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1. The mammalian non-coding transcriptome
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In recent years it has become evident that in eukaryotes most of the genome is 

transcribed, and that a big portion of the transcriptome corresponds to non-coding 

RNAs (ncRNAs) that are found both in the nucleus and the cytoplasm. However, 

during many years only a few subclasses of ncRNAs were assigned functions, such 

as ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) that are involved in mRNA 

translation; small nucleolar RNAs (snoRNAs) that modify rRNAs; and small nuclear 

RNAs (snRNAs) that are involved in splicing (Birney et al., 2007; Carninci et al., 

2005; Guttman et al., 2009; Mattick, 2004). Later, founding members of other novel 

classes of ncRNAs were also described, such as the microRNA (miRNA) lin-4 in C. 

elegans that regulates the expression of the LIN-14 protein during development (Lee 

et al., 1993) and that eventually led to the discovery in mammals of miRNAs as well 

as other classes of short ncRNAs (sRNAs) including short interfering RNAs 

(siRNAs) and PIWI-interacting RNAs (piRNAs), among others. Also in the 1990s 

the H19 gene, an abundant fetal-specific hepatic transcript was described as the first 

mammalian gene whose product is a long non coding RNA (lncRNA) (Brannan et al., 

1990). 

Although there are a few ribozymes in mammals (Salehi-Ashtiani et al., 2006; 

Teixeira et al., 2004), most ncRNAs are catalytically inactive and require partner 

proteins to exert their functions, and many form intricate ribonucleoprotein (RNP) 

complexes, such as ribosomes and the telomerase complex. 

Eukaryotic ribosomes, for example, contain around 80 proteins and are formed by 

2 subunits, the small 40S and the large 60S subunits. In addition to proteins, the large 

subunit contains 3 rRNAs, 25S rRNA, 5S rRNA and 5.8S rRNA while the small 

subunit contains the 18S rRNA. Ribosomes must ensure that appropriate tRNAs are 

recruited according to the triplets in the mRNA and must also catalyze peptide bond 

formation between aminoacids during translation (Wilson and Doudna Cate, 2012). 

Another well characterized example of a RNP complex is the telomerase complex 

that catalyzes the addition of DNA repeats at the ends of linear chromosomes. The 

core components of the telomerase RNP complex are telomerase reverse 

transcriptase (TERT) and telomerase RNA (TER), an RNA template for the addition 

of the DNA repeats (Mason et al., 2011). 

Among the more recently discovered ncRNA classes, miRNAs are ~22nt long 
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RNAs present mainly in the cytoplasm that form an RNP complex known as the 

RNA induced silencing complex (RISC) that has an Argonaute (Ago) protein at its 

core. In contrast, lncRNAs are a group of ncRNAs longer than 200nt that have 

complex secondary and tertiary structures. lncRNAs play many different functions, 

such as regulation of translation (Carrieri et al., 2012; Yoon et al., 2012), acting as 

decoys for proteins or other ncRNAs (Bernard et al., 2010; Poliseno et al., 2010; 

Tripathi et al., 2010), or as architectural elements of nuclear structures (Clemson et 

al., 2009; Chen and Carmichael, 2009; Sasaki et al., 2009; Sunwoo et al., 2009), 

among others. Therefore, they do not share a common intracellular location, and 

many lncRNAs interact with distinct arrays of proteins (and other RNAs) according 

to their individual functions. A subgroup of lncRNAs is involved in chromatin 

remodeling and some of them directly interact with various DNA or histone 

modifying complexes (Bertani et al., 2011; Nagano et al., 2008; Pandey et al., 2008; 

Sado et al., 2005; Sun et al., 2006; Wang et al., 2011; Yang et al., 2011) (Figure 1). 

Since protein-RNA interactions are fundamental for the function of many 

ncRNAs, understanding of ncRNA interaction networks is fundamental to 

comprehend the role of ncRNA within more complex regulatory networks. 

This work is divided in two parts. First I focus on the interaction between 

miRNAs and a protein called Dicer during RISC assembly, which ultimately leads to 

the posttranscriptional regulation of thousands of genes in mammalian cells. Second 

I analyze the relationship between two well known lncRNAs, Xist and HOTAIR, and 

the Polycomb-group (PcG) repressive complex 2 (PRC2), that together participate in 

the regulation of the inactivation of the X chromosome in female mammals, and of 

Hox gene expression during embryonic development and differentiation, respectively. 
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Figure 1. Multiple classes of ncRNAs are encoded in the mammalian genome. This 

work focuses on the protein-RNA interactions that lead, in the cytoplasm, to the 

assembly of RISC that has an Ago protein at its core; and in the nucleus, to the 

formation of RNP complexes between some lncRNAs and PRC2. 



  

2. Part 1: Dicer is dispensable for asymmetric 

RISC loading in mammals 
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2.1 Small RNA biogenesis and RISC assembly 

MicroRNAs are a class of small ncRNAs that fine tune the expression of genes at 

post-transcriptional level. It is estimated that around half of human genes are 

regulated by miRNAs and that they are involved in most biological processes. 

MicroRNAs are encoded in the genome of most eukaryotic organisms and are 

transcribed mainly by RNAPII to produce primary transcripts with stem loop 

structures up to several kilobases long. In the canonical processing pathway primary 

transcripts are first processed in the nucleus by the Microprocessor complex that 

contains Drosha, a type III RNase, and its cofactor DiGeorge syndrome critical 

region 8 (DGCR8). The distal end of the pre-miRNA stem loops is cleaved by 

Drosha, which results in the production of a ~65nt long pre-miRNA that is then 

exported to the cytoplasm by Exportin 5 (Exp5) (Ghildiyal and Zamore, 2009; Kim 

et al., 2009b). Once in the cytoplasm pre-miRNAs are recognized by a protein called 

Dicer that processes the end closer to the loop of the RNA to produce a 

miRNA/miRNA* duplex (Figure 2). Dicer possesses several functional domains: an 

N-terminal helicase domain, a domain with unknown function (DUF283), a PAZ 

domain, two RNase III domains, and a double stranded RNA (dsRNA)-binding 

domain (Figure 6A). In flies, there are two Dicer paralogs (Lee et al., 2004). Dicer-1 

(Dcr-1) processes pre-miRNAs into miRNA/miRNA* duplexes (Lee et al., 2004; 

Tsutsumi et al., 2011), while Dicer-2 (Dcr-2) processes long dsRNAs to produce 

siRNA duplexes (Cenik et al., 2011; Lee et al., 2004; Welker et al., 2010), which can 

also be artificially introduced into cells. In contrast, mammals have a single Dicer 

that processes both pre-miRNAs and long dsRNAs (Provost et al., 2002; Zhang et al., 

2002). In all cases fully processed RNA duplexes have 3’ overhangs and are 

phosphorylated at their 5’ends. 

Dicer proteins often have dsRNA-binding proteins as their partners: Loquacious 

(Loqs) for fly Dcr-1 (Forstemann et al., 2005; Jiang et al., 2005; Saito et al., 2005), 

R2D2 for fly Dcr-2 (Liu et al., 2003), and TAR-binding protein (TRBP) or PKR 

activator (PACT) for mammalian Dicer (Chendrimada et al., 2005; Gregory et al., 

2005; Haase et al., 2005; Lee et al., 2006; Maniataki and Mourelatos, 2005). 

After processing by Dicer, small RNA duplexes are assembled into an effector 

complex known as RNA-induced silencing complex (RISC), that has an Argonaute 
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(Ago) protein at its core (Hammond et al., 2001) (Figure 2). In flies, 

miRNA/miRNA* and siRNA duplexes are preferentially sorted into two Ago 

paralogs, Ago1 and Ago2, respectively (Forstemann et al., 2007; Okamura et al., 

2004; Tomari et al., 2007) (Figure 9A, B). In contrast, mammals lack such sorting 

mechanism and all four Ago proteins (Ago1–Ago4) can incorporate both 

miRNA/miRNA* and siRNA duplexes (Liu et al., 2004; Meister et al., 2004; Yoda et 

al., 2010) (Figure 9C).  

RISC assembly can be divided into at least two steps (Kawamata and Tomari, 

2010) (Figure 2). First, a small RNA duplex is loaded into the Ago protein to form 

pre-RISC. It is thought that small RNA (sRNA) duplexes are too bulky to fit into 

Ago, and that therefore a conformational change in the protein mediated by the 

Hsc70/Hsp90 chaperone machinery and the consumption of ATP is required for 

RISC loading (Iki et al., 2010; Iwasaki et al., 2010; Miyoshi et al., 2010) (Figure 3). 

Second, the duplex is unwound and one of the two strands (guide strand) is retained 

in Ago while the other strand (passenger strand) is discarded for degradation, 

resulting in the formation of mature RISC. Therefore, only one of the strands remains 

incorporated in RISC and guides the complex to target mRNAs that are recognized 

mainly through base pairing with the seed region of the guide strand, usually 

nucleotides 2-8 from its 5’ end (Doench and Sharp, 2004; Lewis et al., 2003). RISC 

regulates the expression of the target mRNAs by target cleavage, translational 

repression and/or deadenylation in a sequence specific manner (Figure 2). 

The selection of which strand serves as the guide is not random but often 

asymmetric (Khvorova et al., 2003; Schwarz et al., 2003). In flies and mammals, it is 

widely accepted that the thermodynamic asymmetry of the ends of a small RNA 

duplex is a key factor that determines which of the two strands of the duplex serves 

as the guide. In general, the strand with the less stable 5’ end tends to serve as the 

guide strand, while the other strand with the more stable 5’ end is more likely 

discarded from the Ago protein during unwinding (Khvorova et al., 2003; Schwarz et 

al., 2003) (Figure 4). Importantly, the strand serving as the guide is already 

determined by the polarity of small RNA duplexes upon loading, before unwinding 

actually occurs (Kawamata and Tomari, 2010). In flies, the Dcr-2/R2D2 heterodimer, 

which is essential for Ago2-RISC assembly (Liu et al., 2003; Pham et al., 2004; 

Tomari et al., 2004a), senses the thermodynamic asymmetry of the siRNA duplex 
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(Tomari et al., 2004b). R2D2 orients siRNA duplexes by binding to the more stable 

end, which positions Dcr-2 at the opposite, less stable, end. The heterodimer then 

loads the siRNA duplex into fly Ago2 with the prearranged orientation (Tomari et al., 

2004b) (Figure 5). Thus, Dcr-2/R2D2 has two distinct functions: dicing of long 

dsRNAs and asymmetric loading of siRNA duplexes into Ago2. 

By analogy to the functions of fly Dcr-2/R2D2 in thermodynamic asymmetry 

sensing and Ago2-RISC loading, it is tempting to postulate that Dcr-1 and Loqs in 

flies and Dicer and TRBP (or PACT) in mammals might play similar roles in RISC 

assembly, in addition to their essential role in dicing (Chendrimada et al., 2005; 

Gregory et al., 2005; MacRae et al., 2008; Maniataki and Mourelatos, 2005; Miyoshi 

et al., 2009; Sakurai et al., 2011). Indeed, it was recently shown that, much as fly 

Dcr-2/R2D2, recombinant human Dicer/TRBP can bind to siRNA duplexes 

according to their thermodynamic asymmetry (Gredell et al., 2010; Noland et al., 

2011). However, from a functional point of view, immunodepletion of human Dicer 

from HeLa lysate to an undetectable level did not hinder target cleavage activity of 

siRNAs (Martinez et al., 2002), and the efficiency of target gene silencing by 

siRNAs was apparently uncompromised in two independent lines of Dicer-knockout 

mouse embryonic stem (ES) cells (Kanellopoulou et al., 2005; Murchison et al., 

2005). Moreover, siRNA-initiated canonical assembly of human Ago2-RISC was 

recently reconstituted in vitro without Dicer and TRBP (Ye et al., 2011). These 

accumulating observations raise the question of whether or not Dicer/TRBP binding 

plays a role in asymmetric RISC loading in mammals. This work shows that, in live 

cells and in vitro, Dicer is dispensable for asymmetric RISC assembly in mammals. 
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Figure 2. Scheme of miRNA biogenesis and RISC assembly in mammals. Mature 

RISC targets mRNAs and regulates their expression by (1) translational repression, 

(2) deadenylation, or (3) target cleavage. See text for further details. 

 

 

Figure 3. RISC loading requires the Hsc70/Hsp90 chaperone machinery. In flies and 

mammals the Hsc70/Hsp90 chaperone machinery is believed to induce a 

conformational change of Ago and to aid loading of the sRNA duplex to form pre-

RISC. 
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Figure 4. Small RNA duplexes are functionally asymmetric due mainly to the 

thermodynamic asymmetry of the ends of the duplex. The strand with its 5’ end 

towards the less stable end of the duplex (ΔG>) has a higher probability to remain 

incorporated in RISC and function as guide strand (red). The opposite strand (black) 

is discarded and is known as passenger strand. Both strands of small RNA duplexes 

are phosphorylated at their 5’ ends. 

 

 

 

Figure 5. In flies the Dcr-2/R2D2 heterodimer is required for Ago2-RISC loading. A. 

Dcr-2/R2D2 binds siRNA duplexes asymmetrically and hands them over to Ago2 

with the prearranged orientation. B. In the absence of Dcr-2/R2D2 no RISC loading 

occurs. 
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2.2  Materials and methods 

2.2.1 General reagents 

1× lysis buffer: 30 mM HEPES-KOH pH 7.4, 100 mM potassium acetate, 2 mM 

magnesium acetate. 

40× reaction mix (does not correspond to 40× concentration, but to the volume 

necessary for 40 standard reactions): 133 mM potassium acetate, 9.33 mM 

magnesium acetate, 1.7 mM DTT, 3.33 mM ATP, 0.33 U/μl, 83.33 mM creatine 

monophosphate, 0.1 U/μl creatine phosphokinase in ultrapure water, in a final 

volume of 120 μl. 

2.2.2 Plasmids constructions 

For the construction of the mouse DICER1 expression vector (pCAGEN-

DICER1), the Dicer1 sequence was amplified from pBluescript II KS(–)-Dicer (Doi 

et al., 2003) and inserted in the EcoRI site of the pCAGEN vector using the In-

Fusion Advantage PCR cloning kit (Clontech). The following primers were used. 

Dicer: Dcr-F TTTTGGCAAAGAATTCGATGATTGAAAAGC

CCTGCT 

 Dcr-R TATCCTCGAGGAATTCGTGGAGCTGTGGTT

CTGGTC 

 

For the SBP-tagged DICER1 construct (pCAGEN-SBP-DICER1), the Dicer1 and 

SBP sequences were amplified from pCAGEN-DICER1 or pASW (Iwasaki et al., 

2010), respectively, and these two fragments were fused using the In-Fusion 

Advantage PCR cloning kit (Clontech). The following primers were used. 

Dicer: Dcr-F1 GCAGGCTCCGCGGCCATGGCAGGCCTGCA

GCTCAT 

 Dcr-R1 TATCCTCGAGGAATTCTCAGCTGTTAGGAA

CCTGAGGC 

SBP: SBP F TTTTGGCAAAGAATTCCCATGGACGAGAA

GACCACCGGC 

 SBP R GGCCGCGGAGCCTGCTTTTT 

 

To prepare target constructs for luciferase assays double stranded oligos 

containing perfectly complementary sequences to each strand of duplex A and 
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duplex B were synthesized (Hokkaido System Science) and cloned in the XhoI and 

NotI sites of the psiCHECK-2 vector (Promega). 

2.2.3 Luciferase reporter assay 

4 × 10
4
 Dicer1

–/–
 mouse embryonic fibroblasts (MEF) cells (Yang et al., 2010; Yi 

et al., 2006) per well were seeded in 24-well plates and 24 h later were transfected 

with 0.8 μg of pCAGEN or pCAGEN-DICER1 using Lipofectamine 2000 according 

to the manufacturer’s instructions. Twenty four hours after the initial transfection, 

cells were co-transfected with 0.25 μg of the target-bearing psiCHECK-2 constructs 

and with increasing concentrations of 5’ pre-phosphorylated duplex A or duplex B, 

using DharmaFect Duo (Dharmacon). 48 h after the initial transfections, Renilla and 

Firefly luciferase expressions were measured using Dual Luciferase Reporter Assay 

System (Promega), and normalized to mock RNA transfections. Graphs were 

generated and IC50 values were calculated using Igor Pro software (Wavemetrics). 

