
Research on Performance Optimization
Methods based on Performance Analytical

Modeling and Communication Latency Hiding
in GPU

(GPUの性能分析モデリングと通信レイテンシの隠蔽に基づく性能の最適化方法に
関する研究)

Doctoral Dissertation
博士論文

Cheng Luo

羅成

Submitted to Department of Computer Science,
Graduate School of Information Science and Technology,

The University of Tokyo
in partial fulfillment of the requirements for the degree of

Doctor of Information Science and Technology

Thesis Supervisor: Reiji Suda (須田礼仁)
Professor of Computer Science

June 14, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTokyo Repository

https://core.ac.uk/display/196990097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract: Stream processing has been widely used since the emergence of stream
applications such as time varying visualization and audio/video processing. Stream
processing can exploit the inherent parallelism of the pipeline while the different
stream elements also can be processed simultaneously to achieve data parallelism.
Graphic processing unit(GPU) is one of the most successful stream architectures
in recent years which is originally designed for acceleration of graphics applica-
tions. Now, it is widely used as General-purpose computing on graphics processing
units (GPGPU) to accelerate many scientific applications with more than 10 times
speedup over CPU platform. There are many new programming languages that
help programmers to write parallel applications with GPUs such as Brook+, CUDA
and OpenCL. With these programming and architectural features, programmers
can quickly port their programs to a GPU based platform. However, if program-
mers want to have a better performance, they need to have a further understanding
at various features of the low-level architecture and associated bottlenecks in their
applications which will increase their burden in writing parallel applications. There-
fore, there are many researches working on performance optimization methods from
many aspects for programmers without much knowledge of GPU.

The motivation behind this work was caused by the emerging of high computa-
tional potential GPU along with the difficulty of writing high performance parallel
programs on GPU based system. Our interests focus on performance prediction
problem and communication latency between the host and the device problem. For
performance prediction problem, it is difficult to predict the performance of kernel
codes on GPU without enough knowledge about the low level architecture. There-
fore, programmers may use unsuitable configuration to run their applications on
GPUs which may lead to poor performance. Therefore, performance analytical
model is needed to help programmers better understand the performance of their
applications on GPU and find out the performance bottlenecks.

On the other hand, the communication latency between the host and device
also can greatly affect the performance. CUDA programs include two parts: host
code running on CPU and device code running on GPU. The host code invokes the
device code to execute the kernel operation while the input and output streams are
stored in device memory. As the device memory is separated from the host memory,
streams are required to be transferred between them which leads to the communica-
tion latency between the host and device. According to different application types,
the communication latency overhead between the host and device will account from
very little to very high proportion of the total execution time cost. It is difficult for

ii

programmers to achieve high performance without awareness of the communication
latency. CUDA supports concurrent execution for kernel execution and data trans-
fer. Notice that some latest NVIDIA Tesla series GPUs begin to support two copy
engines for bi-directional data transfer which enables to launch data send, kernel
execution and data receive simultaneously. With this new feature, it is possible to
use three streams respectively for data send, kernel execution and data receive to
hide the communication latency by overlapping the three streams.

In this thesis I am proposing performance optimization methods based on per-
formance analytical modeling and communication latency hiding to solve the per-
formance prediction problem and communication latency problem respectively. For
performance prediction problem, I propose a performance analytical model which
can help programmers have a better insight into their applications and give a better
configuration to execute application based on the predicted results. For communi-
cation latency problem, I propose a task partitioning and scheduling method named
TPSM to help programmers achieve to hide the communication latency between the
host and the device in GPU based system.

The performance analytical model can estimate the execution time of massively
parallel programs which take the instruction-level and thread-level parallelism into
consideration. The model contains two components: memory submodel and compu-
tation submodel. The memory submodel can estimate the cost of memory instruc-
tions by considering the number of active threads and GPU memory bandwidth.
Correspondingly, the computation submodel can estimate the cost of computation
instructions by considering the number of active threads and application’s arithmetic
intensity. I use ocelot to analyze PTX codes to obtain several input parameters for
the two submodels such as memory transaction number and data size. Based on
the two submodels, the analytical model can estimate the cost of each instruction
while considering instruction-level and thread-level parallelism, thereby estimating
the overall execution time of an application. With the predicted results, program-
mers can choose a suitable configuration to execute their applications with better
performance.

I also propose a Task Partition and Scheduling Method(TPSM) which can help
programmers to partition individual GPU application into subtasks and improve
the performance of individual application with three streams by overlapping data
send, kernel execution and data receive. With two copy engines, the work support
simultaneous data send, kernel execution and data receive while previous work can
only support simultaneous unidirectional data transfer and kernel execution. To ex-
tract the features of application, I classify GPU applications into several basic types
from computation-to-communication ratio aspect and send-to-receive ratio aspect.

iii

With the classification, I design corresponding task partitioning and scheduling sub-
methods. I also design a time optimal data transfer algorithm to achieve optimal
data transfer between host and device in multiple GPU architecture. TPSM can be
applicable in single GPU architecture, multiple GPU symmetric architecture and
multiple GPU non-symmetric architecture.

I use four benchmarks to test the performance analytical model and tasking
partitioning and scheduling method on various GPUs. The results show that the
performance analytical model can achieve on average around 90% accurate ratio
for the prediction of kernel execution. The results of TPSM show that the work
proposed in this thesis can successfully hide the communication latency between for
individual application to achieve high performance which is very close to the lower
bound time cost.

Keywords: Performance, prediction, model, task partitioning, task scheduling,
overlapping computation and communication, parallelism, GPU

v

Acknowledgments

I would like to express gratitude to all those people who helped me during the
writing of this thesis.

I owe my deepest gratitude to my supervisor, professor Reiji Suda, for guiding me
into this inspiring and challenging area in computer science. I have been extremely
lucky to have a supervisor who cared so much about my work, my life in Japan and
who discussed with me and responded to my questions every week. Thank him so
much for all his support and encouragement over these past three years.

I also would like to thank all members in Suda lab for provide the support for
everything.

I thank my parents for supporting and understanding me all the time.
I must express my gratitude to Ting, my wife, for her continued support, encour-

agement, quiet patience unwavering love which in the end makes this dissertation
possible.

Many thanks to Sunpyo Hong for applying information about GPU emulator
and benchmarks.

Thanks to Michael Linderman for applying Merge benchmarks.
Thanks to the patient technological replies from the gpuocelot groups.
This work was partially supported by Core Research of Evolutional Science

and Technology (CREST) project “ULP-HPC: Ultra Low-Power, High-Performance
Computing via Modeling and Optimization of Next Generation HPC Technologies”
of Japan Science and Technology Agency (JST) and Grant-in-Aid for Scientific Re-
search of MEXT Japan.

Contents

1 Introduction 1
1.1 Parallel Computing from CPU to CPU+GPU 1
1.2 Motivation . 3
1.3 Contributions . 4

2 Background 7
2.1 CUDA Framework . 7
2.2 GPU Architecture . 9
2.3 GPU Ocelot . 10
2.4 Divisible Load Scheduling . 11

3 Performance Analytical Model 13
3.1 Architecture . 13
3.2 Assembly Code Analysis . 14
3.3 Execution of Multiple Warps . 15

3.3.1 MPD submodel . 17
3.3.2 CPD submodel . 17

3.4 Calculation Model . 19
3.5 Experiment Evaluation . 21

3.5.1 Configuration . 21
3.5.2 Results . 23

4 A Task Partitioning and Scheduling Method 37
4.1 Application Classification . 37
4.2 TPSM for Single GPU Architecture 39

4.2.1 Partitioning and Scheduling for Kernel Bound Applications . 40
4.2.2 Partitioning and Scheduling for Data Transfer Bound Appli-

cations . 47
4.3 TPSM for Symmetric Multiple GPUs Architecture 55

4.3.1 Time Optimal Data Transfer Algorithm for Symmetric Mul-
tiple GPUs Architecture . 55

4.3.2 TPSM . 62
4.4 TPSM for Non-symmetric Multiple GPUs Architecture 77

4.4.1 Time Optimal Data Transfer Algorithm for Non-symmetric
GPUs Architecture . 78

viii Contents

4.4.2 TPSM . 80
4.5 Experimental Evaluation . 82

4.5.1 Symmetric Architecture . 83
4.5.2 Non-symmetric Architecture 100

5 Related Works 109
5.1 GPU Performance Prediction . 109

5.1.1 GPU Analytical and Performance Models 109
5.1.2 GPU Simulators . 110

5.2 Communication Latency Hiding . 111
5.2.1 Divisible Load Scheduling . 111
5.2.2 GPU Performance Optimization 114
5.2.3 Stream Overlapping . 115

6 Conclusions and Future Work 117
6.1 Conclusions . 117
6.2 Future Work . 118

A Appendix 121

Bibliography 125

List of Figures

1.1 CPU + GPU heterogeneous system 2

2.1 Grid of Thread Blocks . 8
2.2 GPU Architecture . 9

3.1 Performance Analytical Model Architecture 13
3.2 PTX code generated from CUDA code with ocelot 14
3.3 Multiple Warps Execution in GPU Architecture 16
3.4 The Execution of Multiple Warps with MPD Awareness 16
3.5 Calculate Period Type 1 . 19
3.6 Calculate Period Type 2 . 20
3.7 Calculate Period Type 3 . 21
3.8 Calculate Period Type 4 . 21
3.9 Linear Filter Results in GTX260 . 23
3.10 Linear Filter Results in Tesla C2050 24
3.11 The Accuracy of Linear Filter in GTX260 and Tesla C2050 24
3.12 Linear Filter Results in Tesla C2075 25
3.13 Linear Filter Results in Tesla K20c 25
3.14 The Accuracy of Linear Filter in Tesla C2075 and Tesla K20c 26
3.15 Sepia Filter Results in GTX260 . 26
3.16 Sepia Filter Results in Tesla C2050 27
3.17 The Accuracy of Sepia Filter in Two GPUs 27
3.18 Sepia Filter Results in Tesla C2075 28
3.19 Sepia Filter Results in Tesla K20c . 28
3.20 The Accuracy of Sepia Filter in Tesla C2075 and Tesla K20c 29
3.21 Black-scholes Results in GTX 260 . 29
3.22 Black-scholes Results in Tesla C2050 30
3.23 The Accuracy of Black-scholes in Two GPUs 31
3.24 Black-scholes Results in C2075 . 31
3.25 Black-scholes Results in Tesla K20c 32
3.26 The Accuracy of Black-scholes in Tesla C2075 and Tesla K20c 32
3.27 Matrix Multiplication Results in GTX260 33
3.28 Matrix Multiplication Results in Tesla C2050 33
3.29 The Accuracy of Matrix Multiplication in Two GPUs 34
3.30 Matrix Multiplication Results in Tesla C2075 34

x List of Figures

3.31 Matrix Multiplication Results in Tesla K20c 35
3.32 The Accuracy of Matrix Multiplication in Tesla C2075 and Tesla K20c 35

4.1 The Classification of Applications . 38
4.2 The Basic Idea of TPSM . 40
4.3 TPSM for Kernel Bound and Send Heavy in Single GPU Architecture 41
4.4 TPSM for Kernel Bound and Receive Heavy in Single GPU Architecture 42
4.5 TPSM for Kernel Bound and General Heavy in Single GPU Architecture 44
4.6 TPSM for Data Transfer Bound and Send Heavy in Single GPU Ar-

chitecture . 48
4.7 TPSM for Data Transfer Bound and Receive Heavy in Single GPU

Architecture . 51
4.8 TPSM for Data Transfer Bound and General Heavy in Single GPU

Architecture . 54
4.9 Data Size Optimality Problem . 58
4.10 Convex Mixture . 59
4.11 Upper-right Convex Hull Data Transfer Size with Scheduling Length T 60
4.12 TPSM for Kernel Bound and Send Heavy in Symmetric Multiple

GPU Architecture . 62
4.13 TPSM for Kernel Bound and Receive Heavy in Symmetric Multiple

GPU Architecture . 65
4.14 TPSM for Kernel Bound and General Heavy in Symmetric Multiple

GPU Architecture . 66
4.15 TPSM for Data Transfer Bound and Send Heavy in Symmetric Mul-

tiple GPU Architecture . 70
4.16 TPSM for Data Transfer Bound and Receive Heavy in Symmetric

Multiple GPU Architecture . 73
4.17 TPSM for Data Transfer Bound and General Heavy in Symmetric

Multiple GPU Architecture . 76
4.18 Two Layer Partitioning . 80
4.19 Scheduling Process for Non-symmetric Dual GPUs 81
4.20 Linear Filter Results in Tesla C2070 84
4.21 Linear Filter Speedup Results in Tesla C2070 85
4.22 Linear Filter Results in Tesla C2075 85
4.23 Linear Filter Speedup Results in Tesla C2075 86
4.24 Linear Filter Results in Tesla M2090 87
4.25 Linear Filter Speedup Results in Tesla M2090 87
4.26 Sepia Filter Results in Tesla C2070 88
4.27 Sepia Filter Speedup Results in Tesla C2070 88

List of Figures xi

4.28 Sepia Filter Results in Tesla C2075 89
4.29 Sepia Filter Speedup Results in Tesla C2075 90
4.30 Sepia Filter Results in Tesla M2090 90
4.31 Sepia Filter Speedup Results in Tesla M2090 91
4.32 Black-Scholes Results in Tesla C2070 92
4.33 Black-Scholes Speedup Results in Tesla C2070 92
4.34 Black-Scholes Results in Tesla C2075 93
4.35 Black-Scholes Speedup Results in Tesla C2075 94
4.36 Black-Scholes Results in Tesla M2090 94
4.37 Black-Scholes Speedup Results in Tesla M2090 95
4.38 Matrix Multiplication Results in Tesla C2070 96
4.39 Matrix Multiplication Speed Results in Tesla C2070 96
4.40 Matrix Multiplication Results in Tesla C2075 97
4.41 Matrix Multiplication Speed Results in Tesla C2075 98
4.42 Matrix Multiplication Results in Tesla M2090 98
4.43 Matrix Multiplication Speedup Results in Tesla M2090 99
4.44 Black-Scholes Results with equal size subtasks in Tesla C2075 100
4.45 Black-Scholes Speedup Results with equal size subtasks in Tesla C2075101
4.46 Linear Filter Results in Non-symmetric Architecture 102
4.47 Linear Filter Speedup Results in Non-symmetric Architecture 102
4.48 Linear Filter Results with Different Block Number in Non-symmetric

Architecture . 103
4.49 Linear Filter Speedup Results with Different Block Number in Non-

symmetric Architecture . 104
4.50 Sepia Filter Results in Non-symmetric Architecture 105
4.51 Sepia Filter Speedup Results in Non-symmetric Architecture 106
4.52 Black-scholes Results in Non-symmetric Architecture 106
4.53 Black-scholes Speedup Results in Non-symmetric Architecture 107
4.54 Matrix Multiplication Results in Non-symmetric Architecture 108
4.55 Matrix Multiplication Speedup Results in Non-symmetric Architecture108

List of Tables

3.1 Time cost of PTX instructions in GTX 260 (unit: GPU clock) 15
3.2 The features of GPUs used in this work 22
3.3 Specification of The Machines . 22
3.4 The features of benchmarks used for Performance Prediction 22
3.5 The Arithmetic Means of Accuracy for Each Benchmark 30

4.1 The Type of Applications . 39
4.2 Bandwidth of Dual Tesla C2075 under Different States 56
4.3 Bandwidth of Dual Non-symmetric GPUs under Different

States(G0:Tesla K20c, G1:Tesla C2075) 78
4.4 Specification of The Host Machines 82
4.5 Specification of GPUs . 83
4.6 Benchmark Programs used for TPSM 83

A.1 Time cost of PTX instructions in GTX C2050 (unit: GPU clock) . . 121
A.2 Bandwidth of Dual Tesla C2070 under Different States 122
A.3 Bandwidth of Dual Tesla M2090 under Different States 122
A.4 Bandwidth of Four Tesla M2090 under Different States 123

List of Algorithms

1 Algorithm for a good base value a . 50
2 Algorithm for finding out optimal hull subset 79

Chapter 1

Introduction

Contents
1.1 Parallel Computing from CPU to CPU+GPU 1

1.2 Motivation . 3

1.3 Contributions . 4

1.1 Parallel Computing from CPU to CPU+GPU

Gordon Moor once predicted that the number of transistors placed on an integrated
circuit will double every 18 to 24 months[85]. Until several years ago, Moor’s law
translated to increase in clock speed and performance which enable the same se-
quential program automatically gain performance just by using a faster hardware.
The performance improvement for single thread is achieved by scaling up the speed
and automatic exploitation of Instruction Level Parallelism (ILP).

Automatic extraction of instruction level parallelism from sequential programs is
very limited[115, 116]. The scaling up of clock frequency stopped working in around
2005 because the memory speed could not catch up with the increase of processing
capability. The power consumption also became very high. Therefore, people start
to add more processing cores into a single microprocessor chip in order to exploit
thread level parallelism to gain performance improvement.

Many desktop and notebook computers began to use dual core processors since
2006 and some high-end desktops and workstation computers began to use four core
processors since 2008. Moreover, Graphic Processing Units (GPUs) which contain
hundreds of processing cores are emerged. CPUs are also going into many-core
period[22]. Processors in portable devices such as mobile phones also have been
using multi-core processors for better power efficiency and performance.

Besides the increase of core count, people also begin to use heterogeneous cores
in a single system for the demand to increase power efficiency[70]. Ultra-low En-
ergy per Instruction (EPI) cores are very essential to scale multi-core processor to
many-core processors [50]. With this consideration, computing system designers

2 Chapter 1. Introduction

combines heterogeneous processors to optimize the systems. Currently, most of su-
per computer adopts a heterogeneous design which includes both multi-core CPUs
and GPUs as co-processing units on each node of the super computer. With this
design evolution, now mainly parallel systems have many processing cores with dif-
ferent processing characteristics. The CPUs with simultaneous multi-threading are
used for running complex operating system software and task parallelism while the
GPUs with hundreds or thousands of simpler cores are used for simple throughput
computation task as shown in Figure 1.1 [45].

Figure 1.1: CPU + GPU heterogeneous system

The movement to massively parallel hardware leads to huge impact on software
programmers. In the past, even a poorly written program can speed up with a
faster hardware. With many-core hardware, however, the sequential programs can
not be able to achieve better performance on parallel hardware unless the codes are
properly parallelized.

Besides parallelism, programmers also need to pay attention to the character-
istics of the heterogeneous processors. CPU cores are suitable for complex control
flows and has limited throughput and poor power efficiency. GPU cores can work
together to calculate simple computation with higher speed. Depending on different
requirements on performance and energy efficiency, the cooperation between CPUs
and GPUs to optimize power consumptions also is a hot research topic. Moreover,
the memory access also greatly affects the performance as the hierarchical nature of
memory system depends on the programs[105, 51].

The movement of parallel system from CPU based system to the system equipped
both CPU and GPU and using GPU for acceleration (CPU+GPU system) brings
high performance as well as new challenge.

1.2. Motivation 3

1.2 Motivation

Graphic Processing Unit (GPU) which is originally designed for acceleration of
graphic applications now is widely used as General-Purpose Computing on Graphic
Processing Units (GPGPU) to accelerate many scientific applications with more
than ten or hundred times speedup over CPU platform. There are many program-
ming languages to help programmers with writing parallel applications in GPU
architecture such as Brook+ [24] CUDA [37] and OpenCL [89]. With these pro-
gramming and architectural characteristics, programmers can easily port their pro-
grams to a GPU based system. However, further understanding at various features
of the low level architecture and associated bottlenecks in the programs are required
to achieve better performance in a GPU architecture. This will require program-
mers pay more energy on the implementation rather than the design of the parallel
applications.

The motivation behind this thesis was caused by the emergence of high com-
putational potential from GPU along with the difficulty of implementing high per-
formance parallel programs in GPU platform. The interests of this thesis focus on
performance prediction problem and communication latency problem between CPU
and GPU.

For performance predication problem, I find that sometimes it is difficult to
predict the performance of kernel codes on GPU as programmers do not have enough
knowledge about the low level architecture. Therefore, programmers may use a
unsuitable configuration to run their applications on GPUs which may lead to poor
performance.

For example, the thread configuration can greatly affect the kernel performance
on GPUs. Ideally it is thought that the performance of applications can be improved
with more threads. However, the performance does not always increase along with
the increase of thread number. There are many factors that can affect the per-
formance such as the process clock, the bandwidth and application features. For
computing bound applications that have more computing instructions than memory
access instructions, increasing the number of threads will lead to a linear increase
of performance. This is because more computing resources are used to compute
with more threads. However, when the number of threads continue to increase and
the utilization of GPU reaches the peak performance, the performance will decrease
because of running out of computing resources and extra overhead from thread
launching and synchronization. In this case, the limited computing capability is
the performance bottleneck. For memory access bound applications that have more
memory access instructions than computing instructions, there is a similar problem.

4 Chapter 1. Introduction

The bandwidth of global memory is limited while the increase of thread number will
lead to the increase of bandwidth requirement from applications. In this case, the
performance will increase first along with the increase of thread number and then
it will decrease as bandwidth is used up and frequent switch between threads leads
to extra overhead.

Therefore, it is very important to have a good understanding of the application
and the architecture details to achieve high performance in GPU architecture. To
release programmers from this burden, performance analytical model is required to
help programmers implement better parallel programs in GPU architecture.

For the communication latency problem, the communication latency can be very
significant for some applications which already greatly affect the total performance.
As CUDA programs include two parts, the host codes run on CPU and the device
codes run on GPU. The host codes invoke the device codes to execute kernel op-
eration while the input and output streams are stored in the device memory. As
the device memory (GPU memory) is separated from the host memory (CPU main
memory), streams are required to be transferred between CPU and GPU which leads
to the communication latency between them. In CUDA, stream includes a sequence
of sequential execution commands such as send, kernel execution or receive. For
some data transfer bound applications such as black-scholes (a benchmark that we
will introduce in later), the communication latency can account for half of the total
time cost in single GPU platform. In multiple GPU platform, the proportion of the
communication latency in the total time cost becomes larger as the limited band-
width is shared by all GPUs. Therefore, it is difficult to achieve high performance
without awareness of the communication latency between CPU and GPU.

Notice that CUDA enables concurrent execution for data transfer and kernel
execution. Also some latest NVIDIA Tesla series GPUs support two copy engines
for bidirectional data transfer which means it is possible to launch data send, kernel
execution and data receive simultaneously. With these new features, it is possible
to hide the communication latency by overlapping.

1.3 Contributions

The main research question that I aim to solve can be defined as the following
questions:

• How to predict the performance of CUDA programs in GPUs?

• How to use efficiently the bandwidth between CPU and GPU in multiple GPU
architecture?

1.3. Contributions 5

• How to hide the communication latency between CPU and GPU?

In order to solve these questions, I am presenting performance optimization
methods based on performance analytical modeling and communication latency hid-
ing in GPU which includes a performance analytical model and a task partitioning
and scheduling method.

To solve the first question, I propose a performance analytical model with
instruction-level and thread-level parallelism awareness to predict the kernel exe-
cution time cost of CUDA program on GPU. I propose two definitions: CPD and
MPD for the prediction of CUDA program on GPU. I introduce Computing Parallel
Degree (CPD) to describe the parallel execution for computation instructions and to
present the characteristic of applications. I also introduce Memory Parallel Degree
(MPD) to describe the maximum number of memory accesses that can be executed
concurrently. Based on the two definitions, the performance analytical model in-
cludes two submodels: memory submodel and computation submodel. The memory
submodel uses MPD to estimate the time cost of memory instructions by considering
the number of active threads and the GPU global memory bandwidth. The com-
putation submodel uses CPD to estimate the time cost of computation instructions
with awareness of active thread number and arithmetic intensity of applications.
Based on the PTX codes generated from Ocelot[88], I develop a set of micro bench-
mark to test the time cost of PTX instructions. With the two submodels and time
cost of PTX instructions as input, I use calculate model to estimate the time cost of
overall kernel execution. I compare the predicted results with the actual execution
results with four benchmarks in four kinds of GPUs, and the results show that the
performance analytical model can achieve on average around 90% accurate rate.

To solve the second question, I propose a time optimal data transfer algorithm
to achieve optimal data transfer between CPU and GPU in multiple GPU archi-
tecture (include symmetric and non-symmetric architecture). I propose a series of
definitions to describe the status of GPUs and the whole system. I also introduce
many notations to model the time cost of data transfer with mathematical methods.
By finding the solution of the dual problem of time optimal data transfer problem,
the time optimal data transfer can give out a optimal data transfer plan for a given
data transfer input in multiple GPU architecture.

To solve the third question, I propose a Task Partitioning and Scheduling Method
(TPSM) which can partition individual GPU application into subtasks and hide the
communication latency between CPU and GPU by overlapping the data send part,
kernel execution part and data receive part of different subtasks. Notice that it is
very important to take the characteristic of application into consideration. There-
fore, I propose a classification for GPU applications which classify GPU applications

6 Chapter 1. Introduction

into six basic types from computation-to-communication ratio aspect and send-to-
receive ratio aspect. For each basic type, I propose a corresponding task partitioning
and scheduling sub-method based on the characteristic of the type. I use the perfor-
mance analytical model in TPSM to make suitable load allocation in multiple GPU
non-symmetric architecture. I also use the time optimal data transfer algorithm in
TPSM to improve the utilization of bandwidth between CPU and GPU. I use four
benchmarks and four type GPUs to test my work and the results show that TPSM
can well hide the communication latency between CPU and GPU. The results are
very close to the lower bound results (the maximum time cost of data send part,
kernel execution part and data receive part).

Chapter 2

Background

Contents
2.1 CUDA Framework . 7

2.2 GPU Architecture . 9

2.3 GPU Ocelot . 10

2.4 Divisible Load Scheduling . 11

In this chapter, we discuss the relevant details of the CUDA framework, the
GPU architecture, GPU ocelot and the divisible load scheduling.

2.1 CUDA Framework

Nvidia developed Compute Unified Device Architecture (CUDA)[37] in order to
provide a more developer friendly environment for GPU application development.
CUDA looks like an extension to the C language which provides access to all of
the threading, memory and functions required by developers when working with the
GPU.

The GPU device provides a tremendous level of exploitable parallelism within
one single chip. A standard GPU contains hundreds of processing cores and support
thousands, hundreds of thousands or even millions of threads being scheduled for
execution. CUDA provides a number of levels of thread organization to make the
management of all threads simpler. The top level of the thread organization is
the thread grid. The thread grid includes all threads that will execute the GPU
kernel. The thread grid is split into multiple equal size blocks named thread block.
Users specify the organization of threads within a thread block and thread blocks
within a grid. Therefore, we can organize and address threads in one, two or three
dimensional fashion. We can also organize and address the blocks in the thread grid
in the same way. Figure 2.1 shows an example of two dimensional organization.

In the lowest level of the thread organization is the thread warp. The thread
warps are formed by equal sized chunks of threads within the block. The size of
warp is determined by the hardware specifications and the threads within one warp

8 Chapter 2. Background

Block(0,0) Block(1,0) Block(2,0)

Block(0,1) Block(1,1) Block(2,1)

Grid

Thread(0,0) Thread(1,0) Thread(2,0)

Thread(0,1) Thread(1,1) Thread(2,1)

Thread(0,2) Thread(1,2) Thread(2,2)

Block(1,1)

Figure 2.1: Grid of Thread Blocks

are ordered in a one dimensional fashion. For Tesla C2075, one warp includes 32
threads. GPU issues each thread within the warp the same instruction to execute.
CUDA also provides some synchronization mechanisms based around the thread
warp, block and grid. For the threads within one warp, they are always synchronized
as they all receive the same instruction to execute. For block level synchronization,
CUDA provides __syncthreads() instruction. All threads reaching the instruction
will wait until all threads in the block arrive this point. However, CUDA does
not provide any mechanisms within kernel to synchronize all threads in a grid.
Therefore, we have to complete execution of the kernel and depend on the CPU to
perform the synchronization. CUDA provides two kind of methods for the kernel
synchronization:

• Launching another kernel: After launch one kernel, launching another kernel
will lead to the application halting until the previous kernel execution finish.

• cudaThreadSynchronize() instruction in CPU code: This has the same results
but need to be controlled by users.

2.2. GPU Architecture 9

2.2 GPU Architecture

Here we will introduce the GPU architecture details combined with the CUDA
framework information discussed in the previous section. GPU includes two sep-
arate units: the processing cores and the off-chip memory which is connected by
a proprietary and undisclosed interconnection network. One GPU device normally
compose several Streaming Multiprocessors (SMs). As shown in Figure 2.2, each
SM contains eight cores or more (For Nvidia Tesla K20c, each SM contains 192
cores). These cores are the computational cores of the GPU and handle the exe-
cution of instructions for the threads executing within the SM. SMs also contain a
multi-threaded instruction dispatcher and some special function units which provide
extra transcendental mathematic capabilities.

