming”, which is a quick and agile prototyping process. Compared with more for-
mal software engineering practices, opportunistic programming emphasizes speed
and ease of development. Such programming processes often involve web searches,
copy-and-paste operations on source code, and transforming the code to fit the
context. Blueprint [16] shown in Figure 2.5 provides a code completion inter-
face based on example source code retrieved from open-source repositories on the
web. When multiple choices are found, the programmer can choose one that best
fits their purpose. SnipMatch is a follow-up project [148], which transforms the
example source code to fit the context when it is pasted into the editor.

Calcite [113] addresses difficulties in constructing class objects. Classes are
not always directly constructed using their constructors, but indirectly with the
help of other classes. Calcite inserts such templates when the programmer invokes
a code completion on a target variable. The template is generated from a specific
format of the API documentation [139] and the help of other users.

Recent research into code completion has provided type-specific user interfaces
named “Active Code Completion” [122]. For instance, when the programmer is
instantiating a Color object, a color palette interface is shown rather than a text
template.

HyperSource [60] and Codetrail [49] bind lines of source code using URLs of

Figure 2.5: An example of enhancement on coding experience. Blueprint showing
code completion based on online example code [16].

16

relevant websites. They are both implemented as a browser extension and an
IDE. HyperSource has been implemented for Google Chrome and the Processing
IDE, and Codetrail has been implemented for Mozilla Firefox and the Eclipse
IDE. Using these combinations, the programmer may review websites that were
visited using the source code editor, which provides an alternative to repeatedly
looking for the same information on the Internet.

Code Bubbles [15] and Debugger Canvas [35] allow the programmer to nav-
igate source code based on call graphs and show all of the relevant fragments
of code at once. While conventional code editors usually fill the entire screen,
requiring the programmer switch between multiple files, these tools concurrently
show multiple kinds of relevant information in one view, which was shown to
provide significant scope for increased productivity.

Chapter 4 describes enhancements of text editors to show inline photographs
to make the source code more understandable. Chapter 6 is also related in that
it discusses how we can relieve the programmer from writing boilerplate code.

2.3.2 Enhancement on Debugging Experience

Observations of groups developing interactive three-dimensional simulations have
revealed that the programmers started each debugging task with a question, such
as “Why did...” or “Why didn’t...” [78]. Whyline [77, 80] shown in Figure 2.6 is
an integrated debugger that was proposed to bridge the gap between static source
code and dynamic output. It aims to answer the “Why did” and “Why didn’t”
questions about the program’s output. The programmer chooses a question from
automatically generated choices via static and dynamic analyses. The system
then answers the question using data mining from information recorded during
runtime. Whyline was first designed and implemented for Alice [30], a visual pro-
gramming environment for interactive character animation of three-dimensional
computer graphics. It was ported to Java and supported more professional ques-
tions and answers, for more general applications, and a programming interface

Figure 2.6: An example of enhancement on debugging experience. Whyline for
Java [80].

17

for two-dimensional graphics and event-based GUI programming.
Juxtapose [63] allows the programmer to execute multiple versions of a pro-

gram at the same time. It is capable of copying the input events, such as mouse
and keyboard events, from one version to another at runtime, and the programmer
can interact with all of the variants at the same time to compare their behav-
ior. It is also capable of showing the user interface components of the program
at runtime to allow the programmer to tweak parameters that were declared as
constants. When values are edited in the program, the source code is also edited.

Chapter 5 describes enhancements to the debugger to show video strips rep-
resenting the history of program execution to improve understanding of the dy-
namic behavior of a program. Chapter 6 proposes a video player interface to
allow control over the execution of the program to aid debugging.

2.3.3 Live Programming

In conventional IDEs, coding, executing and debugging the program are separate
activities for the programmer. In traditional Software Engineering (SE) research,
much effort has been devoted to achieve reliable software development, typically
using formal verification. However, as discussed in Subsection 2.3.1 and 2.3.2,
recent advances include enhancements on IDEs which aim to accelerate imple-
mentation of programs rather than verifying their soundness. These kinds of
enhancements can effectively support exploratory tasks that require quick cycles
of coding and debugging, which are called “Exploratory Programming”. In HCI
research, such process is called prototyping and has been supported by various
prototyping toolkits.

Particularly, an attempt to remove the distinctions between coding and debug-
ging is called “Live Programming” and has been studied interdisciplinary among
SE and HCI. It aims to allow the programmer to receive continuous feedback from
the results of program execution while writing code. “Liveness” in programming
was first discussed by Tanimoto in research into a visual programming language
named VIVA [141]. He addressed the gap between coding and program execu-
tion by eliminating the explicit operation of compilation. Programs developed
using VIVA are always executable. The paper discussed four levels of liveness.
Maloney discussed directness and liveness of programming of GUIs using their
Morphic system [99]. Morphic does not make distinctions between writing code
and executing it. It does not make any distinctions between the development
environment and the runtime environment. The program is always editable and
the program is always running in the Morphic environment.

The term “Live Programming” was coined by Hancock in his 2003 disserta-
tion [57]. He discussed how real-time feedback can aid text-based programming.
McDirmid applied the idea to game development [107] and later to text-based
programming [108]. ChucK [145] is a live programming environment for creating
and playing music. Subtext [38] uses a model view architecture for program edit-
ing, whereby the editor shows the immediate representation of the program being
edited, which allows the programmer to directly manipulate the program without
compilation. Victor demonstrated an instance of his vision for live programming,
which placed the text-based editor next to its execution screen, allowing the pro-
grammer to dynamically change the source code and see the effect at runtime
[143]. Burckhardt proposed a programming model that enables this type of live
editing of GUIs [18] in a web-based development environment named TouchDe-
velop [142].

Our work aims to support exploratory programming. Each of the concrete

18

projects can be considered as live programming, too. Relation between live pro-
gramming and each project will be discussed in detail in Subsection 7.2.4.

2.3.4 Online Collaboration

Following the standardization of web technologies, a number of IDEs have been
proposed, which benefit from the power of the Internet. Plugins for online version
control systems, including CVS, Subversion, Git and Mercurial, are supported in
many major IDEs. Blueprint [16] (discussed in Subsection 2.3.1) uses a database
of source code collected from such online systems. HelpMeOut [62] is an extension
to the Processing IDE shown in Figure 2.7, which stores how runtime exceptions
have been solved by programmers in an online repository. It uses this database
to propose solutions when a new unhandled exception occurs. Collabode [48] is
a web-based IDE that allows programmers to collaborate in real-time, which is
an attempt to eliminate the overhead of conventional version control.

Bruch summarized the research effort in the software engineering community
as “IDE 2.0” [17]. Such effort includes intelligent code completion, which mines
statistical usage information collected from many users to show a prioritized list
of completion choices. It has been implemented in IDEs including Eclipse [43] and
TouchDevelop [142]. TouchDevelop is a web-based IDE developed using HTML
5, CSS and JavaScript. It is capable of instantly distributing applications via
its website. It has some social features, including commenting and evaluating
applications.

2.3.5 Domain-specific Support

Following the introduction of the personal computer in the 1980s, there was a
growing expectation that GUI applications would appear, which could be used
without prior knowledge of programming. However, developing programs with
polished GUIs was not straightforward. User interface management systems
[23, 127] and user interface builders were introduced. Such systems typically
separated the user interface design process from the development of the pro-
gram, so that the designer can concentrate on improving the appearance of the

Figure 2.7: An example of online collaboration for IDEs. HelpMeOut proposing
a bug fix based on solutions collected from other programmers [62].

19

Figure 2.8: An example of domain-specific IDE. Gestalt for machine learning
program development [125].

interface. Many of the resulting systems were developed as independent tools
outside of IDEs [65, 26]. They produce user interfaces, which are later connected
to the applications through event languages written using text-based program-
ming languages. Some of them provided the capability to build the entire GUI
application within the development environment [99], which can be considered
as a domain-specific IDE for GUI applications. In both cases, however, text-
based programming was still required. For the programmer’s convenience, user
interface builders were integrated into text-based IDEs, such as Visual Basic 1.0
[31], released in 1991. This integration allowed the programmer to alternate
seamlessly between user interface design and implementing the functionality. For
modern web applications, HTML and CSS, which are declarative languages, are
used to construct user interfaces. JavaScript is used to specify a response to the
user input and to manipulate the user interface components using the Document
Object Model API. Other architectures for GUI applications employ a similar
separation of languages for user interface construction and interaction design, in-
cluding Windows Presentation Foundation (XAML and programming languages
supported on .NET Framework), JavaFX (FXML and Java) and Apache Flex
(MXML and ActionScript). This separation makes it feasible to develop systems
for user interface design. For instance, TouchDevelop [18], which was introduced
in Subsection 2.3.3, benefits from this separation, and allows live editing of a GUI
without killing the application process. SeeSS visualizes the impact of changes
in CSS and the ease debugging using CSS [88].

The variety of programs has continued to evolve, and the pace of change ap-
pears to be faster than ever before. This development requires even more support
tools; thus, more IDEs optimized for specific application domains. Reflecting the
popularity of text-based programming, most are based on textual programming
languages, and provide libraries and user interface components, eliminating the
need to write boilerplate code. ChucK is designed for creating and playing music
[145] on the fly. Processing [4] adopts a simplified dialect of the Java language
and is equipped with a set of APIs for information visualization and prototyping
media art applications. Arduino [1] is a variant of Processing for programming
firmware for microcontrollers and prototyping new physical devices. For the same
purpose of creating new physical devices, but with more emphasis on the proto-
typing process of design, test and analysis, d.tools [61] provides support for the
whole of the workflow of a prototyping task. Gestalt [125] shown in Figure 2.8
is designed to support the whole of the workflow of the task, not for physical
computing, rather for machine learning. This trend of domain-specific IDEs is
not limited to academic research, but is also apparent in commercial products,
including MATLAB for mathematical calculation and data visualization.

20

Our approach has parallels with these domain-specific IDEs; however, focuses
on the development of programs with real-world I/O.

2.3.6 Graphical Representations in IDEs

Visual programing environments and text-based IDEs were covered in Subsec-
tion 2.2.1 and Section 2.3, respectively, and this subsection covers the integration
of these two approaches. Systems have been proposed to represent static data in
text-based editors. Heterogeneous visual programming language [39] integrates
visual components representing data structures in a text-based programming lan-
guage, supporting an intuitive understanding of source code. Barista [76] is a
framework to include visual components in a structured text-based editor. Sikuli
[150] allows inline pictures representing their data.

Other systems have been proposed to capture the dynamic behavior of the
program and provide graphical representations to determine why or how the
behavior was observed. Dominoes [89] provides a pair of thumbnails to show the
input and output of a function. Chimera [83] uses the same notion to allow editing
a history of the operations carried out in a given program. ZStep [94] is the first
debugger that shows stack traces and visual representations of the data used in
the program next to the source code editor. Whyline was originally developed for
visual programming of 3DCG programs [77], and uses the timeline view of the
program execution along with the recorded screen of the program to answer the
questions “Why?” and “Why not?”. Later, it was extended to general text-based
programming of graphical applications for the Java programming language [80].

There are also systems that are capable of directly manipulating the pro-
gram components through user interfaces of the IDEs without explicit compila-
tion operation. Many visual programming environments such as VIVA [141] and
ConMan [54] fall into this category. Morphic [99] is an IDE based on the Self
text-based programming language and at the same time a run-time environment
of the GUI programs. Subtext [38] provides a tree view of the program structure,
which is editable through its user interface, allowing the programmer to build a
program within the user interface. TouchDevelop [18] allows the programmer to
edit the user interface of GUI applications without killing their process.

We investigate the same categories of graphical representations of static data
and dynamic behavior of the programs in Chapters 4 and 5, as well as graphical
editing of such representations to support building the programs in Chapter 6.
Our experiments share important aspects with all of these systems: graphical
representations are provided to complement text-based programming. The ma-
jor difference comes from the target applications, and thus in the approach to

insert(p,i)
DLIST p;
int i;
{
 DLIST q;

 if (p->next != NULL) {

}

 else …
}

p

q
i

Figure 2.9: Examples of integrated graphical representations in existing IDEs.
Left: Heterogeneous visual programming language visualizing data structure [39],
Right: Sikuli showing inline images [150].

21

supporting the programmer. In the following chapters, we propose the use of
photos and videos as natural graphical representations of the real world. There
are very few IDEs that use photos and videos in this way. One exception is d.tools
[61], which uses recorded video synchronized with state transitions in the pro-
gram under development to analyze the interactions. Comparisons with existing
approaches will be discussed in detail in Section 3.3.

2.3.7 Building Blocks

Research into IDEs has accelerated with recent technological shifts. Building
blocks for IDEs have been developed for public use, allowing the programmer
to create IDEs without building them from scratch. All of our experimental
implementations of the IDEs benefit from these evolutions. For instance, Eclipse
[42], SharpDevelop [5], and Processing [4] are all text-based IDEs developed as
open-source projects. The source code has become more organized as they evolve,
allowing programmers and researchers to focus on their contributions and leave
the remaining components as provided by the environments. They also accept
plugins, which extend the features of the IDE without requiring rewriting of
existing components. The core components of the Visual Studio IDE are planned
become available as APIs [110], which will allow building new IDEs on top of
them. For example, a technique for building structured editors [79] is no longer
required to build a text editor with inline embedded images [150, 72], as the Java
Runtime Environment provides the JTextPane class for just such a purpose.

All the experimental implementations of IDEs described in this dissertation
were developed with help of these publicly available components. Picode was
implemented on top of the Processing core components, as discussed in Chapter 4.
DejaVu was used to modify the compilation process of the SharpDevelop IDE,
as discussed in Chapter 5, and employs its extension framework to add new user
interfaces to the IDE. VisionSketch uses an open-source library, which is capable
of syntax highlighting and simple code completion, and uses another library to
compile Java source code, as discussed in Chapter 6.

2.4 Tool for Programming Physical Interactions

As described by Myers [116], the HCI community has developed many toolkits.
When a new kind of user interfaces is proposed, a new toolkit to develop such
interfaces soon appears to allow evaluation and standardization of the user in-
terfaces. Recent trends in HCI show an emphasis on physical interaction, which
requires new hardware configurations with sensors and actuators. Given the
proliferation of such programs with real-world I/O, development tools for pro-
gramming physical interactions are desired. Papier-Mache [73] is a toolkit for
building tangible interfaces consisting of well-defined APIs, software architecture,
and graphical tools for development support. Phidgets [51] encapsulates a sensor
or actuator as a package with a USB interface and provides software APIs to
control the package. Phybots abstracts hardware and provides higher-level task
centric APIs. Arduino [1] lowers the threshold for embedded programming, and
was employed in our user study to build robots. Context Toolkit [132] provides
support for the development of context-aware user interfaces. ActivityDesigner
[87] allows interaction designers to specify commands that are executed for sev-
eral categories of activities. OpenCV [14] provides a set of implementations of
computer vision algorithms. Eyepatch [106] provides a user interface to train
classifiers of OpenCV, allowing the programmer to prototype applications that

22

Web camera
looking down on the floor

Personal computer
running an application

Robotic things
with visual markers

Figure 2.10: An example of a tool for programming physical interactions. Phy-
bots controlling horizontal movement of the mobile robot [71].

benefit from computer vision algorithms. Kinect provides an API to detect hu-
man posture from the Kinect device, which uses a color camera and a depth
camera. Phybots [71] shown in Figure 2.10 is a toolkit for prototyping mobile
robot applications by providing a set of APIs and a corresponding debugging user
interface that is shown during runtime.

These toolkits typically support the programming phase of the prototyping
process; however, development environments support the whole workflow of the
programmer. For instance, d.tools [61] is an IDE for prototyping new physical
devices. It supports the design phase with help of existing toolkits, including Ar-
duino, and additionally supports the test and analysis phases by recording and
playing videos of the user interaction, synchronized with transition visualization
in the program components. The work described in this dissertation takes the
same approach as d.tools, in that they both provide support for the entire work-
flow, and all of our projects are designed for different target applications. They
are for the development of programs that run on standard computer platforms,
as opposed to new physical devices, and tend to handle real-world data I/O.

2.5 Summary

In this chapter, we discussed research into development environments from a
historical perspective, and then categorized these environments into end-user
programming environments and text-based programming environments. We also
covered tools for programmers that support the development of programs with
real-world I/O.

Text-based development environments have long been conservative in their
development, and typically employ a text-based code editor and an integrated
text-based debugger. Typical visual programming environments are designed for
end-users and eliminate the need to manually write code (i.e., text). Existing
IDEs developed using these approaches assume that the development and the
runtime environments use the same input and output devices. However, a grow-
ing number of programs involve real-world I/O, and where development suffers

23

from a gap between the development environment and the runtime environment.
Programming by example systems may eliminate this gap, since they use the
same device for the development and execution of the programs. However, most
of them are designed for end-users and do not provide precise control over the
program logic. Tools for the programmer address this issue by providing partial
support on the programmer’s workflow.

Given this background, the aims of the work described in this dissertation
are to integrate graphical representations into text-based IDEs and benefit from
the unique advantages of both the comprehensibility of graphical representations
and the expressivity of textual programming. The graphical representations are
of example data retrieved from the real world, bridging the gap between the
development environment and the runtime environment. The resulting IDEs
have both visual and textual components, and provide total support for the
programmer’s workflow.

24

Chapter 3

Integrated Graphical Representations

In this chapter we define the scope of this work by comparing it with existing
approaches. In Section 3.1 the characteristics of programs that deal with real-
world input and output (real-world I/O) are highlighted by comparing them
with conventional input and output modalities. In Section 3.2 the workflow of
the development of such programs is described, and the model describing the
programs is introduced. In Section 3.3 our approach of integrating graphical
representations is described, along with the expected advantages, which will be
examined in the subsequent chapters.

3.1 Real-world Input and Output

We aim to address difficulties in the development of programs that use real-
world I/O. Real-world I/O is data that is inputted or outputted between the
real world and the computer. This includes visual data, such as photos and
videos, the properties of objects, such as color, shape, and locations, as well
as more structured information, such as the posture of humans or robots. We
focus on these visual data; however, real-world I/O also includes data describing
sound, haptic technology, smell and taste. While processing such information is
challenging, it may facilitate a new paradigm of user interfaces, such as organic
user interfaces [130].

The mouse, pen, keyboard and display are all physical devices in the real world
that function as interfaces between the user and computer; therefore, it appears
reasonable to consider that they may also provide real-world I/O. However, we
exclude these conventional forms of I/O from our definition. Conventional I/O
is designed to map well to the metaphorical concepts used in the computer, such
as the WIMP environment and modern graphical user interfaces. Therefore,
conventional I/O devices are designed to provide discrete values by nature, such
as keystrokes (e.g., a, b, c...), which map to character codes, or mouse movements
that correspond to two-dimensional coordinates (i.e., numbers) describing pixels
on the display.

Real-world I/O provides data that cannot be represented using symbols or
constants. Real-world I/O contains information that exists in the real world
regardless of the existence of the computer. All data for real-world I/O is sampled
and discretized using physical devices such as image sensors and rotary encoders,
and subsequently processed by the computer; however, it has continuous values
both temporally and spatially.

One particular paradigm that has significant overlap with real-world I/O is
recognition-based interfaces. This includes voice recognition and gesture recogni-
tion. These input technologies create input with some ambiguity, which should be

25

handled as probabilistic events rather than conventional events with discretized
data. This difficulty has been addressed by existing work on user interface toolk-
its [100, 134]. Compared with such a toolkit approach, the work described in this
dissertation aims to provide integrated support to the programmer. While such
toolkits address difficulties in packaging common features and exploiting useful
application programming interfaces (APIs), difficulties in programming using a
text-based IDE remain. Instead, in this work, we investigate ways to enhance
existing text-based IDEs using a combination of multiple tools for programmers,
such as editors, debuggers and APIs. We aim to support the whole workflow of
programming.

Our approach is strongly inspired by Patel’s work on providing an IDE for
machine learning [125]. To create a machine learning application, which may be
a recognition-based interface, the programmer must collect many example data
and create a classifier by training and testing the classification pipeline. The
IDE is specifically designed to support the development of such programs. As
with our approach, Patel’s IDE does not focus on providing specific features that
eliminate the requirement for implementation, rather focuses on providing the
necessary development support. The main distinction comes from differences in
the application domain: Patel’s work focused on machine learning applications
and our work focuses on programs with real-world I/O.

The development of programs with conventional I/O uses the same environ-
ment for development and execution; however, the development of programs with
real-world I/O makes use of different devices for development and execution.
This widens the gulf of execution and evaluation for the programmer, making
it difficult to develop such programs using conventional text-based IDEs. While
toolkits for programmers typically cover partial workflow of the programming ac-
tivity, IDEs are designed to cover the entire workflow. We aim to cover the whole
workflow and bridge this gulf using a text-based IDE that includes graphical
representations of real-world data.

3.2 Programming with Example

In this section, we compare the development process of programs using con-
ventional I/O and real-world I/O, and define the latter as “Programming with
Example (PwE).” We also introduce existing approaches of PwE and criticize its
limitations.

Conventional I/O such as movement of a mouse and clicks of keyboard but-
tons maps well to the digital world of the computer and can be represented well
as symbols or small integers (thus, constants). These standardized information
allows event languages to be simple and easy enough to understand for the pro-
grammer. As a result, it is not difficult for him to write code from scratch that
generates or responds to a specific I/O data. For instance, he can easily write
code to test programs with character-based user interfaces by specifying a series
of input text. Test cases for GUI applications is a bit more involving, but in the
easiest case, he can also specify a series of mouse events. While he can easily
write text-based code which includes conventional I/O data, it is just a static
representation of the program. It is not easy for him to imagine its dynamic be-
havior from the static representation. It makes it difficult to choose appropriate
APIs that fit his needs. These difficulties are considered as an example of the
gulf of execution and evaluation [121]. Existing work has addressed this issue by
providing appropriate visualizations to the data and code [94, 92].

Conventional I/O uses the same devices (i.e., mouse, keyboard and display) for

26

both the development environment (IDEs and other tools for programmers) and
the runtime environment. However, real-world I/O uses different I/O devices,
such as cameras and actuators. The development environment resides in the
traditional GUI paradigm; however, the runtime environment is the real world.
Therefore, it is almost impossible for the programmer to write code from scratch
that generates or responds to specific I/O data. Real-world I/O data must be
retrieved from the real world and stored for later use, including coding and de-
bugging. Unlike conventional I/O data, real-world I/O data cannot necessarily
be visualized immediately. It may even be impossible to provide a meaningful
visualization because of the lack of a connection between the data and the real-
world situation. For instance, sensor values representing angles of robot joints
should be visualized as three-dimensional computer graphics of the robot, but
this is not possible when the form factor is unknown. Therefore, the program-
mer typically refers to the data by textual representations, such as filenames or
variables. This may be viewed as an additional gulf of execution and evaluation,
since the textual reference forces the programmer to imagine the situation in the
real world by reading the name of a file or variable.

The programmer can use examples to address these gulfs. In some cases, they
may retrieve data from the real world, such as the posture of humans or robots,
and save this data as files, to utilize them in programs. In other cases, they may
execute the program and log useful data, such as the contents of variables that
can be recorded only during runtime, and analyze the log afterwards. We term
these types of development workflow ”Programming with Example”(PwE). Since
existing text-based IDEs are primarily designed for the development of programs
using conventional I/O, they typically do not provide support for PwE. Therefore,
the programmer is forced to write their own code or develop their own tools to
utilize these examples, which is often time-consuming, and may also be difficult.

Please note that PwE has a certain limitation. Since PwE firstly records real-
world I/O data, it cannot be applied well to the development of programs whose
output affects their input; in other words, programs with real-time feedback loop
are out of scope of our approach. For instance, a program for humanoid that
processes the sensor data and controls its actuators to keep its balance cannot
be developed when either the input or output data is recorded beforehand. Such
low-level implementation requires executing the program repeatedly or simulat-
ing the entire hardware in software. Instead, PwE is typically well-suited for
the development of interactions between human and computers. The focus of
this dissertation is on the software aspect of the program development. The de-
velopment process is considered as a design process of defining a pure function
that handles input data and produces output data. The relationship between the
input and output data outside the software world is not taken into consideration.

As the name suggests, programming by example (PbE) is a closely related
approach. It typically aims to allow end-users to create useful programs. It
eliminates explicit coding, and removes the distinction between the development
and runtime environments. The system observes demonstrations provided by
the user and infers the program using the recorded example data. This is one
of the most effective uses of example data; however, most PbE systems provide
highly domain-specific environments, which makes it difficult to create generalized
programs. Furthermore, it is not easy to specify clear logic simply by providing
examples. Programming by example may be effective for end-users; however, it is
often not the optimal solution for an experienced programmer. PwE is a hybrid
approach of conventional text-based programming and PbE. While it bridges the
gap between the development environment and the runtime environment in a

27

similar manner to PbE, it allows the programmer to describe explicitly the logic
of programs using text-based programming.

Although PbE systems are typically designed for end-users, some attempts
have been made to design IDEs for programmers that use examples, including
Pygmalion [138] and Tinker [91], as described in Subsection 2.2.2. These also
utilize examples to support programming. Instead of forcing the programmer to
write abstract code from scratch, they allow the programmer to specify examples
and aid in building program logic that handles the examples accordingly. Recent
work on a programming language named Subtext [37] also emphasizes the benefit
of examples. It provides a text-based IDE that allows the programmer to write
test cases within the program code. When a test case is added, it is executed
immediately, and the execution traces are properly visualized over the program
code to support test-driven development. These existing works on support for
PwE address issues in the development of general programs: they aim to reduce
the requirement for abstract programming. There are a number of parallels with
the work described here; however, the primary goal of this work is to address
specific issues in development of programs with real-world I/O.

The development of programs that use conventional I/O involves coding and
debugging within the development environment; however, the development of
programs with real-world I/O cannot be effectively completed within the de-
velopment environment, as an additional step is required to retrieve real-world
I/O data. We define such a development process as “programming with exam-
ple (PwE)”. The example data do not have simple visual representations, which
widens the gulf between execution and evaluation. PwE is similar to PbE in that
it makes use of the example data; however, whereas PbE targets the end-user and
eliminates the explicit requirement for programming, PwE involves conventional
text-based programming and takes advantage of the level of control over the logic
of the program that this affords.

3.3 Integration of Graphical Representations into IDEs

To address the difficulties of PwE, we investigate ways to benefit from the fact
that the data represents situations in the real world. We assign photos and videos
to the real-world I/O data and evaluate the usability. In this section, we provide
a model of programs that deal with real-world I/O, and describe the potential
use of the photos and videos, which will be examined in the following chapters.
We also compare our approach with those of existing works.

