# 東京大学審査学位 論文

# 陸域 に お け る 熱赤外マ ル チスペクトル データの 実用的大気 補正ア ル ゴリズムの 開発

Development of practical atmospheric correction algorithms for thermal infrared multispectral data over land



Hideyuki TONOOKA

|    | 審査委員会委員         |       |     |
|----|-----------------|-------|-----|
| 主査 | 東京大学大学院 工学系研究 科 | 六川修-  | 助教授 |
| 副査 | 東京大学大学院 工学系研究 科 | 佐藤光三  | 助教授 |
|    | 東京大学大学院 工学系研究 科 | 徳衤朋祥  | 助教授 |
|    | 東京大学生産技術研究 所    | 安 岡善文 | 教授  |
|    | 東京大学大学院 工学系研究 科 | 山冨二郎  | 教授  |
|    |                 | (アイウエ | オ順) |

- 平成12年3月24日 論文申請 同年7月27日 本審査
  - 同年 9月2 1日 論文認定

目 次

| 1        | 序論  |                                    | 14 |  |
|----------|-----|------------------------------------|----|--|
| <b>2</b> | 基礎  | 遊理論 1                              |    |  |
|          | 2.1 | 地表面の熱赤外放射特性                        | 19 |  |
|          |     | 2.1.1 放射の基本量                       | 19 |  |
|          |     | 2.1.2 黒体放射と太陽・地球放射                 | 20 |  |
|          |     | 2.1.3 <b>固体の放射率,反射率,</b> BRDF      | 22 |  |
|          |     | 2.1.4 <b>地表面物質の熱赤外分光特性</b>         | 24 |  |
|          | 2.2 | 熱赤外域における放射伝達                       | 26 |  |
|          |     | 2.2.1 放射伝達の基礎                      | 26 |  |
|          |     | 2.2.2 赤外域の気体吸収帯と透過関数               | 29 |  |
|          |     | 2.2.3 吸収線データベースと放射伝達コード            | 30 |  |
|          |     | 2.2.4 <b>大気上端での熱赤外放射輝度</b>         | 31 |  |
|          | 2.3 | 熱赤外センサによる LST の観測                  | 33 |  |
|          |     | 2.3.1 陸域観測における主な熱赤外センサ             | 33 |  |
|          |     | 2.3.2 <b>センサの観測放射輝度</b>            | 36 |  |
|          |     | 2.3.3 差分吸収アルゴリズムによる SST 推定         | 37 |  |
|          |     | 2.3.4 差分吸収アルゴリズムによる LST 推定         | 41 |  |
|          |     | 2.3.5 昼夜アルゴリズムによる LST 推定           | 43 |  |
|          |     | 2.3.6 単バンドアルゴリズム及び TE 分離による LST 推定 | 45 |  |
|          |     | 2.3.7 ASTER/TIR の標準大気補正アルゴリズム      | 48 |  |
|          |     | 2.3.8 LST 推定アルゴリズムの現状と課題           | 49 |  |
| 3        | シヨ  | ュレーションモデルの構築                       | 51 |  |
|          | 3 1 |                                    | 51 |  |
|          | 3.2 | 大気のモデル化                            | 52 |  |
|          | 3.3 | 観測ジオメトリのモデル化                       | 54 |  |
|          | 3 4 | LST のモデル化                          | 58 |  |

|   | 3.5 | 放射率   | のモデル化                                              | 59  |
|---|-----|-------|----------------------------------------------------|-----|
|   | 3.6 | 観測放   | 羽輝度の計算                                             | 60  |
| 4 | 全球  | ҝ解析デ  | ータに基づく単バンドアルゴリズムの検証                                | 63  |
|   | 4.1 | シミュ   | レーションモデルに基づく検証                                     | 63  |
|   | 4.2 | 日本周   | ]辺の AVHRR データに基づく検証                                | 65  |
|   |     | 4.2.1 | 霞ヶ浦におけるフィールド実験に基づく検証                               | 66  |
|   |     | 4.2.2 | 衛星直下画素を用いた MCSST との比較検証                            | 70  |
|   |     | 4.2.3 | GPS 可降水量データを利用した検証                                 | 76  |
|   |     | 4.2.4 | まとめ....................................            | 80  |
| 5 | 放射  | 対率の不  | 確定性を考慮した陸域観測のための差分吸収アルゴリズム                         | 83  |
|   | 5.1 | マルチ   | チャネル法の拡張と水蒸気量依存係数の導入                               | 83  |
|   |     | 5.1.1 | EMC 法                                              | 83  |
|   |     | 5.1.2 | MC/WVD 法及び EMC/WVD 法                               | 84  |
|   | 5.2 | シミュ   | レーションモデルに基づく検証.................................... | 85  |
|   |     | 5.2.1 | 総水蒸気量の不確定性のモデル化                                    | 85  |
|   |     | 5.2.2 | 海洋観測における精度と他の計算例との比較                               | 85  |
|   |     | 5.2.3 | 放射率の不確定性に対するロバスト性評価                                | 86  |
|   |     | 5.2.4 | 誤差因子の寄与率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 94  |
|   |     | 5.2.5 | モデル条件の感度解析                                         | 99  |
|   |     | 5.2.6 | モデル要素別の誤差解析と δLST 依存アルゴリズム                         | 99  |
|   |     | 5.2.7 | 観測角の影響                                             | 112 |
|   | 5.3 | まとめ   | )                                                  | 113 |
| 6 | 灰色  | シ画素を  | 用いた段階的回帰分析に基づく大気補正アルゴリズム                           | 115 |
|   | 6.1 | 手法の   | 》原理                                                | 115 |
|   |     | 6.1.1 | 透過率・光路輝度の推定                                        | 115 |
|   |     | 6.1.2 | 天空輝度の推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 117 |
|   | 6.2 | シミュ   | レーションに基づく手法の実用性評価と処理フロー                            | 121 |

|   |     | 6.2.1 | 大気効果パラメータのチャネル間相関                                     | 121 |
|---|-----|-------|-------------------------------------------------------|-----|
|   |     | 6.2.2 | シミュレーションに基づく2つのアプローチの実用性評価                            | 123 |
|   |     | 6.2.3 | 大気効果パラメータ・LST・放射率推定の処理フロー                             | 130 |
|   |     | 6.2.4 | 灰色画素の抽出法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・          | 131 |
|   |     | 6.2.5 | 欠損領域における大気効果パラメータの水平内挿                                | 133 |
|   | 6.3 | シミュ   | レーションに基づく GP 法の検証                                     | 135 |
|   |     | 6.3.1 | 領域内の大気効果パラメータの不均質性に伴う誤差の挙動                            | 135 |
|   |     | 6.3.2 | 非灰色画素の混入に伴う誤差の挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | 139 |
|   | 6.4 | まとめ   | )                                                     | 142 |
| 7 | 全球  | 『解析デ  | ータの高精度化に基づく実用的大気補正アルゴリズム                              | 144 |
|   | 7.1 | WVS   | 法                                                     | 144 |
|   |     | 7.1.1 | 原理                                                    | 144 |
|   |     | 7.1.2 | 灰色画素の抽出法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・          | 146 |
|   |     | 7.1.3 | スケーリングファクター $\gamma$ と透過率・光路輝度の計算                     | 148 |
|   |     | 7.1.4 | 天空輝度の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・           | 151 |
|   |     | 7.1.5 | スケーリングファクター $\gamma$ の水平内挿                            | 153 |
|   |     | 7.1.6 | 実装のための高速計算アルゴリズム                                      | 154 |
|   | 7.2 | グレー   | ・ピクセルモデルに基づく WVS 法の検証                                 | 157 |
|   |     | 7.2.1 | シミュレーションの方法                                           | 157 |
|   |     | 7.2.2 | スケーリングファクター $\gamma$ のチャネル依存性と最適決定法                   | 158 |
|   |     | 7.2.3 | 3 つのケースに対する従来アルゴリズムとの比較検証                             | 159 |
|   | 7.3 | 一般化   | 、モデルに基づく WVS 法の検証.................................... | 166 |
|   |     | 7.3.1 | シミュレーションの方法                                           | 167 |
|   |     | 7.3.2 | 3 つのケースに対する従来アルゴリズムとの比較検証                             | 169 |
|   | 7.4 | AVHR  | R データに基づく WVS 法の検証                                    | 172 |
|   |     | 7.4.1 | テストエリア                                                | 173 |
|   |     | 7.4.2 | 従来手法による大気効果パラメータの計算                                   | 175 |
|   |     | 7.4.3 | WVS 法の適用                                              | 175 |

|   |             | 7.4.4 | WVS 法と従来手法の比較評価                     | 31         |
|---|-------------|-------|-------------------------------------|------------|
|   | 7.5         | まとめ   |                                     | 38         |
| 8 | 結論          | ì     | 19                                  | 92         |
| 謝 | 锌           |       | 19                                  | <b>)</b> 5 |
| 参 | 考文南         | ť     | 19                                  | 96         |
| 略 | 語           |       | 20                                  | )6         |
| 付 | 禄           |       | 21                                  | 1          |
|   | <b>A</b> .1 | NCEP  | / GDAS とそのプロダクト                     | 11         |
|   | A.2         | ASTE  | R/TIR <b>の</b> 標準 TES <b>アルゴリズム</b> | 12         |
|   | A.3         | 国土地   | 理院の GPS 連続観測網データを用いた可降水量の推定         | 14         |

# 図目次

| 1  | Relationships among chapters in the present thesis                                                                            | 17 |
|----|-------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | Radiance (left) and radiant flux density (right)                                                                              | 20 |
| 3  | Spectral radiances at the Earth surface from the Sun and the Earth in the case that                                           |    |
|    | the Sun and the Earth are assumed to be black bodies at 5770K and 288K respectively.                                          |    |
|    | Atmospheric effects are not included                                                                                          | 21 |
| 4  | Emissivity spectra of granite and water (Salisbury <i>et al.</i> , 1992)                                                      | 26 |
| 5  | Atmospheric transmission functions at view angle $180^{\circ}$ for the Midlatitude summer model.                              | 32 |
| 6  | Thermal infrared bands of typical sensors, and atmospheric transmission function at view                                      |    |
|    | angle 180° for the Midlatitude summer model. $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 33 |
| 7  | Simulation-based method for validating an atmospheric correction algorithm. $\ldots$ .                                        | 53 |
| 8  | Response functions of AVHRR (channels 4 and 5) and ASTER (channels 10 to $14$ ), and                                          |    |
|    | atmospheric transmittance of the Midlatitude Summer model calculated by MODTRAN3.7.                                           | 53 |
| 9  | Positions of atmospheric profiles selected from CDAS monthly mean products for January                                        |    |
|    | and July                                                                                                                      | 55 |
| 10 | Distribution of the elevation.                                                                                                | 55 |
| 11 | Distribution of the total water vapor amount                                                                                  | 56 |
| 12 | Distribution of the transmittance for AVHRR channel 4                                                                         | 56 |
| 13 | Distribution of the path radiance for AVHRR channel 4                                                                         | 57 |
| 14 | Plot of the transmittance versus the path radiance for AVHRR channel 4                                                        | 57 |
| 15 | Distribution of the surface air temperature.                                                                                  | 59 |
| 16 | Minimum emissivity of each emissivity sample for AVHRR and ASTER                                                              | 60 |
| 17 | Deployed positions for Lake Kasumigaura buoys on September 9, 1998                                                            | 66 |
| 18 | Comparison between the satellite-derived lake surface temperature and the $in$ -situ buoy                                     |    |
|    | temperature; (left) low temperature and cloud-free, (center) high temperature and cloud-                                      |    |
|    | free, and (right) high temperature and cloud-contaminated                                                                     | 70 |
| 19 | Comparison between the satellite-derived lake surface temperature and the $in-situ$ skin                                      |    |
|    | temperature; (left) low temperature and cloud-free, (center) high temperature and cloud-                                      |    |
|    | free, and (right) high temperature and cloud-contaminated                                                                     | 71 |
| 20 | $\operatorname{AVHRR}$ channel 4 image and the nadir pixels of the satellite at 14:39 JST on September                        |    |
|    | 9, 1998                                                                                                                       | 72 |
| 21 | Cloud cover and land/sea mask for the nadir pixels.                                                                           | 72 |
| 22 | Transmittance derived from the GDAS profiles for the nadir pixels.                                                            | 73 |

| 23 | Difference of sensor brightness temperature between AVHRR channels 4 and 5 for the                             |
|----|----------------------------------------------------------------------------------------------------------------|
|    | nadir pixels                                                                                                   |
| 24 | Sea surface temperatures derived from the MCSST method and the single band algorithm                           |
|    | with GDAS profiles for the nadir pixels                                                                        |
| 25 | Difference of sea surface temperature between the MCSST method and the single band                             |
|    | algorithm with GDAS profiles for the nadir pixels                                                              |
| 26 | Differential image between AVHRR channels 4 and 5. The local water vapor anomaly is                            |
|    | shown in the white box                                                                                         |
| 27 | Comparison of the precipitable water vapor amounts derived from the GPS wet delay data $\$                     |
|    | and from the GDAS profiles for $850$ GPS stations. A regression line is also shown. The                        |
|    | differential RMS of them is 5.54 mm                                                                            |
| 28 | 145 cloud-free and homogeneous sea areas selected for the validation study. $\ldots$                           |
| 29 | Plots of the SST derived from the single band algorithm with GDAS profiles versus the                          |
|    | MCSST for the 145 selected areas for AVHRR channels 4 and 5. (original) Original water                         |
|    | vapor profiles were used; (GPS-scaled) Water vapor profiles were scaled to fit to the GPS                      |
|    | precipitable water vapor amounts                                                                               |
| 30 | Twenty emissivity samples with the lower limit of emissivity greater than or equal to $0.95$                   |
|    | for AVHRR                                                                                                      |
| 31 | Ten emissivity samples with the lower limit of emissivity greater than or equal to $0.95$ for                  |
|    | ASTER                                                                                                          |
| 32 | The number of emissivity samples for each lower limit of emissivity                                            |
| 33 | Mean and standard deviation of transmittance at each AVHRR channel                                             |
| 34 | Mean and standard deviation of transmittance at each ASTER channel                                             |
| 35 | Plots of the water vapor amount versus the RMSE of the EMC/WVD method for AVHRR $$                             |
|    | (top: ch.4, bottom: ch.5). The lower limit of emissivity is $0.95$                                             |
| 36 | Plots of the water vapor amount versus the bias error of the $\mathrm{EMC}/\mathrm{WVD}$ method for            |
|    | AVHRR (top: ch.4, bottom: ch.5). The lower limit of emissivity is 0.95                                         |
| 37 | Plots of the water vapor amount versus the RMSE of the EMC/WVD method for ASTER $$                             |
|    | (top: ch.10, middle: ch.12, bottom: ch.14). The lower limit of emissivity is $0.95.$ $104$                     |
| 38 | Plots of the water vapor amount versus the bias error of the $\mathrm{EMC}/\mathrm{WVD}$ method for            |
|    | ASTER (top: ch.10, middle: ch.12, bottom: ch.14). The lower limit of emissivity is 0.95 105                    |
| 39 | Plots of the minimum emissivity versus the RMSE of the $\mathrm{EMC}/\mathrm{WVD}$ method for $\mathrm{AVHRR}$ |
|    | (top: ch.4, bottom: ch.5). The lower limit of emissivity is 0.95.                                              |

| 40 | Plots of the minimum emissivity versus the bias error of the EMC/WVD method for                        |
|----|--------------------------------------------------------------------------------------------------------|
|    | AVHRR (top: ch.4, bottom: ch.5). The lower limit of emissivity is 0.95                                 |
| 41 | Plots of the minimum emissivity versus the RMSE of the $\mathrm{EMC}/\mathrm{WVD}$ method for ASTER    |
|    | (top: ch.10, middle: ch.12, bottom: ch.14). The lower limit of emissivity is 0.95 108                  |
| 42 | Plots of the minimum emissivity versus the bias error of the EMC/WVD method for                        |
|    | ASTER (top: ch.10, middle: ch.12, bottom: ch.14). The lower limit of emissivity is 0.95 109            |
| 43 | Plot of the path radiance at nadir view versus the sky radiance for AVHRR channel $4.$ 118             |
| 44 | Plot of the path radiance at nadir view versus the sky radiance for ASTER channel 10. $\therefore$ 119 |
| 45 | Comparison between the mean radiance of atmosphere for view angle $^{\circ}$ and that for view         |
|    | angle 40° for AVHRR channel 4                                                                          |
| 46 | Comparison between the transmittance at nadir and the transmittance powered by $\sec\theta$            |
|    | $(\theta = 10, 20, 30, 40 \text{ degrees}).$                                                           |
| 47 | Comparison of the transmittance between AVHRR channels 4 and 5                                         |
| 48 | Comparison of the transmittance between ASTER channels 12 and $11/13$                                  |
| 49 | Comparison of the transmittance between ASTER channels 13 and 14                                       |
| 50 | Flow chart of the GP method                                                                            |
| 51 | Plot of the surface radiance versus the observed radiance in a heterogeneous atmospheric               |
|    | condition. The line A is a high transmittance line, the line B is a low transmittance line,            |
|    | and $B_i(T_x)$ is the intersection point                                                               |
| 52 | Plot of the transmittance versus the mean atmospheric radiance for AVHRR channel 4. $.138$             |
| 53 | Plot of the surface radiance versus the observed radiance in a heterogeneous atmospheric               |
|    | condition for case 1; (A) a high transmittance line, (B) a low transmittance line, (C) a               |
|    | correction line based on the GP method, $(0)$ a gray pixel at low LST, and $(1)$ a gray pixel          |
|    | at high LST                                                                                            |
| 54 | Plot of the surface radiance versus the observed radiance in a heterogeneous atmospheric               |
|    | condition for case 2; (A) a high transmittance line, (B) a low transmittance line, $(C',C'')$          |
|    | a correction line based on the GP method, $(0)$ a gray pixel at low LST, and $(1-3)$ a gray            |
|    | pixel at high LST.                                                                                     |
| 55 | Basic flowchart of the water vapor scaling (WVS) method. Bold boxes mean input data 147 $$             |
| 56 | Comparison of $\tau(0.9)$ between MODTRAN outputs and estimates from Eq. (7.9) for                     |
|    | AVHRR channel 4                                                                                        |
| 57 | Comparison of $\tau(1.3)$ between MODTRAN outputs and estimates from Eq. (7.9) for                     |
|    | AVHRR channel 4                                                                                        |

| 58 | Flowchart of the WVS method with the fast calculation algorithm. Bold boxes mean                              |
|----|---------------------------------------------------------------------------------------------------------------|
|    | input data                                                                                                    |
| 59 | Plot of RMSE versus $\gamma_{true}$ with $\gamma_a=1.0$ and $\gamma_b=0.7$ for the WVS and the normal methods |
|    | for AVHRR channels 4 and 5                                                                                    |
| 60 | Plot of RMSE versus $\gamma_{true}$ with $\gamma_a=1.0$ and $\gamma_b=0.7$ for the WVS and the normal methods |
|    | for ASTER channels 10, 12 and 14                                                                              |
| 61 | The relative bias error of a water-vapor profile giving the same error on atmospheric                         |
|    | correction with the absolute bias error of an air-temperature profile for ASTER channels                      |
|    | for the midlatitude summer model                                                                              |
| 62 | Plot of RMSE versus $\gamma_{true}$ with $\gamma_a=1.0$ and $\gamma_b=0.7$ for the WVS and the normal methods |
|    | for ASTER channels 10, 12 and 14. The general model was used                                                  |
| 63 | Location of the test area in the AVHRR channel 1 data on September 9, 1998 173                                |
| 64 | Elevation data for the test area extracted from GTOPO30.                                                      |
| 65 | Transmittance at AVHRR channel 4 calculated from original GDAS profiles and GTOPO30.176 $$                    |
| 66 | Column water vapor amounts calculated from original GDAS profiles and GTOPO30. $\therefore$ 177               |
| 67 | Scene classification map produced from VNIR images and GTOPO30. white: sea or                                 |
|    | vegetation, gray: other land surfaces, black: clouds                                                          |
| 68 | Scaling factor $\gamma$ image for the test area                                                               |
| 69 | Difference of the surface brightness temperature at ground level between the WVS and                          |
|    | the normal methods. $\ldots$ |
| 70 | Error map of the sea surface emissivity at channel 5 derived from the WVS method. The                         |
|    | truth is the laboratory emissivity for sea water $(= 0.9859)$                                                 |
| 71 | Error map of the sea surface emissivity at channel 5 derived from the normal method.                          |
|    | The truth is the laboratory emissivity for sea water $(= 0.9859)$                                             |
| 72 | Frequency distribution of the error of the sea surface emissivity at channel 5 derived from                   |
|    | the WVS and the normal methods. The EMC/WVD equation for the lower limit of                                   |
|    | emissivity of 0.95 was used                                                                                   |
| 73 | Frequency distribution of the error of the sea surface emissivity at channel 5 derived from                   |
|    | the WVS and the normal methods. The $\mathrm{EMC}/\mathrm{WVD}$ equation for the lower limit of               |
|    | emissivity of 0.97 was used                                                                                   |
| 74 | Emissivity at channel 5 of vegetation surfaces derived from the WVS method. Emissivity                        |
|    | at channel 4 of vegetation surfaces was assumed to be 0.97                                                    |
| 75 | Emissivity at channel 5 of vegetation surfaces derived from the normal method. Emissivity                     |
|    | at channel 4 of vegetation surfaces was assumed to be 0.97                                                    |

| 76 | Frequency distribution of the emissivity at channel 5 of vegetation surfaces derived from |
|----|-------------------------------------------------------------------------------------------|
|    | the WVS and the normal methods. Emissivity at channel 4 of vegetation surfaces was        |
|    | assumed to be 0.97. The EMC/WVD equation for the lower limit of emissivity of $0.95$      |
|    | was used                                                                                  |
| 77 | Geopotential height at 850 hPa pressure level from GDAS product for $1998/9/9/00Z$ 212    |

- Air temperature at 850 hPa pressure level from GDAS product for 1998/9/9/00Z. . . . . 213
- Relative humidity at 850 hPa pressure level from GDAS product for 1998/9/9/00Z.... 213

# 表目次

| 1        | Summary of differential absorption algorithms for estimating LST ( $T_s$ , $T_4$ and $T_5$ are in                    |    |
|----------|----------------------------------------------------------------------------------------------------------------------|----|
|          | Kelvin, $T_0 = 273.15$ K, $\epsilon = (\epsilon_4 + \epsilon_5)/2$ , $\Delta \epsilon = (\epsilon_4 - \epsilon_5)$ ) | 43 |
| <b>2</b> | Accuracy of the profiles of air temperature and water vapor measured by radiosonde or                                |    |
|          | sounder [49]. T: temperature, W: water vapor, h: horizontal, v: vertical, t: time, MPL:                              |    |
|          | mandatory pressure levels                                                                                            | 46 |
| 3        | List of samples included in the emissivity model.                                                                    | 61 |
| 4        | Change in the sensor brightness temperature for $50\%$ increase in the total ozone amount                            |    |
|          | for the six standard model atmospheres (sensor altitude: 100km, surface altitude: 0km,                               |    |
|          | looking angle: 0°, LST: surface air temperature + 10K)                                                               | 62 |
| 5        | RMSE [K] of the surface brightness temperature at surface level derived by atmospheric                               |    |
|          | correction as a function of a typical error on input profile                                                         | 65 |
| 6        | Error on input profile giving the impact of 1K to the RMSE of the surface brightness                                 |    |
|          | temperature at surface level                                                                                         | 65 |
| 7        | Summary of the AVHRR data and the field experiments at Lake Kasumigaura; ELV is                                      |    |
|          | the satellite elevation, WV is the total water vapor amount along the optical path, $N_{buoy}$                       |    |
|          | is the number of buoys available, and $\Delta T$ is the skin temperature measurement                                 | 67 |
| 8        | The lake surface meteorological data, the buoy temperature and the skin effect $\Delta T$ at                         |    |
|          | each overpass time. The air temperatures and the wind speeds in () were measured by the                              |    |
|          | Automated Meteorological Data Acquisition System (AMeDAS) at Tsuchiura, and the                                      |    |
|          | relative humidities in () were measured by the Aerological Observatory at Tateno. The                                |    |
|          | unit of temperature is in degree C                                                                                   | 69 |
| 9        | RMSE (K) of each algorithm under the conditions of sea observations. The specification                               |    |
|          | of NE $\Delta$ T is 0.12 K for AVHRR and 0.3 K for ASTER                                                             | 87 |
| 10       | RMSEs [K] of the MC and the EMC methods for AVHRR and ASTER for various lower                                        |    |
|          | limits of emissivity. The upper limit of emissivity is unity for all cases                                           | 89 |
| 11       | RMSEs [K] of the MC/WVD and the EMC/WVD methods for AVHRR and ASTER for                                              |    |
|          | various lower limits of emissivity. The upper limit of emissivity is unity for all cases. The                        |    |
|          | uncertainty of water vapor amount is $1.0 \text{ g/cm}^2$ .                                                          | 92 |
| 12       | Coefficients of each method for AVHRR. The lower limit of emissivity is 0.65                                         | 93 |
| 13       | Coefficients of each method for ASTER. The lower limit of emissivity is 0.65.                                        | 94 |
| 14       | Coefficients of each method for AVHRR. The lower limit of emissivity is 0.95                                         | 95 |
| 15       | Coefficients of each method for ASTER. The lower limit of emissivity is 0.95                                         | 95 |
| 16       | Coefficients of each method for AVHRR. The lower limit of emissivity is 0.98                                         | 96 |

| 17 | Coefficients of each method for ASTER. The lower limit of emissivity is 0.98 96                                                                         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18 | Contribution ratios of various factors to the error of each method in the case that the                                                                 |
|    | lower limit of emissivity is 0.65; $\epsilon_{min}$ , $\epsilon_{avg}$ and $\epsilon_{stdev}$ are the minimum, the mean and the                         |
|    | standard deviation of emissivity respectively, W is the water vapor amount, elev is the                                                                 |
|    | elevation, $T_a$ is the air temperature at surface, and $\delta LST$ is LST minus $T_a$                                                                 |
| 19 | Contribution ratios of various factors to the error of each method in the case that the                                                                 |
|    | lower limit of emissivity is 0.95. Each factor is the same with that in Table 18 98                                                                     |
| 20 | Contribution ratios of various factors to the error of each method in the case that the                                                                 |
|    | lower limit of emissivity is 0.98. Each factor is the same with that in Table 18 98                                                                     |
| 21 | RMSE [K] of water-vapor-dependent algorithms for various uncertainties of the water                                                                     |
|    | vapor amount. The lower limit of emissivity is 0.95.                                                                                                    |
| 22 | RMSE [K] of the MC and the EMC equations for various LST offset ranges. The lower                                                                       |
|    | limit of emissivity is 0.95                                                                                                                             |
| 23 | $\mathrm{RMSE}\ [\mathrm{K}]$ of the $\mathrm{MC}/\mathrm{WVD}$ and the $\mathrm{EMC}/\mathrm{WVD}$ equations for various $\mathrm{LST}$ offset ranges. |
|    | The lower limit of emissivity is 0.95                                                                                                                   |
| 24 | RMSE [K] of the MC and the EMC equations for various NE $\Delta$ Ts. The lower limit of                                                                 |
|    | emissivity is 0.95                                                                                                                                      |
| 25 | RMSE [K] of the MC/WVD and the EMC/WVD equations for various NE $\Delta$ Ts. The                                                                        |
|    | lower limit of emissivity is 0.95                                                                                                                       |
| 26 | Errors [K] of the EMC/WVD method as a function of $\delta LST$ for AVHRR channels 4 and                                                                 |
|    | 5. The lower limit of emissivity is 0.95                                                                                                                |
| 27 | Errors [K] of the EMC/WVD method as a function of $\delta$ LST for ASTER channels 10, 12                                                                |
|    | and 14. The lower limit of emissivity is 0.95.                                                                                                          |
| 28 | RMSE [K] of the $\delta$ LST-independent and the $\delta$ LST-dependent EMC/WVD methods for                                                             |
|    | AVHRR channels. The lower limit of emissivity is 0.95.                                                                                                  |
| 29 | RMSE [K] of the $\delta$ LST-independent and the $\delta$ LST-dependent EMC/WVD methods for                                                             |
|    | ASTER channels. The lower limit of emissivity is 0.95                                                                                                   |
| 30 | RMSE [K] of the MC and the EMC equations optimized to view angle $0^{\circ}$ as a function                                                              |
|    | of view angle for AVHRR and ASTER. The lower limit of emissivity is 0.95                                                                                |
| 31 | RMSE [K] of the MC/WVD and the EMC/WVD equations optimized to view angle $0^{\circ}$                                                                    |
|    | as a function of view angle for AVHRR and ASTER. The lower limit of emissivity is $0.95$ . 112                                                          |
| 32 | Regression coefficients and RMSE of Eq. ( 6.7) for AVHRR and ASTER. The unit of                                                                         |
|    | RMSE is in $W/m^2/sr/\mu m$                                                                                                                             |