SM SM

TF

L1 Cache

SM SM

TF

L1 Cache

SM SM

TF

L1 Cache

SM SM

TF

L1 Cache

SM SM

TF

L1 Cache

SM SM

TF

L1 Cache

SM SM

TF

L1 Cache

SM SM

TF

L1 Cache

Geometry

shader

Vertex

shader

Setup/

raster

Pixel

shader

Tex L2 Tex L2... ...Tex L2

ROF

MIU

ROF

MIU

ROF

MIU

ROF

MIU

ROF

MIU

... ...

Global Memory

Figure 2.2: GPU Architecture

10 Chapter 2. Background

Each SM executes the instructions in a SIMD (Single Instruction Multiple Data)
pattern. And all threads within a thread block must execute entirely within a single
SM which means the threads in a thread block can not be split up between multiple
SMs. However, multiple thread blocks can be executed on a single SM only if the SM
has enough resources to support the requirements of more than one thread block.

Each SM also has small shared memory which essentially acts as a user-controlled
cache for data required during kernel execution. Therefore, users are responsible
to place data into this memory space. There is no any automatic hardware data
caching. Nvidia changed this in their Fermi architecture and introduced a hardware-
controlled cache at each SM. The accesses to shared memory are up to 100 times
faster than global memory without bank conflicts. As shared memory is split into
16 32-bit wide banks, multiple data requests from the same bank at the same time
will cause bank conflicts so they are serialized. Bank conflicts reduce the overall
shared memory throughput. Because some threads have to wait for the data until
previous threads are serviced. Shared memory is exclusive to each thread block on
a SM. Therefore, one thread block can not access the shared memory data from
another thread block even within the same SM.

GPU device includes global memory which is the largest memory space available
on the GPU and is accessible to all threads. Global memory accesses have significant
latency and are not cached at any level. Therefore, each access to global memory
results in the same latency hit. Each SM has access to caches for the constant and
texture memory which are still technically part of global memory. These caches help
to reduce the latency by exploiting data locality.

2.3 GPU Ocelot

GPU Ocelot[88, 39] is a dynamical compilation and binary translation infrastruc-
ture for CUDA which implements CUDA runtime API and executes PTX kernels on
various backend execution targets. Ocelot contains a functional simulator for offline
workload characterization, correctness checking and profiling. With an additional
runtime execution manager, a translator from PTX to LLVM provides efficient exe-
cution of PTX kernels on multi-core CPUs. To support Ocelot’s Nvidia GPU device,
PTX kernels are launched and invoked via CUDA driver API. Ocelot can inspect
the state of the application as it is running, transforming PTX kernels before exe-
cuted natively on GPU devices. Ocelot also manages additional resources and data
structures that are needed to support instrumentation.

Ocelot replaces the CUDA runtime API library linked with CUDA applications.
Ocelot enables API calls to CUDA provide a layer of compilation support, resource

2.4. Divisible Load Scheduling 11

management and execution. CUDA kernels may be modified by Ocelot as they are
registered and launched. Ocelot will insert additional state and functionality into
the host applications. Therefore, it is mainly designed for transparently instrument
applications and respond to data dependent applications behaviors which is not
possible for static transformation techniques. For instance, Ocelot can insert instru-
mentation into a kernel, profile for a brief period and ten re-issue the original kernel
without instrumentation to implement random sampling while the application is
running.

2.4 Divisible Load Scheduling

Scheduling is an important research area for a long time which is also one of the
main area of contemporary mathematics. The origin of scheduling on operation re-
search is mainly about production and project management[5, 12, 33]. As computer
systems become more complex, scheduling is now an important part for the design
of compilers and libraries[7, 94], operating systems[32, 110] and real-time systems
[99, 101, 108, 121].

Since the computer systems come to parallel distributed systems which have
high computing capabilities to process larger computation tasks, how to exploit its
parallelism in these system is one major challenge. Programmers often focus on
improving functional parallelism which means to identify and adapt the features of
serial programs to be properly executed in parallel. For data intensive applications,
there is another kind of parallelism named data parallelism which means large com-
putational load can be distributed among available processing units and executed
in parallel.

Parallel load distribution is mainly about the partitioning of single large load for
one processing unit. If the large load is processed as a whole, the processing time
may be unbearable. To reduce the total time cost, the large load can be partitioned
and distributed among the processing units in the system. However, it is very
important to have knowledge of data features and system to assure an appropriate
data partitioning. Divisible Load Theory (DLT)[17] is used to study the problem of
partitioning and sharing load in parallel systems.

Divisible load theory is a mathematical model which can enable performance
analysis of parallel and distributed systems by including both communication and
computation problems[28]. The divisible load scheduling theory uses a system of
linear equations to define load distribution and provides many models which have
lots of advantages such as the ease of computation, the use of a schematic language
and the facility to be applied to different fields[102, 20, 21]. There are many studies

12 Chapter 2. Background

on the optimization of Divisible Load Scheduling (DLS) with DLT[8, 10, 11, 15, 16,
18, 112, 19, 35, 48, 47, 71, 119, 29, 52, 71, 81, 40, 111, 95, 106, 107, 120, 126].

However, the partitioning method depends on the load divisibility property which
refers to the features that determine whether the load can be decomposed into a set
of smaller ones[114]. The divisibility property classifies into indivisible and divisible.
For divisible load, it can further classify into modularly divisible and arbitrarily
divisible. On the one hand, the loads can be indivisible where the size of new pieces
may be different and can not be further subdivided. Therefore, they do not have any
precedence relations and need to be assigned and processed in single processor. On
the other hand, the loads can be divisible including modularly divisible and arbitrary
divisible.

A modularly divisible load can be divides into smaller modules based on the
features of the load or the system. The load processing is completed when all
the modules are processed and the processing of the modules should be subject to
precedence relations. Normally such kind of loads are represented as interaction
graphs tasks that the vertices correspond to the modules and the edges correspond
to interaction between these modules and the precedence relationships.

For arbitrary divisible load, all the elements in the load can be processed in the
same way. These kind of loads can be arbitrarily split into any number of load frac-
tions. These fractions may or may not have precedence relationships. For example,
the data can be arbitrarily partitioned but there may be a precedence relation-
ship among the generated data chunks. Or if the data chunks do not precedence
relationships, then each chunk can be processed independently.

The applications that satisfy the divisibility property include image processing
applications, processing of massive experimental data, signal processing applica-
tions, matrix computations, tree and database search and Monte Carlo simulations.
As the divisible load scheduling considers that both the communication and com-
putation loads can be arbitrarily partitioned among the parallel system[96], it is
suitable for modeling a large class of data intensive problems. Under this scheme it
is possible to model and schedule load distribution for systems with GPU devices.

Chapter 3

Performance Analytical Model

Contents
3.1 Architecture . 13

3.2 Assembly Code Analysis . 14

3.3 Execution of Multiple Warps 15

3.3.1 MPD submodel . 17

3.3.2 CPD submodel . 17

3.4 Calculation Model . 19

3.5 Experiment Evaluation . 21

3.5.1 Configuration . 21

3.5.2 Results . 23

3.1 Architecture

open source ocelot

Assembly code analysis

Memory parallel

 degree model

Computation parallel

 degree model

Calculate models

Figure 3.1: Performance Analytical Model Architecture

Our performance analytical model is based on the open source ocelot and in-
cludes four parts: assembly code analysis, memory parallel degree model, compu-

14 Chapter 3. Performance Analytical Model

tation parallel degree model and calculate models as shown in Figure 3.1. The as-
sembly code analysis part is responsible for PTX code generating, PTX instructions
time cost testing and PTX code information gathering. The memory parallel de-
gree model is used to describe the parallel execution for memory access instructions.
The computation parallel degree model is used to describe the parallel execution
for computation instructions. The calculate models will use the information from
previous three parts to prediction the time cost of the total kernel execution.

3.2 Assembly Code Analysis

Parallel Thread Execution(PTX)[36] is a pseudo-assembly language used in Nvidia
CUDA programming environment. The NVCC compiler translates the CUDA pro-
grams into PTX codes, and the GPU driver has a compiler which translates the
PTX codes into machine codes to execute on GPUs. By analyzing the PTX codes,
we can have a deep insight into the performance bottlenecks in GPU architecture.

With the help of ocelot, many details of PTX codes from CUDA program can be
obtained. As shown in Figure 3.2, we can generate PTX codes from CUDA codes
with ocelot. Therefore, we can design two CUDA kernels :Kernel A and kernel B
that there only exists one PTX instruction difference between the two corresponding
PTX codes. Then we can test the time cost of the PTX instruction by running the
Kernel A and B and calculating the time difference. We design a set of micro

__global__void sampleKernel(double* a)

{

 a[threadIdx.x]+=threadIdx.x;

}

cvt.u32.u16 %r0, %tid.x

memory size 0

mul24.lo.u32 %r1, %r0, 8

memory size 0

ld.param.u32 %r2,

[__cudaparm__Z12sampleKernelPd_a]

memory size 4

add.u32 %r3, %r2, %r1

memory size 0

cvt.rn.f64.u32 %r4, %r0

memory size 0

ld.global.f64 %r5, [%r3+0]

memory size 8

add.f64 %r6, %r4, %r5

memory size 0

st.global.f64 [%r3+0], %r6

memory size 8

(a)CUDA code (b)PTX code

Figure 3.2: PTX code generated from CUDA code with ocelot

3.3. Execution of Multiple Warps 15

Table 3.1: Time cost of PTX instructions in GTX 260 (unit: GPU clock)
int_const int_reg float_const float_reg

add 22 65 22 65
sub 22 65 22 65
mul 44 136 22 65
div 728 753 748 783
neg 22 22 17 17
min 62 62 62 62
max 62 62 62 62
and 64 64 64 64
or 62 62 62 62
xor 62 62 62 62
not 22 22 22 22
shl 22 63 22 63
shr 22 63 22 63
mv 40 40 40 40
cvt 22 22 22 22

ld/st 200 200 200 200

benchmarks to test the time cost of PTX instructions and Table 3.1 shows the time
cost of PTX instructions in NVIDIA GTX 260.

3.3 Execution of Multiple Warps

To explain how the execution of multiple warps in each SM affects the total execution
time, we use a typical scenario to illustrate as shown in Figure 3.3. For each warp,
the PTX codes can be considered as an instruction queue of computation instruc-
tions and memory access instructions. We define a set of continuous computation
instructions in one warp as a computation task. Similarly, we also define a set
of continuous memory access instructions in one warp as a memory access task.
With these definitions, the PTX codes can be considered as a crossed permutation
of computation tasks and memory access tasks. The time period from the beginning
of the ith computation task to the beginning of the (i + 1)th computation task in
one warp is called the ith calculate period. The time cost of the ith calculate
period is Ti. Here our model firstly assume that one SM can only execute one warp
in one time and the computation task can not be executed in parallel. (We will
discuss the parallel execution of computation task in CPD submodel). Therefore,

16 Chapter 3. Performance Analytical Model

m1c1

T1

m2c2

T2

m3c3

T3

computation task memory access task

Figure 3.3: Multiple Warps Execution in GPU Architecture

the computation tasks between warps cannot be paralleled. However, the memory
access tasks between warps can be executed in parallel. During the memory access
waiting time, another active warp will be swapped to execute until the next memory
access arrive.

......

12 computation tasks + 12 memory access tasks

12 computation tasks + 1 memory access tasks

Figure 3.4: The Execution of Multiple Warps with MPD Awareness

3.3. Execution of Multiple Warps 17

3.3.1 MPD submodel

MPD is the Memory access Parallel Degree which is used to present the maximum
warp number that can be executed in parallel. The MPD can greatly affect the total
execution time. Here, we assume that there is no parallel execution for computation
task. The value of MPD can be affected by the bandwidth of GPU device, the
bandwidth used by each warp, the number of active warps in each SM and the
number SMs in the GPU device. In one word, MPD means how many warps with
memory access instructions can be executed in parallel under a limited bandwidth
of device memory.

For example as shown in Figure 3.4, when there are not enough warps to execute
or the value of MPD is very low (an extreme example is 1), the execution process
would be serial execution like the case 1. When there are enough warps to execute
and the value of MPD is very high (the value of MPD is higher than the number
of active warps), the execution process would be like case 2. With high MPD, the
latency of each memory access can be hidden by executing multiple memory access
concurrently.

For each memory access task, we introduce the following equations to calculate
MPD:

Warpbwt = (Nthread ∗Dmem)/(Ntrans ∗ tmem), (3.1)

MPD = min{Nact, ⌊GPUbwt/(Nact ∗Nsm ∗Warpbwt)⌋}. (3.2)

Nthread: the number of threads in one warp, in this paper is 32;
Dmem: the data size required for each thread during each memory access;
Ntrans: the number of memory transactions for each memory access instruction;
Nact: the number of active warps in one SM;
Nsm: the number of active SMs;
tmem: the latency of memory access;
Warpbwt: the bandwidth used by one warp during one memory access;
GPUbwt: the bandwidth of GPU device.
We obtain the memory access addresses of half-warp threads with ocelot[88] and

calculate the number of memory transactions by following the rule of the generation
of memory transaction in PTX 1.4[36].

3.3.2 CPD submodel

CPD is the computation parallel degree which is used to present the parallel ex-
ecution between warps and within warps in one SM. The parallel executions for
the computation instructions in GPU are so complex that it is hard to give a per-
fect model to present. Many factors can affect the parallel execution degree such

18 Chapter 3. Performance Analytical Model

as the relationship of adjacent instructions, instruction types, computing resource
requirements, the number of warps and the features of applications. To simplify
the model, we only take the number of warps and the features of applications into
consideration.

We use computation instruction proportion in the PTX codes to present
the features of applications which is defined as follows:

P = Tcmp/(Tcmp + Tmem). (3.3)

P : the computation instruction proportion;
Tcmp: the sum of the time cost of all computation instructions;
Tmem: the sum of the time cost of all memory access instructions. When the
computation instruction proportion is very low, the increase of the number of warps
will lead to the increase of parallel execution of computation instructions. With more
warps, the number of computation instructions which can be executed in parallel
will show a linear increase. Because of the low computation instruction proportion,
the computing resources are always available to execute computation instructions
in parallel. On this reasoning, we propose the following equation to calculate the
CPD:

CPD1 = (c− P) ∗ (Nact − b) + a. (3.4)

a, b and c: the empirical parameters which get from each specific GPU device.
(We write a micro benchmark to obtain these parameters. In GTX 260, a is set to
3, b is set to 11 and c is set to 0.5.)

The GPU will schedule warps to execute once there are spare computing re-
sources. When the computation instruction proportion is high enough, the increase
rate of the CPD will decrease along with a big enough warp number. Although the
increase of warps leads to a linear increase of computation instructions that can be
parallelized, the available computing resources become fewer and the increase rate
of computation instructions that have enough computing resource to execute in par-
allel decreases. Therefore, when all computing resources are used up, the CPD will
come to a limitation. In this situation, we use the following equations to calculate
the CPD:

CPD2 = (n/(m− 1)) ∗
√

(m− 1)2 − (Nact −m)2 + a, (3.5)

n = d ∗ (P − c)2. (3.6)

m: the maximum warp number that can be executed in GPU;
d: the empirical parameters which get from each specific GPU device.

3.4. Calculation Model 19

We write a micro benchmark to obtain the parameter and d is set to 80 in
GTX260. Therefore, the final value of CPD for a specific number of warps is equal
to min{CPD1, CPD2}. Notice that our CPD model is an empirical model as we
do not know the details of the computing instruction execution. Based on black box
testing, we have current CPD model.

3.4 Calculation Model

So far, we have explained the execution of multiple warps and two submodels. In
this section, we put them all together into the prediction model to predict the total
time cost of the execution. Notice that each block will be assigned to a SM for
the execution. The execution of computation instructions between SM is relatively
independent. The execution of memory access instructions can affect each other be-
tween SM as the local memory bandwidth is shared by all SMs. We have considered
the factors in the previous two submodels. The total time cost of an application
in GPU is equal to the time cost of SM which has the longest execution time cost.
Therefore, to simplify the prediction, we can only consider the single block execution
in one SM.

By analyzing the PTX codes, we can calculate the time cost of each calculate
period and sum them up to get the total time cost. The calculate methods for
each calculate period may be different due to long memory access waiting from
current calculate period or previous calculate period. Ideally we hope the processors
always have instructions to execute. However, long memory access tasks can let the
processors wait because the following computation tasks need the results from the
previous memory access tasks. Therefore, according to whether the calculate period
has been affected, we classify the calculate periods into four types. We can analyze
the relationships between time cost of computation tasks and memory access tasks
in current period and previous period to select a corresponding type.

ci-1 mi-1 ci mi

Ti

ci+1 mi+1

Figure 3.5: Calculate Period Type 1

As Figure 3.5 shows, the type 1 is that there is no long memory access waiting

20 Chapter 3. Performance Analytical Model

influence from current period and previous period which means ci−1 ≥ mi−1 and
ci ≥ mi. Here, the parameters are defined as follows:

ci: the time cost of computation task in the ith calculate period;
mi: the time cost of memory access task in the ith calculate period;
Ti: the time cost of the ith calculate period.
Therefore, only the computation tasks make contribution to the total time cost.

We sum up the time cost of all computation tasks while the parallel execution of
computation parts should also be taken into consideration. We can use the following
equation to calculate the ith calculate period time cost:

Ti = ⌈(Nact ∗ ci)/CPD⌉. (3.7)

ci-1 mi-1 ci mi

Ti

ci+1 mi+1

Tc

Figure 3.6: Calculate Period Type 2

In type 2, ci−1 ≥ mi−1 and ci < mi as illustrated in Figure 3.6. The long
memory access tasks in current period will cause a waiting period between the last
computation task in current period and the first computation task in the following
period. In this case, we can use the following equations to calculate the ith calculate
period time cost:

Ti = ⌈(Nact ∗ ci)/CPD⌉+ Tc, (3.8)

Tc = max{mi − (n− 1) ∗ ci, 0}. (3.9)

Tc: the extra time cost caused by the long memory access tasks in current period.
In type 3, ci−1 < mi−1 and ci ≥ mi as illustrated in Figure 3.7. The long memory

access tasks in previous period will cause a waiting time between the execution of
computation tasks in current period because the results of memory access task in
previous period do not arrive. Therefore, we can use the following equations to
calculate the ith calculate period time cost:

Ti = ⌈(Nact ∗ ci)/CPD⌉+ Tp, (3.10)

Tp = max{mi−1 ∗ ⌊(Nact/MPD)− 1⌋ − (Nact − 1) ∗ ci, 0}. (3.11)

3.5. Experiment Evaluation 21

ci-1 mi-1 ci mi

Ti

ci+1 mi+1

Tp

Figure 3.7: Calculate Period Type 3

ci-1 mi-1 ci mi

Ti

ci+1 mi+1

Tp Tc

Figure 3.8: Calculate Period Type 4

Tp: the extra time cost caused by the long memory access task in previous period.
In type 4, ci−1 < mi−1 and ci < mi as illustrated in Figure 3.8. The long

memory access tasks from current period and previous period both make extra time
cost in the current calculate period. We can use the following equations to calculate
the ith calculate period time cost:

Ti = ⌈(Nact ∗ ci)/CPD⌉+ Tp + Tc, (3.12)

Tp = max{mi−1 ∗ ⌊(Nact/MPD)− 1⌋ − (Nact − 1) ∗ ci, 0}, (3.13)

Tc = max{mi − ((Nact − 1) ∗ ci + Tp)}. (3.14)

Finally, we can calculate the time cost for each calculate period according to the
different scenarios and sum up to obtain the total time cost.

3.5 Experiment Evaluation

3.5.1 Configuration

The GPUs used in our experiments are shown in Table 3.2. We have to big machines
as shown in Table 3.3. We install GTX 260 and Tesla C2050 in machine AT38 and

22 Chapter 3. Performance Analytical Model

install Telsa C2075 and Tesla K20c in machine AT50. We use cudaEventRecord API
in CUDA 4.2 to measure the execution time of GPU kernels. All the benchmarks
are compiled with NVCC.

To test the performance of our prediction model, we use four different bench-
marks that are mostly used in Linderman’s work[78] and we port them from multi-
core platform to GPU platform. The benchmarks used in our work are explained
in Table 3.4. The computation instruction proportions of the four benchmarks are
different from very low 26.23% to very high 86.97%. We use these in the hope of
proving our model can have good prediction results in various applications. We
compare our predicted results with the actual test results. The abbreviations used
in the Figures are as follow:
test: the results from the actual execution in GPU;
model: the results from our performance model prediction.

Table 3.2: The features of GPUs used in this work
features GTX 260 Tesla C2050 Tesla C2075 Tesla K20c

the number of SPs 192 448 448 2496
CUDA core frequency(MHz) 1242 1150 1150 710

Memory size 896 MB 3 GB 6GB 4800MB
Memory bandwidth(GB/s) 111.9 144 144 208

Peak Tflop/s
(double precision)

1.43 1.03 1.03 3.5

Table 3.3: Specification of The Machines
machine Device Cores Clock speed Cache Main Memory
AT38 4 x Intel Xeon X5650 4 x 6 2.67GHz 12MB 6 x 2GB
AT50 2 x Intel Xeon E5-2680 2 x 8 2.7GHz 20MB 8 x 8GB

Table 3.4: The features of benchmarks used for Performance Prediction
benchmarks description input size com proportion

Matrix Matrix multiple 256× 256 28.2%
Linear[78] Image filter to compute 9-pixels avg 800× 800 45.84%
Sepia[78] Filter for artificially aging images 800× 800 52.97%

Black-scholes[78] European option pricing 900000 86.97%

3.5. Experiment Evaluation 23

3.5.2 Results

As GTX 260 and Tesla C2050 are old GPUs and Tesla C2075 and Tesla K20c are
much newer than the previous two, the maximum thread numbers of Tesla C2075
and Tesla K20c are larger than GTX 260 and Tesla C2050. We change the number
of warps to run the kernel with the same data size. For GTX 260 and Tesla C2050,
we vary the number of warps from 1 to 16. For Tesla C2075 and Tesla K20c, we vary
the number of warps form 1 to 32. Besides comparing the execution time cost with
the prediction results, we also discuss about the accuracy. We define the accuracy
as follow:

Pacc = min{Ttest, Tmodel}/max{Ttest, Tmodel}. (3.15)

Pacc: the accuracy for a specific number of warps;
Ttest: the time cost for a specific number of warps from actual measured results;
Tmodel: the time cost for a specific number of warps from predicted results.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.9: Linear Filter Results in GTX260

First of all, we use linear filter benchmark to test our work in the four type GPUs.
The computation instruction proportion of linear filter benchmark is 45.86%. The
execution results of GTX 260 and Tesla C2050 are shown in Figure 3.9 and Figure
3.10. The accuracy results of GTX 260 and Tesla C2050 are shown in Figure 3.11.
We can find the performance of GTX 260 is much faster than Tesla C2050.

With our performance model, the average accuracy of GTX 260 is 91.18% while
the average accuracy of Tesla C2050 is 89.52% as shown in Table 3.5. As we have

24 Chapter 3. Performance Analytical Model

some error factors in the performance model such as the empirical CPD model, we
can hardly achieve perfect prediction. Due to lack of cache simulation, the prediction
accuracy of Tesla C2050 is poorer than GTX 260 because GTX 260 has no cache
while Tesla C2050 has.

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.10: Linear Filter Results in Tesla C2050

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

Number of Warps

GTX260
C2050

Figure 3.11: The Accuracy of Linear Filter in GTX260 and Tesla C2050

3.5. Experiment Evaluation 25

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.12: Linear Filter Results in Tesla C2075

We also repeated the experiments in Tesla C2075 and Tesla K20c which is much
newer than the previous two GPUs. The execution results of Tesla C2075 and
Tesla K20c are shown in Figure 3.12 and Figure 3.13. The accuracy results of Tesla
C2075 and Tesla K20c are shown in Figure 3.14. Although the peak performance
of K20c is much better than C2075, the GPU frequency of K20c is slower than
C2075. Therefore, the execution of C2075 is faster than K20c with the same thread
configuration. The average accuracy of C2075 is 90.17% while the average accuracy
of K20c is 89.46%.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.13: Linear Filter Results in Tesla K20c

26 Chapter 3. Performance Analytical Model

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20 25 30

ac
cu

ra
cy

Number of Warps

C2075
K20c

Figure 3.14: The Accuracy of Linear Filter in Tesla C2075 and Tesla K20c

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.15: Sepia Filter Results in GTX260

3.5. Experiment Evaluation 27

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.16: Sepia Filter Results in Tesla C2050

Then we use sepia filter benchmark to test our performance model. The com-
putation instruction proportion is 52.97% which is a little higher than linear filter
benchmark. First of all, we test our work in the two old GPUs. The execution time
results are shown in Figure 3.15 and Figure 3.16 and the accuracy results are shown
in Figure 3.17. The average accuracy for GTX 260 is 93.94% and 94.47% in Tesla
C2050 which is much higher than linear filter. This is because the influence of cache
decreases due to high computation instruction proportion.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

Number of Warps

GTX260
C2050

Figure 3.17: The Accuracy of Sepia Filter in Two GPUs

28 Chapter 3. Performance Analytical Model

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.18: Sepia Filter Results in Tesla C2075

We repeated the sepia filter experiments in Tesla C2075 and Tesla K20c. The
execution time results are shown in Figure 3.18 and Figure 3.19 and the accuracy
results are shown in Figure 3.20. The average accuracy of Tesla C2075 is 91.1% and
the average accuracy of Tesla K20c is 91.3%. This results show we can have a good
prediction in the new GPU as well.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.19: Sepia Filter Results in Tesla K20c

3.5. Experiment Evaluation 29

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30

ac
cu

ra
cy

Number of Warps

C2075
K20c

Figure 3.20: The Accuracy of Sepia Filter in Tesla C2075 and Tesla K20c

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.21: Black-scholes Results in GTX 260

30 Chapter 3. Performance Analytical Model

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.22: Black-scholes Results in Tesla C2050

We also use black-scholes benchmark which has 86.97% high computation in-
struction proportion to test our work. First of all, we test in the two old GPUs.
The execution results are shown in Figure 3.21 and Figure 3.22 and the accuracy
results are shown in Figure 3.23.

We can find that the execution decreases along with the increase of warp num-
bers and finally comes to a limitation. This is because there are enough computing
resources for all threads when the number of threads is small. Therefore, the in-
crease of thread number can improve the performance as more data are processed
in parallel. However, when the number of threads is very large, there are no enough
computing resources to support all thread execution. This results in resources wait-
ing for some threads.

Table 3.5: The Arithmetic Means of Accuracy for Each Benchmark
benchmarks linear filter sepia filter black-scholes matrix

GTX260(100%) 91.18 93.94 89.48 90.73
C2050(100%) 89.52 94.47 90.78 84.87
C2075(100%) 90.17 91.11 90.44 86.62
K20c(100%) 89.46 91.3 89.97 85.86

3.5. Experiment Evaluation 31

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

Number of Warps

GTX260
C2050

Figure 3.23: The Accuracy of Black-scholes in Two GPUs

Our performance model can well predict the kernel execution no matter the
number of thread is large or small. The average accuracy of GTX 260 is 89.48% and
the average accuracy of Tesla C2050 is 90.78%. Here the accuracy of Tesla C2050
is better than GTX 260. That is because the influence of cache hit is very low as
the memory access instruction proportion of black-scholes is very low.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.24: Black-scholes Results in C2075

32 Chapter 3. Performance Analytical Model

Then we repeat the black-scholes experiments in Tesla C2075 and Tesla K20c.
The execution time results are shown in Figure 3.24 and Figure 3.25 and the accuracy
results are shown in Figure 3.26. The average accuracy of Tesla C2075 is 90.44%

and the average accuracy of Tesla K20c is 89.97%.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.25: Black-scholes Results in Tesla K20c

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30

ac
cu

ra
cy

Number of Warps

C2075
K20c

Figure 3.26: The Accuracy of Black-scholes in Tesla C2075 and Tesla K20c

3.5. Experiment Evaluation 33

Finally we use matrix multiplication benchmark to test our work. The compu-
tation instruction proportion of matrix multiplication is 28.2% which is the lowest
in all benchmarks used in this thesis. The execution time results of GTX 260 and
Tesla C2050 are shown in Figure 3.27 and Figure 3.28 and the accuracy results are
shown in Figure 3.29.