2.2.4 Antibodies 

The following antibodies were used for western blot and super shift assays: Anti-

DICER1 “C-terminal” (sc-30226, Santa Cruz) anti-DICER1 “N-terminal” 

(Kanellopoulou et al., 2005), anti-AGO2 (2897, Cell Signaling), and normal rabbit 

IgG (2729, Cell Signaling). 

2.2.5 Preparation of recombinant DICER1 and cell lysate 

2 × 106 HEK293T cells per 15 cm dish were transfected with 33 μg pCAGEN-

SBP-DICER1 and 132 μl FugeneHD transfection reagent (1:4 ratio). Cells were 

harvested 24 hpt and the packed cell volume (PCV) was estimated. Cells were 

resuspended in 1× PCV of 1× lysis buffer containing 1 mM DTT and 1× Protease 

Inhibitor Complex (Roche). Cells were dounced, the lysate was cleared at 17000 g 

for 20 min and incubated with 0.2× PCV of Streptavidin Sepharose High 

Performance (GE) beads for 3 h at 4 °C. Beads were washed 3 times with 1× lysis 

buffer containing 300 mM NaCl and 1 mM DTT; and rinsed in the same buffer 

without NaCl. rDICER1 was eluted from the beads for 1 h at 4 °C using 1× lysis 

buffer containing 50 % glycerol, 0.01 % BSA, 5 mM biotin and 1 mM DTT 

(Tsutsumi et al., 2011). For lysate preparation 1.3 × 10
6
 Dicer1

–/–
 MEF cells per 15 
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cm dish were grown over night and lysate was prepared in the same way as for 

DICER1 purification. Lysate was flash frozen after clearing at 17000 g for 20 min. 

2.2.6 RNA oligos 

The sequences of duplex A, duplex B and let-7 siRNA duplex are included in 

figures 7 and 8 (Hokkaido System Science). The sequence of pre-let-7 for dicing 

assays is (Hokkaido System Science): 

pre-let-7 UGAGGUAGUAGGUUGUAUAGUAGUAAUUACACAUCA

UACUAUACAAUGUGCUAGCUUUCU 

 

Target RNAs for in vitro RISC assembly reactions were RNA oligos perfectly 

complementary to strand 4 or strand 5 of let-7 siRNA duplex (Figure 8) (Hokkaido 

System Science). 

Target for 

strand 4 

mUmCmUmUmCmAmCmUmAmUmAmCmAmAmCmCmUm

AmCmUmAmCmCmUmCmAmAmCmCmUmU 

Target for 

strand 5 
mUmCmUmUmCmAmGmAmGmAmGmGmUmAmGmUmUm

GmGmUmUmGmUmAmUmAmAmCmCmUmU 

(m): 2’-O-methyl. 

Target RNAs for cleavage assays were 182nt long RNA fragments containing 

single perfectly complementary target sites for strand 4 or 5 of let-7 siRNA duplex at 

the 3’ end. In vitro transcription templates were generated using KOD PlusNeo 

(Toyobo) and pGL3 basic (Promega) as template and the following primers. 

Target for 

strand 4 for 

target 

cleavage: 

182nt targetF GCGTAATACGACTCACTATAGTCACATCTC

ATCTACCTCC 

Strand4tgtR CCCATTTAGGTGACACTATAGATTTACATC

GCGTGGATCTACTGGTCTGCCTAAAGAAG

GTTGAGGTAGTTGGTTGTATAGTGAAGAG

AGGAGTTCATG 

Target for 

strand 5 for 

target 

cleavage: 

182nt targetF GCGTAATACGACTCACTATAGTCACATCTC

ATCTACCTCC 

Strand5tgtR CCCATTTAGGTGACACTATAGATTTACATC

GCGTGGATCTACTGGTCTGCCTAAAGAAG

GTTATACAACCAACTACCTCTCTGAAGAGA

GGAGTTCATG 

 

PCR products were purified with NucleoSpin PCR and Gel Clean-up kit 

(Macherey Nagel) and transcribed with T7-scribe standard RNA IVT kit (Cellscript). 
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2.2.7 RNA labeling and duplex preparation 

Five picomol RNA were radiolabeled using T4 PNK (Takara) and 32P-γATP in a 

final volume of 10 μl. After a 1 h incubation at 37°C the sample was run on a G-25 

column (GE), run on Urea-PAGE, excised from the gel, eluted precipitated, and 

resuspended in 1× lysis buffer. To prepare each duplex appropriate single stranded 

RNAs were mixed, heated at 95 °C for 2 minutes and annealed at room temperature 

for 30 min in 1× lysis buffer. Cold RNA duplexes were prepared similarly using cold 

ATP. RNA targets for cleavage assays were radiolabeled using ScriptCap m7G 

Capping System (Cellscript). 

2.2.8 Native gel analysis, UV crosslinking, dicing and target 

cleavage assays 

Methods were previously described in detail and were used with minor 

modifications (Haley et al., 2003; Kawamata and Tomari, 2011; Pellino et al., 2005; 

Sakurai et al., 2011; Yoda et al., 2010). In vitro RISC assembly reactions contained 

the following reagents and were incubated at 25 °C for 30 min. 

3 μl 40× reaction mix 

10 nM target RNA 10 nM radiolabeled RNA duplex 

4 μl cell lysate 

1 μl rDICER1 

10nM target RNA 

Final volume: 10 μl (in 1× lysis buffer) 

 

Samples were run on a 1.4% agarose native gel without the addition of loading 

buffer (Figure 8D). For the experiments to detect complex D (Figure 8H, I), target 

RNA was omitted from the reaction and samples were run in a 4.5% polyacrylamide 

(29:1) native gel after addition of 10 μl Sucrose loading buffer (400 mg/ml sucrose, 

2.5 mg/ml xylencyanol, 2.5 mg/ml bromophenol blue). For supershift assays, 

samples were mixed with 0.5 μl of anti-DICER1 “C-terminal” or normal rabbit IgG 

and incubated at 4 °C for 1 h before electrophoresis. 
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For UV cross-linking, after RISC assembly, samples were transferred to terasaki 

dishes placed on ice in 10 μl aliquots, and were irradiated at a wavelength of 254 nm 

for 5 minutes. After addition of SDS-PAGE loading buffer samples were heated at 

95°C for 2 min and run on an SDS-PAGE. 

For target cleavage assays typical RISC assembly reactions were modified to 

contain 500nM cold RNA duplexes and 10 nM cap-labeled target RNAs. Samples 

were treated with proteinase K, precipitated with ethanol and run on 8% Urea-PAGE. 

Dicing reactions typically contained 3 μl 40× reaction mix, 5 nM radiolabeled pre-

let-7, 4 μl cell lysate and 1 μl rDICER1 in 10 μl reaction mixture. Samples were 

incubated at 30 °C for 30 min, digested with proteinase K, precipitated with ethanol 

and run on 10% Urea-PAGE.  
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2.3 Reporter assays in live cells for asymmetric RISC assembly in mammals 

To assess whether Dicer is necessary for asymmetric RISC assembly of small 

RNA duplexes in mammalian cells a Dicer1
–/–

 mouse embryonic fibroblast (MEF) 

cell line was used. The cell line harbors a deletion on exon 22 of both Dicer alleles 

which introduces premature termination codons that cause non-sense mediated RNA 

decay (Yang et al., 2010; Yi et al., 2006) (Figure 6A). It was reported that an 

independently established Dicer1
–/–

 mouse ES cell line (Murchison et al., 2005) 

expresses a C-terminally truncated DICER1 (Noland et al., 2011), which may 

potentially retain some functions of the full-length protein. Western blot analysis 

using two different antibodies against the N-terminal or the C-terminal regions of 

DICER1 confirmed the lack of expression of full-length or any specific truncated 

forms of DICER1 in the Dicer1
–/–

 MEF cell line (Figure 6B). Additionally, 

incubation of Dicer1
–/–

 MEF lysate with radiolabeled pre-let-7 miRNA precursor 

validated that the cell lysate is deficient in dicing activity (Figure 6C). Dicer 

expression and function were effectively rescued by transfection with a DICER1-

expressing construct (Figure 6D). 

First the silencing efficiency of small RNA duplexes in the presence or absence of 

Dicer was examined. To this end, to minimize the complexity of mimicking natural 

miRNAs or targeting endogenous genes an arbitrary, functionally asymmetric siRNA 

duplex (duplex A) was prepared (Figure 7A). As a matter of convenience, the two 

strands of the duplex are referred to as strand 1 and strand 2. Strand 1 has a less 

stable 5’ end than strand 2; therefore strand 1 is more likely to function as the guide 

strand (Figure 4). Based on duplex A, an artificial miRNA/miRNA*-like duplex 

(duplex B) was created (Figure 7B), by introducing internal mismatches and wobble 

base pairs, without altering the sequence of strand 1 (Yoda et al., 2010). Duplex B is 

composed of strand 1 and strand 3; according to the thermodynamic asymmetry, 

again, strand 1 is more likely to serve as the guide strand. Then reporters for each 

strand of these two duplexes were constructed by introducing a single target site 

perfectly complementary to each strand downstream of a Renilla luciferase (Rluc) 

reporter in the dual luciferase assay system. These constructs were co-transfected 

with the corresponding small RNA duplexes into Dicer1
–/–

 MEF cells with or 

without Dicer expression rescued. The incorporation of each strand into mature RISC, 
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as a reflection of their potency to silence the respective target Rluc reporter, was 

assessed by dual luciferase assays. 

As expected, RISC was assembled asymmetrically in presence of DICER1 with 

both duplex A and duplex B (Figure 7, +DICER1); in both cases strand 1 was more 

potent for target silencing. In the case of miRNA/miRNA*-like duplex B, strand 1 

was two orders of magnitude more effective in silencing the reporter than strand 3 

(Figure 7B and Table 1), while in the case of the siRNA duplex A, strand 1 was 

around 10-fold more potent than strand 2 (Figure 7A and Table 1). Importantly, for 

both duplexes, the silencing effect of each strand was unaffected regardless of 

whether DICER1 expression was rescued or not (compare +DICER1 and –DICER1 

in Figure 7); and all the IC50 values were essentially identical (Table 1). These 

findings suggest that mammalian Dicer is dispensable for duplex asymmetry sensing 

and RISC assembly in live cells. 
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Figure 6. Characterization of the Dicer1
–/–

 MEF cell line used in this study. A. 

Schematic representation of the Dicer1 locus and DICER1 protein. Green blocks in 

the genomic DNA represent exons 21 to 23 of Dicer1 and black blocks represent the 

domains of DICER1. Exon 22 encodes part of the first RNaseIII domain (red 

rectangle). In the Dicer1
–/–

 cell line, exon 22 is deleted which results in premature 

termination codons that are predicted to cause non-sense mediated RNA decay. 

Regions recognized by antibodies used in this study are indicated by blue bars. B. 

Western blot using the antibodies indicated in A. Lack of full length and truncated 

forms of DICER1 in the Dicer1
–/–

 cell line was confirmed. C. Lysate from the 

Dicer1
–/–

 cell line lacks dicing activity. D. Dicing activity and DICER1 expression 

are rescued by transfection of a DICER1-expressing construct. 
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Figure 7. Mammalian Dicer is dispensable for asymmetric RISC assembly in live 

cells. A, B. Silencing of Rluc reporters by increasing concentrations of duplex A (A) 

or duplex B (B) in Dicer1
–/–

 MEF cells with or without DICER1 expression rescued. 

Mean ± s.d. (n=3). 

 

 

Table 1. log[IC50(pM)] values (mean ± s.d.) calculated from the data in Figure 7A 

and B. Essentially identical IC50 values were obtained with or without Dicer 

expression rescued. 

 +DICER1 –DICER1 

Duplex A 
Strand 1 0.8 ± 0.2 0.9 ± 0.2 

Strand 2 1.9 ± 0.3 1.8 ± 0.2 

Duplex B 
Strand 1 1.0 ± 0.2 1.1 ± 0.1 

Strand 3 3.3 ± 0.3 3.8 ± 0.2 
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2.4 In vitro assays for asymmetric RISC assembly in mammals 

Next, to explore any potential function of Dicer in RISC assembly the formation 

of pre-RISC and its conversion to mature RISC by an agarose native gel system was 

compared (Kawamata and Tomari, 2011) in the presence or absence of Dicer. 

Previously, in vitro RISC assembly activity has been assessed in HeLa or HEK293T 

lysate (Yoda et al., 2010), but in MEF lysate it is rather weak in comparison, and 

tends to fluctuate from batch to batch. Therefore, instead of comparing between 

Dicer1
–/–

 MEF lysates with and without Dicer expression rescued by transfection, a 

strategy of re-supplementing Dicer1
–/–

 MEF cell lysate with purified recombinant 

DICER1 (rDICER1; Figure 8A) was used. A control experiment showed that 

addition of rDICER1 in Dicer1
–/–

 MEF cell lysate efficiently rescued dicing activity 

(Figure 8B). A functionally asymmetric siRNA duplex based on the let-7 sequence 

(let-7 siRNA duplex; Figure 8C) was used, which has been intensively studied with 

the agarose native gel system (Kawamata et al., 2009; Yoda et al., 2010). Either of 

the two strands (strand 4 and strand 5) was 5’ 
32

P radiolabeled, and the duplexes 

were incubated in Dicer1
–/–

 MEF lysate with or without rDICER1 re-

supplementation. When samples were run on a native agarose electrophoresis two 

complexes could be detected (Figure 8D), as previously described. The complex at 

the top contains double stranded RNA, while the complex at the bottom contains 

single stranded RNA, and therefore correspond to pre-RISC and mature RISC, 

respectively (Kawamata et al., 2009; Yoda et al., 2010). Similar level of pre-RISC 

was detected when either of the two strands was radiolabeled, whereas markedly 

higher level of mature RISC was detected when strand 4 was radiolabeled, precisely 

reflecting the asymmetry of the duplex. Importantly, the presence or absence of 

Dicer did not affect the kinetics of asymmetric loading of the duplex or subsequent 

unwinding (Figure 8D). 

To assess the direct loading of each strand into Ago, in vitro RISC assembly 

reactions were crosslinked with short-wave UV light (Figure 8E); and to determine 

the functional asymmetry of RISC in vitro the target cleavage activity of each strand 

was evaluated (Figure 8F, G). Note that no target cleavage was detected unless RISC 

was programmed with exogenous let-7 siRNA, which confirms the specificity of the 

assay (Figure 8F). Crosslinking to Ago and target cleavage agreed well with the 

amount of mature RISC formed, and were unaffected by the presence or absence of 
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Dicer. Therefore, mammalian Dicer is dispensable for asymmetric RISC assembly 

and target cleavage of small RNA duplexes in vitro. 

It was previously reported that, in mammalian cell lysate, siRNA duplexes form a 

complex containing Dicer and TRBP (referred to as complex D or pre-RLC), which 

can be separated by polyacrylamide native electrophoresis (Pellino et al., 2005; 

Sakurai et al., 2011). Indeed, such complex was readily detected with radiolabeled 

let-7 siRNA duplex when Dicer1
–/–

 MEF lysate was supplemented with rDICER1 

(Figure 8H). Note that the complex indicated by an asterisk on figure 8H does not 

contain DICER1 and is therefore non-specific (Figure 8I). Unlike mature RISC, 

formation of complex D and crosslinking to Dicer showed no correlation with the 

amount of mature RISC formed and the target cleavage activity (compare Figures 8D, 

E, G, H), confirming that Dicer plays a minimum role in RISC assembly in mammals. 
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Figure 8. Mammalian Dicer is dispensable for asymmetric RISC assembly in vitro. 