| 33 | RMSE of Eq. ( 6.12) for several channel-combinations for AVHRR. The unit of the                                                                                           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | radiance is in $W/m^2/sr/\mu m$                                                                                                                                           |
| 34 | Coefficients of Eq. ( $6.12$ ) for several channel-combinations for AVHRR. The unit of the                                                                                |
|    | radiance is in $W/m^2/sr/\mu m124$                                                                                                                                        |
| 35 | RMSE of Eq. ( $6.12$ ) for several channel-combinations for ASTER. The unit of the radi-                                                                                  |
|    | ance is in $W/m^2/sr/\mu m$                                                                                                                                               |
| 36 | Coefficients of Eq. ( $6.12$ ) for several channel-combinations for ASTER (transmittance) $126$                                                                           |
| 37 | Coefficients of Eq. $(6.12)$ for several channel-combinations for ASTER. (path radiance).                                                                                 |
|    | The unit of the radiance is in $W/m^2/sr/\mu m127$                                                                                                                        |
| 38 | Coefficients of Eq. $(6.12)$ for several channel-combinations for ASTER. (sky radiance).                                                                                  |
|    | The unit of the radiance is in $W/m^2/sr/\mu m$ 128                                                                                                                       |
| 39 | RMSE [K] of the approach 1 for several standard deviations of $\delta$ LST. The mean of $\delta$ LST                                                                      |
|    | is $+5K$ . Emissivity sample is no. 92 (see Table 3)                                                                                                                      |
| 40 | RMSE [K] of the approach 2 for several standard deviations of $\delta$ LST. The mean of $\delta$ LST                                                                      |
|    | is $+5K$ . Emissivity sample is no. 92 (see Table 3). $\dots \dots \dots$ |
| 41 | Comparison between the temperature $T_x$ at an intersection and the surface air tempera-                                                                                  |
|    | ture $T_{air}$ for 6 model atmospheres for AVHRR channel 4 in the case that an area has two                                                                               |
|    | elevations $0 \mathrm{km}$ and $0.5 \mathrm{km}$ . The model case (see Figs. 53 & 54) for each atmosphere with                                                            |
|    | $\delta LST = 0$ is also shown. TRM: Tropical model, MLS: Midlatitude summer, MLW: Mid-                                                                                   |
|    | latitude winter, SAS: Subarctic summer, SAW: Subarctic winter, USS: 1976 US standard. 140                                                                                 |
| 42 | 10  model cases that an area has one or two surface materials. The average and the standard                                                                               |
|    | deviation of $\delta$ LST were given for each material (unit: Kelvin). S is the number of $\delta$ LST                                                                    |
|    | generated. rock: granite.h1 (no.2), soil: mollisols (no.74), veg.: white pine (no.81), water:                                                                             |
|    | distwater (no.93)                                                                                                                                                         |
| 43 | Channel emissivity for each material. The minimum emissivity is shown in bold face 141                                                                                    |
| 44 | RMSE [K] of the GP method with the $EMC/WVD$ method for the 10 model cases. After                                                                                         |
|    | the atmospheric effect parameters at each channel were estimated for each case, the $\mathbf{RMSE}$                                                                       |
|    | was calculated using the original emissivity model. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 142$                                                  |
| 45 | Band model parameter a and RMSE of $\tau(0.9)$ for AVHRR and ASTER                                                                                                        |
| 46 | RMSE of the WVS method based on; (1) using the $\gamma$ of specific channel, (2) using the                                                                                |
|    | average of $\gamma$ among channels, and (3) using $\gamma$ of each channel (channel-dependent). The                                                                       |
|    | $\gamma$ values for $P_{true}$ , $P_a$ and $P_b$ are 0.7, 1.0 and 0.7 respectively. The sensor is AVHRR, and                                                              |
|    | the NE $\Delta$ T is 0.12 K                                                                                                                                               |

| 47 | RMSE of the WVS method based on; (1) using the $\gamma$ of specific channel, (2) using the               |
|----|----------------------------------------------------------------------------------------------------------|
|    | average of $\gamma$ among channels, and (3) using $\gamma$ of each channel (channel-dependent). The      |
|    | $\gamma$ values for $P_{true},P_a$ and $P_b$ are 0.7, 1.0 and 0.7 respectively. The sensor is ASTER, and |
|    | the NE $\Delta$ T is 0.3 K                                                                               |
| 48 | RMSE of the WVS and the normal methods for AVHRR and ASTER as a function of                              |
|    | $\gamma_{true}$ with $\gamma_a = 1.0$ and $\gamma_b = 0.7$                                               |
| 49 | RMSE of the WVS and the normal methods for AVHRR and ASTER as a function of                              |
|    | $\gamma_{true}$ with $\gamma_a=0.7$ and $\gamma_b=1.0.$                                                  |
| 50 | ${ m RMSE}$ of the WVS and the normal methods for 6 cases that water-vapor and air-temperature           |
|    | profiles include errors                                                                                  |
| 51 | RMSE of the WVS and the normal methods in the case that true profiles are different in                   |
|    | shape from profiles given atmospheric correction                                                         |
| 52 | RMSE of the WVS and the normal methods for ASTER channels as a function of $\gamma_{true}$               |
|    | with $\gamma_a = 1.0$ and $\gamma_b = 0.7$ . The general model was used                                  |
| 53 | RMSE of the WVS and the normal methods for ASTER channels as a function of $\gamma_{true}$               |
|    | with $\gamma_a=0.7$ and $\gamma_b=1.0$ . The general model was used                                      |
| 54 | ${ m RMSE}$ of the WVS and the normal methods for 6 cases that water-vapor and air-temperature           |
|    | profiles include errors. The general model was used.                                                     |
| 55 | RMSE of the WVS and the normal methods in the case that true profiles are different in                   |
|    | shape from profiles given atmospheric correction. The general model was used. $\ldots$                   |
|    |                                                                                                          |

### 1 序論

近年,地球温暖化や砂漠化,オゾン層の破壊,酸性雨といった地球規模の環境変動の問題が取りざたさ れており,コンピュータシミュレーションによるそれらの将来予測への期待が高まっている。しかしなが ら,現在人類が持ち合わせている地球システムに対する理解は信頼し得る予測を行うためには不充分であ り,このことは米国航空宇宙局(NASA)の提唱する"惑星地球へのミッション"(MTPE)[1]の基本理念 にも表れている。MTPEでは上記の正しい現状認識の下,地球上の基本的な物理学的・化学的・生物学的 現象に注目し,地球の様々な物質量や状態量を総合的に観測することにより,地球システムを正しく理解 することを目指している。そして,MTPEの最も重要なプロジェクトである"地球観測システム(EOS)" では,15年に渡って14機(中型9機,小型5機)の地球観測衛星を順次打ち上げ,それらから得られる 膨大な観測データを効率良く処理して貯え,地球システムの理解に貢献することを目指している。

このような情勢の下,いまや地球観測の中核技術となった衛星リモートセンシングに対しては,従来に も増して高精度なデータの提供が要求されている。衛星リモートセンシングは広域性や同時性,反復性と いった他の観測手段に無い優れた特長を有しており,とりわけ,2次元分布を瞬時に観測できる点や全球を くまなく観測できる点は他の観測手段の追随を許さない優れた特長である。しかし,一般にセンサの観測 パラメータは多くのユーザーが必要とする大気や地表の諸パラメータとは異なり,これらを得るには,通 常,逆解析(inversion)が必要となる。そして,ユーザーの精度に対する要求が高まるほど,ハードウェ アの高性能化と共にデータ処理技術の高度化も要求される。本論文で扱うリモートセンシングによる地表 面温度(LST)観測もそうした経緯を辿ってきている。

LST は様々なスケールにおいて地表面の物理過程を支配し,大気・地表間の様々な相互干渉や放射収支 を決定づける上で極めて重要であることから,大気や地表を扱う多くの分野で必要とされるパラメータで ある [2]。LST は熱赤外域(波長 8~14µm 付近)を利用するリモートセンシングによって観測することが でき,そのデータは気象学 [3],気候学 [4],[5],水文学 [6],地理学 [7]-[9],火山学 [10],農学 [11],[12],地 質学 [13],[14],都市工学 [15] など,様々な分野に利用されてきた。そして,これら諸分野での研究が進む につれ,提供される LST データもより高い品質であることが要求されてきている。例えば EOS プロジェ クトでは地球システムの理解をより深めるための LST の精度として 1K を要求している [1]。

この 1K という精度は,実際のところ,気象衛星 NOAA 搭載の AVHRR などの従来センサによる実績 を考慮するとかなり厳しい要求である [16]。熱赤外センサの観測輝度には大気の影響が少なからず含まれ ているため,表面温度を得るにはこの効果を除去する"大気補正 (atmospheric correction)"が必要であ

14

るが、上記の理由はLST 観測における大気補正の困難さに関係している。具体的には、LST 観測では海表 面温度(SST)観測で極めて有効な大気補正法であるスプリットウィンドウ(SW)法[17], あるいはそれ の拡張であるマルチチャネル(MC)法[18]が単純には利用できないことに関係している。この主たる原 因は陸域における表面放射率 (surface emissivity)の多様性にある。つまり, これらの手法は大気吸収の 異なるチャネル間の観測輝度温度差がそのときの大気効果を説明することを根拠とするものであるが,大 気効果と同様に放射率のチャネル依存性もまた観測輝度温度差に大きく寄与してしまうため、海域と違っ て放射率が多様である陸域では大きな誤差を生じてしまうのである。Becker (1987)は AVHRR の熱赤外 2 チャネルを使った SW 法によって LST を  $0.5\mathrm{K}$  の精度で得るためには , 2 チャネルの放射率の平均値を 0.005の精度で,チャネル間の放射率の差を0.0007の精度で事前に知っていなくてはならないことを述べ, その困難さを示した [19]。この放射率の寄与に対しては,その後,Ottléら(1992)がもう少し小さいこと を示したが [20], Becker の研究は LST 推定アルゴリズムの研究者に改めて放射率効果の重要性を示した。 これまでに開発された LST 推定アルゴリズムのうち, SW 法を改良したタイプのものは, いずれも放射率 の高精度な事前情報を必要としているが [21]-[27],陸水域や雪氷域,密な植生域等を除く地域では放射率 は一般に未知であり、また放射率は風化や含水量によっても変動することから [28], [29]、これらの手法を 定常処理システムへ実装することは困難であると考えられる。一方,1つの画素を複数の入射角で観測す ることにより大気補正を行う手法で,原理的にはSW法と等価な手法[30]であるデュアルアングル(Dual Angle) 法/マルチアングル (Multi-angle) 法は, ERS 搭載の ATSR に対する大気補正において利用され ているが[31],[32],これらの方法に対しても放射率の角度依存性[33]による同種の問題があるのに加えて, 陰影効果によるLSTの角度依存性の問題 [34] やミスレジストレーションの問題など,固有の問題も無視で きない。なお,本論文ではSW法/MC法やデュアルアングル法/マルチアングル法を総称して差分吸収 アルゴリズム (Differential absorption algorithm) と呼ぶことにする。

上記以外の大気補正法には,昼夜の衛星データを組み合わせるLiら(1993)やWanら(1997)の昼夜 アルゴリズム(Day/night algorithm)[35],[36],そして単バンドアルゴリズム(Single band algorithm) [37]-[40] がある。昼夜アルゴリズムは放射率が昼夜間で変動しないと仮定することによって未知数を減ら し,観測方程式を連立させることによってLSTを含む種々のパラメータを同時に解くもので,空間分解能 が1km 程度のAVHRR やEOS / Terra 搭載の MODIS を対象に開発された。昼夜アルゴリズムは放射率 も同時に得られるという長所の反面,大気補正に2回の観測データが必要である問題や両データ間のミス レジストレーションによる誤差の問題,2時刻間で放射率を一定と置く仮定の妥当性の問題などがある。ミ

15

スレジストレーションの問題については,空間分解能が90mのTerra/ASTERのような高空間分解能センサの場合には著しく誤差を生む可能性があり,これを避けるには空間平均などが必要である[35]。また, 放射率に対する仮定の妥当性の問題については,例えば降雨や夜間の結露のような放射率を変える自然現 象によって精度が低下することが予想される。さらに,昼夜アルゴリズムは,太陽の反射光を含む3.5~ 4.2µm帯のチャネルを効果的に利用することを意図しているため,この帯域にチャネルを持たないASTER のようなセンサには適用は難しい。

一方の単バンドアルゴリズムは,観測時の大気情報を基に放射伝達計算する方法で,大気補正後に温度・ 放射率分離[38].[41]-[48] を行えばLST が得られる。放射伝達計算上重要な水蒸気及び気温の各プロファイ ルは,通常,ラジオゾンデ[37].[38] やサウンダ[20].[39] の各観測データや全球解析データ[40] が利用され る。ラジオゾンデは最も精度が高い観測手段であるが,定常観測の頻度が全球で1日2回であるのと観測 所の地域的な偏りが大きいことから[49],全球対応の定常処理には適さない。サウンダは観測データに地 域的な偏りはあまり無く,同一衛星にサウンダが搭載されていればこれを利用することによって,そうで なければ複数の衛星のサウンダを有機的に利用することによって定常処理に組み込み得るが,誤差相関に よる精度低下や荷重関数の広がりによる鉛直分解能の低下[49],観測時刻の違いによる誤差などに注意す る必要がある。一方,全球解析データは,様々な観測値と予報値を高度な品質管理に基づいて融合し,各 解析時刻における全球の各解析点に対して最も信頼度の高い大気情報を例外なく与える。こうした特長か ら定常処理に適し,ASTER/TIR の標準大気補正でも1オブションとしてNOAA / NCEP の全球データ 同化システム GDAS[50] のプロダクトを採用している[40]。但し,全球解析データには,解析時刻が6時 間間隔で解析点の水平格子間隔が最高でも0.56°程度[51]と時空間分解能が低いことや場所によってデー タの信頼度が異なることなどの問題があるが,現状ではそれを用いた単パンドアルゴリズムの検証はほと んど成されておらず,その有効性については不明な点が多い。

以上をまとめると次のようになる。

- 差分吸収アルゴリズムをLST 推定に利用するには放射率の高精度な事前情報が必要であるが、このような適用上の制約条件は定常処理システムへの実装に不利である。
- 昼夜アルゴリズムでは、大気補正を行うために2回の観測データを必要とすること、ミスレジストレーションによって誤差を生じやすいこと、昼夜間で放射率を一定とする仮定の妥当性に問題があること、3.5~4.2µm帯のチャネルを必要とすること、などの特徴が一般センサに対する定常処理システムへの実装に不利である。



Figure 1: Relationships among chapters in the present thesis.

 単バンドアルゴリズムは観測時の大気情報をいかに与えられるかが適用性を考える上で最も重要な ポイントである。定常処理システムに最も適した大気データは全球解析データであるが,このデータ に基づく単バンドアルゴリズムは精度にやや疑問があり,また実際に検証した例も無い。

こうした背景を踏まえ,本論文では,ASTER/TIR などの高分解能型センサも含む熱赤外マルチスペク トルセンサの陸域観測データに適用可能で,高い精度と高い適用性を持つ実用的な大気補正法を開発する ことを目的とする。なお,開発する手法は実用性を考慮して1回の観測データに対して適用できるものと し,また,大気補正後にTE分離処理を行うことでLSTと共に放射率の推定も可能なものとする。

本章に続く第2章では,熱赤外リモートセンシングの原理とそのデータ処理について述べる。特にこれ までに提案されたLST推定アルゴリズムについて詳細に述べる。第3章では,本論文の各所で使用するシ ミュレーションモデルの構築を行う。第4章では,高い適用性を持つが,精度検証がほとんど成されていな い「全球解析データに基づく単バンドアルゴリズム」について,その精度をシミュレーション及びAVHRR データに基づいて検証する。第5章では,陸域観測に適用可能な差分吸収アルゴリズムとして「EMC法」 や「EMC/WVD法」などを新たに提案し,それらの精度をシミュレーションに基づいて検証する。第6 章では,灰色画素(水や植生,一部の土壌等が占める画素)に「EMC法」又は「EMC/WVD法」を適用 して回帰分析を行うことにより大気効果パラメータ(本論文では,透過率,光路輝度,天空輝度の総称) を自己推定する「Gray Pixel(GP)法」を新たに提案し,その精度をシミュレーションに基づいて検証す る。第7章では,従来手法の「全球解析データに基づく単バンドアルゴリズム」,本論文で新たに提案す る「EMC/WVD法」及び「GP法」,さらに数値予報における客観解析法の1つである「最適内挿法」の 4手法を融合した「Water Vapor Scaling(WVS)法」を新たに提案し,その精度をシミュレーションや AVHRR データに基づいて検証する。WVS法は全球解析データに含まれる誤差を画素単位で除去して大 気効果パラメータを計算する手法であり,高い精度と高い適用性を兼ね備えた最も実用的な手法として本 論文が提案するものである。そして最後に,第8章で結論を述べる。以上で述べた各章の繋がりをFig.1 に模式的に示す。

# 2 基礎理論

### 2.1 地表面の熱赤外放射特性

#### 2.1.1 放射の基本量

放射の強さを記述する基本物理量は放射束 (radiant flux)  $\Phi$  であり,単位時間当りの放射エネルギー (単位は watt [W]) として定義される。単位波長当りの放射束を分光放射束 (spectral radiant flux) といい,  $\Phi_{\lambda}$  [W  $\mu$ m<sup>-1</sup>] で表す。

微小面 dA を通してその面法線と角度  $\theta$  をなす方向の微小立体角  $d\Omega$  内を進む放射束 (Fig. 2 参照)を 放射輝度 (radiance) といい, I [W m<sup>-2</sup> sr<sup>-1</sup>] で表す。

$$I = d^2 \Phi / \cos \theta dA d\Omega \tag{2.1}$$

また,単位波長当りの放射輝度を分光放射輝度(spectral radiance)といい, $I_{\lambda}$  [W m<sup>-2</sup> sr<sup>-1</sup>  $\mu$ m<sup>-1</sup>] で表す。

$$I_{\lambda} = dI/d\lambda \tag{2.2}$$

微小面 dA を通してその面法線を天頂軸とする上半球(立体角 $2\pi$ )内を進む放射束(Fig. 2 参照)を放 射束密度(radiant flux density)といい, F [W m<sup>-2</sup>]で表す。

$$F = d\Phi/dA \tag{2.3}$$

また,単位波長当りの放射束密度を分光放射束密度(spectral radiant flux density)といい,  $F_{\lambda}$  [Wm<sup>-2</sup> $\mu$ m<sup>-1</sup>] で表す。

$$F_{\lambda} = dF/d\lambda \tag{2.4}$$

放射束密度は半球内から微小面に入射する放射に対しては放射照度(irradiance), 微小面から半球内に 射出する放射に対しては放射発度(radiant exitance)とも呼ばれる。放射束密度 F は放射輝度 I を用い て次式で表される。

$$F = \int_{\mathbf{h}} I \cos \theta d\Omega = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi/2} I(\theta \ \varphi) \cos \theta \sin \theta d\theta d\varphi$$
(2.5)

ここで,h は半球を表し, $\varphi$  は方位角である。I が方向によって変わらない場合を等方性放射といい,この とき式 (2.5)の関係から  $F = \pi I$  が成立する。  $F \ge I$  の間のこれらの関係は分光の場合もそのまま成立 する。



Figure 2: Radiance (left) and radiant flux density (right).

#### 2.1.2 黒体放射と太陽・地球放射

絶対 0 度以外の全ての物体は常に放射をしている。あらゆる波長の電磁波を吸収し,かつその温度にお ける最高のエネルギーを放射する理想物体を黒体(black body)と呼ぶ。黒体放射は空洞に小さい孔を開 けることによって得られ,その分光放射輝度は波長 λ [μm] 及び温度 T [K] の関数として次式で表される。

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5 \left[\exp\left(\frac{hc}{k\lambda T}\right) - 1\right]}$$
(2.6)

ここで, $h = 6.6260755 \times 10^{-34}$  [J s] はプランク定数, $k = 1.380658 \times 10^{-23}$  [J K<sup>-1</sup>] はボルツマン定数,  $c = 2.99792458 \times 10^8$  [m s<sup>-1</sup>] は真空中の光の速さである。式(2.6) をプランク関数(Planck's function) と呼ぶ。

ある放射について,それと等価なエネルギーを発する黒体の温度をその放射の輝度温度(brightness temperature)と呼ぶ。輝度温度はプランク関数のTに関する逆関数によって計算され,一般に波長の関数である。

黒体の放射束密度,すなわち黒体の単位面積から半球内に放射される全エネルギーは,式(2.6)を全波 長及び全半球空間で積分することによって得られる次式によって与えられる。

$$F = \sigma T^4 \tag{2.7}$$

式 (2.7) をステファン・ボルツマンの法則(Stefan-Boltzmann's law)と呼び,  $\sigma = 5.67051 \times 10^{-8} [Wm^{-2}K^{-4}]$ をステファン・ボルツマン定数と呼ぶ。

プランク関数には各温度 *T* で極大を取る特有な波長  $\lambda_{\max}$  が存在する。この  $\lambda_{\max}$  は  $(\partial B_{\lambda}(T)/\partial \lambda)_{T} = 0$ から導出される次式によって与えられる。

$$\lambda_{\rm max} T = 2897.79 \,[\mu {\rm m \, K}] \tag{2.8}$$



Figure 3: Spectral radiances at the Earth surface from the Sun and the Earth in the case that the Sun and the Earth are assumed to be black bodies at 5770K and 288K respectively. Atmospheric effects are not included.

式 (2.8) をウィーンの変位則 (Wien's displacement law) と呼ぶ。式 (2.8) より,プランク関数では  $\lambda_{max}$ と T は反比例の関係にあり,温度が高いほど極大を取る波長が短波長側へシフトすることが分かる。この ことは次に述べるように光学リモートセンシングの原理に重要な関わりを持っている。すなわち,自然界 に存在する電磁波を情報伝達媒体として利用する受動型リモートセンシングでは,利用可能な電磁波の放 射源は太陽及び地球に限られる。今,太陽及び地球をそれぞれ5770K 及び 288K の黒体と見なすと,地球 表面における太陽放射と地球放射のエネルギーの強さ(放射輝度)は Fig. 3 のようになる(ここでは大気 の影響は考慮していない)。図より,波長 4 $\mu$ m 付近を境にして短波長側では太陽放射が,長波長側では地 球放射が支配的であることが分かる。このことは,例えば波長 0.4~1 $\mu$ m 付近を観測する可視・近赤外リ モートセンシングでは太陽が主たる放射源であり,波長 8~14 $\mu$ m 付近を観測する熱赤外リモートセンシン グでは地球が主たる放射源であることを意味している。 実在物体による電磁波の放射は黒体のそれより小さい。黒体に対するその放射効率を記述する量を放 射率(emissivity)  $\epsilon$  と呼び,"物体と等温の黒体が射出する放射束密度"に対する"物体が射出する放射 束密度"の比として定義される。また,分光放射率(spectral emissivity)  $\epsilon_{\lambda}$  も同様に物体と黒体の分光 放射束密度の比として定義される。一方,反射率 r (reflectance),吸収率  $\alpha$  (absorptance),透過率  $\tau$ (transmittance)はそれぞれ"物体に入射する放射束"に対する"反射,吸収,透過する放射束"の比と して定義される。同様に分光放射束を用いて定義したものが分光反射率  $r_{\lambda}$  (spectral reflectance),分光 吸収率  $\alpha_{\lambda}$  (spectral absorptance),分光透過率  $\tau_{\lambda}$  (spectral transmittance)である。

今,物体が熱力学的平衡状態にあるとすると,物体の放射率  $\epsilon$  と吸収率  $\alpha$  は等しい( $\epsilon = \alpha$ )。この関係 をキルヒホッフの法則(Kirchhoff's law)という。反射率 r,吸収率  $\alpha$ ,透過率  $\tau$ の間には,エネルギー保 存則によって  $r + \alpha + \tau = 1$  が成立するので,地表面のような不透明体( $\tau = 0$ )と見なせる物体について は次式が成立する。

$$\epsilon = 1 - r \tag{2.9}$$

なお,これらの関係は分光の場合も同様である。

さて,固体の放射や反射の現象を一般的に記述するにはそれらの角度依存性も考慮する必要がある。まず,式(2.1)より,微小面 dA にその面法線と角度  $\theta_i$  をなす方向の立体角  $d\Omega_i$  内から入射する放射束  $d\Phi_i$  を次式によって表す。

$$d\Phi_i = I_i \cos\theta_i dA d\Omega_i \tag{2.10}$$

ここで  $I_i$  は入射光の放射輝度である。完全鏡面反射を除く一般的な場合では,放射束  $d\Phi_i$ の反射光は半球内(立体角  $2\pi$ )に分布する。放射束  $d\Phi_i$ の  $(\theta_r, \varphi_r)$ 方向への反射光の放射束  $d\Phi_r$  は次式で表わされる。

$$d\Phi_r = dI_r \cos\theta_r dA d\Omega_r \tag{2.11}$$

ここで  $dI_r$  は放射束  $d\Phi_i$  の反射光の放射輝度であり,正味の放射輝度は半球内の他の放射源からの放射束 の反射光の放射輝度を加えたものとなる。ここで,式(2.10)と式(2.11)の比を取ることによって得られ る反射率を dr とすると次式が成り立つ。

$$dr = \frac{d\Phi_r}{d\Phi_i} = \frac{dI_r \cos\theta_r dA d\Omega_r}{I_i \cos\theta_i dA d\Omega_i} = f(\theta_i, \varphi_i, \theta_r, \varphi_r) \cos\theta_r d\Omega_r$$
(2.12)

ここで f [sr<sup>-1</sup>] は双方向反射分布関数(BRDF)であり,入射光の放射束密度に対する反射光の放射輝度の比として定義される。

$$f(\theta_i, \varphi_i, \theta_r, \varphi_r) \equiv \frac{dI_r}{I_i \cos \theta_i d\Omega_i} = \frac{dI_r}{dF_i}$$
(2.13)

BRDF は入射光の強度やジオメトリに依存せず,媒質のみに依存するパラメータである。なお,BRDF に は次の性質が知られている。

$$f(\theta_1, \,\varphi_1, \,\theta_2, \,\varphi_2) = f(\theta_2, \,\varphi_2, \,\theta_1, \,\varphi_1) \tag{2.14}$$

媒質上のある点の BRDF とその点への入射光の放射輝度  $I_i$  の角度分布が与えられているとき,  $(\theta_r, \varphi_r)$ 方向への反射光の放射輝度  $I_r$  は次式で表わされる。

$$I_r(\theta_r, \varphi_r) = \int_{\mathbf{h}} f(\theta_i, \varphi_i, \theta_r, \varphi_r) I_i(\theta_i, \varphi_i) \cos \theta_i d\Omega_i$$
(2.15)

一方,  $(\theta_i, \varphi_i)$ 方向からの入射光に対する半球内への反射光の比 $r_{di}$ ,及び半球からの等方入射光に対する  $(\theta_r, \varphi_r)$ 方向への反射光の比 $r_{dr}$ はそれぞれ次式を満たす。

$$r_{di}(\theta_i, \varphi_i) = \int_{\mathbf{h}} f(\theta_i, \varphi_i, \theta_r, \varphi_r) \cos \theta_r d\Omega_r$$
(2.16)

$$r_{dr}(\theta_r, \varphi_r) = \int_{\mathbf{h}} f(\theta_i, \varphi_i, \theta_r, \varphi_r) \cos \theta_i d\Omega_i$$
(2.17)

さらに式 (2.14)の関係から,次式が成り立つ。

$$r_{di}(\theta, \varphi) = r_{dr}(\theta, \varphi) = r_d(\theta, \varphi) = \int_{\mathbf{h}} f(\theta', \varphi', \theta, \varphi) \cos \theta' d\Omega'$$
(2.18)

 $r_d$  は方向性反射率 (directional reflectance) である。

式(2.9)のキルヒホッフの法則は同一方向についてのみ成立する。すなわち,

$$\epsilon_d(\theta, \varphi) = \alpha_d(\theta, \varphi) = 1 - r_d(\theta, \varphi) = 1 - \int_{\mathbf{h}} f(\theta', \varphi', \theta, \varphi) \cos \theta' d\Omega'$$
(2.19)

である。ここで,  $\epsilon_d$  は方向性放射率(directional emissivity),  $\alpha_d$  は方向性吸収率(directional absoptance) である。

なお,半球からの等方入射光に対する全反射率rは方向性反射率r<sub>d</sub>を用いて次式で表わされる。

$$r = \frac{d\Phi_r}{d\Phi_i} = \frac{dA \int_{\rm h} I_r \cos\theta d\Omega}{dA \int_{\rm h} I_i \cos\theta d\Omega} = \frac{I_i \int_{\rm h} r_d(\theta, \varphi) \cos\theta d\Omega}{I_i \int_{\rm h} \cos\theta d\Omega} = \frac{1}{\pi} \int_{\rm h} r_d(\theta, \varphi) \cos\theta d\Omega \qquad (2.20)$$

また,反射率の角度依存性がない場合,すなわち BRDF 及び方向性反射率が角度に依存しない場合には, 任意の角度分布を持つ入射光に対して,BRDFf,方向性反射率 rd,全反射率 r の間には次式が成り立つ。

$$r = r_d = \pi f \tag{2.21}$$

#### 2.1.4 地表面物質の熱赤外分光特性

地表面物質の熱赤外分光特性については,1965年に発表された Lyon の岩石に対する研究 [52] がその 後の一連の研究に大きな影響を及ぼしたと言える。そして,1980年代後半から1990年代前半にかけて は Salisbury らのグループを中心に研究が進められ,また分光データのデータベース化が進められた [28], [53]-[55]。ここでは,これらの研究報告を基に,代表的な地表面物質の熱赤外分光特性についての概略を述 べる。

まず,最も多様な熱赤外分光特性を示す地表面物質は岩石である。熱赤外域に振動吸収を有する鉱物は ケイ酸塩,炭酸塩,硫酸塩,燐酸塩,酸化物,水酸化物などであるが,このうち地殻の主要鉱物であるケ イ酸塩が岩石の熱赤外分光特性に顕著な影響を与えることが知られている。ケイ酸塩の振動吸収は,Si-O の基準伸縮振動に基づいている。ケイ酸塩の構造中では $Si^{4+}$ は常に4個の $O^{2-}$ によって配位されて $SiO_4$ 四面体を形成しているが,SiO4四面体は縮合が進むに連れて孤立群構造から鎖状構造,層構造,立体構造 へと発達し, Si-Oの密度が増加するとともに結合力が強くなる。従って,石英などの二酸化ケイ素の固有 振動は 9.0µm とケイ酸塩の中では最も短波長側にある。固有振動数付近では残留線(Reststrahlen) [56] により反射率は極大を,従って放射率は極小を示す。岩石のうち,火成岩については,酸性岩が最も短波 長側に固有振動を持ち、中性岩、塩基性岩、超塩基性岩の順に長波長側にシフトし、その波長範囲は9~  $11 \mu m$ 帯に分布する。すなわち,火成岩は $9 \sim 11 \mu m$ 帯に放射率の極小を持ち,その位置は一般に $SiO_2$ の含 有率が高いほど短波長側にあるといえる。一方,堆積岩については,堆積環境すなわち堆積物の種類が分 光特性に影響する。石英などのケイ酸塩鉱物を多く含む砕屑性堆積岩では,Si-Oの伸縮振動による9.0µm 付近の反射率の極大が分光特性において支配的であるが,炭酸塩岩では CO3の変角振動(はさみ振動)に よる 11.2μm 付近の反射率の極大が支配的となる。また,変成岩についても同様に,主にその起源である 岩石の種類が分光特性に影響し, Si-O の伸縮振動や CO3 の変角振動による反射率の極大などが支配的と なる。再結晶作用により Reststrahlen が強くなる場合もある。なお,自然の岩石は風化及び破砕によって 細片化するが,Lyon(1965)は,岩石表面の粗さが分光特性に及ぼす影響は複雑な波長依存性があるのに 対して、粒度の違いは分光コントラストに影響を及ぼすものの特性波長のシフトを起こすことはないと述 べている [52]。

土壌については,一般的にその主成分である石英によるReststrahlen が支配的な分光特性を持つ。なお,

24

粘土やシルトなどの微細粒子の含有率,有機物の含有率,含水率などは,石英による Reststrahlen の分光 コントラストを低下させる効果を持つことが知られている [28], [29]。

植生については一般にほとんど分光コントラストを持たないことが知られている。草木の葉はクチク ラ<sup>1</sup>の組成の違いにより,種類ごとに異なる分光特性を持つが,そのコントラストは最も大きいものでも数 %であり,多くの場合,2%程度である。また,しおれてくると反射率が上昇し,セルロースの分光特性に 収束する傾向がある。樹皮の分光特性はその主成分であるリグニンあるいはリグニン質セルロースのもの に近く,一般に葉よりも反射率が高い。葉や枝が落ちるとセルロースの分光特性に近くなるが,それらが 腐り始めると分光反射率はフラットになり,低下していく。なお,リモートセンシングによる植生の観測で は,葉の多重散乱による分光コントラストの低下により,黒体に近い分光特性を持つことが知られている。

水については,熱赤外域において高い吸収係数を持ち,通常,黒体と見なされるが,11.2µmより長波長 側では黒体から外れる。海水の分光特性は蒸留水のものとごくわずかだが異なる。また,風による表面形状 の変化により放射率が低下することも知られている[57]。一方,氷の分光特性は組成(塩分など)によって も変化するが,表面状態(粗さや割れ目など)による変化が大きい。表面が滑らかな場合にはReststrahlen が現われ,組成によって異なる分光特性が見られるが,表面が粗い場合にはReststrahlen はなく,組成に よる違いも小さい。

セメントやアスファルト,レンガなどの人工物については,ケイ酸塩鉱物を多く含む砂利や小石,土壌 などを原材料として使っている場合には,石英による Reststrahlen が支配的な分光特性を持つ [58]。

なお,地表面物質の熱赤外放射率の角度依存性については幾つかの研究例があり,一般に観測角が増加 するにつれて放射率が低下することが知られている[33],[57],[59]-[61]。Labed ら(1991)は,SiO<sub>2</sub>の砂 と土壌について角度変化に伴う放射率の低下を実験的に調べた結果,砂の放射率の低下は波長11µm 付近 では小さく,観測角 60°まで1.5%を超えないが,Reststrahlen 帯では顕著であること,土壌の放射率の低 下は波長依存性は小さいが,その度合いは観測角 60°で5%程度と大きいことなどを報告した[60]。

Fig. 4 は花崗岩及び水の分光放射率の室内分光測定例である [55]。これらのオリジナルデータは反射率 で,キルヒホッフの法則によって放射率に変換した。花崗岩の放射率には波長 8~10µm 付近に Si-O 結合 の Reststrahlen に基づく放射率の顕著な極小帯が見られるのが分かる。一方,水の放射率はフラットで黒 体に近いことが分かる。

<sup>1</sup> 植物の表面を保護する脂肪状あるいはろう状の物質でできた薄膜



Figure 4: Emissivity spectra of granite and water (Salisbury et al., 1992).