PwE is an iterative process of data retrieval, coding and debugging. Through-
out the process, we identify three potential ways to make use of the example data.
First, example data representing situations in the real world can be saved in a file
or database and referenced using a textual representation in the source code. This
can be thought of in a similar manner to constants in conventional programming.
Second, the programmer writes code that deals with the real-world I/O. This
process of writing functions may benefit from the example data, which is similar
to previous attempts to support PwE [138, 91, 37]. Third, dynamic input to the
program during execution can be recorded as time-series data. This functions as
example data representing test cases. The data are processed by the functions
and produces intermediate results. These dynamic input and intermediate data
are assigned to variables.

The three potential ways of making use of example data map well to the
three aspects of the program: constants, functions and variables. From this

28

Program f
function(Cam1,LocX){
 Img1=proc1(Cam1, c1);
 Val2=proc2(LocX);
}

Constant c

Real-world output

out

Cam1

LocXin

Real-world input

Img1

Val2

Computer

Figure 3.1: Model of the program with real-world input and output.

observation, we provide the following model of the program that deals with the
real-world I/O, which is shown graphically in Figure 3.1:

out = f(in, c)

In this model, c corresponds to constants and f to functions while in and out
to variables. As we pointed out in the previous section, existing IDEs can only
assign textual representations to these components, which may make it difficult
for the programmer to develop the program. Textual representations are not
necessarily appropriate for describing real-world data. To address this issue, we
propose to use photos and videos as graphical representations of the real-world
I/O data in a text-based IDE. Photos are used to capture images describing the
real world. Videos are a time-series of photos, and can be used to capture move-
ment in the real world. The core assumption of this work is that such media
can be integrated into text-based IDEs and used to support PwE. The goal of
this work is to examine this assumption by investigating the use of the graphical
representations. We investigate the use of photos and videos as graphical rep-
resentations of a program in Chapters 4–6. Each attempt will be evaluated by
building an experimental IDE that integrates graphical representations to com-
plement textual programming.

Compared with visual programming environments that focus on how to vi-
sualize programs, we do not focus on the visualization. Instead, we make use of
existing graphical representations of the real world (i.e., photos and videos) and
investigate their use in text-based IDEs. The graphical representations used in
our work are similar to figures in the history of printing technology [123]. Prior
to the invention of letterpress printing, textual data were duplicated using hand-
lettered books and figures were duplicated using a printing plate. Letterpress
printing was the first technology to enable printing text and figures on the same
piece of paper. This combination of textual and graphical data contributed to
the growth of the modern science. While textual information provides a precise
and abstract description of data, graphical representations provide an example-
based description, which may be interpreted rapidly. These two descriptions are
complementary. We expect the same to be true of graphical representations of
real-world I/O within text-based IDEs. While the text-based editor and debugger
allow precise specification and analysis of the program, graphical representations
may allow an improved understanding through a more intuitive description of
many aspects of a program.

29

3

a b

2

1

4
5

Figure 3.2: Photos and videos in existing development environments. Left: Ac-
tivity Designer [87], Right: d.tools [61].

There are few examples of tools for programmers to make use of photos and
videos. This is because conventional tools do not deal with the real-world I/O.
There are, however, a small number of examples that are related to PwE in the
real world as shown in Figure 3.2. ActivityDesigner [87] is a prototyping environ-
ment for activity-based computing, which allows the programmer to label each
activity of the user using photos of the user or related objects. d.tools [61] is an
IDE for physical computing, which supports iterative cycles of design, test and
analysis of physical devices. It is capable of visualizing state transitions in phys-
ical devices synchronized with a video recorded during user testing. These two
projects can be considered early uses of photos and videos as graphical represen-
tations of constants and variables in the program. In this work we discuss such
use in more detail and provide insight into the use of graphical representations.

In summary, we propose to integrate graphical representations into text-based
IDEs to support PwE and address difficulties in the development of programs that
use real-world I/O. We provide a model of such programs; i.e., out = f(in, c),
and investigate the use of graphical representations for each component of the
model in the following chapters. We do not focus on developing new forms of
visualization, rather use existing natural representations of the real world; i.e.,
photos and videos.

30

Chapter 4

Using Photos to Understand Static Data

Current programming environments typically use textual or symbolic represen-
tations to specify the behavior of the program. While these representations are
appropriate to describe logical processes, they are not necessarily the most help-
ful way to represent complex data. It may be difficult for the programmer to read
textual or symbolic representations of complex data, such as videos or images,
and understand what these data mean.

Previous approaches to integration of graphical components into text-based
editors [150, 39] have used graphical components to represent such data. While
image data can obviously be represented by an image, as was employed by Sikuli
[150], and simple tree structures can be easily visualized using techniques such as
the Heterogeneous Visual Programming Language [39], it is not trivial to think
of an appropriate graphical representation for data from real-world input and
output (real-world I/O).

In this chapter, we discuss the use of photos as graphical representations
of static situations in the real world. In other words, we propose to use pho-
tos instead of text or symbols to represent constants in a text-based IDE. We
take human and robot posture data as an example, which are necessary to han-
dle gesture input and to control robots. First, in Section 4.1, we introduce the
motivation for choosing posture data processing applications as a representative
example. Then in Section 4.2, existing tools for the development of such applica-
tions are introduced. In Section 4.3 and 4.4, the Picode IDE is described, which
is an experimental implementation of the use of photos to represent constants.
In Section 4.5, we evaluate its effectiveness through two user studies.

4.1 Posture Data Processing Applications

Conventional input and output (I/O) devices for computers; i.e., the mouse, key-
board and display, are highly standardized and tightly coupled with the desktop
environment on which the IDEs are built. Typical I/O data can be represented
by numerical values describing a constant (such as a character code and index
number of a pressed button) or a set of numerical values that maps well to the
desktop metaphor (such as mouse movement describing two-dimensional desktop
coordinates). Conventional I/O data can be readily understood using a textual
representation, or in relation to the desktop. Therefore, the development of pro-
grams with conventional I/O is facilitated well using conventional IDEs.

In recent years, computers have become ever more pervasive. They are in-
creasingly portable and equipped with a growing variety of I/O devices, which
do not have the same type of connection with the conventional desktop envi-
ronment. These I/O data cannot be represented easily using a conventional

31

text-based IDE, which complicates development. One example is posture data,
which is information of a collection of joints. Human posture information can
be retrieved using a posture-detecting device, such as a motion capture system
or the Microsoft Kinect. Robot posture data can be retrieved from the robot
hardware, or alternatively sent to the devices and used to control their posture.

Posture data processing applications are becoming more popular, exemplified
by the growing popularity of hardware such as Microsoft’s Kinect and the LEGO
Mindstorms robot. In such applications, posture information is typically stored as
an array of numerical values. Unlike conventional I/O data, these values are not
easy to understand by the programmer in terms of the posture of the human or
robot. They cannot be visualized using an IDE unless the hardware configuration
of the subject is known. Even when this configuration is known, as with the case
of human posture, visualization may not be straightforward or helpful because
of the lack of contextual information. This gap between the real world and the
computer is common among all types of real-world I/O data, including sound,
haptic technologies, smell and taste. These data represent specific situations in
the real world; however, the data are often not sufficient to allow the programmer
to lively imagine the situation.

In everyday life, we often take photos and use this medium to tell others about
specific situations in the real world. Our assumption here is that they can also
be used to represent posture data in text-based IDEs. We bind this posture data
with a photo of the subject, and show it as an inline image in the editor of the IDE
Picode. This can help in the development of posture data processing applications.
The programmer is first asked to take a photo of a human or a robot, which is
automatically bound to the posture data. He then drag-and-drop the photo into
the code editor, where it is shown as an inline image. Picode provides a built-in
API, where the methods take photos as arguments. This allows the user to easily
understand when the photo was taken and what the code is supposed to do.

4.2 Related Work

4.2.1 Graphical Representations in Code Editor

A programming language is an interface for the programmer to input procedures
into a computer. As with other user interfaces, there have been many attempts
to improve its usability. Such attempts include visual programming languages to
visualize the control flow of the program, structured editors to prevent syntax
errors, and enhancement to code completion that visualizes possible inputs [122].
However, programming languages usually consist of textual or symbolic repre-
sentations. While these representations are appropriate for precisely describing
logical processes, they are not appropriate for representing concrete data such as
the posture of a human or a robot. In such a case, the programmer has to list
raw numeric values or to maintain a reference to the datasets stored in a file or
a database.

To address this issue, Ko and Myers presented a framework called “Barista”
for implementing code editors which are capable of showing text and visual rep-
resentations [79]. This framework enhances comments for an image processing
method by including an image that shows a concrete example of what the method
does. Martin et al. proposed a heterogeneous visual language [39] to integrate
a visual language capable of visualizing a tree structure into a text-based pro-
gramming language. Yeh et al. presented an IDE named “Sikuli,” with which
the programmer can take a screenshot of a GUI element and paste the image

32

Figure 4.1: Programming motion by physically handling the robot [129] and by
editing timeline [118].

into a text editor [150]. In Sikuli, the image serves as an argument of the API
functions. Our goal is to apply a similar idea to facilitate the programming of
applications that handle human and robot postures.

4.2.2 Tools for Posture Data Processing

To process human posture information, some toolkits and libraries have been
proposed. They can typically recognize preset poses and gestures. When the
programmer wants to recognize her own poses and gestures, however, she has to
record the examples outside the development environment. On the other hand,
our development environment is designed to support the entire prototyping pro-
cess of application development. It fully integrates the recording phase, and the
programmer can follow the workflow without distraction. Attempts to support
a general workflow of domain-specific applications have already been made for
many domains including physical computing [61], machine learning [125] and
interactive camera-based programs [70] which will be introduced in Chapter 5.

There is a long history of developing robot applications that deal with robot
posture. As shown in Figure 4.1, typical approaches include Programming by
Example (PbE) [129, 24], timeline-based editors to help designers defining tran-
sitions from one posture to another [118], and general development environments
for textual or visual programming languages . Most of the PbE systems focus
on reproducing observed human actions, and the editors focus on creating and
editing actions. They both tend to have limited support for handling user input.
Conversely, general development environments are more flexible in terms of input
handling, but do not display posture data in an informative way. Our objective
is to design a hybrid environment, by taking advantages of these approaches.

4.3 Picode IDE

Our prototype implementation consists of three main components (Figure 4.2): a
code editor, the pose library, and a preview window. First, the user takes a photo
of a human or a robot in the preview window. At the same time, posture data are
captured and the dataset is stored in the pose library. Next, she drag-and-drops
the photo from the pose library into the code editor, where the photo is displayed
inline, as shown in Figure 4.3. Then, she can run the application and distribute

33

Code editor Pose library

Preview window

Capture a photo + posture data

Figure 4.2: Overview of Picode IDE.

Figure 4.3: Example code that makes the robot swing its hand when the user
raises his hand.

34

the source code bundled with the referenced datasets so that others can run the
same application within our development environment.

4.3.1 Taking Photos

To start taking photos, the user clicks the “+” button in the pose library interface
and opens the preview window in which the photo preview and posture status
are displayed in real time. She can choose the input source of the posture data
from Kinect (human) or Mindstorms NXT [52] (robots) devices. While only
one Kinect device can be connected at a time and is automatically detected,
one or more Mindstorms NXT devices can be used by entering their Bluetooth
addresses. Photos are usually taken from the RGB stream of a Kinect device,
but a web camera can be used as an alternative source. While the preview
window is displayed, clicking the “Capture” button triggers the system to take
a photo and capture the corresponding posture data. Each captured dataset is
automatically named, e.g., “New pose (1),” and stored in the pose library. It
can be manually renamed but must be unique. Saying the word “capture” works
when the user wants to capture a human posture and cannot click the button
because standing in front of the Kinect device. When capturing a robot posture,
a torque is applied to each servo motor on a joint to fix its angle. When the user
tries to change its angle, however, the torque is set off so that she can move the
joint freely. Therefore, the user can set the robot posture by changing joint angles
individually. Additionally, she can load an existing posture by right-clicking its
photo in the library. This allows the user to easily create a new posture from the
existing ones. These interactions for capturing a robot’s posture are inspired by
the actuated physical puppet [151].

4.3.2 Coding with Photos

The programmer can write code in a programming language that is an extension
of Processing [4], with a built-in photo-based API whose methods take photos
as arguments. She can drag-and-drop photos from the pose library to the code
editor, directly into argument bodies of the methods. Usage examples of currently
supported API are shown in Figure 4.4. A human and robot are represented
by Human and Robot classes, whose instance handles communication with the
hardware devices. Note that the Human instance is capable of sensing but not
controlling posture while the Robot instance is capable of both.

4.3.3 Running Program

The programmer can compile and run the program by clicking the “Run” button
in the main window. After iterative cycles of development, a ZIP archive con-
sisting of source code, referenced photos, and posture data can be made so that
others can run the same application.

4.4 Implementation

Picode aims to enhance text-based programming rather than replace it with
something different. Therefore, it is reasonable to make use of existing imple-
mentations of IDEs. However, it is not straightforward to augment existing
implementations and achieve a fluid programming experience. In this section,

35

Compare Pose with specified error allowance [0-1].

Set current Pose.

Play series of pose changes by Action definition.

Figure 4.4: Usage examples of photo-based API.

we first provide the overview of the implementation including system architec-
ture and hardware configuration. Then, we describe how we implemented new
components and integrated them into an existing environment.

4.4.1 Overview

Picode was built on top of the Processing core components, including the compiler
and libraries. Processing is an open-source IDE, which was originally designed
for data visualization applications and media art. Its ease of use was welcomed
by novice programmers, and it is now popular for educational purposes. We aim
to maintain this ease of use; however, we redesigned the entire user interface to
make it match the workflow described in the previous section. Picode runs on
a Windows computer. A Microsoft Kinect device is connected to the computer
through a USB 2.0 port. One or more LEGO Mindstorms robots are connected to
the computer through either USB 2.0 ports or Bluetooth wireless connections. By
default, the Kinect device has a built-in color camera and is used for capturing
photos of both human and robots. Optionally, the user can connect another
camera to capture photos of the robots. It is useful when the user wants to fix
the angle of view of the Kinect camera. Otherwise, the user often needs to move
the Kinect device whenever he wants to switch subjects to be captured.

The main window of Picode is shown in Figure 4.2. It contains the following
components:

• The menu bar for various operations.

• The tool bar to control the execution of the program.

• The text-based editor with inline photos.

36

• The pose library showing a list of stored posture data, with features to edit
this list.

• The status bar showing the current status of the IDE.

The programmer may open the capture window to capture new postures by
clicking the button in the pose library. Both the pose library and the capture
window have two modes, one for listing and capturing human posture data and
one for robot posture data; however, both modes appear almost identical, and
the programmer can seamlessly switch between the two.

In addition to the user interface, we maintain many things that are compatible
with the original Processing IDE. Rather than replacing them with new ones, we
augmented them to enhance existing features or add new features. We adopt the
Processing programming language, which is based on Java but uses a simplified
syntax. We extend it include the capability to accept photos as arguments to
methods. We retain the existing set of standard libraries unchanged, which pro-
vide useful APIs for graphical applications, and add a new library that provides
an API for posture data processing, as described in Subsection 4.4.5. This is
used not only by the applications but also by the IDE itself. Supported features
include retrieving posture data, comparing these with data retrieved previously,
and commanding a robot to hold specific poses by providing a set of posture data.

Several small changes were made in the compilation and execution process of
the application. We modified the compilation process so that applications that
are developed on the Picode IDE are automatically linked to the new library.
We also modified the execution process so that the development environment
disconnects from a Kinect device, as well as with robots, when the program
starts, and reconnects to them when it shuts down.

4.4.2 Capture Window

When the programmer clicks the button with a camera icon and the text label
“Capture”, the capture window opens to allow all tasks related to taking photos
with the new posture data. There are two modes, each of which is dedicated
to retrieving human posture data using a Kinect device, and to retrieving robot
posture data using a USB or Bluetooth connection to the robot. The initial
mode is determined by which pose library is shown in the main window, and the
programmer can change this by switching to another pose library without closing
the capture window.

In the mode for capturing human posture data, the capture window uses a
Kinect device to obtain a photo and retrieve skeletal data. When the Kinect
device successfully retrieves three-dimensional positional data of all joints, the
capture window shows a skeleton over the video stream taken using the RGB
camera. Otherwise, it shows only video and does not allow the programmer to
take photos. In this way, the IDE ensures that every photo is associated with a
complete set of posture data. This restriction makes it possible to compare any
pair of photos without error. In addition to the three-dimensional positions of
the joints, two-dimensional positional data are also recorded so that the skeletal
information can be overlaid on the photo.

Directly below the video stream is a button with a camera icon and the text
label “Capture.” It appears identical to that in the main window for opening
the capture window; however, the button in the capture window triggers capture
of a photo plus posture data. When the user wants to take a photo to record
posture, it is typically not convenient to do this using a wired mouse. Even

37

with a wireless mouse, it may not be straightforward to form the desired pose
and click the mouse button simultaneously. To address this, we make use of the
voice recognition features provided by the Kinect SDK. The Kinect device has a
microphone array and can achieve stable recognition of simple words. We chose
to use the word “Capture.”

In addition to the video stream and capture buttons, the window has a slider
interface for changing the elevation angle of the Kinect device in the range +/-
27. While the programmer may freely move the tick mark on the slider, it may
take some time for the device to reach the specified angle. Frequent changes of
elevation angle may cause wear of the device and the Kinect SDK advises the
programmer to avoid this, and that the motor should not be controlled more
than once per second. In our implementation, a change in position of the tick
mark triggers an event listener, which checks if there is an ongoing task for motor
control. If there is no ongoing task, it immediately commands the motor to move
to the desired angle. If there is an ongoing task, it checks for a pending request for
motor control, and if a pending request is found, the desired position is updated.
Otherwise, a request for motor control is created and executed after one second.

In the mode used for capturing robot posture data, the capture window adopts
a similar layout as the mode for human posture, but with two small differences.
First, while the photo for human posture must be taken using the Kinect device,
the photo for robot posture may be taken with any camera (including that of
the Kinect device or a webcam). A radio button for switching the camera is
shown above the video stream. When the webcam is selected, the slider for
changing the camera angle is hidden. The current implementation requires the
webcam to be accessible via the DirectShow API of Windows, which is part of
Windows Platform SDK. Second, checkboxes to control how each joint should
behave are provided. When a checkbox is selected, a strong torque is applied to
the corresponding joint to maintain its current angle. Otherwise, weak torque is
applied and the joint angle is continuously monitored by the system. When there
is a significant change in joint angle, the system assumes this is the result of the
programmer’s operation, and the applied torque to zero so that the programmer
can easily move it to the desired angle. While torque is disabled, the system
continues to monitor the angle. When the angle becomes stable, the system
assumes that the programmer is satisfied with the current angle and begins to
apply torque again.

The capture window interface described in this subsection provides the pro-
grammer with a sense of what the system is currently watching. Information
presented in the interface is expected to be useful not only for the program-
mer, but also for the end-user of the resulting applications. The user may also
wish to obtain feedback on the current posture recognition status of the system.
For production-ready games and other applications, the programmer designs and
implements a user interface for such feedback, which is integrated into the ap-
plications. However, during the prototyping process, the programmer may often
take the role of a test user, and so wants a simple method of obtaining feedback
while the program is running. To aid with this, we provide an API to show the
same window within their application. The window hosted by the development
environment is automatically closed when the application is launched, so that the
two windows (one hosted by the IDE and the other by the application) cannot
be displayed simultaneously.

Human posture data and the corresponding photos are retrieved using the
same API provided for the programmer. We will describe the implementation of
this in Subsection 4.4.5.

38

4.4.3 Pose Library for Managing Posture Data

The pose library manages posture data and the corresponding photos. The library
has two modes, as does the capture window: one that shows a list of human
postures and one that shows a list of robot postures. They can be switched by
clicking the buttons labeled “Human” and “Robot”, which can be found at the
top of the library interface.

When the programmer obtains a new set of posture data or a photo using the
capture window, it is automatically added to the library for use later. They are
saved separately as a text file and a JPEG file in the same directory, with unique
names. Existing files are loaded during the launching process of the IDE. The
new posture is initially named with a unique number (e.g., New pose (1).txt and
New pose (1).jpg), but can be renamed later by the programmer (e.g., Hand up.txt
and Hand up.jpg). To do so, he double-clicks the entry in the pose library. The
programmer can also rename it from the menu shown by right-clicking the entry.
This menu provides operations including deleting the posture and opening a file
manager (i.e., Explorer on Windows or Finder on Mac OS X) to display the files.
In the mode for robot posture, it also shows a menu to apply the posture to the
robot. This is useful for checking the posture without launching the application.

The text file representing the posture data starts with its corresponding Pose
class name followed by class-specific data, which is typically a set of raw numerical
values. We could have combined the posture data and photo and saved them as
one binary file; however, we chose to use a human-readable file format. This
makes it easier to explain to the programmer and the user how Picode manages
the posture data and the corresponding photos. This is particularly beneficial for
educational purposes.

4.4.4 Editor with Inline Photos

The code editor was implemented using the Model-View architecture, in which the
model is the source code in string format and the view is its GUI representation.
Each photo has a string representation, which is a call to the static method
Pose.load(key), where key is a unique name of the corresponding posture data.

When the photo is dropped into the code editor, the view computes which
part of the abstract syntax tree is rendered at this location. If the corresponding
element of the abstract syntax tree is not a call to the Pose.load method, the
call to the method with the key representing the corresponding posture data
is inserted into the source code. Otherwise, when the photo is dropped onto
an existing photo, the existing string calling Pose.load with the existing key is
replaced with a new string referring to the new posture data. Each change in the
source code causes the language parser to build an abstract syntax tree from the
entire source code. The parser is generated using the ANTLR toolkit1 with the
grammar file of the Processing programming language. If there are no parsing
errors, the view is updated. It applies syntax highlighting and replaces every
call to the static Pose.load method with the corresponding photos. When the
corresponding photo or posture data are missing, it simply retains the string
representation with an error message shown in the status bar. Parser errors do
not affect the view, leaving existing syntax highlighting and photos unchanged.

Rendering of the editor, which is capable of syntax highlighting and inline
photos, is implemented using JTextPane class, which is provided as part of the
Swing API (the default GUI toolkit for modern Java applications). By default,

1ANTLR (ANother Tool for Language Recognition). http://www.antlr.org

39

JTextPane renders the document as plain text without any decoration, but can
be decorated using an API, as with HTML, where mark-up tags are used with
plain text. The only difference is that, while HTML allows insertion of images
without specifying their string representation, the JTextPane document model
always requires a textual representation of the images. This does not cause any
issues, however, since a unique textual representation (i.e., the Pose.load call) is
always available for each photo.

The source code is saved as a plain text file, which is compatible with the
Processing Sketch file with the file extension pde. There is a chance that, when
the programmer wants to show the source code with inline photos to others,
simply sending the plain text file may not work. We therefore provide two ways
to export the source code. One is to export the source code together with the
set of photos and corresponding posture data as a ZIP archive. In this way,
the programmer can pass what he/she has created to other programmers, who
can open it using the Picode IDE. This is achieved by exporting the source
code in HTML file format together with a directory containing the photos and
posture data. This can be opened using any modern web browser, and each
inline photo is linked to the plain text posture data. In this way, the programmer
can communicate to others (not only programmers but also end-users) how the
program was created.

4.4.5 API for Both IDE and Applications

Maintaining consistency between the IDE and the applications that are developed
using that IDE is important. For instance, files generated using the Picode IDE
should be correctly loaded by the applications developed using the IDE. This
sounds obvious; however, this is not always the case when the IDE is under active
development. When the file format must be changed and if the source code for
handling the file is not shared between the IDE and the library for applications,
the two pieces of code must be modified. To prevent the requirement for this
troublesome code modification, we share part of the codebase between the IDE
and applications. Each time the IDE is compiled, the shared codebase is compiled
and archived as a Java library (using a single jar file). It is then linked to from
both the IDE and applications. In this way, the files generated by the IDE can
be correctly loaded by the applications and vice versa.

Each posture dataset represented by a photo is instantiated as a Pose class
instance. A Pose class is currently extended using KinectHumanPose and
MindstormsNXTPose classes to support platform-dependent implementations,
and can be further extended to support more types of robots, such as humanoids,
or more ways to detect poses, such as using a motion capture system. The equal-
ity test between Pose instances always returns false if their types are different.
When their types are identical, the system calculates the Euclidian distance be-
tween the vectors consisting of the absolute difference between joint angles (e.g.,
the absolute difference in the elbow angle or knee angle) and normalizes this to
the largest possible range of joint angle so that the data are between 0 and 1.
The equality test returns true if the difference is within a specified threshold,
otherwise it returns false. If a threshold is not specified, the default values are
0.05 for human postures and 0.3 for robot postures.

To communicate with hardware devices, including the Kinect device, Mind-
storms NXT robot or webcam, the shared library creates one thread per device,
which accepts requests to control the device and dispatches them at a suitable
frequency, depending on the requirements of the device. This ensures that there

40

is no more than one request at any one time, and prevents fatal crashes of the
software or unstable behavior of the hardware. When there are duplicate re-
quests (for example, two different requests to change the angle of rotation of the
same motor), it executes only the most recent request. These details of hard-
ware communication occur in the background so that the mechanism is hidden
from the programmer, providing them with a thread-safe API. All threads can
be killed manually by calling a specific API and are automatically killed when
the main program exits. This implementation is based on a well-tested library
for prototyping robot applications called Phybots [71].

To retrieve posture data from the Kinect device, we use the Kinect for Win-
dows SDK. However, it only provides APIs for the C++ and C# programming
languages. To support Mac OS X, we implemented a standalone non-GUI pro-
gram (i.e., server) that runs on a Windows machine. This communicates with
clients including the IDE and applications using a simple protocol via TCP/IP
connections. A Windows machine is required to connect to the Kinect device;
however, the IDE and applications may be executed on computers running ei-
ther Windows or Mac OS X. The server should be running when the IDE is
launched unless the IDE and the server are on the same Windows machine, in
which case the IDE is capable of automatically launching the server as a child
process when required. When the client requests a snapshot of a video stream
(i.e., a photo) and a set of posture data, the server first sends photo data in JPEG
format and then sends a set of posture data if it has been captured by the Kinect
camera (if information on any joints is missing, it sends only the photo). The
client may also request a change in the elevation angle via the same connection.
A KinectHumanPose instance in the IDE or applications represents the pos-
ture data and photo that have been received from the server. The posture data
consist of information on 26 joints of the human body, each of which includes
three-dimensional positions relative to the camera in units of centimeters, and
two-dimensional position in the photo in pixel units. When the data is saved in
the text file, these data are represented using 26 lines, each of which contains 5
numerical values (3 for the three-dimensional position and the remaining 2 for
the two-dimensional position on the image).