A. Purification of rDICER1 from HEK293T cells expressing SBP-DICER1. Mock 

purification was performed from naïve HEK293T. Asterisk denotes a non-specific 

protein that binds to sptreptavidin sepharose. B. Dicer activity in Dicer1
–/–

 lysate 

with or without rDICER1 supplementation. C. RNA duplex used in D–I. D. Pre-

RISC and mature RISC formation with strand 4 or strand 5 in the presence or 

absence of DICER1. E. Short-wave UV crosslinking of strand 4 or strand 5 in the 

presence or absence of DICER1. F. A control experiment to confirm the specificity 

of the target cleavage assay in (G). No cleavage product was detected unless RISC 
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was programmed by exogenous let-7 siRNA duplex. G. Target cleavage assay for 

strand 4 or strand 5 in the presence or absence of DICER1. H. Formation of Dicer 

containing complex (complex D) in the presence or absence of DICER1. I. Super 

shift assay of Complex D with anti DICER1 antibody. The complex marked with an 

asterisk in (H) does not contain Dicer. 
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2.5 Dicer is not required for asymmetric RISC assembly in mammals 

In the fly Ago2-RISC assembly pathway, Dcr-2/R2D2 is absolutely required for 

loading of siRNA duplexes; in the absence of Dcr-2 or R2D2, no Ago2-RISC is 

formed from siRNA duplexes (Liu et al., 2003; Pham et al., 2004; Tomari et al., 

2004a). For this reason, a complex containing Dcr-2/R2D2 is called RISC-loading 

complex (RLC) (Figure 5). In contrast, whether or not Dicer is required for RISC 

assembly in mammals has been a subject of debate. Previous multiple lines of 

evidence (Kanellopoulou et al., 2005; Martinez et al., 2002; Murchison et al., 2005) 

together with the findings of this work indicate that Dicer is not required for RISC 

assembly in mammals (Figure 9C). 

Dcr-2/R2D2 binds to siRNA duplexes in an orientation according to their 

thermodynamic asymmetry (Tomari et al., 2004b) (Figure 5). Recombinant human 

Dicer/TRBP is also able to bind to siRNAs in an asymmetric manner, just like fly 

Dcr-2/R2D2 (Noland et al., 2011). However, the data shown here suggest that such 

Dicer/TRBP binding plays no essential role in asymmetric RISC assembly in 

mammals. How can then thermodynamic asymmetry of small RNA duplexes be 

sensed in mammals? Although it cannot be excluded that there are unknown factors 

for this function, the hypothesis that Argonaute proteins themselves can generally 

sense the thermodynamic asymmetry of small RNA duplexes is attractive. Structural 

studies of an archaeal Piwi protein and a bacterial Ago protein (Parker et al., 2005; 

Wang et al., 2008), and more recently of eukaryotic Ago proteins (Elkayam et al., 

2012; Nakanishi et al., 2012; Schirle and MacRae, 2012), have shown that the 5’ 

phosphate of the guide strand is anchored in a phosphate binding pocket at the 

interface between the MID and PIWI domains. In that position, paring between the 5’ 

first base of the guide strand and the complementary base near the 3’ end of the 

passenger strand is blocked, with the ends of the two strands directed in opposite 

directions (Figure 10). This structural conformation should favor the orientation of 

the small RNA duplex with the end that is more easily unwound (i.e., the less stable 

end) towards the phosphate-binding pocket. The high homology of the MID and 

PIWI domains, in particular the architecture of the C-terminal carboxylate that forms 

the phosphate binding pocket, suggests that the binding mode for a small RNA 

molecule is commonly shared by Ago proteins (Boland et al., 2011; Elkayam et al., 

2012; Nakanishi et al., 2012; Parker et al., 2005; Schirle and MacRae, 2012; Wang et 
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al., 2008). In the case of fly Ago2-RISC assembly, Dcr-2/R2D2 binding might 

double-check or amplify the sensing of thermodynamic asymmetry in addition to 

Ago2 itself; an siRNA duplex needs to bind Dcr-2/R2D2 before entering Ago2 and 

yet the duplex might transiently shuttle between Dcr-2/R2D2 and Ago2, with each 

protein checking the asymmetry, before it is properly docked into Ago2. Supporting 

this view, crosslinking experiments show that the orientation of Dcr-2/R2D2 on the 

siRNA duplex is less asymmetric for the recombinant heterodimer than for embryo 

lysate (Tomari et al., 2004b). In contrast, such double-checking system may be 

lacking in mammals where Dicer/TRBP binding is uncoupled from RISC assembly. 

Interestingly, in dicer-mutant zebrafish embryos, injected miRNA duplexes were 

fully active for target silencing, indicating that RISC assembly does not require Dicer 

in fish as in mammals (Giraldez et al., 2006). Even in flies, simultaneous >95% 

depletion of Dcr-1 and Dcr-2, which abolished siRNA duplex-initiated Ago2-RISC 

assembly, did not affect assembly of miRNA/miRNA* duplexes into Ago1-RISC, 

suggesting that Dicer is dispensable for fly Ago1-RISC assembly (Kawamata et al., 

2009). Therefore, although fly Ago2-RISC assembly is the best-characterized 

pathway to date, it is likely to represent a very unique pathway entirely dependent on 

Dcr-2/R2D2. Indeed, the four mammalian Ago proteins and fly Ago1 are more 

closely related to each other than to fly Ago2 (Kawamata et al., 2009; Yoda et al., 

2010) (Figure 9). Moreover, fly Ago1 and human Ago1–4 show strong preference of 

uracil (U) at the 5’ end of the guide strand, which could in theory also help sensing 

the thermodynamic asymmetry, whereas fly Ago2 tends to favor 5’ cytosine (C) 

(Czech et al., 2009; Ghildiyal et al., 2010; Okamura et al., 2009). In summary, 

although the fly Ago-2 pathway has been extensively studied, generalization of its 

properties should be done with caution, and further study is required to clarify what 

makes this pathway so special. 
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Figure 9. Scheme of the asymmetric assembly of RISC. Small RNA duplexes are 

preferentially loaded into Ago proteins with their less stable end towards the 

phosphate-binding pocket of Ago (P), which results in the selection of the red strand 

of the RNA duplex as the guide strand. If the duplex is occasionally loaded in the 

opposite orientation, the black strand functions as the guide. Red strand-loaded Ago 

is more abundant (>). In flies siRNAs and miRNA/miRNA* duplexes are actively 

sorted into Ago2- and Ago1-RISC, respectively. A. The Dcr-2/R2D2 heterodimer 

senses the asymmetry of siRNA duplexes and such binding is a prerequisite for 

Ago2-RISC assembly. B, C. In contrast to the fly Ago2 pathway, in the (B) fly Ago1 

and (C) mammalian pathways Dicer is dispensable for asymmetric RISC loading. 

Modified from (Betancur et al., 2012). 
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Figure 10. Scheme of the structural conformation of double stranded RNA-loaded 

Ago. The figure shows a close up of the phosphate binding pocket of Ago. The 5’ 

phosphate (P) of the guide strand (red) is docked at the phosphate binding pocket of 

Ago (green shadow) between the PIWI and MID domains. In this conformation, an 

α-helix (arrow) blocks base pairing between the first base of the guide strand (1) and 

the corresponding base in the passenger strand (black). This conformation itself 

might favor the orientation of small RNA duplexes with their less stable end (which 

is more easily unwound) towards the phosphate binding pocket, over the opposite 

orientation. 
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3. Part 2: The RNA binding activity of PRC2 
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3.1 A subset of lncRNAs interacts with the PRC2 complex 

Chromatin is a dynamic structure that needs to adjust to allow or repress gene 

expression according to diverse regulatory signals. During development and 

differentiation gene expression reprogramming is particularly important and it 

involves a concert of DNA and histone modifying complexes that regulate the 

coordinate transition of cells from the pluripotent to the differentiated state that leads 

to the formation of full organisms (Ringrose and Paro, 2004). In contrast, abnormal 

epigenetic states that result in gene expression patterns that partially resemble the 

transcriptional landscape of undifferentiated cells are hallmarks of some types of 

cancer (Egger et al., 2004). 

Epigenetic marks are roughly classified as either activating or repressive and 

include DNA and histone modifications. Activating marks result in chromatin 

domains that are more accessible for transcription factors and RNA polymerases and 

are therefore actively transcribed; while repressive marks result in gene expression 

silencing (Figure 11). In mammals, DNA methylation is a stable mark of 

transcriptionally repressed chromatin that is usually transmitted to daughter cells 

(Smith and Meissner, 2013). In contrast histones tails undergo a variety of post-

translational modifications, including methylation, acetylation, ubiquitination, 

phosphorylation among others, and depending on their nature and combination with 

other epigenetic marks have either activating or repressive effects. Histone 

modifications can be reversed after their initial deposition (Jenuwein and Allis, 2001). 

Although the functions of many histone modifications are unknown, some of them 

have been consistently associated with specific roles in gene expression. In 

mammalian cells di/tri methylation of lysine 27 histone 3 (H3K27me2/3), a 

repressive mark, is usually associated with promoters of silent genes, while 

H4K4me3 is associated with actively transcribed promoters (Ringrose and Paro, 

2004; Schuettengruber et al., 2007). However, H3K27me2/3 also forms clusters with 

smaller regions of H3K4me3, known as bivalent domains, a hallmark of regions rich 

in regulatory factors important during development in mouse embryonic stem (mES) 

cells that are resolved (activated or repressed) upon lineage commitment (Azuara et 

al., 2006; Bernstein et al., 2006; Mikkelsen et al., 2007). Other histone marks with 

known functions are H3K36me3 that is enriched in the bodies of actively transcribed 
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genes, while H3K9me3 and H3K20me3 associate with repetitive elements; and 

overlapping H3K9me3, H3K4me3, and DNA methylation are a signature of 

promoters of imprinted genes (Delaval et al., 2007; Feil and Berger, 2007; Mikkelsen 

et al., 2007).  

H3K27me2/3 is deposited by PRC2, a member of the Polycomb group (PcG) 

protein family, on genes that are already silenced, and maintains transcription 

repressed throughout cell divisions (Ringrose and Paro, 2004). PRC2 is a 

multiprotein complex composed of 4 core components: EED, EZH2, RbAp46/48 and 

SUZ12 (Cao et al., 2002; Kuzmichev et al., 2002) (Figure 12), which are orthologs 

from the Drosophila Extra sexcombs (Esc), Enhancer of zeste E(z), a nuclear 

remodeling factor (Nurf55) and Suppressor of zeste 12 (Su(z)12), respectively 

(Schuettengruber and Cavalli, 2009). EZH2, through its SET domain, is the catalytic 

subunit of the complex (Cao et al., 2002), while the others subunits are required for 

maximum methyltransferase activity (Cao and Zhang, 2004). In addition EED has 

been reported to recognize pre-trimethylated H3K27 (Margueron et al., 2009), and 

RbAp48 is a histone chaperone that binds to histone 3 and 4 (Nowak et al., 2011), 

both through their WD40 domains (Figure 13). Moreover, there are some other 

accessory proteins that usually co-precipitate at sub-equimolar ratios, including 

Polycomblike proteins (PCLs) (Casanova et al., 2011), AEBP2 (Kim et al., 2009a) 

and JARID2 (Pasini et al., 2010). AEBP2 (Kim et al., 2009a) and JARID2, through 

its ARID domain (Kim et al., 2004; Kim et al., 2003), can bind DNA directly (Figure 

12). 

PRC2, however, does not bind DNA in a sequence specific manner. Instead, in 

flies PRC2 (and other PcG complexes) binds to DNA elements known as polycomb 

response elements (PRE) with the aid of several different co-factors. However, many 

of the genomic binding sites for such factors do not overlap with PcG-bound regions, 

but instead with active epigenetic marks, which indicates that those factors are not 

sufficient for PRC2 recruitment on their own (Muller and Kassis, 2006; 

Schuettengruber and Cavalli, 2009; Schuettengruber et al., 2007). In addition, in 

mammals, no PRE-like elements have been described, although many PRC2 binding 

sites are C+G rich, or correspond to CpG islands, (Ku et al., 2008; Margueron and 

Reinberg, 2011; Schuettengruber and Cavalli, 2009). Instead of requiring single 

recruiting cofactors, specific recruitment of PRC2 to its target loci is more likely the 



 38 

result of a combinatorial effect of several independent events. Those events might 

include interactions engaged by EED and RbAp48 with histones (Margueron et al., 

2009; Nowak et al., 2011), binding to DNA by JARID and AEBP2 (Kim et al., 

2009a; Kim et al., 2004; Kim et al., 2003), and as recent reports suggest, the 

contribution of lncRNAs (Tsai et al., 2010; Zhao et al., 2008). 

In the last decade it became apparent that most of the mammalian genome is 

transcribed (Carninci et al., 2005), and multiple efforts have focused on cloning and 

analyzing the vast amount of mammalian transcripts. One of the first systematic 

descriptions of lncRNAs came from the analysis of mouse cDNA libraries that led to 

the identification of a large pool of RNAs longer than 200nt with low coding 

potential (Carninci et al., 2005). Although initially many lncRNAs were described as 

transcriptional noise (Ponjavic et al., 2007; Struhl, 2007); it soon became clear that 

many have strict expression patterns and subcellular localizations (Amaral and 

Mattick, 2008; Dinger et al., 2008; Mercer et al., 2008), which suggests a high level 

of regulation. In addition biochemical and functional studies have demonstrated that 

at least a portion of them is important in processes as diverse as chromatin 

remodeling, regulation of transcription, splicing and translation (Mercer et al., 2009). 

A subset of lncRNAs has been described to interact with DNA or histone 

modifying complexes and regulate epigenetic states, although in most cases details of 

the molecular mechanisms of the protein-RNA interaction are still not well 

understood (Lee, 2012). In mice Airn, and Kcnq1ot1 RNAs interact with G9a, a 

H3K9 methyltransferase, to regulate the expression of imprinted genes located the 

antisense orientation of their own loci (Nagano et al., 2008; Pandey et al., 2008). 

There are also reports that PRC1, another PcG repressor complex that mono 

ubiquitinates lysine 119 of histone H2A (H2AK119u1), is recruited to the tumor 

suppressor locus INK4b/ARG/INK4a by ANRIL lncRNA; and that MALAT and 

TUG lncRNAs interact with the PRC1 subunit PC2 to regulate the intranuclear 

location of transcriptional units (Yang et al., 2011). lncRNAs also associate with 

epigenetic activator complexes, such in the case of Hottip and Mistral RNAs that 

bind to MLL, a H3K4 methyltransferase, to activate HoxA gene transcription 

(Bertani et al., 2011; Wang et al., 2011). The DNA methyltransferase Dnmt3a is also 

recruited by the lncRNA Tsix to silence Xist, located in the antisense orientation 

(Sado et al., 2005; Sun et al., 2006).  
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In addition, RNA immunoprecipitation (RIP) of PRC2 demonstrated that the 

complex directly associates with many RNAs in mouse (Zhao et al., 2010) and 

human (Khalil et al., 2009) cells and that a portion of them corresponds to lncRNAs. 

In mice, around 1/5 of all PRC2-associated RNAs overlap H3K27me2/3-H3K9me3 

bivalent domains or known SUZ12 binding sites, an indication that lncRNAs might 

be related to PRC2 recruitment or retention in a subset of PRC2 targets (Zhao et al., 

2010). Further evidence of the functional significance of the lncRNA-PRC2 

interaction came from knock down experiments that showed that depletion of some 

lncRNAs in human cells caused de-repression of genes normally silenced by PRC2 

(Khalil et al., 2009). 

Two of the lncRNAs that have consistently been shown to interact with PRC2 are 

the X-inactive-specific transcript (Xist) and Hox antisense intergenic RNA 

(HOTAIR). In humans Xist is a 19kb transcript transcribed from the X inactivation 

center (Xic) in the X chromosome (Brown et al., 1991). It is required for X 

chromosome inactivation (XCI), a process in which one of the two X chromosomes 

is randomly selected to be silenced during early development to equalize gene 

expression from the X chromosome between males and female mammals (Lyon, 

1961; Russell, 1961). XCI is initiated by accumulation and spreading of Xist on the 

inactive X (Xi) (Avner and Heard, 2001; Brockdorff et al., 1992; Brown et al., 1992; 

Clemson et al., 1996; Plath et al., 2002), a process mediated by DNA binding 

proteins directly bound by Xist (Hasegawa et al., 2010; Jeon and Lee, 2011). 