## 2.2 熱赤外域における放射伝達

#### 2.2.1 放射伝達の基礎

大気層を通過する電磁波は大気分子やエアロゾル,水滴・氷晶などの様々な大気粒子による吸収・散乱 によって減衰される。まず,これらの現象の概略について述べる。

物質による電磁波の吸収は量子化されたエネルギー準位間の遷移に基づいて起こる。エネルギー準位間 の遷移には様々なメカニズムがあるが,主として紫外や可視の領域では電子の電荷分布の変化,赤外領域 では原子や分子の振動状態の変化,マイクロ波領域では分子の回転状態の変化に基づく。

一方,散乱は電磁波を吸収せず,その進行方向のみを変える過程である。一般に散乱のされ方と程度は 入射する電磁波の波長に対する散乱粒子の大きさによって非常に異なる。散乱粒子が電磁波の波長より非 常に小さい場合,すなわち大気分子による散乱の場合はレイリー(Rayleigh)散乱に従う。この散乱は波 長に関して連続的に起こり,散乱強度は波長の4乗に反比例し,前方散乱と後方散乱の割合は等しい。一 方,散乱粒子が電磁波の波長と同程度の場合,すなわちエアロゾルによる散乱の場合はミー(Mie)散乱 に従う。この散乱も波長に関して連続的に起こるが,散乱強度の波長に対する依存性はレイリー散乱より 小さく,前方散乱が後方散乱より卓越する。更に,散乱粒子が電磁波の波長よりかなり大きい場合,すな わち水滴や氷晶などによる散乱の場合は幾何光学的な振る舞いをする。

なお,地表観測を目的とする受動型リモートセンシングの場合には,利用できる波長帯は大気の吸収や 散乱による減衰を受けにくい帯域に限られる。このような大気の透過性が高い帯域は一般に"大気の窓" と呼ばれる。

次に放射伝達を理論的に計算する手法について述べる。

今,気層中を進む放射の放射輝度が距離 dsを進む間に  $I_{\lambda}$  から  $I_{\lambda} + dI_{\lambda}$  になったものとする。このときのエネルギー収支は次式で表される。

$$dI_{\lambda} = -\kappa_{\lambda} I_{\lambda} \rho ds + j_{\lambda} \rho ds \tag{2.22}$$

ここで, $\rho$ は気層の密度, $\kappa_{\lambda}$ は質量消散係数, $j_{\lambda}$ は射出係数であり,右辺の第1項は減少成分,第2項は増加成分を表す。ここで $\kappa_{\lambda}$ に対する $j_{\lambda}$ の比を放射源関数(source function) $J_{\lambda}$ と定義すると,式(2.22)は

$$\frac{dI_{\lambda}}{\kappa_{\lambda}\rho ds} = -I_{\lambda} + J_{\lambda} \tag{2.23}$$

となる。式 (2.23) を放射伝達方程式 (radiative transfer equation) という。なお,大気中の放射伝達を考 える場合には,大気の各パラメータが水平方向に一様な大気,すなわち平行平板大気を仮定すると扱いや すい。このとき,式(2.23) 中の距離 s を高度 z に置き換えた次式が用いられる。

$$\mu \frac{dI_{\lambda}(z,\mu,\varphi)}{\kappa_{\lambda}\rho dz} = -I_{\lambda}(z,\mu,\varphi) + J_{\lambda}(z,\mu,\varphi)$$
(2.24)

ここで, $\mu$ はz方向から測った天頂角 $\theta$ の余弦( $\mu = \cos \theta$ ), $\varphi$ は方位角である。

放射伝達方程式に大気条件や幾何条件を与えることにより,種々の放射伝達に対応した解が得られる。 例えば,大気上端(高度Z)における上向き放射輝度は次式で与えられる。

$$I_{\lambda}(Z,\mu,\varphi) = I_{\lambda}(0,\mu,\varphi)e^{-\xi_{\lambda}(0)/\mu} + \int_{0}^{Z} J_{\lambda}(z,\mu,\varphi)e^{-\xi_{\lambda}(z)/\mu}\kappa_{\lambda}\rho dz /\mu$$
(2.25)

ここで, $\xi_{\lambda}(z)$ は光学的厚さ(optical thickness)で

$$\xi_{\lambda}(z) = \int_{z}^{\infty} \kappa_{\lambda} \rho dz \qquad (2.26)$$

で定義される。式(2.25)は宇宙から地表(高度0)を観測するセンサの観測放射輝度に対応する。

式(2.25)の右辺第1項は地表からの放射の到達成分を表す。同項中の

$$\tau_{\lambda}(\xi) = \exp\left(-\xi_{\lambda}/\mu\right) \tag{2.27}$$

は宇宙・地表間の透過率 (transmittance)で,地表からの放射が直達光路を減衰されずに通過できる割合 を示す。透過率は,均質大気を通過する放射輝度が光路に比例して指数関数的に減衰を受けることを示し, これをランバート・ブーゲー・ビーアの法則 (Lambert-Bouguer-Beer law)と呼ぶ。また,地表がランバー ト面である場合 (式 (2.21)),同項中の  $I_{\lambda}(0, \mu, \varphi)$  は次式で表される。

$$I_{\lambda}(0,\mu,\varphi) = \epsilon_{\lambda} \mathbf{B}_{\lambda}(T_0) + r_{\lambda} F_{\lambda}^{\uparrow}(0)/\pi$$
(2.28)

ここで,  $T_0$ ,  $\epsilon_\lambda$ ,  $r_\lambda$  はそれぞれ地表の温度,分光放射率,分光反射率, $F_\lambda^{\uparrow}(0)$  は地表における下向き放射 照度である。 $F_\lambda^{\uparrow}(0)$  を天空照度(sky irradiance),  $F_\lambda^{\uparrow}(0)/\pi$  を天空輝度(sky radiance)と呼ぶこともあ る。式(2.28)の右辺第1項は地表の上向き射出成分,同第2項は地表における下向き放射の反射成分であ る。可視・近赤外リモートセンシングの場合には第1項は無視できる。なお,前項で述べたように実際の 地表の放射・反射特性には角度依存性があるため, $I_\lambda(0, \mu, \varphi)$ を表す式は式(2.28)より複雑な形となる。 一方,式(2.25)の右辺第2項は直達光路中の大気からセンサ方向へ射出・散乱される放射の到達成分を 表し,光路輝度(path radiance)と呼ばれる。積分中の放射源関数  $J_\lambda$ は一般には次式で表される。

$$J_{\lambda}(z,\mu,\varphi) = \frac{a_{\lambda}}{4\pi} \int_{0}^{2\pi} \int_{-1}^{1} p_{\lambda}(\Theta) I_{\lambda}(z,\mu',\varphi') d\mu' d\varphi' + (1-a_{\lambda}) \mathbf{B}_{\lambda}\left(T(z)\right)$$
(2.29)

ここで, $a_{\lambda}$ は入射エネルギーに対する散乱エネルギーの比で単一散乱アルベド(albedo for single scattering) と呼ばれる。入射エネルギーは $(1 - a_{\lambda})$ の割合で媒質に吸収されるが, $a_{\lambda} = 1$ の場合には散乱に伴うエネ ルギー損失は無く,完全散乱と呼ばれる。また, $p_{\lambda}(\Theta)$ は $(\mu', \varphi')$ 方向と $(\mu, \varphi)$ 方向とのなす角度  $\Theta$ に対 する散乱確率を与える関数で位相関数 (phase function)と呼ばれる。可視・近赤外リモートセンシングの 場合には,式(2.29)の右辺第2項は無視できる。これは B<sub> $\lambda$ </sub>(T(z))が十分に小さいためで, $a_{\lambda} = 1$ が成 り立つことを意味するわけではない。一方,熱赤外リモートセンシングの場合には,気層が局所的な熱力 学的平衡状態<sup>2</sup>にあると仮定して同第1項を無視する場合が多い。この場合は $a_{\lambda} = 0$ であり,放射源関数 はプランク関数となる。

なお,雲が存在する場合については以下のようになる。まず,可視・近赤外域では,放射源関数にミー散 乱の過程を含めることになり,それは雲粒の粒度分布や雲水量などの雲の微物理特性を考慮して大変複雑 なものとなる。放射に対する吸収反射特性を計算するには,微物理特性はもとより高度も重要な因子とな る。一方,熱赤外領域では,ある程度の雲水量を持つ下層雲に対してはほとんどの放射が吸収されてほぼ

<sup>&</sup>lt;sup>2</sup> 大気分子間の衝突に伴うエネルギー準位間の遷移が充分速やかで放射に伴うそれを上回っている場合,近似的に空間内の平衡が保たれ,これを局所熱力学的平衡(local thermodynamic equilibrium)という。地球大気の場合,高度約 40km 以下について同平 衡状態を仮定することができる。

黒体と見なせるので,放射源関数はプランク関数に近似できる。しかし,雲水量が少ない下層雲や透過率 が50%を超えることも多い巻雲については同様の近似は適当ではなく,扱いが難しい。一般に光学リモー トセンシングで地表をターゲットとする場合には,雲と判定される画素は解析から除外されるのが普通で, 従って大気補正においても最初から晴天域のみを対象として雲の効果を含めないのが一般的である。

2.2.2 赤外域の気体吸収帯と透過関数

前項で述べたように,赤外域では主に原子や分子の振動状態の変化によって電磁波が吸収される。ここでは,まず,それについてもう少し詳細に述べる。

2原子以上の分子では,それを構成する原子が様々な振動運動や回転運動を行う。そして,それらの運動は赤外領域にそれぞれ固有の周波数を持ち,それらの周波数は量子化されている。ある周波数と他の周波数のエネルギー準位間の差が1本の吸収線に対応し,周波数の組み合わせが無数にあることから,結果的に非常に多くの吸収線が存在する。但し,電磁波を吸収(あるいは放射)するには,分子は電気双極子モーメントを持つ必要があるため,N<sub>2</sub>やO<sub>2</sub>の様な等核2原子分子による吸収線は赤外領域には存在せず, 主として CO<sub>2</sub>やH<sub>2</sub>O,O<sub>3</sub>などの吸収線が支配的となる。一般的には振動準位の遷移エネルギーが回転準位のそれを上回るため,振動吸収の各固有周波数付近に回転吸収による吸収線が密集した吸収帯を生じ, これを振動回転帯と呼ぶ。但し,永久電気双極子モーメントを持つH<sub>2</sub>O などの分子では回転準位の遷移の みに基づく純回転吸収帯も存在する。

実際の吸収線は1本の線ではなく,ある広がりを持っており,その原因には(1)エネルギー準位の不 確定性によって生じる自然広がり(natural broadening)(2)圧力に伴う気体分子間の衝突による広がり (pressure broadening)(3)分子運動と観測者の相対的な関係から生じるドップラー効果による広がり (Doppler broadening)の3つがある。(1)は気体分子間の衝突が少ない高層大気においてのみ顕著に現 れる。(2)の形状はローレンツ線型(Lorentz line shape)で表され,その半値幅は圧力に比例し,温度 の平方根に反比例する。(3)については,分子の速度分布がマックスウェル・ボルツマン分布に従うこと から,その形状は正規分布型のドップラー線型(Doppler line shape)となり,その半値幅は温度の平方根 に比例する。(2)と(3)の効果(半値幅)がほぼ等しくなるのは約40km程度の高度になり,それより 下層では(2)が,それより上層では(3)が支配的となる。両者が共存する場合には,両者を数学的に 合成したボイド型(Voigt shape)が用いられる。

一方,上記の線吸収(line absorption)とは別に広い波長範囲で連続的に見られる吸収もあり,これを連

29

続吸収(continuum absorption)と呼ぶ。その原因には上で述べた圧力に伴う吸収線の広がりのほか,  $H_2O$ については2量体(dimer)の効果も知られている。 $H_2O$ の連続吸収は熱赤外域での放射伝達計算上,重 要である。このメカニズムと温度依存性については近年の研究で進展が見られているが,まだ理論的に値 を決定できる段階ではなく,放射伝達計算では室内測定値の経験式に頼っているのが実情である[36]。こ れまでに報告された  $H_2O$ 連続吸収係数の精度は約 10%であり,しかも 280K 以下の温度条件については十 分に測定されていないことが問題点として指摘されている [36]。

2.2.3 吸収線データベースと放射伝達コード

吸収線の位置や強度については幾つかの機関でデータベース化が進められている。米国空軍 AFRL が開 発を進めている HITRAN の 1996 年版には,37 種類の気体についての計約 1,000,000 本の吸収線情報が含 まれており [62],個々のデータには分子番号,同位体番号,吸収線の中心波数,吸収線強度,ローレンツ半 値幅,基底状態エネルギーなどの情報が記載されている。そして,これらの吸収線データベースを参照し, 放射伝達計算を吸収線ごとに行うモデルを LBL モデルといい,AFRL の FASCODE,オックスフォード 大の GENLN2,世界気象機関 ICRCCM の LBLRTM などが開発されている [63]。

LBL の計算は,各吸収線が波数によって変化するのに加えてその形状も大気中の温度や圧力によって変化するため,大変複雑なものとなる。そこで,ある波数範囲での平均的な吸収係数を扱う平均的な透過関数(transmission function)が考えられた。κを波数とすると,平均透過関数は次式で表される。

$$\tau_{\Delta\kappa}(\xi) = \frac{1}{\Delta\kappa} \int_{\Delta\kappa} \exp\left(-\xi_{\kappa}/\mu\right) d\kappa \qquad (2.30)$$

波数範囲  $\Delta \kappa = 0$  の場合が単波数に対する透過関数であり,式 (2.27)に対応する。吸収帯における透過関数 は適当な関数形で近似され,これに基づいて放射伝達計算を行うモデルをバンドモデル(band model)と呼 ぶ。バンドモデルに基づく放射伝達コードには,AFRLのLOWTRAN<sup>3</sup>/MODTRANやフランス・リー ル科学技術大学等の 6S<sup>4</sup>などが有名である [64]-[66]。LOWTRAN7 及び MODTRAN はそれぞれ 5cm<sup>-1</sup> 及 び 1cm<sup>-1</sup>の波数間隔で平均化された透過関数を用いており,前者は FASCODE の種々の計算値に対する 最小二乗近似,後者は HITRAN から直接得た独自のバンドモデルに基づいている。

FASCODE とLOWTRAN / MODTRAN を比較すると,前者は正確だが計算に時間がかかり,後者は その逆である。精度に関しては,例えば MODTRAN3 と FASCODE3 を比較すると差の RMS はたかだか

<sup>&</sup>lt;sup>3</sup> 1972 年から始まった LOWTRAN シリーズは 1988 年にリリースされた LOWTRAN7 を以て開発が終了し,その後, MOD-TRAN シリーズに引き継がれている。

 $<sup>^{4}</sup>$  6S は LOWTRAN7 をベースとしたモデルである。

2~3%で5%を超えることはほとんど無いと言われるが[67],各吸収線は本来ランバート・ブーゲー・ビーアの法則を満たすのに対して,バンドモデルであるLOWTRAN / MODTRAN は定義上一般にこれを満たさない[63]。これを避けるためにLOWTRAN / MODTRAN の結果を指数関数和近似(exponential-sum fitting)[68]によって展開する方法などを用いることもある[36]。しかしながら,計算速度という点以外にも,全光路に対する量を計算する場合ではFASCODEよりLOWTRAN / MODTRAN の方が向いていることなどから[63],熱赤外域における放射伝達計算ではLOWTRAN / MODTRAN などが多く使われている[20]-[22],[25],[26],[38]-[40]。また,MODTRAN とFASCODEの2~3%という差がH<sub>2</sub>O連続吸収係数の約10%という精度に比べてはるかに小さい点もバンドモデルの実用性を裏付ける根拠となっている。

#### 2.2.4 大気上端での熱赤外放射輝度

晴天下の平行平板大気において,大気上端での上向き放射輝度を透過関数を用いて成分別に表すと次式 となる。

$$I(\lambda, \mu) = \tau_1(\lambda, \mu)\epsilon(\lambda, \mu)B(\lambda, T_s) + I_s^{\uparrow}(\lambda, \mu, \mu_0, \varphi_0) + I^{\uparrow}(\lambda, \mu) + \tau_2(\lambda, \mu, \mu_0)\mu_0F_0^{\downarrow}(\lambda)f(\mu; \mu_0, \varphi_0) + \int_0^{2\pi} \int_0^1 \mu' f(\mu; \mu', \varphi') \times [\tau_3(\lambda, \mu)I_s^{\downarrow}(\lambda, \mu, -\mu', \varphi') + \tau_4(\lambda, \mu)I^{\downarrow}(\lambda, \mu, -\mu', \varphi')]d\mu'd\varphi'$$
(2.31)

ここで,µは観測天頂角の余弦, $\epsilon(\lambda,\mu)$ は地表面放射率, $B(\lambda,T_s)$ は表面温度 $T_s$ の黒体放射輝度, $I_s^{\uparrow}(\lambda,\mu,\mu_0,\varphi_0)$ は太陽の直達光及び散乱光による光路輝度, $I^{\uparrow}(\lambda,\mu)$ は熱放射による光路輝度, $F_0^{\downarrow}(\lambda)$ は大気上端での太陽放射照度, $\mu_0$ は太陽天頂角の余弦, $\varphi_0$ は観測方位角と太陽方位角の間の相対方位角, $f(\mu;\mu_0,\varphi_0)$ はBRDF, $I_s^{\downarrow}(\lambda,\mu,-\mu',\varphi')$ は太陽の散乱光による下向き放射輝度, $I^{\downarrow}(\lambda,\mu,-\mu',\varphi')$ は大気の熱放射による下向き放射輝度である。また, $\tau_i(\lambda,\mu)$ (i = 1, ..., 4)は各成分の透過関数で, $\tau_1$ は地表の熱放射に対する透過関数(地表 大気上端), $\tau_2$ は太陽の直達光に対する透過関数(大気上端 地表 大気上端), $\tau_3$ は太陽の下向き散乱光の地表反射成分に対する透過関数(地表 大気上端)である。透過関数を別々に表しているのは各成分の入り放射が波長的に異なった性質を持つためであり, $\tau_1, \tau_3, \tau_4$ は厳密にはわずかに異なるが( $\tau_3 > \tau_1$ 及び $\tau_4 < \tau_1$ ),LOWTRAN やMODTRANなどの多くのバンドモデルでは $\tau_1 = \tau_3 = \tau_4$ が仮定されており,従来の大気補正アルゴリズムにおける研究でもこの差は無視されている。この差についても現時点での



Figure 5: Atmospheric transmission functions at view angle 180° for the Midlatitude summer model. H<sub>2</sub>O 連続吸収係数の精度を考慮すれば,十分に $\tau_1 \approx \tau_3 \approx \tau_4$  と近似して差し支えないとされている [36]。 なお,透過率と透過関数を特に区別しなくても実用的には差し支えないことから,以降では透過関数につ いても"透過率"と表記する。

さて,熱赤外領域では,太陽の効果は地表や大気の熱放射の効果に比べて十分小さいため,これを無視 することができる<sup>5</sup>。また,大気の下向き放射輝度(I<sup>↓</sup>)は地表面放射輝度に比べて小さく,またこの帯域 における地表の反射率は全般にかなり小さいため,地表面をランバート面と仮定して放射伝達計算しても 大きな誤差を生じない。そこで,これらの仮定を式(2.31)に用いることにより次式を得る。

$$I(\lambda,\mu) = \tau(\lambda,\mu)\epsilon(\lambda)B(\lambda,T_s) + I^{\uparrow}(\lambda,\mu) + \frac{1-\epsilon(\lambda)}{\pi}\tau(\lambda,\mu)F^{\downarrow}(\lambda)$$
  
=  $\tau(\lambda,\mu)\epsilon(\lambda)B(\lambda,T_s) + I^{\uparrow}(\lambda,\mu) + (1-\epsilon(\lambda))\tau(\lambda,\mu)I^{\downarrow}(\lambda)$  (2.32)

 $F^{\downarrow}(\lambda)$ は大気の熱放射による下向き放射照度(天空照度), $I^{\downarrow}(\lambda)$ は大気の熱放射による下向き放射輝度(天空輝度)である。

Fig. 5 は, MODTRAN3.7 によって計算した,中緯度夏標準大気モデルにおける大気上端(高度 100km)
 から地表(高度 0km)までの透過率で,大気成分ごとに表示している(観測方向は直下)。表示した帯域
 における全透過率(total)は,3.5μm付近と8~13μm付近が大きく,地表観測を目的とするリモートセ
 <sup>5</sup> 3.5~4.2μm帯を利用する場合にはこの効果も考慮しなくてはならない



Figure 6: Thermal infrared bands of typical sensors, and atmospheric transmission function at view angle 180° for the Midlatitude summer model.

ンシングによく利用される。但し,3.5µm 付近は,日中は太陽の反射光が多く含まれるので注意が必要で ある。後者の熱赤外域では,9.6µm 付近のオゾンの吸収帯を除けば,重要な吸収物質は水蒸気であるのが 分かる。水蒸気は時空間的に最も激しく変動する分子なので,放射伝達計算での取扱いは厄介である。エ アロゾルの寄与は全体に小さい。二酸化炭素は12µm 付近より長波長側では寄与が大きくなるが,均質に 存在する分子なので放射伝達計算での取扱いは難しくない。

### 2.3 熱赤外センサによる LST の観測

#### 2.3.1 陸域観測における主な熱赤外センサ

Fig. 6 に,陸域観測における主な熱赤外センサのチャネル配置とMODTRAN3.7 によって計算した中緯度夏モデルの透過率を示す。

従来,植生や鉱物の調査を始めとする陸域観測に用いられてきた主な衛星熱赤外センサは,LANDSAT4,
 5 に搭載された TM / Ch.6(波長 10.4~12.5µm)である(開発: NASA)[7]-[10], [12]。刈幅 185km で空間分解能 120m を持ち,この波長帯の衛星センサとしては高空間分解能の部類に入るが,量子化が 8bit,雑音等価温度差(NEAT)が0.5K とラジオメトリック性能はやや落ちる。ディテクタには MCT(HgCdTe)

を用い,放射クーラーによって冷却を行う(85K)。画像の両端において,シャッター上のトロイダルミ ラーを通して黒体(3温度制御可)からのエネルギーを受け,オフセットの補正を行う[69]。1999年4月 15日に打ち上げられた LANDSAT7のETM+は,TMに幾つかの改良<sup>6</sup>が成され,Ch.6では空間分解能 が120mから60mに向上されている[70]。

TM / ETM+と同様の流れを組む高分解能型の衛星熱赤外センサに,1999年12月18日に打ち上げられた NASA の地球観測衛星 Terra のASTER / TIR (Ch.10~14; 波長 8.125~11.65 $\mu$ m)がある(開発: 通産省)。ASTER / TIR は,刈幅 60km で空間分解能 90m を持ち,量子化が 12bit,NEAT が 0.3K である [71]。最も大きな特徴は,このタイプの衛星センサとしては初めてこの帯域に 5 チャネルを持つことであり,これにより放射率の分光特性の観測が可能になる。ディテクタには MCT を用い,リニア駆動スターリングクーラーによって冷却を行う(80K)。白金抵抗温度計で温度測定される平板ハニカム構造の黒体( $\epsilon > 0.99$ )を持ち,通常は 270K に制御される。観測電圧から放射輝度への変換は 2 次関数によって行い,オフセット項は望遠鏡温度,チョッパ温度,レンズ温度の関数により,1次係数及び 2 次係数はディテクタ温度の関数により決定する。但し,オフセット項は 1シーンの観測の前後<sup>7</sup>にポインティングミラーを通して黒体を観測することによって補正され(短期校正),1次係数の関数は 16日に一度<sup>8</sup>,黒体をヒーターによって通常温度の 270K から 340K まで 35分間かけて加熱し,この間,複数の温度で黒体を観測することによって補正され(長期校正)[72]。270K~340K 以外の温度領域では外挿される。

上記の TM / ETM+や ASTER は空間分解能が高く, 刈幅が小さいため, グローバルよりもローカル な観測に適している。これに対して, 逆に空間分解能が低く, 刈幅が大きいセンサは, グローバルな観測 に適しており, このような目的の陸域観測で主に用いられてきた衛星熱赤外センサは, NOAA シリーズの AVHRR / Ch.4~5(10.8 $\mu$ m 帯と 12 $\mu$ m 帯) である(開発: NASA)。但し, TIROS-N 及び NOAA6, 8, 10 では Ch.5 を持たない計 4 チャネル, NOAA7, 9, 11~14 では Ch.4 及び 5 を持つ計 5 チャネル, 1998 年 5 月 13 日に打ち上げられた NOAA15(NOAA-K) では更に日中観測用の Ch.3(Ch.3A)を加えた計 6 チャネルの各タイプが搭載された [73]。AVHRR / Ch.4~5 は, 刈幅 3000km で空間分解能 1.1km(直下) を持ち,量子化が 10bit, NEAT が< 0.12K である。ディテクタには MCT を用い, 2 ステージの放射クー ラーによって冷却を行う(105K / 107K)。4 つの白金抵抗温度計で温度測定する黒体シャッターを1 つ持 ち, 各ラインごとに黒体と深宇宙を観測することにより, ゲインとオフセットの補正をおこなう [74]。校

 $<sup>^6</sup>$ パンクロマチックバンドの追加,ゲインレンジの追加, $\mathrm{Ch.6}$ の空間分解能の向上,太陽キャリブレーターの追加等

<sup>&</sup>lt;sup>7</sup>運用時には観測の前のみに変更された。

<sup>8</sup>運用時には17日に一度に変更された。
正係数の非線形成分はプレフライト値に基づいて補正される。熱赤外域に2 チャネルを持つ AVHRR は, 海洋観測では,後述するスプリットウィンドウ法により高精度に大気補正を行うことが可能である。