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.27: Matrix Multiplication Results in GTX260

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.28: Matrix Multiplication Results in Tesla C2050

34 Chapter 3. Performance Analytical Model

The average accuracy of GTX 260 is 90.73% while the average accuracy of Tesla
C2050 is 84.87%. As matrix multiplication benchmark is memory access bound,
the cache hits can greatly affect the performance. Without cache simulation, our
performance model can hardly have the same prediction results in GPUs with cache
comparing to GPUs without cache.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

Number of Warps

GTX260
C2050

Figure 3.29: The Accuracy of Matrix Multiplication in Two GPUs

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.30: Matrix Multiplication Results in Tesla C2075

3.5. Experiment Evaluation 35

We repeat the matrix multiplication benchmark in Tesla C2075 and Tesla K20c.
The execution time results are shown in Figure 3.30 and Figure 3.31 and the accuracy
results are shown in Figure 3.32. The average accuracy of Tesla C2075 is 86.62%

and the average accuracy of Tesla K20c is 85.86%. The accuracy of Tesla C2075
and Tesla K20c is not as good as the accuracy of GTX 260 due to cache.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

T
im

e
C

os
t(

m
s)

Number of Warps

test
model

Figure 3.31: Matrix Multiplication Results in Tesla K20c

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30

ac
cu

ra
cy

Number of Warps

C2075
K20c

Figure 3.32: The Accuracy of Matrix Multiplication in Tesla C2075 and Tesla K20c

Chapter 4

A Task Partitioning and
Scheduling Method

Contents
4.1 Application Classification . 37

4.2 TPSM for Single GPU Architecture 39

4.2.1 Partitioning and Scheduling for Kernel Bound Applications . 40

4.2.2 Partitioning and Scheduling for Data Transfer Bound Appli-
cations . 47

4.3 TPSM for Symmetric Multiple GPUs Architecture 55

4.3.1 Time Optimal Data Transfer Algorithm for Symmetric Multi-
ple GPUs Architecture . 55

4.3.2 TPSM . 62

4.4 TPSM for Non-symmetric Multiple GPUs Architecture . . 77

4.4.1 Time Optimal Data Transfer Algorithm for Non-symmetric
GPUs Architecture . 78

4.4.2 TPSM . 80

4.5 Experimental Evaluation . 82

4.5.1 Symmetric Architecture . 83

4.5.2 Non-symmetric Architecture 100

To have good partitioning and scheduling, we need to take the characteristic
of applications into consideration. Also we need to notice that the limited band-
width between CPU and GPU is shared by all GPUs in multiple GPU architecture.
Therefore, we propose an application classification and a time optimal data transfer
algorithm besides the task partitioning and scheduling method in this section.

4.1 Application Classification

It is important to analyze the features of applications for achieving high perfor-
mance. The GPGPU applications are classified into several basic types. For the

38 Chapter 4. A Task Partitioning and Scheduling Method

classification, the computation-to-communication ratio of applications and the send-
to-receive ratio of applications are taken into consideration as shown in Figure 4.1.

From the computation-to-communication ratio aspect, the applications can be
classified into kernel bound applications and data transfer bound applications. The
kernel bound applications has longer time cost of kernel execution than the time
cost of data transfer while the data transfer bound applications has longer time cost
of data transfer than the time cost of kernel execution.

From the send-to-receive ratio aspect, the applications can be classified into send
heavy, receive heavy and general heavy. For send heavy applications, the time cost
of data receive is very short while the time cost of data send is very long. For receive
heavy applications, the time cost of data send is very short while the time cost of
data send is very long. For general heavy applications, both the time cost of data
send and receive are not short.

Compute bound

Data transfer bound

-send heavy

-receive heavy

-general heavy

-send heavy

-receive heavy

-general heavy

send kernel receive

Figure 4.1: The Classification of Applications

If programmers are familiar with their applications, then they can decide the
application type by themselves. However, no all programmers are familiar with
their applications. In this case, they can use the performance analytical model in
Section 3 to help them with the type decision. First of all, we can estimate the time
cost of data sending and receiving based on the bandwidth between the CPU and
GPU. Then we can use the performance analytical model to predict the time cost of
kernel execution. With the time cost of each part, it is easy to decide the application

4.2. TPSM for Single GPU Architecture 39

Table 4.1: The Type of Applications
benchmark input size send kernel receive type

linear filter 80002 3.7% 92.1% 4.2%
compute bound

and general heavy

sepia filter 80002 14.2% 69.5% 16.3%
compute bound

and general heavy

black filter 5× 105 48.5% 45.3% 6.2%
data transfer bound

and send heavy

matrix 358400× 512× 14 11.9% 87.7% 0.4%
compute bound
and send heavy

matrix 16384× 4× 7186 0.6% 79.3% 20.1%
compute bound

and receive heavy

type. We use the performance analytical model to decide the application type which
will be used in the experiments and the results in Tesla C2075 are shown in Table
4.1.

4.2 TPSM for Single GPU Architecture

Our goal is to hide the communication latency by partitioning the application into
subtasks and overlapping the data send, data receive and kernel execution part
of these subtasks. According to different application types, TPSM provides corre-
sponding solution with awareness of application features. Based on the application
classification, TPSM provides six scheduling sub-methods for the corresponding six
basic types. Any application can be described as a combination of the six basic
types. Notice that our TPSM is not a theoretically optimal solution but a heuristic
solution.

The basic idea of TPSM is to partition one application into small tasks with
different size as shown in Figure 4.2. Each task can be considered as a small ap-
plication which includes data send, kernel execution and data receive. The total
scheduling process includes many steps. In each step, we can launch data send,
kernel execution and data receive from different subtasks. As our target applica-
tions are divisible, the kernel execution is proportional to data size. Therefore, we
can decide the subtask size by the send data size. To best hide the communication
latency, the subtask size in each step is important. We will introduce some expo-
nential increase or decrease for the subtask size. The exponential increase means
the current subtask size in current is a time of the subtask size in previous step.

40 Chapter 4. A Task Partitioning and Scheduling Method

partitioning

overlapping

time

step: 1 2 3 4 5 6

Figure 4.2: The Basic Idea of TPSM

4.2.1 Partitioning and Scheduling for Kernel Bound Applications

For kernel bound applications, the kernel execution is the main part. Therefore, the
total time cost of the application is mainly decided by the kernel execution part. To
minimize the total time cost, we should make sure the time cost of kernel execution
is not shorter than the time cost of the bi-directional data transfer in each step and
make the time cost of first send and last receive as small as possible.

4.2.1.1 Send Heavy

For kernel bound and send heavy applications, the receive part is so small that we
can receive all the data in the last step. To make the first send as small as possible,
we set the first subtask size to a minimum size which can just keep all threads
working and then exponentially increase the subtask size as shown in Figure 4.3.

Suppose that the base value of the exponential increase is a and the send data
size in step 1 is dsmin. Then the send data size in step i is dsmin × ai−1. We can
calculate tsi and tki in step i as follow:

tsi = dsmin × ai−1/SS , (4.1)

tki = Tk × dsmin × ai−2/Ds. (4.2)

4.2. TPSM for Single GPU Architecture 41

send kernel receive

single stream synchronization

send

kernel

receive
time

Figure 4.3: TPSM for Kernel Bound and Send Heavy in Single GPU Architecture

Ds: the total data size to send from host to device (given from programmers);
Tk: the total time cost of kernel execution in single GPU (given from programmers);
dsmin: minimum send data size to feed all threads working (Normally it is the send
data size that can enable each thread computing and have one output element);
SS : the bandwidth of only sending;
tsi: the time cost of data sending in step i;
tki: the time cost of kernel execution in step i.

We suppose that programmers are familiar with their applications so that they
can provide the information such as the total send data size and kernel time cost.
As the total time cost is the sum of kernel execution, first send, last receive and the
synchronization overhead. With fixed first send, last receive and kernel execution,
the base value a can affect the total time cost by affecting the synchronization
overhead. With larger a, there will be less synchronization times. Therefore, the
optimal base value a is the maximum value which can also make sure the time cost
of kernel execution is not shorter than the time cost of data send in each step. Then
we can calculate the a that matches the condition as follow:

dsmin × ai−1/SS ≤ Tk × dsmin × ai−2/Ds, (4.3)

a ≤ SS × Tk/Ds. (4.4)

Therefore, a = SS × Tk/Ds is the optimal base value.

Proof of Asymptotic Optimality

The scheduling length of our sub-method is as follow:

Ttotal = dsmin/SS + Tk +Dr/RR + tstr × loga(Ds(a− 1)/dsmin + 1). (4.5)

42 Chapter 4. A Task Partitioning and Scheduling Method

Dr: the total data size to receive from device to host;
RR: the bandwidth of only receiving;
tstr: the time cost of single synchronization operation.
As the application is kernel bound and send heavy, we can assume the receive data
size to be constant. The data size of sending is proportional to the time cost of
kernel execution, assuming Ds = p×Tk (p is constant). Then we have a is constant.
As dsmin and tstr are also constant, then we have:

Ttotal ≤ Tk +O(loga(p× Tk)). (4.6)

As the optimal scheduling length is Topt = Tk, then we have

lim
Tk→∞

Ttotal/Topt ≤ 1 + lim
Tk→∞

O(loga(p× Tk))/Tk = 1. (4.7)

Therefore, the sub-method of TPSM for kernel bound and send heavy in single GPU
architecture is asymptotic optimal.

send kernel receive

single stream synchronization

send

kernel

receive
time

Figure 4.4: TPSM for Kernel Bound and Receive Heavy in Single GPU Architecture

4.2.1.2 Receive Heavy

For kernel bound and receive heavy applications, the send part is so small that we
can send all the data in the first step. To make the last receive as small as possible,
we set the first subtask size in a large size and then exponentially decrease the
subtask size to make the last subtask size just feed all threads working as shown in
Figure 4.4.

We set a minimum receive data drmin which feeds all threads can return results
and suppose that the base value of the exponential decrease is a and the number of

4.2. TPSM for Single GPU Architecture 43

subtask is m. Then the receive data size in the step i is drmin × am+2−i. We can
calculate the time cost of kernel execution and data receive in the step i as follow:

tri = drmin × am+2−i/RR, (4.8)

tki = Tk × drmin × am+1−i/Dr. (4.9)

Dr: the total data size to receive from device to host;
RR: the bandwidth of only receiving;
drmin: minimum receive data size to feed all threads working;
tri: the time cost of data receiving in step i.
Similarly, the base value a can affect the total time cost by affecting the synchro-
nization times. Therefore, the optimal base value a should be the maximum value
while make sure the time cost of kernel execution is not shorter than the time cost
of data receive in each step. Then we can calculate the base value a that matches
the condition as follow:

drmin × am+2−i/BR ≤ Tk × drmin × am+1−i/Dr, (4.10)

a ≤ RR × Tk/Dr. (4.11)

Then we can choose a = RR × Tk/Dr as the optimal base value to schedule.

Proof of Asymptotic Optimality

The scheduling length of our sub-method is as follow:

Ttotal = Ds/SS + Tk + drmin/RR + tstr × loga(Dr(a− 1)/drmin + 1). (4.12)

As the application is kernel bound and receive heavy, we can assume the send data
size to be constant. The data size of receiving is proportional to the time cost of
kernel execution, assuming Dr = p × Tk (p is constant). Then a = RR × Tk/Dr is
constant. As drmin and tstr are also constant, then we have:

Ttotal ≤ Tk +O(loga(p× Tk)). (4.13)

As the optimal scheduling length is Topt = Tk, then we have:

lim
Tk→∞

Ttotal/Topt ≤ 1 + lim
Tk→∞

= 1. (4.14)

Therefore, the sub-method of TPSM for kernel bound and receive heavy in single
GPU architecture is asymptotic optimal.

44 Chapter 4. A Task Partitioning and Scheduling Method

send kernel receive

single stream synchronization

send

kernel

receive

time

phase 1 2 3

Figure 4.5: TPSM for Kernel Bound and General Heavy in Single GPU Architecture

4.2.1.3 General Heavy

For kernel bound and general heavy applications, both the send and receive parts are
not small so that we should not send or receive all data in one step. We divide the
scheduling into three phases: (1)send phase, (2)middle phase and (3)receive phase
as shown in Figure 4.5. To minimize the total time cost, we should ensure the time
cost of kernel execution is not shorter than the time cost of the bi-directional data
transfer in each step of each phase. Therefore, we begin with a small subtask size
and exponentially increase the subtask size in the send phase. In the middle phase,
there is only one step in which we send all the left data and receive all the output
data from the last step of the send phase. We set the time cost of kernel execution
not shorter than the data transfer part by setting a suitable subtask size. Finally,
we begin with a large subtask size and then exponentially decrease it to make the
last receive as small as possible in the receive phase.

In the send phase, we assume the base value of the increase is a. Then the data
send size in step i of the phase send is dsmin × ai−1. We can use the following
equations to calculate the time cost of kernel execution in step i:

tki = (dsmin × Tk/Ds)× ai−2. (4.15)

The data receive size in step i is (dsmin × Dr/Ds) × ai−3. Then the time cost of
data send and data receive in step i is as follow when only consider uni-directional
data transfer:

tsi = dsmin × ai−1/SSR, (4.16)

4.2. TPSM for Single GPU Architecture 45

tri = dsmin ×Dr × ai−2/(Ds ×RSR). (4.17)

SSR: the bandwidth of sending while GPU is sending and receiving at the same
time;
RSR: the bandwidth of receiving while GPU is sending and receiving at the same
time.
We also overlap the data send and data receive as well. Due to the different time cost
of data sending and receiving, the data transfer process will begin with simultaneous
bi-directional data transfer and end with uni-directional data transfer. If the time
cost of data sending is longer than the time cost of data receiving, then the total
data transfer time is the sum of the first simultaneous bi-directional data transfer
and the time cost of the rest data sending. On the contrary, the total data transfer
time is the sum of the first simultaneous bi-directional data transfer and the time
cost of the rest data receiving. We can use the following equation to calculate it:

tcomi =

tri + (dsmin × ai−1 − tri × SSR)/SS

if tri ≤ tsi,

tsi + (dsmin × ai−3 ×Dr/Ds − tsi ×RSR)/RR

if tri > tsi.

(4.18)

tcomi:the total communication time cost between the host and the device in step i

of the send phase.
In each step of the send phase, we need to keep tcomi ≤ tki. With equation (4.15)
and (4.18), we can get A and B that match the condition tcomi ≤ tki as follow:

A = {a|β −
√

β2 − γ ≤ a ≤ β +
√

β2 − γ & a ≥ δ};

B = {a|λ−
√

λ2 − µ ≤ a ≤ λ+
√

λ2 − µ & a ≤ δ};

where δ =
√

Dr × SSR/(Ds ×RSR),

β = SS × Tk/2Ds,

γ = (SS − SSR)×Dr/(Ds ×RSR),

λ = Tk × SSR ×RR/(2Ds × (RR −RSR)),

µ = DR × SSR/(Ds × (RR −RSR)).

(4.19)

Then we can choose the maximum base value from set A and B as the optimal base
value for the send phase:

a = max{a|a ∈ A or a ∈ B}. (4.20)

Because the application is kernel bound application. The kernel is longer than the
data transfer part. Therefore, there exists solution a in equation (4.20).

46 Chapter 4. A Task Partitioning and Scheduling Method

As the base value a in send phase is fixed, then we can calculate the number of
subtasks in the send phase as follow:

P = ⌊loga(Ds(a− 1)/dsmin + 1)⌋. (4.21)

The size of remaining send data is as follow:

ds = Ds − dsmin × (aP − 1)/(a− 1). (4.22)

The size of receive data in the step of the middle phase is:

dr = (dsmin ×Dr × aP−2)/Ds. (4.23)

ds: the data size of send in the step of the middle phase;
dr: the data size of receive in the step of the middle phase.
Then we can calculate the total time cost of the bi-directional data transfer in the
middle phase as follow:

tcomp2 =

dr + (ds − dr × SSR)/SS

if ds/SSR > dr/RSR,

ds + (dr − ds ×RSR)/RR

if ds/SSR ≤ dr/RSR.

(4.24)

tcomp2: the total time cost of the bi-directional data transfer in the middle phase.
To ensure the kernel part is the main part in the middle phase, we set the subtask
size to tomp2 ×Ds/Tk.

In the receive phase, the time cost of the remaining kernel execution is not shorter
than the time cost of the remaining data receive as the application is kernel bound
application. Therefore, we set a large size for the first subtask size in the receive
phase and then exponentially decrease the subtask size to make the final receive
part as small as possible as shown in Figure 4.5. Still suppose that the minimum
receive data is drmin and the base value is b. Then we can calculate the time cost
of data receive and kernel execution in step i in the receive phase as follow:

tri = drmin × bm+1−i/RR,

tki = drmin × Tk × bm−i/Dr.
(4.25)

To ensure tri ≤ tki, we can get the base value as follow:

b ≤ Tk ×RR/Dr (4.26)

Then we choose b = Tk×RR/Dr as the optimal base value for the scheduling in the
receive phase.

4.2. TPSM for Single GPU Architecture 47

Proof of Asymptotic Optimality

The scheduling length of our sub-method is as follow:

Ttotal ≤ dsmin/SS + Tk + drmin/RR + tstr × loga(Ds(a− 1)/dsmin + 1)

+tstr × logb(Dr(b− 1)/drmin + 1).
(4.27)

As the application is kernel bound and general heavy, then we assume that Ds =

pTk, Dr = qTk where p and q are constant. As dsmin, drmin, a, b are constant, the
scheduling length of our work can be:

Ttotal ≤ Tk +O(loga(pTk)) +O(logb(qTk)). (4.28)

Therefore, as the optimal scheduling length is Topt = Tk, then we have:

lim
Tk→∞

Ttotal/Topt ≤ 1+ lim
Tk→∞

O(loga(pTk))/Tk+ lim
Tk→∞

O(logb(qTk))/Tk = 1. (4.29)

Therefore, the TPSM sub-method for kernel bound and general heavy in single GPU
architecture is asymptotic optimal.

4.2.2 Partitioning and Scheduling for Data Transfer Bound Appli-
cations

For data transfer bound applications, the bi-directional data transfer between the
host and the device is the main part. Therefore, we prefer to hide the kernel exe-
cution by overlapping the data send, data receive and kernel execution. we should
also ensure that the time cost of data transfer part is not shorter than the time cost
of kernel execution in each step.

4.2.2.1 Send Heavy

For data transfer bound and send heavy application, the receive part is much smaller
than the send part. To achieve higher overlap and make the last receive as small
as possible, we begin with a large subtask size. Then we exponentially decrease the
subtask size as shown in Figure 4.6. With the base value a, the number of subtasks
is:

m = ⌈loga(Ds × (a− 1)/dsmin + 1)⌉. (4.30)

In step 1 and 2, we have:
xs1 = dsmin × am−1,

xs2 = dsmin × am−2.

xr1 = xr2 = 0.

(4.31)

48 Chapter 4. A Task Partitioning and Scheduling Method

send kernel receive

single stream synchronization

send

kernel

receive
time

Figure 4.6: TPSM for Data Transfer Bound and Send Heavy in Single GPU Archi-
tecture

xs1: the data size to send in step 1;
xs2: the data size to send in step 2;
xr1: the data size to receive in step 1;
xr2: the data size to receive in step 2.
In steps m+ 1 and m+ 2,we have:

xs(m+1) = xs(m+2) = 0,

xr(m+1) = a× drmin,

xr(m+2) = drmin = dsmin ×Dr/Ds.

(4.32)

xs(m+1): the data size to send in step m+ 1;
xs(m+2): the data size to send in step m+ 2;
xr(m+1): the data size to receive in step m+ 1;
xr(m+2): the data size to receive in step m+ 2.
For step i (3 ≤ i ≤ m), we have the data size to send and receive for one GPU as
follow:

xsi = dsmin × am−i,

xri = drmin × am+2−i.
(4.33)

With the data size of send and receive in each step, we can use the time optimal
data transfer model to calculate the minimum time cost of data transfer in step

4.2. TPSM for Single GPU Architecture 49

1, 2,m+ 1,m+ 2 and i(3 ≤ i ≤ m) as follow:

t1 = xs1/SS = dsmin × am−1/SS

t2 = xs2/SS = dsmin × am−2/SS

tm+1 = xr(m+1)/RR = a× drmin/RR

tm+2 = xr(m+2)/RR = drmin/RR

drmin = dsmin ×Dr/Ds

(4.34)

It is similar to the calculation of bi-directional data transfer in equation (4.18).
The time cost of bi-directional data transfer with data send and receive data size
(xsi, xri) can be calculated as follow:

ti = H(xsi, xri) =

xsi/SSR + (xri − (xsi/SSR)×RSR)/RR

if xsi/SSR ≤ xri/RSR,

xri/RSR + (xsi − (xri/RSR)× SSR)/SS

if xsi/SSR > xri/RSR.

(4.35)

ti: the time cost of data transfer for step i;
drmin: the minimum data size to receive in the last step.
Then we can use the following equation to calculate the total time cost:

Ttotal = (m+ 2)× tstr +
m+2∑
i=1

ti = W (a). (4.36)

tstr: the time cost of one synchronization between GPUs;
ti: the time cost of data transfer in step i (3 ≤ i ≤ m).
Since W (a) is not differentiable on many points, we approximately minimize it by
a heuristics method. We found that the solution base value a is normally close to
the ratio of the time cost of data transfer and the time cost of kernel execution.
Therefore, we can use algorithm 1 to find the solution.

Notice that with larger step number, we can have a better base value a close to
the optimal one. Meanwhile, larger step number means more calculation and more
time cost. Therefore, we suggest to set n to 10 ∼ 30.

Proof of Asymptotic Optimality

The scheduling length of our sub-method is as follow:

Ttotal = drmin × (a+ 1)/RR +H(Ds, Dr − drmin × (a+ 1)) + tstr × (m+ 2)

≤ drmin × (a+ 1)/RR +H(Ds, Dr) + tstr ×O(loga(Ds)).

(4.37)

50 Chapter 4. A Task Partitioning and Scheduling Method

As it is data transfer bound and send heavy, we assume that Ds = p × Dr where
p >> 1. Therefore, the optimal scheduling length is Topt = H(Ds, Dr) = Dr ×
(1/RSR+p/SS−SSR/(RSRSS)). As a and H(p, 1) can be considered to be constant,
when the receive data size is infinite, then we have:

lim
Dr→∞

Ttotal/Topt ≤ 1 + lim
Dr→∞

O(loga(p×Dr))/(Dr ×H(p, q)) = 1. (4.38)

Therefore, the sub-method of TPSM for data transfer bound and send heavy is
asymptotic optimal.

4.2.2.2 Receive Heavy

For data transfer bound and receive heavy applications, the the send part is much
smaller than the receive part. Notice that we will adopt a solution which is not
symmetric with TPSM for data transfer bound and send heavy applications. This
is because for we can send any data size of send data while we can only receive the

Algorithm 1: Algorithm for a good base value a

Input: n: the number of search steps,
b: the ratio of the time cost of data transfer and the time cost of

kernel execution,
W (a): the function to calculate the total time cost from a

Output: a: the base value a

a1 = min(1, b/2), a2 = b, y3 = 2b;
for (i=0; i<n; i++) do

calculate W (a1), W (a2), W (a3);
if (W (a1) < W (a2)&W (a1) < W (a3)) then

a1 = a2;
a2 = (a1 + a3)/2;
continue;

if (W (a2) < W (a1)&W (a2) < W (a3)) then
a2 = (a1 + a3)/2;
continue;

if (W (a3) < W (a1)&W (a3) < W (a2)) then
a3 = a2;
a2 = (a1 + a3)/2;
continue;

return a2;

4.2. TPSM for Single GPU Architecture 51

data size of receive data that the corresponding kernel execution is finished. The
send data is independent from kernel execution while receive data is dependent on
kernel execution. If use solely exponential increase or decrease method, there might
exist case in some steps that there is no data send and the kernel is longer than the
time cost of data receive. We can not receive the data which is not generated yet.

We divide the scheduling into three phases:(1)send phase, (2)middle phase and
(3)receive phase as shown in Figure 4.7. To minimize the total time cost, we should
ensure the time cost of data transfer is not shorter than the time cost of kernel
execution in each step of each phase while we also should overlap the send part and
receive part as much as possible. Therefore, we begin with a small subtask size
and exponentially increase the subtask size in the send phase. As a transitional
phase, there is only one step in the middle phase. In this step, we have to finish
all the remaining data send and receive all the output data generated by the kernel
execution in the last step of the send phase. Then we launch a sub-kernel with
the time cost of kernel execution equal to the time cost of the data transfer in this
step. As it is data transfer bound and receive heavy application, the time cost of
the remaining data receive is not shorter than the time cost of the remaining kernel
execution in the receive phase. Therefore, we begin with a small subtask size to
make the first kernel small and then exponentially increase the subtask size.

send kernel receive

single stream synchronization

send

kernel

receive

time

phase 1 2 3

Figure 4.7: TPSM for Data Transfer Bound and Receive Heavy in Single GPU
Architecture

In the send phase, assume the base value of the increase is a, then the data size

52 Chapter 4. A Task Partitioning and Scheduling Method

of send and receive for each GPU is:

xsi = dsmin × ai−1,

xri = dsmin × ai−3 ×Dr/Ds.
(4.39)

Then we can use equation (4.35) to calculate the time cost of data transfer in step
i. As the time cost of kernel execution in step i is:

tki = xs(i−1)/Ds × Tk = dsmin × ai−2 × Tk/Ds. (4.40)

To minimize the total time cost, we should ensure tki ≤ ti in each step of the send
phase. Then we can have the following set of base a that matches the condition:

S = {a|a× Tk/Ds ≤ F (a)}

where F (a) =

a2(RR −RSR)/(SSRRR) +Dr/(DsRR)

if a2 ≤ DrSSR/(DsRSR),

a2/SS + (DrSS −DrSSR)/(DsRSRSS)

if a2 > DrSSR/(DsRSR).

(4.41)

Then we choose a = max{a|a ∈ S} as the optimal base value for the scheduling
in the send phase. As the application is data transfer bound and send heavy, there
exits a solution a that matches the equation.

In the middle phase, we will send all the remaining send data and receive all the
output data generated by the kernel execution of the last step in the send phase.
The data size of sending and receiving in the middle phase is as follow:

ds = Ds − dsmin × (aP − 1)/(a− 1),

dr = (dsmin ×Dr × aP−2)/Ds.
(4.42)

P : the number of subtasks in the send phase which can be calculated with equation
(4.30).

The time cost of the bi-directional data transfer tmid can be calculated with
equation (4.35). To ensure the data transfer part is the main part in the middle
phase, we set the subtask size to tmid ×Ds/Tk.

As the remaining receive part is not shorter than the remaining kernel execution
part, we receive all the data generated from the middle phase in the first step of
the receive phase as shown in Figure 4.7. As the kernel time in the middle phase is
tmid, the time cost of data receiving is:

tr1 = (tmid ×Dr)/(Tk ×RR). (4.43)

tr1: the time cost of kernel execution in the first step of the receive phase.

4.2. TPSM for Single GPU Architecture 53

In the first step of the receive phase, we set the kernel execution equal to the
data receiving. Then the subtask size in the first step of the receive phase is as
follow:

x1 = tr1 ×Ds/Tk (4.44)

In step i of the receive phase (i ≥ 2), we receive all the output data generated
from the kernel execution in step i− 1. The time cost of data receiving in step i of
the receive phase is:

tri = (tr(i−1) ×Dr)/(Tk ×RR). (4.45)

We also set the time cost of kernel execution equal to the data receiving. There-
fore, the subtask size in step i of the receive phase is:

xi = tri ×Ds/Tk. (4.46)

Finally, we can finish all the kernel execution in the penultimate step and finish
all the data receiving in the last step. By this way, we can hide the kernel execution
and use as fewer synchronization operation as possible to minimize the total time
cost.

Proof of Asymptotic Optimality

As it is data transfer bound and receive heavy, we assume Dr = p ×Dr where
p >> 1. The number of synchronization operations in the receive phase can be
considered as constant e. The scheduling length of our sub-method is as follow:

Ttotal = dsmin(a+1)/SS+H(Ds−dsmin(a+1), Dr)+tstr(loga(Ds(a−1)/dsmin+1)+1+e).