Interestingly, introduction of ectopic Xic sequences in autosomes results in long 

range silencing, although inactivation is less efficient that for X-linked genes 

(Cattanach, 1974; Popova et al., 2006; Russell, 1963). 

XCI requires the H3K27 methytransferase activity of PRC2 (Wang et al., 2001), 

and the H2AK119 mono ubiquitinase activity of PRC1 that together effectively 

silence gene expression from the target chromosome. 

One model for the recruitment of PRC2 indicates that PRC2 directly binds Xist, 

which is tethered to the Xi (Hasegawa et al., 2010; Jeon and Lee, 2011), providing a 

platform for spreading H3K27me3 in cis (Zhao et al., 2008) (Figure 14). The region 

of Xist bound by PRC2 has been mapped to the 5’ end of the transcript, where there 

is a stretch of 8.5 repeats of a ~28nt sequence, known as A-repeat domain (Wutz et 
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al., 2002; Zhao et al., 2008). Although the most widely accepted conformation of the 

A-repeat domain is that each of its 8.5 repeated sequences adopt a double stem loop 

structure (Figure 15A and Supplementary figure 2), there is also some evidence that 

only hairpin 1 forms, and hairpin 2 is instead involved in the formation of inter-

repeat duplex interactions (Duszczyk et al., 2011). Xist with a deletion of A-repeat 

domain still spreads on the Xi, but fails to induce inactivation (Wutz et al., 2002). It 

has also been postulated that a single repeat of is enough for direct binding of PRC2 

to Xist (Kanhere et al., 2010; Zhao et al., 2008). 

In contrast to Xist, HOTAIR, acts in trans to regulate Hox genes, a group of 

transcription factors that regulate body morphogenesis and the positional identity of 

cells. In humans HOTAIR is a 2.3kb long transcript transcribed from within the 

HoxC locus, on chromosome 12, and its target genes are in the HoxD locus, on 

chromosome 2; and in agreement with its role as a regulator of Hox genes, HOTAIR 

expression is restricted mainly to posterior and distal anatomical sites. Similar to Xist, 

HOTAIR is proposed to directly recruit PRC2 through a 300nt domain located at its 

5’ most end (Figure 15B), which results in the tri-methylation of H3K27 and 

silencing of the HoxD locus (Rinn et al., 2007; Tsai et al., 2010). However, it soon 

became clear that besides its role in the regulation of Hox genes, HOTAIR is also 

directly recruited to and regulates the expression of multiple genes (Chu et al., 2011; 

Gupta et al., 2010). HOTAIR is thought to recognize its target DNA locus with the 

help of the simultaneous recruitment of protein complexes that recognizes specific 

DNA motifs, such as the LSD1/CoREST/REST complex (Rinn et al., 2007; Tsai et 

al., 2010) (Figure 14). 

HOTAIR plays a key role in reprogramming of the chromatin state in human 

cancer cells (Gupta et al., 2010); and HOTAIR knock down human fibroblasts 

exhibit transcriptional activation in trans in the HoxD locus (Rinn et al., 2007). 

However, although the sequence of HOTAIR is modestly conserved and its 

anatomical pattern of expression is similar between humans and mice (Rinn et al., 

2007), HOTAIR knockout mice and MEFs display little phenotypic effects 

(Schorderet and Duboule, 2011), which is suggestive of recent acquisition of 

HOTAIR function in humans (Schorderet and Duboule, 2011). 
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Initial evidence of the direct interaction between Xist and HOTAIR with PRC2 

came from electrophoretic mobility shift assays (EMSA) and RNA pull-down 

experiments with Xist and HOTAIR fragments. While some experiments concluded 

that SUZ12, but not EZH2 is responsible for the RNA binding activity of the 

complex (Kanhere et al., 2010), the opposite has also been shown by different groups 

(Kaneko et al., 2010; Tsai et al., 2010; Zhao et al., 2010; Zhao et al., 2008), and 

therefore the existing reports regarding the RNA binding activity of PRC2 are 

contradictory and in some cases mutually exclusive and this remains a matter of 

debate that this work aims to revisit (Figure 16). 

Also, there is no known common RNA motif that PRC2 recognizes. Although the 

double stem loop structure of A-repeat has been postulated to be the PRC2-bound 

element of Xist, it is unknown whether PRC2 specifically inspects certain features of 

the sequence or structure or whether binding specificity is loose. In addition, other 

lncRNAs (e.g. HOTAIR) lack such repeats, and therefore whether PRC2 makes use 

of different mechanism to bind to different RNAs or not is still an open question. 

To address these questions I performed a series of in vitro RNA binding 

experiments with recombinant PRC2 components and A-repeat RNA fragments with 

intact or disrupted double stem loop structures and HOTAIR fragments. I 

demonstrate that in contrast to previous reports 2 subunits of PRC2, EZH2 and 

SUZ12, have RNA binding activity. In addition, I show that both proteins also bind 

to mutated A-repeat fragments as well as to HOTAIR, that does not contain sequence 

or strucrure repeats; and also to unrelated RNAs, which is an indication that the 

double stem loop structures of A-repeat are not specifically recognized by PRC2 and 

that instead the RNA binding specificity of the complex is loose. 
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Figure 11. The two basic states of chromatin. Chromatin is a dynamic structure that 

particularly during development and differentiation, needs to adjust to allow or 

repress gene expression according to regulatory signals. There are two basic 

chromatin states: compacted or silent and relaxed or transcriptionally active. The 

shift between the two states is mediated by various DNA and histone modifying 

factors that induce a large array of chromatin modifications that can be broadly 

classified as activating or repressive. 

 

 

 

Figure 12. Composition of PRC2. PRC2 is composed of 4 core components: EED, 

EZH2, SUZ12 and RbAp46/48. EZH2 catalyzes the di/tri methylation of H3K27. 

AEBP2, JARID2 and PCL are accessory proteins. 
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Figure 13. Domain structure of the 4 core components of PRC2. Labels above each 

cartoon indicate substrates that the corresponding domains (or regions) bind to. 

SANT: SW13, ADA2, N-CoR and TFIIIB DNA-binding domain; CXC: cysteine-

rich domain; WD40: short 40aa motifs; SET: tritorax conserved domain; VEFS: 

domain conserved among VRN2-EMF2-FIS2-SUZ(Z)12; RBD?: putative RNA 

binding domain Zn: zinc finger domain. 

 

 

 

Figure 14. Model of the recruitment of PRC2 by Xist and HOTAIR. The lncRNA 

acts as a scaffold for the binding of PRC2 and additional DNA binding complexes 

that tether PRC2 to its target loci. In addition to the lncRNAs other factor are also 

necessary for specific recruitment of PRC2 (see text for details). DBP: DNA binding 

protein, H3K27me2/3: di/tri methylated lysine 27 of histone 3. 
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Figure 15. Human Xist and HOTAIR lncRNAs. A. Xist is a ~19 kb long transcript 

that contains a domain known as A-repeat towards its 5’ end, which is the putative 

PRC2 binding region. A-repeat consists of 8.5 repeats of a double stem loop (below) 

connected by ~20 nt U rich linkers. B. HOTAIR is ~2.3 kb long and the putative 

region bound by PRC2 has been mapped to its 5’ most 300 nt. 
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Figure 16. Previous attempts to identify the RNA binding subunit of PRC2 by 

EMSA. A. RNA fragments used as substrates. 1 rep wt folds into a double stem loop 

like the one shown in Figure 15A. B. One group (Kanhere et al., 2010) showed that 

SUZ12, but not EZH2 is the RNA binding subunit of PRC2. C. A different group 

(Zhao et al., 2010) found the opposite result using the same RNA substrate. In 

addition, a mutant, non structured RNA (1 rep mut*) was bound more weakly by 

EZH2. Figures modified from the references indicated. 
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3.2 Materials and methods 

3.2.1 General reagents 

1× lysis buffer and 40× reaction mix are described in section 2.2.1. 

3.2.2 Plasmid constructions 

Total RNA was extracted from HeLa S3 and HEK293T cells using Trizol. One 

microgram of RNA was reversed transcribed using PrimeScript RT reagent kit with 

gDNA eraser (Takara) following the instructions from the manufacturer. 

PRC2 cDNA: EED, EZH2, RbAp48 and Suz12 were amplified from HeLa S3 

cDNA using PrimeStar Max (Takara) and the following primers pairs.  

EED: EED extF1 TGGGCGCGATTTGCGACAGT 

 
EED extR1 TGCTCTACGTGCCCTTACTAGCA 

EZH2: EZH2 extF1 TCCGACACCCGGTGGGACTC 

 
EZH2 extR1 GCAGCTGTTTCAGAGGAGGGGG 

RbAp48: RbAp48 extF1 TCGACCCCAGGATTCCCCCG 

 
RbAp48 extR1 GAAAACACCCACGGTTTGGGCT 

SUZ12: SUZ12 extF1 GGGCGAGCGGTTGGTATTGCA 

 
SUZ12 extR1 ACTCAACCACAGTGCTCGGAGT 

 

pCAGEN-SBP-EZH2, -Suz12 and pCAGEN-SBP-ps-EED, -RbAp48: The PRC2 

component sequences were reamplified using a nested PCR strategy and the SBP tag 

was amplified from pASW (Iwasaki 2010). The fragments were cloned 

simultaneously into the EcoRI site of pCAGEN (Matsuda and Cepko, 2004) using 

Infusion (Clontech) to produce pCAGEN-SBP-EZH2, and -SUZ12. The following 

primers were used: 

SBP: SBP F2 TTTTGGCAAAGAATTCCCATGGACGAGAA

GACCACCGGC 

 SBP R2 GGCCGCGGAGCCTGCTTTTT 

SUZ12: SUZ12 F1 GCAGGCTCCGCGGCCATGGCGCCTCAGAA

GCAC 

 SUZ12 R1 TATCCTCGAGGAATTTGGGGTTAGAGCTTT

TCAGAGT 

EZH2: EZH2 F1 GCAGGCTCCGCGGCCATGGGCCAGACTGG

GAAG 

 EZH2 R1 TATCCTCGAGGAATTGGGGAGGAGGTAGC

AGATGT 
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EED and RbAp48 were cloned with a cleavage site for HRV3C (PreScission [ps]) 

protease following the SBP tag. The following oligos containing the recognition site 

of the protease were annealed and cloned simultaneously with the SBP tag into the 

EcoRI site of pCAGEN using Infusion (Clontech) to produce pCAGEN-SBP-ps. The 

following primers were used. 

SBP: SBP F3 TTTTGGCAAAAATTCCCATGGACGAGAAG

ACCACCGGC 

 SBP R2 GGCCGCGGAGCCTGCTTTTT 

ps: ps F1 GCAGGCTCCGCGGCCCTGGAAGTTCTGTTC

CAGGGGCCCGAATTCCTCGAGGATA 

 ps R1 TATCCTCGAGGAATTCGGGCCCCTGGAAC

AGAACTTCCAGGGCCGCGGAGCCTGC 

 

EED and RbAp48 were reamplified with a nested PCR and cloned into the EcoRI 

site of pCAGEN-SBP-ps. The following primers were used. 

EED: EED F2 CTGTTCCAGGGGCCCATGTCCGAGAGGGA

AGTGTC 

 EED R1 TATCCTCGAGGAATTAGGCAAAAGTATTTT

ATCGAAGTC 

RbAp48: RbAp48 F1 CTGTTCCAGGGGCCCATGGCCGACAAGGA

AGCAGCC 

 RbAp48 R1 TATCCTCGAGGAATTCTAGGACCCTTGTCC

TTCTGG 

 

pEFh-SBP-GFP: GFP was amplified from pMXs-IG (Cell Biolabs) and subcloned 

into the EcoRI site of pEFh-SBP (kind gift from Akio Yamashita, Yokohama City 

University) using Infusion (Clontech). The following primers were used. 

GFP: pEF-G-GFPF TTTCAGGGCGAATTCATGGTGAGCAAGGG

CGAGGA 
 pEF-GFPR GATTGTCGATGAATTTTACTTGTACAGCTC

GTCCAT 

 

pColdI, pET28b, pGEX-6P-EED, -EZH2, -RbAp48, -Suz12 and -GFP: PRC2 

components and GFP were amplified from pCAGEN or pEFh constructs and 

subcloned into the EcoRI site of pColdI using Infusion (Clontech). The following 

primers were used. 

EED: pColdEEDF CGAGGGATCCGAATTCATGTCCGAGAGGG

AAGTGTC 
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 pColdEEDR CGACAAGCTTGAATTAGGCAAAAGTATTTT

ATCGAAGTC 

EZH2: pColdEZF CGAGGGATCCGAATTCATGGGCCAGACTG

GGAAG 

 pColdEZR CGACAAGCTTGAATTGGGGAGGAGGTAGC

AGATGT 

RbAp48 pColdRbF CGAGGGATCCGAATTCATGGCCGACAAGG

AAGCAGCC 

 pColdRbR CGACAAGCTTGAATTCTAGGACCCTTGTCC

TTCTGG 

Suz12: pColdSUZF CGAGGGATCCGAATTCATGGCGCCTCAGA

AGCAC 
 pColdSUZR CGACAAGCTTGAATTTGGGGTTAGAGCTTT

TCAGAGT 

GFP: pColdGFPF CGAGGGATCCGAATTCATGGTGAGCAAGG

GCGAGGA 
 pColdGFPR CGACAAGCTTGAATTTTACTTGTACAGCTC

GTCCAT 

 

Cloning into pET28b and pGEX-6P with Infusion (Clontech) was done with the 

same primers, but changing the first 15nt of each primer for sequences homologous 

to the sequence surrounding the EcoRI site of each plasmid following the 

instructions from the manufacturer. 

pDEST10-EED, -EZH2, -RbAp48, -SUZ12 and -GFP 

PRC2 components and GFP were amplified from pCAGEN or pEFh constructs 

and subcloned into pENTR using pENTR/D-TOPO cloning kit (Invitrogen). The 

following primers were used. 

EED: EEDTOPOF1 CACCATGTCCGAGAGGGAAGTGTC 

 EEDTOPOR1 AGGCAAAAGTATTTTATCGAAGTC 

SUZ12: SUZTOPOF1 CACCATGGCGCCTCAGAAGCAC 

 SUZTOPOR1 TGGGGTTAGAGCTTTTCAGAGT 

EZH2: EZHTOPOF1 CACCATGGGCCAGACTGGGAAG 

 EZHTOPOR1 GGGGAGGAGGTAGCAGATGT 

RbAp48: RbTOPOF1 CACCATGGCCGACAAGGAAGCAGCC 

 RbTOPOR1 CTAGGACCCTTGTCCTTCTGG 

GFP: GFPTOPOF1 CACCATGGTGAGCAAGGGCGAGGA 

 GFPTOPOR1 TTACTTGTACAGCTCGTCCAT 

 

The genes were subcloned into pDEST10 using LR recombinase (Invitrogen). 

pENTR-hRepA: the A-repeat domain of human Xist was amplified from 

HEK293T cDNA using KOD Plus-NEO (Toyobo) and the following primers. 
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A-repeat XistTOPOF CACCAGTGTCTTCTTGACACGTCCTCCA 

 XistR AGAGTGCAACAACCCACAAAACCA 

 

The PCR product was cloned into pENTR using pENTR/D-TOPO cloning 

(Invitrogen). 

pMK-RQ-8rep_mut: a mutant 8.5 rep plasmid was custom synthesized by 

Invitrogen’s gene synthesis service. 

pCRII-2 rep_mut: the following oligos were annealed and cloned using Zero 

Blunt TOPO PCR cloning kit (Invitrogen). 