To retrieve posture data from a Mindstorms NXT robot, we use the Mind-
storms NXT SDK 2 for wired USB connections on Windows or the BlueCove
Java library 3 for wireless Bluetooth connections on Windows or Mac OS. The
protocol for communication is shared between these two implementations, except
for the additional header required for Bluetooth communication, which provides
the data length in one command. There are several Bluetooth specifications, and
the one used by Mindstorms NXT is class —— v. 2.0. The USB connection
provides faster data transfer with less latency than the Bluetooth connection.
We find that the Bluetooth connection is typically sufficient for our applications;
however, we have experienced difficulties due to interference between multiple
Bluetooth connections that were established simultaneously in the same loca-
tion. If more than five connections are active simultaneously, Bluetooth may
become unstable. For this reason, in the workshop described in Section 4.5, USB
connections are required.

To control the posture of the Mindstorms NXT robot, the same connection
that was used to retrieve the posture data was used. We had planned to use

2LEGO.com Downloads - NXT Software Developer Kit. http://www.lego.com/en-us/

mindstorms/downloads/nxt/nxt-sdk/
3BlueCove JSR-82 project. http://bluecove.org/

41

the command provided by the default NXT firmware to control the movement of
the actuators; however, this was not sufficiently precise. Although it allows the
programmer to specify the desired position of the robot via the angle of rotation
of the actuator, in most cases, it undershoots or overshoots by more than 360
degrees. Therefore, it is difficult to reproduce the recorded posture using the
default method. To address this issue, we used the open-source MotorControl
program developed by RWTH Aachen University4. Mindstorms NXT allows the
programmer to use custom programs that runs on the default firmware, and
MotorControl is one such program, which aims to provide more precise control
over the actuators. The program functions as a server that runs on the NXT
brick and communicates with clients using its original protocol built on top of
the default protocol. A client program was implemented, which benefited from
the improved precision motor control, and was to +/- 1 in most cases.

4.5 User Study

In this section, we report two different user studies. First preliminary study was
conducted to check if Picode is comprehensible and welcomed by a programmer
and to investigate how Picode is used by a programmer and non-programmer.
Given the successful results from the first study, second study was conducted to
focus on non-programmers and to further investigate the use of photos.

4.5.1 Preliminary Study of Pair-Programming

We asked two test users to try our development environment together for about
three hours. The goal was to verify two hypotheses on the benefit of embed-
ding photos in the source code. The first hypothesis was that photos contain
rich contextual information other than mere posture information, which helps
the programmer recall the situation. The other was that the inline photos can
involve a non-programmer in the software development process since they can be
basically taken and understood by anybody. While one test user knew Processing
and was familiar with basic programming concepts, the other did not know about
programming except for basic HTML coding. We had them work together since
we expected our environment to establish a new relationship between program-
mers and non-programmers (users). First, we thoroughly explained the workflow
of our programming environment with the example code for an hour. Then, we
asked them to make their own program for the remaining two hours.

After two hours of free use, the participants could write a program that uses
gesture input to control robot posture. The robot basically tried to mimic the
user input, e.g., when the user waved her hand, the robot waved its hand back.
By putting the robot in front of the keyboard, the participants also had it operate
the PC with its mechanical hand, which reminded us of mechanical hijacking [34].

In this preliminary experiment, we confirmed that programmers performed
efficient posture information processing programming through Picode IDE. Fur-
thermore, it was shown that (1) even without prior knowledge of programming,
users were able to infer and comprehend the processing content of the surround-
ing source code from photos embedded in the code. We also found that (2) using
photos facilitates communication between programmers and non-programmers.

4MotorControl - RWTH - Mindstorms NXT Toolbox. http://www.mindstorms.

rwth-aachen.de/trac/wiki/MotorControl

42

4.5.2 Workshop for Non-programmers

We conducted a user study on beginners who had an interest in programming
but no prior knowledge by having them experience programming using Picode
and then investigating results through observation, by collecting their work, and
by performing surveys. The objectives of this study were to discover (1) how
photos assist with the inference and comprehension of processing content and (2)
what sort of opportunities facilitate communication. Two workshops were held
at Japan’s National Museum of Emerging Science and Innovation (“Miraikan”).
We gathered people interested in programming by posting a general outline of the
workshop on the museum club bulletin. In addition, we aimed to observe begin-
ners and communication in pairs by having groups of two or more, which included
a child, participate in the workshop. These groups consisted of an elementary-
school-aged child with a parent or two junior-high-school-aged or older children.
The contents of both workshops were the same, with the author and museum
staff acting as teachers while volunteer staff offered support to participants in
completing their tasks.

1. Overall explanation and ice-breaking (10 minutes)

2. Revising code for a flag-raising game (Kinect) (25 minutes)

3. Revising code for a flag-raising game (Kinect, robot) (35 minutes)

4. Implementing a ball-rolling game (50 minutes)

5. Ball-rolling game tournament (30 minutes)

6. Critique and survey, collecting work

In step 1, we showed a demonstration video of a robot playing a xylophone
with Picode to give participants a basic idea of posture information process-
ing. Additionally, to create an environment that facilitates communication in the
workshop space, we performed ice-breaking activities to reduce tension. Specif-
ically, they performed a simple game unrelated to the content of the workshop
(forming groups based on shared traits). This activity was designed to foster
more effective observation of the effects of Picode on communication between
participants.

In step 2, participants were asked to rewrite the source code for a flag-raising
game as shown in Figure 4.5. In this game, an image of a character raising and
lowering both hands is shown in a window on the computer screen. The user
takes up the same pose in front of the Kinect camera in order to score points.
The source code contains four “if statements” to check for different combinations
of raised and lowered hands. However, the source code given to the participants
was inserted with photos of people in random positions for each “if statement,”
and the game would not determine conditions correctly as intended. Participants
were asked to use Picode and take photos of the correct postures, revise the game
actions by changing the original photos, and make the program work correctly.
This allowed participants to become familiar with the basic operations of Picode,
and inputting posture information into the computer to be processed allowed
participants to see for themselves that they could develop a program using their
body.

In step 3, participants were asked to rewrite the source code for a new flag-
raising game in which an actual robot provided the instructions in place of a

43

Figure 4.5: Screenshot of the example application.

character on screen. Unlike the program in step 2, which only used photos dis-
playing human positions in the source code, this program also used photos of
the robot’s position. For the game to operate correctly, four different photos
should be used to display the four combinations of robot hand positions, but in
the source code given to participants, all four photos show the robot with both
hands lowered. Participants took new photos of the robot with flags in the right
hand, left hand, and with both hands raised, placed these photos into suitable
locations in the source code, and checked that the game could be played. This
allowed participants to see for themselves that by outputting position data from
the computer to the robot, they could develop programs in which output was not
only limited to images on the screen but also to the real world.

In step 4, using the information learned thus far, participants were asked to
edit source code that changed the robot position to reflect a specific pose taken
by a person to create a program in which the robot rolled a ball when the human
took a pose. By having participants combine the robot’s arms in free shapes, they
were able to make it roll the ball with their preferred mechanism. To prevent
participants from concentrating only on building the arms, awards were offered
in the following tournament. These include awards for the fastest rolling ball, the
most creative program, hard work, and one special judge’s award. After being
told about these awards, participants were asked to perform the task.

In step 5, we held a “ball rolling tournament” in which each group used the
programs written in step 4 to roll a ball twice, measuring and recording the
longer distance of the two attempts. Finally, awards were given out, and each

44

Fully satis�ed (5)
Somewhat satis�ed (4)

Neutral (3)
Somewhat dissatis�ed (2)

Not at all satis�ed (1)

18
6

0
2

1

Much (5)
Some (4)

A little (3)
Little (2)

Not at all (1)

12
11

1
1

0

Q1: How are you satis�ed with the workshop? Q2: How did you deepen your understanding of
programming through the workshop?

Figure 4.6: Quantitative results of the user study.

group was asked to turn in a completed survey and all data they generated. This
concluded the workshop. Collected data consisted of photos taken with Picode,
corresponding position information, and source code that included the photos.

Comments received on the surveys backed up the quantitative answers. These
included the following statements: “Being able to program with photos is amaz-
ing,” “It was easy to understand how processing worked with photos,” and “This
makes me imagine a future in which people can create a variety of programs
without any technical knowledge.” Participants gave high marks to the experi-
ence of programming with photos. As for difficulties in completing the workshop
assignment, participants pointed not to adding photos, but rather taking poses
correctly with the Kinect to include information for all joint angles.

Three groups (6 members in total) took part in the first workshop, and 10
groups (22 members in total) took part in the second. The low number of partic-
ipants in the first workshop, which was held on a weekday, allowed us to observe
participants closely, while the second workshop produced a wide variety of re-
sultant work. Four elementary school students in the workshop had experience
programming using the LEGO Mindstorms NXT environment, but no partici-
pants had any experience with text-based programming. All participants man-
aged to complete the assignment, and results in the ball-rolling tournament were
recorded for each team. In addition, some participants went beyond the original
assignment to change photos and made changes to the game rules by editing the
source code text. This is an example of how photos can form a starting point for
people unfamiliar with programming to guess the meaning of surrounding text
and make changes. Participants were also very happy to receive print outs of
the source code that included their photos. Seeing the photos in the source code
appeared to give participants a sense of ownership of their work.

Figure 4.6 shows valid responses received from participants in the post-activity
survey. These responses show that participants reacted positively to the workshop
overall, and that Picode functioned effectively as motivation to program. We
found that the male elementary student who answered that he was unsatisfied
with the first workshop had been paired with another boy he had never met, and
in the free comments he noted that he wanted to do the activity by himself. This
suggests that their group work did not go well. The female elementary school
student and two adult males who answered that they were somewhat unsatisfied
with the second workshop complained of problems with the software and devices.
Thus, we found that each of the negative responses involved technical limitations
unrelated to the photo-based programming.

45

4.6 Discussion

In this section, we discuss in detail the benefits and limitations of adding photos
that express posture information to the source code in light of the user study
results.

4.6.1 The Popularization of Source Code

Differences between individual persons and bodies are substantial in programming
that deals with posture information. For example, a program tuned for one’s own
body often does not work correctly for another user. By having participants in
this workshop take their own photos and use them to replace the existing photos,
users completed the work of customizing the program for themselves.

Picode allows users to easily change the behavior of a program by editing a
portion of the source code, even if the user does not fully understand the work-
ings of the program. With help of photos, we have realized heretofore unseen
casual programming. According to the participants, taking photos and rewriting
code gave them a sense of having conquered the program, controlling its behav-
ior for themselves. This allowed source code, something generally only open to
programmers, to be open to even those with no prior knowledge of programming.

In addition, for eager elementary students who wanted to go beyond changing
photos, the photos served as a starting point to ask workshop staffs about the
functions of surrounding textual code, which they were then able to change by
rewriting it. When doing so, thes tudents used photos as a clue to understand
the content of the text-based source code. For example, they could see that code
around photos of people taking up postures determined the posture of a person,
while code around photos of robots sent commands to the robot. In other words,
the photos visualized basic information about the data as to be readily accessible.
This could be useful for giving hints to beginners learning about programming.

This shows that embedding photos in text-based source code allows users
without prior knowledge of programming to make edits to the code, an action
that has always been restricted to programmers with knowledge of programming.
As Bret Victor’s essay [143] notes, source code should express execution results
directly (without the need to imagine based on specific knowledge). Source code
containing photos fulfills this objective, and can be seen as realizing the “popu-
larization” of code. When we compare source code with and without photos as
shown in Figure 4.7, it is obvious that the photos stand out in the text code,
helping the programmer briefly skim and understand its intention.

4.6.2 Environment Information Expressed in Photos

Posture information does not include information about the purpose of human
or robot postures. Humans may take up the same posture whether they are
pushing a cart on a slope or performing calisthenics. In the same way, a robot
takes similar postures when pushing small and large balls, with the only difference
being in how wide the hand opens. Because two pieces of posture information are
unlikely to be exactly the same, while numerical distinction is possible in theory,
this is actually very difficult for humans. Even if visualized using 3D CG, these
differences are likely to be almost invisible.

Photos also contain environmental information other than humans or robots.
We were able to obtain a number of photos that clearly showed the objectives
of a person’s activity in the workshop (Figure 4.8 left). Moreover, these photos

46

Figure 4.7: Pure text-based code and photo-integrated code.

Figure 4.8: Information included in photos. Left: environment information, Cen-
ter: indication, Right: emotion.

47

show unspoken prerequisites for the program to function. For example, robot
movement will differ sharply based on whether a robot is moving on flooring or
on carpet.

It’s extremely important to be able to quickly grasp the operating environment
and objectives of a program when viewing code written by another programmer,
or even one’s own code after a long period of time. In existing source code, which
is composed only of text, this information is carried in comments. Other parts
mainly fulfill the role of giving instructions to the computer. In contrast, photos
in the source code created with Picode fulfill both of these functions. In other
words, the photos serve to supplement human comprehension of the program’s
operations while also expressing posture information to the computer.

4.6.3 Indications Expressed in Photos

Posture information is a collection of angle information for multiple joints that
handles all of that information equally. However, when a programmer utilizes
posture information, there are often parts of that information to which he or
she wants to give particularly important meaning. In these cases, programmers
add textual comments such as “secondary joint.” Programmers can also add
annotations to points of focus in 3D CG posture visualizations.

Such indications can be carried out more simply by using photos. For example,
photos were taken in the workshop that pointed to specific movable parts of the
robot to indicate the area of focus (Figure 4.8 center).

On the other hand, indicating specific joints meant that only a portion of
the information expressed in the photo was useful for programming. Here, we
see limitations on photos that will be discussed further below. In other words,
posture information is defined as a type of structure in textual source code, and
as with the textual statement Pose.SecondJoint (in which SecondJoint is a
property of a Pose class), we should be able to indicate the specific joint in
question. However, taking photos that display only specific joints is difficult, and
it would be difficult to understand what such a photo was indicating.

4.6.4 Emotion Expressed in Photos

Photos have the power to express emotion by showing a single moment of activity
(Figure 4.8 right). This characteristic of photos has been important throughout
the long history of the medium, and represents an attribute not found in source
code. When the workshop began, the pose library used by the participants in-
cluded only photos of the author. But by the end of the workshop, it was filled
with photos showing the enjoyment of the participants and creative shots of the
robots. The pieces of generated source code were also extremely individual, with
photos showing a variety of clothing, poses, and expressions even without differ-
ences in the program logic other than the posture information.

Finding ways to increase motivation among students of programming is a
major problem for education in the field. Two main causes are given for lowered
motivation. First, programming is comprised mainly of the tedious task of facing
a display and typing. Second, because the source code that expresses instructions
to the computer places emphasis on functionality, it ends up being dull.

By adding photos, a media that can express emotions, to programming, Pi-
code offers a solution to this problem. First, taking photos with the camera adds a
step to the programming workflow in which users can stand up and move around.
In the user study, we observed that participants greatly enjoyed this activity. In

48

addition, the Picode source code becomes memorable to the users. Participants
were very happy to receive printouts of their code after the workshop ended.

4.6.5 Robot Shape Information Expressed in Photos

In the workshop, we repeatedly observed users obtaining new posture data by
rearranging the robot’s arms and taking a new photo. If shapes were different
when comparing the robot and photos, the participants could make the determi-
nation that the robot would not take the position they intended without actually
trying the instruction. If participants did not have photos and were using only
strings of numbers or names, they would have to try to guess at what kind of
robot form was recorded in posture information, which would be difficult.

Existing methods have attempted to express posture information by visual-
izing robot shape information using 3D CG. However, methods which manually
indicate shape information are not seen to be suitable for prototyping by re-
peatedly rearranging the robot shape as in this workshop. This would require
manually updating the 3D CG model information in the computer whenever the
actual shape of the robot was rearranged, which would require a great deal of
effort.

4.6.6 Intrinsic Limitations of Photos

While photos express a variety of information as shown above, they also contain
intrinsic limitations.

First, photos are not suitable for precisely distinguishing posture information.
For example, one participant took multiple photos of the robot making only
major changes, creating a number of photos that all looked largely similar. It is
difficult to precisely determine what shape the robot was in when the photo was
taken, which invites confusion. Another participant took multiple photos without
changing the position of the camera and robot and had difficulty adjusting the
position of a place covered up in the foreground. As in this case, covering up parts
can lead to large discrepancies in the posture information, even though the photos
look almost entirely the same. One solution would be to string together multiple
photos from different viewpoints for one piece of posture information. This would
ensure that all parts of the posture are visible from some viewpoint and eliminate
the problem of covering. Also, by preparing photos that focused on parts as well
as the overall view, this would make it easier to determine small variations. When
taking photos of human postures using the Kinect camera, the camera is unable
to correctly obtain posture information if the subject is obscured. Because Picode
does not allow a photo to be taken if posture information cannot be obtained,
there were no problems related to human postures being obscured.

Because photos can depict a situation and show a variety of objects, the focus
of the information or what exactly the situation is showing can be unclear. For
example, if two robots are shown in a photo that is meant to express posture
for only one robot, there is no way to determine what posture data is being
expressed. When comparing posture information in a photo with two human
subjects, there is no way to determine whether to take the logical sum (there is
at least one person for each pose) or the logical product (exactly one person for
each pose) of the posture information. In cases in which multiple interpretations
are possible, it is necessary to clearly select one after the photo has been taken
and highlight it to make it stand out as the object of the photo.

The current implementation for Picode expresses posture information for an

49

entire body in one photo and does not support expressing angle data for a specific
joint or group of joints. For example, we can imagine a use case in which one
wishes to ignore everything other than the left hand. In this case, we could
suppose a process in which we add highlighting to a specific area of a photo in
order to express the specific joint or group of joints. Because photos taken using
the Kinect give the positions of all joints in the image, it could be possible to
perform interactions such as painting a mask layer over joint areas that we wish
to ignore in the comparison. Users generally face the camera head on in photos
taken with the Kinect, and in many cases selecting joints would be simple, but
in difficult cases such as a covered robot, it would be necessary to supplement
the existing method with techniques such as rendering the joint information in
3D CG and rotating it.

Moreover, a photo captures a single moment and can only express that in-
stant. The current implementation tolerates a certain degree of error in posture
information. For example, in the flag-raising game, even if the program cannot
accurately detect the matching posture, it will use a similar posture to continue
the game. However, this method cannot be flexibly applied to cases in which
we wish to express a range of situations. Using the method mentioned above in
which we would highlight a specific area, it would be possible to tolerate a large
amount of error in a specific set of joints. However, if we wished to express a range
of conditions, such as the full range of the left arm raised to lowered, it would
be difficult to convey that intention by simply highlighting the arm in the photo.
In this case, we could use multiple photos or a movie to express a range. For
example, a set of photos showing the right arm raised high and raised a bit lower
could be used to express a general state of “the right arm being raised (regard-
less of height)”. Implementing this in the current version of Picode would require
writing two sets of conditional statements and using trial and error to determine
tolerable error values for each. This could be solved by using instantiation pro-
gramming that learns multiple pieces of posture information. For example, we
could select multiple photos from the pose library and define a “Pose set,” and
then generate a classifier using photos that include the pose as positive examples,
and other photos as negative examples.

4.6.7 Utilizing Media Other Than Photos

We plan on adding videos as well as photo to source code. Photos show a single
moment containing posture information. Thus, when recognizing human gestures
or commanding the robot to perform a movement that takes time, we treat a
number of photos of the movement as key frames and use these in writing the
program. However, it would be preferable to use video rather than photos as
a base for creating a gesture recognition engine or replaying robot movements.
Videos include replay speed parameters. By adjusting the replay speed of a
video when using it to operate a robot, we could alter the speed of the robot’s
movement.

Moreover, methods to add multimedia could be applicable not only in devel-
oping programs that interact with the real world, such as posture information
processing, but also in the development of a wide range of desktop applications
such as game engines and presentation composition software. Sikuli, who added
screen captures of the desktop into source code, is a pioneering example of this
type of work.

This study found that photos are suitable for expressing posture information,
but we must consider whether or not this method would be suitable for other

50

types of interaction with the real world. For example, in recent years displays that
recreate texture and devices that output scents have been developed. Source code
written only with text would be incapable of arousing the sensations presented
by programs for devices that use all five senses. Adding photos that show objects
associated with those sensations could allow us to express this information. For
example, photos of an object with rough surface could be used to express rough
haptic information, and photos of flowers could be used to express the scent of
a flower. In addition, if a developer is using a computer with a textured display,
texture data attached to a photo that activates when the developer touches the
photo could be used to intuitively reinforce the sensation linked with the photo
and the data it represents. However, it may not always be possible to link photos
and sensation information. We were able to take photos that corresponded with
posture information, but some sensation data may not be suitable for photos.
For example, in addition to musical tones and mechanically produced textures
and scents, there is also pain generated through electrical stimulation. In these
cases, we may need to present these using interfaces that replay sensation data
without relying on visual representation. For example, an interface could include
buttons that replay music when clicked, create a texture when touched, or release
a scent. There is also a phenomenon known as synesthesia in which one sense
recalls another. For example, some people see colors when they hear sounds.
Specific sense information that recalls shapes or colors could be displayed to
create intuitive source code.

4.7 Summary of Contributions

In this chapter, we introduced a method of integrating photos into a text-based
IDE. The aim was to assign graphical representations to constant data; i.e., the
term c in the model out = f(in, c), introduced in Chapter 3. Each photo is bound
to constant data, which refers to a specific situation in the real world.

The experimental implementation; i.e., the Picode IDE, provided a user in-
terface to capture photos and posture data simultaneously, and creates a pair of
the photo and posture data. The photo is stored in the pose library and can be
inserted into the editor via a drag-and-drop interface. We find that inline photos
provide rich contextual information that could not be included in the posture
data. The contextual information can remind the programmer of the situation
and facilitate their understanding of the meaning of the surrounding text-based
source code. We also found several intrinsic limitations of photos, through which
we have identified directions for future work. The use of videos will be discussed
in Chapter 5, and annotations on photos will be discussed in Chapter 6.

51

Chapter 5

Using Videos to Understand Dynamic

Behavior

When the program is simple enough for the programmer to simulate its execution
steps in his mind, he might be able to debug the source code without the real ex-
ecution. In such case, augmenting the code editor with graphical representations
as examined in Chapter 4 should provide sufficient support for the program-
mer. However, when the programmer writes code for processing raw values of
real-world I/O such as images from a camera, the simulation is almost impossi-
ble. The increasing popularity of interactive camera-based programs highlights
the inadequacies of conventional IDEs in developing these programs given their
distinctive attributes and workflows.

Previous approach tried tight integration of the debugger and text-based ed-
itor. For instance, ZStep [94] records all stack traces and provides a navigation
interface to go back and forth the trace to see which line of code was executed
at that point. It is also capable of visualizing simple data structures such as
trees and lists. Whyline for Java [80] also records the stack traces as well as
window output and provides “Why did (not) this happen?” interface which nav-
igates to the cause of the phenomena, such as the color of a pixel and weight of
a line stroke. These integrations work well for discrete events with simple data
structures, but are not designed to handle continuous real-world I/O data.

In this chapter, we discuss the use of videos as the graphical representations of
the dynamic changes of situation in the real world. Compared to photos discussed
in Chapter 4, videos have additional dimension in time, enabling programmers
to visually and continuously monitor what is happening in the programs. In
particular, we are interested in interactive camera-based programs which have
the frame-based pipeline that handle real-world I/O continuously. First, in Sec-
tion 5.1, we introduce the background and highlight the distinctive challenges
with explanation of the development process of interactive camera-based pro-
grams. In Section 5.4, DejaVu IDE is provided as an experimental implementa-
tion which allows the programmer to easily record, review, and reprocess temporal
data. It enables to iteratively improve the processing of non-reproducible camera
input. We showcase its important features by presenting a concrete use case. In
Section 5.5, we also report its implementation. In Section 5.6, we introduce our
preliminary user trial with three experienced programmers of interactive camera-
based programs, in which DejaVu was positively received. In Section 5.7, we
provide some insights for future work according to the user study.

52

5.1 Background

Interactive systems beyond desktop computers and mouse/keyboard input con-
tinue to increase in popularity, where users can use their hand, body, or pas-
sive physical objects to interact with computing devices. At the heart of many
these interactive systems are cameras used to capture input from the real world
that is then interpreted in real-time by computer vision algorithms. For exam-
ple, cameras are used to recognize hand gestures on tabletops [149] and in the
air [135], detect human faces [146], track tangible implements [25], as well as
monitor crowd activity [105]. Moreover, developing these computer-vision-based
interactions has become easier through commercial products such as Microsoft
Kinect (which performs body skeleton tracking through a depth camera), as well
as software development kits (SDK) of well encapsulated algorithms.

However, despite the increasing accessibility of camera hardware and com-
puter vision algorithms, today’s development environments do not cater to the
distinctive challenges and workflows of developing interactive camera-based pro-
grams. For example, the programmer has to monitor data in the debugger as
discrete textual values rather than continuous visual representations that more
accurately reflect interactive computer vision data. Such disconnects illustrate
the gulf of execution [121] as a gap between the programmer’s goal and the avail-
able means to execute it. As a result, programmers can still find it difficult to
develop such programs even if they possess good computer vision knowledge.

To close this gap, we present DejaVu that enhances conventional integrated
development environments (IDE) to better support the development of camera-
based interactive programs. This work differs from lower-level computer vision
algorithm libraries such as OpenCV [14], or rapid prototyping tools for camera-
based applications such as Crayons [41] and EyePatch [106] that are aimed
at making certain computer vision techniques accessible to non-programmers
through a special user interface. Instead our high-level rationale is similar to
Gestalt [125], a general-purpose development environment for machine-learning
applications, in that we focus on facilitating a general workflow for current de-
velopers of interactive camera-based programs without limiting them to certain
algorithms or dramatically changing their programming habits. DejaVu aspires
to minimize workflow overhead and draw computer vision programmers closer to
the essence of their program. More specifically, DejaVu includes two interlinked
main components (Figure 5.3): a canvas to visually and continuously monitor
the inputs, intermediate results, and outputs of computer vision processing; and
a timeline to record, review, and reprocess the above program data in a temporal
fashion.

5.2 Interactive Camera-based Programs

To help introduce DejaVu, we first explain how today’s IDEs fall short in sup-
porting the development of interactive camera-based programs. This knowledge
was obtained both through our own experience (two authors were deeply experi-
enced in developing such programs) and informal interviews with three similarly
experienced developers. We first introduce a simple example application named
KinectDress to familiarize readers with interactive camera-based program basics,
and then elaborate on challenges in their development using today’s environ-
ments.

53

(b)

Dt

(c) (d)

(a)

Figure 5.1: KinectDress interface and interactions.

5.2.1 A Representative Example

KinectDress (Figure 5.1a) is a simple virtual dressing room application built with
the Microsoft Kinect camera, which provides one color (RGB) image stream and
one depth image stream (of which pixel values correspond to distances from the
camera). The Microsoft Kinect SDK further uses these inputs to compute a
body skeleton of the user in front of the camera, consisting of 3D coordinates of
20 body joints. With KinectDress, users can see themselves dressed in various
virtual suits on the computer screen. To start interacting with KinectDress, the
user simply walks within a certain distance in front of the camera (Figure 5.1b).
The user’s image is dynamically extracted from the surrounding environment and
displayed on a virtual background, and overlaid with a suit that follows the user’s
position as they walk around (Figure 5.1c). The user can also make a swiping
hand gesture to cycle through a list of available suits (Figure 5.1d) to wear.