(4.47)
Similar to the proof of asymptotic optimality for data transfer bound and send
heavy, we have:

Ttotal ≤ H(Ds, Dr) + tstr ×O(loga(Ds)). (4.48)

The optimal scheduling length is Topt = H(Ds, Dr) and a can be considered as
constant. When the input size is infinite, then we have:

lim
Ds→∞

Ttotal/Topt ≤ 1 + lim
Ds→∞

tstr ×O(loga(Ds))/H(Ds, Dr) = 1. (4.49)

Therefore, the sub-method of TPSM for data transfer bound and receive heavy in
single GPU architecture is asymptotic optimal.

4.2.2.3 General Heavy

For data transfer bound and general heavy applications, both the data send and
receive part are not short. Therefore, the key is to overlap the data send and receive

54 Chapter 4. A Task Partitioning and Scheduling Method

send kernel receive

single stream synchronization

send

kernel

receive

time

Figure 4.8: TPSM for Data Transfer Bound and General Heavy in Single GPU
Architecture

part as much as possible. We set the subtasks to equal size for easy scheduling and
use the time optimal data transfer algorithm to schedule the data transfer as shown
in Figure 4.8.

Suppose that the number of subtasks is m, then we have the data size of send
and receive for one GPU in step i as follow:

xsi = Ds/m, xri = Dr/m. (4.50)

By using time optimal data transfer model, we can calculate the optimal time cost
of data transfer for all GPUs in each step as follow(3 ≤ i ≤ m):

t1 = t2 = Ds/(mSS),

tm+1 = tm+2 = Dr/(mRR),

ti = H(Ds/m,Dr/m) (function H() is defined in equation (4.35)).

(4.51)

With the time cost of each step, we can calculate the total time cost as follow:

Ttotal = (m+ 2)tstr +
m+2∑
i=1

ti

= 2Ds/(mSS) + 2Dr/(mRR) + (m− 2)H(Ds/m,Dr/m) + tstr(m+ 2) = W (m).

(4.52)
The total time cost of the application is a function of the number of subtask. Then
we calculate the derivative of the function W (m) to get the m for the scheduling

4.3. TPSM for Symmetric Multiple GPUs Architecture 55

which makes the total time cost minimum as follow:

m =
√

2(Ds/SS +Dr/RR −H(Ds, Dr))/tstr. (4.53)

Proof of Asymptotic Optimality

As the application is data transfer bound and general heavy, we assume Dr =

pDs (p is constant) and c =
√

2(1/SS + p/RR −H(1, p))/tstr. As m = c
√
Ds, then

we can calculate the scheduling length as follow:

Ttotal = (c
√

Ds + 2)tstr + 2
√

Ds/(cSS) + 2
√

pDs/(cRR) + (Ds − 2/(c
√

Ds))H(1, p)

≤ DsH(1, p) +O(
√

Ds).

(4.54)
As the optimal scheduling length is Topt = H(Ds, Dr) = Ds ×H(1, p) and H(1, p)

is constant, then we have:

lim
Ds→∞

Ttotal/Topt ≤ 1 + lim
Ds→∞

O(
√

Ds)/(Ds ×H(1, p)) = 1. (4.55)

Therefore, our sub-method for data transfer bound and general heavy in single GPU
architecture is asymptotic optimal.

4.3 TPSM for Symmetric Multiple GPUs Architecture

For multiple GPU platform (multiple GPUs in one node), the bandwidths are shared
by all GPU devices and the send and receive bandwidth of one GPU can be greatly
affected by the states of other GPU devices as shown in Table 4.2. G0 and G1 are
the GPU device ID and N,S,R, S&R are four data transfer states which will be
introduced in this section. Therefore, local optimal of data transfer in each GPU
does not mean global optimal of data transfer for the whole system. To minimize
the total time cost of data transfer between the host and the device, it is important
to take the impact between GPUs into consideration. For symmetric multiple GPU
architecture (install the same GPUs rather different types of GPUs), we allocate
the same load for each GPU so that the size of data transfer of different GPUs are
equal.

4.3.1 Time Optimal Data Transfer Algorithm for Symmetric Mul-
tiple GPUs Architecture

In this section, we introduce a time optimal data transfer algorithm for multiple GPU
platform with symmetric architecture. We also build a model for the algorithm to
predict the optimal communication time cost between the host and the device with
a fixed communication data size.

56 Chapter 4. A Task Partitioning and Scheduling Method

Table 4.2: Bandwidth of Dual Tesla C2075 under Different States
G0-N G0-S G0-R G0-S&R

G1-N - S0 = 5.99 R0 = 6.48
S0 = 3.86

R0 = 4.2

G1-S S1 = 5.99
S0 = 5.11

S1 = 5.11

R0 = 4.26

S1 = 3.79

S0 = 2.9

R0 = 2.99

S1 = 2.99

G1-R R1 = 6.48
S0 = 3.79

R1 = 4.26

R0 = 3.38

R1 = 3.38

S0 = 2.41

R0 = 2.42

R1 = 2.76

G1-S&R
S1 = 3.86

R1 = 4.2

S0 = 2.99

S1 = 2.9

R1 = 2.99

R0 = 2.76

S1 = 2.41

R1 = 2.42

S0 = 2.05

R0 = 2.06

S1 = 2.05

R1 = 2.06

4.3.1.1 Definition and Notations

In the multiple GPU system, there are two kind of states:device state and system
state. Device state is the communication state of single GPU. System state is the
communication state of all the GPU devices in the system. Therefore, the system
state includes the device states of all GPU devices. We define four states for device
state as follow:

- N : no communication;

- S: data sending from host to device;

- R: data receiving from host to device;

- S&R: simultaneous data sending and receiving.

With n GPU devices where Di is the device state of the ith GPU, we define Γiq

as the send(Γ = S) or receive(Γ = R) bandwidth of ith GPU under the system state
of q ∈ U , where U is defined as follow:

U = {D0/D1/ · · · /Dn−1 | Di ∈ {N,S,R, SR}, 0 ≤ i ≤ n− 1}. (4.56)

q: the system state;
U : the union of the system state;
Di: the device state of the ith GPU;
n: the total number of GPU devices in the system.
And we define Γq to present the total send or receive bandwidth of all GPU devices

4.3. TPSM for Symmetric Multiple GPUs Architecture 57

which means:

Γq =

n−1∑
i=0

Γiq. (4.57)

For example, S3S/S/SR/SR means the sending bandwidth of GPU3 under the system
state of GPU0 only sending, GPU1 only sending, GPU2 simultaneously sending
and receiving and GPU3 simultaneously sending and receiving.

4.3.1.2 Time Optimal Data Transfer Algorithm

The process of data communication between the host and the device can be described
by a set of system states and the corresponding time cost in each system state. We
denote the scheduling as TQ. For example, a scheduling TQ, where Q = {S/S,R/R},
means we begin with two GPUs sending data for Tq1 and then make two GPUs
receiving data for Tq2. Therefore, the scheduling length of TQ is equal to the sum
of the scheduling time in each system state as follow:

|TQ| =
m∑
i=1

Tqi , qi ∈ Q ⊆ U. (4.58)

Q: a set of system states used in the process of data communication;
m: the number of system states in Q;
Tqi : the scheduling time of the system state qi in Q.
Therefore, the data size of send and receive for GPUi is:

condition1 :

Xsi =

∑
qi∈U Tqi × Siqi , Tqi ≥ 0,

Xri =
∑

qi∈U Tqi ×Riqi , Tqi ≥ 0.

(4.59)

Xsi : the data size of sending for GPUi;
Xri : the data size of receiving for GPUi;
Siqi : the send bandwidth of GPUi under system state qi;
Riqi : the receive bandwidth of GPUi under system state qi.
As the system is symmetric architecture, we assume that the data size of sending
and receiving of each GPU device is equal. Therefore, the total data size of sending
and receiving of all GPUs should be:

condition2 :

Xs =

∑n−1
i=0 Xsi = n×Xsi , (0 ≤ i ≤ n− 1),

Xr =
∑n−1

i=0 Xri = n×Xri , (0 ≤ i ≤ n− 1).

(4.60)

Xs: the total data size of sending for the system;
Xr: the total data size of receiving for the system.

58 Chapter 4. A Task Partitioning and Scheduling Method

A time optimal scheduling is a scheduling which gives the minimum scheduling
length among all scheduling that satisfy the condition 1 and 2 with a fixed (Xs, Xr).
The time optimal scheduling is a problem of linear program which is determined by
the input of (Xs, Xr). There could be more than one optimal scheduling.

We can find a time optimal scheduling that gives symmetric time cost for sym-
metric states. Therefore, we consider the time cost of each sate between symmetric
states is equal. In this case, we can reduce the number of system states by reducing
the duplicated symmetric system states. For example, S/R (GPU0 is sending and
GPU1 is receiving) and R/S (GPU0 is receiving and GPU1 is sending) are dupli-
cated. These two system states can be described just by one S/R. There are 256

system states for 4 GPU system. By reducing the symmetric system states, only
35 system states are useful for the scheduling. From data size aspect, we denote

send

re
c
e
iv

e

TQ

more send and

more receive and

better than TQ

less send and

more receive

than TQ

less send and

less receive

than TQ

more send and

less receive

than TQ

Figure 4.9: Data Size Optimality Problem

transferred data by a scheduling TQ as Xs and Xr which can be illustrated as a point
(Xs, Xr) in two-dimensional coordinate system. We can find out the time optimal
scheduling by solving its dual problem. The dual problem of time optimal schedul-
ing problem is data size optimal scheduling problem which is defined as follows. As
shown in Figure 4.9, we define a scheduling TQ as a data size optimal scheduling,
which maximizes transferred data sizes in a fixed time, if there is no scheduling T ′

Q

4.3. TPSM for Symmetric Multiple GPUs Architecture 59

that satisfies condition 1 and 2 and one of the following conditions:

(1) Xs(T
′
Q) > Xs(TQ) and Xr(T

′
Q) > Xr(TQ);

(2) Xs(T
′
Q) > Xs(TQ) and Xr(T

′
Q) = Xr(TQ);

(3) Xs(T
′
Q) = Xs(TQ) and Xr(T

′
Q) > Xr(TQ).

(4.61)

Next we discuss the solution of data size optimal scheduling problem. When
only one system state is used, say state p, then the transferred data corresponds to
a point (T × Sq, T × Rq). When two system states p and q are used, then we can
have the following equation as the scheduling length is fixed:

Tp = αT, Tq = (1− α)T, 0 ≤ α ≤ 1. (4.62)

T : the fixed total time cost of the scheduling.
Then we have the transferred data sizes:

Xs = Tp × Sp + Tq × Sq = αT × Sp + (1− α)T × Sq,

Xr = Tp ×Rp + Tq ×Rq = αT ×Rp + (1− α)T ×Rq.
(4.63)

Thus we have the total data size of send and receive as follow:

(Xs, Xr) = α(T × Sp, T ×Rp) + (1− α)(T × Sq, T ×Rq). (4.64)

Therefore, the transferred data of the scheduling in the set of data size optimal

q1

q2

q3

q1

q2

q3

case 1 case 2

send send

re
c
e
iv

e

re
c
e
iv

e

Figure 4.10: Convex Mixture

scheduling corresponds to the line segment that connects point p and q. We call
such a scheduling a convex mixture of states p and q.

60 Chapter 4. A Task Partitioning and Scheduling Method

Let us consider three system states as shown in Figure 4.10. In case 1, the
combination of q1 and q3 is better than any combination of q1 and q2 and any
combination of q2 and q3. Therefore, the transferred data of the scheduling in the
set of data size optimal scheduling corresponds to the line segment q1q3 in case 1.
Similarly in case 2, the combination of q1 and q3 is worse than both the combination
of q1 and q2 and the combination of q2 and q3. Thus the transferred data of the
scheduling in the set of data size optimal scheduling corresponds to the line segments
q1q2 and q2q3 in case 2.

send

re
c
e
iv

e

F

E

q0 q1

qi

qi+1

qn-1

qn

(Xs, Xr)

... ...

... ...

1-a

a

O

Figure 4.11: Upper-right Convex Hull Data Transfer Size with Scheduling Length
T

Considering more system states as shown in Figure 4.11, we can find that any
scheduling is not better than the scheduling on the upper right convex hull. The
data size optimal scheduling is a combination of only two system states. By changing
the scheduling time T , the upper right convex hull linearly scales about the origin.
Therefore, with a fixed (Xs, Xr), we can draw a line that passes the origin and point
F which will intersect with upper right convex hull at point E as shown in Figure
4.11. Let qi and qi+1 be the end points of the crossing line segment of the convex
hull. Then the time optimal scheduling is the scheduling at the point E which is
a convex mixture of system states qi and qi+1. The time cost of the time optimal

4.3. TPSM for Symmetric Multiple GPUs Architecture 61

scheduling is:
Toptimal = T × |OF |/|OE|. (4.65)

|OF |: the length of the line segment of OF;
|OE|: the length of the line segment of OE.
The scheduling time in the system state qi is a× Toptimal while the scheduling time
in the system state qi+1 is (1− a)× Toptimal (0 ≤ a ≤ 1).

Next we will introduce a model to predict the minimum time cost with a fixed
data size of send and receive based on the time optimal transfer algorithm. As
shown in Figure 4.11, suppose that the two used system states are p and q. The
coordinates of the system state p and q are as follow:

(xp, yp) = (T ×Bps, T ×Bpr),

(xq, yq) = (T ×Bqs, T ×Bqr).
(4.66)

Bps: the total bandwidth of data sending of all GPUs in system state p;
Bpr: the total bandwidth of data receiving of all GPUs in system state p;
Bqs: the total bandwidth of data sending of all GPUs in system state q;
Bqr: the total bandwidth of data receiving of all GPUs in system state q.
We also can use the following equation to calculate the x coordinate of point E:

xe = (xq × yp − xp × yq)×Xs/(Xr × (xq − xp) +Xs × (yq − yp)). (4.67)

Suppose that T is 1 second and take equation (4.66) and (4.67) into equation
(4.65). Then we can get the scheduling length of Tpq using system states p and q:

Tpq = Xs/xe = (Xr(Bqs −Bps) +Xs(Bqr −Bpr))

/(Bqs ×Bpr −Bps ×Bqr) = Fpq(Xs, Xr).
(4.68)

For n points p1, p2, ..., pn as shown in Figure 4.11, suppose that their coordinates
are (x1, y1), (x2, y2), ..., (xn, yn). As it is upper-right convex hull so that we have
x1 < x2 < ... < xn and y1 > y2 > ... > yn. Therefore we can calculate the length of
the time optimal scheduling with an input of (Xs, Xr):

Topt = G(Xs, Xr) =

Fp1p2(Xs, Xr)

if y2/x2 ≤ Xr/Xs < y1/x1;

......

Fpipi+1(Xs, Xr)

if yi+1/xi+1 ≤ Xr/Xs < yi/xi;

......

(4.69)

G(Xs, Xr): the minimum time cost to send and receive a data size of (Xs, Xr).

62 Chapter 4. A Task Partitioning and Scheduling Method

send kernel receive

single stream synchronization

send

kernel

receive

send

kernel

receive

GPU 0

GPU n-1

time

... ...

... ...

Figure 4.12: TPSM for Kernel Bound and Send Heavy in Symmetric Multiple GPU
Architecture

For example, the length of the time optimal scheduling with an input of (Xs, Xr)

in dual Tesla C2075 platform is as follow (Table 4.2):

Topt = G(Xs, Xr) =

0.1417xr − 0.0978xs when xr/xs ≤ 0.5076

0.1479xr − 0.0947xs when xr/xs > 0.5076

(4.70)

4.3.2 TPSM

For symmetric architecture, we use symmetric scheduling method for all GPUs. The
TPSM for symmetric architecture is based on TPSM for single GPU. In symmetric
architecture, the load in each GPU is equal size. Notice that our TPSM is not a
theoretically optimal solution but a heuristic solution.

4.3.2.1 TPSM for Kernel Bound and Send Heavy

For kernel bound and send heavy applications, the scheduling is similar to the TPSM
of kernel bound and send heavy in single GPU case. We average allocate the appli-
cation on each GPU. The receive part is so small that we can receive all the data in

4.3. TPSM for Symmetric Multiple GPUs Architecture 63

the last step. To make the first send as small as possible, we set the first subtask size
to a minimum size which can just keep all threads working and then exponentially
increase the subtask size as shown in Figure 4.12.

Suppose that the base value of the exponential increase is a and the send data
size in step 1 is dsmin in each GPU. Then the send data size in step i is dsmin×ai−1.
We can calculate tsi and tki in step i in each GPU as follow:

tsi = dsmin × ai−1/SS , (4.71)

tki = (Tk/n)× dsmin × ai−2/(Ds/n). (4.72)

Ds: the total data size to send from host to device for all GPUs;
Tk: the total time cost of kernel execution with single GPU;
dsmin: minimum send data size to feed all threads working in each GPU;
SS : the send bandwidth of one GPU in the system state of all GPUs sending, equal
to SiS/S/.. (i = 0, 1, ..) (notice that there are only data sending in all steps except
the last step);
tsi: the time cost of data sending in step i in each GPU;
tki: the time cost of kernel execution in step i in each GPU;
n: the number of GPU devices in the system.

The total time cost is the sum of kernel execution, first send, last receive and the
synchronization overhead. With fixed first send, last receive and kernel execution,
the base value a can affect the total time cost by affecting the synchronization
overhead. With larger a, there will be less synchronization times. Therefore, the
optimal base value a is the maximum value which can also make sure the time cost
of kernel execution is not shorter than the time cost of data send in each step. Then
we can calculate the a that match the condition as follow:

dsmin × ai−1/SS ≤ (Tk/n)× dsmin × ai−2/(Ds/n), (4.73)

a ≤ SS × Tk/Ds. (4.74)

Therefore, a = SS × Tk/Ds is the optimal base value.

Proof of Asymptotic Optimality

The scheduling length of our sub-method is:

Ttotal = dsmin/SS+Tk/n+Dr/(nRR)+ tstr× loga(Ds(a−1)/(ndsmin)+1). (4.75)

Dr: the total data size to receive from device to host;
tstr: the time cost of one synchronization operation.

64 Chapter 4. A Task Partitioning and Scheduling Method

As the application is kernel bound and send heavy, the receive is small so that we
assume it is constant. Because dsmin and tstr are also constant and Ds is propor-
tional to Tk (assume Ds = p× Tk where p is constant), the scheduling length with
our work is:

Ttotal ≤ Tk/n+O(loga(pTk)) (4.76)

When the input data size is infinite, the time cost of kernel is also infinite. As the
optimal scheduling length is Topt = Tk/n and a is equal to SSTk/Ds = SS/p which
is constant, then we have:

lim
Tk→∞

Ttotal/Topt ≤ 1 + lim
Tk→∞

O(loga(pTk))/(Tk/n) = 1. (4.77)

Therefore, the sub-method of TPSM for kernel bound and send heavy is asymptotic
optimal.

4.3.2.2 TPSM for Kernel Bound and Receive Heavy

For kernel bound and receive heavy applications, the send part is so small that we
can send all the data in the first step. To make the last receive as small as possible,
we set the first subtask size in a large size and then exponentially decrease the
subtask size to make the last subtask size just feed all threads working as shown in
Figure 4.13.

We set a minimum receive data drmin in each GPU which feeds all threads can
return results and suppose that the base value of the exponential decrease is a and
the number of subtask is m. Then the receive data size in the step i in each GPU is
drmin×am+2−i. We can calculate the time cost of kernel execution and data receive
in the step i as follow:

tri = drmin × am+2−i/RR, (4.78)

tki = (Tk/n)× drmin × am+1−i/(Dr/n). (4.79)

Dr: the total data size to receive from device to host for all GPUs;
RR: the receive bandwidth of one GPU in the system state of all GPUs receiving,
equal to RiR/R/..(i = 0, 1, ..);
drmin: minimum receive data size to feed all threads working in each GPU;
tri: the time cost of data receiving in step i in each GPU.

Similarly to the case of kernel bound and send heavy, the base value a can affect
the total time cost by affecting the synchronization times. Therefore, the optimal
base value a should be the maximum value while make sure the time cost of kernel
execution is not shorter than the time cost of data receive in each step. Then we
can calculate the base value a that matches the condition as follow:

drmin × am+2−i/RR ≤ (Tk/n)× drmin × am+1−i/(Dr/n), (4.80)

4.3. TPSM for Symmetric Multiple GPUs Architecture 65

send kernel receive

single stream synchronization

send

kernel

receive

send

kernel

receive

GPU 0

GPU n-1

time

... ...

... ...

Figure 4.13: TPSM for Kernel Bound and Receive Heavy in Symmetric Multiple
GPU Architecture

a ≤ RR × Tk/Dr. (4.81)

Then we can choose a = RR × Tk/Dr as the optimal base value to schedule.

Proof of Asymptotic Optimality

The scheduling length with our work is:

Ttotal = Ds/(nSS) + Tk/n+ drmin/RR + tstrloga(Dr(a− 1)/(ndrmin) + 1). (4.82)

As the application is kernel bound and receive heavy, the send part is small so
that we assume Ds is constant. As drmin is constant and Dr is proportional to Tk

(assume Dr = p× Tk where p is constant), the scheduling length with our work is:

Ttotal ≤ Tk/n+O(loga(pTk)). (4.83)

When the input data size is infinite, the time cost of kernel is also infinite. As the

66 Chapter 4. A Task Partitioning and Scheduling Method

send kernel receive

single stream synchronization

send

kernel

receive

send

kernel

receive

GPU 0

GPU n-1

time

phase 1 2 3

... ...

... ...

Figure 4.14: TPSM for Kernel Bound and General Heavy in Symmetric Multiple
GPU Architecture

optimal scheduling length is Topt = Tk/n and a is constant, then we have:

lim
Tk→∞

Ttotal/Topt ≤ 1 + lim
Tk→∞

O(loga(pTk))/(Tk/n) = 1. (4.84)

Therefore, the sub-method of TPSM for kernel bound and receive heavy is asymp-
totic optimal.

4.3.2.3 TPSM for Kernel Bound and General Heavy

For kernel bound and general heavy applications in symmetric architecture, both the
send and receive parts are not small so that we should not send or receive all data in
one step. We divide the scheduling into three phases as the same as in single GPU
case: (1)send phase, (2)middle phase and (3)receive phase as shown in Figure 4.14.
To minimize the total time cost, we should ensure the time cost of kernel execution
is not shorter than the time cost of the bi-directional data transfer in each step of
each phase. Therefore, we begin with a small subtask size and exponentially increase
the subtask size in the send phase. In the middle phase, there is only one step in

4.3. TPSM for Symmetric Multiple GPUs Architecture 67

which we send all the left data and receive all the output data from the last step
of the send phase. We set the time cost of kernel execution not shorter than the
data transfer part by setting a suitable subtask size. Finally, we begin with a large
subtask size and then exponentially decrease it to make the last receive as small as
possible in the receive phase.

In the send phase, we assume the base value of the increase is a. Then the data
send size in step i of the phase send is dsmin × ai−1. We can use the following
equations to calculate the time cost of kernel execution in step i:

tki = (dsmin × Tk/Ds)× ai−2. (4.85)

The data receive size in step i in each GPU is (dsmin ×Dr/Ds) × ai−3. Then the
time cost of data send and data receive in step i in each GPU is as follow when only
consider uni-directional data transfer:

tsi = dsmin × ai−1/S′
SR, (4.86)

tri = dsmin ×Dr × ai−2/(Ds ×R′
SR). (4.87)

S′
SR: the send bandwidth of one GPU in the system state of all GPU sending and

receiving, equal to SiSR/SR/..(i = 0, 1, ..);
R′

SR: the receive bandwidth of one GPU in the system state of all GPU sending
and receiving, equal to RiSR/SR/..(i = 0, 1, ..).
As we also overlap the data send and data receive, then the time cost of the actual
bi-directional data transfer should be as follow (Although we have time optimal
data transfer algorithm, we do not use it in kernel bound applications. Because the
time cost of kernel execution part is longer than the time cost of data transfer part.
In each step except the first and the last step, the time cost of kernel execution
is longer than the time cost of data transfer part. Reducing the time cost of data
transfer part can not lead to the decrease of total time cost. On the contrary, using
time optimal data transfer algorithm for kernel bound applications might increase
the total time cost as it needs to some calculation at the beginning of each step):

tcomi =

tri + (dsmin × ai−1 − tri × S′
SR)/SS

if tri ≤ tsi,

tsi + (dsmin × ai−3 ×Dr/Ds − tsi ×R′
SR)/RR

if tri > tsi.

(4.88)

tcomi:the total communication time cost between the host and the device in step i

of the send phase in each GPU.

68 Chapter 4. A Task Partitioning and Scheduling Method

In each step of the send phase, we need to keep tcomi ≤ tki. With equation (4.85)
and (4.88), we can get A and B that match the condition tcomi ≤ tki as follow:

A = {a|β −
√
β2 − γ ≤ a ≤ β +

√
β2 − γ & a ≥ δ};

B = {a|λ−
√

λ2 − µ ≤ a ≤ λ+
√

λ2 − µ & a ≤ δ};

where δ =
√

Dr × S′
SR/(Ds ×R′

SR),

β = SS × Tk/2Ds,

γ = (SS − S′
SR)×Dr/(Ds ×R′

SR),

λ = Tk × S′
SR ×RR/(2Ds × (RR −R′

SR)),

µ = DR × S′
SR/(Ds × (RR −R′

SR)).

(4.89)

Then we can choose the maximum base value from set A and B as the optimal base
value for the send phase:

a = max{a|a ∈ A or a ∈ B}. (4.90)

As the base value a in send phase is fixed, then we can calculate the number of
subtasks in the send phase as follow:

P = ⌊loga((Ds/n)(a− 1)/dsmin + 1)⌋. (4.91)

The size of remaining send data is as follow:

ds = Ds/n− dsmin × (aP − 1)/(a− 1). (4.92)

The size of receive data in the step of the middle phase is:

dr = (dsmin × (Dr/n)× aP−2)/(Ds/n). (4.93)

ds: the data size of send in the step of the middle phase;
dr: the data size of receive in the step of the middle phase.
Then we can calculate the total time cost of the bi-directional data transfer in the
middle phase as follow:

tcomp2 =

dr + (ds − dr × S′
SR)/SS

if ds/S
′
SR > dr/R

′
SR,

ds + (dr − ds ×R′
SR)/RR

if ds/S
′
SR ≤ dr/R

′
SR.

(4.94)

tcomp2: the total time cost of the bi-directional data transfer in the middle phase.
To ensure the kernel part is the main part in the middle phase, we set the subtask
size to tomp2 ×Ds/Tk.

4.3. TPSM for Symmetric Multiple GPUs Architecture 69

In the receive phase, the time cost of the remaining kernel execution is not
shorter than the time cost of receiving the remaining receive data as kernel bound
applications. Therefore, we begin with a large subtask size and then exponentially
decrease the subtask size as shown in Figure 4.14. Still suppose that the minimum
receive data in each GPU is drmin, the base value is b and the number of subtasks
in the receive phase is m, then we have the time cost of data receive and kernel
execution in step i of the receive phase as follow:

tri = drmin × bm+1−i/RR,

tki = drmin × (Tk/n)× bm−i/(Dr/n).
(4.95)

To make the total time cost minimum, we should ensure tri ≤ tki. Then we can get
the base value as follow:

b ≤ Tk ×RR/Dr. (4.96)

Then b = Tk ×RR/Dr is the optimal base value.

Proof of Asymptotic Optimality

As the application is kernel bound and general heavy, then we assume that
Ds = p × Tk and Dr = q × Tk where p and q are positive constant. Then the
scheduling length with TPSM is:

Ttotal ≤ dsmin/SS + Tk/n+ drmin/RR+

tstr(loga(Ds(a− 1)/(ndsmin) + 1) + logb(Dr(b− 1)/(ndrmin) + 1)).
(4.97)

As dsmin, drmin, a and b are constant, then the scheduling length with our work can
be:

Ttotal ≤ Tk/n+O(log(pTk)) +O(log(qTk)). (4.98)

When the input data size is infinite, the time cost of kernel is also infinite. As the
optimal scheduling length is Topt = Tk/n, then we have:

lim
Tk→∞

Ttotal/Topt ≤ 1 + lim
Tk→∞

O(log(pTk))/(Tk/n) + lim
Tk→∞

O(log(qTk))/(Tk/n) = 1.

(4.99)
Therefore, the sub-method of TPSM for kernel bound and general heavy is

asymptotic optimal.

4.3.2.4 TPSM for Data Transfer Bound and Send Heavy

For data transfer bound and send heavy application, the receive part is much smaller
than the send part. To achieve higher overlap and make the last receive as small
as possible, we begin with a large subtask size. Then we exponentially decrease the

70 Chapter 4. A Task Partitioning and Scheduling Method

send kernel receive

single stream synchronization

send

kernel

receive

send

kernel

receive

GPU 0

GPU n-1

time

... ...