2 rep 2rep mut F TCTTCCACTCTCTTTTCTATATTTTAGCAAT

CGGGGCTGCAGATACATAGTTTTATTATTT

TTTCTTTAGCAAACGGGGCCGTAGATACAT

ACC 

 2rep mut R GGTATGTATCTACGGCCCCGTTTGCTAAAG

AAAAAATAATAAAACTATGTATCTGCAGC

CCCGATTGCTAAAATATAGAAAAGAGAGT

GGAAGA 

 

3.2.3 In vitro transcription 

Templates for in vitro transcription were synthesized using KOD Plus-Neo 

(Toyobo) and the following primers and plasmid templates. 

2 rep wt: Template: pENTR-hRepA. Primers: 

hRepA_T7_346

-372F 

CTTAATACGACTCACTATAGTCTTCCACTCTCTTTTCTAT

ATTTTGC 

hRepA_410-

439 

GGCAGGTATCCACGGCCCCGTTGGGCAAAG 

 

2 rep mut: Template: pCRII-2rep_mut. Primers: 

hRepA_T7_346

-372mutF 

CTTAATACGACTCACTATAGTCTTCCACTCTCTTTTCTAT

ATTTTAG 

hRepA_410-

439mutR 

GGTATGTATCTACGGCCCCGTTTGCTAAAG 

 

4 rep wt: Template: pENTR-hRepA. Primers: 

hRepA_T7_346

-372F 

CTTAATACGACTCACTATAGTCTTCCACTCTCTTTTCTAT

ATTTTGC 
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hRepA_499-

529R 

AGCAGGTATCCGATACCCCGATGGGCTAAGG 

 

4 rep mut: Template: pMK-RQ-8rep_mut. Primers:  

hRepA_T7_346

-372mutF 

CTTAATACGACTCACTATAGTCTTCCACTCTCTTTTCTAT

ATTTTAG 

hRepA_499-

529mutR 
AGTATGTATCTGATACCCCGATTGCTTAAGG 

 

8.5 rep wt: Template: pENTR-hRepA. Primers: 

hRepA_T7_346

-372F 

CTTAATACGACTCACTATAGTCTTCCACTCTCTTTTCTAT

ATTTTGC 

hRepA_749-

769 
TCCATAAAAAGCACCGATGGG 

 

8.5 rep mut: Template: pMK-RQ-8rep_mut. Primers: 

hRepA_T7_346

-372mutF 

CTTAATACGACTCACTATAGTCTTCCACTCTCTTTTCTAT

ATTTTAG 

hRepA_749-

769mutR 
TCCATAAAAAGCATCGATGTG 

 

HOTAIR 1-308: Template: pLZRS-HOTAIR (Gupta et al., 2010) (Addgene 

plasmid 26110). Primers: 

Hotair_T7_1-

20F 

GCGTAATACGACTCACTATAGGACTCGCCTGTGCTCTGG

AG 

Hotair_289-

308R 

AATAAAGACGCCCCTCCTTC 

 

HOTAIR 1-102: Template: pLZRS-HOTAIR (Gupta et al., 2010) (Addgene 

plasmid 26110). Primers: 

Hotair_T7_1-

20 

GCGTAATACGACTCACTATAGGACTCGCCTGTGCTCTGG

AG 

Hotair_83-

102R 
TCTGTGGAACTCCCAGGCCT 

 

HOTAIR 103-204: Template: pLZRS-HOTAIR (Gupta et al., 2010) (Addgene 

plasmid 26110). Primers: 
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Hotair_T7_103-

122F 

GCGTAATACGACTCACTATAGCCAACACCCCTGCTCCTG

GC 

Hotair_185-204 TGCGAAGCGGAGCAGGACCT 

 

HOTAIR 205-308: Template: pLZRS-HOTAIR (Gupta et al., 2010) (Addgene 

plasmid 26110). Primers: 

Hotair_T7_205-

224 

GCGTAATACGACTCACTATAGGTGGAATGGAACGGATT

TAG 

Hotair_289-

308R 
AATAAAGACGCCCCTCCTTC 

 

GFP 102nt: Template: pMXs-IG (Cell Biolabs). Primers: 

GFP_T7_2650-

2670F 

CTTAATACGACTCACTATAGGGCCACAAGTTCAGCGTGT

CC 

GFP_2732-

2751R 
CCAGGGCACGGGCAGCTTGC 

 

GFP 318nt: Template: pMXs-IG (Cell Biolabs). Primers: 

GFP_T7_2650-

2670F 

CTTAATACGACTCACTATAGGGCCACAAGTTCAGCGTGT

CC 

GFP_2950-

2967R 
GTCGATGCCCTTCAGCTC 

 

PCR products were gel purified with PCR and Gel Clean-up kit (Macherey Nagel) 

and in vitro transcribed using T7-scribe standard RNA IVT kit (Cellscript). The full 

sequences of all RNAs are shown in Supplementary Table 1. 

3.2.4 Other RNAs 

Other RNAs were chemically synthesized by Operon. Sequences are indicated in 

Supplementary Table 1. 

 

3.2.5 Baculovirus system protein expression 

The DH10Bac strain of E. coli was transformed with each of the pDEST10 

constructs, and cells were shaken at 37 °C for 4 h before plating in LB agar 

containing 50 μg/ml kanamycin, 10 μg/ml tetracycline, 7 μg/ml gentamycin, 100 

μg/ml X-gal and 40 μg/ml IPTG. Verified white colonies were grown in 15 ml 
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selective medium over night. Cells were pelleted and resuspended in 0.3 ml solution 

1 (15 mM Tris HCl pH 7.4, 10 mM EDTA, 100 μg/ml RNase A). Then 0.3 ml of 

solution 2 (0.2 N NaOH, 1% SDS) were added and the mixture was incubated at 

room temperature for 5 min, then neutralized with 0.3 ml 3 M potassium acetate pH 

5.5, and placed on ice for 5 min. After centrifugation at 14000 g for 10 min the 

supernatant was transferred to a new tube and precipitated with isopropanol, washed 

with 70 % ethanol and finally the pellet was resuspended in 40 μl ultrapure water. 

To prepare P1 viral stock, one million Sf9 cells (Invitrogen) were plated per well 

of 6 well plates in 2 ml SF-900 II. Separately 6 μl Cellfectin (Invitrogen) and 5 μl 

bacmid were diluted in 100 μl SF-900 II medium. After lightly mixing and 

incubating for 15 min at room temperature, 800 μl SF-900 II medium were added 

and mix was added to cells. After incubating at 28 °C for 5 h the medium was 

removed and 2 ml fresh SF-900 II were added. Cells were incubated at 28 °C and the 

supernatant (P1) collected 72 h post transfection. 

Sf9 cells were seeded in 20 ml SF-900 II at a density of 1.5 x 10
6
 cells/ml in 250 

ml roller bottles and infected with 1.2 ml of the P1 stock. Cells were incubated in a 

rolling incubator at 28 °C for 72 h, when the supernatant was recovered (P2). P2 was 

further amplified by infecting 100 ml of Sf9 cells at a density of 1.5 x 10
6
 cells/ml 

with 7.5 ml of P2. P3 was recovered 48 h later. 

For protein expression 500 ml Sf9 cells at a density of 1.5 x 10
6
 cells/ml were 

infected with 30 ml P3 and grown in the presence of 4% FBS. Cells were recovered 

48h later, pelleted and flash frozen. 

3.2.6 Protein expression in E. coli 

Bacteria were transformed with pCOLD1, pET28b or pGEX-6P based constructs 

using standard methods and grown over night in 15 ml of selective medium. In every 

case, 1 L of medium containing the appropriate antibiotics was inoculated with 5 ml 

of preculture and cells were grown at 37 °C until they reached an O.D. between 0.4 

and 0.5, and protein expression was induced by addition of IPTG (0.1-1 mM) and 

grown at 15 or 37 °C. After 24h cells were precipitated, washed with PBS and flash 

frozen. 
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3.2.7 Protein expression in HEK293T cells 

Typically 8 x 10
6
 HEK293T cells were seeded per 15 cm dish in 15 ml D-MEM 

supplemented with 10 % FBS. Around 18 h later cells were transfected. Two 

milliliters of unsupplemented D-MEM was mixed with 40 μg plasmid and 240 μl 

PEI (7.5 mM polyethylenimine “MAX” [MW 40000] – Polysciences pH 8.0) (1:6 

ratio). The transfection complexes were incubated at room temperature for 20 min 

and then added to cells. Cells were harvested 24 h post transfection and lysed 

immediately for protein purification (see below). 

3.2.8 Protein purification 

Baculovirus system and E. coli: Frozen cell pellets were resuspended in 10 ml 

buffer A (30 mM HEPES-KOH pH 7.4 at 4 °C, 200 mM potassium acetate, 2 mM 

magnesium acetate, 5 % glycerol, 1× Complete protease inhibitor cocktail, 1 mM 

DTT [or 0.2 mM TCEP for His tagged proteins] and 20 mM imidazole [only for His 

tagged proteins]) per 1 L E. coli or 500 ml Sf9 cells and sonicated for 3 min. The 

lysate was cleared at 10000 g for 10 min 3 times, and finally filtered with a 0.45 μm 

filter. Proteins were separated using HisTrap or GSTrap columns (GE Healthcare) 

and a gradient of buffer A to 100 % buffer B (buffer A containing 400 mM imidazole 

[for His tagged proteins] or 10 mM reduced glutathione [for GST tagged proteins]) in 

and Äkta instrument. Each fraction was run on SDS-PAGE and after CBB staining 

fractions containing the proteins were pooled and dialyzed against buffer C (30 mM 

HEPES-KOH pH 7.4 at 4°C, 100 mM potassium acetate, 2 mM magnesium acetate, 

20 mM KCl, 5 % glycerol, 1 mM DTT) for ~2 h. The proteins were further purified 

in a MonoS column (MonoQ in the case of EED and RbAP48) (GE Healthcare) with 

a gradient of buffer C to 60 % buffer D (buffer C containing 1 M KCl). Fractions 

containing the proteins were pooled and dialyzed against 1× lysis buffer, 10 % 

glycerol, 1 mM DTT for 2 h-overnight, aliquoted and flash frozen. EED and RbAp48 

pools were buffer exchanged using PD-10 columns (GE) instead of dialysis. 

HEK293T cells: The pelleted cell weight (PCW) was estimated (typically ~6 g 

from sixty 15cm dishes) and cells were resuspended in 1× PCW volume 0.5 M high 

salt buffer (20 mM HEPES-KOH pH 8.0 at 4 °C, 1.5 mM MgCl2, 0.5 M KCl, 0.2 

mM EDTA, 25 % glycerol, 1 mM DTT, 1× complete protease inhibitor coctail). 

Cells were lysed with 15 strokes in a 7 ml douncer with a tight pestle on ice and 

further incubated at 4 °C with rotation for 30 min. The lysate was then centrifuged at 
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100000g for 1 h. The supernatant was collected and diluted with 1× PCW volume of 

low salt buffer (high salt buffer containing 20 mM KCl) (Abmayr et al., 2006). The 

lysate was mixed with 0.1× PCW volume of Streptavidin Sepharose High 

Performance beads (GE) and rotated at 4 °C for 10 min. The beads were precipitated 

and washed 3 times with 1 ml 0.5 M NaCl wash buffer (1× lysis buffer, 0.1 % tween-

20, 0.5 M NaCl, 1 mM DTT, 1 mM PMSF) and rinsed twice with wash buffer 

(without NaCl). To elute the proteins, 500 μl elution buffer (1× lysis buffer, 2.5 mM 

biotin, 10 % glycerol, 1 mM DTT, 1 mM PMSF) were added, the samples were 

vortexed for a 2-3 seconds, spun down and the supernatant was recovered. This was 

repeated for a total of 5 elution fractions. Fractions were pooled, concentrated with 

VivaSpin 2 ml columns (Sartorius), aliquoted and flash frozen. 

Quantification of the proteins was done by SDS-PAGE followed by CBB staining 

using BSA standard curves. 

3.2.9 RNA labeling and quantification 

RNAs were quantified using Nanodrop (Thermo). Five picomoles of chemically 

synthesized RNAs were radiolabeled at their 5’ ends using T4 PNK (Takara) and 
32

P-

γATP in a final volume of 10 μl for 1 h at 37 °C. Two picomoles of in vitro 

transcribed RNAs were radiolabeled at their 3’ ends using yeast poly A polymerase 

(Afymetrix) and 
32

P-αATP in a final volume of 10 μl for 20 min at 37 °C. One 

microliter aliquots were taken from each reaction for the generation of standard 

curves. The remaining sample was run on a G-25 column (GE), run on Urea-PAGE, 

excised from the gel, eluted and precipitated. The radiolabeled RNAs were 

resuspended in 100 μl 1× lysis buffer, heated at 95 °C for 2 min and left at room 

temperature for 30 min to allow spontaneous refolding. The concentration of the 

purified RNA was estimated by running the sample in Urea-PAGE along with a 

standard curve. RNAs were set to a final concentration of 1-10 nM. 

3.2.10 Gel shift and crosslinking assays 

All experiments were done using low-protein-binding tubes. Typical RNA 

binding reactions contained 5 μl recombinant protein (~50 nM), 3 μl 40× mix, 1μl 

radiolabeled RNA (10nM) and 1 μl 1× lysis buffer or cold competitor RNA (final 

volume = 10ul). The samples were incubated at 25°C for 15 minutes, and then 

transferred to ice. For gel shift assays, 10 μl of sucrose loading buffer (400 mg/ml 
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sucrose, 2.5 mg/ml xylencyanol and 2.5 mg/ml bromophenol blue) were added and 

10 μl were run in a 1× TBE 4.5% polyacrilamide gel (acrylamide/bisacrylamide 

29:1) containing 2 mM MgCl2, at 4 °C. Complexes formed with short RNAs (28 nt) 

were run for 1 h, with ~100 nt for 1 h 20 min and >200 nt for 2 h. Care was taken to 

run the electrophoresis as soon as possible after complex formation. 

For crosslinking, after incubation at 25 °C the samples were transferred to terasaki 

dishes placed on ice in 10 μl aliquots, and were irradiated for 7 min with 254 nm UV 

light. After addition of SDS-PAGE loading buffer samples were heated at 95 °C for 2 

min and run in an 8% wide range SDS-PAGE. 

3.2.11 Filter binding assay 

A Protran BA85 nitrocellulose membrane (GE Healthcare), a Hybond N+ nylon 

membrane (GE Healthcare) and a filter paper were pre-rinsed in 1× lysis buffer and 

assembled in that order (nitrocellulose membrane on top) in a dot-blotter equipped 

with vacuum. Each well was pre rinsed with 10 μl of 1× lysis buffer and vacuum was 

applied for ~15 sec. RNA binding reactions were assembled as above in a final 

volume of 6 μl using RNA stocks set to 1nM. After incubation for 15 min at 25 °C 

samples were placed on iced and 5 μl were loaded per well under vacuum. Each well 

was washed twice with 10 μl of 1× lysis buffer followed by ~15 sec and a final ~10 

min drying step under vacuum. Membranes were air dried and exposed to 

phosphorimaging plates. The intensity per sample was measured using Multi Gauge 

(Fujifilm) and the fraction of bound RNA was calculated [fraction bound=bound 

RNA/(bound RNA+unbound RNA)]. Graphs were generated using IgorPro software 

(Wavemetrics) and data was fitted to Hill curves.  
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3.3 Recombinant protein expression and purification 

To assess the RNA binding activity of the different subunits of PRC2, 

recombinant proteins for each of the 4 core components were expressed and purified 

using several different methodologies. Initially, the baculovirus expression system in 

Sf9 cells was tested because many proteins have been successfully produced in large 

quantities with the advantage that the host is eukaryotic. EED and RbAp48 were 

expressed at high levels, and large amounts of pure protein could be obtained after 

chromatographic purification (see materials and methods). In contrast, EZH2 and 

SUZ12 were expressed at very low levels (detectable only by western blot) and 

purification was not possible (Figure 17A). 

Therefore, expression of EZH2 and SUZ12 was also tested using various 

combinations of the E.coli strains, vectors, and growth temperatures indicated in 

Table 2. 