AVHRR と同様の熱赤外チャネルを持ちながら,幾つかの修正を行った衛星センサに,ERS-1,2及び ENVISAT の ATSR がある(開発:ESA)。ERS-1の ATSR-1では Ch.3~4が,ERS-2の ATSR-2及び ENVISAT の AATSR では Ch.6~7が,それぞれ AVHRR の Ch.4~5に対応する。ENVISAT は 21世紀 初頭に打ち上げ予定である。ATSR の最も大きな特徴はコニカルスキャンによって同一地点を2つの異な る方向(直下と天頂角 55°)から観測可能なことだが,その分,幾何補正は複雑である。刈幅は 500km,空 間分解能は直下で 1km,前方視で 1.5 km×2 km である。ディテクタには MCT を用い,スターリングクー ラーによって冷却を行う(95K 以下)。黒体は2つ持ち,ラインごとにゲインとオフセットの補正が可能 で,NEAT は < 0.05K である。校正係数の非線形成分はプレフライト値に基づいて補正される [75]。

AVHRR と同程度の空間分解能で 36 チャネルを持ち, サウンダとしての機能を持つ衛星センサに, Terra / MODIS がある(開発: NASA)。0.4~3.0µm 帯に 20 チャネル, 3.5~14.4µm 帯に 16 チャネルを持つ。 刈幅は 2330km, 空間分解能は 250m(Ch.1~2), 500m(Ch.3~7), 1000m(Ch.8~36)で, 昼夜連続観 測が可能であり, 最短 2 日ごとに地表のあらゆる場所の観測が可能である。量子化は 12bit, 3.5~14.4µm 帯の各チャネルの NEAT は 0.05K(Ch.20, 29, 31, 32), 0.07K(Ch.22, 23), 0.25K(Ch.24, 25, 27, 28, 30, 33, 34, 35), 0.35K(Ch.36), 2.00K(Ch.21)で, 絶対校正精度は 1%以下である。1.2µm より長波 長のチャネルではディテクタに MCT を用い, 3 ステージの放射クーラーによって冷却を行う(83K)。V 字溝黒体( $\epsilon > 0.992$ )を1つ持ち,各ラインごとに黒体と深宇宙を観測してゲインとオフセットの補正を 行う。なお,黒体は通常 273K で運用されるが,315K まで加熱することも可能である[76],[77]。

次に,航空機搭載型の熱赤外センサについて述べる。航空機搭載型の熱赤外多バンドセンサとして最も 有名なものは TIMS である(開発: JPL)。1960年代半ばより,熱赤外域でのマルチバンド観測が岩相識別 に有効であることが叫ばれ [52],1970年代には航空機センサを用いた実験によりその有効性が実証された [78]。それらの成果を受け,より識別能力を高めるべく開発されたセンサが TIMS で,1982年に初飛行を 行った。8.2~12.2µm に 6 つのチャネルを持ち,ディテクタには MCT を用い,冷却は液体窒素によって 行う。分光は回折格子によって行う。2 つの 20.3cm 角の銅板黒体を持ち,ラインごとにゲインとオフセッ トを得ることができる。量子化は当初は 8bit であったが,現在は 16bit に向上している。視野角は 76.56°, IFOV は 2.5mrad で,スキャン速度は4 段階(7.3,8.7,12,25 Hz)に切り替えられる。搭載する航空機

は,SSCのLear jetのほか,ARCのC-130やER-2が利用される。ER-2の場合には,AVIRISやTMS との同時観測が可能である[79]。

MASは, MODISと類似した分光データを得るべく 1992年に Daedalus Enterprises 社の Wildfire スペク トロメータを改造して作られたセンサで, 波長 0.55 ~ 14.3µmに 50 チャネルを持つ(開発: ARC, Daedalus Enterprises, Berkeley Camera Eng.)。熱赤外チャネルのディテクタには MCT を用い,量子化は 8/10bit から 12bit を経て,現在は 16bit である。サーミスタで温度測定する黒体を 2 つ持ち,通常,1 つは外気 温度に,もう1つは温度レンジを考慮してより高い温度に設定される。スキャン速度は 6.25Hz,視野角は 85.92°, IFOV は 2.5mrad である。ARC の ER-2 に搭載され,高度 20km から刈幅 37.25km,空間分解能 50m でデータを取得する [80]。

MASTER は MAS を改造して作られたセンサで, 波長 0.44~13.0µm に 50 チャネルを持つ(開発: JPL, ARC)。MAS との違いは, チャネル配置が ASTER と MODIS の両方により適合するように変更された こと, ER-2 のほかに KingAir 社の Beachcraft B200 にも搭載されること, スキャン速度が可変であるこ と(6.25~25Hz),等である。1998 年に初飛行を行った後, 黒体の放射率の調整やエアダムの追加などの 改良を重ね, 1999 年 1 月には良好な試験データが得られた。現在, ASTER / MODIS のアルゴリズム開 発・検証や校正などに利用されている [81]。

### 2.3.2 センサの観測放射輝度

センサのチャネルは光学フィルタや回折格子によって分光された特定波長範囲の平均的な放射輝度を観 測する。各チャネルについて,波長ごとの応答を表したものを応答関数(response function)といい,通 常,相対値で表す。今,チャネルiの応答関数を $\phi_i(\lambda)$ としたとき,ある関数 $x(\lambda)$ のチャネルiでの平均 値 $x_i$ は次式で表される。

$$x_{i} = \frac{\int_{0}^{\infty} \phi_{i}(\lambda) x(\lambda) d\lambda}{\int_{0}^{\infty} \phi_{i}(\lambda) d\lambda}$$
(2.33)

式(2.32)の各変数に式(2.33)を適用して得られる

$$I_i(\mu) = \tau_i(\mu)\epsilon_i B_i(T_s) + I_i^{\uparrow}(\mu) + \tau_i(\mu)(1-\epsilon_i)I_i^{\downarrow}$$
(2.34)

は厳密には成り立たないが,一般に良い近似であり[82],熱赤外リモートセンシングデータ処理で良く使われる式である。本論文においても,基本的に上式を利用する。

式(2.34)に示すように,センサが観測する放射輝度には大気の吸収・放射効果が含まれている。この効

果は,通常の条件では観測輝度温度を SST / LST より小さくする方向に働き,熱帯のような大気効果が 大きい条件ではその差が 10K 程度になる場合もある [18]。従って,観測輝度温度から SST / LST を得る ためには,大気効果の除去,すなわち大気補正が不可欠である。次項以降では,これまでに提案されてい る SST / LST 推定アルゴリズムについて述べる。

#### 2.3.3 差分吸収アルゴリズムによる SST 推定

Anding ら(1970)らは、2つの異なる熱赤外チャネルの観測値を組み合わせて SST を推定できること を示し、その精度が±0.2K であることを報告した [83]。一方、Saunders(1967)は、2つの異なる観測角 の観測値を組み合わせて SST を推定できることを示し、その精度が±0.2K もしくはそれより良いことを 報告した [84]。そして、McMillin(1975)は、これら2つのアプローチが本質的に同じであることを理論 的に示した [30]。また、Deschamps ら(1980)は、2つあるいはそれ以上のチャネルの観測輝度温度の線 形和により SST を推定できることを理論的に示し、各係数の理論式についても示した [18]。本研究では、 これら一連の手法を差分吸収アルゴリズム(Differential absorption algorithm)と呼ぶことにする。また、 2 つあるいはそれ以上のチャネルを利用する方法をマルチチャネル(MC)法、その中で特に 10~13 $\mu$ m の 大気の窓領域における2つのチャネルを利用する方法をスプリットウィンドウ(SW)法、2つの観測角を 利用する方法をデュアルアングル法、2つあるいはそれ以上の観測角を利用する方法をマルチアングル法 と呼ぶ。以下では主に SW 法/MC法について述べるが、デュアルアングル法/マルチアングル法も同様 の原理を持つ。

まず, Deschamps ら(1980)に従って MC 法を導出する [18]。

大気上端での上向き放射輝度は,気圧 pを用いて次のように書くことができる。

$$I_{\lambda} = \tau_{\lambda}(0, P_0)I_{0\lambda} - \int_0^{P_0} B_{\lambda}(T(p))d\tau_{\lambda}(0, p)$$
(2.35)

ここで,  $I_{0\lambda}$  は地表面放射輝度,  $P_0$  は地表気圧,  $\tau_{\lambda}(0, p)$  は気圧レベル0 (大気上端)と気圧レベルp の間の透過率, T(p) は気圧レベルp での気温である。SST 観測においては,  $T_s$  を SST として

$$I_{0\lambda} \approx B_{\lambda}(T_s) \tag{2.36}$$

と近似できるので,式(2.35)は次式のように変形できる。

$$\Delta I_{\lambda} = B_{\lambda}(T_s) - I_{\lambda}$$

$$= -\int_{0}^{P_{0}} [B_{\lambda}(T_{s}) - B_{\lambda}(T(p))] d\tau_{\lambda}(0, p)$$
 (2.37)

また,SSTと観測輝度温度の差 $\Delta T_{\lambda}$  (=  $T_s - T_{\lambda}$ )は次式で表される。

$$\Delta T_{\lambda} = \Delta I_{\lambda} \left/ \left( \frac{\partial B_{\lambda}}{\partial T} \right)_{T_{s}} \right. \tag{2.38}$$

今,大気による吸収は次式を満たすほど,十分に小さいものとする。

$$d\tau_{\lambda}(0,p) = -k_{\lambda}dU(p) \qquad (2.39)$$

ここで, $k_{\lambda}$ は吸収係数,U(p)は気圧レベル $0 \ge p$ の間の吸収物質量,である。また, $B_{\lambda}(T(p))$ が $T_{s}$ について級数展開の1次までの項で近似できるものとする。

$$B_{\lambda}(T(p)) = B_{\lambda}(T_s) + \left(\frac{\partial B_{\lambda}}{\partial T}\right)_{T_s} (T(p) - T_s)$$
(2.40)

このとき,式(2.37)~(2.40)から, $\Delta T_{\lambda}$ は次式で表される。

$$\Delta T_{\lambda} = k_{\lambda} \int_{0}^{P_{0}} [T_{s} - T(p)] dU(p)$$
  
=  $k_{\lambda} f(T(p)U(p))$  (2.41)

関数 f(T(p)U(p)) は波長によらず,大気のみの関数であり,2つ以上の波長があれば消去できる。波長  $\lambda$ をチャネル *i* に置き換え,*n* 個のチャネル間で f(T(p)U(p)) を消去し,*T<sub>s</sub>* について解くと次式となる。

$$T_s = a_0 + \sum_{i=1}^n a_i T_i$$
 with  $\sum_{i=1}^n a_i = 1$  (2.42)

ここで,iはチャネル,nは使用するチャネル数, $T_i$ は観測輝度温度, $a_i$ (i = 1, ..., n)は各チャネルの 吸収係数 $k_i$ のみに依存する係数, $a_0$ は表面反射や $CO_2$ の放射のようなほぼ一定と見なせる効果を説明す る係数である。SW 法のような2 チャネルの観測では,

$$a_{1} = k_{2}/(k_{2} - k_{1})$$

$$a_{2} = -k_{1}/(k_{2} - k_{1})$$
(2.43)

である。このとき,式(2.42)は次式の形で表される。

$$T_0 = T_1 + A(T_1 - T_2) + B \tag{2.44}$$

$$a_{1} = k_{2}k_{3}/(k_{3} - k_{1})(k_{2} - k_{1})$$

$$a_{2} = -k_{1}k_{3}/(k_{3} - k_{2})(k_{2} - k_{1})$$

$$a_{3} = k_{1}k_{2}/(k_{3} - k_{2})(k_{3} - k_{1}) \qquad (2.45)$$

である。

通常,これらの係数は,衛星観測値と船・ブイ等の実測水温<sup>9</sup>とのマッチアップデータや,放射伝達シ ミュレーションによって生成したマッチアップデータを用いた回帰分析によって決定される。そして,式 (2.43)や式(2.45)のような係数間の理論的な拘束条件を設けずに,式(2.42)中の各係数をそれぞれ回帰 分析によって決定することも多い。例えば,2チャネルの観測では,式(2.44)の代わりに

$$T_0 = a_0 + a_1 T_1 + a_2 T_2 \tag{2.46}$$

を使うことも多く, この場合, 式 (2.44)をスプリットウィンドウ関数 (SWF)型, 式 (2.46)を2変数関数 (DVF)型と呼んで区別することもある [85]。式 (2.42)や式 (2.44), 式 (2.46)の精度は, 対象センサや使用するチャネルと同様に使用するマッチアップデータセットにも依存するが, およそ 0.7K 程度と言われている [31], [86]。

衛星観測値と船・ブイ等の実測水温のマッチアップデータを用いる場合には,実測水温がバルク水温(bulk temperature)と呼ばれる水深1m程度の水温であるのに対し,衛星観測のような放射計測による水温は無限小の厚さ(10µm程度)での水温である表皮水温(skin temperature)であることに注意する必要がある。表皮水温は条件にもよるがバルク水温より0.1~1K程度低温であることが多く,その差(表皮効果)の変動が回帰分析の誤差要因となる。また,船やブイの測定値自身の誤差が1K[49]とも2K以上[86]とも言われており,同様に誤差要因となる。さらに,衛星データとの場所・時刻のずれによる誤差もあり,距離10kmのずれ,あるいは2時間のずれが0.2KのRMS誤差を生むとも言われている[86]。一方,放射伝達シミュレーションによって生成したマッチアップデータを用いる場合には,シミュレーション条件の与え方や放射伝達計算の誤差に注意する必要がある。後者では,特にH<sub>2</sub>O連続吸収係数に含まれる10%程度の誤差が回帰分析の誤差要因となり得る[36]。

SW法/MC法の誤差については,上記以外にも手法自身に起因するものもある。まず,式(2.39)で用 いた透過率が1に近いとする仮定は大気の窓領域であっても非現実的であり,透過率が小さい多湿な大気 <sup>9</sup> NOAAの COADS と呼ばれるデータセットがある。

では誤差が大きくなる(係数の水蒸気量依存性の問題)[32],[86]。同様に,観測角が45°程度を超えると 観測角の影響を考慮する必要があるとされている[27],[31],[86]。また,エアロゾルの効果は定数項として 表現されるが,例えば1982年のエルチチョン(El Chichón)火山の噴火によって成層圏に大量に放出され た硫酸塩エアロゾルがSW 法の精度を2K 程度まで低下させたことが報告されており[87],[88],最近では 1991年のピナツボ(Pinatubo)火山の噴火によりNOAA / NESDIS がSST 推定式を修整した例がある [73]。衛星データの放射量校正による誤差もあり,例えば AVHRR/2の校正係数の非線形性を考慮しない と2K までの誤差を生むとも言われている[89]。

AVHRR データの定常処理を行っている NESDIS では, 1981 年より SW 法/ MC 法による SST プロ ダクト生成を行っており,適宜,推定式の改良も行っている [73]。夜間のデータに対しては, 3.7µm 帯の Ch.3 を含めると精度が向上することから [18], Ch.4 と 5 の組み合わせ以外にも, Ch.3, 4, 5 の組み合わ せ,もしくは Ch.3, 4 の組み合わせによる推定式が利用されている<sup>10</sup>。観測角の補正については 1985 年よ り行われている。次式は Ch.4, 5 を使う SW 法の例である。

$$T_s = a \cdot T_4 + b \cdot (T_4 - T_5) + c \cdot (T_4 - T_5) \cdot (\sec(\theta) - 1) + d$$
(2.47)

ここで,  $T_4$ ,  $T_5$  は AVHRR の Ch.4, 5 の観測輝度温度,  $\theta$  は観測角(直下が 0°)である。また, 主にノ イズに対する解の安定化のため, 1990年の1年間は係数に観測輝度温度の1次式の比を含む CPSST アル ゴリズム, 1991年からは SST 初期推定値を係数に含む NLSST アルゴリズムを使っている。これらはいず れも温度について非線形であり, これらに対して線形のタイプ(式(2.42),式(2.44),式(2.47)等)は MCSST と呼んで区別している。なお,回帰係数の決定は,最近の例ではグローバルな移動式プイ及び熱 帯大平洋における固定式ブイの実測水温と衛星観測値の間のマッチアップによって決定されている[73]。

一方,先に述べた SW 法における係数の水蒸気量依存性の問題については,これを考慮した手法が数多 く提案されており,大きく分けると以下のようになる。

1. 地域や緯度帯に最適化した SW 係数を使う [20],[90]

2. 水蒸気量の区分ごとに最適化した SW 係数を使う [27]

3. SW 係数を水蒸気量や透過率の関数で表現する [32], [86], [91], [92]

4. SW 式に観測輝度温度の非線形項を導入する [25],[32],[93]

<sup>&</sup>lt;sup>10</sup> NESDIS では、チャネルの組み合わせにより推定式の呼び名を変えており、Ch.3,4,5 を使用するものを Triple、Ch.3,4 を使用するものを Dual、Ch.4,5 を使用するものを Split と呼んでいる。

1のアプローチは,その地域や緯度帯の中での水蒸気量の変動に対応できない点が問題である[32]。

2のアプローチは, Wanら(1996)がLST推定を目的として提案した。外部の水蒸気量プロダクトを用い,その水蒸気量が属する区分に最適な係数を使うものである(実際にはSW係数は放射率を変数として含む)[27]。他にも"LSTと地表気温の差"と観測角に最適化することも提案している。外部プロダクトに基づいて大気・地表の特徴付けをいかに精度良くできるかがポイントである。

3 と 4 のアプローチについては, François ら (1996)が各アプローチに基づく手法を提案し,比較評価 を行っている [32]。3 のアプローチの手法は Harris ら (1992)[91] や Sobrino ら (1993)[86] らの手法の流 れをくむもので,各 SW 係数を水蒸気量の 2 次関数で表現し, WVD 法と呼ばれる。WVD 法は次式で表 される。

$$T_s = a_0' + a_1' T_1 + a_2' T_2 \tag{2.48}$$

ここで, $T_s$  は表面温度, $T_1$  及び $T_2$  は ERS / ATSR あるいは NOAA / AVHRR のそれぞれ  $11\mu$ m 帯及  $U 12\mu$ m 帯のチャネル(AVHRR は Ch.4 及び 5)の観測輝度温度であり, $a'_0 \sim a'_2$  は総水蒸気量 W に依存 する係数で

$$a'_{i} = p_{i} + q_{i}W + r_{i}W^{2} \ (j = 0, 1, 2) \tag{2.49}$$

で表される。*p<sub>j</sub>*, *q<sub>j</sub>*, *r<sub>j</sub>* は回帰係数である。一方, 4 のアプローチの手法は Coll ら(1994)[25] の手法の 流れをくむもので,観測輝度温度の 2 次の項を含み, QUAD 法と呼ばれる。QUAD 法は次式で表される。

$$T_s = T_1 + a(T_1 - T_2) + b(T_1 - T_2)^2 + c$$
(2.50)

ここで, a, b, c は回帰係数である。1761 のラジオゾンデデータを含む TIGR データベース [94] を用いた シミュレーションによる評価では, WVD 法及び QUAD 法の標準誤差はそれぞれ 0.1K 及び 0.2K であり, 前者の方がとりわけ放射率が 1 から離れたり W が大きい時に精度が高いと報告している。WVD 法は,既 知変数として W を必要とするが,この精度は 0.5g/cm<sup>2</sup> 程度で十分であるとしており,AVHRR の 2 チャ ネルの観測輝度温度の空間分散の比から水蒸気量を推定する SWVR 法 [95] を用いることなどを提案して いる。

2.3.4 差分吸収アルゴリズムによる LST 推定

陸域では一般に放射率が多様性に富んでいるため,式(2.36)のような単純な近似ができない。そのため,陸水域や密な植生域を除けば差分吸収アルゴリズムをそのまま適用することは難しい。Becker(1987)

は、NOAA/AVHRR の熱赤外 2 チャネル(Ch.4,5)を用いた SW 法において,式(2.36)のような黒体 の近似を置かずに式(2.34)を近似展開し,放射率を含む SW 法の理論式として次式を導いた[19]。

$$T_{s} = \frac{T_{4} + T_{5}}{2} + \frac{T_{4} - T_{5}}{2} \cdot \frac{C+1}{C-1} + \frac{1-\epsilon}{\epsilon} \left( \frac{L_{4} + L_{5}}{2} + \frac{C+1}{C-1} \cdot \frac{L_{4} - L_{5}}{2} \right) - \frac{\Delta\epsilon}{\epsilon} \left( \frac{C+1}{C-1} \cdot \frac{L_{4} + L_{5}}{4\epsilon} + \frac{C\beta\cos\theta}{(C-1)^{2}\gamma} (T_{4} + T_{5}) \right)$$
(2.51)

ここで,  $\epsilon_4$  及び  $\epsilon_5$  はそれぞれ AVHRR の Ch.4 及び Ch.5 の放射率,  $\epsilon = (\epsilon_4 + \epsilon_5)/2$ ,  $\Delta \epsilon = \epsilon_4 - \epsilon_5$ ,  $C = k_5/k_4$  ( $k_4$ ,  $k_5$  は吸収係数),  $\beta = 1/\cos\theta + 2$  ( $\theta$  は観測角)であり,  $\gamma$  は

$$\gamma_i = 2(1 - \epsilon_i)\cos\theta + 1 \tag{2.52}$$

のチャネル平均, $L_i$ は $\lambda_i$ をチャネルiの代表波長として

$$L_i = B_{\lambda_i}(T_i) / (dB_\lambda(T)/dT)_{\lambda_i, T_i}$$
(2.53)

で表される。そして,式(2.51)に典型的なパラメータを代入することにより,黒体地表面に対するSW式 (ここでは式(2.44)の係数 *B* を 0 とした式)を LST 推定にそのまま用いた時の誤差として

$$\delta T_0 \approx 50(1-\epsilon)/\epsilon - 300\Delta\epsilon/\epsilon \tag{2.54}$$

を示した。Becker は式 (2.54) より, LST を 0.5K の精度で得るためには,  $\epsilon$  を 0.005 の精度で,  $\Delta \epsilon$  を 0.0007 の精度で事前に知っておく必要性を述べた。この放射率の寄与に対してはその後, Ottlé ら (1992) がもう 少し小さいことを示したが [20], Becker の研究は LST 推定アルゴリズムの研究者に改めて放射率効果の 重要性を示した。

こうした背景により,差分吸収アルゴリズムに基づいて LST を推定するアルゴリズムは,係数を放射 率の関数とするものが一般的になっている。これまでに提案された LST 推定式の例を Table 1 に示す。同 表で,Sobrino *et al.* (1993) 及び Wan and Dozier (1996) の各式の係数が水蒸気量の関数となっているの は,前項で述べた SW 係数の水蒸気量依存性の問題に対応したものである。これらのアルゴリズムの長所 は地表面の放射率が分かっていれば画素単位の大気補正が可能であるが,問題はその放射率をいかに精度 良く事前に推定しておくかである。Becker ら(1990)は放射率のスペクトルライブラリがあれば可視近赤 外データに基づく土地利用図を利用して放射率が得られるとしており[21],Wan ら(1996)はそれに加え て植生被覆率[24] も利用できることを述べているが,仮に土地利用図が利用できたとしても,画素内は多

| Author or Group                               | Algorithm                                                                                                   |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Price (1984)[37]                              | $T_s = \left[T_4 + a\left(T_4 - T_5\right)\right]\left(b - \epsilon_4\right)/c + d \cdot T_5\Delta\epsilon$ |
| Ulivieri <i>et al.</i> (1985)[96]             | $T_s = T_4 + a(T_4 - T_5) + b - c \cdot \epsilon$                                                           |
| Becker and Li $(1990)[21]^{a}$                | $T_s = a + P(T_4 + T_5)/2 + M(T_4 - T_5)/2$                                                                 |
| Prata an d Platt $(1991)[97]$                 | $T_s = a(T_4 - T_0)/\epsilon_4 - b(T_5 - T_0)/\epsilon_5 + c(1 - \epsilon_4)/\epsilon_4 + T_0$              |
| Sobrino <i>et al.</i> (1991)[22] <sup>b</sup> | $T_s = T_4 + A(T_4 - T_5) + B$                                                                              |
| Sobrino <i>et al.</i> (1993)[86]              | $T_s = T_4 + a(T_4 - T_5) + b(T_4 - T_5)^2 + c(1 - \epsilon_4) - c\Delta\epsilon$                           |
| Ulivieri <i>et al.</i> (1994)[98]             | $T_s = T_4 + a(T_4 - T_5) + b(1 - \epsilon) - c\Delta\epsilon$                                              |
| Wan and Dozier (1996)[27] $^{c}$              | $T_s = a + R(T_4 + T_5)/2 + S(T_4 - T_5)/2$                                                                 |

Table 1: Summary of differential absorption algorithms for estimating LST ( $T_s$ ,  $T_4$  and  $T_5$  are in Kelvin,  $T_0 = 273.15$ K,  $\epsilon = (\epsilon_4 + \epsilon_5)/2$ ,  $\Delta \epsilon = (\epsilon_4 - \epsilon_5)$ ).

<sup>a</sup>  $P = 1 + a_1(1 - \epsilon)/\epsilon + a_2\Delta\epsilon/\epsilon^2, M = a_3 + a_4(1 - \epsilon)/\epsilon + a_5\Delta\epsilon/\epsilon^2$ 

<sup>b</sup>  $A = f_1 + f_2(1 - \epsilon_4) + f_3\Delta\epsilon$ ,  $B = (1 - \epsilon_4)/\epsilon_4T_4[f_4 + f_5\Delta\epsilon] - (1 - \epsilon_5)/\epsilon_5T_5[f_6 + f_7\Delta\epsilon]$ , where  $f_i = \alpha + \beta W$  and W is the water vapor amount along the path.

 $c R = a_0 + a_1(1 - \epsilon)/\epsilon + a_2\Delta\epsilon/\epsilon^2$ ,  $S = a_3 + a_4(1 - \epsilon)/\epsilon + a_5\Delta\epsilon/\epsilon^2$ . Each coefficient is defined based on the ranges of the view angle and the water vapor amount.