We carefully designed KinectDress to represent key patterns of general camera-
based interactive programs in several aspects:

Interactions
KinectDress includes both the case where the system continuously changes
its state in response to the user’s current state (e.g., the suit follows the
user’s body) and the case where the user makes an action to be recognized
by the system in order to trigger a command (e.g., a swiping gesture to
change their suit). Most camera-based interactions can be categorized into
these two main categories.

Program Architecture
KinectDress is typical of most real-time camera-based systems in that the
camera is the sole or primary source of input, i.e., the camera “drives” the
program. This requires the program to capture and process image frames
continuously, hence dictates a frame-based loop architecture. Figure 5.2
illustrates this classic architecture used in KinectDress. Each iteration of
the loop starts with the camera capturing the next frame, followed by the

54

Yes

No

No

Yes

Distance between
user and camera

< threshold Dt

Segment user’s image based on depth data

Based on the most recent n frames,
recognize whether there is a swipe gesture?

Switch to next virtual suit in the list

Update virtual suit’s position and size

Camera captures frame

Render application graphics

Process frame data

Figure 5.2: KinectDress program flow.

pipeline that processes the frame and updates the system’s logical and
graphical state accordingly.

Processing Paradigms and Components
KinectDress includes both stateless processing that depends only on the
current frame (e.g., updating the suit position) and stateful processing
that accumulates data over a number of recent frames (e.g., recognizing
swipe gestures); both are common in interactive computer vision programs.
KinectDress also demonstrates several of the most common processing com-
ponents in camera-based interaction such as image segmentation, geomet-
ric transformation, and heuristic gesture recognition (Figure 5.2). Finally,
KinectDress illustrates how color, depth, and skeleton data are processed
in combination as common in Kinect programming.

5.2.2 Attributes and Challenges

Several fundamental attributes of interactive camera-based programs pose chal-
lenges for development with today’s environments:

First, computer vision processing is inherently visual: not only is the raw cam-
era input a stream of image frames (or several streams in the case of stereo or
depth cameras), but many of the intermediate processing results are also images
(e.g., segmented user image in KinectDress), or have a close geometric correspon-
dence with the input images (e.g., body skeletons) and so are best understood
visually. In this respect, today’s development environments disregard the visual
nature of this data and display their textual value, falling short of the program-
mer’s needs. To ease development, computer vision programmers often write
temporary code to visualize some of this data themselves in the application user
interface, which is both cumbersome and not scalable.

Second, the inputs of most camera-based interactive applications are contin-
uous: the program constantly receives and processes real-time input from the
camera, updating intermediate results and final outcomes on a frame-by-frame

55

basis. Such processing continues even when no user actions are occurring, e.g.,
KinectDress constantly monitors whether there is a user within a certain range.
In addition, many user actions, especially gestures, do not happen at a single
point in time but rather span multiple contiguous frames. However, today’s de-
velopment environments are usually designed to trace discrete user input events,
and programmers cannot directly inspect the temporally continuous dataflow of
camera-based programs. For example, debugging using breakpoints can be prob-
lematic since they inevitably interrupt the temporal continuity of live input.

Third, camera-based input is mostly non-reproducible: input is formed by
dynamically observing the real world and often human behavior. Compared
to mouse-and-keyboard programs where the programmer can easily reproduce
a certain input sequence (even through an automated script) to test them, the
dependency on dynamic real world input in camera-based interactions means
that it is not only cumbersome but also often impossible to reproduce certain
input. For example, a human user can never perform the same action, such as
KinectDress’s swiping gesture, twice precisely the same way. Other factors such as
lighting, environment setup, and even noise in the camera sensor, may also result
in different inputs and cause different outcomes. Such non-reproducibility poses
a serious obstacle to testing and tuning interactive computer vision programs in
today’s IDEs.

Finally, developing computer vision programs is often an iterative process.
The stochastic nature of camera input from the real world along with the some-
what obscure nature of many computer vision algorithms means that predicting
the exact outcome of a certain computer vision algorithm is often difficult. Fur-
thermore, given the complexity of real world input, the correctness or quality
of a computer vision program’s output is often up to the programmer’s subjec-
tive judgment (e.g., whether a suit’s position and size matches the user’s body
in KinectDress). For these reasons, computer vision programmers more often
“tune” an algorithm rather than “debug” it. As a result, developing computer
vision programs often involves a great deal of trial-and-error with real world input,
such as revising the algorithm, adjusting its parameters (e.g., distance threshold
Dt in figrefdejavu-workflow), or comparing multiple variations of the algorithm
to find configurations that yield satisfactory behavior. In some cases, this process
needs to be repeated when the system is used in a new environment or for a new
user group. The need to repeatedly acquire dynamic real world input makes such
iterations and comparisons cumbersome and unreliable.

5.3 Related Work

5.3.1 Tools for Building Computer Vision Applications

A great deal of previous work endeavor to make employing computer vision for
real world applications easier. Several systems aim to make design and proto-
typing computer vision techniques accessible to non-programmers. For exam-
ple, Crayons [41] is a design tool that allows users to train image segmentation
classifiers using a coloring metaphor, which are then used to prototype interac-
tions. Similarly, Eyepatch [106] supports prototyping camera-based interactions
through examples where users train various classifiers and then connect their live
outputs to other prototyping tools such as Flash. Concerning more specific ap-
plication domains, the Papier-Mache toolkit [74] supports building tangible user
interfaces through computer vision, barcodes, and electronic tags; and users of
CAMBIENCE [36] can map motions detected by the camera into various sound

56

effects. In contrast to this category of work, DejaVu targets typical program-
mers and general-purpose interactive camera-based programs by supporting a
canonical development workflow rather than individual computer vision compo-
nents, and preserves the full power and flexibility of standalone computer vision
programs.

On the other hand, several software libraries of lower-level computer vision
algorithms, such as OpenCV [14] and XVision [55], can readily be leveraged by
programmers in their programs. DejaVu fulfills a complementary need, and may
be used together with these libraries seamlessly.

5.3.2 Prototyping and Development Tools for Other Domains

In addition to computer vision, rapid prototyping tools also exist for other do-
mains, such as sensor-based interactions that are especially relevant to our work.
In specific, d.tools [61] integrates the design, test, and analysis of physical proto-
types including sensors, while also providing a visual programming environment
for authoring control flow. Exemplar [59] supports the authoring of sensor-based
interactions by demonstration. Both d.tools and Exemplar include functional-
ity to capture and visualize temporal sensor data and interface states, which is
somewhat similar to the DejaVu timeline. Further, RePlay [120] and FauxPut
[27] both support the recording and replaying of sensor input traces for the pur-
pose of testing prototypes. To support mainstream development instead, DejaVu
seamlessly integrates these concepts into a general-purpose development environ-
ment, extends them to flexibly support arbitrary data variables in the program,
and further enables timeline refresh based on iterative program revisions.

Also worth noting is Gestalt [125], a general-purpose development environ-
ment that supports the development of machine learning applications. Gestalt
shares our design rationale by supporting a general workflow (implementation,
analysis, and easy transitions between the two) for machine learning rather than
focusing on individual algorithms. Further, the connection between DejaVu and
Gestalt could go beyond this philosophical similarity. As apparent in the various
computer vision prototyping tools [41, 106] mentioned above, machine learning
is an important element of many computer vision algorithms. DejaVu focuses
on the distinctive challenges of interactive computer vision; however, future work
could consider how aspects of both systems would be combined to support a more
comprehensive development process.

5.3.3 General Programming and Debugging Support

DejaVu is also related to general programming and debugging research. De-
jaVu can record, review, and reprocess input, intermediate results, and program
output, which resonates with a long thread of research on temporal debugging
where programmers can examine the program state at various points of time in
the past. Initially explored in EXDAMS [7], its first graphical example appears
in PROVIDE [112] and more recent work includes TOD [128] and URDB [144].
Most relevant to our work is liblog [46], a replay debugging tool for distributed
applications that share some of the non-deterministic nature of camera-based
applications. These systems focus on tracing and reverse-stepping of individual
discrete statements, and do not accommodate or exploit the intrinsic frame-based
processing pipeline in interactive camera-based programs as DejaVu does.

Another key capability of DejaVu is to continuously monitor the program data
in a visual fashion. The GNU Data Display Debugger (DDD) [152] allows data

57

structures to be visualized as graphs, while Microsoft Visual Studio [111] allows
programmers to create custom visualizers of data types (e.g., images) that can be
viewed in the debugger. However, these visualizations are built into conventional
discrete-step debugging environments and are not updated continuously during
program execution.

DejaVu’s ability to revise the program and reprocess the input may also re-
mind of research on live programming such as SuperGlue [107] and Subtext [38],
where the program is continuously and immediately responsive to any edits in the
code. Although DejaVu does not yet provide such a live programming experience,
we see this as a promising future direction to further facilitate the iterative devel-
opment of camera-based programs. Motivated by a similar need, Juxtapose [63]
provides an alternative approach that allows the simultaneous testing of multiple
program variations, potentially with the same input. Compared to Juxtapose,
DejaVu is more suited to the iterative development and testing process where
developers incrementally extend and improve their code over time.

5.4 DejaVu IDE

DejaVu enhances an IDE to reflect the visual and temporally continuous nature
of interactive camera-based programs, and to accommodate non-reproducible real
world input as well as an iterative development processes. DejaVu is prototyped
as an extension to SharpDevelop [5], which is a general-purpose open-source IDE
for Microsoft .NET development. DejaVu preserves the full flexibility of the
development platforms and patterns developers currently use to write interactive
camera-based programs. The only assumption made is that the program follows
the previously mentioned canonical frame-based loop architecture where all input
and output are synchronized to frames - we do not readily support multi-threaded
asynchronous programs, which are nonetheless highly uncommon in real-time
camera-based interactions. Without loss of generality, the prototype currently
interfaces with a Kinect camera (which may also be used as a regular RGB
camera), while extending support for other camera types is straightforward. The
DejaVu interface (Figure 5.3) consists of two tightly interlinked components: the
canvas and the timeline.

5.4.1 DejaVu Canvas

Reflecting the continuous and visual nature of camera input and processing, the
canvas (Figure 5.4) allows the programmer to continuously monitor any number
of variables during run-time in an arbitrary layout. For data types that are
inherently visual (most notably image and body skeleton), the variable values
are automatically shown in their appropriate visual form. To add a variable to
monitor, the programmer simply selects it in the code editor and drags it onto the
canvas. A display box representing the variable value then appears as labeled by
the variable name, which can be freely repositioned through dragging, or deleted
when no longer needed. In addition to variables, available types of input from the
camera (in the case of Kinect: color, depth, and skeleton) as well as the rendered
application window can be inserted into the canvas via a checkbox. The above
actions together allow the programmer to monitor any input, intermediate result,
or output of the program.

The canvas always reflects variable values at the current frame of interest
(FOI). When the program is running with live input from the camera, this is
simply the latest frame that has just been captured and processed. Unlike con-

58

Timeline

Code Editor Canvas

Figure 5.3: DejaVu Interface.

Figure 5.4: DejaVu Canvas.

59

CanvasCode Editor

Figure 5.5: Variable values in the canvas depend on their source positions in the
code editor.

ventional debug watch tables in which the variable values are only updated when
the program reaches a break, the canvas is constantly updated at every new frame
so the values can be continuously monitored in real time. When the program is
not running with live input, the FOI is dependent on the cursor position in the
timeline as explained in the next section. In the case that a variable in the can-
vas has an undefined value in the FOI (e.g., the variable is declared within a
conditional branch that is not reached), its display is blank.

The canvas is updated at the granularity of a frame to reflect the frame-
based nature of interactive computer vision processing. However, there may be
cases where a variable is assigned to values multiple times during the processing
of a single frame, which often happens when the programmer applies an image
processing filter (e.g., Gaussian blur filter) or transformation (e.g., transforming
between color spaces) to an image in place, i.e., the result is assigned to the
same variable that represents the source image. The canvas maintains a record
of not only a variable’s name but the source position in the code editor where
it was dragged from, and inspects the variable’s value just after it is evaluated
at that position. In doing so, the programmer can monitor a variable’s value
at a specific stage in the processing pipeline, or even simultaneously monitor its
values at different stages within the same frame by adding the variable to the
canvas several times from different positions (Figure 5.5).

Along with displaying variables, the canvas also allows the programmer to
freely write or draw on it using a stylus or a mouse to further aid in the thought
process of handling visual data. In addition to the obvious use for annotating
variables, freehand drawing enables other powerful use cases: by combining static
sketches such as algorithm flowcharts with data displays, the programmer can
turn the canvas into a “dynamic sketchbook” where sketches come to life with
dynamic data. The programmer can then inspect the program dataflow and
pipeline on a higher semantic level, providing a more vivid way of conceptualizing
and iterating on algorithms. On the other hand, in contrast to visual dataflow
authoring tools such as Max/MSP [3], this usage remains lightweight and flexible,
and does not dictate literal correspondence between the sketch and program.
Alternatively, the programmer may make a coarse sketch of their application
UI on the canvas and populate it with data displays to use it as a low-fidelity
interactive prototype in lieu of the actual application user interface, which is
reminiscent of research on sketch-based prototyping [95].

60

Figure 5.6: DejaVu Timeline.

5.4.2 DejaVu Timeline

The timeline (Figure 5.6) presents program data recorded or recalculated from
historical program sessions. A list of all available program sessions is shown to
the right of the timeline as horizontal bars, with their visual length proportional
to their temporal duration. Program data in the currently selected session is
visualized in the timeline in a style similar to that found in common video editing
software such as Windows Movie Maker, where a cursor indicates the current FOI
in the timeline. The timeline may consist of multiple data streams (rows), each
corresponding to a variable, input, or output that is displayed on the canvas.
Streams of visual data are represented as strips of frame thumbnails along the
timeline, while a stream of numerical or Boolean data is visualized as a time-
graph.

The programmer may either review past sessions, or start a live session by
running the program with live camera input. DejaVu employs a unified notion
of “playing” the session for both cases. To start a live session, the programmer
selects the “Live” icon at the bottom of the session list, and clicks the “Play”
button. All variables shown on the canvas, along with all available types of live
camera input and the rendered application window (regardless of whether they are
being monitored on the canvas) are recorded and time-stamped as the program
runs. The timeline is populated in the meantime. To stop program execution,
the programmer clicks the “Stop” button, and the live session is finished and
added to the list of past sessions. Note that the programmer does not need to
explicitly trigger program data recording, which happens automatically whenever
the program is running live so there is never a risk of missing valuable data or
moments.

To review a past session, the programmer selects it from the session list to
show it in the timeline. They can then either freely navigate the cursor to an
arbitrary frame by clicking on it, or replay the session continuously from the
cursor position using the “Play” button. Playing by default happens at the
same speed as the original live program, i.e., “real-time”, but can also be sped
up or slowed down according to the programmer’s needs using a slider. When
the current session finishes playing, the next session in the list is automatically
selected and starts playing. In any case, the canvas always updates and displays
the recorded data in the current FOI. When replaying, the recorded application
window output is also shown in a separate window, emulating the live program
execution experience. An existing session may be duplicated, split into two at any
given point, repositioned in the list, or deleted to allow trimming and reorganizing

61

the sessions.
The ability to visually review both past sessions and recent live input in the

timeline with all relevant program data addresses the non-reproducibility chal-
lenge of interactive camera-based input, and eases the identification and analysis
of noteworthy events. The seamless transition between live input and reviewing
also allows for the fast recognition and examination of events. When the program-
mer notices some anomaly while testing with live input, they can immediately
switch to reviewing the session to deeply analyze it.

The power of the Timeline lies beyond passive review, and in the ability
to revise the program and refresh program data by reprocessing recorded input
streams, which naturally serves the iterative development process of interactive
camera-based programs. After revising their program, the programmer clicks the
“Refresh” button so the program is re-executed in the background to recalculate
the monitored variable values for all existing sessions in sequence. Sessions and
frames are colored green when they are refreshed and ready for reviewing; those
yet to be refreshed are colored gray. The refresh functionality allows the pro-
grammer to reliably examine the effect of their program revision by comparing
to previous outcomes on the exact same input. Finally, the programmer can add
variables to the canvas which have not been recorded previously; the sessions will
be refreshed to include the new data streams in their timelines.

5.4.3 Example Use Case

We now use the previously described KinectDress application to concretely illus-
trate how DejaVu can be used by programmers in their workflow.

The programmer’s first challenge is to fine tune the distance threshold Dt

that determines how close the user should be in front of the camera to trigger
the interaction (the program starts displaying the virtual stage to reflect this).
Today’s programmers usually need to go back and forth several times between
adjusting the parameter on the computer, and standing up and walking towards
the camera to test the effect until finally satisfied - a very cumbersome and tiring
process. With DejaVu (Figure 5.7), the programmer can add the userDistance
variable (calculated as the average depth of all body skeleton joints) to the canvas,
and monitor its value on the computer screen as they walk from afar towards the
camera (only once). When they reach a comfortable distance, they can read the
current userDistance value on the screen (displayed in a big font for readability
from afar), and use this value as a hint for setting the threshold.

Alternatively, the programmer can raise a hand to indicate that they are at a
comfortable distance, which is easy to visually identify in the color input stream.
Later they can iteratively adjust the threshold in the program code and refresh
program data, so that the starting moment of the virtual stage (as seen in the
application window stream) aligns with the indication action (as seen in the color
input stream) in the timeline.

The programmer next needs to extract the user’s image from the color input.
This segmentation algorithm involves first finding the farthest point among the
skeleton joints whose depth value is then used to threshold the depth input image.
The resulting binary mask is applied to the color input to segment the user
from the surrounding environment. The programmer can use freehand sketch
together with data displays on the canvas to help conceptualize this slightly
complex pipeline (Figure 5.4). Further, to remove some excessive pixels in the
binary mask, the programmer may try applying an erosion filter to it. The ability
to monitor the same variable’s values at different code positions then allows

62

userDistance

Window output

Color input

Figure 5.7: Tuning the distance threshold.

both the original mask and the eroded mask to be monitored and compared
simultaneously without confusion.

Next, to overlay the suit on the user’s image so that it accurately tracks
the user’s body in position and size, the programmer can fine tune the geometric
transformation parameters for the suit picture using both live and recorded input,
similarly to how they adjusted the distance threshold in the first step.

Finally, the programmer attempts the gesture recognition algorithm for swip-
ing, which requires observing the user’s skeleton over a number of frames to
identify the movement. Two simple heuristic algorithms come to the program-
mer’s mind, one based on the change of the hand’s horizontal position, the other
on the change of the elbow joint angle. Being unsure of which option will work
better, the programmer implements both to compare their performance on real
world input. Figure 5.3 illustrates how they use the canvas to monitor the skele-
ton input, hand position, and elbow angle, as well as the recognition results of
both algorithms as Boolean variables. Accounting for variability in real world
input, they perform the gesture many times. Once done, they immediately have
a visual overview in the timeline of how well each algorithm performs compara-
tively. They can easily identify cases where either or both fail by skimming the
color input and recognition result streams, and then diagnose the cause by ex-
amining the corresponding temporal trends in the variables that the algorithms
are based on, i.e., hand position or elbow angle. They can also later use the basic
session editing functions to clean and trim these sessions to focus on the most
relevant gesture samples.

Moreover, to accommodate individual differences between users, the program-
mer can ask others to trial use the program and collect gesture samples for further
analysis and improvement of the algorithms. Such batch (re)processing and vi-
sualization of multiple recorded sessions are seamlessly integrated in the DejaVu
workflow.

63

5.5 Implementation

We aim to provide an enhanced programming experience by adding two compo-
nents to existing text-based IDE. Compared with Picode discussed in Chapter 4,
DejaVu benefits more from an existing codebase for user interface components,
including the project explorer and text-based editor. However, to achieve smooth
integration of these two new components with the existing components, the ex-
isting codebase must be modified. In this section, we describe how we changed
the existing components and implemented the new components.

5.5.1 Overview

The implementation of DejaVu is based on SharpDevelop IDE, which is an open-
source text-based IDE. It is capable of editing C#, VisualBasic .NET, Boo and
F# programming languages and opening project files generated by the popular
VisualStudio IDE. Compared with Processing, which was used as the base for
Picode, SharpDevelop is more general purpose, and is equipped with more pro-
fessional features, including an integrated debugger, code refactoring, and code
completion. It officially supports extensions for the IDE, which are used for
the implementation of the DejaVu Canvas and Timeline. However, the exten-
sion framework was not sufficient to augment the entirety of the programming
workflow described in the previous section, and so the existing user interface com-
ponents, as well as some of the behind-the-scenes features, were altered. DejaVu
runs on a Windows computer with a Microsoft Kinect device connected through
a USB 2.0 port.

The main window of DejaVu is shown in Figure 5.3. Although the program-
mer can change the layout freely, we use this default layout as the basis for the
discussion. It contains the following components by default. We do not list up
the components irrelevant to DejaVu-specific features including the class view
and tasks list.

• The menu bar for various operations.

• The project explorer for managing files related to the current project.

• The text-based editor.

• DejaVu Canvas showing information about the current frame of interest.

• DejaVu Timeline showing the video strips of the execution history.

• The status bar showing the current status of the IDE.

The SharpDevelop tool bar that includes an interface for controlling the exe-
cution of applications is removed and substituted with play and stop buttons in
the DejaVu Timeline. In Subsections 5.5.2 and 5.5.3, we describe the three major
components that have DejaVu-specific features. All other changes made to the
user interface are related to those features, and thus described in the context of
the feature.

In addition the user interface, the compilation and execution process were also
modified. Unlike Picode, where we linked to libraries for additional functionality,
DejaVu requires monitoring of the status of the applications during execution.
Therefore, the modifications were more involved. DejaVu must preprocess the
source code prior to compilation and communicate with the library that is loaded

64

by the application during runtime. We describe the implementation in detail in
Subsections 5.5.4 and 5.5.5. The execution is not only monitored at runtime,
but is also recorded, as described in Subsection 5.5.6. Once the session has been
recorded, it can be replayed, as described in Subsection 5.5.7, or refreshed upon
code modification, as described in Subsection 5.5.8. The programmer may also
duplicate or split existing sessions, as described in Subsection 5.5.9.

5.5.2 Editor Capable of Dragging Variables

The editor appears almost identical to the original implementation provided by
the SharpDevelop IDE. The main difference in terms of appearance is highlight-
ing using a yellow background, which is applied to the variable names monitored
on the DejaVu Canvas and Timeline. This is added when the programmer drags
and drops a variable from the code editor into the Canvas interface. The C# pro-
gramming language parser is available, which maintains an abstract syntax tree
that is synchronized with the source code. In contrast to Picode, in addition to
the abstract syntax tree, the types of the variables can be inferred and stored us-
ing a static analysis of the source code. These features are implemented using the
NRefactory library1, which is part of the default SharpDevelop implementation.

When the programmer starts dragging any part of the source code, DejaVu
tests whether the dragged string is part of a variable name. If it is not, DejaVu
does nothing. Otherwise, it tells NRefactory to run the static analysis to infer
the variable type. The result of the static analysis is cached by NRefactory and
may be used for other purposes. When the variable is dropped into the Canvas,
a placeholder to show the contents of the variable is populated. The placeholder
is rendered using a class that implements V ariableBox interface and provides
type-specific visualization of the variable contents.

Variables that are registered to be monitored are stored as bookmarks that
point to specific regions in the source code. Each bookmark contains the start
location and the length of the variable name. DejaVu retains the reference to
the variable. It is resistant to changes in the surrounding source code and any
refactoring that changes the variable name. If the variable type is changed by
modifying its declaration, the video corresponding to the variable in the Timeline
is cleared; however, the reference is retained and can be updated by the refresh
operation. The reference is lost only when the variable is removed. In such a
case, any corresponding graphical representations in the Canvas and Timeline
are removed. While changes to the source code can be undone, this removal
of the variable registration cannot be undone. The programmer must manually
drag-and-drop the variable to the Canvas to re-register it.

5.5.3 Canvas and Timeline

The Canvas interface is shown in Figure 5.4 and was implemented as an extension
to the SharpDevelop IDE. It is composed of a header showing tool buttons and
check boxes, as well as the blank area that extends the InkCanvas class. The
tool buttons include a hand-drawing tool, a lasso tool and an erase tool. The
check boxes are used to show and hide input from the camera (i.e., and RGB video
stream and a posture data stream) and the output to the window. Note that these
types of data are recorded regardless of whether they are shown or hidden. The
InkCanvas class is provided by the Windows Presentation Foundation library
and is capable of receiving and displaying ink strokes. It allows the programmer

1icsharpcode/NRefactory https://github.com/icsharpcode/NRefactory

65

to draw freeform shapes with the mouse, pen or touch. We extend it to be capable
of showing placeholders for variables within the InkCanvas instance.

When a variable is dropped into the Canvas, its type information is retrieved
using static code analysis. The placeholder is then populated, showing the data
of the corresponding variable in the current frame of interest. It is rendered using
a type-specific renderer. For instance, NumericalBlock renders text represent-
ing the numerical value and DepthImageBlock renders grayscale image repre-
senting the depth image from the camera. There are also ColorImageBlock,
SkeletonBlock and BooleanBlock, which are capable of showing color images,
posture data and Boolean values, respectively. Although DejaVu currently sup-
ports a predefined set of types for data visualization, its architecture is extensible
enough to support additional types by loading a third-party extension.

The programmer can interact with the contents displayed on the Canvas. He
can click on a placeholder to navigate the editor to the specific line of code where
the variable is used. The programmer can also use the hand-drawing tool by
clicking its button and drawing freeform lines on the canvas, and can later clear
these lines using the eraser tool. The lasso tool allows selection of multiple line
strokes, as well as placeholders, for variable contents. When the ”Delete” key is
pressed, the lines and the selected variables are removed from the Canvas and
the Timeline.

The Timeline interface is shown in Figure 5.6 and implemented as another
extension to the SharpDevelop IDE. It is composed of a tool bar showing the
interface to control the execution of the applications, video data showing the
history of one session of execution, and the session manager, which shows all of
the previous sessions. The videos are updated during the execution so that the
programmer can see the changes in the variable data in real time. Therefore,
we it must be rendered rapidly. While the other parts of the user interface
were implemented using Windows Presentation Foundation, which is a highly
managed GUI framework, the video strips were rendered using a lower-level API
called Graphics Device Interface+.