... ...

Figure 4.15: TPSM for Data Transfer Bound and Send Heavy in Symmetric Multiple
GPU Architecture

subtask size as shown in Figure 4.15. With the base value a, the number of subtasks
is:

m = ⌈loga((Ds/n)× (a− 1)/dsmin + 1)⌉. (4.100)

In step 1 and 2, we have:
xs1 = dsmin × am−1,

xs2 = dsmin × am−2.

xr1 = xr2 = 0.

(4.101)

xs1: the data size to send in step 1 in each GPU;
xs2: the data size to send in step 2 in each GPU;
xr1: the data size to receive in step 1 in each GPU;
xr2: the data size to receive in step 2 in each GPU.
In steps m+ 1 and m+ 2 in each GPU,we have:

xs(m+1) = xs(m+2) = 0,

xr(m+1) = a× drmin,

xr(m+2) = drmin = dsmin ×Dr/Ds.

(4.102)

xs(m+1): the data size to send in step m+ 1 in each GPU;
xs(m+2): the data size to send in step m+ 2 in each GPU;

4.3. TPSM for Symmetric Multiple GPUs Architecture 71

xr(m+1): the data size to receive in step m+ 1 in each GPU;
xr(m+2): the data size to receive in step m+ 2 in each GPU.
For step i (3 ≤ i ≤ m), we have the data size to send and receive for one GPU as
follow:

xsi = dsmin × am−i,

xri = drmin × am+2−i.
(4.103)

With the data size of send and receive in each step, we can use the time optimal
data transfer model to calculate the minimum time cost of data transfer in step
1, 2,m+ 1,m+ 2 and i(3 ≤ i ≤ m) in each GPU as follow:

t1 = G(nxs1, 0),

t2 = G(nxs2, 0),

tm+1 = G(0, nxr(m+1)),

tm+2 = G(0, nxr(m+2)),

ti = G(nxsi, nxri) = dsmin × am−i × n×G(1, a2 ×Dr/Ds).

(4.104)

ti: the time cost of data transfer for step i in each GPU;
n: the number of GPU devices in the system.
Then we can use the following equation to calculate the total time cost for all GPU
as the kernel execution of each GPU is parallelized:

Ttotal = (m+ 2)× tstr + t1 + t2 + tm+1 + tm+2

+dsmin × n×G(1, a2 ×Dr/Ds)×
m∑
i=3

am−i

= W (a).

(4.105)

tstr: the time cost of one synchronization between GPUs;
ti: the time cost of data transfer in step i (3 ≤ i ≤ m).
Since W (a) is not differentiable on many points, we approximately minimize it by
the same method for TPSM of data transfer bound and send heavy (Algorithm 1).

Proof of Asymptotic Optimality

As it is data transfer bound and send heavy, we assume that Ds = p×Dr where
p >> 1. The scheduling length with TPSM for data transfer bound and send heavy
is:

Ttotal = (1+a)drmin/RR+G(Ds, Dr−ndrmin(a+1))+tstrloga(Dr(a−1)/(ndrmin)+1).

(4.106)
From equation (4.68) and (4.69) we know that G(x, y) = q×x+k×y where q and k

are non-negative constant. Ds is much larger than Dr so that point (Ds, Dr) is very

72 Chapter 4. A Task Partitioning and Scheduling Method

close to point (Ds, Dr−ndrmin(a+1)) in 2-D coordinate system. The system states
(discussed in section 4.3.1) used for both cases are the same. Therefore, function
F (x, y) in equation (4.69) for (Ds, Dr) and (Ds, Dr − ndrmin(a + 1)) is the same.
Then the scheduling length can be as follow:

Ttotal ≤ G(Ds, Dr) +O(logaDr) = (pq + k)Dr +O(logaDr). (4.107)

When the input data size is infinite, the output data size is also infinite. As the
optimal scheduling length is Topt = G(Ds, Dr) = (pq+ k)Dr and a is constant, then
we have:

lim
Dr→∞

Ttotal/Topt ≤ 1 + lim
Dr→∞

O(logaDr)/((pq + k)Dr) = 1. (4.108)

Therefore, the sub-method of TPSM for data transfer bound and send heavy is
asymptotic optimal.

4.3.2.5 TPSM for Data Transfer Bound and Receive Heavy

For data transfer bound and receive heavy applications, the the send part is much
smaller than the receive part. We divide the scheduling into three phases:(1)send
phase, (2)middle phase and (3)receive phase as shown in Figure 4.16. To minimize
the total time cost, we should ensure the time cost of data transfer is not shorter
than the time cost of kernel execution in each step of each phase while we also
should overlap the send part and receive part as much as possible. Therefore, we
begin with a small subtask size and exponentially increase the subtask size in the
send phase. As a transitional phase, there is only one step in the middle phase. In
this step, we have to finish all the remaining data send and receive all the output
data generated by the kernel execution in the last step of the send phase. Then we
launch a sub-kernel with the time cost of kernel execution equal to the time cost
of the data transfer in this step. As it is data transfer bound and receive heavy
application, the time cost of the remaining data receive is not shorter than the time
cost of the remaining kernel execution in the receive phase. Therefore, we begin with
a small subtask size to make the first kernel small and then exponentially increase
the subtask size.

In the send phase, assume the base value of the increase is a, then the data size
of send and receive for each GPU is:

xsi = dsmin × ai−1,

xri = dsmin × ai−3 ×Dr/Ds.
(4.109)

With the time optimal data transfer model, we can calculate the time cost of data
transfer in step i as follow:

ti = G(nxsi, nxri) = n× dsmin × ai−3G(a2, Dr/Ds). (4.110)

4.3. TPSM for Symmetric Multiple GPUs Architecture 73

send kernel receive

single stream synchronization

send

kernel

receive

send

kernel

receive

GPU 0

GPU n-1

time

phase 1 2 3

... ...

... ...

Figure 4.16: TPSM for Data Transfer Bound and Receive Heavy in Symmetric
Multiple GPU Architecture

As the time cost of kernel execution in step i is:

tki = xs(i−1)/(Ds/n)× (Tk/n) = dsmin × ai−2 × Tk/Ds. (4.111)

To minimize the total time cost, we should ensure tki ≤ ti in each step of the send
phase. Then we can have the following set of base a that matches the condition:

S = {a|a× Tk ≤ n×G(Ds × a2, Dr)}. (4.112)

Then we choose a = max{a|a ∈ S} as the optimal base value for the scheduling in
the send phase. As it is data transfer bound and receive bound heavy applications,
there exits a solution in the above equation.

In the middle phase, we will send all the remaining send data and receive all the
output data generated by the kernel execution of the last step in the send phase.
The data size of sending and receiving in the middle phase is as follow:

ds = Ds/n− dsmin × (aP − 1)/(a− 1),

dr = (dsmin × (Dr/n)× aP−2)/(Ds/n).
(4.113)

74 Chapter 4. A Task Partitioning and Scheduling Method

P : the number of subtasks in the send phase which can be calculated by equation
(4.91).
The optimal time cost of the bi-directional data transfer is:

tmid = G(nds, ndr) (G() is defined in equation(4.69).) (4.114)

To ensure the data transfer part is the main part in the middle phase, we set the
subtask size to tmid ×Ds/Tk.

As the remaining receive part is not shorter than the remaining kernel execution
part, we receive all the data generated from the middle phase in the first step of
the receive phase as shown in Figure 4.16. As the kernel time in the middle phase
is tmid, the data size of data receiving in the first step of the receive phase in each
GPU is:

xr1 = tmid × (Dr/n)/(Tk/n) = tmid ×Dr/Tk. (4.115)

xr1: the data size of data receiving in the first step of the receive phase in each
GPU.

Then the time cost of data receiving in the first step of the receive phase is:

tr1 = G(0, nxr1) = ntmid ×Dr ×G(0, 1)/Tk. (4.116)

tr1: the time cost of kernel execution in the first step of the receive phase.
In the first step of the receive phase, we set the kernel execution equal to the

data receiving. Then the subtask size in the first step of the receive phase is as
follow:

x1 = tr1 × (Ds/n)/(Tk/n) = tr1 ×Ds/Tk. (4.117)

In step i of the receive phase (i ≥ 2), we receive all the output data generated
from the kernel execution in step i− 1. The data size of data receiving in step i of
the receive phase in each GPU is:

xri = tr(i−1) × (Dr/n)/(Tk/n) = tr(i−1) ×Dr/Tk. (4.118)

The time cost of data receiving in step i of the receive phase is:

tri = G(0, nxri) = ntr(i−1) ×Dr ×G(0, 1)/Tk. (4.119)

We also set the time cost of kernel execution equal to the data receiving. There-
fore, the subtask size in step i of data receiving is:

xi = tri × (Ds/n)/(Tk/n) = tri ×Ds/Tk. (4.120)

Finally, we can finish all the kernel execution in the penultimate step and finish
all the data receiving in the last step. By this way, we can hide the kernel execution

4.3. TPSM for Symmetric Multiple GPUs Architecture 75

and use as fewer synchronization operation as possible to minimize the total time
cost.

Proof of Asymptotic Optimality

As it is data transfer bound and receive heavy, we assume that Dr = p × Ds

where p >> 1. As the data receiving is longer than the kernel execution in receive
phase and we set the time cost of kernel execution equal to the time cost of data
receiving in most steps of receive phase, the number of synchronization operations
can be considered as constant e. The scheduling length with TPSM for data transfer
bound and receive heavy is:

Ttotal = (1 + a)dsmin/SS +G(Ds − n(1 + a)dsmin, Dr)

+tstr(loga(Ds(a− 1)/(ndsmin) + 1) + 1 + e).
(4.121)

Similar to the proof asymptotic optimality for data transfer bound and send heavy
, we have G(x, y) = q × x + k × y where q and k are non-negative constant. Then
the scheduling length can be as follow:

Ttotal ≤ G(Ds, Dr) +O(logaDs) = (q + pk)Ds +O(logaDs). (4.122)

As the optimal scheduling length is Topt = G(Ds, Dr) = (q+pk)Ds and a is constant,
then we have:

lim
Ds→∞

Ttotal/Topt = 1 + lim
Ds→∞

O(logaDs)/((q + pk)Ds) = 1. (4.123)

Therefore, the sub-method of TPSM for data transfer bound and receive heavy is
asymptotic optimal.

4.3.2.6 TPSM for Data Transfer Bound and General Heavy

For data transfer bound and general heavy applications, both the data send and
receive part are not short. Therefore, the key is to overlap the data send and receive
part as much as possible. We set the subtasks to equal size for easy scheduling and
use the time optimal data transfer algorithm to schedule the data transfer as shown
in Figure 4.17.

Suppose that the number of subtasks is m, then we have the data size of send
and receive for one GPU in step i as follow:

xsi = Ds/(n×m),

xri = Dr/(n×m).
(4.124)

76 Chapter 4. A Task Partitioning and Scheduling Method

send kernel receive

single stream synchronization

send

kernel

receive

send

kernel

receive

GPU 0

GPU n-1

time

... ...

... ...

Figure 4.17: TPSM for Data Transfer Bound and General Heavy in Symmetric
Multiple GPU Architecture

By using time optimal data transfer model, we can calculate the optimal time cost
of data transfer for all GPUs in each step as follow(3 ≤ i ≤ m):

t1 = t2 = G(n×Ds/(n×m), 0),

tm+1 = tm+2 = G(0, n×Dr/(n×m)),

ti = G(n×Ds/(n×m), n×Dr/(n×m)).

(4.125)

With the time cost of each step, we can calculate the total time cost as follow:

Ttotal = (m+ 2)tstr + t1 + t2 +
m∑
i=3

ti + tm+1 + tm+2

= (m+ 2)tstr + 2G(Ds/m, 0) + 2G(0, Dr/m) + (m− 2)G(Ds/m,Dr/m)

= (m+ 2)tstr + 2(G(Ds, 0) +G(0, Dr))/m+G(Ds, Dr)(m− 2)/m = W (m).

(4.126)
The total time cost of the application is a function of the number of subtask. Then
we calculate the derivative of the function W (m) to get the m for the scheduling

4.4. TPSM for Non-symmetric Multiple GPUs Architecture 77

which makes the total time cost minimum as follow:

m =
√

2(G(Ds, 0) +G(0, Dr)−G(Ds, Dr))/tstr (4.127)

Proof of Asymptotic Optimality

The scheduling length with TPSM for data transfer bound and general heavy is:

Ttotal = (m+ 2)tstr + 2Ds/(nmSS) + 2Dr/(nmRR) + (m− 2)G(Ds/m,Dr/m).

(4.128)
Assume Dr = pDs and c =

√
2(G(1, 0) +G(0, p)−G(1, p))/tstr, so G(1, p) and c

are constant. Take m = c
√
Ds into the equation (4.128), then the scheduling length

is:

Ttotal = (c
√

Ds + 2)tstr + 2
√
Ds/(cSS) + 2p

√
Ds/(cRR) + (Ds − 2

√
Ds/c)G(1, p)

≤ DsG(1, p) +O(
√

Ds).

(4.129)
As the optimal scheduling length is Topt = G(Ds, Dr) = DsG(1, p), then we have:

lim
Ds→∞

Ttotal/Topt ≤ 1 + lim
Ds→∞

O(
√
Ds/(DsG(1, p))) = 1. (4.130)

Therefore, the sub-method of TPSM for data transfer bound and general heavy is
asymptotic optimal.

4.4 TPSM for Non-symmetric Multiple GPUs Architec-
ture

In non-symmetric multiple GPUs architecture, there are mainly two differences com-
paring to symmetric multiple GPUs architecture. First of all, the bandwidth is not
equal for each GPU in non-symmetric case. As shown in Table 4.3, the bandwidth
table of non-symmetric architecture is not symmetric as in symmetric architecture.
We can not directly use the time optimal data transfer algorithm for symmetric
architecture in the non-symmetric architecture. Therefore, we propose a time op-
timal data transfer for non-symmetric GPUs architecture based on the algorithm
for symmetric GPUs architecture. Secondly, the computing capacity of each GPU
in non-symmetric architecture is different while it is equal in symmetric architec-
ture. There is a load balance problem in non-symmetric architecture. To solve this
problem, we propose a TPSM for non-symmetric architecture based on TPSM for
symmetric architecture which can well handle the load balance between GPUs.

78 Chapter 4. A Task Partitioning and Scheduling Method

4.4.1 Time Optimal Data Transfer Algorithm for Non-symmetric
GPUs Architecture

As in 2-D coordinate system for symmetric architecture, the X-axis presents data
size of sending and the Y-axis presents data size of receiving. Because the data
size of each GPU are the same, it is not necessary to differentiate the data size of
sending or receiving from each GPU. However, the data size of sending and receiving
of each GPU device can be different for non-symmetric architecture. Therefore, one
separate axis is required to present the data sending or receiving of each GPU. So
we need a 2n-D coordinate system for a non-symmetric n-GPU architecture. For
a non-symmetric multiple GPUs system with n GPUs, there are 4n valid system
states and no duplicated system states. For each system state, it can be described
by a 2n-D coordinate like (s1, r1, ..., sn, rn) where si and ri are the bandwidth of
sending and receiving of GPUi. So we have a point set U = {P1, P2, P3, ..., P2n−1}
in a 2n-D coordinate system.

Comparing to symmetric architecture, the time optimal data transfer algorithm
for non-symmetric architecture is much more complex but the basic idea is the same.
First of all, we have to find out the upper right convex hull in the 2N-D coordinate
system. In 2-D coordinate system, the upper right convex hull is composed with
segments that each segment is decided by two points. In 3-D coordinate system, the
upper right convex hull is composed with planes that each plane is surrounded by
three points. Therefore, it is easy to find out that the upper right convex hull in N-D

Table 4.3: Bandwidth of Dual Non-symmetric GPUs under Different
States(G0:Tesla K20c, G1:Tesla C2075)

G0-N G0-S G0-R G0-S&R

G1-N - S0 = 6.36 R0 = 6.71
S0 = 4.08

R0 = 4.05

G1-S S1 = 5.18
S0 = 5.3

S1 = 4.94

R0 = 3.61

S1 = 4.41

S0 = 2.26

R0 = 2.25

S1 = 4.43

G1-R R1 = 4.51
S0 = 3.38

R1 = 3.05

R0 = 3.18

R1 = 2.4

S0 = 1.97

R0 = 1.9

R1 = 2.43

G1-S&R
S1 = 3.03

R1 = 3.16

S0 = 2.58

S1 = 2.31

R1 = 2.34

R0 = 2.53

S1 = 1.91

R1 = 1.93

S0 = 1.65

R0 = 1.65

S1 = 1.84

R1 = 1.85

4.4. TPSM for Non-symmetric Multiple GPUs Architecture 79

coordinate system is composed with geometric shapes that each shape is decided by
n points. We can use a set of n points to present the geometric shapes that belong
to the upper right convex hull. We define a set of n points as n-point subset. If the
geometric shapes composed by a set of n points belongs to the upper right convex
hull, then we call it as a hull subset. Given with m points in N-D coordinate system,
there are Cn

m n-point subset. There are many works on finding out the convex hull
in high-dimension coordinate system such as [100, 26]. With the approaches, we can
get the hull subset union within polynomial time. Notice that we only need to get
the hull subset union once.

Algorithm 2: Algorithm for finding out optimal hull subset
Input: S: the union of hull subsets,

E = (x1, x2, .., xn): an input point
Output: A: the optimal hull subset,

a: time proportion for n system states(N-D vector, ai is the time
proportion for system states xi)
calculate the function of the ray OE:

y1 = at, y2 = bt, ..., yn = wt;
for each A ∈ S do

calculate the shape function of A:
F (x1, x2, ..., xn) = ax1 + bx2 + ...+ zxn − 1 = 0;

calculate the intersection F between the shape A and the ray OE;
if exits one non-negative solution a for F = a×A then

return A and a

With the hull subset union, we need to find out the optimal hull subset for a
given data transfer size. The data size optimal scheduling for n GPU non-symmetric
architecture is a combination of n system states which is a n point subset belongs to
the hull subset union. By changing the scheduling time, the upper right convex hull
linearly scales about the origin. Therefore, with an input data transfer size which
can be described as an input point in the 2N-D coordinate system, we can draw
a line that passes the origin and the input point named input line. This line will
intersect with the upper right convex hull. Then the hull subset intersected by the
line is the data size optimal scheduling.

We use Algorithm 2 to find out the data size optimal scheduling. For each hull
subset in the union, we calculate if the input line cross the space enclosed by the
hull subset. If the result is yes, then this is the data size optimal scheduling and we
stop the process. Otherwise, we go on for the searching.

80 Chapter 4. A Task Partitioning and Scheduling Method

4.4.2 TPSM

For non-symmetric multiple GPUs architecture, the total time cost of application
is the maximum execution time cost among all the execution time in each GPU.
Therefore, it is very important to keep load balance for better performance. With
this target, we propose a two layer partitioning based on the TPSM for symmetric
multiple GPUs architecture. With the new partitioning method, we can dynami-
cally adjust the load allocation between GPUs and finally to have a load balance
allocation.

First of all, we partition the application into equal size blocks as shown in Figure
4.18. Then for each block, we will partition it into n parts with different size in n

GPUs system. Each part in the block will be allocated to the related GPU and we
will use the TPSM for single GPU to partition and execute. In this section, we only
discuss the partitioning above subtask level. The partitioning of each part in single
GPU has been discussed in Section 4.2.

b
lo

c
k
1

b
lo

c
k
2

b
lo

c
k
3

b
lo

c
k
 n

-3

b
lo

c
k
 n

-2

b
lo

c
k
 n

-1

b
lo

c
k
 n

b
lo

c
k
 i

... ...

application

block i

GPU 3

Figure 4.18: Two Layer Partitioning

We can find that the partitioning within one block decides the load allocation
between GPUs. The partitioning of previous blocks may be not suitable to keep
well balance. Therefore, we partition the application into many blocks as we can

4.4. TPSM for Non-symmetric Multiple GPUs Architecture 81

adjust the partitioning of latter blocks based on the feedback information from the
execution of previous blocks.

The scheduling process is shown in Figure 4.19. For the partitioning of the first
block, there is no feedback for reference. We have to utilize existing information
to make the partitioning. One method is to use the hardware information such as
peak performance which somehow reflect the computing capacity. However, using
hardware information may lead to a partitioning which is far from perfect load
balance. For example, the single precision peak performance of Tesla K20c is 3.52
Tflops while the single precision peak performance of Tesla C2075 is 1.03 Tflops.
Tesla K20c is 3.5 time faster than Tesla C2075. However, we found that Tesla K20c
can only achieve around 1.4 speedup with linear filter benchmark which is far from
the peak performance. This is because the actual execution of application is often
difficult to achieve GPU’s peak performance. There are many factors that can affect
the performance of application in one GPU and the features of the application is
an important aspect. Therefore, we give up the first method and adopt another
method.

The second method is using the performance model discussed in Section 3 to pre-

execution time

feedback

execution time

feedback

execution time

feedback

execution time

feedback

launch launch

reallocate division

Figure 4.19: Scheduling Process for Non-symmetric Dual GPUs

82 Chapter 4. A Task Partitioning and Scheduling Method

dict the performance of the application in each GPU and then make the partitioning
based on the prediction results. First of all, we use the performance model to predict
the execution time of a small sample kernel from the application in each GPU. Then
we will partition the application into different parts based on the prediction results.

Taking dual GPUs as an example as shown in Figure 4.19, suppose the predic-
tion results of the execution time for GPU 0 is a and the prediction results of the
execution time for GPU 1 is b. Then we will partition the first block into two parts.
Suppose the application load is 1. Then the first part size is b/(a + b) and will be
allocated to GPU 0 while the second part size is a/(a + b) and will be allocated
to GPU 1. Due to the existence of deviation from the prediction comparing to
the actual results, the partitioning in the first block may be not well load balance.
Therefore, we collect the execution information of the previous block such as kernel
time cost and send these feedback information to the threads which is responsible
for the controlling of the GPUs as shown in Figure 4.19. Each thread collects the
feedback information and sends it to the main process. The main process gathers
all feedback information from all GPUs and then reallocate the load in each GPU
to make the load between GPUs more balanced. It repeats the above step, and
then will soon come to a load balance status between GPUs. Notice that the feed-
back information collection mechanism will cause some overhead as there are some
synchronization operations in CPU during which the GPU is idle. Therefore, we
suggest the block size should not be small. Otherwise, the benefit from load balance
may be less than the overhead from the synchronization operations.

4.5 Experimental Evaluation

We use four type GPUs to test our work as shown in Table 4.5. All these GPUs have
two copy engines. We have two machines named AT38 and AT50 as shown in Table
4.4. For both machines, we use CUDA 4.2 and Ubuntu 10.04.3-64-bit edition OS.
To test the performance of our work, we use four benchmarks that some are used in
Linderman’s work[78] and we port them from multi-core platform to multiple GPU
platform as shown in Table 4.6.

Table 4.4: Specification of The Host Machines
machine Device Cores Clock speed Cache Main Memory
AT38 4 x Intel Xeon X5650 4 x 6 2.67GHz 12MB 6 x 2GB
AT50 2 x Intel Xeon E5-2680 2 x 8 2.7GHz 20MB 8 x 8GB

4.5. Experimental Evaluation 83

4.5.1 Symmetric Architecture

4.5.1.1 Configuration

For symmetric architecture, we install two Tesla C2070 and two Tesla C2075 in
AT38 and install four Tesla M2090 in AT50. Then we can have three symmetric
multiple GPU platform: dual Tesla C2070, dual Tesla C2075 and four Tesla M2090.

As the number of SM of each GPU is different, we use 56 blocks with one warp
in each block for Tesla C2070 and Tesla C2075 and use 64 blocks with one warp in
each block for Tesla M2090. We compare the time cost of TPSM with good manual
code which only use stream in each GPU. The abbreviations used in the Figures are
as follow:
NON − 1GPU : the results of single GPU without TPSM;
BND− 1GPU : the maximum part among data sending, kernel execution and data
receiving of results without TPSM in single GPU;
TPSM − 1GPU : the results of single GPU with TPSM;
NON − 2GPU : the results of dual GPUs without TPSM;
BND − 2GPU : the results of lower bound of dual GPUs;
TPSM − 2GPU : the results of dual GPUs with TPSM;
NON − 4GPU : the results of four GPUs without TPSM;
BND − 4GPU : the results of lower bound of four GPUs;
TPSM − 4GPU : the results of four GPUs with TPSM.

Table 4.5: Specification of GPUs
Devices(Tesla Series) C2070(G1) C2075(G2) M2090(G3) K20c

Processor cores 14× 32 14× 32 16× 32 13× 192

GPU clock rate 1.15GHz 1.15GHz 1.3GHz 0.71GHz
Memory clock rate 1.5GHz 1.56GHz 1.85GHz 2.6GHz

Memory size 5375MB 6143MB 5375MB 4800MB

Table 4.6: Benchmark Programs used for TPSM
Program Description Type

black-scholes[78] European option pricing transfer bound
linear filter[78] image process filter kernel bound
sepia filter[78] image process filter kernel bound

matrix matrix multiplication complex type

84 Chapter 4. A Task Partitioning and Scheduling Method

4.5.1.2 Results

First of all, we apply our work to linear filter benchmark in each platform. We have
three input image sizes: 20002 pixels, 40002 pixels and 80002 pixels. The time cost
results in Tesla C2070 are shown in Figure 4.20. We also compare the speedups to
single GPU case without TPSM and the speedup results are shown in Figure 4.21.

The data transfer part account for around 7% in the total time cost in single
GPU case of Tesla C2070. Therefore, we use the TPSM for kernel bound and general
heavy. In one GPU case, TPSM can achieve 1.035 ∼ 1.045 speedup while the lower
bound speedup is 1.069 ∼ 1.076. The low speedup is mainly because of the low
proportion of data transfer in the total time cost.

In dual GPU case, manual codes can achieve 1.88 ∼ 1.94 speedup which is almost
twice comparing to single GPU. TPSM can achieve 2.13 ∼ 2.17 speedup while lower
bound case can achieve 2.14 ∼ 2.19. The results of TPSM is very close to the results
of lower bound in Tesla C2070.

 1,000

 1,200

 1,400

8000x8,000 4000x4,000 2000x2,000

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU

 0

 200

 400

 600

 800

Figure 4.20: Linear Filter Results in Tesla C2070

The time cost results of linear filter benchmark in Tesla C2075 are shown in
Figure 4.22, and the speedup results are shown in Figure 4.23. The data transfer
part account for around 6.9% in the total time cost in single GPU case of Tesla
C2075.

In one GPU case, TPSM can achieve 1.08 ∼ 1.16 speedup while the lower bound
speedup is 1.065 ∼ 1.077. We find that inserting some synchronization operation
during the kernel execution can sometimes reduce the time cost of kernel execution.
On the other hand, synchronization operation can also increase the time cost of ker-

4.5. Experimental Evaluation 85

 0

 0.5

 1

 1.5

 2

 2.5

80002 40002 20002

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2

Figure 4.21: Linear Filter Speedup Results in Tesla C2070

 1,000

 1,200

8000x8,000 4000x4,000 2000x2,000

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU

 0

 200

 400

 600

 800

Figure 4.22: Linear Filter Results in Tesla C2075

86 Chapter 4. A Task Partitioning and Scheduling Method

nel execution. Therefore, it is difficult to utilize inserting synchronization operation
to improve kernel performance on purpose.

In dual GPU case, manual codes can achieve 2.14 ∼ 2.23 speedup which is a
little more than twice comparing to single GPU. TPSM can achieve 2.25 ∼ 2.4

speedup while lower bound case can achieve 2.14 ∼ 2.23. The results of TPSM is
better than the results of lower bound in Tesla C2075. This is also because inserting
synchronization operation leads to positive affection on kernel execution.

 0

 0.5

 1

 1.5

 2

 2.5

80002 40002 20002

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2

Figure 4.23: Linear Filter Speedup Results in Tesla C2075

The time cost results of linear filter benchmark in Tesla M2090 are shown in
Figure 4.24, and the speedup results are shown in Figure 4.25. The data transfer
part account for around 6.1% in the total time cost in single GPU case of Tesla
M2090. In single GPU case, TPSM can achieve 1.06 ∼ 1.26 speedup while the lower
bound speedup is 1.06 ∼ 1.07 for three different input sizes.