Only small amounts of SUZ12, but not of EZH2 could be purified using Rosetta2 

DE3 cells, a pColdI-SUZ12 vector and induction temperature of 15 °C, but not other 

combinations of parameters (Figure 17B). 

Finally, to try to purify EZH2 and try to obtain a larger amount of SUZ12 

HEK293T cells were transfected with plasmids encoding the streptaviding binding 

protein (SBP) tag that binds with high affinity to streptavidin. Because EZH2 and 

SUZ12 are expressed at low levels in HEK293T cells around ~15 g of pelleted cells 

were used per purification as starting material (around one hundred and fifty 15cm 

dishes). In comparison, the SBP-GFP control shown in figure 17C was purified from 

~0.5 g of pelleted cells (five 15cm dishes). Single step purification, followed by 

elution with biotin produced relatively pure proteins (Figure 17C). 

Although SUZ12 expressed in E. coli cells was used for initial experiments, the 

low concentration of the protein that could be obtained (~40nM after concentrating) 

prevented the use of this recombinant protein for some of the experiments shown 

here. Therefore unless otherwise indicated PRC2 components purified from 

HEK293T cells were used for all experiments (EED and RbAp48 were easily 

purified using any of the expression systems). 
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Figure 17. Examples of CBB staining of partially purified recombinant PRC2 

components. A. His-tagged PRC2 components expressed in Sf9 cells using the 

baculovirus system. Proteins were initially purified on HisTrap columns and eluted 

with increasing concentration of imidazole. EED and RbAp48 were recovered in 

good amounts but no bands corresponding to EZH2 and SUZ12 were detected. EED 

and RbAp48 were further purified on a MonoQ column. B. His-tagged EZH2 and 

SUZ12 expressed in E. coli using pCold1 vectors. Proteins were initially purified on 

HisTrap columns, further purified with a MonoS column and eluted with increasing 

concentration of KCl. A small amount of SUZ12 could be recovered, but not of 

EZH2. C. SBP-tagged EZH2, SUZ12 and GFP control expressed in HEK293T cells. 

The three proteins were successfully purified. 
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Table 2. Different factors that were assessed for expression of EZH2 and SUZ12 in 

E. coli cells. 

E. coli strain Vector (tag) Growth temperature 

Rosetta2 DE3 pColdI (His) 37°C 

BL-21 pGEX-6p (GST) 15°C 

JM-109 pET28-b (His)  
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3.4 EZH1 and SUZ12 are RNA binding proteins 

Because which is the RNA binding subunit of the PRC2 complex still remains 

controversial, I first set to revisit this question. To evaluate this, I first performed 

EMSAs, that allow the identification of protein-RNA complexes according to their 

migration on a native PAGE. For initial experiments recombinant EED and RbAp48 

expressed in Sf9 cells, Suz12 expressed in E. coli and EZH2 and GFP control 

expressed in HEK293T cells were used (Figure 18A). Equimolar amounts of each 

protein were incubated with various radiolabeled substrates: an RNA fragment that 

contains the 8.5 repeats of A-repeat domain of Xist (8.5 rep wt) that was previously 

shown to be required for the silencing activity of Xist (Wutz et al., 2002); and 1 rep 

wt, that corresponds to the first double stem loop repeat of A-repeat and that was 

shown to be bound by PRC2 in vitro (Kanhere et al., 2010; Zhao et al., 2010; Zhao et 

al., 2008) (Figure 16 and 18B). Similar to previous observations (Kanhere et al., 

2010) SUZ12, but not any of the other subunits of PRC2 or a GFP control shifted the 

Xist fragments, but not a control RNA of the same length as 8.5 rep mut or 1 rep 

with mutations in its sequence that disrupt the secondary structure (Figures 18B). 

Note that 1 rep mut used in this study is the same length as 1 rep wt, unlike 1 rep 

mut* used previously (compare 1 rep mut in Figure 18B with 1 rep mut* in Figure 

16A). The 8.5 rep wt fragment is only slightly shifted due to its length (422nt).  

In addition, a ~300nt fragment from the 5’ end of HOTAIR previously shown to 

be bound by PRC2 (Tsai et al., 2010) (Figure 15B, herein called HOTAIR-A), was 

dissected into 3 shorter fragments (HOTAIR-B–D) (Figure 18C). Similar to A-repeat 

fragments, HOTAIR-A, HOTAIR-D, but not HOTAIR B or C or control RNAs, 

were shifted exclusively by SUZ12 (Figure 19B). Since this indicates that the 

element of HOTAIR bound by SUZ12 is present within the HOTAIR-D fragment, 

HOTAIR-D was divided into 4 additional 26nt long oligos (Figure 18C). They were 

used for EMSA, and SUZ12 complexes were detected with all of them. Note that an 

unrelated 27nt RNA that forms a stem loop structure (see Supplementary Figure 4) 

was also bound by SUZ12, which might be related to the ability of SUZ12 to bind 

many short RNAs with stem loop structures (Kanhere et al., 2010). 

An important observation is that when all 4 proteins are mixed a supershift of the 

RNA-containing complex is expected due to the increase in the total molecular 
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weight; however, in all cases the complexes detected with all proteins together 

migrated the same as when SUZ12 was used alone. This indicates that the 

recombinant proteins could not assemble into an intact PRC2 complex. 

However, the EMSA results indicate that the 8.5 repeat stretch of Xist, and 

specifically its first repeat (Kanhere et al., 2010; Zhao et al., 2008), and the 5’ most 

300nt fragment of HOTAIR (Tsai et al., 2010) are bound by the SUZ12 subunit of 

PRC2. In addition the region of HOTAIR bound by PRC2 was narrowed down to 

fragment HOTAIR-C, which corresponds to nucleotides 205-308 of full length 

HOTAIR. 

The EMSA results suggest that SUZ12 is the RNA binding subunit of the 

complex, in agreement with at least one previous report (Kanhere et al., 2010), but in 

contrast with the results of other groups that identified EZH2 as the RNA binding 

subunit using a similar methodology (Zhao et al., 2010; Zhao et al., 2008). 

Binding of SUZ12 to 1 rep wt (and lack of binding of the other components 

thereof) was confirmed using recombinant proteins expressed in HEK293T cells 

(Figure 20A, B, C). Because it is possible that purified EZH2 and SUZ12 might be 

contaminated with endogenous PRC2 components, the purified proteins were 

analyzed by western blot. Although trace amounts of endogenous EZH2 were 

detected in the purified SUZ12 preparation and vice versa, the major component in 

both cases was the intended protein (Figure 20B). 

Because crosslinking experiments allow the identification of RNA binding 

proteins according to their molecular weight, this type of assay was used to confirm 

the EMSA results. For this, after incubation of the radiolabeled RNAs with each 

protein the samples were crosslinked with shortwave UV light and then run on SDS-

PAGE. 1 rep wt RNA fragment was used as a substrate, which adds only ~9kDa to 

the molecular weight of the protein when covalently crosslinked. Surprisingly, bands 

corresponding to complexes of the expected molecular weight of EZH2-1 rep wt and 

SUZ12-1 rep wt were detected with both proteins, but not with EED, RbAp48 or a 

GFP control (Figure 20D), in disagreement with the EMSA results, where no EZH2 

complexes were observed. 
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Crosslinking experiments with longer A-repeat and HOTAIR fragments could not 

be performed because they cause a big shift in the migration of EZH2 and SUZ12 in 

SDS-PAGE due to their large molecular weight, which prevents the effective 

identification of the proteins according to their molecular weight. Crosslinking 

followed by RNAse I treatment to trim the unprotected ends of the RNAs resulted in 

broad smears in the gel which were difficult to analyze. 

To further confirm the identity of the RNA binding proteins and to rule out that 

there might be some RNA binding contaminant of molecular weight similar to EZH2 

and SUZ12 in the protein preparation, the samples were immunoprecipitated with 

antibodies specific for EZH2 or SUZ12 after crosslinking. A signal corresponding to 

the expected molecular weight of the protein-RNA complexes could be effectively 

detected with both proteins (Figure 20E), which confirms that both EZH2 and 

SUZ12 are RNA binding proteins. 

Together these findings reconcile the previous contradictory reports that had 

argued that either EZH2 or SUZ12, but not both, possesses RNA binding activity. 

Differences in the methodologies used for protein expression and purification 

might be responsible for the previously contradictory results. As evidenced here, the 

EZH2-1 rep wt interaction cannot be detected by EMSA and this might be a reason 

why previous reports failed to recognize this dual RNA binding activity of the 

complex. 
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Figure 18. Purified PRC2 components and RNA fragments used for EMSA. A. EED 

and RbAp48 expressed in Sf9 cells, SUZ12 expressed in E. coli and EZH2 expressed 

in HEK293T cells were used for experiments shown in Figure 19. B. Xist RNA 

fragments used in Figure 19A. The sequence and structure of 1 rep wt and 1 rep mut 

are shown at the bottom. C. HOTAIR RNA fragments used in Figure 19B. 

Fragments of GFP mRNA of approximately the same length were used as controls 

(GFP-B: 423nt, GFP-C: 318nt, GFP-D: 102 nt) (see Supplementary figure 1 for 

details). 

 

 

Figure 19. EMSA for the identification of the RNA binding subunit of PRC2. EMSA 

with (A) Xist and (B) HOTAIR RNA fragments. 

  



 63 

 

Figure 2016. EZH2 and SUZ12 are RNA binding proteins. A. Purified recombinant 

components of PRC2 purified from HEK293T cells. ps: HRV3C (PreScission) 

protease cleavage site. B. Western blot of purified PRC2 core proteins. Only small 

amounts of other endogenous PRC2 components co-purify with EZH2 and SUZ12. C, 

D. EMSA (C) and crosslinking (D) with 1 rep wt using proteins purified from 

HEK293T cells. E. IP of crosslinked EZH2- and SUZ12-1 rep wt complexes. 
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3.5 EZH2 and SUZ12 have only a slight preference for structured short 

RNAs 

It has been suggested that PRC2 specifically recognizes the double stem loop 

structure of A-repeat and other short ncRNAs with similar structures (Kanhere et al., 

2010; Zhao et al., 2010; Zhao et al., 2008). However, crosslinking experiments 

showed that 1 rep wt and 1 rep mut are bound by both EZH2 and SUZ12 (Figure 

21A). To directly assess the affinity of both proteins for 1 rep wt and 1 rep mut I 

performed competition assays with increasing concentrations of non-radiolabeled 

wildtype and mutant RNAs (Figure 21B). Both RNAs compete with radiolabeled 1 

rep wt and mut, for crosslinking to EZH2 and SUZ12, but the wild type RNA is a 

slightly stronger competitor. These data show that both proteins have only a small 

preference for the structured RNA which suggests that although such secondary 

structure might be preferred it is not an absolute determinant for binding to EZH2 or 

SUZ12. 
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Figure 21. EZH2 and SUZ12 only slightly prefer 1 rep wt. A. EZH2 and SUZ12 

crosslink with both 1 rep wt and mut. B. Competitions assays between radiolabeled 1 

rep wt and 1 rep mut with cold RNA oligos. Mean ± s.d. (n=3). 
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3.6 EZH2 and SUZ12 have loose RNA binding specificity 

EMSA results showed that the fraction of 1 rep wt bound by SUZ12 is small, and 

in comparison affinity for 8.5 rep wt was much higher (note that although 8.5 rep wt 

is only slightly shifted by SUZ12, basically no RNA remains unbound in comparison 

to the GFP control or Mock lanes) (Figure 19A). Each of the 8.5 repeats of the 

human A-repeat domain adopts a double stem loop structure similar to 1 rep wt 

(Wutz et al., 2002) (Figure 15A and Supplementary figure 2), and therefore the 

repeats can in theory act cooperatively to bind to EZH2 and SUZ12. For comparison, 

1 rep, 2 rep, 4 rep and 8.5 rep wt and mut RNA fragments were prepared (Figure 22). 

Mutations in each of the double stem loop repeats were introduced at approximately 

the same positions as in 1 rep mut (Figure 18B and Supplementary table 1) and 

disruption of the secondary structure of each repeat was verified using RNAfold 

(Gruber et al., 2008) (Supplementary figure 2). Analysis of the overall secondary 

structure of each of the RNA fragments showed that despite the mutations, the RNA 

still folds into complex secondary structures different from the wildtype fragments. 

Also note that the RNAfold prediction of the secondary structure of any of the wt 

RNA fragments containing more than one repeat does not correspond to the expected 

sequence of double stem loop repeats (Wutz et al., 2002) (Figure 15A and 

Supplementary figure 3), indicating that the 8.5 double stem loop structure is not the 

most thermodynamically stable conformation (the one with the minimum free 

energy). 

For a more quantitative measurement of the fraction of RNA bound by EZH2 and 

SUZ12, increasing amounts of recombinant proteins were incubated with each RNA 

and the binding strength was assessed by filter binding assays. In this methodology 

samples are applied using vacuum to two superposed membranes: a nitrocellulose 

membrane on top retains protein-bound RNA, while free RNA passes through and is 

captured by a positively charged nylon membrane below. The fraction of bound 

RNA is then calculated (Figure 22B and C). 

Although 1 rep wt and mut are detectably bound by EZH2 and SUZ12, binding is 

very weak and ~95% of the RNA remains unbound, even at the highest protein 

concentration. Because the basal affinity of both proteins for a single repeat of the A-

repeat domain is low, this might explain why mutations that affect the secondary 
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structure of 1 rep have a mild effect in the competition experiments (Figure 21B). In 

contrast, when 2 rep wt, 4 rep wt and 8.5 rep wt RNAs are used at equimolar 

concentration, the fraction of bound RNA greatly increases and reaches near 

saturation in the case of 8.5 rep wt (Figure 23A and B). In the 2 rep wt, 4 rep wt and 

8.5 rep wt experiments the absolute concentration of the double stem loop unit is 

increased 2, 4 and 8.5 times respectively, but this sole increase in concentration is not 

responsible for the increase in the affinity to EZH2 and SUZ12 as evidenced by the 

weak binding of both proteins to 1 rep wt at 10 fold concentration (Figure 23A and 

B). 

Mutations in 2 rep abolish its binding to EZH2 and SUZ12. However, in contrast, 

4 rep mut and 8.5 rep mut bound as strongly as 4 rep wt and 8.5 rep wt even though 

the structure of each of its repeats is disrupted, and its overall secondary structure is 

drastically changed (see discussion below and Supplementary figures 2 and 3). Due 

to the length of 4 rep and 8.5 rep RNAs (184 and 424 nt respectively) it is expected 

that despite the introduction of mutations, new conformations are adopted, and that 

just like in the case of 1 rep mut, EZH2 and SUZ12 are able to bind in the absence of 

the double stem loop structures. I hypothesize that mutations in 4 and 8.5 rep resulted 

in unexpected general secondary structure elements that EZH2 and SUZ12 can bind, 

but that are not present in 2 rep mut. 

Binding of EZH2 and SUZ12 to full length HOTAIR (FL), as well as HOTAIR-A 

(1-308 nt) and -D (205-308 nt) was also assessed by filter binding assays. Unlike 

Xist, HOTAIR does not contain any apparent sequence or structure repeats, and 

increasing the length of the RNA did not enhance binding over the basal binding of 

the HOTAIR-D fragment (Figure 23C and D). As observed in EMSA experiments, it 

is possible that a PRC2-binding element is restricted to this region; however, note 

that binding of HOTAIR fragments was weaker than binding of 8.5 rep fragments. 