くの場合複数の物質から構成されており(ミクセル),また放射率は風化や含水量によっても変動するこ とから [28], [29],土地利用図とライブラリの組み合わせからどの程度高精度に画素の放射率を推定できる かは疑問である。なお,MODISのLSTプロダクトでは,2つの標準アルゴリズムのうちの1つはこの種 の手法が採用された [99]。これはこの種の手法を初めて定常処理システムへ組み込むものである。シミュ レーションベースではうまく行くことが示されているが [27], [99],上記のような問題もあるため,実デー 夕に対して実際に正しく機能するかは不明である。

2.3.5 昼夜アルゴリズムによる LST 推定

昼夜アルゴリズムには,Liら(1993)の方法[35]とWanら(1997)の方法[36]がある。それぞれにつ いて概略を述べる。

Li らの方法は AVHRR の昼夜のデータセットを組み合わせる手法である。アルゴリズム中には *TISI*[82] と呼ばれる指標を用いる。AVHRR の Ch.3~5 の 3 チャネルに対する *TISI* は

$$TISI = M \frac{B_3(T_{g3})}{B_4(T_{g4})^{a_4} B_5(T_{g5})}$$
(2.55)

で, また, AVHRR の Ch.4~5 の 2 チャネルに対する TISI は

$$TISI_{45} = M \frac{B_4(T_{g4})}{B_5(T_{g5})^{a_5}}$$
(2.56)

で表される。ここで, $a_4$ , $a_5$ ,Mは定数である。また, $T_{gi}$ は地上レベルでの地表輝度温度で次式で定義

される。

$$T_{gi} = B_i^{-1}(\epsilon_i B_i(T_s) + (1 - \epsilon_i) I_i^{\downarrow})$$

$$(2.57)$$

 $B_i^{-1}(*)$ はプランク関数の逆関数である。TISIは温度に対する依存性が小さく,チャネル間の分光変化を反映する量である。

Liらの昼夜アルゴリズムの流れは以下の通りである。

- 1. 昼データ及び夜データ(必ずしも同じ日でなくてよい)を,ゾンデ,サウンダ等のデータや標準大気 モデルを使った単バンドアルゴリズムによって近似的に大気補正し,T<sup>d</sup><sub>g3</sub>,T<sup>d</sup><sub>g4</sub>,T<sup>n</sup><sub>g5</sub>,T<sup>n</sup><sub>g3</sub>,T<sup>n</sup><sub>g4</sub>,T<sup>n</sup><sub>g5</sub>
   の一次推定値を得る(dは昼データ,nは夜データを示す)。
- 2. 両画像の位置合わせ(レジストレーション)を行う。

3. 式 (2.55) より  $TISI_d$  及び  $TISI_n$  を計算し,式 (2.56) より  $TISI_{45}^d$  及び  $TISI_{45}^n$  を計算する。

4.  $TISI_d$ ,  $TISI_n$ , 太陽照度, 非等方性ファクター F を用いて  $\epsilon_3$  を計算する。F は次式で表される。

$$F(\theta_s, \theta) = \frac{\pi f_3(\theta_s, \theta)}{r}$$
(2.58)

ここで, $\theta_s$  及び $\theta$  はそれぞれ太陽入射角及び観測角, $f_3(\theta_s, \theta)$  は BRDF(方位角依存性は考慮して いない),r は全反射率である。

5.  $\epsilon_3$ ,  $TISI_n$ ,  $TISI_{54n}$ を使って  $\epsilon_4$  と  $\epsilon_5$ を推定する。

- 6. *ϵ*<sub>5</sub> が1を超えていればノーマライズする。
- ローカルスプリットウィンドウ(Local Split Window)法の式(Table 1 の Becker and Li (1990))
   の係数を決定して,LSTを推定する。また,もし正確な大気プロファイルが得られていれば,単バンドアルゴリズムによって大気補正を行い,上で得られた放射率を使ってLSTを推定する。

1 の近似大気補正は LST や放射率の絶対値へのインパクトは大きいが、相対値である *TISI* への影響はと ても小さいとしており,シミュレーションによる評価では,この手法の精度は典型的なケースで0.5K 程度 であるとしている。なお,昼夜データ間のミスレジストレーションの誤差はとりわけターゲットが不均質 だとインパクトが大きいが,これについては幾つかの画素を平均化することにより減らすことができると している。 ー方, Wan ら (1997)は MODIS の昼夜のデータセットを組み合わせる手法を提案した。これは, MODIS の 20, 22, 23 (3.5~4.2  $\mu$ m), 29, 31~33 (8~13  $\mu$ m)の計7 チャネルの昼夜のデータ(合計 14 個の観 測値)を用いて、各チャネルの放射率(7 個,昼夜で共通)、昼夜の LST (1 個 × 2 時刻),昼夜の気温プ ロファイルオフセット(1 個 × 2 時刻),昼夜の水蒸気プロファイルスケーリングファクター(1 個 × 2 時刻),非等方性ファクター(1 個,昼夜で共通,方位角依存性も考慮)の合計 14 個の未知数からなる非線形 方程式を解くものである。まず線形回帰法で初期値を推定し,次に最小2 乗フィッティング( $\chi^2$  フィッティング)により反復的に解を得る。気温プロファイルオフセットと水蒸気プロファイルスケーリングファク ターは地表から高度 9km までの各基準プロファイルに対する修正量(前者が差,後者が比)で,基準プロ ファイルは大気プロファイルデータベースの平均等を用いる。また,線形回帰法と最小2 乗フィッティング を組み合わせるのは,前者は精度は低いがロバストであるのに対して,後者は精度は高いがローカルミニマムに陥る可能性があることによる。シミュレーションによる検証では、MODIS の校正エラーが0.5%の条件下では、LST の標準誤差が0.4~0.5K、チャネル 31 及び 32 の放射率の標準誤差が0.009、LST の最大誤差が2~3K であったとしている。

Li らや Wan らの昼夜アルゴリズムは,放射率も同時に得られるという長所の反面,両データ間のミス レジストレーションによる誤差の問題や2時刻間で放射率を一定と置く仮定の妥当性の問題などがある。 前者の問題については,空間分解能が90mのASTER / TIRのような高空間分解能センサの場合,著し く誤差を生む可能性があり,これを避けるには空間方向の平均化が必要となる[35]。また,後者の問題に ついては,例えば降雨や夜間の結露のような放射率を変える自然現象によって精度が低下することが予想 される。さらに,3.5~4.2µm帯のチャネルを必要とするため,これを持たないASTERのようなセンサに は適用は困難である。

2.3.6 単バンドアルゴリズム及び TE 分離による LST 推定

単バンドアルゴリズムは旧来より用いられているオーソドックスな大気補正法で,以下の手順より成る [37]-[40]。

 1. 観測時の大気プロファイル(気圧,気温,水蒸気,オゾン,二酸化炭素,エアロゾル等)をRTCに 入力し,対象チャネルを十分カバーする波長(波数)範囲内の透過率 τ(λ,μ),光路輝度 I<sup>↑</sup>(λ,μ),天
 空輝度 I<sup>↓</sup>(λ)を,適当な波長(波数)間隔で計算する。

Table 2: Accuracy of the profiles of air temperature and water vapor measured by radiosonde or sounder [49]. T: temperature, W: water vapor, h: horizontal, v: vertical, t: time, MPL: mandatory pressure levels.

| Category   | Sensor                  | Accuracy           | Resolution                     |
|------------|-------------------------|--------------------|--------------------------------|
| Radiosonde | RS2-91                  | T: 1K, W: 7–10%    | h: 200–300km, v: MPL, t: 12hrs |
|            | $NOAA(\sim 14)/TOVS$    | T: 1.5–3K, W: 20%  | h: $120$ km, v: MPL, t: 6hrs   |
| Sounder    | $NOAA(15 \sim) / ATOVS$ | T: 1–2K, W: 10–20% | h: 15–40km, v: MPL, t: 6hrs    |
| Sounder    | METOP/IASI              | T: 1K, W: $10\%$   | h: 25km, v: 1–30km             |
|            | EOS-PM/AIRS             | T: 1K, W: $10\%$   | h: 13.5km (nadir), v: 1km      |

2.  $\tau(\lambda,\mu)$ ,  $I^{\uparrow}(\lambda,\mu)$ ,  $I^{\downarrow}(\lambda)$  のそれぞれについて, 各チャネルごとの応答関数  $\phi_i(\lambda)$  を用いて式 (2.33) から  $\tau_i(\mu)$ ,  $I_i^{\uparrow}(\mu)$ ,  $I_i^{\downarrow}$  を計算する。

3.  $\tau_i(\mu)$ ,  $I_i^{\uparrow}(\mu)$ ,  $I_i^{\downarrow}$ を式 (2.34) に与えて地表パラメータを計算する。

オゾンの吸収が顕著な 9.6µ帯を除く熱赤外波長域では,入力するプロファイルのうち,重要なものは水 蒸気及び気温である。特に前者は一般に時空間変動が激しいため,扱いが厄介である。二酸化炭素につい てはほぼ均一と見なせる。また,エアロゾルについては,この波長域では散乱より吸収効果が大きいが,平 均的なものを与えても大きな誤差にはならないことから [36],適当なモデルが仮定されることが多い。

こうして,単バンドアルゴリズムでは,観測時の水蒸気及び気温のプロファイルを如何に精度よく与えるかが重要である。このデータソースには,通常,以下の3つのいずれかが用いられることが多い。

• ラジオゾンデ [37], [38]

サウンダ [20], [39]

ラジオゾンデ及びサウンダの観測精度を Table 2 に示す。

ラジオゾンデは気球を用いて大気パラメータの鉛直分布を測定する観測器で,気球にセンサを取り付け ることによって気圧や気温,水蒸気等の鉛直分布を求めたり,気球の動きを追跡することによって風向・ 風速の鉛直構造を求めることが可能である。直接測定であるため,最も精度が高い観測手段と言えるが, 定常観測の頻度が全球で1日2回であるのと,観測所の地域的な偏りが大きいことが問題で,全球的には ヨーロッパ,アジア,北アメリカ,オーストラリアなどは密であるが,海洋上や南半球は全般に疎らであ る[49]。フィールド実験では,衛星や航空機の観測に同期してラジオゾンデを打ち上げて大気プロファイ

 <sup>●</sup> 全球解析データ [40]

ルを取得し, これを RTC に与えて大気補正することがよく行われるが [38], 定常処理システムでは, 時空間分解能が悪いために利用されることはほとんど無い。

サウンダは気温や水蒸気,大気化学物質の鉛直分布を測定するセンサである[49]。通常,赤外やマイクロ 波の領域を用い,二酸化炭素や酸素による吸収の強さを複数の波長で測ることによって気温の鉛直分布を 求めたり,水蒸気による吸収を測ることによって水蒸気の鉛直分布を求めることが可能である。誤差相関 の問題や荷重関数の広がりによる鉛直分解能の低下の問題などにより,直接観測であるラジオゾンデと比 較すると精度が落ちるものの,ラジオゾンデ観測の空白域を埋めるのに有効である。表中,METOP/IASI 及びEOS-PM/AIRS は今後打ち上げ予定のセンサであり,従来のサウンダより高性能で,精度の改善が期 待されている。Ottlé ら (1992) はサウンダデータが大気補正に利用可能であることを述べているが,定常 処理で利用するには観測時刻のずれや上述の誤差因子などに注意する必要がある。

全球解析データは全球大気の各3次元格子点ごとに種々の気象パラメータを持つデータセットで,数値 予報モデルに初期条件や境界条件を与えるものである[51]。同データは世界標準時0時と12時の1日2回 を中心とする世界中の地上観測所やラジオゾンデ,人工衛星,船舶,航空機等による大気と地表の3次元 気象観測データを取り込むことによって作成される。この際,各気象観測データは空間分布やデータ数,頻 度,精度がそれぞれ異なるため,様々な品質管理処理を通じてより信頼度を上げる工夫が成される。現在 では6時間予報値を新たな観測値として取り込む4次元データ同化と呼ばれる手法の普及により,同デー タの誤差と観測データの誤差は同等であると言われているが[51],単パンドアルゴリズムに使用する場合 には,ブロダクトの時間分解能が6時間であるのに加え,空間分解能(水平及び垂直)が低いことに注意 する必要がある。1993年現在で最も高分解能な全球数値予報モデルはECMWFの31層T213スペクトル モデル<sup>11</sup>で,格子間隔が0.5625°である[51]。当然ながら,これらの分解能より小さい時空間スケールの気 象現象についてはプロダクトからは得られず,大気補正では誤差要因となる。但し,ゾンデやサウンダの 観測空白域についても予報モデルに基づく解析値が得られることが大きな長所であり,例外なく定常処理 システムへ大気情報を取り込めることから,ASTER/TIRの標準大気補正法(2.3.7項参照)では1オプ ションとしてNCEPのGDASプロダクト(付録A.1参照)を採用している[40]。

なお,単バンドアルゴリズムでは,式(2.34)に透過率  $\tau_i(\mu)$ 及び光路輝度  $I_i^{\uparrow}(\mu)$ を与えることにより,式(2.57)を得ることができるが,これから LST を得るためには放射率の影響を除去しなくてはいけない。 今, $I_i^{\downarrow}$ は既知であるので,観測チャネル数が N の時,式(2.57)は1画素につき N 個得られるが,未知

<sup>&</sup>lt;sup>11</sup> T213 は,スペクトルモデルの切断が三角形で,切断波数が213 であることを意味する。

数は各チャネルの放射率(N 個)とLST(1個)の計(N+1)個となり,解析的に解くことはできない。 この underdetermined 逆問題を解くことを温度・放射率分離(TES, TE 分離)と呼び,これまでに様々な 手法が開発されている[38],[41]-[48]。その典型的な方法は,地表面の放射率の分光特性に見られる経験的 な特徴を方程式によって表し,これを連立方程式に加えることによって全ての解を得る方法である。例え ば,スペクトル正規化法[42]と呼ばれる手法は,各画素の最大放射率をシーン全体で一定値であると仮定 する式( $\epsilon_{max} = \text{const.}$ )を連立方程式に加える。また,ASTER/TIR の標準 TES アルゴリズム[46]では, 同様のアプローチに基づくMMD 法と呼ばれる手法をベースにしている(付録 A.2 参照)。MMD 法は分 光放射率のチャネル間の最大差(最大値と最小値の差)と平均値の間の線形関係に基づくTES であり,最 大差の代わりに標準偏差、平均値の代わりに最小放射率を使用することも可能である。

2.3.7 ASTER/TIR の標準大気補正アルゴリズム

ASTER / TIR の標準大気補正アルゴリズム [40] では,以下の理由により差分吸収アルゴリズムを採用 せず,単バンドアルゴリズムを採用している。

- ASTER / TIR の各チャネルは,大気効果を受けにくい大気の窓の最も透明な波長域に配置されて いること。
- 一般に陸域の分光放射率は未知であり、また、組成や植生被覆、含水率を含む多くの因子によって変動すること。
- 差分吸収アルゴリズムは,機器に起因する観測ノイズと各チャネルの精度にとてもセンシティブであること。

以下に, ASTER / TIR の標準大気補正アルゴリズムについて, ATBD[40] に従って述べる。

単バンドアルゴリズムに使用する RTC は, MODTRAN の最新版を使用する(現在の最新版は MOD-TRAN4)。

MODTRAN に入力する大気データは、温度・水蒸気プロファイル、オゾン、エアロゾルである。これ らのうち最も重要な温度・水蒸気プロファイルのソースは、MODIS の各プロダクトの優先度が最も高く、 次いで GDAS 及び NASA / GEOS-1 の同化システムの各プロダクトが続く。但し、MODIS プロダクト がミッション開始から 18ヶ月は検証により利用できないことから、ミッション初期は GDAS プロダクト の利用がベースとなる。オゾン及びエアロゾルについては ASTER の場合それほど重要ではないが、オゾ ンについては MODIS、TOVS、SAGE、TOMS の各プロダクト(プロファイルもしくは総量)や NOAA / EMC のプロダクト(プロファイル)を、エアロゾルについては MISR や MODIS のプロダクト(光学 的厚さ)を利用する。

標高データについては ETOPO5[100] や GTOPO30[101] などの利用がメインになる。

なお、大気及び標高データの空間分解能が ASTER / TIR の空間分解能 90m より低いため、ASTER シーンを幾つかの格子(例えば 15km 間隔)に区切った後、各格子点の大気プロファイルを補間して求め、 そのプロファイルについて周囲の代表的な幾つかの標高値に対して大気効果パラメータ(透過率,光路輝 度,天空輝度)を求めておき、それらから緯度経度及び標高をキーとする補間によって各画素ごとの大気 効果パラメータを求める方法が採用されている。

2.3.8 LST 推定アルゴリズムの現状と課題

SW 法や MC 法を始めとする差分吸収アルゴリズムは SST 観測では極めて実用的な手法であり, 定常処 理システムにも実装されているが, LST 観測の場合には放射率を入力パラメータとして必要とすることが ネックとなって,未だ実用的とは言い難い面がある。また, LST を直接推定するため, 放射率の同時推定 はできない。

Li ら(1993)や Wan ら(1997)によって開発された昼夜アルゴリズムは放射率の同時推定が可能であ るが,1回の大気補正を行うには昼夜のデータセットが必要であること,両データのレジストレーション 誤差が推定精度に大きく影響すること,放射率を昼夜間で一定と置く仮定の妥当性にやや問題があること など,全球対応の定常処理システムへの実装には幾つかの不利な点がある。

一方,単バンドアルゴリズムと TES を組み合わせる手法は LST と同時に放射率も推定可能であるが, 観測時の大気プロファイルをいかに精度良く与えるかが問題である。精度的にはラジオゾンデデータが最 も優れているが,定常的には全球で1日に2回しか観測されておらず,また観測点も極めて不均質である 点で適用性に問題がある。また,全球解析データは格子間隔以下の局所的な気象現象や時間変化の大きい 気象現象に対しては原理的に対応できないことや,定常気象観測点の疎らな南半球では精度が一般に悪い など,精度上の問題点が幾つかあるが,解析時刻(6時間ごと)における全球の各格子点での大気情報を 例外なく提供する点で適用性に極めて優れているため,ASTER/TIR の定常処理システムでは同データが 利用されている。なお,前述の通りその精度についてはやや問題があるものの,実際にそれを検証した例 はほとんど無く,これは早急に取り組むべき課題である(これについては,本論文の第4章にて扱う)。

こうして,現在は全球解析データを用いた単バンドアルゴリズムが最も実用的であると考えられるが, 理想的には同アルゴリズムの高い適用性とラジオゾンデデータを用いた単バンドアルゴリズムの高い精度 を併せ持つアルゴリズムであり,その開発が待たれている。本論文の第7章では,第4章~第6章の成果 に基づいてそれらの特徴を併せ持つアルゴリズムの開発を行う。

## 3 シミュレーションモデルの構築

### 3.1 概要

大気補正アルゴリズムを検証する方法には,大きく分けて,シミュレーションモデルに基づく方法と実 データに基づく方法がある。前者の方法は,まず大気,放射率,LST,観測ジオメトリについてそれぞれ複 数の条件を仮定し,これらを互いに組み合わせて式(2.34)を用いた放射伝達計算を行うことにより,様々 な条件に対する観測放射輝度を計算する。そして,各観測放射輝度を大気補正して地表パラメータを計算 し,これと実際に与えた地表パラメータを比較することによって大気補正アルゴリズムを検証する手法で ある。Fig. 7 にその概念図を示す。一方,後者の方法は,衛星センサが実際に観測した放射輝度値を大気 補正して地表パラメータを計算し,これと同期観測による地表パラメータを比較することによって大気補 正アルゴリズムを検証する手法である。後者の方法は実際に観測された値を使用する点で検証結果に説得 力を持つが,限定された観測条件の下での検証であることや,検証結果が地表パラメータの実測値の精度 に依存するなどの問題点を持つ。一方,前者の方法はこれと逆の特徴を持つが,特に観測条件を自在にコ ントロールできる点は大きなメリットであり,大気補正アルゴリズムの開発段階では最もよく利用される 検証手法である。本論文ではこれら2つの方法を組み合わせて種々の評価を行うが,本章では,まずその 準備として,前者の検証方法に使用するためのシミュレーションモデルを構築する。

シミュレーションモデルの構築に当たって最も注意を要するのが,与える観測条件の妥当性である。与 える条件が異なると得られる結果に違いが生じることは明白である。本研究では,全球的な陸域観測を想 定して,これにより適合したシミュレーションモデルの構築を試みる。

なお,観測放射輝度をシミュレートする際に放射伝達計算が必要であるが,これらは全て MODTRAN3.7 を使用して行った。この際,計算時の波数間隔は 1cm<sup>-1</sup>とし,三角波窓関数の半値幅(FWHM)は 2cm<sup>-1</sup> とした。また,本論文では主に AVHRR の Ch.4~5 及び ASTER/TIR を例として大気補正アルゴリズム を検証するため,大気効果パラメータや放射率等の波長の関数については,各チャネルの応答関数を式( 2.33)に与えることにより,チャネル相当値に変換した。

Fig. 8 に使用した各センサの応答関数を示す。AVHRR の Ch.4 と ASTER の Ch.13~14 がほぼオー
 バーラップしているのが分かる。図には参考のため,MODTRAN3.7 による中緯度夏モデルに対する透過
 率(センサ高度 100km,地表高度 0km,直下観測の場合)も示してある。図では分かりにくいが,ASTER
 の Ch.11 及び Ch.12 は 9.6μm 付近のオゾンの吸収帯にやや掛かっており,これについては 3.6 節で改めて

述べる。

## 3.2 大気のモデル化

大気のモデル化については,特定地域のラジオゾンデデータのみを用いた研究例やLOWTRAN・MOD-TRAN などに付属する標準大気モデルを用いた研究例が少なからず見られるが,全球に対応させるには不 十分である。近年の研究では,150,000以上の全球のラジオゾンデデータから統計的に選定した1,800の大 気プロファイルを含む TIGR と呼ばれるデータベース [94] を使う例があり [32],[86],信用性がかなり高い ものになっているが,TIGR は HIRS と MSU による大気プロファイル(気温や水蒸気量等)推定におけ る初期推定値を与えるために開発されたものであり,特徴的な大気プロファイルをもれなく含むことが本 来の目的であるため,必ずしも全球大気の統計的性質を持っている訳ではないことに注意しなくてはいけ ない。

本論文では,全球大気の統計的性質をより反映する様にするため,米国 NCEP のリアルタイム全球再 解析システム CDAS による 1979 年から 1995 年までの1月及び7月の月平均プロダクトを用いることと した [102]。1月と7月はLOWTRAN・MODTRAN などに付属する標準大気モデルの冬モデル及び夏モ デルに対応する月である。今回使用したプロダクトには,2.5°間隔の緯経度座標系で指定気圧面における 各種大気パラメータの月平均値が含まれており,本論文では同プロダクトからジオポテンシャル高度,気 温,相対湿度を抽出して用いた。なお,緯経度座標系の値をそのまま使用すると高緯度地方の重みが大き くなってしまうため,熱帯付近では緯経度5°間隔でデータを抽出し,この面積比率に近くなるように緯度 5°ごとに間引き率を変化させながらデータを抽出して,構成を現実の面積分布に近いものとした。また, 陸域観測を主目的とするアルゴリズムの評価において,地球表面の約7割を占める海洋の大気条件を与え ると回帰係数がより海洋観測にチューニングされ,陸域観測に対する精度が低下する可能性が考えられる。 そこで,上記で再構成した大気モデルから,更に陸域上にあるもののみを取り出した。これにより,各月 482 プロファイル,計 964 プロファイルから構成される大気モデルが得られた。Fig. 9 は抽出された 482 地点を緯経度座標系で示す。高緯度ほど間引き率が大きくなっているのが分かる。

エアロゾルについては,この帯域では平均的なものを与えても大きな誤差にはならないことから[36], MODTRAN 内臓の Rural-VIS=23km モデルを用いた。また,CDAS プロダクトに含まれない高高度のプ ロファイルや,オゾンや二酸化炭素等の水蒸気以外の大気分子のプロファイルは,緯度帯と月を考慮し,以 下のように MODTRAN の標準大気モデルより与えた。



Figure 7: Simulation-based method for validating an atmospheric correction algorithm.



Figure 8: Response functions of AVHRR (channels 4 and 5) and ASTER (channels 10 to 14), and atmospheric transmittance of the Midlatitude Summer model calculated by MODTRAN3.7.

- 90°N~60°N : 亜北極冬(1月), 亜北極夏(7月)
- 60°N ~ 30°N : 中緯度冬(1月),中緯度夏(7月)
- 30°N~30°S : 熱帯(1月,7月)
- 30°S~60°S : 中緯度夏(1月),中緯度冬(7月)
- 60°S~90°S : 亜北極夏(1月), 亜北極冬(7月)

また,大気モデルの構築に当たっては地表の高度も同時に扱う必要がある。本論文では,より現実に近 い分布を与えるため,米国 USGS が編集した全球の 30 秒間隔の DEM である GTOPO30[101] から,大気 モデルにおける 964 プロファイルの各地点に対応する標高をそれぞれ取り出して与えた。Fig. 10 は与え られた標高の分布である。ここでは,1月と7月により,同一地点が2回カウントされている。なお,本 論文では,特に断らない限り,964 プロファイルに各地点の標高を加味したものを大気モデルと呼ぶこと にする。

Fig. 11 は構築した大気モデルの総水蒸気量の分布である(単位は [g/cm<sup>2</sup>])。また, Fig. 12 は,大気モ デルから計算された AVHRR / Ch.4 の透過率の分布である。観測方向は直下とした。透過率は第1近似 的には総水蒸気量によって決定されるため,総水蒸気量の分布と左右対称に近い分布が得られていること が分かる。一方, Fig. 13 は, AVHRR / Ch.4 の光路輝度の分布である。光路輝度は水蒸気量と気温の各 プロファイルに依存するが, Fig. 14 に示すように透過率と光路輝度の相関は極めて高いことが分かる。こ れは,気温が高いほど飽和水蒸気量が大きくなることから,一般に乾燥地域を除く地域では気温と水蒸気 量の間には正の相関が見られるためである。従って,地球大気に対しては光路輝度も第1近似的には総水 蒸気量によって説明できると考えて良い。

3.3 観測ジオメトリのモデル化

観測ジオメトリのモデル化は考慮する衛星・センサによって大きく異なるが,本論文では,AVHRR及び ASTERの両センサに対し,衛星高度を100km,観測角を0°としてモデル化した。

衛星高度として与えた 100km は実際の AVHRR や ASTER の高度(前者は 850km,後者は 705km)と は異なるが,放射伝達計算において大気上端として扱われることが多い高度であり,実際の高度との違い はここでの放射伝達計算上は完全に無視して良い。



Figure 9: Positions of atmospheric profiles selected from CDAS monthly mean products for January and July.



Figure 10: Distribution of the elevation.



Figure 11: Distribution of the total water vapor amount.



Figure 12: Distribution of the transmittance for AVHRR channel 4.



Figure 13: Distribution of the path radiance for AVHRR channel 4.



Figure 14: Plot of the transmittance versus the path radiance for AVHRR channel 4.

一方の観測角については,ASTER の場合は刈幅が 60km と狭く,最大 8.55°のポインティングを行って も観測角はたかだか 10°程度にしかならないため,これを全て 0°として評価しても大きな誤差にはなら ないが,AVHRR の場合は最大で 55.4°に達する観測角を持つため,観測角を全て 0°とする評価は充分で はない。しかしながら,大気補正アルゴリズムの観測角依存性は観測角ごとにアルゴリズムをチューニン グすることによって解決できること [27],本論文で扱う大気補正アルゴリズムの主たる対象は ASTER の ような高空間分解能型センサであることなどの理由から,AVHRR に対しても同様に観測角を 0°のみとし た。但し,本論文中,AVHRR に対する一部の評価では,観測角依存性を確認するために他の観測角を考 慮する場合もある。ちなみに AVHRR に対する SW 法の場合,45°以下の観測角に対しては係数に角度依 存性がほとんど現れないと言われており [31],観測角として 0°のみを与えた評価でもおよそ 80%の画素に 対して有効であると考えられる。

## 3.4 LST のモデル化

LST のモデル化については,大気モデルの地表気温に複数のオフセット(本論文では, $\delta$ LST と記述す る)を与えることによって行われる場合が多く[27],[36],本論文でもこの方法を採用した。この方法の場 合, $\delta$ LST の与え方の妥当性が問題となる。Fig. 15 は 3.2 節の大気モデルにおける地表気温の分布である。 本論文では,これらに対して,-5, +0,+5,+10,+20K の5つの $\delta$ LST を与えることを基本としてLST をモデル化し,必要に応じて他の $\delta$ LST も考慮した。これらは主に日中観測を想定しており,地表気温に 比較的近い-5K から +10K までを 5K 刻みで与え,これにやや大きい $\delta$ LST として +20K を加えた構成 となっているが,ここでその妥当性について言及することは難しい。理想的には陸域における $\delta$ LST の統 計分布に基づいてモデル化すべきあるが,本論文では割愛する。

なお, Wan ら (1996, 1997) は昼間及び夜間のそれぞれに異なる  $\delta$ LST のレンジを設けてシミュレーションしており, 1996年の論文 [27] では昼間に対して  $-2 \sim +16$ K, 夜間に対して  $-16 \sim +2$ K, 1997年の論文 [36] では昼間に対して  $+0 \sim +24$ K, 夜間に対して  $-13.5 \sim +4.5$ K を与えている。これらのレンジの導出根拠については不明だが,本論文で与えた  $\delta$ LST のレンジは Wan らによる昼間のレンジに近いものとなっている。



Figure 15: Distribution of the surface air temperature.

## 3.5 放射率のモデル化

放射率のモデル化については,現時点では放射率の詳細な全球分布が得られていないので,より現実の 分布に即して行うことは難しい。差分吸収アルゴリズムは放射率の影響を顕著に受けるので,多様な分光 特性を持つ岩石を多く取り入れた構成にすればLST推定の精度は悪くなり,逆に黒体に近い分光特性を持 つ水氷や植生等を多く取り入れた構成にすれば精度は良くなる。最近では,室内分光測定に基づく様々な 地表面物質のスペクトルライブラリ [53], [55] が整備されつつあり,これらから各研究者の基準に従ってサ ンプルを選び出す方法が多い [27], [36]。この方法はかなり主観的な作業であり,問題も多いが,他に有効 な方法が無いため,本論文においてもこの方法に基づいて放射率のモデル化を行った。

本論文では,Salisburyらによって整備されたスペクトルライブラリ [53],[55] から,なるべく多様な放 射率パターンから構成される様,特に岩石のサンプルデータを多く選び,計97 サンプルから成る放射率 モデルを構築し,これを基本モデルとした。そして,必要に応じて基本モデルから一部のサンプルを選び, 検証に使用した。なお,スペクトルライブラリのオリジナルデータは波長ごとの反射率であるため,キル ヒホッフの法則を使用して放射率に変換した後,式(2.33)の方法によって各センサのチャネルごとの放射 率(チャネル放射率)に直した。

Table 3 は選択された 97 サンプルのリストである。サンプルナンバーの小さい方から火成岩(34 サン プル),堆積岩(12 サンプル),変成岩(15 サンプル),岩石コーティング(8 サンプル),土壌(9 サ ンプル),植生(13 サンプル),水氷(6 サンプル)の順に並んでいる。また,Fig. 16 は,AVHRR 及び



Figure 16: Minimum emissivity of each emissivity sample for AVHRR and ASTER.