The ”Play” button behaves in different manners according to which session is
selected in the session manager. When no recorded session is selected, it launches
the program using live input and starts recording a new session. Otherwise,
when any recorded session is selected, DejaVu loads recorded data and replays
it. The slider allows the programmer to control the replay speed. Otherwise, it
launches the application with the real-time input from the Kinect device. The
”Refresh” button causes the program to run in the background and update all
output from the program, including the variable values and window output. It
does not complete in seconds in most cases, so progress is displayed in the progress
bar of the session manager.

The Timeline interface allows zooming in and out to highlight the continuous
aspects of the data. In the most detailed scale, each frame is 120-pixels-wide and
each frame is rendered. When the programmer zooms out one level, for variables
with the image type ColorImage orDepthImage, one of the two images is hidden
and the image retains its width and height. For a variable with any other type,
including numerical and Boolean values, the width of each frame is reduced to
half that of the original. When the original width is 1 pixel, the size cannot be
reduced further, so this size is retained. When the programmer zooms out twice,
DejaVu renders one out of four image frames and shows numerical values with a
width of 30 pixels.

66

5.5.4 API for Both IDE and Applications

A custom-built thin wrapper API for the Microsoft Kinect SDK acts a bridge
between the DejaVu components and the programmer’s code. The wrapper al-
lows the programmer to access Kinect input and capabilities in an API interface
similar to that of the Kinect SDK, while at the same time allowing the DejaVu
components to track and record Kinect input. The wrapper also allows DejaVu to
switch between live feed and recorded Kinect input streams to the programmer’s
code via the same programming interface, so that the programmer only needs
to program for live input. The program naturally follows the frame-based loop
architecture by performing frame data processing within a KinectFrameReady
event handler, which is called from a single thread managed by the wrapper.

While the library used in Picode always connects directly to the physical
devices regardless of whether it is used by the IDE or the application, the library
used in DejaVu does not always connect to the physical devices. The DejaVu
library first looks for a clue, which indicates whether the library is running on an
application outside the IDE, on the IDE, or on the application being developed.
In the first and second cases, it uses the Kinect device to read input data to the
program. In the third case, it uses a virtual Kinect device, which attempts to
read input data from the host IDE. The host IDE is expected to provide the input
data, which may be real time input from the Kinect device, or may be recorded
input data replayed at a given frame rate.

5.5.5 Data Transfer between IDE and Applications

Real-time monitoring and recording features require the transfer of large amounts
of data between the applications and the IDE. The Kinect device is capable of
retrieving RGB color images with resolution of 640 by 480 pixels and depth images
with a resolution of 320 by 240 pixels, both at 30 frames per second. Posture
information can also be retrieved at 30 frames per second. The total data rate
is almost 40 megabytes per second. When the application is programmed to
respond to these input data, it runs at 30 frames per second. Assume that the
window has a resolution of 640 by 480 pixels. This results in 36 megabytes per
second, and often contains variables to be monitored; i.e., the color or depth
images of the same size, which have data rates of 36 or 2.2 megabytes per second,
respectively.

The data transfer must sufficiently fast that applications can be executed
without any noticeable delay. However, since the application and the IDE run as
separate processes, we cannot transfer these data at the programming language
level (e.g., during variable assignment). Instead, we use a TCP/IP connection
and inter-AppDomain communication. We prototyped and tested these two tech-
niques and found that the latter; i.e., inter-AppDomain communication, was the
fastest. Inter-AppDomain communication is provided by the Windows Com-
munication Foundation .NET Framework for remote method invocations. It is
similar to the Remote Method Invocation API in Java; however, is not techni-
cally inter-process communication. In the .NET Framework, every process has an
AppDomain, which can be thought of as a process on the .NET virtual machine.

We could implement the inter-process communication using shared memory
using a custom protocol; however, the inter-AppDomain communication was suf-
ficiently fast and allows us to make use of existing code. With inter-AppDomain
communication, when the IDE and applications share the same assembly (i.e.,
dynamic link library―in our case, the library that provides the API described

67

in the previous subsection), the IDE can invoke a method defined within via
the applications’ AppDomain, and vice versa. The IDE triggers the applications’
KinectFrameReady event listeners, which handle input data from the camera, and
the applications notify the IDE to record the contents of variables and window
output.

5.5.6 Recording a New Session

When no existing session is selected in the session manager and the programmer
clicks the ”Play” button in the Timeline, DejaVu launches the program and starts
tracking and recording input from the Kinect camera, as well as the output from
the program, which includes variable values and window output. The Canvas
and Timeline are continuously updated with the tracked data during execution
so that the programmer can monitor the data in real time. The input and output
are recorded as different files in different ways. In this subsection, we describe the
recording method and how the input and output are recorded. Its architecture
overview is shown in Figure 5.8.

Considering the large amount of data that are transferred, it is not possible
to store all the data in memory, and so during recording we store the data on the
physical disk drive. To keep up with the high data rate, the drive must be capable
of writing data at a high bitrate. One method is to compress the data before
writing to disk; however, we found that this leads to a bottleneck in terms of
processing power, and so decided to record the data without compression or any
other post processing. Fast hard-disk drives (10000 rpm) can achieve write speeds
of up to 100 megabytes per second. However, this bandwidth is consumed rapidly
in a practical setting. For instance, we can record input data from the camera
(40 megabytes per second), window output of 320 by 240 pixels (9 megabytes
per second), two image variables of the same size (18 megabytes per second) and
some integer and Boolean values, consume negligible memory in comparison.

The input from the camera was recorded regardless of its visibility in the
Canvas and Timeline. If we simply want to replay the program execution as
described in Subsection 5.5.7, only the input data visible in the Canvas and
Timeline must be recorded. However, we record all input because it is required
to refresh the variable values and window output afterwards, as described in
Subsection 5.5.8. The recorded input data includes color and depth images and
posture data. These raw input data are continuously recorded with a static length
per frame in a single file. Each execution with live input has a unique numerical
identifier (session ID) and is used for the filename.

The output from the program, including the variable values and window out-
put, is recorded solely for replaying features. This is achieved by transparently
inserting tracing function calls into the programmer’s code during compilation,
at positions where variables are dragged from onto the canvas, which enables
DejaVu’s position-aware variable monitoring. Code changes are tracked by the
editor and handled during compilation to maintain reference to variables and
consistency between the Canvas and Timeline interfaces and the code.

Recording the output from each frame requires two steps. The first gener-
ates a table, in which each entry is a pair of the unique numerical identifiers of
the variable and the corresponding data. This step is handled in the program’s
AppDomain. The second transfers the entirety of the table data from the pro-
gram’s AppDomain to the IDE’s AppDomain. The transferred data is recorded
and visualized by the IDE.

In the first step, the source code is preprocessed and compiled. The pre-

68

Recorded
session

DejaVu API

User program

Live input

Variable
contents

Output

Recorded
input

Figure 5.8: DejaVu recording architecture.

processor wraps each registered variable name with a call to the registration
function. This step conflicts with the IDE’s default feature; i.e., it continuously
monitors changes to the source code files made outside of the editor. Therefore,
we first temporarily disable the feature, run the preprocessor and then restore
the previous state of the feature. When the wrapped registration function is ex-
ecuted during runtime, it places an identifier for the variable together with the
corresponding value into the table. For instance, suppose the variable image is re-
placed with ((ColorImage)DejaV u.TrackFrameData(trackId, image)), where
ColorImage is the type of the variable and trackId is the identifier. This casting
allows the surrounding code to treat it in a same way as the original variable,
preventing any static-type errors. During the execution, the registration process
may find an existing pair with the same identifier in the table. In such a case, the
value is overwritten. As a result, when there are multiple calls to the registration
function, only the final call has an effect; all previous calls are ignored and the
data is discarded. This typically happens when the variable is in a subroutine
or a loop (e.g., a for or while loop). There is also a chance that there is no
call to the registration function, which will be handled in the second step. This
typically happens when the variable is inside an if clause and the condition is
not satisfied.

Our preprocessor also inserts the statementDejaV u.TrackWindowData(this)
at the end of the body of the KinectFrameReady method in the main window
class. This registers a special identifier and the window output to the table. The
window rendering should be managed by the Windows Presentation Foundation,
so the method locks the rendering thread and copies the contents to a bitmap
object. In the current implementation, we assume that there is only one window
used by the application during program execution. It is not difficult to extend it
to support multiple windows; however, we did not do so since we observed that
most of the interactive camera-based applications use only one window to display

69

Header �le format:

Raw data �le format: (variable size allowed for each frame)

8×n bytes

x bytes

Index for frame n
8 bytes (two integer: x, y)

y bytes

Raw data
for frame n

Figure 5.9: File format used for recording variable values and window output.

output.
The second step takes place after completion of DejaVu, triggering all reg-

istered KinectFrameReady methods. It transfers the table data from the pro-
gram’s AppDomain to the IDE’s AppDomain. The recording process is then
iterated for all of the identifiers in the IDE’s AppDomain. Finally, the Canvas
and Timeline view is updated to reflect the newest data being recorded.

The recorded output data are stored in a special binary format as shown in
Figure 5.9. Each video in the Timeline interface is stored as a set of two files.
Both of them use the identifier for their names, which are identical with the
exception of the extension. One is for storing the raw data with the file extension
of ”.rawstream”, which may include the variable size for each frame. The other
is for storing the header information with the file extension ”.rawstream.index”,
where each frame has a constant size of 8 bytes (two integers, one representing
the location and one the size of each frame in the raw data). For instance, when
no value is registered for the frame, the current size of the raw data file and
size of zero is stored in the header file and no data are written to the raw data
file. There is also one global header file per session, which stores the meta-data,
including the timing of each frame in milliseconds, which is required to replay
the session.

5.5.7 Replaying an Existing Session

When an existing session is selected in the session manager, a background thread
reads the entire header for each video strip. It then reads the raw data used to
render the current region of the video in the Timeline interface. Note that the
loaded raw data may not be continuous in time due to the zooming level. When
the zoom level is 4, it loads only every 8 frames in the video. We save as much
memory as possible to avoid ”out of memory” exceptions. To prepare for the
programmer to scroll the Timeline interface, the thread caches data, which may
be shown in the coming scrolling operation. This allows for a smooth scrolling
experience. The thread also functions during the execution of the program; when
the programmer reviews the past, it behaves in the same way as the recorded
session. However, when the programmer scrolls the Timeline interface to the
newest part or makes it stick to the newest frame, the incoming data cannot be
cached. In this case, the thread simply holds the information required to render
the most recent region of the interface.

Replaying an existing session causes the IDE to load every frame in the video.

70

This occurs independently of the Timeline rendering (although the replay makes
the Timeline automatically scroll along in time and requests a view update). A
thread is devoted to this replaying feature. For each frame, it loads the header
to determine the timing to display the frame and loads all other raw data. It
then waits for a specified time period and displays the information on the Canvas
interface and the dummy window showing the output. The Timeline shows a
tick mark at the location corresponding to the current time of the session. The
programmer can manipulate the slider to adjust the wait time and dynamically
change the play speed.

5.5.8 Refreshing an Existing Session

In Chapter 3, we described a model of a program, i.e., out = f(in, c). In this
model, out is determined from a set of f , in and c. When any of these are
changed, out is also changed. The refresh feature of DejaVu is provided to help the
programmer update out to catch up with changes in f . This process assumes that
in represents only the camera input. In other words, we assume that the camera
is the only input to the program. If f does not change, execution with the same in
should reproduce the same out. In the current implementation, the programmer
refresh out even if the program output is dependent on other non-deterministic
data, such as use of the random() function or network communication. In such
a case, it does not necessarily produce the same out with a given f .

When the ”Refresh” button is clicked, DejaVu preprocess the current source
code in the same way as the live input (as described in Subsection 5.5.6), compiles
the program, and starts running it in the background by feeding the recorded
input data instead of live input from the camera. This allows us to discard the
(now out-of-date) output from the program and replace it with new data, which
is consistent with the current source code. Unlike recording a new session, this
refreshing process records only output from the program and retains the original
input to the program. Whereas live input arrives in real time in a periodic manner
(i.e., 30 frames per second in most cases), recorded input data can be fed at an
arbitrary rate. Therefore, to accelerate the refresh process, we feed each frame
as fast as possible.

5.5.9 Managing Existing Sessions

The programmer can name an existing session using the session manager interface
to aid in recalling the subject of the session. The programmer can also duplicate
an existing session or split it into two at any given point. The duplicated session
refers to the same input data, but is assigned a new session ID and the label
”copy of” is added to the name as a prefix. The output of the program is then
copied to a new directory for the new session ID.

When an existing session is split into two, the original session retains the
session ID, but the reference to the later part of the input and output data is
eliminated. This is done by simply shortening the length of the session. The raw
input data recorded as a file are not affected. The name is changed to have ”#1”
as a postfix.

The later session is assigned a new session ID and the postfix ”#2” is added
to its filename. While the input data refer simply to the later part of the original
session, the output data cannot take the later part of the original session. This is
because the later part is affected by the earlier part, which has been eliminated
and no longer exists. To resolve this inconsistency, the IDE automatically runs the

71

refresh operation (although the programmer may explicitly cancel the operation
if he does not feel the need to refresh). This happens when the programmer
knows the dependency of state information as a function of time, for instance,
when he wishes to debug the recognizer for swiping gestures and already know
that the variables of interest are set to their initial states at a given frame. The
programmer may then split the session into two at this point. In this way, the
programmer can save the time required to refresh the earlier part and accelerate
the iteration of changing the source code and refreshing the result.

5.6 User Feedback

To gain early feedback about the concept and functionality of DejaVu from target
users, as opposed to lower-level usability or technical performance, we invited
three professional developers to trial DejaVu. They all had significant experience
in developing interactive Kinect-based programs using the mainstream Microsoft
Visual Studio IDE. Each participant was first introduced to DejaVu’s concept
and interface and then asked to use it in the development of a simple interactive
program. The program idea was proposed by the participant based on their past
experience and generally consisted of a single processing component that can be
used in higher-level applications. These included a program to track the object
held in the user’s hand, a program to shift the user’s image to the center of the
screen, and a program to detect whether the user’s left, right, or both hands are
raised.

Given the open-endedness of the programming tasks, and because we were
interested in subjective feedback rather than quantifiable productivity at this
proof-of-concept stage, we did not enforce the participant to complete the pro-
gram. Instead the participant worked for an hour regardless of the progress.
The participant was asked to raise any feedback they may have during the trial,
and was afterwards informally interviewed about their experience and opinions.
One participant successfully completed his program in one hour while the other
two reached a stage that the substance of the program was ready and needed
refinement; both were comfortable leaving the program for later work at that
point.

All participants were very positive about DejaVu. They all agreed that it
is very useful for developing interactive camera-based programs (“This IDE is
very interesting and useful, awesome.”), and it matches well with their current
workflow in developing such programs. Participants found that the canvas was
an indispensable component and cherished the ability to continuously “see im-
mediate result” of variable values. They were particularly fond of the direct
drag-and-drop interaction to add a variable onto the canvas, and found the capa-
bility for the data display to be sensitive to the variable’s source position “very
impressive”.

The timeline and its associated recording, reviewing, and reprocessing func-
tionalities immediately resonated with the participants, and were seen as the core
competency of DejaVu. One participant described it well: “(in the past) I just
want to check one value, but maybe need to walk around many times… (with
DejaVu) no need to run back and forth… it’ll save us lots of time to debug this.”
Indeed, similar capabilities had been desired by the participants, even to the
point of making their own attempts. One participant used a separate toolbox
to record and replay Kinect input data, while another participant wrote his own
program to do this. However they both agreed that these separate recording
functions were not nearly as powerful and flexible as the visual, integrated, and

72

interactive support in DejaVu. The fact that the timeline is “pretty much like
video making tool like Movie Maker” was also seen as a reassuring factor.

More importantly, the inseparable link between the canvas and the timeline
defines the DejaVu development experience. Both were seen as complementary to
each other, e.g., “the canvas shows the dynamic data” and “the timeline provides
the alignment of the changing moment”, and the synchronous connection between
the two was seen as “the best advantage”.

Participants made valuable suggestions on how to further improve DejaVu.
Beyond lower-level UI and technology polishing, particularly noteworthy are the
following:

Simulating and Manipulating Input
It is not always easy to collect input from the programmer’s surroundings
that satisfies specific realism, precision, diversity, or quantity requirements
necessary for program testing. Participants suggested adding the ability
to import simulated or prerecorded input such as videos [27, 120], and to
manually or algorithmically manipulate existing real world input such as
skeletons.

Visualizing Generic Arrays
Beyond visualizing image data, participants suggested that other array data
could benefit as well from compact and intuitive visualization in the form of
an image for convenient monitoring and reviewing. The ability to visualize
arbitrary arrays as images would be a nice enhancement for the canvas and
the timeline.

Composite Visualization
Through freehand sketches and a programmer-defined display layout, the
canvas can support the conceptualization of program dataflow beyond indi-
vidual data displays. Participants suggested going further by compositing
multiple data displays into a higher-level visualization that could range from
simple graphic combinations such as overlaying the skeleton on the color
image, to more semantic compositions such as masking certain regions of an
image. However, in the meanwhile we should also be cautious to preserve
the central role of the program code in general-purpose data processing.

5.7 Discussion

Re-executing the entire program to reprocess recorded input and refresh program
data might take significant time to complete when the computation gets complex
or the recorded input data gets large. When the program can cleanly divided
into multiple components whose dataflow between each other is known, the time
for reprocessing can be shortened. The IDE can record input to each component
and only reprocess edited components and their subsequent components. Though,
this requires the user to explicitly declare components and dataflow between them
and significantly changes how the program is coded. Since we wanted to keep the
original workflow the programmer is used to, we made a design choice to keep
the text-based IDE’s usability at the cost of the processing time. While we think
the choice was not wrong given the positive feedback from the users, our future
work includes an IDE that supports component-based programming.

DejaVu focuses on supporting real-time interactive programs. Note that non-
real-time camera applications, where the user sporadically collect camera input
to process in an offline fashion (e.g., QR code reader), are more akin to traditional

73

programming in architecture and workflow, hence do not necessarily require the
same special support and are out of the scope of this work.

DejaVu builds on the continuous frame-based update model that reflects the
distinctive needs of real-time interactive camera-based programs, and is pro-
foundly different from the conventional discrete step-based debugging model.
However, these two models are not necessarily mutually exclusive. Especially
when reviewing and reprocessing recorded program data, where there is no con-
cern of interrupting real-time input, we may consider combining these two models
to allow stepwise tracing within a frame at statement granularity where needed.

Although DejaVu is a domain-specific IDE for camera-based programs, other
types of sensor-based interactions or frame-based programs (e.g., games) may
share some of their previously mentioned attributes. DejaVu indeed shares some
characteristics with existing sensor-based prototyping tools. It is worthwhile to
consider how DejaVu’s concepts can be generalized to these other domains.

5.8 Summary of Contributions

In this chapter, we introduced a method of integrating a video-player-style in-
terface into a text-based IDE. The aim was to assign graphical representations
to the dynamically changing values in and out of out = f(in, c), our model of a
program with real-world I/O that was introduced in Chapter 3. Whereas photos
can represent specific situations in the real world, as discussed in Chapter 4, they
cannot represent dynamic data, which changes with time. Here, we show that
videos can represent such dynamic data.

The experimental implementation, DejaVu IDE, provides a user interface that
continuously updates graphical representations of the input to the program, vari-
able values and window output. This can help the programmer understand what
is happening in the program in real time without pausing the execution of the
program. The IDE records the program execution automatically and provides a
video interface to replay it or jump to an arbitrary time in the recorded session to
review what happened in the past. It also allows the programmer to re-execute
the program and update the video to catch up with the current contents of the
program. We found that the video player concept was received positively by
representative target users and may be generalized to support the workflow of
development of programs in other domains, such as sensor-based interactions and
video games. We also found that there is a demand for more flexible control of
video playback and improved visualization, which will be discussed in Chapter 6.

74

Chapter 6

Graphical Editing to Specify Program

Behavior

In the previous two chapters, we investigated how photos and videos help un-
derstanding the static and dynamic aspects of the program. These graphical
representations represent static data (c), program input (in), variable values and
program output (out) in the model (out = f(in, c)) of the program with real-
world input and output (real-world I/O). While they serve as a visual aid to the
programmer, he cannot interact with them to edit the program behavior. He still
needs to choose appropriate API from a long list and input its name and their
parameters in a text-based code. To see what the API really does, he needs to
compile and run the program. This is cumbersome especially when he is new to
the API and when he needs to prepare parameters that is difficult to specify in
a text format.

Previous approach includes enhancement on code completion for text-based
programming languages. Quack [97] allows the programmer to input keywords
to populate possible choices of code snippets. It works well for text-based code
and parameters, but text is not always the best to specify parameters with visual
meanings. There are also research on live programming that provides immediate
feedback about the program such as Subtext [37]. Some visual programming
languages allow the programmer to specify functions by editing graphics. They
go beyond typical box-and-line notations and add more meanings to graphical
operations. BitPict [45] allows the user to draw pairs of small input and output
bitmaps that represent pixel-rewriting rules. When rules are applied to larger
bitmaps, they can carry out meaningful operations such as filling region inside a
closed contour. Though, it is not feasible to define complex operations such as
computer vision algorithms just by using the rewriting rules.

In this chapter, we discusses how graphical editing of photos and videos can
help the programmer implement programs with real-world I/O (f in the model),
advancing their use in the previous chapters to have more proactive role in the
program development. In particular, we are interested in development of pro-
grams that process videos and time-lapse photos taken with a camera with fixed
viewpoints to detect interesting events and extract useful information from the
real world. First, we introduce the motivation for choosing such application do-
main and highlight its challenges (Section 6.1). Then, related work is introduced
(Section 6.2). Next, VisionSketch IDE is provided as an experimental implemen-
tation (Section 6.3). It allows the programmer to annotate input photos and
videos graphically to choose appropriate image processing components and setup
their parameters. He can build a high-level data flow diagram of components
through a visual programming language and seamlessly switch to a text-based
editor to update their low-level implementation. A video player-like interface

75

is always available for controlling the program execution. We also report these
implementations (Section 6.4). Next, we showcase example use cases collected
from a user study with five programmers (Section 6.5). Finally, we reflect on the
previous projects to discuss how graphical editing can be integrated into their
experimental implementations (Section 6.6).

6.1 Real-world Event Detection Applications

Many surveillance cameras and other kinds of monitoring cameras with fixed
viewpoints are located almost ubiquitously around cities and within buildings,
recording what is happening there. Time-lapse photography is also getting pop-
ular. Time-series photos taken from a fixed viewpoint highlight processes that
look subtle on an ordinary time scale. It is possible to write a program that
processes these recordings, detects interesting events, and extracts useful infor-
mation from the real world with the help of software libraries like OpenCV [14]
that provide image processing algorithms. For instance, it is possible to imple-
ment a program that monitors growth of a fungus and notifies when it has grown
enough to eat. It is also possible to implement a program that monitors the
rotation of a disc on a turntable being scratched by a disc jockey and creates
its rotation-time graph. These examples are taken from the study reported in
Section 6.5.

The development of such programs in conventional text-based integrated de-
velopment environments (IDEs) involves two distinctive challenges. As for the
first challenge, the software libraries provide various kinds of computer vision
algorithms that take an image as an input parameter. Their other parameters
often have visual meaning, such as four Point objects denoting a rectangular area
in the image. These parameters cannot or (at least) are difficult to be specified
in a text-based programming language. Output from the algorithms is often also
an image. Conventional IDEs provide a text-based code editor and do not re-
flect such graphical aspect of the program. As for the second challenge, when it
is necessary to monitor the behavior of the program, first, a boilerplate code is
written such as that for loading an image and opening a window for visualizing
the results. The code is then compiled, and the program is executed. These steps
are repeated iteratively until the processing result is satisfactory. This repetition
takes long time and prevents fluent exploratory programming.

6.2 Related Work

In this section, existing attempts to support example-centric programming are
first introduced. Relevant visual programming languages are then described.
Finally, tools for image processing (including toolkits for programmers and GUI
tools for end-users) are introduced.

6.2.1 Tool Support for Example-Centric Programming

Early work on programming by demonstration includes systems for example-
centric programming such as Pygmalion [138]. Such systems help a novice pro-
grammer to create programs with concrete examples of input data. For instance,
when the programmer wants to implement a factorial function, he first provides
an example input (such as “6”) to the function. The system then tries to execute
the function until it reaches the end of the code, where the further behavior of
the program is undefined. When a new code snippet is input, the system tries

76

to execute that code again. This iterative process continues until the function
returns a concrete value, in this case, “720.” VisionSketch also employs the same
example-driven development, where an example input to the program is given
prior to the implementation of the program. Recent work on example-centric
programming includes Subtext [37]. It provides a text-based code editor that
allows the programmer to write an incomplete definition of a function and test
cases that call the function with example input data. It automatically executes
the code and shows stack traces next to the code editor, highlighting the incom-
pleteness of the function definition. The programmer can iteratively update the
code and see stack traces generated by executing the program with the example
input for developing a program. VisionSketch does not show much textual infor-
mation such as stack traces, but it does provide graphical representations of the
under-development program to aid program understanding.

Several attempts to enhance text-based IDEs with graphical representations
of example data have been made. For example, the Barista framework [76] helps
to implement structured editors with graphical representations. For instance, it
can be used to show a multimedia comment of an image processing operation in
which images represent example input and output of the operation. Gestalt IDE
[125] is designed for machine-learning applications and includes user interfaces for
collecting, editing, learning, and testing examples. Picode IDE [72] (Chapter 4) is
equipped with a text-based editor capable of showing in-line photos representing
posture data for humans and robots. The photos serve as arguments to APIs
for processing posture data. Such concrete examples help the programmer to
understand the program. DejaVu IDE [70] (Chapter 5) is used for developing in-
teractive camera-based applications that add two interlinked interfaces: timeline
is capable of recording data input to the program as examples and visualizing the
history of the program state during its runtime, and canvas is quite similar to our
own canvas interface in that it also provides real-time visualization of the pro-
gram status. The difference between the two versions of canvas is that DejaVu’s
canvas is mere visualization while our canvas is a visual programming language
that shows an editable data-flow graph.

6.2.2 Visual Programming of Image Processing

Many visual-programming languages (VPLs) only visualize the structure of the
program (i.e., not its contents.) VisionBlocks [9] aims to allow end users to create
their own computer vision programs through GUI operations by a structured ed-
itor inspired from Scratch [98]. VIVA [141] is a VPL that adopts a box-and-line
notation where each image processing component is represented by a symbolic
icon and is connected with other components by lines to form a data-flow dia-
gram. MATLAB/Simulink [2] is a commercial VPL that supports various appli-
cation domains (including image processing). It has a built-in text-based code
editor with which a programmer can create a reusable processing component.
Some components visualize interesting data, but others are just represented by
text labels and symbols. On the other hand, our canvas makes use of graphical
representations to go beyond symbolic notation.