In dual GPUs case, manual codes achieve 1.95 ∼ 1.97 speedup. TPSM can
achieve 2.13 ∼ 2.22 speedup while the lower bound speedup is 2 ∼ 2.07. In four
GPUs case, manual codes achieves 4 and 4.06 speedup for input 40002 and 80002

pixel images while it only achieves 2.78 speedup for input 20002 pixel image. This
is mainly because the time cost of kernel execution is so short for the input that the
thread launch time cost can not be ignored. As the time cost of thread launch is
fixed, it is difficult to achieve four times speedup when the total time cost is small.
TPSM achieves 4.72 speedup for input size 80002, 4.2 speedup for input size 40002

and 3.32 speedup for input size 20002 while the lower bound achieves 4.13 speedup

4.5. Experimental Evaluation 87

2000x2,000

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU
NON−4GPU
TPSM−4GPU

 0

 200

 400

 600

 800

 1,000

 1,200

8000x8,000 4000x4,000

Figure 4.24: Linear Filter Results in Tesla M2090

for input size 80002, 4.09 speedup for input size 40002 and 2.78 speedup for input
size 20002. We can see both TPSM and lower bound can not achieve four times
speedup for input size 20002 as the thread launch overhead is heavy comparing to
the short kernel time cost.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

80002 40002 20002

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2
NON-4
BND-4
TPSM-4

Figure 4.25: Linear Filter Speedup Results in Tesla M2090

88 Chapter 4. A Task Partitioning and Scheduling Method

We also applied our work to sepia filter benchmark which is similar to linear
filter benchmark but has larger data transfer proportion in the total time cost.

 250

 300

8000x8,000 4000x4,000 2000x2,000

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU

 0

 50

 100

 150

 200

Figure 4.26: Sepia Filter Results in Tesla C2070

 0

 0.5

 1

 1.5

 2

 2.5

 3

80002 40002 20002

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2

Figure 4.27: Sepia Filter Speedup Results in Tesla C2070

The time cost results of sepia filter benchmark in Tesla C2070 are shown in
Figure 4.26, and the speedup results are shown in Figure 4.27. The data transfer
part account for around 32.4% in the total time cost in single GPU case of Tesla

4.5. Experimental Evaluation 89

C2070. Therefore, we use the TPSM for kernel bound and general heavy. In one
GPU case, TPSM can achieve 1.22 ∼ 1.36 speedup while the lower bound speedup
is 1.42 ∼ 1.48.

In dual GPU case, manual codes can achieve 1.58 ∼ 1.68 speedup. This is be-
cause the bandwidth between CPU and GPU becomes performance bottleneck. The
lower bound achieves 2.84 ∼ 2.97 speedup which TPSM can achieve 2.65 speedup
for input size 80002, 2.25 speedup for input size 40002 and only 1.93 speedup for
input size 20002. We find that with TPSM, the performance of applications with
short kernel is not as good as the performance of applications with long kernel. The
main problem is still the synchronization operations. As we have mentioned that
the synchronization operations can improve the performance of kernel execution but
also notice that the operation itself cost some time. Therefore, when the kernel time
is long, the affection of the synchronization operation overhead on the speedup is
small. When the kernel time is short, the affection of the synchronization operation
overhead on the speedup can be very large.

 250

 300

8000x8,000 4000x4,000 2000x2,000

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU

 0

 50

 100

 150

 200

Figure 4.28: Sepia Filter Results in Tesla C2075

We applied sepia filter benchmark in Tesla C2075. The time cost results are
shown in Figure 4.28 and the speedup results are shown in Figure 4.29. The data
transfer part account for around 31.5% in the total time cost in single GPU case of
Tesla C2075. In one GPU case, TPSM can achieve 1.21 ∼ 1.27 speedup while the
lower bound speedup is 1.42 ∼ 1.48.

In dual GPU case, manual codes can achieve 1.87 ∼ 1.92 speedup which is
almost twice speedup and much lager than the case in Tesla C2070. This is because

90 Chapter 4. A Task Partitioning and Scheduling Method

the bandwidth of platform with Dual Tesla C2075 is larger than the bandwidth of
platform with Dual Tesla C2070. Notice that the bandwidth is only decided by the
GPU device but also by the motherboard. The lower bound achieves 2.85 ∼ 2.97

speedup while TPSM can achieve 2.84 ∼ 2.96 speedup. The results of TPSM are
very close to the lower bound.

 0

 0.5

 1

 1.5

 2

 2.5

 3

80002 40002 20002

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2

Figure 4.29: Sepia Filter Speedup Results in Tesla C2075

 180

 200

8000x8,000 4000x4,000 2000x2,000

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU
NON−4GPU
TPSM−4GPU

 0

 20

 40

 60

 80

 100

 120

 140

 160

Figure 4.30: Sepia Filter Results in Tesla M2090

4.5. Experimental Evaluation 91

We applied sepia filter benchmark in Tesla M2090. The time cost results are
shown in Figure 4.30 and the speedup results are shown in Figure 4.31. The data
transfer part account for around 34.1% in the total time cost in single GPU case of
Tesla M2090. In one GPU case, TPSM can achieve 1.45 ∼ 1.51 speedup while the
lower bound speedup is 1.24 ∼ 1.37.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

80002 40002 20002

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2
NON-4
BND-4
TPSM-4

Figure 4.31: Sepia Filter Speedup Results in Tesla M2090

In dual GPU case, manual codes can achieve 1.81 ∼ 1.98 speedup which is almost
twice speedup. The lower bound achieves 2.9 ∼ 3.03 speedup. TPSM achieves 2.65

speedup with input size 80002, 2.11 speedup with input size 40002 and only 1.49

speedup with input size 20002 which is even worse than the manual code without
TPSM as the total time cost with input size 20002 is so small that is only several
micro second.

In four GPU case, manual codes can achieve 3.97 speedup with input size 80002,
3.74 speedup with input size 40002 and 2.83 speedup with input size 20002. We can
find the results of input size 80002 and 40002 are very close to four times speedup
while input size 20002 is less than triple times speedup. This is because the total
time cost of input size 20002 is very small. We find that it does not achieve higher
performance with more GPU devices when the application is very light. The lower
bound achieves 3.1 ∼ 4.47 speedup while TPSM achieves 1.81 ∼ 4.31 speedup.
TPSM is more suitable for applications whose kernel execution is not too short.

We also use black-scholes benchmark with large data communication to test our
work in three different platforms. We have five input size from 107 to 5× 107.

92 Chapter 4. A Task Partitioning and Scheduling Method

3x10^7 4x10^7 5x10^7

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU

 0

 100

 200

 300

 400

 500

 600

 700

 800

10^7 2x10^7

Figure 4.32: Black-Scholes Results in Tesla C2070

The time cost results of Tesla C2070 are shown in Figure 4.32 and the speedup
results are shown in Figure 4.33. The data transfer part account for around 52.3%

in the total time cost in single GPU case of Tesla C2070. Therefore, we use the
TPSM for data transfer bound and receive heavy.

 0

 0.5

 1

 1.5

 2

 2.5

107 2x107 3x107 4x107 5x107

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2

Figure 4.33: Black-Scholes Speedup Results in Tesla C2070

In one GPU case, TPSM can achieve 1.82 ∼ 1.88 speedup while the lower bound

4.5. Experimental Evaluation 93

speedup is 2.07 ∼ 2.1.
In dual GPU case, manual codes can achieve 1.52 ∼ 1.55 speedup which is far

away from ideal twice speedup. This is mainly because of the large communication
data size and limited bandwidth between CPU and GPU. The lower bound achieves
2.28 ∼ 2.52 speedup while TPSM can achieve 2.36 ∼ 2.45 speedup. The results of
TPSM are very close to the lower bound.

TPSM−2GPU

 0

 100

 200

 300

 400

 500

 600

 700

10^7 2x10^7 3x10^7 4x10^7 5x10^7

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU

Figure 4.34: Black-Scholes Results in Tesla C2075

Then we applied black-scholes benchmark in Tesla C2075. The time cost results
are shown in Figure 4.34 and the speedup results are shown in Figure 4.35.

The data transfer part of black-scholes account for around 51.7% in the total
time cost in single GPU case of Tesla C2075. In one GPU case, TPSM can achieve
1.94 ∼ 1.98 speedup while the lower bound speedup is 1.93 ∼ 2.04. TPSM results
are very close to the lower bound results and almost achieve twice speedup.

In dual GPU case, manual codes can achieve 1.78 ∼ 1.81 due to bandwidth
limitation. The lower bound achieves 2.95 ∼ 3.3 speedup while TPSM can achieve
3.16 ∼ 3.24 speedup. TPSM results still are very close to the lower bound results.

We also applied black-scholes benchmark in Tesla M2090. The time cost results
are shown in Figure 4.36 and the speedup results are shown in Figure 4.37. The
data transfer part account for around 48.6% in the total time cost in single GPU
case of Tesla C2075. In one GPU case, TPSM can achieve 1.52 ∼ 1.62 speedup
while the lower bound speedup is 1.97 ∼ 2.04.

In dual GPU case, manual codes can achieve 1.97 ∼ 2.04 which is almost twice
speedup. The lower bound achieves 3.43 ∼ 3.49 speedup while the speedup of TPSM

94 Chapter 4. A Task Partitioning and Scheduling Method

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

107 2x107 3x107 4x107 5x107

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2

Figure 4.35: Black-Scholes Speedup Results in Tesla C2075

3x10^7 4x10^7 5x10^7

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU
NON−4GPU
TPSM−4GPU

 0

 100

 200

 300

 400

 500

 600

10^7 2x10^7

Figure 4.36: Black-Scholes Results in Tesla M2090

4.5. Experimental Evaluation 95

gradually increases from 2.88 to 3.22 along with the increase of the input size. This
is mainly because of the fixed overhead for modeling.

In four GPU case, manual codes can achieve 3.86 ∼ 4.07 speedup which is
around four times speedup. The lower bound achieves 6.35 ∼ 6.44 speedup while
the speedup of TPSM increases from 4.86 to 6.1 along with the increase of the input
size. For the maximum input size, TPSM result is very close to the lower bound
result.

 0

 1

 2

 3

 4

 5

 6

107 2x107 3x107 4x107 5x107

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2
NON-4
BND-4
TPSM-4

Figure 4.37: Black-Scholes Speedup Results in Tesla M2090

We applied matrix multiplication to test our work in three different platforms.
As the number of SMs in three platforms is different, we use different input size for
the platforms.

For Tesla C2070 and Tesla C2075, they have 14 SMs and each SM has 32 cores.
For Tesla M2090, they have 13 SMs and each SM has 192 cores. Therefore, we set
six input sizes 81920×2×3584, 16384×4×7168, 8192×16×7168, 2048×128×7168,
1433600× 256× 7 and 358400× 512× 14 for Tesla C2070 and Tesla C2075. We set
seven input sizes 81920×2×4096, 20480×4×8192, 16384×4×8192, 8192×16×8192,
1638400× 256× 8, 409600× 512× 16 and 204800× 1024× 8 for Tesla M2090. Here
the input size 81920× 2× 3584 means we calculate A×B = C, A size is 81920× 2,
B size is 2× 3584 and C size is 81920× 3584.

First of all, we applied matrix multiplication in Tesla C2070. The time cost
results are shown in Figure 4.38 and the speedup results are shown in Figure 4.39.
The data transfer part accounts for 2.1% ∼ 24.4% with different input size in the

96 Chapter 4. A Task Partitioning and Scheduling Method

2048x128x7,168 1,433,600x256x7 358,400x512x14

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

81920x2x3,584 16384x4x7,168 8192x16x7,168

Figure 4.38: Matrix Multiplication Results in Tesla C2070

total time cost in single GPU. Therefore, we use the TPSM for kernel bound.

In single GPU case, TPSM can achieve 1.01 ∼ 1.32 speedup while the lower
bound speedup is 1.004 ∼ 1.26. TPSM results are very close to the results of the
lower bound.

 0

 0.5

 1

 1.5

 2

 2.5

 3

81920x2x3584 16384x4x7168 8192x16x7168 2048x128x7168 1433600x256x7 358400x512x14

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2

Figure 4.39: Matrix Multiplication Speed Results in Tesla C2070

4.5. Experimental Evaluation 97

In dual GPU case, manual codes can achieve 1.63 ∼ 2.46 that appears super
speedup. This is many because the input data are divided and loaded in two GPUs
which may cause the change of memory access pattern and may increase or decrease
the performance of GPU local memory access. TPSM can achieve 2.26 ∼ 3.18

speedup while the lower bound speedup is 2.14 ∼ 3.17. The results of TPSM are
very close to the results of the lower bound in Tesla C2070.

We also applied our work to Tesla C2075 platform. The time cost results are
shown in Figure 4.40 and the speedup results are shown in Figure 4.41.

 1,600

 1,800

81920x2x3,584 16384x4x7,168 8192x16x7,168 2048x128x7,168 1,433,600x256x7 358,400x512x14

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

Figure 4.40: Matrix Multiplication Results in Tesla C2075

The data transfer part of matrix multiplication accounts for 1.04% ∼ 24.42%

with different input size in Tesla C2075. In single GPU case, TPSM can achieve
1.025 ∼ 1.26 speedup while the lower bound speedup is 1.01 ∼ 1.32. In dual GPU
case, manual codes can achieve 1.86 ∼ 2.69 speedup. TPSM can achieve 2.28 ∼ 3.04

speedup while the lower bound speedup is 2.22 ∼ 3.11. TPSM can well hide the
communication latency in Tesla C2075 as well.

Then we applied our work to Tesla M2090 platform. The time cost results are
shown in Figure 4.42 and the speedup results are shown in Figure 4.43. The data
transfer part accounts for 9.67% ∼ 23.06% with different input size.

In single GPU case, the lower bound speedup is 1.107 ∼ 1.29 while TPSM can
achieve 1.06 ∼ 1.35. The results of TPSM is very close to the results of the lower
bound and even better for some input size. This is because TPSM partitions the
application into smaller subtask which change the memory access pattern and may
increase or decrease the performance.

98 Chapter 4. A Task Partitioning and Scheduling Method

 0

 0.5

 1

 1.5

 2

 2.5

 3

81920x2x3584 16384x4x7168 8192x16x7168 2048x128x7168 1433600x256x7 358400x512x14

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2

Figure 4.41: Matrix Multiplication Speed Results in Tesla C2075

1,638,400x256x8 409,600x512x16 204800x1,024x8

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

NON−1GPU
TPSM−1GPU
NON−2GPU
TPSM−2GPU
NON−4GPU
TPSM−4GPU

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

81920x2x4,096 20480x4x8,192 16384x4x8,192 8192x16x8,192

Figure 4.42: Matrix Multiplication Results in Tesla M2090

4.5. Experimental Evaluation 99

In dual GPU case, manual codes can achieve 2 ∼ 2.81 speedup which is even
better than the ideal twice speedup. We find that the performance of matrix mul-
tiplication benchmark can be greatly affected by the memory access pattern. We
can change the memory access pattern by designing the output computing order.
However, the partitioning operation will greatly change the memory access pattern.
Therefore, it is difficult to design a good and fare output computing order for all
comparative scenes. Hence, we choose sequential output for all scenes which might
cause performance fluctuation. For lower bound, the speedup is 2.46 ∼ 3.41 while
TPSM can achieve 2.44 ∼ 3.43. TPSM almost achieve the same performance as the
lower bound.

 0

 1

 2

 3

 4

 5

 6

 7

 8

81920x2x4096 20480x4x8192 16384x4x8192 8192x16x8192 1638400x256x8 409600x512x16 204800x1024x8

S
pe

ed
up

Input Size

NON-1
BND-1
TPSM-1
NON-2
BND-2
TPSM-2
NON-4
BND-4
TPSM-4

Figure 4.43: Matrix Multiplication Speedup Results in Tesla M2090

In four GPU case, manual codes can achieve 4.34 ∼ 6.46 speedup which is much
better than the ideal four times speedup. The main reason is the change of memory
access pattern. TPSM can achieve 4.78 ∼ 7.42 speedup while the lower bound
speedup is 5.2 ∼ 8.02. TPSM can well hide the communication latency in Tesla
M2090.

As there are some works to use equal size subtask for overlapping, we also com-
pare our work to equal size subtask overlapping with black-scholes benchmark in
Tesla C2075. We partition the application into 10 subtasks(10-T), 100 subtasks(100-
T), 1000 subtasks(1000-T), 5000 subtasks(5000-T) and 10000 subtasks(10000-T)
and compare the results with no partitioning(1-T) and our TPSM results. The time
cost results are shown in Figure 4.44 and the speedup results are shown in Fig-
ure 4.45. We can find that our TPSM achieves better performance than all equal

100 Chapter 4. A Task Partitioning and Scheduling Method

size scenes. This is because our method can well hide the communication latency
than equal size overlapping method. Also notice that, the performance with 5000
subtasks and 10000 subtasks for some input sizes are even worse than the perfor-
mance without overlapping. This is because too many subtasks will lead to heavy
synchronization overhead such as thread launch. Although the performance for 100
subtasks is close to our method performance in some input sizes, the performance of
100 subtasks varies a lot along with the input size. Therefore, the simple equal size
overlapping can hide parts of the communication latency but can not well hide the
communication latency. Our method is asymptotic optimal method and can well
hide the communication latency.

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

1−T
10−T
100−T
1000−T
5000−T
10000−T
TPSM

 0

 100

 200

 300

 400

 500

 600

 700

10^7 2x10^7 3x10^7 4x10^7 5x10^7

Figure 4.44: Black-Scholes Results with equal size subtasks in Tesla C2075

4.5.2 Non-symmetric Architecture

4.5.2.1 Configuration

For non-symmetric architecture, we install one Tesla C 2075 and Tesla K20c in
AT38. The peak Tflops/s of single precision of Tesla C2075 is 1.03 while the peak
Tflops/s of Tesla K20c is 3.5. Tesla K20c is much faster than Tesla C2075. We use
four benchmark used in previous sections to test our work in the non-symmetric
architecture. We repeat the experiment in four scenes and the abbreviations used
in the Figures are as follow:
2075: the results of using single Tesla C2075 without TPSM;
K20c: the results of using single Tesla K20c without TPSM;

4.5. Experimental Evaluation 101

 0

 0.5

 1

 1.5

 2

107 2x107 3x107 4x107 5x107

S
pe

ed
up

Input Size

1-T
10-T
100-T
1000-T
5000-T
10000-T
TPSM

Figure 4.45: Black-Scholes Speedup Results with equal size subtasks in Tesla C2075

2GPU : the results of using both Tesla C2075 and K20c without TPSM (with load
balance awareness);
TPSM1: the results of using both Tesla C2075 and K20c with TPSM and using
performance analytical model in the first block (20 blocks);
TPSM2: the results of using both Tesla C2075 and K20c with only TPSM.

4.5.2.2 Results

First of all, we apply the linear filter benchmark in the non-symmetric architecture to
test our work. We have three input size:80002 pixels, 40002 pixels and 20002 pixels.
The time cost results are shown in Figure 4.46. We also compare the speedups
to single Tesla C2075 case(the slower GPU) and the speedup results are shown in
Figure 4.47.

With one GPU, Tesla K20c achieves 1.42 speedup for input size 80002, 1.33

speedup for input size 40002 and 1.26 speedup for input size 20002 comparing to
Tesla C2075. We can find that the speedup decreases along with the decrease of
input size. This is because the kernel time almost linearly decreases along with the
decrease of the input size. However the overhead such as thread launching and data
transfer preparation does not decrease linearly along with the decrease of the input
size.

For two GPUs without TPSM, the speedup is from 2.1 to 2.45 comparing to
single Tesla C2075. The speedup for all input size is more than twice speedup

102 Chapter 4. A Task Partitioning and Scheduling Method

TPSM2

 0

 200

 400

 600

 800

 1,000

 1,200

8000x8,000 4000x4,000 2000x2,000

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

K20c
2075
2GPU
TPSM1

Figure 4.46: Linear Filter Results in Non-symmetric Architecture

 0

 0.5

 1

 1.5

 2

 2.5

 3

80002 40002 20002

S
pe

ed
up

Input Size

2075
K20c
2GPU
TPSM1
TPSM2

Figure 4.47: Linear Filter Speedup Results in Non-symmetric Architecture

4.5. Experimental Evaluation 103

comparing to single Tesla C2075 and less than twice speedup of Tesla K20c. This is
because the load is evenly allocated between Tesla C2075 and Tesla K20c. Therefore,
the performance should be better than the performance of dual Tesla C2075 and
poorer than the performance of dual Tesla K20c.

With two GPUs, TPSM1 can achieve 2.59 ∼ 3.07 speedup which is even better
than twice of the speedup of single Tesla K20c. The main reason is that we not
only consider about load balance between two GPUs but also use TPSM to hide the
communication latency between GPU and CPU. Therefore, we can achieve more
than twice speedup of the fastest GPU in the non-symmetric architecture. TPSM2
can achieve a speedup which is a little slower than TPSM1.

4000x4,000 2000x2,000

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

2GPU
TPSM1−2blk
TPSM2−2blk
 TPSM1−20blk
TPSM2−20blk
 TPSM1−200blk
TPSM2−200blk

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

8000x8,000

Figure 4.48: Linear Filter Results with Different Block Number in Non-symmetric
Architecture

The block number used in the first layer partitioning can greatly affect the
performance. To understand the affection, we change the number of block from 2
blocks to 200 blocks and compare the performance for TPSM1 and TPSM2. The
time cost results are shown in Figure 4.48 and the speedup results are shown in
Figure 4.49. With 2 blocks, TPSM1 can achieve 1.21 speedup while TPSM2 achieves
1.108 speedup. As the block number is small, the load allocation in the first block
is very important and can greatly affect the total time cost. With 20 blocks, the
distance between TPSM1 and TPSM2 is closer than the scene of 2 blocks. This is
because the proportion of the first block in the total time cost becomes lower. With
200 blocks, the performance of TPSM1 and TPSM2 are very close. This is because
the time cost of the first block only accounts for a tiny part of the total time cost.

104 Chapter 4. A Task Partitioning and Scheduling Method

The improvement by using the performance analytical model is very limited. Notice
that the performance decrease rapidly along with the decrease of input size. This is
because the kernel becomes small with small input and large block number will lead
to smaller kernel for each GPU overlapping. As we have mentioned that our TPSM
method is not suitable for the applications with small kernel execution. Therefore,
the performance of our method can be very poor with too large block number for
the first layer partitioning as the kernel for each GPU can be very small. Therefore,
a suitable block size is also very important. We suggest to adjust the block size
according to the time cost of applications. The time cost of the execution with one
block is better to be 10 ∼ 50 millisecond level.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

80002 40002 20002

S
pe

ed
up

Input Size

2GPU
TPSM1-2blk
TPSM2-2blk
TPSM1-20blk
TPSM2-20blk
TPSM1-200blk
TPSM2-200blk

Figure 4.49: Linear Filter Speedup Results with Different Block Number in Non-
symmetric Architecture

We also apply sepia filter benchmark to test our work. The execution time
results are shown in Figure 4.50 and the speedup results are shown in Figure 4.51.
The time cost of data transfer part accounts for about 31% in the total time cost in
Tesla C2075 as discussed earlier.

For single GPU case, Tesla K20c achieves 1.37 speedup for input 80002, 1.33

speedup for input 40002 and 1.31 speedup for input 20002. The speedup decreases
along with the decrease of input size. The reason is the same as in linear filter case.

For two GPU case without TPSM, the speedup is from 1.95 to 2.12 Notice that
the speedup of input size 20002 is less than twice. This is because the data transfer
part can hardly achieve twice speedup due to bandwidth limitation. Although the

4.5. Experimental Evaluation 105

TPSM2

 0

 50

 100

 150

 200

 250

 300

8000x8,000 4000x4,000 2000x2,000

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

K20
2075
 2GPU
TPSM1

Figure 4.50: Sepia Filter Results in Non-symmetric Architecture

kernel part can achieve more than twice speedup with dual GPUs, high proportion
of data transfer part in the total time cost will lead to total speedup low. Moreover,
considering the affection of the fixed overhead for small input size, it is possible
to have less than twice speedup even with one faster GPU in the dual GPU non-
symmetric architecture.

For two GPU case in TPSM1, our work can achieve 2.61 ∼ 3.14 speedup which
is much better than the speedup of two GPU without TPSM. The benefit mainly
comes from well hiding the communication latency between GPU and CPU as well
as suitable load allocation between GPUs. TPSM2 can also achieve a speedup which
is a little slower than TPSM1.

We apply black-scholes to test our work as well. The execution time results are
shown in Figure 4.52 and the speedup results are shown in Figure 4.53.

In single GPU case, Tesla K20c achieves speedup from 1.17 to 1.2. The speedup
decreases a little along with the decrease of input size and the speedup is much
smaller comparing to linear filter and sepia filter. This is because the data transfer
part accounts for around half of the total time cost. Although Tesla K20c is much
faster than Tesla C2075, the bandwidth of them are almost the same. Therefore,
we can only achieve little speedup even with a much faster GPU device.

For two GPU case without TPSM, the speedup is 1.99 ∼ 2.01 which is around
twice speedup comparing to single Tesla C2075. The performance of dual GPUs
with one Tesla C2075 and one Tesla K20c should be faster than twice of single
Tesla C2075 and slower than twice of single Tesla K20c. Here we only achieve

106 Chapter 4. A Task Partitioning and Scheduling Method

 0

 0.5

 1

 1.5

 2

 2.5

 3

80002 40002 20002

S
pe

ed
up

Input Size

2075
K20c
2GPU
TPSM1
TPSM2

Figure 4.51: Sepia Filter Speedup Results in Non-symmetric Architecture

 500

 600

 700

 800

10^7 2x10^7 3x10^7 4x10^7 5x10^7

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

K20
2075
2GPU
TPSM1
TPSM2

 0

 100

 200

 300

 400

Figure 4.52: Black-scholes Results in Non-symmetric Architecture

4.5. Experimental Evaluation 107

 0

 0.5

 1

 1.5

 2

 2.5

 3

107 2x107 3x107 4x107 5x107

S
pe

ed
up

Input Size

2075
K20c
2GPU
TPSM1
TPSM2

Figure 4.53: Black-scholes Speedup Results in Non-symmetric Architecture

twice speedup of single Tesla C2075 that is because of the bandwidth limitation
as mentioned in above. For two GPU case in TPSM1, we can achieve 2.9 ∼ 3.06

speedup which is much better than the performance of dual GPU without TPSM.
The main reason is that we well hide the communication latency in each GPU and
well handle the load balance. TPSM2 can achieve a speedup which is a little slower
than TPSM1.

Finally, we use matrix multiplication benchmark to test our work. The execution
results are shown in Figure 4.54 and the speedup results are shown in Figure 4.55.
For single GPU case, Tesla K20c achieves 1.08 ∼ 1.24 speedup comparing to single
Tesla C2075. We can find that the speedup of Tesla K20c with input size 1433600×
256× 7 is the lowest due to its highest data transfer part proportion. For two GPU
case without TPSM, the speedup varies a lot from 1.85 to 2.71. The fluctuation is
mainly because the proportion of data transfer part in the total execution varies a
lot along with the input size. In the other aspect, the reallocation of the application
will change the memory access pattern which may greatly affect the kernel execution
performance.

For two GPU case in TPSM1, we can achieve 2.19 ∼ 3.55 speedup which is
much better than the case without TPSM. The results show we can not only hide
the communication latency between GPU and CPU but also well handle the load
balance between GPUs. TPSM2 can achieve a speedup which is a little slower than
TPSM1.

108 Chapter 4. A Task Partitioning and Scheduling Method

 1,400

 1,600

 1,800

 2,000

81920x2x3,584 16384x4x7,168 8192x16x7,168 1,433,600x256x7 358,400x512x14 71,680x512x56

E
xe

cu
tio

n
T

im
e

(m
s)

Input Size

K20
2075
2GPU
TPSM1
TPSM2

 0

 200

 400

 600

 800

 1,000

 1,200

Figure 4.54: Matrix Multiplication Results in Non-symmetric Architecture

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

81920x2x3584 16384x4x7168 8192x16x7168 1433600x256x7 358400x512x14 71680x512x56

S
pe

ed
up

Input Size

2075
K20c
2GPU
TPSM1
TPSM2

Figure 4.55: Matrix Multiplication Speedup Results in Non-symmetric Architecture

Chapter 5

Related Works

Contents
5.1 GPU Performance Prediction 109

5.1.1 GPU Analytical and Performance Models 109

5.1.2 GPU Simulators . 110

5.2 Communication Latency Hiding 111

5.2.1 Divisible Load Scheduling . 111

5.2.2 GPU Performance Optimization 114

5.2.3 Stream Overlapping . 115

5.1 GPU Performance Prediction

In the past years, performance prediction has been widely studied in parallel and
sequential systems [31] [82][4][117]. The parallel algorithms community has provided
several models for design and analysis of parallel algorithms such as Log-P [38] and
QRQW[49]. These models can help programmers to find out the problem in the
parallelism. However, they are mostly architecture independent which makes them
have little help for an insight into a specific architecture.