ASTER に対する各サンプルの最小放射率を示したものである。AVHRR より ASTER の方が全体に最小 放射率が小さいのは, ASTER の Ch.10~12 が Si-O の主要極小帯域に位置するためである。ASTER/TIR に対する地表面物質のチャネル放射率については,最小放射率が小さいものほど平均放射率が小さく,分 散が大きいことが知られており [46], [103],これらのパラメータによってその物質がどの程度黒体に近い 放射率特性を持つかが分かる。図に示すように,サンプルナンバーの小さい岩石では全体に最小放射率が 小さく,従って黒体から大きく外れた分光特性を持つが,逆にサンプルナンバーの大きい植生や水氷は最 小放射率が大きく,従って黒体に近い分光特性を持つことが分かる。

## 3.6 観測放射輝度の計算

前節までに述べた大気モデル(964 通り),LST モデル( $\delta$ LST,5通り),放射率モデル(97 通り)を互 いに組み合わせることにより,計467,540 通りの観測条件が得られる。そして,これらの各条件について, まず,大気モデル及び観測ジオメトリを MODTRAN3.7 に与えて各波長ごとの透過率,光路輝度,天空輝 度を計算し,これらを各チャネルごとの値に変換した後,これらとLST 及びチャネル放射率を式(2.34) に与えることによって各チャネルごとの観測放射輝度を計算した。

ところで,実際のセンサにはランダムな観測誤差が存在し,その程度は NEAT によって示される。この効果を考慮するため,各観測輝度温度には,平均値が 0K で標準偏差が当該チャネルの NEAT の仕様値 (ASTER は 0.3K, AVHRR は 0.12K)である正規乱数によって生成した値を誤差として付加した。

| sample no. | sample name      | type of material | sample no. | sample name                | type of material          |
|------------|------------------|------------------|------------|----------------------------|---------------------------|
| 1          | Aplite.h1        | igneous rock     | 50         | Marble.h2                  | metamorphic rock          |
| 2          | Granite.h1       | igneous rock     | 51         | Marble.h3                  | metamorphic rock          |
| 3          | Granite.h2       | igneous rock     | 52         | Marble.h4                  | metamorphic rock          |
| 4          | Granite.h3       | igneous rock     | 53         | Quartzite.h1               | metamorphic rock          |
| 5          | Granite.h5       | igneous rock     | 54         | Quartzite.h4               | metamorphic rock          |
| 6          | Obsidian.h1      | igneous rock     | 55         | Quartzite.h6               | metamorphic rock          |
| 7          | Rhyolite.h1      | igneous rock     | 56         | Schisit.h3a                | metamorphic rock          |
| 8          | Andesite.h1      | igneous rock     | 57         | Schist.h6a                 | metamorphic rock          |
| 9          | Andesite.h2      | igneous rock     | 58         | Schist.h7                  | metamorphic rock          |
| 10         | Andesite.h4      | igneous rock     | 59         | Slate.h1a                  | metamorphic rock          |
| 11         | Diorite.h1       | igneous rock     | 60         | Slate.h2a                  | metamorphic rock          |
| 12         | Granodiorite.h1  | igneous rock     | 61         | Slate.h3                   | metamorphic rock          |
| 13         | Granodiorite.h2  | igneous rock     | 62         | Rhyolite.f                 | fresh rough surface       |
| 14         | Monzonite.h1     | igneous rock     | 63         | Rhyolite.v                 | desert vanish coated rock |
| 15         | Monzonite qtz.h1 | igneous rock     | 64         | Basalt.f                   | fresh rough surface       |
| 16         | Syenite.h1       | igneous rock     | 65         | Basalt.v                   | desert vanish coated rock |
| 17         | Syenite neph.h2  | igneous rock     | 66         | Ijolite.f                  | fresh rough surface       |
| 18         | Tonalite.h1      | igneous rock     | 67         | Ijolite.v                  | desert vanish coated rock |
| 19         | Anorthosite.h1   | igneous rock     | 68         | Crustose.10                | lichens coated rock       |
| 20         | Basalt.h1        | igneous rock     | 69         | Crustose.65                | lichens coated rock       |
| 21         | Basalt.h2        | igneous rock     | 70         | Entisols                   | Soil                      |
| 22         | Basalt.h5        | igneous rock     | 71         | Vertisols                  | Soil                      |
| 23         | Basalt.h7        | igneous rock     | 72         | Inceptisols                | Soil                      |
| 24         | Basalt.h9        | igneous rock     | 73         | Aridisols                  | Soil                      |
| 25         | Diabase.h1       | igneous rock     | 74         | Mollisols                  | Soil                      |
| 26         | Diabase.h2       | igneous rock     | 75         | Spodosols                  | Soil                      |
| 27         | Gabbro.h1        | igneous rock     | 76         | Alfisols                   | Soil                      |
| 28         | Ijolite.h1       | igneous rock     | 77         | Ultisols                   | Soil                      |
| 29         | Lamprophyre.h1   | igneous rock     | 78         | Oxisols                    | Soil                      |
| 30         | Norite.h1        | igneous rock     | 79         | Red oak                    | veg. green foliage        |
| 31         | Norite.h2        | igneous rock     | 80         | $\operatorname{Conifer}$   | veg. decomposing litter   |
| 32         | Dunite.h1        | igneous rock     | 81         | White pine                 | veg. green foliage        |
| 33         | Picrite.h1       | igneous rock     | 82         | Indian grass               | veg. green foliage        |
| 34         | Picrite.h2       | igneous rock     | 83         | $\operatorname{Senbeech}$  | veg. senescent foliage    |
| 35         | Greywacke.h1     | sedimentary rock | 84         | Senredoak.h1               | veg. senescent foliage    |
| 36         | Limestone.h1     | sedimentary rock | 85         | Senpine                    | veg. senescent foliage    |
| 37         | Limestone.h2     | sedimentary rock | 86         | Senryegrass                | veg. senescent foliage    |
| 38         | Limestone.h3     | sedimentary rock | 87         | Oakbark.1                  | veg. tree bark            |
| 39         | Sandstone.h1     | sedimentary rock | 88         | Ypoplarbark                | veg. senescent foliage    |
| 40         | Sandstone.h2     | sedimentary rock | 89         | Pinebark.1                 | veg. tree bark            |
| 41         | Sandstone.h4     | sedimentary rock | 90         | Wood                       | veg. decomposing litter   |
| 42         | Shale.h3         | sedimentary rock | 91         | Deciduous                  | veg. decomposing litter   |
| 43         | Shale.h5         | sedimentary rock | 92         | Seawater                   | water                     |
| 44         | Shale.h6         | sedimentary rock | 93         | $\operatorname{Distwater}$ | water                     |
| 45         | Siltstone.h1     | sedimentary rock | 94         | Seaice.smooth              | ice                       |
| 46         | Siltstone.h2     | sedimentary rock | 95         | Seaice.100grit             | ice                       |
| 47         | Gneiss.h1a       | metamorphic rock | 96         | Distice.smooth             | ice                       |
| 48         | Gneiss.h3a       | metamorphic rock | 97         | Distice.100grit            | ice                       |
| 49         | Gneiss.h4        | metamorphic rock |            |                            |                           |

Table 3: List of samples included in the emissivity model.

Table 4: Change in the sensor brightness temperature for 50% increase in the total ozone amount for the six standard model atmospheres (sensor altitude: 100km, surface altitude: 0km, looking angle: 0°, LST: surface air temperature + 10K).

|                    | total ozone amount | ASTER channel |       |       |       |       |
|--------------------|--------------------|---------------|-------|-------|-------|-------|
| model              | [m atm-cm]         | ch.10         | ch.11 | ch.12 | ch.13 | ch.14 |
| Tropical model     | 277.4              | -0.02         | -0.23 | -0.43 | 0.00  | 0.00  |
| Midlatitude summer | 331.7              | -0.03         | -0.27 | -0.51 | -0.01 | 0.00  |
| Midlatitude winter | 376.8              | -0.03         | -0.33 | -0.62 | 0.00  | 0.00  |
| Subarctic summer   | 344.9              | -0.03         | -0.28 | -0.50 | -0.01 | 0.00  |
| Subarctic winter   | 375.7              | -0.03         | -0.34 | -0.63 | -0.01 | 0.00  |
| 1976  US standard  | 343.6              | -0.03         | -0.30 | -0.55 | -0.01 | 0.00  |

また,ASTERの一部のチャネルはオゾンの吸収帯に掛かっているため,3.2節の方法によってモデル化したオゾン量と実際のオゾン量が異なる場合には,観測輝度温度にオフセットを生じる可能性がある[40]。そこで,MODTRAN内臓の6つの標準大気モデルについて,全オゾン量を50%増加させた時のASTER/TIRの各チャネルの観測輝度温度の変化を計算した。この際,衛星高度は100km,地表高度は0km,観測方向は直下,LST は各モデルの地表気温に10Kを加えた値とした。Table 4 に得られた結果を示す。表より,オゾン量に対する感度はCh.12が最も大きく, $-0.43 \sim -0.63$ K,次いでCh.11で,Ch.12の半分程度の $-0.23 \sim -0.34$ K である。他のチャネルの感度についてはNEATを考慮すると十分に無視できることが分かる。1961~1990年の国立天文台の統計[104]によると,オゾン量の月平均値の年間変動は,つくばで273~353 m atm-cm(変化率29%),昭和基地で276~335 m atm-cm(変化率21%)であるから,月平均値で見る限り,つくばは中緯度夏・冬の,昭和基地は亜北極夏・冬の各オゾン量の±50%以内に十分に収まっている。そこで,本論文では,実際のオゾン量はモデルで与えた量のたかだか±50%以内に収まるものと考え,Table 4 の結果から,Ch.12の観測輝度温度には±0.5Kの範囲で一様乱数による誤差を与え,Ch.11にはその1/2を誤差として与えることとした。

こうして,AVHRR/Ch.4~5 及び ASTER/TIR のそれぞれについて,ある観測条件(大気プロファイル,LST,放射率,観測ジオメトリのある組み合わせ)とそれに対する各チャネルの観測放射輝度を1セットとする計467,540 セットから構成されるシミュレーションモデルが得られた。本モデルは次章以降のシミュレーションベースの評価・検証において基本モデルとして使用される。

# 4 全球解析データに基づく単バンドアルゴリズムの検証

全球解析データは例外なく全球の各点での大気情報を与えることから,定常処理システムにおける単バ ンドアルゴリズムの大気ソースとして優れており,ASTER / TIR の標準大気補正アルゴリズムにおいて も全球解析データの1つである NCEP/GDAS プロダクトを用いた単パンドアルゴリズムが採用されてい る。同データを単パンドアルゴリズムに利用する場合には上記のような大きなメリットがあるものの,反 面,同データの解析時刻が通常6時間間隔で解析点の水平格子間隔が最高でも0.56°程度[51]と時空間分 解能が低いことや,同データの信頼度が場所によって異なることなどの問題に注意する必要がある。しか しながら,現状では同データに基づく単パンドアルゴリズムの検証はほとんど成されておらず,その有効 性については不明な点が多い。これは,LST や地表面放射率のプロダクトを定常運用で供給するプロジェ クトが EOS プロジェクト以前には無かったため,全球解析データを敢えて利用する必要性が無かったこと が原因の1つであろう。

そこで本章では,全球解析データに基づく単バンドアルゴリズムについて,シミュレーションや実デー タに基づく複数のアプローチによって検証した結果について述べる。

## 4.1 シミュレーションモデルに基づく検証

全球解析データに基づく単バンドアルゴリズムは,各指定気圧面におけるジオポテンシャル高度,気温, 水蒸気量(相対湿度)を全球解析データから抽出し,これとDEM を用いて放射伝達計算を行うことによ り大気補正を行う手法である。本手法において,大気補正誤差の要因として最も大きなインパクトを持つ と考えられるのが,全球解析データ自身が持つ誤差である。上記の3つのパラメータのうち,ジオポテン シャル高度の誤差は,1000~500hPaで約10m前後であると言われており[51],[105],放射伝達計算では 十分に無視して良いので,気温及び水蒸気量の誤差に注意する必要がある。

一般的に全球解析データにおける気温の誤差は約1.5~2K 程度[51],水蒸気量の誤差は大気下層の比湿 で約1.5g/kg 程度[105] などの数字があるが,これらの値は場所や季節に大きく依存することが考えられ, また,全球解析データより空間分解能がはるかに高く,かつ一瞬で観測が完了する熱赤外センサデータの大 気補正に使用する場合には,任意の時刻における局所スケールでの誤差を考慮する必要がある。現在,客観 解析の精度は観測精度と同等であると言われるが[51],大気補正への利用を考慮すると全球解析データの 各パラメータの精度は観測精度と高々同等で,通常それより低いと考えた方がよく,特に時空間変動が激

しい気象要素である水蒸気量の精度はあまり高くないものと考えた方が良いと思われる。ちなみに,気温の観測精度はラジオゾンデで1K程度であり,近い将来に利用可能となる新型サウンダ(EOS-PM/AIRS や METOP/IASI)も同程度のパフォーマンスが期待されている[49]。また,水蒸気量(相対湿度)の観測 精度はラジオゾンデで7~10%程度,上記のサウンダで10~20%程度と言われている[49]。

こうした気温及び水蒸気量のプロファイルに含まれる誤差が単バンドアルゴリズムの精度に及ぼす影響 については幾つかの研究例があるが [40], [106], ここでは3章で作成したシミュレーションモデル(964 プ ロファイル×97 サンプル×56LST = 467,540条件)を用いて評価を行った。

まず , AVHRR 及び ASTER の各チャネルについて , 各シミュレーション条件ごとの観測放射輝度に対し ,

- 各観測放射輝度を計算する際に与えた大気プロファイル(オリジナルプロファイルと呼ぶ)を用いて
   各観測放射輝度を大気補正する場合
- オリジナルプロファイルのうち、気温プロファイルのみに系統的に+2Kの絶対誤差を付加したプロファイルを用いて各観測放射輝度を大気補正する場合
- オリジナルプロファイルのうち,水蒸気プロファイルのみに系統的に -20%の相対誤差を付加したプロファイルを用いて各観測放射輝度を大気補正する場合

のそれぞれについて地上レベルの地表輝度温度(式(2.57)参照)を計算し,各場合ごとに全467,540条件 に対する結果から RMSEを計算した。なお,前述したように全球解析データの誤差については不明な点も 多いが,気温における 2K や水蒸気における 20%の誤差は,ここでは全球解析データのプロファイル誤差 の典型値として与えた。

得られた結果を Table 5 に示す。オリジナルプロファイルを用いた場合でも誤差があるのは,NEAT 及 びオゾン量誤差(ASTER / Ch.11,12)のためで,従って ASTER の方が AVHRR より RMSE が大きく なっている。また,Table 5 の値を元に RMSE を 1K 増加させる効果がある気温及び水蒸気プロファイル の系統誤差を計算した結果を Table 6 に示す。これらの値は大気補正誤差に対する感度を示すもので,チャ ネルによってもかなり異なることが分かる。これらの結果と上記で与えた全球解析データのプロファイル 誤差の典型値を考慮すると,全球解析データを用いた大気補正では,水蒸気プロファイルの誤差が主たる 誤差因子となり得ることが分かる。なお,前述したように水蒸気量は一般に時空間変動が最も激しい気象 要素であるため,大気補正に対してはここでの評価より更に大きな誤差を持つ可能性もある。

| input profile er | orror | AVHRR |      |  | ASTER |       |       |       |       |
|------------------|-------|-------|------|--|-------|-------|-------|-------|-------|
|                  | error | ch.4  | ch.5 |  | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |
| (no change)      | _     | 0.16  | 0.19 |  | 0.47  | 0.45  | 0.52  | 0.39  | 0.42  |
| air temperature  | +2K   | 0.89  | 1.67 |  | 1.22  | 0.88  | 0.77  | 0.92  | 1.17  |
| water vapor      | -20%  | 1.55  | 2.94 |  | 1.65  | 1.12  | 0.95  | 1.51  | 2.01  |

Table 5: RMSE [K] of the surface brightness temperature at surface level derived by atmospheric correction as a function of a typical error on input profile.

Table 6: Error on input profile giving the impact of 1K to the RMSE of the surface brightness temperature at surface level.

| input profile   | AVH   | RR   |      |    |                  | ASTER            |                  |                  |
|-----------------|-------|------|------|----|------------------|------------------|------------------|------------------|
| mput prome      | ch.4  | ch.5 | ch.  | 10 | ch.11            | ch.12            | ch.13            | ch.14            |
| air temperature | 2.7 K | 1.4K | 2.7  | Κ  | $4.7 \mathrm{K}$ | $8.0 \mathrm{K}$ | $3.8 \mathrm{K}$ | $2.7 \mathrm{K}$ |
| water vapor     | 14.4% | 7.3% | 16.9 | 9% | 29.9%            | 46.5%            | 17.9%            | 12.6%            |

## **4.2** 日本周辺の AVHRR データに基づく検証

本節では,全球解析データに基づく単バンドアルゴリズムを日本周辺の9月及び12月のAVHRRデータ(Ch.4及びCh.5)を使用して検証した結果について述べる。検証は,以下の3つの異なるアプローチにより行った。

1. 霞ヶ浦におけるフィールド実験に基づく検証

2. 衛星直下画素を用いた MCSST との比較検証

3. GPS 可降水量データを利用した検証

上記のいずれのアプローチにおいても,比較や参照のため,SW法を用いた。これは,SW法がこれまでの多くの研究により[107],その性質が比較的よく分かっているためで,特に日本周辺海域における研究例 [108],[109] は本研究と最も条件が近い点で参考になると考えたためである。

以下では,全球解析データはASTER/TIR の標準大気補正において採用された米国NCEPのGDASプロダクトを用いた。具体的には,各衛星通過時刻を挟む前後2時刻のGDASプロダクト(水平格子間隔 1°×1°,気圧ベース)を入手し,それらの時空間内挿によって各衛星通過時刻における注目地点でのジオ ポテンシャル高度・気温・湿度の各鉛直プロファイルを求めて使用した。ここで,時空間内挿は各気圧レベ ルごとに行い,水平方向については共1次内挿法を,時間方向については線形内挿法を用いた。上記以外



Figure 17: Deployed positions for Lake Kasumigaura buoys on September 9, 1998.

の大気プロファイル(二酸化炭素やオゾン等)については,9月のデータには中緯度夏モデルのものを,12 月のデータには中緯度冬モデルのものを与え,エアロゾルについては,この帯域では平均的なものを与え ても大きな誤差にはならないことから[36],Rural-VIS=23kmモデルを与えた。標高データはGTOPO30 を用いた。また,各チャネルにおける水の放射率は,室内測定による反射率データ[55]をキルヒホッフの 法則によって放射率に変換し,応答関数[73]を与えてチャネルごとの値としたものを用いた。

### 4.2.1 霞ヶ浦におけるフィールド実験に基づく検証

### (1) 概要

1997年12月13~14日と1998年9月7~12日の2回,霞ヶ浦にてAVHRR との同期観測実験を行った。 これらの実験では,主に14:00JST付近のNOAA14の通過に同期して湖上に展開した複数のブイによって バルク水温を計測し,同時にそのうちの1ケ所で表皮水温や湖上気象データを計測した。なお,97年の実 験では衛星通過時のみにブイを配置したが,98年の実験では9月7~9日と10~12日の各3日間ずつ連続 配置した。Fig. 17は98年の実験におけるブイの配置である(97年の実験での配置は多少異なる)。

ブイは NASA / JPL のグループが使っているものを参考に自作したもので,水面下 4cm の水温をサー ミスタにより計測するものである。ロガーには Onset StowAway XTI を用い,温度分解能は約 0.1 であ り,誤差は仕様では 0.3 程度であるが,JPL のグループがカリフォルニア大学 Davis 校の校正用水槽を 用いて検証した結果では,5~30 の温度範囲で基準温度計との差はほぼ ±0.1 以内であり,またオフ

| - | AVHRR | date/time        | NOAA | $\mathrm{ELV}$ | WV   | cloud           | Ν.     | $\Lambda T$ |
|---|-------|------------------|------|----------------|------|-----------------|--------|-------------|
|   | data  | $(\mathbf{JST})$ | No.  | (deg)          | (mm) | cioud           | ⊥vbuoy | $\Delta I$  |
| - | 97-D1 | 97.12.13/14:03   | 14   | 55.8           | 8.5  | free            | 6      |             |
|   | 98-N1 | 98.09.09/03:15   | 14   | 61.6           | 33.5 | free            | 5      | ×           |
|   | 98-D1 | 98.09.09/14:39   | 14   | 42.3           | 39.9 | $\mathbf{free}$ | 5      |             |
|   | 98-D2 | 98.09.09/16:42   | 12   | 46.9           | 36.8 | contam.         | 5      |             |
| _ | 98-N2 | 98.09.11/02:53   | 14   | 82.9           | 31.1 | contam.         | 4      | ×           |

Table 7: Summary of the AVHRR data and the field experiments at Lake Kasumigaura; ELV is the satellite elevation, WV is the total water vapor amount along the optical path,  $N_{buoy}$  is the number of buoys available, and  $\Delta T$  is the skin temperature measurement.

セットを生じるものについてはこれを補正することにより確度が増すことを確認している。なお,ここでのブイ水温は,SW法の開発・検証で通常使われる外洋ブイによる水面下1mでのバルク水温[108],[109] より表皮に近い分だけ表皮水温との相関がより高いことが期待される[110]。

表皮水温は放射温度計により 10 秒間隔で計測し,温度ドリフトの補正のため,数分間隔で自作の黒体 (黒体塗料を塗布した銅板の円錐型炉で,水循環によって温度安定を図るタイプ)を用いた校正データも 取得した。放射温度計は試験目的もあって 97 年の実験では4台(3機種)を,98 年の実験では2台(2 機種)を用意したが,温度ドリフトの気温依存性が大きかった機種や校正の信頼性が低かったものを除く と,97 年の実験は3台(Minolta 505 × 2台及び Minolta IR0510:いずれもセンサは焦電素子で0.1 分 解能),98 年の実験は1台(TASCO THI-500:センサはサーモパイルで0.1 分解能)となり,以降では これらのデータのみを用いた。

湖上気象データについては,97年の実験では熱電対による気温観測を行っただけであるが,98年の実験では同観測に加え,Kanomax Climomaster 6511による気温・相対湿度・風速の観測を行った。

湖での実測データが得られた AVHRR データのうち,比較的天候条件が良かったものは 97 年 12 月 13 日 14:03JST (97-D1),98 年 9 月 9 日 3:15JST (98-N1),14:39JST (98-D1),16:42JST (98-D2),9 月 11 日 2:53JST (98-N2)の5 データで,これらを処理対象とした(略号の D は昼を,N は夜を表す)。目 視判読では 98-D2 と 98-N2 はブイエリア上にわずかな雲の混入が見られたが,参考用として処理した。各 AVHRR データに対する観測角や水蒸気量,実測データの取得状況等を Table 7 に示す。 各 AVHRR データに対して GDAS プロダクトベースの大気補正を行い,各ブイ地点での表皮水温を計 算した。具体的には,時空間内挿した GDAS プロファイルとジオメトリ条件を MODTRAN に与えて透過 率,光路輝度,天空照度を計算し,応答関数を適用して各チャネルごとの値とした後,水の放射率及び各 ブイ地点での AVHRR の観測放射輝度と共に式(2.34)に与えて計算した(以降では"GDAS による"表 皮水温と呼ぶ)。また,比較のため,SW 法による水温 MCSST も計算した。MCSST 推定式は NOAA / NESDIS のものを用い,昼のデータは Day MCSST/split,夜のデータは Night MCSST/triple とした [73]。

(12 号) 
$$MSCCT = 0.96356T_4 + 2.5792(T_4 - T_5)$$
  
+0.24260( $T_4 - T_5$ )(sec  $\theta - 1$ ) + 10.14 (4.1)

$$(14 = MSCCT = 1.0173T_4 + 2.1396(T_4 - T_5)$$

$$+0.77971(T_4 - T_5)(\sec \theta - 1) - 5.28 \tag{4.2}$$

ここで, T<sub>4</sub> 及び T<sub>5</sub> は Ch.4 及び Ch.5 の観測輝度温度(温度の単位は全て Kelvin), θ は観測角であり,式
 (4.2) については,標準誤差が 0.57 K であると報告されている [73]。

一方,実測に基づく表皮水温は次のようにして得た。まず,各放射温度計の温度ドリフト補正後の値 $T_c$ , 水の放射率  $\epsilon_r$ ,MODTRAN による天空輝度  $I_r^{\downarrow}$ を次式に与え,放射温度計ごとに表皮水温  $T_s$ を計算した。

$$T_s = B_r^{-1} \left( \frac{B_r(T_c) - (1 - \epsilon_r) I_r^{\downarrow}}{\epsilon_r} \right)$$
(4.3)

ここで,添字rは各放射温度計の応答関数を用いて式 (2.33) により重み付けた値を表す。 $B_r^{-1}(*)$ はプランク関数の温度に関する逆関数である。理想的には表皮水温は放射温度計が異なっても同じ値が得られるはずだが,実際は測定誤差等のため,必ずしもそうならない。そこで 97-D1 については,3台の放射温度計による表皮水温を単純平均した。次に,最も近い位置のブイ水温を上記の表皮水温から差し引くことにより,表皮効果  $\Delta T$ を求めた。そして,全てのブイ水温に  $\Delta T$ を加えることによって,全てのブイ地点での表皮水温を求めた。以降では,これらを全て実測表皮水温と呼ぶことにする。なお, $\Delta T$ が空間的に不均一であることも考えられるが,ここではブイエリア内の各種気象パラメータが衛星通過時には均一であったと仮定して考慮しない。

Table 8 は,各衛星通過時刻について,表皮水温計測点付近の湖上気象データ(気温,相対湿度,風速),

Table 8: The lake surface meteorological data, the buoy temperature and the skin effect  $\Delta T$  at each overpass time. The air temperatures and the wind speeds in () were measured by the Automated Meteorological Data Acquisition System (AMeDAS) at Tsuchiura, and the relative humidities in () were measured by the Aerological Observatory at Tateno. The unit of temperature is in degree C.

| AVHRR data | air temp. | humid. (%) | wind $(m/s)$ | buoy temp.                      | $\Delta T$ |
|------------|-----------|------------|--------------|---------------------------------|------------|
| 97-D1      | 9.3       | (43)       | (1.0)        | $9.67 \sim 10.07$               | +0.36      |
| 98-N1      | (21.0)    | (100)      | (0.0)        | $24.17{\color{red}{\sim}}24.49$ | N/A        |
| 98-D1      | 24.9      | 82.9       | 7.4          | $24.83 \thicksim 25.01$         | -0.74      |
| 98-D2      | 24.5      | 86.2       | 6.6          | $24.68 \sim 24.84$              | -0.59      |
| 98-N2      | (19.9)    | (100)      | (2.0)        | $24.54\textbf{\sim}24.83$       | N/A        |

ブイ水温の空間的ばらつきの範囲,そして  $\Delta T$  を示したものである。気温及び風速の欠測データは土浦の アメダス値を,相対湿度の欠測データは舘野の高層気象台の観測値を括弧付きで示した。 $\Delta T$  自身の検証 には日射量等の測定も不可欠だが,外洋では  $\Delta T$  は  $\pm 1$  程度の範囲と言われており [111], 今回の  $\Delta T$  は いずれもこの範囲には収まっている。

### (3) 検証結果

Fig. 18 は, GDAS による表皮水温(Ch.4 及びCh.5)及びMCSST をブイ水温に対してプロットした図で、低水温(97-D1)、高水温で雲無し(98-N1,98-D1)、高水温で雲有り(98-D2,98-N2)の3つに分けて示した。また、Fig. 19 は、ΔT を計測した 97-D1、98-D1、98-D2 について、横軸を表皮水温として示した図である。

97-D1では,GDASによる表皮水温,MCSST共に実測値と良く合っており,特に実測表皮水温とは±0.5 程度で合っている。これは光路水蒸気量が少なく,大気効果が小さかったことが理由として挙げられる。 逆に光路水蒸気量が極めて多かった98年の各実験データでは,実測値との一致度が全体にやや落ちる。

MCSST は全体に良く一致している。表皮水温よりもブイ水温との一致度が全体に高いのは,各MCSST 推定式がバルク水温とのマッチアップによって得られたことを考えると納得がいく。雲が少々混入してい るデータ(98-D2,98-N2)でも良い精度が得られている。一方,GDASによる表皮水温では雲の少々の混 入が大きな負の残差を生む傾向があり,前処理としてのより厳密な雲除去の必要性を示している。

GDAS による表皮水温のチャネル間の比較では,明らかに Ch.5 の方が Ch.4 より精度が悪い。これは, Ch.5 の帯域では水蒸気吸収がより大きいことから,GDAS の水蒸気プロファイルの誤差がより大きく増



Figure 18: Comparison between the satellite-derived lake surface temperature and the *in-situ* buoy temperature; (left) low temperature and cloud-free, (center) high temperature and cloud-free, and (right) high temperature and cloud-contaminated.

幅されることが主な原因として考えられる。また,Ch.5の帯域は水蒸気の連続吸収がより大きく,現在の RTC における水蒸気の連続吸収係数の精度が悪い(≈ 10%)ために[36],仮に GDAS の水蒸気プロファ イルが正しくても連続吸収係数の誤差の影響をより受けやすいこと等も原因として挙げられる。

なお, Fig. 18 において, 98-N1 は 98-D1 と比べてブイ水温との一致度が低いが, 夜間で気温が水温よ りかなり小さかったために表皮効果が大きな負の値を持っていた可能性があり [112], これを補正して表皮 水温で比較すれば一致度は高まるものと思われる。

## 4.2.2 衛星直下画素を用いた MCSST との比較検証

次に,1998年9月9日14:39JST頃に日本上空を通過したNOAA14号のAVHRRデータの衛星直下画 素を用いた検証結果について述べる。

Fig. 20 は Ch. 4 画像(幾何補正前)における衛星直下ラインを示す。南側(太平洋側)から北側(日本海側)に向けて0から1541までのライン番号を振ってある。衛星直下ラインは衛星の姿勢等により画像の中心ラインとは必ずしも一致しないため,ここでは以下のようにして求めた。まず,観測時における衛星の軌道要素から,各スキャンの観測時刻における衛星の直下座標を緯度経度で計算した。次に,各衛


Figure 19: Comparison between the satellite-derived lake surface temperature and the *in-situ* skin temperature; (left) low temperature and cloud-free, (center) high temperature and cloud-free, and (right) high temperature and cloud-contaminated.

星直下座標における標高をGTOPO30から抽出した。GTOPO30では海洋の標高は値-9999で表現され るため、これにより海と陸の区別ができる。そして、画像中心ラインを平行移動して得られる海陸分布と、 上記で得られた衛星直下ラインの海陸分布が最も適合する平行移動量を決め、画像における衛星直下ラインを定めた。

Fig. 21 は、衛星直下ラインの海陸分布及び被雲率である。海陸分布は上記の方法で得たものであり、また被雲率はGDASの被雲率プロダクトを時空間内挿して得たものである。なお、GDASの被雲率プロダクトの信頼性は時空間分解能やモデル化の問題によってあまり高くなく、実際、Ch.1 や Ch.4 の AVHRR 画像を判読した結果、GDAS プロダクトでは被雲率が0 となっているライン番号 300 付近に薄い雲の広がりが認められた。

Fig. 22 は、衛星直下ラインの透過率である。ライン上の各点ごとに時空間内挿した GDAS プロファイルを MODTRAN に与えて計算した。計算に必要な陸域の標高値には GTOPO30 を使用した。

Fig. 23 は Ch.4 の観測輝度温度から Ch.5 の観測輝度温度を引いた値である。陸域又は被雲率が 0 より 大きい画素は除いてある。SW 法の原理から,図に示す値は大気効果の程度を示し,大きな値ほどその画 素における大気効果が大きいことを示す。例えば,ライン番号が小さい南側ではこの値が相対的に大きい ため,大気効果も大きいと言える。



Figure 20: AVHRR channel 4 image and the nadir pixels of the satellite at 14:39 JST on September 9, 1998.



Figure 21: Cloud cover and land/sea mask for the nadir pixels.



Figure 22: Transmittance derived from the GDAS profiles for the nadir pixels.



Figure 23: Difference of sensor brightness temperature between AVHRR channels 4 and 5 for the nadir pixels.



Figure 24: Sea surface temperatures derived from the MCSST method and the single band algorithm with GDAS profiles for the nadir pixels.