Some existing VPLs add more meanings to their use of visual components.
For example, Agentsheets [131] provides a spreadsheet interface, whose cell shows
an interactive agent that reacts to user input or information from other agents.
ConMan [54] allows the user to interact with each visual component and set up pa-
rameters for rendering computer graphics (Figure 6.1 left). Its recorder interface
is similar to our video-player-like interface in that they both allow the program-

77

Figure 6.1: Left: ConMan [54] for interactive computer graphics rendering, Right:
LightWidgets [40] for end-user computer vision programming.

mer to control the program execution in a frame-by-frame manner. There are two
major differences from these VPLs to VisionSketch. First, graphical representa-
tions in VisionSketch are used to build programs while those in other systems are
for tuning parameters and visualizing results. Second, VisionSketch has an in-
tegrated code editor to edit text-based implementation of each component. This
function ensures that new algorithms can be implemented at any time without
leaving the IDE.

These VPLs provide a live programming experience, eliminating the gap be-
tween building and executing programs. When the programmer edits the VPL,
the program is updated without explicit compilation operations and is always
kept ready for execution. VisionSketch also provides a live programming envi-
ronment, but it is a bit more involved since it integrates a text-based code editor.
When the text-based code is edited, it is automatically compiled and loaded onto
the program, replacing old components if any.

6.2.3 Tools for Image Processing

Cameras have become pervasive, and many tools to support camera-image pro-
cessing have been proposed. Their target users range from end-users to novice
and professional programmers. Some of these tools do not require prior knowl-
edge of image processing algorithms. For example, Light Widgets is a system [40]
that detects areas of skin in the camera images (Figure 6.1 right). It transforms
any visible surface in everyday spaces into an interactive widget controlled by
hand gestures. Vision on Tap [29] adds simple image processing features (such
as motion detection) to a webcam video stream and notifies the user of interest-
ing events through a web service. Crayons [41] allows a novice programmer to
train a classifier through painting example still images. The trained classifier can
later be called from the programmer’s own program. Visual editor is inspired by
the work. Eyepatch [106] is similar to Crayons but operates on video, notifies
events through a network protocol, and provides multiple classifiers. While these
tools provide access to a limited set of image processing algorithms, VisionSketch
provides an IDE with which general image processing applications can be built.

ImageJ [6] is a standalone GUI tool with which end-users can apply image
processing operations to images and videos. It requires prior knowledge of such
operations, but it is used by various research projects in a broad area of natural-
science fields, such as dental imaging, retinal image analysis, and brain- and
fat-tissue imaging. It supports all common image manipulations. With ImageJ,

78

the user can draw shapes on a source image to narrow down the list of potential
operations. This function is equivalent to our component filtering method in
visual editor. It is capable of creating user-written macros and plug-ins, making
the system look more like a development environment. The differences between
ImageJ and VisionSketch comes from their different scopes. That is, ImageJ is a
tool capable of scripting, while VisionSketch is an IDE that integrates graphical
operations. For instance, the user interface for annotating the input image by
drawing shapes is used for image processing operation by ImageJ and for adding
a new node of a visual-programming language by VisionSketch.

OpenCV [14] is a software toolkit that provides a collection of computer vision
algorithms. ImageJ can also be used as a Java library. These toolkits provide
well-designed APIs to support writing text-based code. The present work fo-
cuses on providing broader support for the entire workflow of the programmer.
VisionSketch contains a Java wrapper of OpenCV as its default library. Within
VisionSketch, any OpenCV functions can be used to implement a programmer’s
own image processing components.

6.3 VisionSketch IDE

VisionSketch is an IDE for developing image processing pipelines (Figure 6.2).
Design of VisionSketch benefits from the characteristics of the supported appli-
cations. The applications deal with image processing algorithms, which take an
image or video (time-series images) as input. Optional arguments usually have
visual meaning, such as four Point objects denoting a rectangular area in an im-
age. Outputs from the algorithms are also images, videos, or a group of regions
in the image. Conventional IDEs are usually equipped with a text-based code
editor and debugger, which cannot present such data intuitively. It was therefore

VisionSketch Canvas

Visual Editor Code Editor

Figure 6.2: Overview of VisionSketch IDE.

79

decided to implement the user interface of VisionSketch from scratch in order to
better reflect the visual nature of the program.

VisionSketch has three interlinked components: the canvas and visual editor
interfaces are designed to support visual programming; the text-based code editor
interface is implemented to preserve the full expressivity of text-based program-
ming. These interfaces for visual and text-based programming complement each
other to support the programmer’s entire workflow. Each interface is described
in the following three subsections, followed by a concrete-use case to describe how
these interfaces help the programmer’s workflow.

6.3.1 VisionSketch Canvas

Canvas is a visual-programming environment in which each code element is pri-
marily represented by an image or video rather than text (Figure 6.3). It is
noteworthy that it is more visual than typical visual programming languages
such as VIVA [141] and VisionBlocks [9], whose program structure is visually
presented, but data are referenced by text, including filenames and constants. It
is the first interface that the programmer sees when opening the VisionSketch
IDE. It provides an overview of the program, and although it looks like the can-
vas interface of DejaVu [70], it represents a data flow of the program in the same
manner as [54] and VIVA [141].

Canvas initially has one vacant box. The programmer clicks it to choose the
input data (such as a set of time-lapse photos, a video, or live camera input).
Then, he drags a line from an existing box to another place to add a new box
representing an image processing component. When he clicks an existing box, vi-
sual editor appears and allows the corresponding component to be edited. He can
also draw freeform lines to annotate the program. Compared to a conventional
text-based editor where statements and line comments are all represented by text,
VisionSketch shows a box to represent one statement and freeform drawings to
comments (Figure 6.4).

Canvas contains a playback interface in its bottom part. It allows flexible

Figure 6.3: VisionSketch canvas showing two algorithms in parallel.

80

Freeform comments Traditional text-based comments

Figure 6.4: VisionSketch code comments.

control of program execution. With this playback interface, the programmer can
test the program with various input data in a more casual way compared to
conventional compile-and-run operations, thereby accelerating the development
process. While DejaVu also provides a playback interface (named timeline), it is
used for navigating and replaying recorded sessions of program executions. On
the other hand, the playback interface of VisionSketch is used for running the
program by providing example input data. Unlike general step-by-step naviga-
tion of a text-based debugger, these playback interfaces are specialized for image
processing applications and allow frame-by-frame navigation.

When the input data is obtained from a camera in real time, the interface
can only “play” or “pause” program execution. Frames that arrive while being
paused are discarded. Otherwise, when the input data is from recorded photos or
a video, the interface is also capable of jumping to a specific frame of the photos
or video, going forward or backward for one frame, slowing down or speeding
up the execution, which is usually done at the original frame rate (such as 30
frames per second). The “tape recorder” in ConMan has a similar role driving
the computer-graphics rendering pipeline, but it can only animate the computer
graphics once (or forever in a loop) and does not provide as fine granularity of
control as our playback interface.

6.3.2 Visual Editor

Visual editor is used to choose an image processing component and specify its
parameters. It visually shows input and output of the component on its left
and right side (Figure 6.5). It appears when the programmer clicks an image
processing component or a vacant box before any component is assigned in canvas.
With visual editor, the programmer first specifies the region of interest (ROI) by
drawing shapes on the input image. Next, he can choose an image processing
component from a list of existing components that are capable of processing the
provided ROI. All the other components, which cannot be applied to the ROI,
are hidden for convenience. Then, the processing result is immediately shown
next to the input image. If the processing result is not satisfactory, the ROI can
be edited or another component can be chosen. These operations take immediate
effect and provide graphical feedback. He can alternatively switch to code editor
to edit the implementation of the current component or create a new image
processing component that takes the ROI of the input image as its parameter.

Compared to general programs, image processing pipelines tend to have com-
ponents with the same or less variety of types of input and output, which often
represent images. In such a case, type-based code completion of conventional
IDEs do not help much in filtering the components. Instead, VisionSketch uses
parameter information for the filtering, which consists of the ROI and the type
of the input image (Figure 6.6). The ROI is a collection of shapes drawn on the

81

input image. Currently, a shape is one of a circle, a line, or a rectangle. The
programmer uses a shape tool (one of the “circle”, “line”, or “rectangle” tools)
to draw a new shape or uses the “remove” tool to remove existing shapes. Every
time the ROI is updated, the list is updated according to whether each compo-
nent is applicable to the current parameters or not. For instance, when a circle is
drawn on the input image, “linear polar conversion” appears on the list since it
can be applied to a circular area. To support the parameter-based code comple-
tion, every component is required to implement a static method to check if it is
applicable to the given set of parameters. In addition, when an image processing
component is selected, how the ROI can be edited is limited. For instance, since
“linear polar conversion” can only be applied to a circle, the “line” and “rectan-
gle” tools are hidden. Every component is therefore also required to implement
a static method to check if each tool can be used in the current context.

While conventional IDEs force necessitate running the entire program to see
the result of a specific processing component, VisionSketch has a built-in in-
terpreter that is responsible for keeping the image processing pipeline up-to-
date. When a new image processing component in visual editor is selected,
the interpreter instantiates the component, and sets up the instance by call-
ing parameterize(parameter) method of the component, where parameter is a

Figure 6.5: VisionSketch visual editor performing time-lapse operation.

Graphical code completion Text-based code completion

Figure 6.6: VisionSketch code completion.

82

pair composed of the ROI and the input image. It then immediately shows its
processing results next to the input image. The results are retrieved by calling
calculate(image) method of the component. Every time the ROI is updated, the
interpreter calls the parameterize and calculate methods again, as well as the
calculate method of the subsequent components in the data-flow graph to update
dependent components.

6.3.3 Code Editor

Code editor is the last component used in the programmer’s workflow, but it
is not the least important (Figure 6.7). It allows the programmer to edit the
implementation of any image processing component used in the VisionSketch
IDE. In addition to the text-based code editor by which the programmer writes
the source code, the proposed editor includes several specialized interfaces used
to specify the component information used in visual editor. They include text
boxes for specifying its function name, description, expressions (one returning
acceptable input parameters and the other returning available tools given the
context information), and a combo box for selecting an icon. At the bottom of
the code editor, an “update” button to save the current definition and replace
all the existing components in the image processing pipeline with the updated
version is provided.

As introduced in Subsection 6.3.2, code editor is shown when the program-
mer is not satisfied with the current processing result. Therefore, VisionSketch
makes an assumption that the programmer is focusing on implementing a func-
tion for processing the current specific example rather than implementing gen-
eral functions. It provides more context-sensitive support for text-based pro-
gramming. In the current implementation of VisionSketch, when a new image
processing component is created, code editor shows a template corresponding
to the current ROI. For instance, when the ROI is a circle, the default ex-
pression for defining acceptable input parameters is set to “shapes.size() ==

Figure 6.7: VisionSketch text-based code editor for editing image processing
algorithm.

83

1&&shapes.iterator().next()instanceofCircle′′ checking whether the ROI is a
circle or not.

When the programmer changes the code, he clicks the “update” button and
goes back to visual editor, and the code is automatically compiled and reloaded
to the current program. This process is technically called “hot swapping” of Java
classes supported by recent text-based IDEs. Compared to the general hot swap-
ping, the process of VisionSketch automatically feeds the reloaded component
with the image of the most recent frame in the parent component. In this way,
an up-to-date view of the image processing results is always provided.

6.3.4 Example Use Case

To describe how the three above-described interfaces can help the programmer
in harmony, a concrete example-use case is introduced in the following scenario
(Figure 6.8). Bob usually grinds coffee beans, drinks a cup of espresso, and starts
his work. He does not know the right amount of coffee powder for one cup, but
he thinks he can estimate it by counting how many times he rotates the grinder’s
handle. He wants to write a program that counts the number of grinds, which
applies several kinds of image processing to a recorded video of him grinding the
coffee beans.

First, Bob records a video of his hand grinding the handle and loads it on
VisionSketch IDE, which is shown as the source box. He can change the source
to another video or live input from the camera at any time, but in this case, the
loaded video will always serve as the input data to the pipeline. Using canvas,
he drags-and-drops the mouse pointer from the source box to another arbitrary
place to create a vacant box.

Next, he clicks the vacant box to open visual editor and starts choosing the
image processing component. While canvas only shows thumbnails of the videos
in the boxes, visual editor renders the video dot by dot. By playing the video
in the editor with the playback interface, he notices that there is a region in
which his hand crosses the same region once per rotation. The region is usually
shown as a black background, but when his hand crosses it, its color prominently
changes to that of his skin. He wants to create a timeline where the change in the
region over time is projected spatially. To be more concrete, he wants to copy a
line region in the source image every frame and paste it into the resulting image
at an x-coordinate incremented every frame.

He starts drawing shapes to find the appropriate operation once he knows
what he wants to do. When he draws a line with the “line” tool, such an oper-
ation (named “time-lapse”) is placed in the list of predefined image processing
operations that are applicable to the line region. He clicks the button to instanti-
ate the time-lapse component. Then, he starts playing the video to cumulatively
update the resulting image, showing changes over time. Next, he goes back to
canvas and creates another vacant box for specifying a subsequent operation.
Navigating between canvas and visual editor does not interrupt the video play-
back.

In the case of visual editor for editing the newly created vacant box, the
result of the time-lapse operation is treated as an input image shown on the left
side. He wants to perform a contour-counter operation on the input image since
he thinks that the number of closed regions in the time-lapse image represents
the number of grinds. However, he does not see the operation in the list, since
the source image for the contour-counter operation needs to be a single-channel
grayscale image or a binary image composed of black or white pixels. He decides

84

Time-lapse

Color filter

Noise removal

Contour counter

Figure 6.8: The pipeline created in the example use case.

to apply a color filter operation to create a grayscale image, where the skin color
is highlighted in white. He highlights some time points with the rectangle tool
when his hand is not crossing the line. By clicking the “color filter” button, a
color filter is created with the current image and the ROI as its parameters. The
resulting image is a grayscale image in which all the crossings are painted in white
and everything else in black.

It is not always the case that the desired operation is in the list of predefined
components. When the contour counter is applied to the result of the color filter,
it outputs a much greater number of contours than expected. It seems that
the result of the color filter requires some noise reduction. No such predefined
operation exists, so he clicks the “new” button, which is the last button in the list

85

of components, inputs the name of the operation as “noise removal,” and opens
code editor to start the implementation of a new image processing component.
The code template is generated and provided to reduce the time for writing
the boilerplate code. It just copies the source image to the resulting image by
default, so it needs to be changed to reduce the noise. Various ways to do that are
available, but simple erosion and dilation operations are thought to be sufficient.
He replaces the original line of code that copies the image with a new line that
calls up the erosion and dilation operations provided by the OpenCV library.

Once coding is completed, the programmer clicks the “update” button to
save and compile the noise-removal operation so it can be used in visual editor.
If a compilation error occurs, it is shown in a message dialog. At that time, it
is possible to go back to visual editor without any error, and the stored noise-
removal operation can be applied to the input image. It is noteworthy that the
newly implemented operation is loaded as a Java class of an image processing
operation. It runs reasonably fast for complex image processing and is reusable,
which usually cannot be achieved by interpretive scripting languages.

If the programmer notices that the erosion operation is not enough by seeing
the result of the image processing operation in visual editor, he goes back to code
editor, changes some parameters for the erosion, clicks the “update” button and
navigates back to visual editor to see the updated result, which is now satisfac-
tory. This iterative cycle is enabled by the built-in interpreter and hot-swapping
mechanism. Otherwise, it is necessary to compile the entire program and execute
it with the source video till the program counter reaches the frame of interest.
Such iterative process is cumbersome and difficult without tool support.

Finally, the contour-counter operation is applied to see all the crossings high-
lighted in the resulting image with the total number of crossings shown below.
While every image processing component is expected to return an image as a
result, it can optionally return other values that are visualized in visual editor
and can be retrieved by the child components for further processing. While
VisionSketch currently supports numerical values and text for this optional visu-
alization, its architecture is extensible enough to support other types of data for
visualization.

6.4 Implementation

VisionSketch is an attempt to tightly integrate visual and text-based program-
ming in one IDE. Since recent open-source IDEs that do the same kind of inte-
gration could not be found, it was necessary to build the IDE from scratch with
help of existing low-level components such as a Java compiler, a library that im-
plements image processing algorithms, and a text-based code editor with support
of syntax highlighting and other convenient features. Its open-source distribution
[69] is helpful for understanding the details.

6.4.1 Overview

VisionSketch runs on a computer that hosts a Java VM and the Java wrapper of
the OpenCV [14] library. It currently supports both 32-bit and 64-bit Windows,
Mac OS X, and common Linux distributions. It requires a video source to work
on (Figure 6.9). The programmer can use recordings or connect to a camera
device to retrieve images in real time. VisionSketch is also capable of periodically
receiving images from a smartphone running the Android OS or an Internet-
protocol camera.

86

Computer (VisionSketch)

Time-lapse photos
stored in a directory

Real-time video
from a wired camera

Recorded video

Real-time video
from a wireless camera

Photos posted every hour
from a smartphoone

ImageDir

VideoFile

Camera

HTTPServer

Figure 6.9: Input implementations and supported hardware setup.

In its current implementation, VisionSketch has five predefined image pro-
cessing components as shown in Figure 6.10, whose details are available online
[69].

6.4.2 VisionSketch Visual Programming Language

Canvas is a visual-programming environment that graphically shows the image
processing pipeline and allows it to be edited. It has a built-in interpreter that
controls the execution of the pipeline. The pipeline is a directed graph without
any loops, i.e., a tree whose nodes are represented by an instance of Stmt class
(where Stmt stands for statement). Each Stmt instance can have one or more
child Stmt instances. The processing result of the instance is passed to the
children as their input. Multiple children allow the programmer to compare
alternatives and help him/her find the best algorithm. A Stmt instance always
has one parent Stmt, except for a subclass instance (called Input), which is the
root node in the tree and provides input data to the pipeline.

There are currently four implementations of Input: V ideoF ile for loading a
video file, ImageDir for loading image files in a specified directory, Camera for
retrieving images from a camera in real time, and HTTPServer for receiving
images posted from external programs through the HTTP 1.0 protocol. There
are currently two client implementations: one for periodically posting photos
from a smartphone, and another for bypassing images from an Internet-protocol
camera. When the root node is a V ideoF ile or ImageDir instance, the execution
of the pipeline can be thought of as moving the cursor from the beginning to the
end of the input set. In this case, the programmer can freely move the cursor
to any arbitrary frame. Such a seeking operation is not supported by the other
implementations (including Camera and HTTPServer).

All Stmt instances but the Input instance is associated with an image process-
ing component which is an instance of the algorithm-specific class that extends
Function abstract class. Function has a parameterize(parameter) method
where parameter is an instance of FunctionParameter class that holds a pair of
the ROI and the image. The ROI is a set of shapes, each of which is a Shape

87

Perspective warp

Linear polar conversion

Time-lapse

Color filter

Contour counter

Figure 6.10: VisionSketch predefined operations.

88

instance. There are currently three subclasses of Shape: Line, Rectangle, and
Circle. For instance, when the programmer draws a line on the input image, a
Line instance is instantiated and added to the ROI. parameterize(parameter)
is called once upon the instantiation of the Function class when the compo-
nent is selected in the visual editor. It is also called whenever the programmer
edits the shapes and update the ROI. When the parent Stmt provides a new
input image, calculate(image) is called to calculate the output. For instance,
ColorF ilterFunction provides a color filter based on the back projection of his-
togram. Its parameterize(parameter) method calculates histogram from the
ROI of the image and its calculate(image) method calculates the back projec-
tion of the histogram to the current image. As a result, pixels in the current
image with similar colors to the ROI of the parameter image is painted in white.

6.4.3 Integration of Visual and Text-based Programming

Visual editor is the user interface that bridges the gap between the visual and
text-based programming languages. It allows the programmer to instantiate a
Function instance, set up its parameters, and make it ready for use in the Vi-
sionSketch visual programming language. It also allows him to switch to the code
editor to edit its text-based definition.

Implementation of an image processing component is not only responsible
for processing images but also for showing and hiding relevant information in
visual editor. For instance, when visual editor generates the list of Function
subclasses, it filters the list by checking whether each subclass accepts the current
set of parameters or not. Buttons in the list for instantiating Function instances
have their own icons and text labels. Once the Function instance is created,
some shape tools may be disabled to prevent ROIs from being invalid for the
image processing. To show and hide these information, a FunctionTemplate
subclass is defined as a singleton for each Function subclass. For instance, a
ColorF ilter class extends a FunctionTemplate abstract class and implements
methods such as getName(), getIconFileName(), and newInstance(), providing
meta information about a ColorFilterFunction class.

With code editor, the programmer can edit the meta information as well as
the implementation of a Function subclass representing an image processing al-
gorithm. It uses an open-source code editor, called RSyntaxTextArea1, which
is capable of Java syntax highlighting, code folding, and other basic features.
While the Function implementation is directly saved as a Java source code, the
meta information is saved as an XML file. When the programmer clicks the
“update” button, the meta information is exported as a Java-source-code file
that implements a FunctionTemplate class and is compiled with the Function
implementation by Eclipse Compiler for Java 2.

When code editor updates the definition of an existing image processing com-
ponent, it first needs to unload the old Function and FunctionTemplate imple-
mentations from the virtual machine. First, it replaces existing instances with
dummy instances. Then, it disposes the class loader that was used to load the
old definitions. Next, it instantiates a new class loader and loads newly com-
piled Function and FunctionTemplate implementations. Finally, it replaces
the dummy instances with the new Function instances. It also invokes their
parameterize(parameter) and calculate(image) methods to automatically up-

1RSyntaxTextArea. http://fifesoft.com/rsyntaxtextarea
2Eclipse Compiler for Java is included in JDT (Java Development Tools) Core Component.

http://www.eclipse.org/jdt/core

89

date the view of visual editor and canvas. With these dedicated support func-
tions, the programmer can seamlessly switch between the visual programming
and the text-based programming.

6.5 User Experience

A preliminary user study was conducted to collect user feedback about VisionS-
ketch and investigate its applications and limitations.

6.5.1 Setting

Five male participants, aged 23-36 years old (mean: 29.6 years old, standard
deviation (SD): 4.40 years), were recruited for the study in a university laboratory
of computer science. They all had professional programming experience, building
applications for commercial and research purposes. They had basic knowledge
of the Java programming language which is used in code editor.They also had
prior experience of building image processing applications. Four of them had
used OpenCV [14] for the purpose. Their uses of OpenCV library vary from
color reduction and beautifying photos to edge detection from a static image;
even so, all of these uses concern still images and do not include video processing.
While we did not conduct a comparative study against another IDE, we chose the
participants with such experience and asked them to compare the VisionSketch
experience with their past experience throughout the study.

The user study consisted of four parts. First, the participants answered a
demographic questionnaire asking their age, sex, and prior experience with pro-
gramming and computer vision libraries. Then, they watched a demonstration
of the VisionSketch IDE, as introduced in Subsection 6.3.4. Next, they were pro-
vided with five pre-recorded videos which we thought interesting events could be
detected; they were also allowed to bring an interesting video or use a webcam
to retrieve a live video input to work on. Among these vide sources, each of
them chose favourite one and used the IDE to implement an application. Finally,
when they were satisfied with the processing results of their applications, they
answered a post-experimental questionnaire.

6.5.2 Observations and User Feedback

All participants successfully created their own applications in one to two hours.
While three of them used the videos provided, the other two prepared their own
videos. They were asked four common questions about each interface after the
user study, whose results are listed in Table 6.1, consisting of the mean, standard
deviation, and percentage of positive responses (>4 on a 7-point Likert scale)
for each question. We also asked to write down concrete comments on each
interface. Some of the representative answers are quoted below. The participants
appreciated the example-centric workflow of the VisionSketch IDE that “gives
immediate graphical feedback concerning the program being developed.” Canvas
and visual editor were favored by all participants (Q1), thought to be simple
enough (Q2) and easy to use (Q3). It is “very convenient since I could see the
up-to-date overview at a glance.” In addition, “the playback interface in canvas
allows me to control and monitor the execution interactively. It is very nice.”
The shape tools in visual editor “provide immediate graphical feedback of the ROI
tuning.” One participant answered that visual editor was not simple (Q2) because
“it takes time to find a graphical way to do something I could do with text-based

90

Question Canvas Visual editor Code editor
Mean SD % Mean SD % Mean SD %

1 I would like to use it
frequently.

5.80 0.74 5/5 5.80 0.74 5/5 3.20 1.17 3/5

2 I found it
unnecessarily complex.

2.00 0.63 0/5 2.80 1.33 1/5 3.80 1.72 3/5

3 I thought it was easy to
use.

6.00 0.63 5/5 5.60 1.02 5/5 3.40 1.02 2/5

4 I needed technical
support to use it.

3.00 1.09 2/5 3.60 1.50 2/5 5.00 1.26 4/5

Table 6.1: Results of questionnaire.

code.” He was used to low-level APIs of OpenCV, and the graphical operation
typically involves several API calls. As a result, he felt overwhelmed. Another
participant commented that “existing IDEs force me to run the entire program
to see a small piece of interesting results, but VisionSketch allows me to check it
interactively without leaving the current context.”

All of the participants implemented new image processing components with
code editor. While they admit the necessity of text-based programming to pre-
cisely control the algorithm logic, they were observed to prefer to stay with visual
programming. One participant commented, “It would be nice if its usage could be
reduced, as the UI part is much better.” Another participant demanded, “Code
editor should come with more graphical feedback, such as a live view of the pro-
cessing results, as visual editor does.” They sometimes utilized existing compo-
nents and avoided text-based coding. For instance, a combination of color filter,
time-lapse, and contour-counter components was used for simple image-pattern
matching (see Door Watcher introduced later). Nevertheless, they appreciated
the “update” button, which “immediately makes the newly defined or updated
component available in visual editor and canvas.”

Hereafter, three applications developed by three participants in the user study
are presented to showcase the real use of the VisionSketch IDE and investigate its
capability and limitation (Figure 6.11). Two applications developed by the other
two participants monitor traffic on a road and count the number of visitors in a
room, respectively. Their descriptions are omitted because their usage patterns
are included in the other three applications.

Disc-jockey Analyzer

The participant retrieved a video file from an online video-sharing website that
records a live session of a professional disc jockey from a ceiling-mounted camera.
It is not easy for the participant to analyze how equipment is manipulated by the
disc jockey because it contains various interfaces and the manipulation is often
very quick.

To address this issue, he implemented an application with which he can ana-
lyze the actions of the professional disc jockey. He created multiple children of the
video input to process multiple interfaces separately. For instance, two branches
count the number of discs used on each turntable. Another two branches show the
rotation of the discs as vertical motions. When the disc is moving clockwise, the
corresponding image scrolls down. Another branch monitors the slider’s knob for
controlling the left/right balance to create a time-balance graph. To monitor disc
rotations and volume changes, he used linear polar conversion, perspective warp,

91

Disc Jockey Analyzer

Good-For-Eating Sensor Door Watcher

Total number of disc changes
(green if being changed)

Current disc rotation
(up=counterclockwise, down=clockwise)

History of
knob position

Figure 6.11: Applications developed by the participants.

and time-lapse components. To count the number of discs used in the session, he
used perspective warp, color filter, time-lapse, and contour-counter components
in addition to a new component that takes the contour-counter component as its
parent and increments the number of discs when the number of detected contours
gets increased and exceeds a specific threshold.