Finally, a set of RNA fragments of different lengths that correspond to fractions of 

the GFP mRNA, that are not expected to play any regulatory role of PRC2 function, 

were also tested. Although affinity for the shortest fragment (102 nt) was low, longer 

RNAs (318 nt and 645 nt long) were bound to levels similar to HOTAIR (Figure 23E 

and F). In comparison, control experiments using GFP protein purified from 

HEK293T cells following the same protocol as for purification of EZH2 and SUZ12 
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showed no detectable binding of Xist, HOTAIR or GFP RNA fragments (Figure 

23G). 
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Figure 22. Filter binding assay method. A. Summary of RNA fragments used for 

filter binding assays in Figure 23. B. For filter binding assays samples are loaded 

onto two superposed membranes using vacuum. The membrane on top 

(nitrocellulose) retains protein-bound RNA and free RNA is captured by the 

membrane at the bottom (nylon, positively charged). C. An actual example of a filter 

binding assay using increasing concentration of purified EZH2 and 8.5 rep wt RNA 

as substrate. 
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Figure 23. Filter binding assays with purified EZH2, SUZ12 and GFP. A, B. 

Binding of EZH2 (A) and SUZ12 (B) to Xist fragments. For 1 rep wt (10 fold) the 

concentration of 1 rep wt was raised from 0.1nM to 1nM for comparison. C, D. 

Binding of EZH2 (C) and SUZ12 (D) to HOTAIR fragments. E,F. Binding of EZH2 

(E) and SUZ12 (F) to GFP mRNA fragments. G. Binding of purified GFP to selected 

Xist, HOTAIR and GFP mRNA fragments. Mean ± s.d. (n=>3). 
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3.7 PRC2, a dual RNA binding complex 

PRC2 is one of the key regulators of epigenetic changes that regulate development 

and differentiation. However, how the complex is specifically recruited to genomic 

target loci is not well understood. lncRNAs have emerged as important co-factors for 

PRC2 recruitment, and in fact the PRC2 transcriptome is large, and a big portion 

corresponds to lncRNAs (Khalil et al., 2009; Zhao et al., 2010). At least a subset of 

those lncRNAs are implicated in the regulation of PRC2 target genes, as 

demonstrated in knock down experiments (Khalil et al., 2009). 

lncRNAs can act in cis and trans. Cis acting RNAs are intrinsically tethered to 

their target loci during transcription and can serve as a platform for the recruitment 

of chromatin modifying complexes that bind towards their 5’ end (Figure 24A), 

which in theory could be the case of Xist during the initiation of XCI, but could not 

explain Xist and PRC2 spreading over the whole X chromosome. However, this 

mechanism of action is difficult to prove in most cases because it is complicated to 

differentiate it from effects caused by the act of transcription itself. For example, 

currently there is a debate about whether the expression of the imprinted Igf2r gene 

is controlled by the Airn gene lncRNA RNA product (through its interaction with 

G9a, discussed in section 3.1.) or by Airn transcriptional overlap over the Igfr2 

promoter (Latos et al., 2012; Nagano et al., 2008). In addition, both cis and trans 

acting lncRNAs can be tethered to their target loci through triple DNA-RNA 

interactions via Hoogsteen base pairing, although to date examples of this type of 

regulation are scarce (Schmitz et al., 2010) (Figure 24B). A final mode of regulation 

is the scaffold model in which lncRNAs act as scaffolds for the simultaneous 

recruitment of PRC2 (or other complexes) and protein complexes with affinity for 

specific DNA motifs (Tsai et al., 2010) (Figure 24C). Such is the case of Xist and 

HOTAIR, although to date it cannot be ruled out that other mechanisms of action can 

also be important (Brockdorff, 2013; Lee, 2012; Wang and Chang, 2011). 

PRC2 is a multiprotein RNP complex. It had been previously shown that EZH2 

and SUZ12 specifically bind 1 rep wt, but not unstructured mutant RNAs (Kanhere 

et al., 2010; Zhao et al., 2010; Zhao et al., 2008); and binding of EZH2 to a ~300nt 

region at the 5’ end of HOTAIR was demonstrated (Kaneko et al., 2010; Tsai et al., 

2010). However, some of those reports are mutually exclusive and indicate that 
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either one or the other, but not both proteins can bind RNAs (Kanhere et al., 2010; 

Zhao et al., 2010; Zhao et al., 2008). The present work establishes for the first time 

that in contrast to the previous assumption PRC2 has not only one, but two subunits 

with RNA binding activity. 

Methodological differences might be responsible for this discrepancy. First, 

previous reports used PRC2 subunits expressed in baculovirus (Tsai et al., 2010; 

Zhao et al., 2008) and E. coli (Kanhere et al., 2010) for EMSA. Differences in 

posttranslational modifications depending on the source of the recombinant proteins 

might affect their RNA binding activity. In my work proteins expressed in HEK293T 

cells were used, a system that has the advantage that proteins can undergo all native 

posttranslational modifications; at the cost of lower purity, as small amounts of 

endogenous PRC2 components are co-purified (Figure 20B). To partially overcome 

this problem, an SBP tag was used for purification of each protein using streptavidin 

beads. The affinity of SBP for streptavidin is very high and allows the quick and 

clean purification of proteins in a single purification step (Keefe et al., 2001). In 

addition, the identity of the RNA binding proteins was confirmed by 

immunoprecipitation of the protein-RNA complexes with antibodies specific for 

EZH2 and SUZ12 (Figure 20E). 

Moreover, as evidenced in Figures 19A and 20C, the interaction between EZH2 

and 1 rep wt cannot be detected by EMSA. This assay is a very powerful technique 

to study the DNA or RNA binding affinity of proteins, but several factors, such as 

the stability of the complex during native electrophoresis, and the fact that the degree 

of migration is affected by multiple factors other than the molecular weight of the 

complex, can prevent the detection of some complexes (Hellman and Fried, 2007). 

Therefore EMSA results should be analyzed with caution and preferably should be 

confirmed with other methods. On the other hand, crosslinking with short UV light 

covalently links RNAs with aminoacid residues located in close proximity. Unlike in 

EMSA, the covalent bond fixes the protein-RNA complex and it is stable even under 

the denaturing conditions of SDS-PAGE, which facilitates the detection of unstable 

interactions, which could be the case of the binding between EZH2 and RNAs. It is 

possible that such instability is biologically significant, i.e. the EZH2-RNA 

interaction might be a transient step during the stabilization of the interaction of the 

RNA with PRC2, but additional studies are required to assess this idea. 
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In the case of EZH2 a region between aminoacids 342 and 370 has been 

postulated as the RNA binding domain of the protein and its activity is controlled by 

the cell cycle-regulated phosphorylation of threonine 345 (Kaneko et al., 2010) 

(Figure 13). In contrast, very little is known about the RNA binding activity of 

SUZ12, and in fact, about its domain structure (Figure 13), and therefore the RNA 

binding domain of SUZ12 remains to be identified. 

Previous studies of the RNA binding activity of PRC2 focused mainly on the 

interaction of PRC2 subunits with a 28 nt single repeat of Xist’s A-repeat. This led to 

the general assumption that the sequence and structural elements required for specific 

binding to PRC2 can be contained within such a small RNA. In fact, short RNAs 

(50-200nt long) that resemble the double stem loop structure of 1 rep are transcribed 

from many PRC2 target genes (Kanhere et al., 2010), are bound by SUZ12 and cause 

gene repression in cis. Although in the competition experiments (Figure 21B) the 

wild type RNA is a slightly stronger competitor, the double stem loop structure 

appears not to be an absolute requirement for binding of 1 rep to PRC2 as evidenced 

by the ability of 1 rep mut to compete with the wild type, structured 1 rep RNA for 

binding to EZH2 and SUZ12. However, the low basal affinity of 1 rep for EZH2 and 

SUZ12 is very low (Figure 23A and B) and instead both proteins prefer longer A-

repeat fragments (Figure 23A and B). An independent study also found that fully 

assembled PRC2 affinity for various RNA substrates is enhanced as the length of the 

RNA increases (Davidovich et al., 2013), although such effect was not observed in 

this study with HOTAIR fragments, and was not very evident with GFP-derived 

RNAs (Figure 23C, D, E and F). 

Interestingly, mutation of the 2 repeats of 2 rep wt completely abrogates binding 

(Figure 23A and B); but unexpectedly, affinity for 4 rep mut and 8.5 rep mut was 

similar to the affinity for the wt versions of the RNAs with both proteins. Mutations 

in 2 rep, 4 rep and 8.5 rep were introduced with the aim of disrupting the structure of 

each individual repeat, but controlling the overall structure of RNAs over 100 nt long 

with the introduction of mutations is challenging as invariably new secondary 

structures are created (Supplementary figure 3). I hypothesize that the mutations 

introduced into 4 rep and 8.5 rep resulted in the generation of unexpected RNA 

elements (possible secondary structures) that can be bound by PRC2 with low 

stringency, but that did not arise in the 2 rep mut fragment. 
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Therefore, although the contribution of the double stem loop structures for 

binding to PRC2 is difficult to define at this moment, the current evidence suggests 

that although PRC2 might bind to the double stem loop structures of A-repeat, 

specificity is loose and the RNA binding subunits of PRC2 can also bind 

promiscuously to random RNA elements present in the mutant versions of the A-

repeat fragments, and even in unrelated RNAs, such as GFP mRNA (Figure 23E and 

F) or bacterial RNAs (Davidovich et al., 2013) that do not contain sequence or 

structure repeats. However, it remains intriguing that the affinity of EZH2 and 

SUZ12 for A-repeat fragments was maximized when the full length domain was used. 

Supporting the point of view that the RNA binding specificity of PRC2 is loose, 

two recent independent studies have reported that in vivo promiscuous PRC2 binding 

to RNA (probed by the EZH2 subunit) is widespread. EZH2-bound target RNAs (not 

necessarily ncRNAs) arise from both active and repressed genes (Kaneko et al., 

2013), and the binding sites are preferentially located in the 5’ region of the RNAs 

and equally among introns and exons (Davidovich et al., 2013), which is consistent 

with a model in which EZH2 is recruited to nascent RNAs and scans transcripts 

throughout the genome. One interesting observation is that a fraction of the EZH2-

bound RNAs arise from genes devoid of H3K27me2/3 despite having low, but 

detectable PRC2 occupancy (Davidovich et al., 2013; Kaneko et al., 2013). One 

hypothesis is that nascent RNAs act as repressors of the methyltransferase activity of 

EZH2, and therefore, H3K27me2/3 will only be deposited after the pre-establishment 

of a silent state by transcription factors and other epigenetic modifying complexes 

that stop transcription of the “repressive” RNAs. This model is consistent with the 

role of PRC2 in maintenance, rather than de novo establishment of transcriptional 

repression (Kaneko et al., 2013). This model, however, is not compatible with the 

role of some lncRNAs, such as HOTAIR, that are believed to recruit PRC2 in trans, 

or Xist that spreads to locations distant from its transcription site; processes that are 

independent of the act of transcription of the lncRNA. 

Importantly, neither of the two studies excludes that some particular RNA-PRC2 

interactions might be specific, and qualitatively different from the RNA scanning 

function of PRC2. However, whether PRC2 has two RNA-related roles is an open 

question. It is possible that only a subpopulation of PRC2 complexes scans nascent 

transcripts throughout the genome and senses the local epigenetic environment. In 
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fact, it is not clear whether the RNA scanning activity of EZH2 corresponds to fully 

assembled PRC2, or whether it might be the activity of a different EZH2-related 

complex or of a PRC2-independent role of EZH2 (Goff and Rinn, 2013; Kaneko et 

al., 2013). It is known, however, that PRC2 activity is affected by the surrounding 

epigenetic landscape; for example, PRC2 recognizes pre-established H3K27me2/3 

(Margueron et al., 2009) and in certain conditions the methyltransferase activity of 

EZH2 is inhibited by the activating mark H3K4me3 (Schmitges et al., 2011; Voigt et 

al., 2012). In this context, deposition of new H3K27me2/3 would require the concert 

of several simultaneous signals that mark genes as transcriptionally silent: absence of 

“repressive” nascent transcripts and of the activating mark H3K4me3; plus the 

presence of pre-deposited H3K27me2/3. In addition, recognition of DNA sequences 

by the accessory proteins AEBP2 and JARID2, interaction with histone 3 and 4 by 

RbAp48 and possibly signals mediated by lncRNAs might also be required (Goff and 

Rinn, 2013; Kaneko et al., 2013) (Figure 25). Another subpopulation of PRC2 might 

have more specific and restricted RNA binding activity, and might use lncRNAs as 

co-factors to locate its target loci, but a fully assembled PRC2, additional factors and 

a specific intra nuclear micro-environment (still unknown) might be required in such 

cases. This might be the case of some lncRNA, that in contrast to nascent RNAs do 

not inhibit the catalytic activity of PRC2, but whose knock down instead causes de-

repression of genes normally silenced by PRC2 (such as Xist and HOTAIR) (Khalil 

et al., 2009). 

Finally, although the significance of the RNA binding by two different 

components of PRC2 awaits further investigation, it might be an indication of the 

complexity of signals that are required by the timely and precise deposition of 

H3K27me2/3 according to detailed regulatory signals. The RNA elements might be 

transferred between EZH2 and SUZ12; or tentatively, both subunits might bind 

cooperatively to target RNAs, or even to different classes of RNAs simultaneously, 

which would add an additional layer of complexity to the regulation of gene 

expression mediated by PRC2. 
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Figure 24. Models for the recruitment of RNA-mediated recruitment of epigenetic 

modifying factors. A. Co-transcriptional recruitment. B. DNA-RNA hybrid model. C. 

Scaffold model. RNAP: RNA polymerase. DBP: DNA binding protein. 
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Figure 25. Model for the modulation of the methyltransferase activity of scanning-

PRC2 by the epigenetic landscape of the target locus. A. PRC2 binds to a nascent 

transcript through its subunits EZH2 and SUZ12 (whether both proteins bind 

simultaneously is unknown) in a locus with deposited H3K4me3 (yellow), which 

together are marks of an actively transcribed locus. Under these conditions no 

H3K27me2/3 is deposited. B. In the absence of nascent transcripts and in the 

presence of pre-established H3K27me2/3 (blue), PRC2 deposits new H3K27me2/3 

(red). Recognition of DNA by JARID2 and AEBP2; and binding to histone 3 and 4 

by RbAp48 might be additional signals that help to sense the surrounding epigenetic 

environment. Compare with Figure 14 

 



  

4. Concluding remarks 
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In 1958 Francis Crick postulated his famous theories of the sequence hypothesis 

and the central dogma that stated that in living cells information flows in a sequential 

way from DNA to RNA and finally intro proteins, and additionally that no 

information transfer occurs from proteins (Crick, 1970; Crick, 1958). Early works 

had already recognized the importance of proteins as enzymes in most cellular 

reactions as well as architectural scaffolds together with other macromolecules such 

as lipids and polysaccharides. However, the notion that DNA and RNA were mere 

media for the storage and transfer of information for the production of proteins 

remained unchallenged for a long time.  

However, now more than ever it is evident that complex interconnections between 

all the macromolecules that form the cell are required for the existence of living 

beings, and that RNAs are key players in many biochemical reactions in addition to 

their fundamental role as mRNAs. 

ncRNAs are involved in numerous cellular processes, from regulation of 

transcription, splicing, formation of cellular structures in the nucleus; to translation, 

and post-transcriptional regulation in the cytoplasm. In fact, ncRNA expression is as 

tightly regulated as the expression of protein coding genes (Guttman et al., 2009), 

and most likely ncRNA expression is also regulated by other ncRNAs. 

Although some ncRNAs function as ribozymes, most of them require the concert 

of protein partners to exert their functions, and therefore the study of the composition 

and assembly of RNPs is has become a popular and exciting research topic. Each 

RNA class, just like protein classes, has assigned roles and it must find its molecular 

partners and targets within the vast and crowded micro-environment that is a live cell. 