Fig. 24 は,各チャネルのGDAS によるSSTとMCSSTである。また,Fig. 25 は各チャネルのGDAS
によるSSTからMCSSTを引いたものである。MCSSTの式はNESDISのDay MCSST/splitを使用した。
Fig. 25 を見ると,まず,前項と同様に本項の結果においても,GDAS による大気補正の誤差(ここではMCSSTとの差)はCh.5の方がCh.4より大きい。MCSSTの誤差がそれほど大きくないものとすると,
この原因としては,前項で述べたように,Ch.5ではGDASの水蒸気プロファイルの誤差が大きく増幅されること,RTCにおける水蒸気連続吸収係数の精度が悪いことなどが挙げられる。

次に,ライン番号 300 付近を見ると,いずれのチャネルとも大きな負の残差を持ち,Ch.4で-1~-2 , Ch.5 で -3~-4 程度に達していることが分かる。逆に,ライン番号 450 付近では,いずれのチャネル とも大きな正の残差を持ち,Ch.4 で +1 程度,Ch.5 で +2 程度であることが分かる。MCSST にも表 皮効果や水蒸気量依存性 [86] に伴う誤差が含まれていることが考えられるが,上記の 2 ケ所の相違は顕著 である。まず,前者については前述したように雲の存在が認められた領域である。GDAS による大気補正 が SW 法より雲の影響を顕著に受けることは前項で示したが,雲域は通常大気補正の対象としないため, ここでは考察の対象から除外する。一方,後者については,Ch.1 や Ch.4 の AVHRR 画像の判読からはこ の領域に特に雲や霧などの存在は認められなかった。むしろ,Fig. 23 が示すように,この領域では Ch.4 と Ch.5 の観測輝度温度差が周囲より小さいことから大気効果が小さかったことが分かり,大気中の水蒸気 量が周囲より少なかった可能性が考えられる。Ch.4 と Ch.5 の差画像 (Fig. 26) が示すこの "局所アノマ



Figure 25: Difference of sea surface temperature between the MCSST method and the single band algorithm with GDAS profiles for the nadir pixels.

リー"のサイズは数 10km 四方であり, GDAS の格子サイズ(約 100km 間隔)より小さい気象現象であっ たため,仮にこの現象が時間的に安定していたとしても GDAS プロダクトには反映されず,結果的にこれ を用いた大気補正では大気効果が大きめに見積もられたことが,図における正の残差の原因であると考え られる。この数 10km 四方というサイズは ASTER では1シーンのサイズとほぼ同じであることに注意す る必要がある。なお,"局所アノマリー"の原因については不明であるが,この付近は海底からの湧昇流に よって海面付近に低水温帯が形成されているものと考えられ,これが蒸発を抑えることによって境界層の 水蒸気量が周囲より少なくなっている可能性も考えられる。

一方, ライン番号 700~1300 付近の日本海の領域を見ると, 前述の 2 ケ所ほど MCSST との差は見られないものの, いずれのチャネルとも全体に負の方向に片寄っている。GDAS による SST が表皮水温を, MCSST がバルク水温を反映していると考えれば,水蒸気吸収がより小さい Ch.4 に見られる負の残差は負の表皮効果によってある程度説明できる。但し, Sakaida ら (1992)は, 1988 年 11 月~1989 年 12 月の期間に日本周辺海域で得られた MCSST とブイ水温の組 計 122 個を調査した結果,夏季の日本海においてMCSST が正のバイアス誤差(一部は1 以上)を持っていたことを指摘した [109]。この現象が夏季の日本海の気象・海象条件に起因するものならば,本研究における MCSST にも同様のバイアス誤差が生じている可能性があり,そしてこれは Fig. 25 の日本海領域にやはり負の残差を生じる原因となり得る。



Figure 26: Differential image between AVHRR channels 4 and 5. The local water vapor anomaly is shown in the white box.

## 4.2.3 GPS 可降水量データを利用した検証

GPS 衛星から地上受信局に到達する信号は大気により遅延する。この遅延量のうち,水蒸気による遅延 を湿潤遅延と呼び,湿潤遅延量から逆に可降水量を高精度に推定することができる [113]。その誤差はラジ オゾンデとほぼ同等であると言われ,数値予報モデルの6分の1と言われている [114]。日本には国土地 理院所管の1000点を越えるGPS連続観測点があり,各観測点における基線解析データの3時間平均値が 国土地理院より配布されている。SINEX(又はTRP)と呼ばれるこの解析データ中に湿潤遅延に関係し た量(zcorr)が含まれており,これを用いて各観測点における3時間ごとの可降水量を求めることができ る。zcorr から可降水量を計算する手順は以下の通りである [115]。

- GPS 観測点の高度(楕円体高)を用いてモデル大気(Saastamoinen)に対する天頂大気遅延量 *ztd*0
   を計算する。
- 2. ztd0とSINEX ファイル中の zcorr を用いて真の天頂大気遅延量 ztd を計算する(ztd = ztd0+zcorr)。

3. 地上気圧を用いて天頂静水圧遅延量 zhd を計算する。

4. ztd 及び zhd を用いて天頂湿潤遅延量 zwd を計算する (zwd = ztd - zhd)。

5. zwd と地上気温を用いて可降水量を計算する。

詳細は付録 A.3 を参照されたい。

国土地理院の GPS 連続観測システムデータから得られる可降水量は GDAS プロダクトより高い時空間 分解能を持ち,また精度も高いと推察される。そこで,1998年9月9日14:39JST を含む GPS 連続観測 システムデータを入手し,上記の手順に従って,各 GPS 観測点における可降水量を計算した。計算に必要 な各 GPS 観測点での地上気圧及び地上気温については,それぞれ同時刻を含む気象官署の地上気圧データ 及びアメダスの地上気温データを入手し,これらに3時間平均,水平内挿,高度補正を行うことによって 得た。こうして得られた各 GPS 観測点での GPS 可降水量を用いて GDAS による大気補正の検証を以下 の手順で試みた。なお,以下では,4.2.2 頃と同じ AVHRR データを緯経度座標系で1 画素 30arcsec とな るように最近隣内挿法により再配列したデータを使用した。

まず,850の GPS 観測点について,GPS から得られた可降水量とGDAS プロファイルから得られたそれとを比較した。結果を Fig. 27 に示す。図から分かるように,相関はそれほど高くなく(R = 0.448),回帰直線も45°からやや傾いている。小スケールの雲の影響も考えられるが,晴天域のみを集めてもこの結果はそれほど変わらなかった。また,両者の差の RMS は5.54mm であった。GPS の可降水量の誤差は,米国における検証では1~2mm 程度,日本における検証では3.7mm であったことが報告されており[116],まだ不確定な面があるが,GDAS プロダクトの時空間分解能が GPS のそれに比べて低いことを考慮すると,図中のばらつきは GDAS プロダクトの誤差に起因している部分が少なくないものと推察される。

次に, MCSST と GPS 可降水量を組み合わせた複合的な検証を行うため, SW 法を適用可能で,かつ GPS 可降水量が利用可能なエリアの抽出を行った。今回はそのようなエリアとして, Fig. 28 の左上に示 すように,晴天下の GPS 観測点からの距離が 9km である晴天下の海面域とした。ここで,晴天下とは, Ch.1 データに適当な閾値を与えて推定した雲域から 10km 以上離れていることを条件とした。また,海面 域の選定には GTOPO30 を利用した。海岸に近接した海面の混入を避けるため,3 画素×3 画素内の観測 輝度温度の最大差 (Max - Min)が Ch.4 及び Ch.5 共に 0.5 以内のエリアのみを選び,9 画素の平均値 をそのエリアでの観測輝度温度とした。なお,1 つの GPS 観測点に対しては1 つのエリアのみを与えた。 この結果, Fig. 28 の海岸線に沿って で示される計 145 のエリアが選定された。

Fig.29 は,上記の145 エリアについて,GDAS によるSSTとMCSST(前項までと同じ式を使用)の関係を示したもので,"original"と書かれたプロットはGDASの水蒸気プロファイルをそのまま使用した結果,一方の"GPS-scaled"と書かれたプロットは,GDASの水蒸気プロファイルを各エリアのGPS可降水



Figure 27: Comparison of the precipitable water vapor amounts derived from the GPS wet delay data and from the GDAS profiles for 850 GPS stations. A regression line is also shown. The differential RMS of them is 5.54 mm.



Figure 28: 145 cloud-free and homogeneous sea areas selected for the validation study.

量に適合するようにスケーリング(全高度に一律の係数を掛ける)したものを使用した結果である。気温 プロファイル等,他のプロファイルは同じものを使用している。

GPS 可降水量による水蒸気プロファイルのスケーリングによって,MCSST から大きく外れた幾つかの エリアでの値が MCSST に近くなって全体的に相関がやや上がり,Ch.4 では MCSST との差がおよそ±1 程度に収まっているのが分かる。実際,MCSST との差の RMS は,Ch.4 が 0.888 から 0.642 に, Ch.5 が 1.793 から 1.519 に,それぞれスケーリングによって小さくなっている。ただし,MCSST に も当然誤差は含まれているため,これらの値が GDAS による大気補正の誤差とは一致しないことに注意す る必要がある。しかしながら,これらの事実は,一部のエリアで GDAS の水蒸気プロファイルが大きな誤 差を持っており,これらが GPS 可降水量を用いたスケーリングによって適切に修整されたと考えるのが妥 当であろう。但し,Ch.5 はスケーリング後も依然としてばらつきは大きく,これは前項までに述べた Ch.5 の誤差因子(GDAS の水蒸気プロファイルの誤差と RTC の水蒸気連続吸収係数の誤差)が主たる原因で あると思われる。なお,Ch.4 についても同様にスケーリング後もばらつきが見られるが,これは,表皮効 果や水蒸気量依存性に伴う MCSST 自身の誤差,GPS 可降水量の誤差,スケーリングの不完全性,気温プ ロファイルの誤差,RTC 自身に起因する誤差などが考えられる。

#### 4.2.4 まとめ

GDAS プロダクトを用いた単バンドアルゴリズムについて,AVHRR データを用いた3つのアプローチ による検証結果を見ると,AVHRR/Ch.4 に対する大気補正精度は,日本の夏場でおよそ±1 程度,冬場 でおよそ±0.5 程度であったが,日本周辺は定常気象観測点が密であるため,今回の条件は湿潤とは言 え,GDAS プロダクトの精度自体は全球の中では良い方であることを考慮しなくてはいけない。特に霞ヶ 浦にはすぐ近くに高層気象台があるため,客観解析の精度はかなり高いものと推察される。一方,いずれ のアプローチにおいても,GDAS ベースの大気補正ではCh.4 より Ch.5 の方が精度が明らかに悪く,これ は,Ch.5 が水蒸気吸収の強い帯域に位置するために,GDAS プロダクトの誤差(特に水蒸気プロファイル の誤差)が増幅されること,また Ch.5 が水蒸気連続吸収の強い帯域に位置し,現在の RTC の水蒸気連続 吸収係数の精度が悪いために,同係数の誤差が加わること,などが主たる要因であると思われる。このよ うな大気補正精度のチャネル依存性は,特に地表のスペクトル解析に大きな影響を及ぼすので,十分な注 意が必要である。また,GDAS プロダクトの時空間分解能以下の局所的な気象現象によって大気補正誤差 を生じる例も示した。これはこの手法の原理的な問題で,これを改善するには,より高い時空間分解能を



Figure 29: Plots of the SST derived from the single band algorithm with GDAS profiles versus the MCSST for the 145 selected areas for AVHRR channels 4 and 5. (original) Original water vapor profiles were used; (GPS-scaled) Water vapor profiles were scaled to fit to the GPS precipitable water vapor amounts.

持つデータを同化させる以外に方法は無い。更に,雲の少々の混入により大きな負の残差を生じることも

示した。前処理としての雲除去はSW法より厳密に行う必要がある。

# 5 放射率の不確定性を考慮した陸域観測のための差分吸収アルゴリズム

差分吸収アルゴリズムは外部の大気情報を使わずに画素単位の大気補正を可能にする大気補正アルゴリ ズムであるが,実用的に利用されているのはSST 観測に限られ,LST 観測については様々な手法が提案さ れているものの,未だ実用的とは言いがたい状況にある。この最も大きな理由は,差分吸収アルゴリズム が地表面放射率の影響を顕著に受けることから[19],これまでに提案された陸域用の差分吸収アルゴリズ ム [21]-[27] がいずれも各画素の放射率をあらかじめ十分な精度で知っておく必要があったためである。す なわち,現時点では十分な精度を持つ放射率の全球マップが存在しておらず[24],また,放射率は空間的 不均質性,含水量や表面形状・被覆の変化に伴う経時変化[28],[29],角度依存性[33]等により本来不確定 なパラメータであるため,これを既知パラメータとする制約はアルゴリズムを定常処理システムへ実装す る上での大きな障壁となっているのである。

こうした背景を踏まえ,本章では,放射率を既知パラメータとして含まずに不確定な因子として扱う陸 域観測用の差分吸収アルゴリズムを新たに提案する。まず,5.1節では,MC法の目的変数を各チャネルご との地上レベルの地表輝度温度とする拡張マルチチャネル(EMC)法を,そして MC 法及び EMC 法の係 数を水蒸気量の関数とする MC/WVD 法及び EMC/WVD 法を新たに導入する。これらはいずれも放射率 を既知パラメータとして含まない差分吸収アルゴリズムである。そして,5.2節では,MC法,EMC法, MC/WVD 法,EMC/WVD 法について,シミュレーションに基づいて陸域観測における実用性を比較評 価し,EMC/WVD 法がこの中で最も実用的な手法であることを述べる。

### 5.1 マルチチャネル法の拡張と水蒸気量依存係数の導入

#### 5.1.1 EMC法

式(2.42)で示される MC 法は,物理モデルに基づいて導出することができるが,目的変数を表面温度, 説明変数を各チャネルの観測輝度温度とする回帰モデルと見ることもできる。ここで,説明変数は MC 法 と同様のままで,目的変数をチャネル*i*における地上レベルの地表輝度温度 *T<sub>gi</sub>*とする新たな回帰モデル を構築する。

$$T_{gi} = a_{i0} + \sum_{k=1}^{m} a_{ik} T_k \tag{5.1}$$

k はチャネル, m はチャネル数,  $T_k$  はチャネル k の観測輝度温度,  $a_{ik}$  (i = 0, ..., m; k = 0, ..., m) は回帰係数である。上式を Extended Multichannel (EMC)法と呼ぶことにする。EMC 法の有効性について

は,後でシミュレーションに基づいて評価する。目的変数である T<sub>gi</sub> が説明変数の観測輝度温度と同様に 放射率に依存するため,回帰の過程で放射率の効果がキャンセルされて,MC法よりも放射率に伴う誤差 が小さくなる可能性がある。このことは後でシミュレーションに基づいて検証する。

5.1.2 MC/WVD 法及び EMC/WVD 法

2.3.3 項で述べたように, SW 法は水蒸気依存性があるため,湿潤な大気下では誤差が大きくなる問題が ある[32],[86]。そこで,これを改善するための手法が数多く提案されている[20],[25],[27],[32],[86],[90]-[93]。 MC 法及び EMC 法は SW 法の拡張であるため, SW 法と同様に水蒸気依存性を持つことが考えられ

る。従って,それに対応することにより SW 法と同様に精度を改善できる可能性がある。そこで,MC 法 及び EMC 法に François らの WVD 法の考えを導入した MC/WVD 法及び EMC/WVD 法を提案する。 MC/WVD 法は次式で表される。

$$T_s = (a_0 + b_0 W + c_0 W^2) + \sum_{i=1}^n (a_i + b_i W + c_i W^2) T_i$$
(5.2)

同様に EMC/WVD 法は次式で表される。

$$T_{gi} = (a_{i0} + b_{i0}W + c_{i0}W^2) + \sum_{k=1}^{m} (a_{ik} + b_{ik}W + c_{ik}W^2)T_k$$
(5.3)

これらの有効性については,後でシミュレーションに基づいて評価する。

ここで,WVD法を採用した理由は(1)QUAD法タイプはマルチチャネルに拡張しにくいが,WVD法 タイプは極めて容易に拡張できること(2)QUAD法は放射率が1から離れると精度が低下するが,WVD 法は比較的良い精度を持つ性質があり[32],陸域への適用に向いていること,などである。但し,WVD 法における放射率の影響については,Françoisらは2チャネル間でそれが同じ場合のみしか評価していな い。放射率はSW法に極めて大きな誤差を生むため[19],より一般性のある評価を行う必要がある。また, MC/WVD法及びEMC/WVD法は既知変数としてWを必要とするが,SWVR法は陸域では放射率の波 長変化の影響を受けて適用は難しいことや,AVHRR以外のセンサへの適用,定常処理システムへの実装 等を考慮し,本論文では,Wのデータソースの1つとしてNOAA/NCEPのGDASプロダクト[122]に代 表される全球解析データを利用することを提案する。この場合,Wの精度はやや落ちることが予想される が,定常的に全球の各点におけるWの情報が得られるメリットが大きい。但し,全球解析データにおける Wの不確定性も考慮した評価を行う必要がある。

## 5.2 シミュレーションモデルに基づく検証

本節では, AVHRR 及び ASTER の各熱赤外チャネルを使用する場合における MC法, EMC法, MC/WVD 法, EMC/WVD 法の有効性をシミュレーションに基づいて検証する。なお, AVHRR に対する MC 法は SW 法と同一であり, AVHRR に対する MC/WVD 法は François らによって提案された WVD アルゴリ ズムと同一である。

#### 5.2.1 総水蒸気量の不確定性のモデル化

MC/WVD 法及び EMC/WVD 法において既知変数として必要な総水蒸気量 W は実運用時には不確定 性を持つので,本論文における計算では,各大気プロファイルの水蒸気プロファイルから計算される W に  $\pm 1 \text{ g/cm}^2$  以内の誤差を一様乱数によって付加したものを与えた。但し,誤差を付加した後の W が負の値 になる場合には 0 g/cm<sup>2</sup> とした。SSM/I や TOVS 等のサウンダによる W の精度が 0.3~0.5 g/cm<sup>2</sup> であ り [86],また François らはシミュレーション結果に基づいて WVD 法における W の要求精度を 0.5 g/cm<sup>2</sup> 以下としたが,ここでは全球解析データの利用も考慮してやや大きい誤差を与えた。この値は予報モデル の誤差に近く [114],全球解析データの利用を想定する場合には妥当であると考えられる。以降では,特に 断らない限り,MC/WVD 法及び EMC/WVD 法の W には上記によって生成した値を与えた。

#### 5.2.2 海洋観測における精度と他の計算例との比較

本論文における計算を従来の計算例と比較検証するため,まずは海洋観測に近い条件を与え,MC法, EMC法,MC/WVD法,EMC/WVD法の各推定式を重回帰分析で決定した。これらの手法のうち,従来 の計算例と比較できる手法は,MC法(AVHRR及びASTER)とMC/WVD法(AVHRR)のみである。 与えた条件は,大気が964 プロファイル,放射率が2サンプル(No.92の海水とNo.93の蒸留水), $\delta$ LST が -5, +0, +5K の 3 つで,計 5,784 条件である。また,MC/WVD法及びEMC/WVD法に与える総水 蒸気量 W の誤差及びNEAT は,これらを考慮しない場合も合わせて計算した。

得られた各式の RMSE を Table 9 に示す。MC 法及び MC/WVD 法は  $T_s$  の RMSE を, EMC 法及び EMC/WVD 法は  $T_{gi}$  の RMSE を示してある。まず, AVHRR の MC 法(すなわち SW 法)を見ると, NE $\Delta$ T= 0.12K の場合で 0.78K の精度が得られている。AVHRR の SW 法の精度はおよそ 0.7K と言われて いるから [31],[86],本論文における結果と整合している。次に, ASTER の MC 法を見ると, NE $\Delta$ T= 0K

の場合に 0.46K, NE $\Delta$ T= 0.30K の場合に 0.91K の精度が得られている。松永 (1996)が標準大気モデル や日本周辺の大気モデル [117] を用いて評価した結果では,前者の場合に 0.15~0.48K,後者の場合に 0.56 ~1.07K であり,いずれの場合も本論文における結果と整合している。一方,AVHRR の MC/WVD 法は François らの WVD 法と同一であり,本論文における結果では,W の誤差が 0 g/cm<sup>2</sup> かつ NE $\Delta$ T= 0K の 場合に 0.45K であるが,François らの結果は同様のケースで 0.06K (標準誤差)である。この 0.39K の差 の原因の 1 つは  $\delta$ LST の与え方にあると思われ,計算を  $\delta$ LST= +0K のみとして行うと RMSE が 0.23K となり,差は 0.17K に縮まる。他の原因としては大気モデルの違いなどが考えられるが,0.17K という値 はセンサの NE $\Delta$ T レベルであることと,上述のように MC 法については他の研究例とよく一致している こと,François らの示した誤差は一般に小さすぎるきらいがあることなどから,ここではこの差について これ以上の言及はしない。以上より,従来の計算例との整合性は高いと言える。

さて,同表でNEATを考慮した場合について見ると,本論文で提案したMC/WVD 法及び EMC/WVD 法は,それぞれ MC 法及び EMC 法の精度を 0.2~0.3K 程度改善していることが分かる。W の誤差が 1 g/cm<sup>2</sup> の場合でもそれほど大きな精度の低下は見られない。地球システムを理解するためには SST を 0.3K, LST を 1K の精度で観測する必要があると言われており [27],この 0.2~0.3K の改善効果は決して小さく ない。これらのことは海洋観測における MC/WVD 法及び EMC/WVD 法の有効性を示すものと言える。 なお,本論文で使用した大気モデルには標高の効果が含まれているため,海洋観測の条件とはやや異な るが,後述するように,これは精度の計算にはほとんど影響を及ぼさない。

#### 5.2.3 放射率の不確定性に対するロバスト性評価

以降では陸域観測を想定する。

まず,差分吸収アルゴリズムの主たる誤差因子である放射率の不確定性に対して,各アルゴリズムがどの程度ロバストであるかを評価するため,放射率の不確定性の範囲を様々に変え,各範囲に属する放射率 モデルのサブセットごとにそれぞれの最適式を最小2乗法により計算し,RMSEを求めた。ここで,放射 率の不確定性の範囲は,上限を1.00に固定し,下限を0.98から0.65までの0.01刻みの変数として与えた。 Fig. 30及びFig. 31は,それぞれAVHRR及びASTERについて,放射率の下限値が0.95のサブセット に含まれるサンプルの放射率パターンの例である。

また, Fig. 32は, AVHRR 及び ASTER について, 0.98から 0.65までの 0.01 刻みの各下限値に対する 放射率モデルのサプセットのサンプル数である。各サブセットには,全てのチャネルの放射率が各下限値

| $NE\Delta T$ | I    | AVHRR | I    |              |                        | AST                        | $\mathbf{ER}$ |      |      |
|--------------|------|-------|------|--------------|------------------------|----------------------------|---------------|------|------|
|              | MC   | EI    | ИC   | MC           |                        |                            | EMC           |      |      |
|              | MO   | 4     | 5    | MO           | 10                     | 11                         | 12            | 13   | 14   |
| 0            | 0.67 | 0.47  | 0.62 | 0.46         | 0.32                   | 0.32                       | 0.33          | 0.32 | 0.32 |
| spec.        | 0.78 | 0.64  | 0.75 | 0.91         | 0.87                   | 0.86                       | 0.87          | 0.86 | 0.86 |
|              | MC/  | EMC,  | /WVD | MC/          |                        | EN                         | AC/W          | VD   |      |
|              | WVD  | 4     | 5    | WVD          | 10                     | 11                         | 12            | 13   | 14   |
|              |      |       |      | Error of $W$ | = 0  g/                | $^{\prime}\mathrm{cm}^{2}$ |               |      |      |
| 0            | 0.45 | 0.24  | 0.35 | 0.31         | 0.19                   | 0.19                       | 0.19          | 0.19 | 0.19 |
| spec.        | 0.55 | 0.41  | 0.46 | 0.61         | 0.53                   | 0.54                       | 0.53          | 0.54 | 0.54 |
|              |      |       |      | Error of $W$ | $= 1  {\rm g}/{\rm c}$ | $^{ m cm^2}$               |               |      |      |
| 0            | 0.49 | 0.30  | 0.43 | 0.34         | 0.22                   | 0.22                       | 0.22          | 0.22 | 0.22 |
| spec.        | 0.59 | 0.46  | 0.55 | 0.68         | 0.62                   | 0.61                       | 0.61          | 0.62 | 0.63 |

Table 9: RMSE (K) of each algorithm under the conditions of sea observations. The specification of NE $\Delta$ T is 0.12 K for AVHRR and 0.3 K for ASTER.



Figure 30: Twenty emissivity samples with the lower limit of emissivity greater than or equal to 0.95 for AVHRR.



Figure 31: Ten emissivity samples with the lower limit of emissivity greater than or equal to 0.95 for ASTER.

以上であるサンプルのみが属するため,同じ下限値のサプセットであっても Si-O の主要極小帯域に位置す るチャネルを持つ ASTER (Ch.10~12 が相当)の方がこれらのチャネルを持たない AVHRR より相対的 にサンプル数が少ない。例えば波長 8~10 $\mu$ m の放射率が 0.85,波長 10~13 $\mu$ m の放射率が 0.95 であるよ うな仮想的な物質を考えた場合,両波長域にチャネルを持つ ASTER では下限値が 0.85 以下のサプセット のみにこの物質が含まれるのに対し,後の波長域のみにチャネルを持つ AVHRR では下限値が 0.95 以下の 各サプセットに含まれる。なお,下限値が 0.65 以下であれば,いずれのセンサにおいてもサプセットと元 の放射率モデルが一致する。

Table 10 は,各センサに対する MC 法の RMSE (LST)及び EMC 法の RMSE (各チャネルの  $T_{gi}$ )で ある。まず、いずれの手法も放射率の不確定性が増すにつれて精度が低下することが分かる。そして、いず れのセンサの場合も、MC 法の方が各チャネルの EMC 法よりも低下の度合いが大きいことが分かる。これ は先に述べたように、EMC 法では目的変数が放射率の関数であるために、説明変数に含まれる放射率変動 に伴う誤差を回帰の過程である程度吸収するためと思われる。また、センサ間の比較では、ASTER の方 が AVHRR より NEAT が大きいにも関わらず、全体的傾向として ASTER の方が誤差が小さい。ASTER は大気透過性が比較的良い波長帯にチャネルを持つため、必ずしも差分吸収アルゴリズムの適用に有利で はないと言われるが [40]、マルチチャネル化が放射率変動に対するロバスト性の向上に効果があるものと 考えられる。

|                           | L    | AVHRF | {    |      |       | AS'   | ΓER   |       |       |
|---------------------------|------|-------|------|------|-------|-------|-------|-------|-------|
| lower limit of $\epsilon$ | MC   | EN    | AС   | MC   |       |       | EMC   |       |       |
|                           | MO   | ch.4  | ch.5 | MO   | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |
| 0.98                      | 0.95 | 0.84  | 0.96 | 1.09 | 1.05  | 1.07  | 1.09  | 1.09  | 1.08  |
| 0.97                      | 1.21 | 1.02  | 1.31 | 1.13 | 1.10  | 1.09  | 1.09  | 1.11  | 1.14  |
| 0.96                      | 1.26 | 0.97  | 1.23 | 1.17 | 1.10  | 1.10  | 1.10  | 1.17  | 1.20  |
| 0.95                      | 1.37 | 1.00  | 1.29 | 1.26 | 1.17  | 1.15  | 1.11  | 1.22  | 1.31  |
| 0.94                      | 1.50 | 1.05  | 1.39 | 1.33 | 1.24  | 1.19  | 1.12  | 1.25  | 1.35  |
| 0.93                      | 1.67 | 1.21  | 1.66 | 1.38 | 1.32  | 1.23  | 1.15  | 1.31  | 1.44  |
| 0.92                      | 1.83 | 1.27  | 1.77 | 1.49 | 1.38  | 1.28  | 1.16  | 1.33  | 1.48  |
| 0.91                      | 2.02 | 1.34  | 1.90 | 1.51 | 1.39  | 1.28  | 1.17  | 1.36  | 1.54  |
| 0.90                      | 2.29 | 1.46  | 2.11 | 1.72 | 1.62  | 1.42  | 1.24  | 1.45  | 1.72  |
| 0.89                      | 2.43 | 1.51  | 2.20 | 1.81 | 1.66  | 1.44  | 1.24  | 1.46  | 1.74  |
| 0.88                      | 2.50 | 1.54  | 2.25 | 1.92 | 1.72  | 1.47  | 1.26  | 1.48  | 1.77  |
| 0.87                      | 2.55 | 1.56  | 2.28 | 2.01 | 1.74  | 1.47  | 1.26  | 1.51  | 1.80  |
| 0.86                      | 2.58 | 1.56  | 2.29 | 2.11 | 1.81  | 1.50  | 1.28  | 1.54  | 1.84  |
| 0.85                      | 2.65 | 1.60  | 2.37 | 2.14 | 1.82  | 1.51  | 1.29  | 1.55  | 1.86  |
| 0.84                      | 2.69 | 1.61  | 2.38 | 2.22 | 1.89  | 1.54  | 1.30  | 1.62  | 1.92  |
| 0.83                      | 2.69 | 1.61  | 2.38 | 2.22 | 1.89  | 1.54  | 1.30  | 1.62  | 1.92  |
| 0.82                      | 2.74 | 1.60  | 2.37 | 2.27 | 1.92  | 1.56  | 1.31  | 1.64  | 1.95  |
| 0.81                      | 2.74 | 1.61  | 2.37 | 2.27 | 1.93  | 1.56  | 1.31  | 1.65  | 1.96  |
| 0.80                      | 2.74 | 1.61  | 2.37 | 2.26 | 1.93  | 1.56  | 1.31  | 1.65  | 1.96  |
| 0.79                      | 2.74 | 1.61  | 2.37 | 2.32 | 1.95  | 1.56  | 1.32  | 1.66  | 1.98  |
| 0.78                      | 2.74 | 1.61  | 2.37 | 2.37 | 1.97  | 1.57  | 1.32  | 1.68  | 2.01  |
| 0.77                      | 2.74 | 1.61  | 2.37 | 2.37 | 1.97  | 1.57  | 1.32  | 1.68  | 2.01  |
| 0.76                      | 2.74 | 1.60  | 2.37 | 2.42 | 2.04  | 1.60  | 1.35  | 1.73  | 2.06  |
| 0.75                      | 2.74 | 1.61  | 2.37 | 2.49 | 2.07  | 1.61  | 1.35  | 1.75  | 2.10  |
| 0.74                      | 2.74 | 1.61  | 2.37 | 2.55 | 2.09  | 1.62  | 1.36  | 1.77  | 2.12  |
| 0.73                      | 2.74 | 1.61  | 2.37 | 2.60 | 2.16  | 1.64  | 1.38  | 1.81  | 2.16  |
| 0.72                      | 2.74 | 1.61  | 2.37 | 2.60 | 2.16  | 1.64  | 1.38  | 1.81  | 2.16  |
| 0.71                      | 2.95 | 1.70  | 2.54 | 2.62 | 2.16  | 1.64  | 1.38  | 1.81  | 2.16  |
| 0.70                      | 2.95 | 1.70  | 2.54 | 2.69 | 2.16  | 1.64  | 1.38  | 1.81  | 2.16  |
| 0.69                      | 2.95 | 1.70  | 2.54 | 2.69 | 2.16  | 1.64  | 1.38  | 1.81  | 2.16  |
| 0.68                      | 2.95 | 1.70  | 2.54 | 2.69 | 2.16  | 1.64  | 1.38  | 1.81  | 2.16  |
| 0.67                      | 2.95 | 1.70  | 2.54 | 2.69 | 2.19  | 1.67  | 1.38  | 1.83  | 2.18  |
| 0.66                      | 2.95 | 1.70  | 2.54 | 2.69 | 2.18  | 1.66  | 1.38  | 1.84  | 2.18  |
| 0.65                      | 2.95 | 1.70  | 2.54 | 2.72 | 2.19  | 1.67  | 1.39  | 1.84  | 2.19  |

Table 10: RMSEs [K] of the MC and the EMC methods for AVHRR and ASTER for various lower limits of emissivity. The upper limit of emissivity is unity for all cases.