The participant looked surprised at the capability of the time-lapse operation,
with which he could create various meaning graphs. He commented that the
application is already very useful for analysis of the actions of the disc jockey;
however, for reproducing the actions, he wants audio playback synchronized with
the video. While VisionSketch currently focuses on image processing and does
not provide audio-related feature, that function is interesting future work.

“Good-for-eating” Sensor

The participant chose a set of time-lapse photos monitoring fungus growth. Pho-
tos were taken every hour under a controlled lighting condition. He wanted to
create a program for analyzing the newest photo and notifying him when the
fungus has grown enough for eating.

To implement such a pipeline, he decided to measure the size of the fungus
area. When the size exceeds a specified threshold, the user is notified. First, he
seeks an image without visible fungus and sets up the background subtraction
component. When he played the video, it made the fungus area look brighter
than the other area. Next, he implemented a binarization filter that paints pixels

92

white if they are brighter than the specified threshold; otherwise, they are painted
black. To tweak the threshold, he switched seamlessly between code and visual
editor with help of the “update” button. He found the result a bit noisy, which
was derived from the background subtraction. He implemented a median filter
and inserted it right after the source video and set up the background subtraction
again to successfully remove the noise. Finally, he applied the contour-counter
operation, which not only counts the number of closed regions but also counts
their area size. He added another component at the end that paints a red circle
if the size is less than the threshold; otherwise, it paints a green circle. When he
switches the video source to the HTTPServer that receives a new image every
hour, the color of the circle tells him whether the current status of fungus is good
for eating or not.

He appreciated the visual editor’s capability to quickly switch and test multi-
ple image processing components, but he commented that “Additional interactive
GUIs for tuning other parameters (such as numerical constants declared in the
text-based code) are desirable,” which was previously explored by Juxtapose [63].
Additionally, he commented critically that the current VPL is a bit too simple.
For instance, he wanted to output a grayscale image and use it as a mask in
another image processing component. This function requires the capability of a
Stmt instance to have two input sources. While keeping the simplicity for usabil-
ity is important, our future work includes such extension of the VPL for better
functionality.

Door Watcher

The participant wanted to be notified when the door of a room is opened, so that
he is not surprised by a sudden visitor. He first used a web camera to record
real-time video and ask his colleague to go in and out of the room to observe the
door in the camera images. Then, he noticed that the recorded video is better
than live input to prevent his colleague being bothered, so he switched to the
recorded video including his colleague’s action. He knew that he could detect
the opening door by applying a pattern matching algorithm, but he hesitated to
use code editor and tried using predefined components to find a solution; that
is, he used a combination of background subtraction, color filter, perspective
warp, and time-lapse components. At the end of the pipeline, he added a new
component that pops up a message dialog notifying the user about the visitor.
Since each component has full access to the Java API, an original GUI can be
easily implemented. For instance, a slider interface can be provided for tweaking
a numerical parameter.

To get a satisfactory result, he tried various combinations of image process-
ing components, which were effectively supported by the immediate graphical
response of VisionSketch. He commented that canvas should show the text label
for each component as well as the graphical representation. When the pipeline
grows longer, mere graphical information gets more confusing since it often looks
similar.

6.6 Discussion

In this section, we review the previous projects in the context of graphical editing
to reveal how they support or how they can be extended to potentially support
the implementation of programs with real-world I/O. First subsection is devoted
to the review of Chapter 4 and the second is to that of Chapter 5.

93

6.6.1 Interaction with Photos

In Chapter 4, we examined the use of a photo for representing static situation
in the real world. The experimental implementation, Picode, allows the pro-
grammer to take a new photo to create new graphical representation of the new
situation. On the other hand, we did not focus on providing a way to inter-
act with the graphical representation to edit the data behind the representation.
Though, we have already implemented one way and currently foresee another
way of interaction with the graphical representation which replace the operation
originally handled by text-based coding. We discuss these ways in comparison to
traditional photo taking and editing.

First, the preview window can be used as a user interface to manipulate pos-
ture data. It is originally provided to serve as a viewfinder of a camera with
which the programmer can preview what is going to be captured. When we
think of recent advance in digital cameras, many of them do not have traditional
viewfinders but are equipped with touch-enabled displays. Such displays allow
the user not only to preview the scene but also to set various kinds of parameters
to capture the scene such as the point of focus. The same idea can be applied
to our preview window. Instead of manipulating the physical robot, the pro-
grammer can manipulate the sliders in the preview window to edit its posture.
While manipulating the physical robot is more direct and often easier for the
programmer, the slider interface gives more precise and subtle control over the
posture data. When we have the shape information of the robot, we can show the
three-dimensional computer graphics (3D CG) model over the preview images.
Then, it is possible to allow the programmer to touch and move the CG model to
edit the posture. This method is investigated in Hashimoto’s paper [64]. When
we combine these two methods, we can show the slider at each joint location.

Second, the photo can be annotated to filter information. Generally speaking,
photos are often post-processed to focus on certain subjects or to enhance their
appearance. We can apply the same idea to the photo with posture data. As
we discussed as the intrinsic limitation in Chapter 4, the current implementation
of Picode use the photo to represent the whole body posture and does not allow
the programmer to filter the information. This limitation can be addressed by
allowing him to annotate the photo. Since it knows the two-dimensional position
of each joint in the photo, Picode IDE can filter the posture data correspondent
to the region painted by the programmer. Currently, it only supports human
posture whose physical configuration is known and is tracked by the Kinect for
Windows SDK. Though, when the shape information of the robot is known and its
current configuration can be tracked visually (e.g. with help of fiducial markers),
the same interaction can be applied to the photo of the robot.

These interactions with photos add more granularity to control how the graph-
ical representations represent the data. While the photo itself has vagueness in
what it represents, interactions with the photo allows the programmer to tell his
intention to the development environment.

6.6.2 Interaction with Videos

In Chapter 5, we examined the use of a video for representing dynamic behavior
of the program in the real world. The experimental implementation, DejaVu,
allows the programmer to run the program to record new video strips. It also
allows to re-execute the program with recorded input data to update the video
strips to catch up with changes in the program. The chapter was mainly devoted

94

to explain how we can provide lively view of the behavior of the program and
there was very little discussion about editing the video strips. Here, we discuss
how the programmer can edit the video. One way is already implemented and
the other is taken from the comments of the programmer participated in the user
study.

First, the programmer can edit the video in-point and out-point as explained
in Chapter 5. When he is reviewing existing sessions, he can split any session
at the frame of interest into two sessions. He can also duplicate the session so
that he can keep the original session. In this way, he can emit unused part
of the video and speed up the re-execution. In the user study, one programmer
suggested that, in addition to splitting, we should also allow merging two sessions
into one new session. Unlike splitting, there might be a problem of discontinuity
between the two sessions. For instance, the distance of the user from the camera
might be very different between the sessions. Such jump of values usually does
not occur in the real time session. Therefore, merging can result in unexpected
results. Though, the programmer argued that he would only merge two sessions
which he knows can be merged without causing such problems. While we did
not implement the merging feature since we wanted to avoid a chance for the
discontinuity problem, his opinion is reasonable when we compare the operation
with general video editing. In video editing, people are responsible for judging
whether merging makes sense or not. Currently, we think we can add support
for merging. We can also add support for inserting an existing session into the
specific frame of another session.

Second, another programmer in the user study commented that he wants to
take more control over how the program is executed. He was not satisfied with
the capability of editing the in-point and out-point. He wanted to edit input data
and to use it as input to the program rather than using raw data recorded by
the camera. In response to his demand, we can allow the programmer to edit
existing input data by providing special API and import the edited data into
existing sessions. Beside this programmatic solution, there are several potential
improvements on interactions with the video strips. For instance, the ways of
interactions with photos can also be applied to the videos.

These interactions with videos allows more control over how the program is
executed. While the conventional development environments only support the
live execution of the program and analysis of recorded data, the metaphor of
video strips allows smooth transitions between the execution and analysis.

6.7 Summary of Contributions

In this chapter, we introduced a method of making use of graphical editing to help
implementation of programs with real-world I/O. Each function f in the program
(out = f(in, c)) has its own graphical representation and can be edited to choose
appropriate implementation and modify its parameters. We also reviewed the
previous projects in terms of graphical editing.

The experimental implementation; i.e., VisionSketch, provides three inter-
faces: canvas for visual programming, code editor for text-based programming,
and visual editor for bridging these two modalities to facilitate example-centric
programming of image processing applications. Graphical representations of con-
crete examples in canvas and visual editor help the programmer to understand
the programs. Graphical operations such as drawing shapes on the input image
help him/her to choose and tune image processing components. The text-based

95

code editor is still needed to implement new components and needs interactive
GUI support.

96

Chapter 7

Conclusions and Outlook

In this chapter, we review our attempts to make use of graphical representations
of the real world in the integrated development environments. Based on the sum-
mary of contributions, we also discuss future work in the research of integrated
development environments.

7.1 Summary of Contributions

This dissertation discussed use of integrated graphical representation for devel-
opment of programs with real-world input and output (I/O). The development of
such programs inherently involves retrieval of the real world I/O data, which we
call ”Programming with Example.” It has been done in various forms such as unit
testing and machine learning. The scope of this dissertation is in its previously
unexplored subset which can be effectively addressed by introducing graphical
representations of the real world.

Programming by example is similar to programming with example in that they
both utilize examples, but its target user is the end-user without prior knowledge
of programming. As a result, it does not allow precise specification of program
logics. On the other hand, existing integrated development environments (IDEs)
do no support such workflow. They are equipped with text-based user interfaces
which cannot present the example data intuitively.

Integrated graphical representations provide explicit support for program-
ming with example data, allowing the programmer to take advantages of both
approaches: power of concrete examples and expressivity of text-based program-
ming. Specifically, we proposed a model of the programs with real-world I/O and
assigned graphical representations to each of the components:

out = f(in, c)

In this model, c corresponds to constants and f to functions while in and out
to variables.

First, we discussed an assignment of photos to constants (Chapter 4). With
an experimental implementation of Picode IDE [72], we confirmed that constant
data denoting a specific situation in the real world can be represented well by
photos. Not only the programmer but also the end-user is familiar with tak-
ing photos, which is accepted naturally as an action to retrieve example data.
Photos are found to be capable of containing various kinds of information re-
gardless of their representing data, such as environmental information, nonverbal
information and emotion. However, there are also intrinsic limitations of pho-
tos. They are not suitable for precisely distinguishing posture information. They
might show a variety of objects and the focus of the information can be unclear.

97

These observations imply directions for future work such as use of multiple photos
from different viewpoints to prevent occlusion, use of multiple photos of differ-
ent situations to represent semantic information, annotations on photos to filter
information, or use of other media in text-based IDEs.

Second, we discussed an assignment of videos to variables (Chapter 5). With
an experimental implementation DejaVu IDE [70], we confirmed that variable
data denoting changes of the situation along time in the real world can be rep-
resented well by videos. It could address the gulf of execution and evaluation
between the static source code and dynamic behavior of the program. We de-
composed the dynamic behavior of the program into spatial and temporal aspects
and designed correspondent two interfaces, which were confirmed to work well.
First, we provided a special debugger with the video player metaphor which allows
the programmer to control the flow of time in the recorded execution. Second,
this video player interface is interlinked with a two-dimensional space with the
canvas metaphor which allows the programmer to overview the current state of
the execution. These interfaces allow the programmer to choose which part of
the program to be visualized. When the source code is updated, they are up-
dated semi-automatically by re-executing the program with the recorded input.
This scheme keeps the link between the static and dynamic representations of
the program synchronized.

Third, we discussed how graphical representations can be manipulated and
edited to support the implementation of functions (Chapter 6). While the pre-
vious two attempts focused on providing visual aid to the programmer, this is
an attempt to provide more proactive means for the programmer to implement
programs. An experimental implementation VisionSketch IDE provides a di-
rect manipulation interface with which the programmer can annotate the input
video or photo. Then, the annotation is passed to the program component as
an argument, which allows the programmer to write code that use the annotated
information. The iteration between the annotation and writing code allows fast
prototyping of image processing programs. For instance, he first annotate the
rectangle area in the photo. Next, he switch to the code editor and write code to
apply a bipolar conversion. Then, he can immediately see its result and update
annotation if needed.

Throughout these investigations on graphical representations, we have re-
vealed many advantages and some disadvantages. We discussed a method for
using visual media such as photos and video to express real world input and
output data. Photos and videos have benefits not found in existing text-based
code. First, we found that photos can clearly show real world situations and ex-
press not only information about the human or robot subject, but also additional
information such as environmental information or human emotions. Next, we
found that videos can display a changing situation over time, and that using an
interface such as a video player could intuitively express how the program works
in the real world. In addition, we found that we can interact with visual media
by highlighting certain areas of a photo or extracting portions of videos in place
of certain programming tasks. This benefit could be an important technology ap-
plicable to programs that involve a wider array of input and output with the real
world. For example, photos of foods associated with certain flavors or surfaces
with certain textures could be used to represent sensory information.

On the other hand, it also became clear that such visual media include draw-
backs not found in text-based programming. First, in order to allow expression of
various data, visual media must allow for multiple interpretations by the viewer,
and it is sometimes unclear what is being expressed. Viewpoint and viewing angle

98

cannot be changed once a photo is taken, and it is impossible to fully update the
expression without retaking the photo. Moreover, because this media concretely
expresses situations in the real world, it is difficult to generalize for situations in
which multiple cases are shown at the same time. The visual media dealt with
in this study includes positive and negative aspects that are exactly opposite of
existing text-based programming. We’ve shown that just as images and tables
are used to supplement text in a paper, visual media could be used to supplement
text-based code to support effective programming with benefits greater than that
of either media used alone.

Please note that our approach has a certain limitation that comes from the
distinctive workflow of PwE. Our approach is an attempt to address the difficulty
of moving target by fixing (recording and using) one of the program elements.
First, when c is fixed (Chapter 4), it is usually used to compare the current sit-
uation against previous one or to reproduce a certain situation. This approach
cannot be applied to the development of programs that automatically generates
example data e.g. computing optimal posture for a robot. Second, when in is
fixed (Chapter 5), it ensures the reproducibility of out. This approach does not
work for the development of programs with real-time feedback loops where out
affects in. Finally, when f is fixed (Chapter 6), the programmer can interac-
tively manipulate its graphical representation to setup the following component
f ′, incrementally building the program. This approach eases setting up program
components by graphical editing, but cannot be applied to building complex pro-
grams whose components work as autonomous agents and affecting each other.
As we reviewed here, all of the experimental implementations shares the limita-
tion. That is, since graphical representations are 100% concrete, it is difficult to
make use of them to represent more abstract concepts.

It is also important to distinguish this work from traditional software engi-
neering research that aims to implement secure programs, including meta pro-
gramming, program verification and other kinds of program analysis. They are
particularly useful when one wants to ensure the soundness of the program. On
the other hand, our work focuses on quickly iterating the cycle of coding and
debugging to investigate and improve the quality of interactive programs. Such
style of programming is useful for lightweight software development process e.g.
prototyping process and agile process. Within such a process, an initial step with
an open-ended goal is sometimes called exploratory programming as introduced
in Subsection 2.3.3, where the programmer does not see the final specification of
the program. This work focuses on the use of graphical representations to support
understanding and implementing programs, aiding exploratory programming.

7.2 Future Outlook

In this section, we discuss future research that was shown to be necessary in this
study.

7.2.1 3D Graphical Representations

Graphical representations used in this dissertation were all two-dimensional (2D),
which led to some problems such as occlusions where the subject of the photo is
hidden by other objects in the foreground. In recent years, methods for capturing
situations in three-dimensional (3D) using tools such as the Microsoft Kinect and
other depth sensing cameras have been established. By adding 3D information
to photos and videos, we can expect to solve these restrictions.

99

Development environments that include 3D visual media could be used to
create a range of applications even wider than those discussed in this dissertation.
Example domains of applications include robots that move around in our living
environments, or augmented reality that uses image processing. Toolkits such as
the Robot Operating System, Phybots and OpenCV have already been developed,
but by providing integrated support for 3D visual media, application development
could be further simplified, leading to the possibility of a growing number of
developers or applications.

On the other hand, using 3D would elaborate new issues. The visual media
proposed in this dissertation could all be used in a 2D GUI without the use of
special controls. However, 3D data rendered in 3D would require a user interface
to control viewpoint and field of view, which could make it more complicated.
Solving this problem will require drawing upon a variety of research in the field
of 3D CG such as locating optimal viewpoints [140].

7.2.2 Multi-modal and Cross-modal Programming

In this dissertation, we only dealt with a subset of real world I/O data that can
be expressed intuitively by graphical representations. In a text-based IDE, source
code is all presented visually through pixels on a display. Thus, graphical rep-
resentations could be smoothly integrated into such environment to supplement
program development. On the other hand, programs that invoke other senses
are getting practical. For instance, development of programs that handle sound
already has a long history. Displays that create position-based haptic feedback
and interfaces that electrically induce tastes have been proposed. Though, it
remains as an open question how to present such nonvisual real world I/O data
to the programmer within the IDE.

It is not necessary to present all real-world I/O data with graphics. We foresee
that it will be feasible to create development environments optimized for each of
the sensory organs when writing programs related to the senses. For instance,
the sense of touch is most intuitively presented to the programmer as haptic
information. If the development environment can directly present sensations, the
programmer can use the full array of senses in program development to realize
multi-modal programming that allows direct debugging of human senses. This
would open chances of applying multi-modal interfaces to IDEs as cultivated in
Human-Computer Interaction research that has heretofore been focused on the
end user. For example, touch information can be presented as a button that can
play the original haptic feedback using haptic displays.

It might be more intuitive and convenient when the development environments
can present the real-world I/O data with help of different sense modalities. Au-
dio information can be displayed as an audio visualization that plays the original
sound when tapped. The visualization might help the programmer to get a brief
sense of what the audio is about without really playing it. Colors associated
synesthetically with certain sounds could also be used to represent them. Photos
that recall certain sense information could be also useful, as discussed in Chap-
ter 4. For example, photos of flowers could be used to express the scent of flowers.
Photos of object surfaces could be used to express their textures, playing their
original haptic feedback when touched. We need to investigate these kinds of
cross-modal interactions to integrate them into IDEs. In particular, presenting
sensory data with help of the relevant graphical information seems to be a promis-
ing way for two reasons. First, current IDEs are all implemented in the graphical
user interfaces and therefore it would be as easy as this dissertation describes to

100

integrate graphical representations into IDEs. Second, graphical information can
be sensed immediately compared to other senses which take some time.

7.2.3 Everyone as a Programmer

In this dissertation, we proposed to use graphical representations in text-based
IDEs to improve the productivity of programmers. However, we have also con-
firmed that end users can also operate visual programming languages found in
VisionSketch or the photo capturing in Picode. These examples show that parts
comprehended and operated by end users and those used by programmers are
sharply divided. The former are parts using visual media, while the latter are
parts that require text-based programming. Thus, we expect that it is possible to
divide work between programmers and non-programmers. This would be similar
to how UI builders divided the tasks of programmers and UI designers. We can
see two directions for future work in this research, and both would contribute to
the future utilization of computers by end users.

One direction would focus on end user programming that would allow end
users to customize the operations of programs without the need for prior knowl-
edge about programming. Research on end user programming focuses on letting
users generate programs to achieve objectives without the need to learn about
programming. In this type of system, the details of the implementation such as
text-based source code are concealed from the user. Instead, the program is de-
signed to present high level APIs, explanations, and sample input and output that
allow the user to guess at and understand the processing contents of the program.
In previous research, architectures such as mashup and On X [109] have been pro-
posed in which programmers perform text-based programming while end users
filled in gaps in the program. Filling in gaps has been used for mail addresses
and website URLs, but by using visual media, we can create new applications
such as image recognition which users can intuitively customize. VisionBlocks [9]
is a pioneering example of this.

On the other hand, the graphical representations in this dissertation are in-
tegrated into the text-based programming, and even if we divide tasks between
the end user and the programmer, the end user is still working very close to the
text-based source code. In a workshop for elementary school students (Subsec-
tion 4.5.2), we found that the visual media formed a starting point for students
to become interested in text-based programming. In other words, the approach
in this paper could be valid for educational uses, such as in studying text-based
programming. Because visual media includes environmental information and
emotions, it allows one to understand what someone was aiming for and how one
developed a program when viewing someone else’s source code. Understanding
the motivation and development process of another person makes users want to
try to create their own program. Thus, the result of this paper is not to eliminate
the need for the technology required for programming, but to support the moti-
vation for learning that technology. This can be used to make computers even
more useful. The increase in digital natives and the permeation of computers in
daily life follow this trend. It may become possible for anyone to edit the source
code of the programs they have on hand, and for all users to use programs that
they themselves customize. This is also suitable as an educational tool for the
educational method known as computational thinking, which cultivates logical
thinking through learning about the mechanisms of a computer.

101

7.2.4 Live Programming with Live Feeling

Live programming is an emerging research field to fill the gulf of execution and
evaluation in programming as introduced in Subsection 2.3.3. It is an attempt to
address the gulf between the static source code and its dynamic behavior at run-
time. This dissertation is an attempt to address the same gulf but even deepened
by the difference between the development environment (the computer) and the
runtime environment (the real world). This subsection discusses to extend the
scope of live programming analogous to the extension of the gulf.

Before discussing the scope of live programming, we review our projects
that use integrated graphical representations in the context of live program-
ming. While there is not yet precise definition of live programming, existing work
has commonly tried providing live feedback (immediate and continuous feedback)
about the program’s runtime behavior during its development process. Among
the projects introduced in this dissertation, DejaVu (Chapter 5) and VisionSketch
(Chapter 6) provide such live feedback. When the program code is updated, De-
jaVu can reprocess the recorded input to update the program output shown in its
Timeline and Canvas interface. In this way, the programmer can keep informed
of the program’s runtime behavior. VisionSketch eliminates explicit operation
of compiling text-based source code. When the programmer updates the text-
based definition of an image processing component and goes back to its graphical
view, the code is silently compiled and the component is updated. Then, he
can immediately see the updated processing result for the current frame. Such
edit-triggered updates are pretty common in conventional live programming en-
vironments such as VIVA [141].

Then, how about Picode introduced in Chapter 4? It does not provide live
feedback. Though, its inline photos representing posture data help the program-
mer understand the situation in the real world and imagine what will happen
when the code is executed. It provides live feeling of the real world, which is the
runtime environment for the Picode development environment.

While it does not fit in the definition of conventional live programming, it
surely fills the mental gap between the code and its execution. We think that
live feeling does not always come from live feedback, which is just one way of pro-
viding live programming experience. While conventional live programming tends
to be an effort to technically merge the coding and execution of the program,
we propose to define live programming as an effort to fill the mental gap be-
tween the development environment and runtime environment. It is an extended
definition and includes the case of Picode. We foresee that future direction of
live programming research is not limited to technical contributions but also in-
clude more contributions of Human-Computer Interaction, investigating how the
development environment can provide live feeling of the runtime environment.

102

References

[1] Arduino. http://www.arduino.cc/. Accessed September 1, 2013.

[2] Matlab/simulink. http://www.mathworks.com/products/simulink/. Ac-
cessed September 1, 2013.

[3] Max/msp. http://cycling74.com/. Accessed September 1, 2013.

[4] Processing. http://processing.org/. Accessed September 1, 2013.

[5] Sharpdevelop. http://www.icsharpcode.net/opensource/sd/. Accessed
September 1, 2013.

[6] Michael D. Abràmoff, Paulo J. Magalhães, and Sunanda J. Ram. Image
processing with imagej. Biophotonics international, 11(7):36–42, 2004.

[7] Robert M. Balzer. Exdams: extendable debugging and monitoring system.
In Proceedings of the May 14-16, 1969, Spring Joint Computer Conference,
AFIPS ’69 (Spring), pages 567–580, New York, NY, USA, 1969. ACM.

[8] David R. Barstow, Howard E. Shrobe, Erik Sandewall, and Stephen W.
Smoliar. Interactive programming environments, volume 9. ACM, New
York, NY, USA, July 1984.

[9] Abhijit Bendale, Kevin Chiu, Kshitij Marwah, and Ramesh Raskar. Vi-
sionblocks: A social computer vision framework. In Proceedings of the 2011
IEEE International Conference on Social Computing, pages 521–526, 2011.

[10] Alan F. Blackwell. Metacognitive theories of visual programming: What
do we think we are doing? In Proceedings of the 1996 IEEE Symposium on
Visual Languages, VL ’96, pages 240–, Washington, DC, USA, 1996. IEEE
Computer Society.

[11] Alan F. Blackwell. Pictorial representation and metaphor in visual language
design. Journal of Visual Languages and Computing, 12(3):223 – 252, 2001.

[12] Alan F. Blackwell and Thomas Green. Notational systems–the cognitive di-
mensions of notations framework. HCI Models, Theories, and Frameworks:
Toward an Interdisciplinary Science., 2003.

[13] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C.
Miller. Automation and customization of rendered web pages. In Proceed-
ings of the 18th annual ACM Symposium on User Interface Software and
Technology, UIST ’05, pages 163–172, New York, NY, USA, 2005. ACM.

[14] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision
with the OpenCV Library. O’Reilly Media, 2008.

103

[15] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr. Code bubbles: a working set-based interface for
code understanding and maintenance. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’10, pages 2503–
2512, New York, NY, USA, 2010. ACM.

[16] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer.
Example-centric programming: integrating web search into the develop-
ment environment. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, pages 513–522, New York, NY,
USA, 2010. ACM.

[17] Marcel Bruch, Eric Bodden, Martin Monperrus, and Mira Mezini. Ide
2.0: collective intelligence in software development. In Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research, FoSER
’10, pages 53–58, New York, NY, USA, 2010. ACM.

[18] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid,
Michal Moskal, Nikolai Tillmann, and Jun Kato. It’s alive! continuous
feedback in ui programming. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’13, pages 95–104, New York, NY, USA, 2013. ACM.

[19] Margaret M. Burnett, John Atwood, Rebecca Walpole Djang, James Reich-
wein, Herkimer Gottfried, and Sherry Yang. Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet paradigm. Journal
of Functional Programming, 11:155–206, 3 2001.

[20] Margaret M. Burnett, Marla J. Baker, Carisa Bohus, Paul Carlson, Sherry
Yang, and Pieter van Zee. Scaling up visual programming languages. Com-
puter, 28(3):45–54, March 1995.

[21] Margaret M. Burnett, Curtis Cook, and Gregg Rothermel. End-user soft-
ware engineering. Communications of the ACM, 47(9):53–58, September
2004.