Since the emergence of GPUs, there are also some work about predicting per-
formance for them [4] [6] [53] [54] [69].

The studies on GPU performance prediction can be classified in to two categories:
analytical models and GPU simulators.

5.1.1 GPU Analytical and Performance Models

Ma et all[79] proposed a memory access model called Threaded Many-core Memory
(TMM) model to analyze factors that affect performance. Their work main focus
on how to hide the memory latency within the device memory. They work is only
applicable for four algorithms for the problem of All Pairs Shortest Paths (APSP).

110 Chapter 5. Related Works

They also provided another performance model in [80]. They developed an ana-
lytical performance model for memory-limited kernel to help configure the tuning
parameters. This work also focus on the optimization in the device memory.

Hong and Kim[53] proposed a model which can predict the execution time of a
kernel on a GPU with a set of 23 parameters. Although we have a similar approach,
there are still some differences between the two works. First of all, we provide
an insight to the assembly codes of CUDA programs for the performance analysis.
We analyze the PTX codes with instruction-level parallelism awareness to obtain a
high accuracy results. Secondly, we take the parallelism execution of computation
instructions into consideration.

Sim and Aniruddha[103] [104] proposed a performance analysis framework to
help find out the performance bottlenecks in current code and estimate the potential
performance benefits from removing the bottlenecks.

Zhang and Owens[133] proposed a benchmark-based performance model for
Nvidia GeForce 200-series GPUs to identify the performance bottlenecks and pre-
dict potential benefits with analysis the instruction pipeline, shared memory access
and global memory access. Their model has 5% ∼ 15% error rate. Our work can
achieve better prediction than their work. Moreover, out work can be applicable for
many kind of GPUs rather on only GeForce 200-series.

Kishore and Rishabh[69] developed a performance prediction model for CUDA
program which combine many known models of parallel computation such as BSP,
PRAM and QRQW. From their experiment results, the prediction accurate rate of
their model is not as good as our work.

Jia and Zhang[62] proposed a model for guiding performance optimizations on
GPUs named GPURoofline. Their model is an empirical model for guiding opti-
mizations in GPUs to help identify bottlenecks and provide optimization methods.

Kerr and Diamos[64] proposed an emulation and translation infrastructure based
on Ocelot to characterize GPU workload and predict relative performance in GPU
or CPU. They did the empirical evaluation of 25 CUDA applications on four GPUs
and three CPUs. The GPU results are no as good as our work.

5.1.2 GPU Simulators

Another method for GPU performance prediction is using simulators [34] [63] [6].
Most of the GPU simulators aim at the CUDA platform and perform simulation for
PTX or native GPU code. Parallel Thread Execution (PTX) provided by Nvidia is
a virtual instruction set architecture with clear data parallel semantics for CUDA
architecture.

Collange [34] develop a GPU functional simulator for Nvidia Tesla GPUs named

5.2. Communication Latency Hiding 111

Barra. Barra is implemented based on UNISM which is a modular simulation frame-
work. The advantage of Barra is that it provides cycle accurate performance predic-
tion and enable users to monitor all GPU activities. However, the emulation time
cost can be very long. Moreover, it is not very flexible as the binary instruction set
can be changed in the next generation.

Keer [63] provides another GPU simulator framework named Ocelot. Ocelot pro-
vides an emulation and compilation infrastructure which achieve the CUDA runtime
API. Inside ocelot, there is a virtual machine which can emulate PTX instructions.
With this features, Ocelot enables the emulation to different architectures. Besides
GPU performance prediction, Ocelot can also calculate control and data dependen-
cies by collecting instruction and memory traces.

Bakhoda[6] provides another complex GPU simulator named GPGPU-Sim.
They aim to enable users to do experiments with different GPU architectures and
easily find the design space. They emulate the PTX instruction set and closely
follow the CUDA architecture by which achieve the goal. Moreover, GPGPU-Sim
also enable cycle accurate performance predictions and enable the change of several
architecture details.

The main difference between our model and other work is that our model take
instruction-level and thread-level into consideration to achieve good prediction ac-
curacy.

5.2 Communication Latency Hiding

5.2.1 Divisible Load Scheduling

As many parallel applications can be partitioned into smaller tasks[102], divisible
load theory has been used into different fields such as large-data management, image
and video processing, biology and network applications. In addition, the implemen-
tations of divisible load theory have ranged from homogeneous and heterogeneous
clusters to cloud environment. Here, we present and overview some of the works.

Most of studies on divisible load theory are performed on homogeneous and
heterogeneous. For example, Drozdowski and Wolniewicz[41] adopted four different
test beds (pattern search, database join, file compression and graph coloring and
genetic search) to verify the efficient of divisible load theory. The proved that divis-
ible load model can accurately describe the reality for each test bed. However, they
also pointed out that the predictions obtained from the model were not satisfied for
some data-dependent loads such as genetic search. This was because the references
to disk files or memory allocation procedures leads to great amount of uncertainty
and dependence. In such cases, the assumption on linear dependence of commu-

112 Chapter 5. Related Works

nication time on the volume of data was not performed where the communication
speed decreased along with the increase of data size.

The work from Kim[65] was also for homogeneous clusters. They improved the
initial work from Cheng and Robertazzi[28]. Their proposal reduced communication
times by saving only its specific load instead of having a duplicated record of the
whole load in each processing unit.

Lin[74][76][75] studied real-time scheduling algorithms and the influences of de-
sign parameters. They combined divisible load theory with an approach that con-
sidered the earliest deadline to finish a task to enhance the service quality in cluster.
They pointed out that the execution of partitioned subtasks in a homogeneous clus-
ter where processors have different available times can lead to lower completion time
comparing to the estimated.

Lin also identified three important design decisions which referred to workload
partitioning, node assignment and task execution order regarding real-time divisible
load scheduling in later work[77]. Therefore, they proposed a scheduling framework
which enabled to configure different policies for each scheduling decision. Chuprat
and Baruah devised efficient algorithms in their work[30] to determine the minimum
number of processors to complete a job based on its deadline and determined the
earliest completion time of a job on a specific number of processors.

Veeravalli and Ranganath[113] used the divisible load paradigm to schedule pro-
cessing of an image onto homogeneous and heterogeneous processors. They aimed to
minimize the total processing time of the whole image submitted to the bus network
system. They took edge detection as an example of image processing applications.
These applications qualified to use a divide-and-process strategy where initial load
can be partitioned into smaller independent data chunks and hence was supported
by divisible load theory.

Drozdowski and Wolniewicz[42][43] used scheduling divisible loads on a dis-
tributed computing system with physical restrictions such as limited available mem-
ory. They took communication latency and the system heterogeneity into consid-
eration. Their study problem was to find a distribution of the load with minimum
communication and computation time cost. They tested their method on star net-
work systems and demonstrated that memory limitations did not restrict efficiency
of parallel processing as much as computation and communication speed did in many
cases.

Brest and Žumer[23] tried to improve the total execution time for applications
developed in a Master-Worker pattern by using divisible load theory. Their method
partitioned the program into computationally homogeneous subtasks which can be
of different size based on the current load in each machine in the heterogeneous

5.2. Communication Latency Hiding 113

computing system. They evaluated their work by using continuous speech recog-
nition problem and the asymmetric traveling salesman problem and had promising
results on improving the total execution time of the applications. Besides, they also
reported the influence of the initial data size partitions on the overall time cost.

Beaumont and Legrand[13][14] proposed an approach to schedule divisible work-
loads on heterogeneous systems. They proposed a multi-round method for resources
selection based on the speed of the processors and communication links. Notice that
the situations they tackled had not too high communication-to-computation ratio.
Similarly, Yang and Casanova[123][122] studied the distribution of divisible load
in heterogeneous distributed systems by using parallel applications designed in a
Master-Worker pattern. They sent load to each worker with multi-round scheduling
and sent several data chunks rather than single one. To solve this specific divisible
load scheduling problem, they defined the worker subsets that should be used, the
communication sequence to these workers and the sizes of each chunks.

It was Ko and Robertazzi[68] that firstly introduced an equal-size allocation
scheme for divisible load. They considered equal allocation scheduling as a reason-
able policy with prior knowledge of processor and link capacities missed. Meanwhile,
they tried to prove the influence on the execution time comparing to the case with
optimal scheduling policy.

In recent studies, more attentions are payed on translating divisible scheduling
policy to distributed environments such as grid. Othman and Abdullah[90] designed
to achieve an estimated performance level for larger jobs which was common in grid
applications. They built an adaptive model which took both computation time and
communication time into consideration to estimate the optimal distribution. They
later proposed an enhanced model in [91]. The new model aimed to distribute loads
over all grid sites to an optimal completion time for large scale jobs.

Furthermore, lots of data grid applications can be partitioned into multiple inde-
pendent tasks for parallel execution and analysis which can be successfully exploited
for scheduling divisible load on large scale data grids by using genetic algorithms.
Abdullah and Othman[1] proposed an adaptive genetic algorithm to improve the
representation of the data partition and the initial population to reduce the total
execution time. They also designed a load distribution model in [2]. The proposed
model took both the communication time and the computation time into consid-
eration to minimize the total processing time cost by an optimal estimation of the
completion time and the optimal distribution of the tasks among available processors
in the grid.

Yu and Marinescu[127] introduced divisible load scheduling algorithms for data
intensive applications. They identified divisible load scheduling to partition the

114 Chapter 5. Related Works

input data and give out optimal mappings to collection of autonomous and hetero-
geneous systems.

However, there are very few work on optimization with DLT in GPU architecture.

5.2.2 GPU Performance Optimization

There are many studies on compiler techniques to optimize GPU memory references
such as GPU optimizing compilers[55, 124, 125], polyhedral models[9], and perfor-
mance tuning[98]. These works focus on static irregularities that are amenable for
compiler analysis.

There are also some other studies on exploring the synergistic usage of CPU and
GPU such as the execution strategies proposed by Huo[58] and the exploitation of
OpenCL[66, 67]. Thread divergence (the threads in a warp follow different paths of a
kernel) is a type of dynamic irregularity in GPU as well. Some hardware extensions
are provided to remove thread divergences from kernel execution[44]. Carrillo and
Siegel propose loop splitting and branch splitting to release register pressure[25].

Motokubota and Ino[86, 59] propose a parallelization scheme for parameter
sweep (PS) applications with CUDA. They focus on PS applications with irregular
access patterns. They try to exploit the similarity of data access between different
parameters to resolve this irregularity to improve the performance.

Meng and Tarjan[83, 84] introduce an optimization technique named dynamic
warp subdivision which enables threads to interleave the computations of paths along
different branches to hide memory latency. Zheng and Jiang[128] propose runtime
optimizations that can eliminate thread divergence with a CPU-GPU pipelining
scheme and later enhance the performance of their work by eliminating dynamic
irregularities in memory references and control flows [129, 130, 131, 132]. Che and
Sheaffer [27] propose a simple application program interface that optimizes memory
efficiency based on some hints about memory access patterns. Their work improve
the performance by improve the performance of GPU local memory access while we
focus on the communication latency between CPU and GPU.

Lee and Lo [72] investigate data streaming and data compression to reduce the
communication cost and demonstrate the effectiveness of the two techniques via two
case studies on GPU. Lee and Sung [73] propose a GPU thread-block scheduling
method that can better utilize L2 cache and reduce the DRAM memory access to
improve the performance. Wu and Zhao [118] develop two new data reorganization
algorithms to overcome the limitation of previous methods to reduce non-coalesced
memory access.

Some works implement automatic data management and communication opti-
mization systems for GPUs. Jablinet al. develop a fully automatic CPU-GPU com-

5.2. Communication Latency Hiding 115

munication management system named CGCM[60]. DyManD[61] and GMAC[46]
try to manage communication between the CPU and GPU automatically by using
distributed shared memory techniques[3]. These works try to optimize the commu-
nication by automatic data management or data caching while we try to overlap the
communication and computation to improve the performance.

5.2.3 Stream Overlapping

There are also some works on improving the performance of GPGPU applications
with multiple streams on GPU architecture. Phillips[93] and Rodrigues[97] propose
a stream programming model to overlap streams to implement and optimize their
own specific applications rather than general applications. Adnan[92] proposes a
pipelined parallel LZSS compression algorithm for GPUs to overlap the CPU code
and GPU code in CPU-GPU architecture.

Hou and Zhou[56, 57] propose a programming language name bulk-synchronous
GPU programming for stream scheduling on CUDA compatible GPUs. With their
compiler, programmers can translate the sequential C language programs into ker-
nels with host code. This frees programmers form the tedious work of the temporary
stream management. Nakagawa and Ino[87] developed a compiler which enables an
out of order execution for a batch of applications to increase the effects of multi-
ple stream scheduling. Both of them work on application level while we focus on
subtask level.

Suda and Aoki[109] also try to improve the performance of individual appli-
cation by partitioning the application into subtasks and overlapping them to hide
the communication latency. However, their work only support unidirectional data
transmission and kernel execution overlapping in single GPU architecture.

The main difference between our TPSM and other work is that our TPSM can
support overlapping of data sending, data receiving and kernel execution for indi-
vidual application in GPU while some other works only support uni-directional data
transfer or only for overlapping between applications. Besides overlapping, our work
also aware how to use efficiently bandwidth between CPU and GPU.

Chapter 6

Conclusions and Future Work

Contents
6.1 Conclusions . 117

6.2 Future Work . 118

6.1 Conclusions

This thesis proposed two performance optimization methods based on performance
analytical modeling and communication latency hiding in GPU architecture: a per-
formance analytical model and a task partitioning and scheduling method.

First of all, I proposed a performance analytical model for GPU architecture
with instruction-level and memory-level awareness which can predict the kernel ex-
ecution time cost of CUDA codes without running on GPUs. I used open source
framework Ocelot to generate and analysis PTX codes from CUDA codes. I wrote
a set of micro benchmark to test the time cost of each PTX instruction. With
the time cost of each PTX instruction as input, I built a MPD submodel to dy-
namically calculate the maximum number of warps for concurrent memory access.
Besides MPD submodel, I also proposed a CPD submodel to present the parallel
execution of computation instructions between warps and within warps. With the
two submodels, the performance model can predict the total time cost of the kernel
execution. The evaluation showed that the performance model can achieve average
89.99% accuracy prediction with four benchmarks on four different type GPUs. I
believe that the performance model can help programmers better understand the
performance of their application on GPU and improve their application.

Secondly, we proposed a Task Partitioning and Scheduling Method(TPSM)
which can partition GPU application into subtasks and overlap data send, ker-
nel execution and data receive part of these subtasks. I classified GPU applications
into six basic types based on the computation-to-communication ratio aspect and
send-to-receive ratio aspect. Based on the classification, I proposed six TPSM sub-
method for each application type. To effectively utilize the bandwidth between the

118 Chapter 6. Conclusions and Future Work

host and the device, I also provided a time optimal data transfer algorithm which
can give a time optimal data transfer plan in multiple GPU architecture. TPSM can
almost maximize the overlapping to improve the performance of individual applica-
tion in single GPU architecture, multiple GPU symmetric architecture and multiple
GPU non-symmetric architecture. Experiment results from four benchmarks on four
type GPUs showed that TPSM can overlap the bidirectional data transfer with the
kernel execution. Because the available performance improvement depends on the
proportions of the three parts in the application. Therefore, TPSM is more suitable
for the applications that there are significant communication latency between the
host and the device.

6.2 Future Work

For performance model, there are two problems left. One is the cache simulation
and another is the CPD model. As now most GPUs have cache inside, the prediction
of our model for memory access intensive application can be greatly affected by the
cache hits. With cache simulation in the future, we can have better prediction in
all kind GPUs. For the CPD model, we find that there are parallel execution for
computing instruction between warps and within warps from our black box test.
However, we can hardly set an accurate model to simulate the parallel execution
for computing instruction without GPU architecture details which is considered as
commercial secrets. We are looking forward to the cooperation with manufactures
in the future.

For task partitioning and scheduling method, we have already supported all
kind of architectures. There are two potential work can be done in the future. First
of all, we plan to focus on reduce the overhead from modeling and scheduling in
TPSM. As we need to model and calculate the optimal scheduling plan, there are
some computation on CPU which decreases the total performance a little. The
computation is necessary while we would like to minimize the overhead as much
as possible. Secondly, TPSM currently is an optimization method for programmers
to hide the communication latency between GPU and CPU. Programmers need to
implement some codes to use this method. In the future, we are considering to
develop a software to automatically partition and schedule with input applications.
Another idea is to combine TPSM into compiler to achieve automatically partition
and schedule. In this way, we can release programmers from the burden of the
implementation.

As the development of GPU devices is rapid, the architecture of future generation
GPU devices can be very different from current. The bandwidth between the GPU

6.2. Future Work 119

and CPU may be increased a lot. However, notice that the applications become more
complex and require more communication with GPU while the computing capacity
of GPU and the bandwidth between the host and the device are greatly improved.
For example, we might use GPU devices to accelerate big data applications in the
future. Therefore, the bandwidth will still be an important performance bottleneck
in the future generation GPU devices. Then our work can also be used in the future
generation GPU architecture to hide the communication latency with very little
modification.

Appendix A

Appendix

Table A.1: Time cost of PTX instructions in GTX C2050 (unit: GPU clock)
int_const int_reg float_const float_reg

add 22 64 22 64
sub 44 133 22 67
mul 44 136 22 65
div 225 941 811 767
neg 24 24 24 24
min 65 65 64 64
max 65 65 64 64
and 62 62 62 62
or 62 62 62 62
xor 65 65 65 65
not 24 22 24 22
shl 24 62 24 62
shr 24 62 24 62
mv 40 40 40 40
cvt 24 24 24 24

ld/st 70 70 70 70

122 Appendix A. Appendix

Table A.2: Bandwidth of Dual Tesla C2070 under Different States
G0-N G0-S G0-R G0-S&R

G1-N - S0 = 5.2 R0 = 4.5
S0 = 3.03

R0 = 3.16

G1-S S1 = 5.2
S0 = 3.5

S1 = 3.5

R0 = 3.15

S1 = 3.08

S0 = 1.97

R0 = 2.36

S1 = 2.85

G1-R R1 = 4.5
S0 = 3.08

R1 = 3.15

R0 = 2.28

R1 = 2.28

S0 = 1.69

R0 = 1.72

R1 = 2.03

G1-S&R
S1 = 3.03

R1 = 3.16

S0 = 2.85

S1 = 1.97

R1 = 2.36

R0 = 2.03

S1 = 1.69

R1 = 1.72

S0 = 1.56

R0 = 1.59

S1 = 1.56

R1 = 1.59

Table A.3: Bandwidth of Dual Tesla M2090 under Different States
G0-N G0-S G0-R G0-S&R

G1-N - S0 = 6.12 R0 = 5.8
S0 = 5.13

R0 = 5.06

G1-S S1 = 6.12
S0 = 6.09

S1 = 6.09

R0 = 5.75

S1 = 5.92

S0 = 4.44

R0 = 4.33

S1 = 5.84

G1-R R1 = 5.8
S0 = 5.92

R1 = 5.75

R0 = 5.71

R1 = 5.71

S0 = 4.42

R0 = 4.31

R1 = 5.68

G1-S&R
S1 = 5.13

R1 = 5.06

S0 = 5.84

S1 = 4.44

R1 = 4.33

R0 = 5.68

S1 = 4.42

R1 = 4.31

S0 = 4.12

R0 = 4.08

S1 = 4.12

R1 = 4.08

123

Table A.4: Bandwidth of Four Tesla M2090 under Different States
Status Bandwidth(GB/s) Send Receive

S/N/N/N S0=6.14 6.14 0
R/N/N/N R0=4.98 0 4.98
SR/N/N/N S0=4.55, R0=3.86 4.55 3.86
S/S/N/N S0=S1=6.11 12.22 0
S/R/N/N S0=6.12, R1=4.96 6.12 4.96
R/R/N/N R0=R1=4.84 0 9.68
SR/S/N/N S0=4.61, R0=4.17, S1=6.05 10.66 4.17
SR/R/N/N S0=4.39, R0=3.97, R1=4.8 4.39 8.77
SR/SR/N/N S0=S1=4.4, R0=R1=3.83 8.8 7.66

S/S/S/N S0=S1=S2=6.1 18.3 0
S/S/R/N S0=S1=6.09, R2=5.22 12.18 5.22
S/R/R/N S0=6.12, R1=R2=4.74 6.12 9.48
R/R/R/N R0=R1=R2=4.77 0 14.31
SR/S/S/N S0=4.66, R0=4.12, S1=S2=6.06 16.78 4.12
SR/S/R/N S0=4.6, R0=4.19, S1=6.11, R2=4.86 0.71 9.05
SR/R/R/N S0=4.56, R0=4.17, R1=R2=4.34 4.56 12.85
SR/SR/S/N S0=S1=3.98, RO=R1=4.14, S2=6.1 14.06 8.28
SR/SR/R/N S0=S1=4.42, R0=R1=4.2, R2=4.12 8.84 12.52
SR/SR/SR/N SO=S1=S2=4.49, R0=R1=R2=3.89 13.47 11.67

S/S/S/S S0=S1=S2=S3=6.08 24.32 0
S/S/S/R S0=S1=S2=6.07, R3=4.76 18.21 4.76
S/S/R/R S0=S1=6.04, R2=R3=4.85 12.08 9.7
S/R/R/R S0=6.08, R1=R2=R3=4.54 6.08 13.62
R/R/R/R R0=R1=R2=R3=4.42 0 17.68
SR/S/S/S S0=4.51, RO=3.97, S1=S2=S3=5.99 16.49 3.97
SR/S/S/R S0=4.15, R0=3.96, S1=S2=6.08, R3=4.39 16.31 8.35
SR/S/R/R S0=4.34, R0=3.95, S1=6.1, R2=R3=4.31 10.44 12.57
SR/R/R/R S0=4.34, R0=4.15, R1=R2=R3=4.39 4.34 17.23
SR/SR/S/S S0=S1=4.08, R0=R1=4.03, S2=S3=6.03 20.22 8.06
SR/SR/S/R S0=S1=4.15, R0=R1=4.28, S2=6.09, R3=4.85 14.39 13.41
SR/SR/R/R S0=S1=4.18, R0=R1=4.08, R2=R3=4.22 8.36 16.6
SR/SR/SR/S S0=S1=S2=4.04, R0=R1=R2=3.58, S3=5.79 17.91 10.74
SR/SR/SR/R S0=S1=S2=3.92, R0=R1=R2=3.83, R3=4.03 11.76 15.52
SR/SR/SR/SR S0=S1=S2=S3=3.9, R0=R1=R2=R3=3.81 15.6 14.24

Bibliography

[1] Monir Abdullah, Mohamed Othman, Hamidah Ibrahim and Shamala Sub-
ramaniam. An Integrated Approach for Scheduling Divisible Load on Large
Scale Data Grids. In International Conference on Computational Science and
Its Applications, ICCSA’07, Kuala Lumpur, Malaysia, August 26-29, 2007,
volume 4705 of Lecture Notes in Computer Science, pages 748–757. Springer,
2007. 113

[2] Monir Abdullah, Mohamed Othman, Hamidah Ibrahim and Shamala Subra-
maniam. Optimal workload allocation model for scheduling divisible data grid
applications. Future Generation Comp. Syst., vol. 26, no. 7, pages 971–978,
2010. 113

[3] Cristiana Amza, Alan L. Cox, Hya Dwarkadas, Pete Keleher, Honghui Lu,
Ramakrishnan Rajamony, Weimin Yu and Willy Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks of Workstations. IEEE Computer,
vol. 29, pages 18–28, 1996. 115

[4] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp
and Wen-mei W. Hwu. An adaptive performance modeling tool for GPU
architectures. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’10, pages 105–
114, New York, NY, USA, 2010. ACM. 109

[5] Kenneth R. Baker. Introduction to sequencing and scheduling. J. Wiley and
sons, New York, 1974. 11

[6] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong and Tor M.
Aamodt. Analyzing CUDA workloads using a detailed GPU simulator. In
IEEE International Symposium on Performance Analysis of Systems and
Software,ISPASS2009, pages 163–174. IEEE, April 26-28, 2009, Boston, Mas-
sachusetts, USA. 109, 110, 111

[7] Evripidis Bampis, Jean-Claude König and Denis Trystram. Optimal Parallel
Execution of Complete Binary Trees and Grids into most Popular Intercon-
nection Networks. In Constantine Halatsis, Dimitris G. Maritsas, George
Philokyprou and Sergios Theodoridis, editeurs, PARLE 94: Parallel Ar-
chitectures and Languages Europe, 6th International PARLE Conference,

126 Bibliography

Athens, Greece, July 4-8, 1994, Proceedings, volume 817 of Lecture Notes in
Computer Science, pages 122–133. Springer, 1994. 11

[8] Gerassimos D. Barlas. Collection-Aware Optimum Sequencing of Operations
and Closed-Form Solutions for the Distribution of a Divisible Load on Ar-
bitrary Processor Trees. IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 5,
pages 429–441, May 1998. 12

[9] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy,
J. Ramanujam, Atanas Rountev and P. Sadayappan. A compiler framework
for optimization of affine loop nests for gpgpus. In Proceedings of the 22nd
annual international conference on Supercomputing, ICS ’08, pages 225–234,
New York, NY, USA, 2008. ACM. 114

[10] S. Bataineh and B. Al-Asir. An efficient scheduling algorithm for divisi-
ble and indivisible tasks in loosely coupled multiprocessor systems. Software
Engineering Journal, vol. 9, no. 1, January 1994. 12

[11] S. Bataineh, Te-Yu Hsiung and T. G. Robertazzi. Closed Form Solutions for
Bus and Tree Networks of Processors Load Sharing a Divisible Job. IEEE
Trans. Comput., vol. 43, no. 10, pages 1184–1196, October 1994. 12

[12] Jacek Bazewicz and Et Al. Scheduling computer and manufacturing pro-
cesses. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2nd édition,
2001. 11

[13] Olivier Beaumont, Arnaud Legrand and Yves Robert. Scheduling divisible
workloads on heterogeneous platforms. Parallel Computing, vol. 29, no. 9,
pages 1121–1152, 2003. 113

[14] Olivier Beaumont, Henri Casanova, Arnaud Legrand, Yves Robert and Yang
Yang. Scheduling Divisible Loads on Star and Tree Networks: Results and
Open Problems. IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 3, pages
207–218, 2005. 113

[15] V. Bharadwaj, D. Ghose and V. Mani. Optimal Sequencing and Arrangement
in Distributed Single-Level Tree Networks with Communication Delays. IEEE
Trans. Parallel Distrib. Syst., vol. 5, no. 9, pages 968–976, September 1994.
12

[16] V. Bharadwaj, D. Ghose and V. Mani. Multi-installment load distribution in
tree networks with delays. IEEE Transactions on Aerospace and Electronic
Systems, vol. 31, no. 2, pages 555–567, April 1995. 12

Bibliography 127

[17] Veeravalli Bharadwaj, Thomas G. Robertazzi and Debasish Ghose. Schedul-
ing Divisible Loads in Parallel and Distributed Systems. In IEEE Computer
Society Press, Los Alamitos, CA, USA, 1996. 11

[18] V. Bharadwaj, Xiaolin Li 0001 and Chi Chung Ko. Efficient partitioning
and scheduling of computer vision and image processing data on bus networks
using divisible load analysis. Image Vision Comput., vol. 18, no. 11, pages
919–938, 2000. 12

[19] Veeravalli Bharadwaj, Debasish Ghose and Thomas G. Robertazzi. Divisible
Load Theory: A New Paradigm for Load Scheduling in Distributed Systems.
Cluster Computing, vol. 6, no. 1, pages 7–17, January 2003. 12

[20] Jacek Blazewicz and Maciej Drozdowski. Distributed processing of divisible
jobs with communication startup costs. In Proceedings of the second interna-
tional colloquium on Graphs and optimization, GO-II Meeting, pages 21–41,
Amsterdam, The Netherlands, The Netherlands, 1997. Elsevier Science Pub-
lishers B. V. 11

[21] Jacek Blazewicz and Maciej Drozdowski. Distributed processing of divisible
jobs with communication startup costs. Discrete Appl. Math., vol. 76, no. 1-3,
pages 21–41, June 1997. 11

[22] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Com-
mun. ACM, vol. 54, no. 5, pages 67–77, May 2011. 1

[23] Janez Brest and Viljem Žumer. A Simple Method for Dynamic Scheduling in
a Heterogeneous Computing System. Journal of Computing and Information
Technology, vol. 10, no. 2, pages 1330–1136, 2002. 112