And just like proteins, RNAs have several levels of organization, and therefore 

different layers of information that can be exploited for the formation of RNP 

complexes with its binding partners. The first layer is their primary sequence 

information; second, their secondary structure that gets more complex as the length 

of the RNA increases (see Supplementary figures 3, 4 and 5 for examples); and lastly, 

their three dimensional conformation alone or together with other RNA or protein 

partners. 

miRNA precursors for example have to go through a series of processing steps 

until miRNAs are assembled into effector complexes to regulate gene expression. 
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Each step requires the precise spatiotemporal coordination of multiple factors and the 

recognition of various RNA elements that ensure that the correct RNAs are finally 

assembled into the appropriate RNPs. Cellular checkpoints of RNA fidelity include 

sensing RNA features such as RNA structure, the length of stems, and loops in 

hairpins, or the presence of specific chemical modifications, such as methyl or 

phosphoryl groups (Figure 26). Fly Dcr-1, for example, checks the loop size of pre-

miRNAs and the distance between the 3’ overhang and the tip of the loop to produce 

miRNAs of the correct size (Tsutsumi et al., 2011), and the phosphate binding pocket 

of Ago requires a phosphate group at the 5’ end of the guide strand of small RNA 

duplexes during RISC loading (Kawamata et al., 2011). 

Although less understood, lncRNAs are no different. Xist, HOTAIR and other 

nuclear RNAs undergo initial processing steps that are no different from those of 

protein coding mRNAs, such as capping, splicing and polyadenylation; and whether 

most lncRNA undergo specific processing steps remains largely unknown. However, 

unlike mRNAs, nuclear RNAs need to be retained in the nucleus, and some of them 

locate at very specific intra nuclear sites following strict cues from the surrounding 

environment. Due to the variety of protein-lncRNA interactions, it has been difficult 

to establish which are the specific sequence or structural elements that the partner 

proteins recognize. It is also very likely the current knowledge we have will be 

redefined in the next few years as more is discovered about the roles of lncRNAs. 

PRC2, for example, was thought to specifically recognize the double stem loop 

structure present in the A-repeat domain of Xist, but recent studies, including this 

one, have shown that the complex has the ability to bind many different RNAs that 

lack such motifs with apparent relaxed specificity, although under some 

circumstances PRC2 seems to prefer longer RNAs over short fragments (Davidovich 

et al., 2013) (Figure 23A and B). However, just like with miRNAs, it is expected that 

in some cases post transcriptional modifications, or secondary structure features are 

recognized by lncRNA binding partners. Additionally, due to their length, lncRNAs 

can bind multiple protein complexes simultaneously and can serve as platforms for 

the multimerization of RNP complexes (Figure 26).  

Although we learned a lot in the past few years about the complexities of the 

world of ncRNAs, still many exciting questions remain to be answered and multiple 
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research avenues remain open. In addition, it is likely that still new classes of 

ncRNAs remain to be uncovered.  
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Figure 26. RNA elements of miRNAs and lncRNAs. Both miRNA and lncRNA 

precursors are transcribed in the nucleus and most are polyadenylated (AAAAA) and 

capped (black circle). MicroRNAs are processed by a specific subset of proteins that 

recognize RNA elements from the characteristic hairpin structure present in pri-

miRNAs, such as the length and shape of the stem and the loop (2. and 3.). Next the 

miRNA duplex is loaded into Ago, which prefers double stranded RNAs and requires 

a 5’ phosphate on the guide strand (4.). Then the miRNA duplex is unwound and the 

guide strand hybridizes with a target mRNA in particular by base pairing of the seed 

sequence (5.). On the other hand different lncRNAs (lncRNA A and B) adopt diverse 

secondary and tertiary structures and some of them are retained in the nucleus (6.). It 

is unknown whether there are specific processing factors for lncRNAs. Different 

lncRNAs may interact with distinct protein complexes (lncRNA A interacts with 

complex K, while lncRNA B binds to complex L) and can serve as scaffolds for the 

multimerization of RNP complexes (simultaneously, lncRNA A may bind protein M 

and lncRNA B may interact with complex N). Although lncRNAs have many 

dissimilar functions, some of them regulate epigenetic modifications 
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5. Supplementary information 
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Supplementary figure 1. Summary of all the RNA fragments used in Part 2 of this 

study.  
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Supplementary figure 2. Prediction of the minimum free energy (MFE) secondary 

structures of each of the 8.5 stem loop structures of Xist (left). The figures on the 

right side correspond to the structures of mutant versions of the RNA fragments after 

the introduction of point mutations that disrupt the secondary structures. See 
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supplementary table 1 for detailed descriptions of the mutations. Predictions were 

perfomed using RNAfold with default parameters (Gruber et al., 2008). The color 

scale indicates base-pairing probabilities. In the case of unpaired regions the scale 

refers to the probability of being unpaired.  
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Supplementary figure 3. Prediction of the minimum free energy (MFE) secondary 

structures of Xist fragments used in this study. Predictions were perfomed using 

RNAfold with default parameters (Gruber et al., 2008). The color scale indicates 

base-pairing probabilities. In the case of unpaired regions the scale refers to the 

probability of being unpaired. 
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Supplementary figure 4. Prediction of the minimum free energy (MFE) secondary 

structures of HOTAIR fragments used in this study. Predictions were perfomed using 

RNAfold with default parameters (Gruber et al., 2008). The color scale indicates 

base-pairing probabilities. In the case of unpaired regions the scale refers to the 

probability of being unpaired. 
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Supplementary figure 5. Prediction of the minimum free energy (MFE) secondary 

structures of GFP fragments used in this study. Predictions were perfomed using 

RNAfold with default parameters (Gruber et al., 2008). The color scale indicates 

base-pairing probabilities. In the case of unpaired regions the scale refers to the 

probability of being unpaired. 
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Supplementary table 1. Sequences of the RNAs used in Part 2 of this study. Underlined sequences correspond to mutated nucleotides. 

Name Length Sequence 

8.5 rep 

wt 
424 

TCTTCCACTCTCTTTTCTATATTTTGCCCATCGGGGCTGCGGATACCTGGTTTTATTATTTTTTCTTTGCCCAACGGGGCCGTGGA

TACCTGCCTTTTAATTCTTTTTTATTCGCCCATCGGGGCCGCGGATACCTGCTTTTTATTTTTTTTTCCTTAGCCCATCGGGGTAT

CGGATACCTGCTGATTCCCTTCCCCTCTGAACCCCCAACACTCTGGCCCATCGGGGTGACGGATATCTGCTTTTTAAAAATTTTCT

TTTTTTGGCCCATCGGGGCTTCGGATACCTGCTTTTTTTTTTTTTATTTTTCCTTGCCCATCGGGGCCTCGGATACCTGCTTTAAT

TTTTGTTTTTCTGGCCCATCGGGGCCGCGGATACCTGCTTTGATTTTTTTTTTTCATCGCCCATCGGTGCTTTTTATGGA 

8.5 rep 

mut 
424 

TCTTCCACTCTCTTTTCTATATTTTAGCAATCGGGGCTGCAGATACATAGTTTTATTATTTTTTCTTTAGCAAACGGGGCCGTAGA

TACATACCTTTTAATTCTTTTTTATTCAGCAATCGGGGCCGCAGATACATACTTTTTATTTTTTTTTCCTTAAGCAATCGGGGTAT

CAGATACATACTGATTCCCTTCCCCTCTGAACCCCCAACACTCTGAGCAATCGGGGTGACAGATATATACTTTTTAAAAATTTTCT

TTTTTTGAACAATCGGGGCTTCAGATACATACTTTTTTTTTTTTTATTTTTCCTTAGCAATCGGGGCCTCAGATACATACTTTAAT

TTTTGTTTTTCTGAACAATCGGGGCCGCAGATACATACTTTGATTTTTTTTTTTCATAACACATCGATGCTTTTTATGGA 

4 rep wt 184 

TCTTCCACTCTCTTTTCTATATTTTGCCCATCGGGGCTGCGGATACCTGGTTTTATTATTTTTTCTTTGCCCAACGGGGCCGTGGA

TACCTGCCTTTTAATTCTTTTTTATTCGCCCATCGGGGCCGCGGATACCTGCTTTTTATTTTTTTTTCCTTAGCCCATCGGGGTAT

CGGATACCTGCT 

4 rep mut 184 

TCTTCCACTCTCTTTTCTATATTTTAGCAATCGGGGCTGCAGATACATAGTTTTATTATTTTTTCTTTAGCAAACGGGGCCGTAGA

TACATACCTTTTAATTCTTTTTTATTCAGCAATCGGGGCCGCAGATACATACTTTTTATTTTTTTTTCCTTAAGCAATCGGGGTAT

CAGATACATACT 

2 rep wt 94 
TCTTCCACTCTCTTTTCTATATTTTGCCCATCGGGGCTGCGGATACCTGGTTTTATTATTTTTTCTTTGCCCAACGGGGCCGTGGA

TACCTGCC 

2 rep mut 94 
TCTTCCACTCTCTTTTCTATATTTTAGCAATCGGGGCTGCAGATACATAGTTTTATTATTTTTTCTTTAGCAAACGGGGCCGTAGA

TACATACC 

1 rep wt 28 UUGCCCAUCGGGGCCACGGAUACCUGCU 

1 rep mut 28 UUAGCAAUCGGGGCCACAGAUACAUACU 

HOTAIR 

full 

length 

(FL) 

2145 

GACTCGCCTGTGCTCTGGAGCTTGATCCGAAAGCTTCCACAGTGAGGACTGCTCCGTGGGGGTAAGAGAGCACCAGGCACTGAGGC

CTGGGAGTTCCACAGACCAACACCCCTGCTCCTGGCGGCTCCCACCCGGGACTTAGACCCTCAGGTCCCTAATATCCCGGAGGTGC

TCTCAATCAGAAAGGTCCTGCTCCGCTTCGCAGTGGAATGGAACGGATTTAGAAGCCTGCAGTAGGGGAGTGGGGAGTGGAGAGAG

GGAGCCCAGAGTTACAGACGGCGGCGAGAGGAAGGAGGGGCGTCTTTATTTTTTTAAGGCCCCAAAGAGTCTGATGTTTACAAGAC

CAGAAATGCCACGGCCGCGTCCTGGCAGAGAAAAGGCTGAAATGGAGGACCGGCGCCTTCCTTATAAGTATGCACATTGGCGAGAG



 

 

9
3 

Name Length Sequence 

AAGTGCTGCAACCTAAACCAGCAATTACACCCAAGCTCGTTGGGGCCTAAGCCAGTACCGACCTGGTAGAAAAAGCAACCACGAAG

CTAGAGAGAGAGCCAGAGGAGGGAAGAGAGCGCCAGACGAAGGTGAAAGCGAACCACGCAGAGAAATGCAGGCAAGGGAGCAAGGC

GGCAGTTCCCGGAACAAACGTGGCAGAGGGCAAGACGGGCACTCACAGACAGAGGTTTATGTATTTTTATTTTTTAAAATCTGATT

TGGTGTTCCATGAGGAAAAGGGAAAATCTAGGGAACGGGAGTACAGAGAGAATAATCCGGGTCCTAGCTCGCCACATGAACGCCCA

GAGAACGCTGGAAAAACCTGAGCGGGTGCCGGGGCAGCACCCGGCTCGGGTCAGCCACTGCCCCACACCGGGCCCACCAAGCCCCG

CCCCTCGCGGCCACCGGGGCTTCCTTGCTCTTCTTATCATCTCCATCTTTATGATGAGGCTTGTTAACAAGACCAGAGAGCTGGCC

AAGCACCTCTATCTCAGCCGCGCCCGCTCAGCCGAGCAGCGGTCGGTGGGGGGACTGGGAGGCGCTAATTAATTGATTCCTTTGGA

CTGTAAAATATGGCGGCGTCTACACGGAACCCATGGACTCATAAACAATATATCTGTTGGGCGTGAGTGCACTGTCTCTCAAATAA

TTTTTCCATAGGCAAATGTCAGAGGGTTCTGGATTTTTAGTTGCTAAGGAAAGATCCAAATGGGACCAATTTTAGGAGGCCCAAAC

AGAGTCCGTTCAGTGTCAGAAAATGCTTCCCCAAAGGGGTTGGGAGTGTGTTTTGTTGGAAAAAAGCTTGGGTTATAGGAAAGCCT

TTCCCTGCTACTTGTGTAGACCCAGCCCAATTTAAGAATTACAAGGAAGCGAAGGGGTTGTGTAGGCCGGAAGCCTCTCTGTCCCG

GCTGGATGCAGGGGACTTGAGCTGCTCCGGAATTTGAGAGGAACATAGAAGCAAAGGTCCAGCCTTTGCTTCGTGCTGATTCCTAG

ACTTAAGATTCAAAAACAAATTTTTAAAAGTGAAACCAGCCCTAGCCTTTGGAAGCTCTTGAAGGTTCAGCACCCACCCAGGAATC

CACCTGCCTGTTACACGCCTCTCCAAGACACAGTGGCACCGCTTTTCTAACTGGCAGCACAGAGCAACTCTATAATATGCTTATAT

TAGGTCTAGAAGAATGCATCTTGAGACACATGGGTAACCTAATTATATAATGCTTGTTCCATACAGGAGTGATTATGCAGTGGGAC

CCTGCTGCAAACGGGACTTTGCACTCTAAATATAGACCCCAGCTTGGGACAAAAGTTGCAGTAGAAAAATAGACATAGGAGAACAC

TTAAATAAGTGATGCATGTAGACACAGAAGGGGTATTTAAAAGACAGAAATAATAGAAGTACAGAAGAACAGAAAAAAAATCAGCA

GATGGAGATTACCATTCCCAATGCCTGAACTTCCTCCTGCTATTAAGATTGCTAGAGAATTGTGTCTTAAACAGTTCATGAACCCA

GAAGAATGCAATTTCAATGTATTTAGTACACACACAGTATGTATATAAACACAACTCACAGAATATATTTTCCATACATTGGGTAG

GTATGCACTTTGTGTATATATAATAATGTATTTTCCATGCAGTTTTAAAATGTAGATATATTAATATCTGGATGCATTTTC 

HOTAIR

-A 
308 

GACTCGCCTGTGCTCTGGAGCTTGATCCGAAAGCTTCCACAGTGAGGACTGCTCCGTGGGGGTAAGAGAGCACCAGGCACTGAGGC

CTGGGAGTTCCACAGACCAACACCCCTGCTCCTGGCGGCTCCCACCCGGGACTTAGACCCTCAGGTCCCTAATATCCCGGAGGTGC

TCTCAATCAGAAAGGTCCTGCTCCGCTTCGCAGTGGAATGGAACGGATTTAGAAGCCTGCAGTAGGGGAGTGGGGAGTGGAGAGAG

GGAGCCCAGAGTTACAGACGGCGGCGAGAGGAAGGAGGGGCGTCTTTATT 

HOTAIR

-B 
102 

GACTCGCCTGTGCTCTGGAGCTTGATCCGAAAGCTTCCACAGTGAGGACTGCTCCGTGGGGGTAAGAGAGCACCAGGCACTGAGGC

CTGGGAGTTCCACAGA 

HOTAIR

-C 
102 

CCAACACCCCTGCTCCTGGCGGCTCCCACCCGGGACTTAGACCCTCAGGTCCCTAATATCCCGGAGGTGCTCTCAATCAGAAAGGT

CCTGCTCCGCTTCGCA 

HOTAIR

-D 
104 

GTGGAATGGAACGGATTTAGAAGCCTGCAGTAGGGGAGTGGGGAGTGGAGAGAGGGAGCCCAGAGTTACAGACGGCGGCGAGAGGA

AGGAGGGGCGTCTTTATT 

HOTAIR

-D1 
26 

GTGGAATGGAACGGATTTAGAAGCCT 
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Name Length Sequence 

HOTAIR

-D2 
26 

GCAGTAGGGGAGTGGGGAGTGGAGAG 

HOTAIR

-D3 
26 

AGGGAGCCCAGAGTTACAGACGGCGG 

HOTAIR

-D4 
26 

CGAGAGGAAGGAGGGGCGTCTTTATT 

27nt 

control 
27 

UCAAAAACUAACGGAUUGGUUUCGAAC 

GFP-A 645 

GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAA

GCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGC

ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGC

GCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGG

GCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGA

TCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTG

CCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGT

GACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAG 

GFP-B 423 

GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAA

GCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGC

ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGC

GCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGG

GCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAAC 

GFP-C 318 

GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAA

GCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGC

ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGC

GCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGAC 

GFP-D 102 
GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAA

GCTGCCCGTGCCCTGG 
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