[22] Margaret M. Burnett and Herkimer J. Gottfried. Graphical definitions:
expanding spreadsheet languages through direct manipulation and gestures.
ACM Transactions on Computer-Human Interaction (TOCHI), 5(1):1–33,
March 1998.

[23] William A. S. Buxton, M. R. Lamb, D. Sherman, and Kenneth Carless
Smith. Towards a comprehensive user interface management system. In
Proceedings of the 10th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’83, pages 35–42, New York, NY, USA,
1983. ACM.

[24] Sylvain Calinon. Robot programming by demonstration. In Springer Hand-
book of Robotics, pages 1371–1394. Springer, 2008.

[25] Xiang Cao and Ravin Balakrishnan. Visionwand: interaction techniques
for large displays using a passive wand tracked in 3d. In Proceedings of the
16th annual ACM Symposium on User Interface Software and Technology,
UIST ’03, pages 173–182, New York, NY, USA, 2003. ACM.

104

[26] Luca Cardelli. Building user interfaces by direct manipulation. In Pro-
ceedings of the 1st annual ACM SIGGRAPH Symposium on User Interface
Software, UIST ’88, pages 152–166, New York, NY, USA, 1988. ACM.

[27] Timothy Cardenas, Marcello Bastea-Forte, Antonio Ricciardi, Bjoern Hart-
mann, and Scott R. Klemmer. Testing physical computing prototypes
through time-shifted & simulated input traces, 2008.

[28] Ed Huai-Hsin Chi, Phillip Barry, John Riedl, and Joseph Konstan. A
spreadsheet approach to information visualization. In Proceedings of the
1997 IEEE Symposium on Information Visualization, pages 17–24, 1997.

[29] Kevin Chiu and Ramesh Raskar. Computer vision on tap. In Proceedings of
2009 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2009, pages 31–38, 2009.

[30] Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove, and
Kevin Christiansen. Alice: lessons learned from building a 3d system for
novices. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’00, pages 486–493, New York, NY, USA, 2000.
ACM.

[31] Alan Cooper. Why i am called ”the father of visual basic”. http://www.

cooper.com/alan/father_of_vb.html. Accessed September 1, 2013.

[32] Allen Cypher. Watch what i do. chapter Eager: programming repetitive
tasks by demonstration, pages 205–217. MIT Press, Cambridge, MA, USA,
1993.

[33] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman,
David Maulsby, Brad A. Myers, and Alan Turransky, editors. Watch What
I Do: Programming by Demonstration. MIT Press, Cambridge, MA, USA,
1993.

[34] Scott Davidoff, Nicolas Villar, Alex S. Taylor, and Shahram Izadi. Me-
chanical hijacking: how robots can accelerate ubicomp deployments. In
Proceedings of the 13th International Conference on Ubiquitous Comput-
ing, UbiComp ’11, pages 267–270, New York, NY, USA, 2011. ACM.

[35] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and
Steven P. Reiss. Debugger canvas: industrial experience with the code
bubbles paradigm. In Proceedings of the 2012 International Conference on
Software Engineering, ICSE 2012, pages 1064–1073, Piscataway, NJ, USA,
2012. IEEE Press.

[36] Rob Diaz-Marino and Saul Greenberg. Cambience: A video-driven sonic
ecology for media spaces. In Video Proceedings of ACM CSCW’06 Confer-
ence on Computer Supported Cooperative Work, 2006.

[37] Jonathan Edwards. Example centric programming. ACM SIGPLAN No-
tices, 39(12):84–91, December 2004.

[38] Jonathan Edwards. Subtext: uncovering the simplicity of programming.
In Proceedings of the 20th annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA
’05, pages 505–518, New York, NY, USA, 2005. ACM.

105

[39] Martin Erwig and Bernd Meyer. Heterogeneous visual languages-
integrating visual and textual programming. In Proceedings of the 11th
International IEEE Symposium on Visual Languages, pages 318–325, 1995.

[40] Jerry Alan Fails and Dan Olsen. Light widgets: Interacting in every-day
spaces. In Proceedings of the 7th International Conference on Intelligent
User Interfaces, IUI ’02, pages 63–69, New York, NY, USA, 2002. ACM.

[41] Jerry Alan Fails and Dan Olsen. A design tool for camera-based interaction.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’03, pages 449–456, New York, NY, USA, 2003. ACM.

[42] The Eclipse Foundation. Eclipse. http://eclipse.org/. Accessed
September 1, 2013.

[43] The Eclipse Foundation. Eclipse code recommenders. http://eclipse.

org/recommenders. Accessed September 1, 2013.

[44] Jun Fujima, Aran Lunzer, Kasper Hornbæk, and Yuzuru Tanaka. Clip,
connect, clone: Combining application elements to build custom interfaces
for information access. In Proceedings of the 17th Annual ACM Symposium
on User Interface Software and Technology, UIST ’04, pages 175–184, New
York, NY, USA, 2004. ACM.

[45] George W. Furnas. New graphical reasoning models for understanding
graphical interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’91, pages 71–78, New York, NY, USA,
1991. ACM.

[46] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay
debugging for distributed applications. In Proceedings of the annual con-
ference on USENIX ’06 Annual Technical Conference, ATEC ’06, pages
27–27, Berkeley, CA, USA, 2006. USENIX Association.

[47] Patrick Girard. Your wish is my command: programming by example.
chapter Bringing Programming by Demonstration to CAD Users, pages
135–162. Morgan Kaufmann, 2001.

[48] Max Goldman, Greg Little, and Robert C. Miller. Collabode: collaborative
coding in the browser. In Proceedings of the 4th International Workshop
on Cooperative and Human Aspects of Software Engineering, CHASE ’11,
pages 65–68, New York, NY, USA, 2011. ACM.

[49] Max Goldman and Robert C. Miller. Codetrail: Connecting source code
and web resources. Journal of Visual Languages and Computing, 20(4):223–
235, August 2009.

[50] Thomas R. G. Green and Marian Petre. Usability analysis of visual pro-
gramming environments: A‘ cognitive dimensions ’framework. Journal
of Visual Languages and Computing, 7(2):131 – 174, 1996.

[51] Saul Greenberg and Chester Fitchett. Phidgets: easy development of phys-
ical interfaces through physical widgets. In Proceedings of the 14th annual
ACM Symposium on User Interface Software and Technology, UIST ’01,
pages 209–218, New York, NY, USA, 2001. ACM.

106

[52] The LEGO Group. Mindstorms nxt. http://mindstorms.lego.com/. Ac-
cessed September 1, 2013.

[53] Sumit Gulwani. Dimensions in program synthesis. In Proceedings of the
12th International ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming, PPDP ’10, pages 13–24, New York, NY, USA,
2010. ACM.

[54] Paul E. Haeberli. Conman: A visual programming language for interac-
tive graphics. In Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’88, pages 103–111, New
York, NY, USA, 1988. ACM.

[55] Gregory D. Hager and Kentaro Toyama. X vision: A portable substrate for
real-time vision applications. Computer Vision and Image Understanding,
69(1):23 – 37, 1998.

[56] Daniel Conrad Halbert. Programming by example. PhD thesis, University
of California, Berkeley, 1984.

[57] Christopher Michael Hancock. Real-time programming and the big ideas of
computational literacy. PhD thesis, Massachusetts Institute of Technology,
2003.

[58] William R. Harris and Sumit Gulwani. Spreadsheet table transformations
from examples. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’11, pages
317–328, New York, NY, USA, 2011. ACM.

[59] Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer.
Authoring sensor-based interactions by demonstration with direct manip-
ulation and pattern recognition. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’07, pages 145–154, New
York, NY, USA, 2007. ACM.

[60] Björn Hartmann and Mark Dhillon. Hypersource: Bridging the gap be-
tween source and code-related web sites. In Adjunct Proceedings of the
23rd Annual ACM Symposium on User Interface Software and Technology,
UIST ’10, pages 421–422, New York, NY, USA, 2010. ACM.

[61] Björn Hartmann, Scott R. Klemmer, Michael Bernstein, Leith Abdulla,
Brandon Burr, Avi Robinson-Mosher, and Jennifer Gee. Reflective physi-
cal prototyping through integrated design, test, and analysis. In Proceed-
ings of the 19th annual ACM Symposium on User Interface Software and
Technology, UIST ’06, pages 299–308, New York, NY, USA, 2006. ACM.

[62] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer.
What would other programmers do: suggesting solutions to error messages.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 1019–1028, New York, NY, USA, 2010. ACM.

[63] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R.
Klemmer. Design as exploration: creating interface alternatives through
parallel authoring and runtime tuning. In Proceedings of the 21st annual
ACM Symposium on User Interface Software and Technology, UIST ’08,
pages 91–100, New York, NY, USA, 2008. ACM.

107

[64] Sunao Hashimoto, Akihiko Ishida, Masahiko Inami, and Takeo Igarashi.
Touchme: An augmented reality based remote robot manipulation. In
Proceedings of the 21st International Conference on Artificial Reality and
Telexistence, ICAT ’11, pages 28–30, 2011.

[65] D. Austin Henderson, Jr. The trillium user interface design environment.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’86, pages 221–227, New York, NY, USA, 1986. ACM.

[66] C. A. R. Hoare. Hints on programming language design. In Ellis Horowitz,
editor, Programming Languages, pages 31–40. Springer Berlin Heidelberg,
1983.

[67] Takeo Igarashi. Freeform user interfaces for graphical computing. PhD
thesis, 1999.

[68] National Instruments. Labview. http://www.ni.com/labview/. Accessed
September 1, 2013.

[69] Jun Kato. Visionsketch. http://junkato.jp/visionsketch/. Accessed
December 1, 2013.

[70] Jun Kato, Sean McDirmid, and Xiang Cao. Dejavu: integrated support for
developing interactive camera-based programs. In Proceedings of the 25th
annual ACM Symposium on User Interface Software and Technology, UIST
’12, pages 189–196, New York, NY, USA, 2012. ACM.

[71] Jun Kato, Daisuke Sakamoto, and Takeo Igarashi. Phybots: a toolkit for
making robotic things. In Proceedings of the Designing Interactive Systems
Conference, DIS ’12, pages 248–257, New York, NY, USA, 2012. ACM.

[72] Jun Kato, Daisuke Sakamoto, and Takeo Igarashi. Picode: inline photos
representing posture data in source code. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’13, pages 3097–
3100, New York, NY, USA, 2013. ACM.

[73] Scott R. Klemmer and James A. Landay. Toolkit support for integrating
physical and digital interactions. Human-Computer Interaction, 24(3):315–
366, 2009.

[74] Scott R. Klemmer, Jack Li, James Lin, and James A. Landay. Papier-
mache: toolkit support for tangible input. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’04, pages 399–
406, New York, NY, USA, 2004. ACM.

[75] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret
Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman,
Brad A. Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and
Susan Wiedenbeck. The state of the art in end-user software engineering.
ACM Computing Surveys (CSUR), 43(3):21:1–21:44, April 2011.

[76] Andrew J. Ko, Htet Htet Aung, and Brad A. Myers. Design requirements
for more flexible structured editors from a study of programmers’ text edit-
ing. In CHI ’05 Extended Abstracts on Human Factors in Computing Sys-
tems, CHI EA ’05, pages 1557–1560, New York, NY, USA, 2005. ACM.

108

[77] Andrew J. Ko and Brad A. Myers. Designing the whyline: a debugging
interface for asking questions about program behavior. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’04, pages 151–158, New York, NY, USA, 2004. ACM.

[78] Andrew J. Ko and Brad A. Myers. A framework and methodology for
studying the causes of software errors in programming systems. Journal of
Visual Languages and Computing, 16(1):41–84, 2005.

[79] Andrew J. Ko and Brad A. Myers. Barista: An implementation framework
for enabling new tools, interaction techniques and views in code editors. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’06, pages 387–396, New York, NY, USA, 2006. ACM.

[80] Andrew J. Ko and Brad A. Myers. Finding causes of program output with
the java whyline. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, pages 1569–1578, New York, NY,
USA, 2009. ACM.

[81] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. Six learning barriers
in end-user programming systems. In Proceedings of the 2004 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing, pages 199–206,
2004.

[82] John R. Koza, Forrest H. Bennett, III, and Oscar Stiffelman. Genetic
programming as a darwinian invention machine. In Riccardo Poli, Peter
Nordin, William B. Langdon, and Terence C. Fogarty, editors, Genetic
Programming, volume 1598 of Lecture Notes in Computer Science, pages
93–108. Springer Berlin Heidelberg, 1999.

[83] David Kurlander. Watch what i do. chapter History of Editable Graphical
Histories, pages 405–413. MIT Press, Cambridge, MA, USA, 1993.

[84] David Kurlander and Eric A. Bier. Graphical search and replace. ACM
SIGGRAPH Computer Graphics, 22(4):113–120, June 1988.

[85] David Kurlander and Steven Feiner. Interactive constraint-based search
and replace. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’92, pages 609–618, New York, NY, USA, 1992.
ACM.

[86] David Kurlander and Steven Feiner. Inferring constraints from multiple
snapshots. ACM Transactions on Graphics (TOG), 12(4):277–304, October
1993.

[87] Yang Li and James A. Landay. Activity-based prototyping of ubicomp
applications for long-lived, everyday human activities. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’08, pages 1303–1312, New York, NY, USA, 2008. ACM.

[88] Hsiang-Sheng Liang, Kuan-Hung Kuo, Po-Wei Lee, Yu-Chien Chan, Yu-
Chin Lin, and Mike Y. Chen. Seess: Seeing what i broke – visualizing
change impact of cascading style sheets (css). In Proceedings of the 26th
Annual ACM Symposium on User Interface Software and Technology, UIST
’13, pages 353–356, New York, NY, USA, 2013. ACM.

109

[89] Henry Lieberman. Dominoes and storyboards beyond ‘icons on strings’.
In Proceedings of 1992 IEEE Workshop on Visual Languages, pages 65–71,
1992.

[90] Henry Lieberman. Watch what i do. chapter Mondrian: a teachable graph-
ical editor, pages 341–358. MIT Press, Cambridge, MA, USA, 1993.

[91] Henry Lieberman. Watch what i do. chapter Tinker: a programming by
demonstration system for beginning programmers, pages 49–64. MIT Press,
Cambridge, MA, USA, 1993.

[92] Henry Lieberman. The debugging scandal and what to do about it (intro-
duction to the special issue on the debugging scandal). Communications of
the ACM, 40(4):26–29, 1997.

[93] Henry Lieberman. Your wish is my command: programming by example.
Morgan Kaufmann series in interactive technologies. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[94] Henry Lieberman and Christopher Fry. Bridging the gulf between code
and behavior in programming. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’95, pages 480–486, New
York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[95] James Lin, Mark W. Newman, Jason I. Hong, and James A. Landay.
Denim: finding a tighter fit between tools and practice for web site design.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’00, pages 510–517, New York, NY, USA, 2000. ACM.

[96] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A. Lau.
End-user programming of mashups with vegemite. In Proceedings of the
14th International Conference on Intelligent User Interfaces, IUI ’09, pages
97–106, New York, NY, USA, 2009. ACM.

[97] Greg Little and Robert C. Miller. Keyword programming in java. In Pro-
ceedings of the Twenty-second IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’07, pages 84–93, New York, NY, USA,
2007. ACM.

[98] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Eve-
lyn Eastmond. The scratch programming language and environment. ACM
Transactions on Computing Education (TOCE), 10(4):16:1–16:15, Novem-
ber 2010.

[99] John H. Maloney and Randall B. Smith. Directness and liveness in the
morphic user interface construction environment. In Proceedings of the 8th
annual ACM Symposium on User Interface and Software Technology, UIST
’95, pages 21–28, New York, NY, USA, 1995. ACM.

[100] Jennifer Mankoff, Scott E. Hudson, and Gregory D. Abowd. Interaction
techniques for ambiguity resolution in recognition-based interfaces. In Pro-
ceedings of the 13th annual ACM Symposium on User Interface Software
and Technology, UIST ’00, pages 11–20, New York, NY, USA, 2000. ACM.

[101] Jennifer Mankoff, Scott E. Hudson, and Gregory D. Abowd. Providing in-
tegrated toolkit-level support for ambiguity in recognition-based interfaces.

110

In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’00, pages 368–375, New York, NY, USA, 2000. ACM.

[102] Toshiyuki Masui. An efficient text input method for pen-based computers.
In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’98, pages 328–335, New York, NY, USA, 1998. ACM
Press/Addison-Wesley Publishing Co.

[103] Toshiyuki Masui and Ken Nakayama. Repeat and predict—two keys
to efficient text editing. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’94, pages 118–130, New York,
NY, USA, 1994. ACM.

[104] David L. Maulsby, Ian H. Witten, and Kenneth A. Kittlitz. Metamouse:
Specifying graphical procedures by example. In Proceedings of the 16th An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’89, pages 127–136, New York, NY, USA, 1989. ACM.

[105] Dan Maynes-Aminzade, Randy Pausch, and Steve Seitz. Techniques for
interactive audience participation. In Proceedings of the 4th IEEE Inter-
national Conference on Multimodal Interfaces, ICMI ’02, pages 15–, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[106] Dan Maynes-Aminzade, Terry Winograd, and Takeo Igarashi. Eyepatch:
prototyping camera-based interaction through examples. In Proceedings of
the 20th annual ACM Symposium on User Interface Software and Technol-
ogy, UIST ’07, pages 33–42, New York, NY, USA, 2007. ACM.

[107] Sean McDirmid. Living it up with a live programming language. In Pro-
ceedings of the 22nd annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, OOPSLA ’07, pages 623–638, New
York, NY, USA, 2007. ACM.

[108] Sean McDirmid. Usable live programming (to appear). In Proceedings of the
22nd annual ACM SIGPLAN Conference on Object-oriented Programming
Systems and Applications, OOPSLA ’13, New York, NY, USA, 2013. ACM.

[109] Microsoft. on x. http://www.onx.ms/. Accessed September 1, 2013.

[110] Microsoft. Roslyn. http://msdn.microsoft.com/en-us/vstudio/

roslyn.aspx. Accessed September 1, 2013.

[111] Microsoft. Visual studio. http://www.microsoft.com/visualstudio/.
Accessed September 1, 2013.

[112] Thomas G. Moher. Provide: a process visualization and debugging en-
vironment. IEEE Transactions on Software Engineering, 14(6):849–857,
1988.

[113] Mathew Mooty, Andrew Faulring, Jeffrey Stylos, and Brad A. Myers. Cal-
cite: Completing code completion for constructors using crowds. In Pro-
ceedings of the 2010 IEEE Symposium on Visual Languages and Human-
Centric Computing, pages 15–22, 2010.

[114] Brad A. Myers. Visual programming, programming by example, and pro-
gram visualization: a taxonomy. In Proceedings of the SIGCHI Conference

111

on Human Factors in Computing Systems, CHI ’86, pages 59–66, New York,
NY, USA, 1986. ACM.

[115] Brad A. Myers. Taxonomies of visual programming and program visual-
ization. Journal of Visual Languages and Computing, 1(1):97–123, March
1990.

[116] Brad A. Myers, Scott E. Hudson, and Randy Pausch. Past, present, and
future of user interface software tools. ACM Transactions on Computer-
Human Interaction (TOCHI), 7(1):3–28, March 2000.

[117] Brad A. Myers, John F. Pane, and Andy Ko. Natural programming
languages and environments. Communications of the ACM, 47(9):47–52,
September 2004.

[118] Shinichiro Nakaoka, Shuuji Kajita, and Kazuhito Yokoi. Intuitive and flex-
ible user interface for creating whole body motions of biped humanoid
robots. In Proceedings of the 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1675–1682, 2010.

[119] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End
User Computing. MIT Press, Cambridge, MA, USA, 1st edition, 1993.

[120] Mark W. Newman, Mark S. Ackerman, Jungwoo Kim, Atul Prakash,
Zhenan Hong, Jacob Mandel, and Tao Dong. Bringing the field into the lab:
supporting capture and replay of contextual data for the design of context-
aware applications. In Proceedings of the 23rd annual ACM Symposium
on User Interface Software and Technology, UIST ’10, pages 105–108, New
York, NY, USA, 2010. ACM.

[121] Donald A. Norman and Stephen W. Draper. User Centered System Design;
New Perspectives on Human-Computer Interaction. L. Erlbaum Associates
Inc., Hillsdale, NJ, USA, 1986.

[122] Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and Brad A. Myers.
Active code completion. In Proceedings of the 2012 International Confer-
ence on Software Engineering, ICSE 2012, pages 859–869, Piscataway, NJ,
USA, 2012. IEEE Press.

[123] Walter J. Ong and John Hartley. Orality and literacy: The technologizing
of the word. Methuen & Co. Ltd, 1982.

[124] John F. Pane and Brad A. Myers. Usability issues in the design of novice
programming systems. 1996.

[125] Kayur Patel, Naomi Bancroft, Steven M. Drucker, James Fogarty, An-
drew J. Ko, and James Landay. Gestalt: integrated support for implemen-
tation and analysis in machine learning. In Proceedings of the 23rd annual
ACM Symposium on User Interface Software and Technology, UIST ’10,
pages 37–46, New York, NY, USA, 2010. ACM.

[126] Kayur Dushyant Patel. Lowering the Barrier to Applying Machine Learn-
ing. PhD thesis, 2012.

[127] G. E. Pfaff, editor. User Interface Management Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1985.

112

[128] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient de-
bugging. In Proceedings of the 22nd annual ACM SIGPLAN Conference
on Object-oriented Programming Systems and Applications, OOPSLA ’07,
pages 535–552, New York, NY, USA, 2007. ACM.

[129] Hayes Solos Raffle, Amanda J. Parkes, and Hiroshi Ishii. Topobo: a con-
structive assembly system with kinetic memory. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’04,
pages 647–654, New York, NY, USA, 2004. ACM.

[130] Jun Rekimoto. Organic interaction technologies: from stone to skin. Com-
munications of the ACM, 51(6):38–44, June 2008.

[131] Alex Repenning and Wayne Citrin. Agentsheets: applying grid-based spa-
tial reasoning to human-computer interaction. In Proceedings of 1993 IEEE
Symposium on Visual Languages, pages 77–82, 1993.

[132] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit:
aiding the development of context-enabled applications. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’99, pages 434–441, New York, NY, USA, 1999. ACM.

[133] Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the numbers
of end users and end user programmers. In Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC
’05, pages 207–214, Washington, DC, USA, 2005. IEEE Computer Society.

[134] Julia Schwarz, Scott Hudson, Jennifer Mankoff, and Andrew D. Wilson. A
framework for robust and flexible handling of inputs with uncertainty. In
Proceedings of the 23rd annual ACM Symposium on User Interface Software
and Technology, UIST ’10, pages 47–56, New York, NY, USA, 2010. ACM.

[135] Jakub Segen and Senthil Kumar. Gesture vr: vision-based 3d hand inter-
ace for spatial interaction. In Proceedings of the 6th ACM International
Conference on Multimedia, MULTIMEDIA ’98, pages 455–464, New York,
NY, USA, 1998. ACM.

[136] Ben Shneiderman. Direct manipulation: A step beyond programming lan-
guages. Computer, 16(8):57–69, 1983.

[137] N. C. Shu, editor. Visual programming. Van Nostrand Reinhold Co., New
York, NY, USA, 1988.

[138] David Canfield Smith. Watch what i do. chapter Pygmalion: an exe-
cutable electronic blackboard, pages 19–48. MIT Press, Cambridge, MA,
USA, 1993.

[139] Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and Brad A. Myers. Im-
proving api documentation using api usage information. In Proceedings
of the 2009 IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 119–126, 2009.

[140] Shigeo Takahashi, Issei Fujishiro, Yuriko Takeshima, and Tomoyuki Nishita.
A feature-driven approach to locating optimal viewpoints for volume visu-
alization. In Proceedings of the 2005 IEEE Visualization, pages 495–502,
2005.

113

[141] Steven L. Tanimoto. Viva: A visual language for image processing. Journal
of Visual Languages and Computing, 1(2):127 – 139, 1990.

[142] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel Fah-
ndrich. Touchdevelop: programming cloud-connected mobile devices via
touchscreen. In Proceedings of the 10th SIGPLAN Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, ON-
WARD ’11, pages 49–60, New York, NY, USA, 2011. ACM.

[143] Bret Victor. Learnable programming. http://worrydream.com/

LearnableProgramming/, 2012. Accessed September 1, 2013.

[144] Ana-Maria Visan, Kapil Arya, Gene Cooperman, and Tyler Denniston.
Urdb: a universal reversible debugger based on decomposing debugging
histories. In Proceedings of the 6th Workshop on Programming Languages
and Operating Systems, PLOS ’11, pages 8:1–8:5, New York, NY, USA,
2011. ACM.

[145] Ge Wang and Perry Cook. Chuck: a programming language for on-the-fly,
real-time audio synthesis and multimedia. In Proceedings of the 12th annual
ACM International Conference on Multimedia, MULTIMEDIA ’04, pages
812–815, New York, NY, USA, 2004. ACM.

[146] Shuo Wang, Xiaocao Xiong, Yan Xu, Chao Wang, Weiwei Zhang, Xiaofeng
Dai, and Dongmei Zhang. Face-tracking as an augmented input in video
games: enhancing presence, role-playing and control. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’06,
pages 1097–1106, New York, NY, USA, 2006. ACM.

[147] Kirsten N. Whitley. Visual programming languages and the empirical
evidence for and against. Journal of Visual Languages and Computing,
8(1):109 – 142, 1997.

[148] Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal. Snipmatch: using
source code context to enhance snippet retrieval and parameterization. In
Proceedings of the 25th annual ACM Symposium on User Interface Software
and Technology, UIST ’12, pages 219–228, New York, NY, USA, 2012.
ACM.

[149] Andrew D. Wilson. Playanywhere: a compact interactive tabletop
projection-vision system. In Proceedings of the 18th annual ACM Sym-
posium on User Interface Software and Technology, UIST ’05, pages 83–92,
New York, NY, USA, 2005. ACM.

[150] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. Sikuli: using gui
screenshots for search and automation. In Proceedings of the 22nd annual
ACM Symposium on User Interface Software and Technology, UIST ’09,
pages 183–192, New York, NY, USA, 2009. ACM.

[151] Wataru Yoshizaki, Yuta Sugiura, Albert C. Chiou, Sunao Hashimoto,
Masahiko Inami, Takeo Igarashi, Yoshiaki Akazawa, Katsuaki Kawachi,
Satoshi Kagami, and Masaaki Mochimaru. An actuated physical puppet
as an input device for controlling a digital manikin. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’11,
pages 637–646, New York, NY, USA, 2011. ACM.

114

[152] Andreas Zeller and Dorothea Lütkehaus. Ddd ― a free graphical front-end
for unix debuggers. ACM SIGPLAN Notices, 31(1):22–27, January 1996.

115