[24] Brook+ sc07 bof session. http://developer.amd.com/wordpress/media/

2012/10/AMD-Brookplus.pdf, 2007. [Online; accessed 24-Dec-2012]. 3

[25] Snaider Carrillo, Jakob Siegel and Xiaoming Li. A control-structure splitting
optimization for GPGPU. In Proceedings of the 6th ACM conference on
Computing frontiers, CF ’09, pages 147–150, New York, NY, USA, 2009.
ACM. 114

[26] Bernard Chazelle. An Optimal Convex Hull Algorithm and New Results on
Cuttings (Extended Abstract). In FOCS, pages 29–38. IEEE Computer Soci-
ety, 1991. 79

http://developer.amd.com/wordpress/media/2012/10/AMD-Brookplus.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD-Brookplus.pdf

128 Bibliography

[27] Shuai Che, Jeremy W. Sheaffer and Kevin Skadron. Dymaxion: optimiz-
ing memory access patterns for heterogeneous systems. In Proceedings of
2011 International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’11, pages 13:1–13:11, New York, NY, USA,
2011. ACM. 114

[28] Y.C. Cheng and T.G. Robertazzi. Distributed computation with communi-
cation delay (distributed intelligent sensor networks). IEEE Transaction on
Aerospace and Elecronic Systems, vol. 24, no. 6, pages 700–712, 1988. 11,
112

[29] Y.-C. Cheng and T. G. Robertazzi. Distributed computation for a tree
network with communication delays. IEEE Trans. Aerosp. Electron. Syst.,
vol. 26, no. 3, May 1990. 12

[30] Suriayati Chuprat and Sanjoy K. Baruah. Scheduling Divisible Real-Time
Loads on Clusters with Varying Processor Start Times. In The Fourteenth
IEEE Internationl Conference on Embedded and Real-Time Computing Sys-
tems and Applications, RTCSA 2008, Kaohisung, Taiwan, 25-27 August
2008, pages 15–24. IEEE Computer Society, 2008. 112

[31] M. J. Clement and M. J. Quinn. Analytical performance prediction on mul-
ticomputers. In Proceedings of the 1993 ACM/IEEE conference on Super-
computing, Supercomputing ’93, pages 886–894, New York, NY, USA, 1993.
ACM. 109

[32] Edward G. Coffman Jr. and Peter J. Denning. Operating systems theory.
Prentice Hall Professional Technical Reference, 1973. 11

[33] Edward Grady Coffman and John L. Bruno, editeurs. Computer and job-
shop scheduling theory. Wiley, New York, 1976. A Wiley-Interscience pub-
lication. 11

[34] Sylvain Collange, Marc Daumas, David Defour and David Parello. Barra:
A Parallel Functional Simulator for GPGPU. In 18th Annual IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, MASCOTS 2010, pages 351–360. IEEE,
Miami, Florida, USA, August 17-19, 2010. 110

[35] Nicholas Comino and V. Lakshmi Narasimhan. A Novel Data Distribution
Technique for Host-Client Type Parallel Applications. IEEE Trans. Parallel
Distrib. Syst., vol. 13, no. 2, pages 97–110, February 2002. 12

Bibliography 129

[36] NVIDIA Compute. PTX: Parallel Thread Execution ISA Version 2.3. 14,
17

[37] CUDA Programming Guide. http://docs.nvidia.com/cuda/pdf/CUDA_C_

Programming_Guide.pdf, 2012. [Online; accessed 24-Dec-2012]. 3, 7

[38] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian and Thorsten von Eicken.
LogP: towards a realistic model of parallel computation. In Proceedings of
the fourth ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPOPP ’93, pages 1–12, New York, NY, USA, 1993. ACM.
109

[39] Gregory Frederick Diamos, Andrew Kerr, Sudhakar Yalamanchili and
Nathan Clark. Ocelot: a dynamic optimization framework for bulk-
synchronous applications in heterogeneous systems. In 19th International
Conference on Parallel Architecture and Compilation Techniques,PACT2010,
pages 353–364. ACM, Vienna, Austria, September 11-15, 2010. 10

[40] Divisible (partitionable) load scheduling research. http://www.ece.sunysb.
edu/~tom/dlt.html, 2012. [Online; accessed 24-Dec-2012]. 12

[41] Maciej Drozdowski and Pawel Wolniewicz. Experiments with Scheduling Di-
visible Tasks in Clusters of Workstations. In International Euro-Par Confer-
ence on Parallel Processing, Euro-Par’00, volume 1900 of Lecture Notes in
Computer Science, pages 311–319. Springer, 2000. 111

[42] Maciej Drozdowski and Pawel Wolniewicz. Divisible Load Scheduling in Sys-
tems with Limited Memory. Cluster Computing, vol. 6, no. 1, pages 19–29,
2003. 112

[43] Maciej Drozdowski and Pawel Wolniewicz. Optimum divisible load schedul-
ing on heterogeneous stars with limited memory. European Journal of Oper-
ational Research, vol. 172, no. 2, pages 545–559, 2006. 112

[44] Wilson W. L. Fung, Ivan Sham, George Yuan and Tor M. Aamodt. Dy-
namic Warp Formation and Scheduling for Efficient GPU Control Flow. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 40, pages 407–420, Washington, DC, USA, 2007.
IEEE Computer Society. 114

[45] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim
Hardwick, Scott Morton, Everett Phillips, Yao Zhang and Vasily Volkov.

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.ece.sunysb.edu/~tom/dlt.html
http://www.ece.sunysb.edu/~tom/dlt.html

130 Bibliography

Parallel Computing Experiences with CUDA. IEEE Micro, vol. 28, no. 4,
pages 13–27, 2008. 2

[46] Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro
and Wen-mei W. Hwu. An asymmetric distributed shared memory model
for heterogeneous parallel systems. In Proceedings of the fifteenth edition of
ASPLOS on Architectural support for programming languages and operating
systems, ASPLOS XV, pages 347–358, New York, NY, USA, 2010. ACM. 115

[47] D. Ghose and V. Mani. Distributed computation with communication delays:
asymptotic performance analysis. J. Parallel Distrib. Comput., vol. 23, no. 3,
pages 293–305, December 1994. 12

[48] Debasish Ghose and Hyoung Joong Kim. Load partitioning and trade-off
study for large matrix-vector computations in multicast bus networks with
communication delays. J. Parallel Distrib. Comput., vol. 55, no. 1, pages
32–59, November 1998. 12

[49] Phillip B. Gibbons, Yossi Matias and Vijaya Ramachandran. The Queue-
Read Queue-Write PRAM Model: Accounting for Contention in Parallel Al-
gorithms. SIAM J. Comput., vol. 28, no. 2, pages 733–769, February 1999.
109

[50] E. Grochowski and M. Annavaram. Energy per Instruction Trends in Intel
Microprocessors. Technology @ Intel Magazine, Mar.2006. 1

[51] John L. Hennessy and David A. Patterson. Computer architecture, fourth
edition: A quantitative approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006. 2

[52] G.Jee H.J.Kim and J.G.Lee. Optimal load distribution for tree network pro-
cessors. IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 2, April 1996.
12

[53] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architec-
ture with memory-level and thread-level parallelism awareness. SIGARCH
Comput. Archit. News, vol. 37, no. 3, pages 152–163, June 2009. 109, 110

[54] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In Proceedings of
the 36th annual international symposium on Computer architecture, ISCA
’09, pages 152–163, New York, NY, USA, 2009. ACM. 109

Bibliography 131

[55] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge and Scott
Mahlke. Sponge: portable stream programming on graphics engines. In Pro-
ceedings of the sixteenth international conference on Architectural support
for programming languages and operating systems, ASPLOS XVI, pages
381–392, New York, NY, USA, 2011. ACM. 114

[56] Qiming Hou, Kun Zhou and Baining Guo. BSGP: bulk-synchronous GPU
programming. In ACM SIGGRAPH 2008 papers, SIGGRAPH ’08, pages
19:1–19:12, New York, NY, USA, 2008. ACM. 115

[57] Qiming Hou, Kun Zhou and Baining Guo. BSGP: bulk-synchronous GPU
programming. ACM Trans. Graph., vol. 27, no. 3, pages 19:1–19:12, August
2008. 115

[58] Xin Huo, Vignesh Ravi, Wenjing Ma and Gagan Agrawal. An execution
strategy and optimized runtime support for parallelizing irregular reductions
on modern GPUs. In Proceedings of the international conference on Super-
computing, ICS ’11, pages 2–11, New York, NY, USA, 2011. ACM. 114

[59] Fumihiko Ino, Kentaro Shigeoka, Tomohiro Okuyama, Masaya Motokubota
and Kenichi Hagihara. A parallel scheme for accelerating parameter sweep
applications on a GPU. Concurrency and Computation: Practice and Expe-
rience, pages n/a–n/a, 2013. 114

[60] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson,
Stephen R. Beard and David I. August. Automatic CPU-GPU communi-
cation management and optimization. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and implementation,
PLDI ’11, pages 142–151, New York, NY, USA, 2011. ACM. 115

[61] Thomas B. Jablin, James A. Jablin, Prakash Prabhu, Feng Liu and David I.
August. Dynamically managed data for CPU-GPU architectures. In Pro-
ceedings of the Tenth International Symposium on Code Generation and
Optimization, CGO ’12, pages 165–174, New York, NY, USA, 2012. ACM.
115

[62] Haipeng Jia, Yunquan Zhang, Guoping Long, Jianliang Xu, Shengen Yan
and Yan Li. GPURoofline: a model for guiding performance optimizations
on GPUs. In Proceedings of the 18th international conference on Parallel
Processing, Euro-Par’12, pages 920–932, Berlin, Heidelberg, 2012. Springer-
Verlag. 110

132 Bibliography

[63] Andrew Kerr, Gregory Diamos and Sudhakar Yalamanchili. A characteri-
zation and analysis of PTX kernels. In Proceedings of the 2009 IEEE In-
ternational Symposium on Workload Characterization (IISWC), IISWC ’09,
pages 3–12, Washington, DC, USA, 2009. IEEE Computer Society. 110, 111

[64] Andrew Kerr, Gregory Diamos and Sudhakar Yalamanchili. Modeling GPU-
CPU workloads and systems. In Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, GPGPU ’10, pages
31–42, New York, NY, USA, 2010. ACM. 110

[65] Hyoung Joong Kim. A Novel Optimal Load Distribution Algorithm for Di-
visible Loads. Cluster Computing, vol. 6, no. 1, pages 41–46, 2003. 112

[66] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo and Jaejin
Lee. OpenCL as a unified programming model for heterogeneous CPU/GPU
clusters. SIGPLAN Not., vol. 47, no. 8, pages 299–300, February 2012. 114

[67] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo and Jaejin
Lee. OpenCL as a unified programming model for heterogeneous CPU/GPU
clusters. In Proceedings of the 17th ACM SIGPLAN symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’12, pages 299–300, New
York, NY, USA, 2012. ACM. 114

[68] Kwangil Ko and Thomas G. Robertazzi. Equal allocation scheduling for
data intensive applications. IEEE Transactions on Aerospace and Electronic
Systems, vol. 40, no. 2, pages 695–705, April. 2004. 113

[69] Kishore Kothapalli, Rishabh Mukherjee, M. Suhail Rehman, Suryakant Pati-
dar, P. J. Narayanan and Kannan Srinathan. A performance prediction model
for the CUDA GPGPU platform. In 16th International Conference on High
Performance Computing, HiPC 2009, pages 463–472. IEEE, December 16-19,
2009, Kochi, India. 109, 110

[70] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ran-
ganathan and Dean M. Tullsen. Single-ISA Heterogeneous Multi-Core Ar-
chitectures: The Potential for Processor Power Reduction. In Proceedings
of the 36th annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 36, pages 81–, Washington, DC, USA, 2003. IEEE Computer
Society. 1

[71] Cheol-Hoon Lee and Kang G. Shin. Optimal Task Assignment in Homo-
geneous Networks. IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 2, pages
119–129, February 1997. 12

Bibliography 133

[72] Che-Rung Lee, Shih-Hsiang Lo, Nan-Hsi Chen, Yeh-Ching Chung and I-Hsin
Chung. GPU Performance Enhancement via Communication Cost Reduc-
tion: Case Studies of Radix Sort and WSN Relay Node Placement Problem.
In Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012), CCGRID ’12, pages 132–
139, Washington, DC, USA, 2012. IEEE Computer Society. 114

[73] Seungyeol Lee and Wonyong Sung. DRAM Access Reduction in GPUs by
Thread-Block Scheduling. In 2013 IEEE International Symposium on Cir-
cuits and Systems, ISCAS’13, pages 901–904, Beijing, China, 2013. IEEE
Computer Society. 114

[74] Real-Time Divisible Load Scheduling for Cluster Computing. In IEEE Real-
Time and Embedded Technology and Applications Symposium, pages 303–
314. IEEE Computer Society, 2007. 112

[75] Real-Time Divisible Load Scheduling with Different Processor Available
Times. In International Conference on Parallel Processing, ICPP’07, page 20.
IEEE Computer Society, 2007. 112

[76] Xuan Lin, Ying Lu, Jitender S. Deogun and Steve Goddard. Enhanced Real-
Time Divisible Load Scheduling with Different Processor Available Times. In
High Performance Computing, HiPC’07, volume 4873 of Lecture Notes in
Computer Science, pages 308–319. Springer, 2007. 112

[77] Xuan Lin, Anwar Mamat, Ying Lu, Jitender S. Deogun and Steve Goddard.
Real-time scheduling of divisible loads in cluster computing environments. J.
Parallel Distrib. Comput., vol. 70, no. 3, pages 296–308, 2010. 112

[78] Michael D. Linderman, Jamison D. Collins, Hong Wang and Teresa H. Y.
Meng. Merge: a programming model for heterogeneous multi-core systems. In
Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2008, Seattle,
WA, USA, March 1-5, 2008, pages 287–296. ACM, 2008. 22, 82, 83

[79] Lin Ma, Kunal Agrawal and Roger D. Chamberlain. A Memory Access Model
for Highly-threaded Many-core Architectures. In IEEE 18th International
Conference on Parallel and Distributed Systems, ICPADS 2012, pages 339–
347. IEEE Computer Society, Singapore, December 17-19, 2012. 109

[80] Lin Ma and Roger D. Chamberlain. A Performance Model for Memory
Bandwidth Constrained Applications on Graphics Engines. In 23rd IEEE

134 Bibliography

International Conference on Application-Specific Systems, Architectures and
Processors, ASAP 2012, pages 24–31. IEEE Computer Society, Delft, The
Netherlands, July 9-11, 2012. 110

[81] V. Mani and D. Ghose. Distributed computation in linear networks: Closed-
form solutions. IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 2, April
1994. 12

[82] Gabriel Marin and John Mellor-Crummey. Cross-architecture performance
predictions for scientific applications using parameterized models. In Pro-
ceedings of the joint international conference on Measurement and modeling
of computer systems, SIGMETRICS ’04/Performance ’04, pages 2–13, New
York, NY, USA, 2004. ACM. 109

[83] Jiayuan Meng, David Tarjan and Kevin Skadron. Dynamic warp subdivision
for integrated branch and memory divergence tolerance. In Proceedings of
the 37th annual international symposium on Computer architecture, ISCA
’10, pages 235–246, New York, NY, USA, 2010. ACM. 114

[84] Jiayuan Meng, David Tarjan and Kevin Skadron. Dynamic warp subdivision
for integrated branch and memory divergence tolerance. SIGARCH Comput.
Archit. News, vol. 38, no. 3, pages 235–246, June 2010. 114

[85] Gordon E. Moore. Readings in computer architecture. chapitre Cramming
more components onto integrated circuits, pages 56–59. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2000. 1

[86] Masaya Motokubota, Fumihiko Ino and Kenichi Hagihara. Accelerating
Parameter Sweep Applications Using CUDA. In Yiannis Cotronis, Marco
Danelutto and George Angelos Papadopoulos, editeurs, PDP, pages 111–118.
IEEE Computer Society, 2011. 114

[87] Shinta Nakagawa, Fumihiko Ino and Kenichi Hagihara. A middleware for
efficient stream processing in CUDA. Computer Science - R&D, vol. 25,
no. 1-2, pages 41–49, 2010. 115

[88] Ocelot:. https://code.google.com/p/gpuocelot/, 2012. [Online; accessed
24-Dec-2012]. 5, 10, 17

[89] OpenCL - The open standard for parallel programming of heterogeneous sys-
tems. http://www.khronos.org/opencl/, 2012. [Online; accessed 24-Dec-
2012]. 3

https://code.google.com/p/gpuocelot/
http://www.khronos.org/opencl/

Bibliography 135

[90] Mohamed Othman, Monir Abdullah, Hamidah Ibrahim and Shamala Sub-
ramaniam. Adaptive Divisible Load Model for Scheduling Data-Intensive
Grid Applications. In International Conference on Computational Science,
ICCS’07, Beijing, China, May 27-30, 2007, volume 4487 of Lecture Notes in
Computer Science, pages 446–453. Springer, 2007. 113

[91] Mohamed Othman, Monir Abdullah, Hamidah Ibrahim and Shamala
Subramaniam. A2DLT: Divisible Load Balancing Model for Scheduling
Communication-Intensive Grid Applications. In International Conference on
Computational Science, ICCS’08, Kraków, Poland, June 23-25, 2008, volume
5101 of Lecture Notes in Computer Science, pages 246–253. Springer, 2008.
113

[92] Adnan Ozsoy, D. Martin Swany and Arun Chauhan. Pipelined Parallel LZSS
for Streaming Data Compression on GPGPUs. In IEEE 18th International
Conference on Parallel and Distributed Systems, ICPADS 2012, pages 37–44.
IEEE Computer Society, Singapore, December 17-19, 2012. 115

[93] James C. Phillips, John E. Stone and Klaus Schulten. Adapting a message-
driven parallel application to GPU-accelerated clusters. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 8:1–8:9,
Piscataway, NJ, USA, 2008. IEEE Press. 115

[94] G. N. Srinivasa Prasanna and Bruce R. Musicus. Generalized multiprocessor
scheduling for directed acylic graphs. In Proceedings of the 1994 ACM/IEEE
conference on Supercomputing, Supercomputing ’94, pages 237–246, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press. 11

[95] Thomas G. Robertazzi. Ten Reasons to Use Divisible Load Theory. Com-
puter, vol. 36, no. 5, pages 63–68, May 2003. 12

[96] T.G. Robertazzi. Networks and Grids: Technology and Theory. Springer
Publishing Company, Inc., 1st edition, 2007. 12

[97] Christopher I. Rodrigues, David J. Hardy, John E. Stone, Klaus Schulten and
Wen-Mei W. Hwu. GPU acceleration of cutoff pair potentials for molecular
modeling applications. In Proceedings of the 5th conference on Computing
frontiers, CF ’08, pages 273–282, New York, NY, USA, 2008. ACM. 115

[98] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone,
David B. Kirk and Wen-mei W. Hwu. Optimization principles and applica-
tion performance evaluation of a multithreaded GPU using CUDA. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and practice

136 Bibliography

of parallel programming, PPoPP ’08, pages 73–82, New York, NY, USA,
2008. ACM. 114

[99] Karsten Schwan and Hongyi Zhou. Dynamic Scheduling of Hard Real-Time
Tasks and Real-Time Threads. IEEE Trans. Softw. Eng., vol. 18, no. 8, pages
736–748, August 1992. 11

[100] R Seidel. Constructing higher-dimensional convex hulls at logarithmic cost
per face. In Proceedings of the eighteenth annual ACM symposium on Theory
of computing, STOC ’86, pages 404–413, New York, NY, USA, 1986. ACM.
79

[101] Terry Shepard and J. A. Martin Gagné. A Pre-Run-Time Scheduling Algo-
rithm for Hard Real-Time Systems. IEEE Trans. Softw. Eng., vol. 17, no. 7,
pages 669–677, July 1991. 11

[102] Amin Shokripour and Mohamed Othman. Survey on divisible load theory and
its applications. In International Conference on Information Management
and Engineering, ICIME’09, pages 300–304, 2009. 11, 111

[103] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim and Richard Vuduc. A
performance analysis framework for identifying potential benefits in GPGPU
applications. SIGPLAN Not., vol. 47, no. 8, pages 11–22, February 2012. 110

[104] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim and Richard Vuduc. A
performance analysis framework for identifying potential benefits in GPGPU
applications. In Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, PPoPP ’12, pages 11–22,
New York, NY, USA, 2012. ACM. 110

[105] Alan Jay Smith. Cache Memories. ACM Comput. Surv., vol. 14, no. 3, pages
473–530, September 1982. 2

[106] J. Sohn and T. G. Robertazzi. Optimal divisible job load sharing for bus
networks. IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 1, pages 34–40,
June 1996. 12

[107] Jeeho Sohn, Thomas G. Robertazzi and Serge Luryi. Optimizing Computing
Costs Using Divisible Load Analysis. IEEE Trans. Parallel Distrib. Syst.,
vol. 9, no. 3, pages 225–234, March 1998. 12

[108] John A. StankovicThis work was done while the, Marco Spuri, Marco Di Na-
tale and Giorgio C. Buttazzo. Implications of Classical Scheduling Results

Bibliography 137

for Real-Time Systems. Computer, vol. 28, no. 6, pages 16–25, June 1995.
11

[109] Reiji Suda, Takayuki Aoki, Shoichi Hirasawa, Akira Nukada, Hiroki Honda
and Satoshi Matsuoka. Aspects of GPU for general purpose high performance
computing. In Proceedings of the 2009 Asia and South Pacific Design Au-
tomation Conference, ASP-DAC ’09, pages 216–223, Piscataway, NJ, USA,
2009. IEEE Press. 115

[110] Andrew S Tanenbaum and Albert S Woodhull. Operating systems design
and implementation (3rd edition). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2005. 11

[111] T.G.Robertazzi. Processor equivalence for daisy chain load sharing proces-
sors. IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 4, pages 1216–1221,
October 1993. 12

[112] Bharadwaj Veeravalli, Xiaolin Li and Chi Chung Ko. On the Influence of
Start-Up Costs in Scheduling Divisible Loads on Bus Networks. IEEE Trans.
Parallel Distrib. Syst., vol. 11, no. 12, pages 1288–1305, December 2000. 12

[113] Bharadwaj Veeravalli and Surendra Ranganath. Theoretical and experi-
mental study on large size image processing applications using divisible load
paradigm on distributed bus networks. Image Vision Comput., vol. 20, no. 13-
14, pages 917–935, 2002. 112

[114] Bharadwaj Veeravalli, Debasish Ghose and Thomas G. Robertazzi. Divisible
Load Theory: A New Paradigm for Load Scheduling in Distributed Systems.
Cluster Computing, vol. 6, no. 1, pages 7–17, 2003. 12

[115] David W. Wall. Limits of instruction-level parallelism. SIGARCH Comput.
Archit. News, vol. 19, no. 2, pages 176–188, April 1991. 1

[116] David W. Wall. Limits of instruction-level parallelism. In Proceedings of the
fourth international conference on Architectural support for programming
languages and operating systems, ASPLOS IV, pages 176–188, New York,
NY, USA, 1991. ACM. 1

[117] R. Clint Whaley and David B. Whalley. Tuning High Performance Kernels
through Empirical Compilation. In 34th International Conference on Parallel
Processing (ICPP 2005), pages 89–98. IEEE Computer Society, 14-17 June
2005, Oslo, Norway. 109

138 Bibliography

[118] Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang and Xipeng Shen.
Complexity analysis and algorithm design for reorganizing data to minimize
non-coalesced memory accesses on GPU. In Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming,
PPoPP ’13, pages 57–68, New York, NY, USA, 2013. ACM. 114

[119] V.Bharadwaj X.Li and C.C.Ko. Divisible load scheduling on single-level
tree networks with buffer constraints. IEEE Trans. Aerosp. Electron. Syst.,
vol. 36, no. 4, October 2000. 12

[120] J. Xu. Multiprocessor Scheduling of Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations. IEEE Trans. Softw. Eng., vol. 19, no. 2,
pages 139–154, February 1993. 12

[121] J. Xu and D. L. Parnas. On Satisfying Timing Constraints in Hard-Real-
Time Systems. IEEE Trans. Softw. Eng., vol. 19, no. 1, pages 70–84, January
1993. 11

[122] Yang Yang and Henri Casanova. RUMR: Robust Scheduling for Divisible
Workloads. In 12th International Symposium on High-Performance Dis-
tributed Computing (HPDC-12), 22-24 June 2003, Seattle, WA, USA, pages
114–125. IEEE Computer Society, 2003. 113

[123] Yang Yang and Henri Casanova. UMR: A Multi-Round Algorithm for
Scheduling Divisible Workloads. In 17th International Parallel and Dis-
tributed Processing Symposium (IPDPS 2003), 22-26 April 2003, Nice,
France, page 24. IEEE Computer Society, 2003. 113

[124] Yi Yang, Ping Xiang, Jingfei Kong and Huiyang Zhou. A GPGPU compiler
for memory optimization and parallelism management. In Proceedings of
the 2010 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’10, pages 86–97, New York, NY, USA, 2010. ACM.
114

[125] Yi Yang, Ping Xiang, Jingfei Kong and Huiyang Zhou. A GPGPU com-
piler for memory optimization and parallelism management. SIGPLAN Not.,
vol. 45, no. 6, pages 86–97, June 2010. 114

[126] Dantong Yu, , Dantong Yu and Thomas G. Robertazzi. Divisible Load
Scheduling for Grid Computing. In in PDCS’2003, 15th Int’l Conf. Parallel
and Distributed Computing and Systems. IASTED. Press, 2003. 12

Bibliography 139

[127] Chen Yu and Dan C. Marinescu. Algorithms for Divisible Load Scheduling of
Data-intensive Applications. J. Grid Comput., vol. 8, no. 1, pages 133–155,
2010. 113

[128] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo and Xipeng Shen. Streamlining
GPU applications on the fly: thread divergence elimination through runtime
thread-data remapping. In Proceedings of the 24th ACM International Con-
ference on Supercomputing, ICS ’10, pages 115–126, New York, NY, USA,
2010. ACM. 114

[129] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian and Xipeng Shen. On-
the-fly elimination of dynamic irregularities for GPU computing. SIGPLAN
Not., vol. 47, no. 4, pages 369–380, March 2011. 114

[130] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian and Xipeng Shen. On-
the-fly elimination of dynamic irregularities for GPU computing. In Proceed-
ings of the sixteenth international conference on Architectural support for
programming languages and operating systems, ASPLOS XVI, pages 369–
380, New York, NY, USA, 2011. ACM. 114

[131] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian and Xipeng Shen. On-
the-fly elimination of dynamic irregularities for GPU computing. SIGPLAN
Not., vol. 46, no. 3, pages 369–380, March 2011. 114

[132] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian and Xipeng Shen. On-
the-fly elimination of dynamic irregularities for GPU computing. SIGARCH
Comput. Archit. News, vol. 39, no. 1, pages 369–380, March 2011. 114

[133] Yao Zhang and John D. Owens. A quantitative performance analysis model
for GPU architectures. In Proceedings of the 2011 IEEE 17th International
Symposium on High Performance Computer Architecture, HPCA ’11, pages
382–393, Washington, DC, USA, 2011. IEEE Computer Society. 110

	Introduction
	Parallel Computing from CPU to CPU+GPU
	Motivation
	Contributions

	Background
	CUDA Framework
	GPU Architecture
	GPU Ocelot
	Divisible Load Scheduling

	Performance Analytical Model
	Architecture
	Assembly Code Analysis
	Execution of Multiple Warps
	MPD submodel
	CPD submodel

	Calculation Model
	Experiment Evaluation
	Configuration
	Results

	A Task Partitioning and Scheduling Method
	Application Classification
	TPSM for Single GPU Architecture
	Partitioning and Scheduling for Kernel Bound Applications
	Partitioning and Scheduling for Data Transfer Bound Applications

	TPSM for Symmetric Multiple GPUs Architecture
	Time Optimal Data Transfer Algorithm for Symmetric Multiple GPUs Architecture
	TPSM

	TPSM for Non-symmetric Multiple GPUs Architecture
	Time Optimal Data Transfer Algorithm for Non-symmetric GPUs Architecture
	TPSM

	Experimental Evaluation
	Symmetric Architecture
	Non-symmetric Architecture

	Related Works
	GPU Performance Prediction
	GPU Analytical and Performance Models
	GPU Simulators

	Communication Latency Hiding
	Divisible Load Scheduling
	GPU Performance Optimization
	Stream Overlapping

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Bibliography