Figure 32: The number of emissivity samples for each lower limit of emissivity.

一方, EMC 法についてチャネル間の比較をすると,放射率の不確定性が小さい場合(すなわち,下限値が1に近い場合)ではチャネル間の差はほとんど見られないが,不確定性が大きくなるとチャネル間の精度の差が顕著になることが分かる。AVHRR では Ch.4, ASTER では Ch.12 の精度が全体的に高く,放射率に対して最もロバストであることが分かる。大気透過性が高いチャネルほど精度が高いように思われるが, Fig. 33 及び Fig. 34 に示す各チャネル透過率の平均と標準偏差より,第1近似的にこのことは妥当であることが示されるものの,例えば ASTER の Ch.11 と Ch.13, 14 を比較すると必ずしもこのことが当てはまらないことが分かる。

一方, Table 11 は, MC/WVD 法及び EMC/WVD 法に対する Table 10 と同様の表である。Table 10 と 比較すると, MC/WVD 法及び EMC/WVD 法は放射率に対するロバスト性が大きく向上していることが 分かる。例えば, AVHRR の MC 法は放射率の下限値が 0.98 から 0.65 になると RMSE が 2.00K 増加する が, MC/WVD 法は 1.28K の増加である。こうした結果は, François らが述べた WVD 法の特徴(放射率が 1 から離れても精度が良い)と整合する(但し,前述したように François らは AVHRR の 2 チャネルに同 じ放射率を与えた場合しか評価していない)。また, AVHRR の Ch.4 や ASTER の Ch.12 の EMC/WVD 法については, 放射率の下限値が 0.65 の場合でも 0.9K 程度の RMSE が得られており, このことは地表被 覆を問わず 1K より高精度に  $T_{ai}$ を推定可能であることを示している。



Figure 33: Mean and standard deviation of transmittance at each AVHRR channel.



Figure 34: Mean and standard deviation of transmittance at each ASTER channel.

|                           | AVHRR |      |      | ASTER |       |       |       |       |       |  |  |
|---------------------------|-------|------|------|-------|-------|-------|-------|-------|-------|--|--|
| lower limit of $\epsilon$ | MC/   | EMC  | /WVD | MC/   |       | E.    | MC/WV | 'D    |       |  |  |
|                           | WVD   | ch.4 | ch.5 | WVD   | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |  |  |
| 0.98                      | 0.68  | 0.57 | 0.67 | 0.78  | 0.74  | 0.76  | 0.76  | 0.76  | 0.76  |  |  |
| 0.97                      | 0.82  | 0.65 | 0.87 | 0.83  | 0.80  | 0.79  | 0.79  | 0.78  | 0.79  |  |  |
| 0.96                      | 0.88  | 0.63 | 0.84 | 0.88  | 0.82  | 0.80  | 0.81  | 0.81  | 0.82  |  |  |
| 0.95                      | 0.96  | 0.64 | 0.87 | 0.94  | 0.86  | 0.84  | 0.81  | 0.83  | 0.87  |  |  |
| 0.94                      | 1.04  | 0.66 | 0.92 | 1.00  | 0.91  | 0.87  | 0.82  | 0.83  | 0.89  |  |  |
| 0.93                      | 1.14  | 0.72 | 1.06 | 1.04  | 0.94  | 0.88  | 0.83  | 0.86  | 0.94  |  |  |
| 0.92                      | 1.23  | 0.75 | 1.11 | 1.12  | 0.99  | 0.92  | 0.84  | 0.88  | 0.96  |  |  |
| 0.91                      | 1.39  | 0.78 | 1.18 | 1.15  | 1.00  | 0.92  | 0.85  | 0.89  | 0.99  |  |  |
| 0.90                      | 1.55  | 0.83 | 1.28 | 1.27  | 1.13  | 0.99  | 0.87  | 0.92  | 1.08  |  |  |
| 0.89                      | 1.62  | 0.85 | 1.34 | 1.34  | 1.15  | 1.00  | 0.87  | 0.93  | 1.09  |  |  |
| 0.88                      | 1.66  | 0.86 | 1.36 | 1.41  | 1.19  | 1.01  | 0.88  | 0.94  | 1.10  |  |  |
| 0.87                      | 1.69  | 0.87 | 1.38 | 1.47  | 1.20  | 1.01  | 0.89  | 0.95  | 1.12  |  |  |
| 0.86                      | 1.71  | 0.87 | 1.38 | 1.53  | 1.24  | 1.03  | 0.89  | 0.96  | 1.14  |  |  |
| 0.85                      | 1.74  | 0.89 | 1.42 | 1.54  | 1.24  | 1.02  | 0.89  | 0.97  | 1.15  |  |  |
| 0.84                      | 1.77  | 0.89 | 1.43 | 1.59  | 1.26  | 1.04  | 0.89  | 1.00  | 1.18  |  |  |
| 0.83                      | 1.77  | 0.89 | 1.42 | 1.59  | 1.27  | 1.04  | 0.90  | 1.00  | 1.18  |  |  |
| 0.82                      | 1.85  | 0.89 | 1.43 | 1.62  | 1.28  | 1.05  | 0.90  | 1.01  | 1.19  |  |  |
| 0.81                      | 1.85  | 0.89 | 1.42 | 1.64  | 1.29  | 1.04  | 0.90  | 1.01  | 1.20  |  |  |
| 0.80                      | 1.85  | 0.89 | 1.43 | 1.65  | 1.29  | 1.04  | 0.90  | 1.01  | 1.19  |  |  |
| 0.79                      | 1.85  | 0.89 | 1.42 | 1.68  | 1.30  | 1.05  | 0.90  | 1.02  | 1.20  |  |  |
| 0.78                      | 1.85  | 0.89 | 1.43 | 1.71  | 1.30  | 1.05  | 0.91  | 1.03  | 1.21  |  |  |
| 0.77                      | 1.85  | 0.89 | 1.43 | 1.71  | 1.30  | 1.05  | 0.91  | 1.02  | 1.22  |  |  |
| 0.76                      | 1.85  | 0.89 | 1.43 | 1.72  | 1.33  | 1.05  | 0.91  | 1.04  | 1.23  |  |  |
| 0.75                      | 1.85  | 0.89 | 1.43 | 1.76  | 1.34  | 1.06  | 0.91  | 1.05  | 1.24  |  |  |
| 0.74                      | 1.85  | 0.89 | 1.43 | 1.79  | 1.35  | 1.06  | 0.91  | 1.06  | 1.25  |  |  |
| 0.73                      | 1.85  | 0.89 | 1.43 | 1.81  | 1.38  | 1.06  | 0.92  | 1.07  | 1.27  |  |  |
| 0.72                      | 1.85  | 0.89 | 1.42 | 1.81  | 1.38  | 1.06  | 0.92  | 1.08  | 1.27  |  |  |
| 0.71                      | 1.96  | 0.93 | 1.50 | 1.82  | 1.38  | 1.06  | 0.92  | 1.08  | 1.27  |  |  |
| 0.70                      | 1.96  | 0.92 | 1.51 | 1.91  | 1.38  | 1.06  | 0.92  | 1.07  | 1.27  |  |  |
| 0.69                      | 1.96  | 0.93 | 1.51 | 1.91  | 1.38  | 1.06  | 0.92  | 1.07  | 1.27  |  |  |
| 0.68                      | 1.96  | 0.93 | 1.51 | 1.91  | 1.38  | 1.06  | 0.92  | 1.08  | 1.27  |  |  |
| 0.67                      | 1.96  | 0.93 | 1.51 | 1.91  | 1.39  | 1.07  | 0.92  | 1.08  | 1.28  |  |  |
| 0.66                      | 1.96  | 0.93 | 1.50 | 1.91  | 1.39  | 1.08  | 0.92  | 1.08  | 1.27  |  |  |
| 0.65                      | 1.96  | 0.93 | 1.50 | 1.93  | 1.39  | 1.07  | 0.92  | 1.08  | 1.28  |  |  |

Table 11: RMSEs [K] of the MC/WVD and the EMC/WVD methods for AVHRR and ASTER for various lower limits of emissivity. The upper limit of emissivity is unity for all cases. The uncertainty of water vapor amount is  $1.0 \text{ g/cm}^2$ .

| method  | ch. | W     | 1         | $T_4$    | $T_5$    | RMSE[K] |
|---------|-----|-------|-----------|----------|----------|---------|
| MC      |     |       | -21.51700 | 1.02566  | 0.07167  | 2.95    |
| EMC     | 4   | _     | -9.68798  | 2.01858  | -0.97512 | 1.70    |
| Emo     | 5   |       | -18.93579 | 1.39572  | -0.31447 | 2.54    |
|         |     | 1     | -9.85880  | -0.53510 | 1.58178  |         |
| MC/WVD  |     | W     | -6.61271  | 0.32823  | -0.29904 | 1.96    |
|         |     | $W^2$ | -5.62178  | 0.05283  | -0.03473 |         |
|         |     | 1     | -3.99320  | 0.94934  | 0.06804  |         |
|         | 4   | W     | -4.23490  | 0.24404  | -0.22531 | 0.93    |
| EMC/WVD |     | $W^2$ | -2.34909  | 0.04127  | -0.03405 |         |
|         |     | 1     | -6.79266  | -0.10267 | 1.13105  |         |
|         | 5   | W     | -8.15743  | 0.32873  | -0.29408 | 1.51    |
|         |     | $W^2$ | -3.65337  | 0.04350  | -0.03205 |         |

Table 12: Coefficients of each method for AVHRR. The lower limit of emissivity is 0.65.

Table 12 及び Table 13 は,それぞれ AVHRR 及び ASTER に対する各手法の係数で,放射率の下限値 が 0.65 (オリジナル放射率モデルを使用)の場合のものである。また,Table 14 及び Table 15 は下限値が 0.95 の場合,Table 16 及び Table 17 は下限値が 0.98 の場合の係数である。各チャネルの EMC 法の係数 は MC 法のものに近いものとなっており,EMC 法は MC 法による LST 推定に放射率及び天空輝度の効果 分を加味したものであると解釈できる。EMC 法の精度が高い AVHRR の Ch.4 及び ASTER の Ch.12 で は,いずれも符号が正で絶対値が最も大きいという共通点が見られる。すなわち,放射率の効果が目的変 数と説明変数の間でキャンセルされやすくなっており,放射率に対するロバスト性が高い原因となってい ると考えられる。

| method                      | ch. | W     | 1         | $T_{10}$ | $T_{11}$ | $T_{12}$ | $T_{13}$         | $T_{14}$ | RMSE[K] |
|-----------------------------|-----|-------|-----------|----------|----------|----------|------------------|----------|---------|
| MC                          | —   |       | -22.58538 | -0.35534 | 0.85405  | -0.16544 | 0.17473          | 0.59432  | 2.72    |
|                             | 10  |       | -27.08757 | -0.20722 | 0.94372  | 0.29477  | -0.00885         | 0.09174  | 2.19    |
|                             | 11  |       | -17.98722 | -0.79202 | 1.54021  | 0.30773  | 0.11892          | -0.09672 | 1.67    |
| EMC                         | 12  |       | -10.87525 | -0.68332 | 0.51610  | 1.20657  | 0.15087          | -0.14084 | 1.39    |
|                             | 13  |       | -8.00332  | -0.88748 | 0.53989  | 0.21574  | 1.24166          | -0.07471 | 1.84    |
|                             | 14  |       | -11.56097 | -0.87958 | 0.58662  | 0.16433  | 0.58811          | 0.58997  | 2.19    |
|                             |     | 1     | -15.76864 | 0.72588  | 0.04657  | -0.35356 | <b>-</b> 0.19194 | 0.84696  |         |
| MC/WVD                      | —   | W     | 2.57630   | -0.37830 | 0.27149  | 0.06001  | -0.12401         | 0.16442  | 1.93    |
|                             |     | $W^2$ | -9.05170  | 0.05378  | -0.02221 | -0.01174 | 0.08706          | -0.07611 |         |
|                             |     | 1     | -17.35097 | 0.81608  | 0.14115  | 0.11149  | -0.25604         | 0.26158  |         |
|                             | 10  | W     | -2.51927  | -0.38837 | 0.30361  | 0.03997  | -0.08822         | 0.14462  | 1.39    |
|                             |     | $W^2$ | -6.58964  | 0.06931  | -0.02732 | -0.00866 | 0.05605          | -0.06682 |         |
|                             |     | 1     | -13.03703 | 0.01958  | 0.90645  | 0.14184  | -0.08002         | 0.06932  |         |
|                             | 11  | W     | 0.47852   | -0.36221 | 0.29313  | 0.02734  | -0.03711         | 0.07876  | 1.07    |
|                             |     | $W^2$ | -5.47111  | 0.06732  | -0.03721 | 0.00237  | 0.03742          | -0.05107 |         |
|                             |     | 1     | -9.11208  | -0.01264 | 0.05645  | 1.00563  | 0.01585          | -0.02434 |         |
|                             | 12  | W     | 2.25481   | -0.29118 | 0.15863  | 0.09041  | -0.05566         | 0.09094  | 0.92    |
| $\mathrm{EMC}/\mathrm{WVD}$ |     | $W^2$ | -4.54074  | 0.04623  | -0.01204 | -0.00668 | 0.03680          | -0.04873 |         |
|                             |     | 1     | -4.79801  | -0.06235 | 0.00191  | 0.05895  | 0.79839          | 0.22357  |         |
|                             | 13  | W     | 4.72888   | -0.27065 | 0.14257  | 0.04383  | 0.01030          | 0.05911  | 1.08    |
|                             |     | $W^2$ | -6.20493  | 0.02164  | -0.00559 | -0.00465 | 0.05290          | -0.04319 |         |
|                             |     | 1     | -5.62238  | 0.07226  | -0.05565 | -0.00962 | 0.05496          | 0.96177  |         |
|                             | 14  | W     | 3.89092   | -0.32335 | 0.18107  | 0.04719  | -0.00874         | 0.09256  | 1.28    |
|                             |     | $W^2$ | -7.14435  | 0.03831  | -0.00942 | -0.01010 | 0.07119          | -0.06561 |         |

Table 13: Coefficients of each method for ASTER. The lower limit of emissivity is 0.65.

#### 5.2.4 誤差因子の寄与率

Table 18 は,放射率の下限値を 0.65(すなわち,オリジナル放射率モデル)として求めた各推定式につ いて,幾つかの因子の誤差に対する寄与率(%)を示す。ここで考慮した因子は,放射率モデルの各サン プルにおけるチャネル放射率の最小値  $\epsilon_{min}$ ・平均値  $\epsilon_{avg}$ ・標準偏差  $\epsilon_{stdev}$ ,大気モデルにおける各プロファ イルの総水蒸気量(W)・標高(elev)・地表気温(T<sub>a</sub>),  $\delta$ LST,LST である。

まず,AVHRR について見ていくと,MC 法では,放射率パラメータ( $\epsilon_{min}$ ,  $\epsilon_{avg}$ ,  $\epsilon_{stdev}$ )の寄与率が 30.3~38.1%と最も大きく,次いで $\delta$ LST の 18.1%が続く。これら以外のパラメータの寄与率は極めて小さ く,特に標高や地表気温はほとんど誤差に寄与しないことが分かる。EMC 法は,MC 法と比べると放射 率パラメータ及び $\delta$ LST の寄与率が下がるが,総水蒸気量については逆に少し大きくなっている。放射率 パラメータの寄与率はチャネルによって大きく異なっており,この差が RMSE の差となって表れている。 MC/WVD 法は,MC 法と比べると,予想されるように総水蒸気量の寄与率が小さくなっているが(1/10 程 度),他のパラメータ,特に放射率パラメータの寄与率も小さくなっているのが特徴的である。EMC/WVD 法についても同様の傾向を持っているが,放射率パラメータの寄与率の減少が更に大きく,EMC 法の 1/2 程度になっており,RMSE を大きく改善する要因となっている。

| $\mathrm{method}$ | ch. | W     | 1         | $T_4$    | $T_5$    | RMSE[K] |
|-------------------|-----|-------|-----------|----------|----------|---------|
| MC                |     |       | -1.87793  | 2.80977  | -1.79351 | 1.37    |
| EMC               | 4   |       | 1.37194   | 3.06580  | -2.06731 | 1.00    |
| Emo               | 5   | _     | -0.84359  | 2.95756  | -1.94957 | 1.29    |
|                   |     | 1     | -10.73052 | 0.42040  | 0.62930  |         |
| MC/WVD            |     | W     | -2.41748  | 0.85978  | -0.85064 | 0.96    |
|                   |     | $W^2$ | 0.19328   | -0.02792 | 0.02651  |         |
|                   |     | 1     | -5.43854  | 1.16606  | -0.14232 |         |
|                   | 4   | W     | -2.27907  | 0.63612  | -0.62725 | 0.64    |
| $\rm EMC/WVD$     |     | $W^2$ | 0.75298   | -0.01336 | 0.01019  |         |
|                   |     | 1     | -7.96047  | 0.47736  | 0.55678  |         |
|                   | 5   | W     | -4.33026  | 0.85638  | -0.83987 | 0.87    |
|                   |     | $W^2$ | 1.01481   | -0.03070 | 0.02650  |         |

Table 14: Coefficients of each method for AVHRR. The lower limit of emissivity is 0.95.

Table 15: Coefficients of each method for ASTER. The lower limit of emissivity is 0.95.

| method         | ch. | W       | 1                     | $T_{10}$ | $T_{11}$ | $T_{12}$ | $T_{13}$ | $T_{14}$ | RMSE[K] |
|----------------|-----|---------|-----------------------|----------|----------|----------|----------|----------|---------|
| MC             |     |         | -5.58739              | -1.23003 | 1.11929  | 1.18489  | 0.61016  | -0.65376 | 1.26    |
|                | 10  |         | -4.51599              | -1.23794 | 1.04193  | 1.29722  | 0.60104  | -0.67835 | 1.17    |
|                | 11  | —       | -4.22959              | -1.23760 | 1.05549  | 1.31320  | 0.57238  | -0.68072 | 1.16    |
| $\mathbf{EMC}$ | 12  | —       | -2.77161              | -1.23588 | 0.91029  | 1.40551  | 0.63620  | -0.69982 | 1.11    |
|                | 13  |         | 1.57817               | -1.41863 | 0.79077  | 1.24987  | 1.06302  | -0.68749 | 1.22    |
|                | 14  | —       | 2.05440               | -1.53089 | 0.87381  | 1.29406  | 0.76554  | -0.40706 | 1.31    |
|                |     | 1       | -13.26652             | 0.03129  | 0.33103  | 0.09200  | 0.27130  | 0.33409  |         |
| MC/WVD         | —   | W       | 9.29695               | -0.72109 | 0.26994  | 0.40724  | 0.18872  | -0.18007 | 0.94    |
|                |     | $W^2$   | -4.99863              | 0.12892  | -0.02015 | -0.03518 | -0.03155 | -0.02401 |         |
|                |     | 1       | -9.53303              | -0.08818 | 0.27269  | 0.26244  | 0.26679  | 0.32867  |         |
|                | 10  | W       | 5.95958               | -0.58867 | 0.26380  | 0.35807  | 0.18255  | -0.23807 | 0.85    |
|                |     | $W^2$   | -4.17964              | 0.10820  | -0.01805 | -0.03155 | -0.03130 | -0.01224 |         |
|                |     | 1       | -9.30016              | -0.11274 | 0.29562  | 0.29962  | 0.23037  | 0.32870  |         |
|                | 11  | W       | 6.39833               | -0.60171 | 0.27055  | 0.35026  | 0.18768  | -0.23090 | 0.84    |
|                |     | $W^2$   | -4.28135              | 0.11268  | -0.02092 | -0.03014 | -0.03121 | -0.01495 |         |
|                |     | 1       | -7.99046              | -0.17432 | 0.18809  | 0.43067  | 0.31386  | 0.27735  |         |
|                | 12  | W       | 6.83233               | -0.56801 | 0.23670  | 0.35722  | 0.18113  | -0.23269 | 0.81    |
| EMC/WVD        |     | $W^2$   | -4.20175              | 0.10767  | -0.01442 | -0.03266 | -0.03299 | -0.01240 |         |
|                |     | 1       | -4.92752              | -0.15161 | -0.07148 | 0.06074  | 0.69300  | 0.49074  |         |
|                | 13  | $W_{-}$ | 8.22348               | -0.66547 | 0.26710  | 0.42241  | 0.25310  | -0.30797 | 0.82    |
|                |     | $W^2$   | -4.22583              | 0.11567  | -0.00975 | -0.03452 | -0.04901 | -0.00700 |         |
|                |     | 1       | $-4.7\overline{1641}$ | -0.16248 | -0.05296 | -0.00801 | 0.31405  | 0.92945  |         |
|                | 14  | $W_{-}$ | 8.24520               | -0.71163 | 0.30443  | 0.47313  | 0.25357  | -0.35020 | 0.88    |
|                |     | $W^2$   | -4.24927              | 0.12536  | -0.01804 | -0.04069 | -0.03936 | -0.01182 |         |

| method                      | ch. | W     | 1        | $T_4$    | $T_5$    | RMSE[K] |
|-----------------------------|-----|-------|----------|----------|----------|---------|
| MC                          |     |       | 2.61135  | 3.26783  | -2.27516 | 0.97    |
| EMC                         | 4   |       | 4.19884  | 3.35964  | -2.37500 | 0.85    |
| Lmo                         | 5   |       | 3.51494  | 3.35077  | -2.36391 | 0.96    |
|                             |     | 1     | -8.10728 | 1.15733  | -0.12143 |         |
| MC/WVD                      |     | W     | 0.26957  | 0.75660  | -0.75873 | 0.70    |
| _                           |     | $W^2$ | 0.81698  | -0.03253 | 0.02943  |         |
|                             |     | 1     | -4.69441 | 1.49925  | -0.47886 |         |
|                             | 4   | W     | -0.62614 | 0.62364  | -0.62211 | 0.59    |
| $\mathrm{EMC}/\mathrm{WVD}$ |     | $W^2$ | 1.10904  | -0.02038 | 0.01628  |         |
|                             |     | 1     | -5.39931 | 1.19437  | -0.17143 |         |
|                             | 5   | W     | -2.64648 | 0.73203  | -0.72339 | 0.67    |
|                             |     | $W^2$ | 1.74333  | -0.02970 | 0.02339  |         |

Table 16: Coefficients of each method for AVHRR. The lower limit of emissivity is 0.98.

Table 17: Coefficients of each method for ASTER. The lower limit of emissivity is 0.98.

| method  | ch. | W     | 1        | $T_{10}$         | $T_{11}$ | $T_{12}$ | $T_{13}$ | $T_{14}$ | RMSE[K] |
|---------|-----|-------|----------|------------------|----------|----------|----------|----------|---------|
| MC      |     |       | -5.82208 | -1.06116         | 0.87310  | 1.38674  | 0.80722  | -0.97536 | 1.13    |
|         | 10  |       | -5.00828 | -1.09087         | 0.90061  | 1.42213  | 0.78697  | -0.99308 | 1.08    |
|         | 11  |       | -3.82664 | -1.11254         | 0.86112  | 1.43927  | 0.79723  | -0.96407 | 1.07    |
| EMC     | 12  |       | -4.67314 | -1.08233         | 0.87595  | 1.43744  | 0.78840  | -0.99518 | 1.08    |
|         | 13  |       | -3.84628 | <b>-</b> 1.11966 | 0.86234  | 1.44798  | 0.82704  | -0.99619 | 1.06    |
|         | 14  |       | -4.10196 | -1.09417         | 0.80957  | 1.48110  | 0.80816  | -0.98217 | 1.09    |
|         |     | 1     | -6.34652 | -0.13376         | -0.15605 | -0.00163 | 0.62901  | 0.68962  |         |
| MC/WVD  | —   | W     | 8.09570  | -0.62500         | 0.33144  | 0.54010  | 0.24808  | -0.52352 | 0.79    |
|         |     | $W^2$ | -4.91658 | 0.12131          | -0.01322 | -0.05302 | -0.06463 | 0.02727  |         |
|         |     | 1     | -2.60016 | -0.30511         | -0.10258 | 0.08384  | 0.62329  | 0.71119  |         |
|         | 10  | W     | 4.47142  | -0.47082         | 0.31795  | 0.48816  | 0.22627  | -0.57627 | 0.76    |
|         |     | $W^2$ | -4.14903 | 0.09656          | -0.01307 | -0.04649 | -0.06012 | 0.03795  |         |
|         |     | 1     | -3.13041 | -0.28397         | -0.10786 | 0.08136  | 0.65202  | 0.67112  |         |
|         | 11  | W     | 6.42813  | -0.54209         | 0.27575  | 0.55708  | 0.19032  | -0.50350 | 0.76    |
|         |     | $W^2$ | -4.49845 | 0.11266          | -0.00035 | -0.06046 | -0.05798 | 0.02239  |         |
|         |     | 1     | -2.91567 | -0.31718         | -0.04931 | 0.08884  | 0.60602  | 0.68365  |         |
|         | 12  | W     | 4.98322  | -0.45994         | 0.23071  | 0.52871  | 0.22808  | -0.54472 | 0.76    |
| EMC/WVD |     | $W^2$ | -4.16246 | 0.09740          | 0.00219  | -0.05590 | -0.05865 | 0.02997  |         |
|         |     | 1     | -1.98617 | -0.34482         | -0.13056 | 0.11757  | 0.65885  | 0.70751  |         |
|         | 13  | W     | 5.31632  | -0.51208         | 0.33986  | 0.51383  | 0.19887  | -0.55845 | 0.75    |
|         |     | $W^2$ | -4.38226 | 0.11360          | -0.02092 | -0.05038 | -0.05474 | 0.02819  |         |
|         |     | 1     | -2.55763 | -0.28604         | -0.13168 | 0.06819  | 0.65323  | 0.70704  |         |
|         | 14  | W     | 5.29155  | -0.52797         | 0.32669  | 0.53075  | 0.19075  | -0.53818 | 0.77    |
|         |     | $W^2$ | -4.23542 | 0.11052          | -0.01968 | -0.05103 | -0.05076 | 0.02616  |         |

Table 18: Contribution ratios of various factors to the error of each method in the case that the lower limit of emissivity is 0.65;  $\epsilon_{min}$ ,  $\epsilon_{avg}$  and  $\epsilon_{stdev}$  are the minimum, the mean and the standard deviation of emissivity respectively, W is the water vapor amount, elev is the elevation,  $T_a$  is the air temperature at surface, and  $\delta$ LST is LST minus  $T_a$ .

|         | 41. 3   | 1. | RMSE |                  |                  | cont               | ributio | ı ratio | [%]   |              |     |
|---------|---------|----|------|------------------|------------------|--------------------|---------|---------|-------|--------------|-----|
| sensor  | method  | СП | [K]  | $\epsilon_{min}$ | $\epsilon_{avg}$ | $\epsilon_{stdev}$ | W       | elev    | $T_a$ | $\delta LST$ | LST |
|         | MC      |    | 2.95 | 38.1             | 37.3             | 30.3               | 4.2     | 0.2     | 0.1   | 18.1         | 2.0 |
|         | FMC     | 4  | 1.70 | 20.3             | 16.5             | 24.7               | 5.4     | 0.5     | 0.1   | 15.4         | 1.7 |
| AVHER   | LINIC   | 5  | 2.54 | 28.0             | 23.0             | 33.2               | 8.3     | 0.4     | 0.0   | 12.7         | 1.8 |
| AVIIIII | MC/WVD  |    | 1.96 | 29.7             | 32.8             | 16.2               | 0.5     | 0.0     | 0.6   | 15.5         | 0.9 |
|         | FMC/WVD | 4  | 0.93 | 10.5             | 8.6              | 12.5               | 0.6     | 0.3     | 0.9   | 15.7         | 0.6 |
|         |         | 5  | 1.50 | 15.4             | 12.7             | 18.0               | 1.0     | 0.1     | 0.7   | 14.5         | 0.7 |
|         | MC      | _  | 2.72 | 24.3             | 24.6             | 19.1               | 3.8     | 0.2     | 0.4   | 20.2         | 1.7 |
|         |         | 10 | 2.19 | 9.4              | 9.7              | 4.9                | 8.3     | 0.9     | 0.3   | 15.6         | 1.3 |
|         |         | 11 | 1.67 | 5.8              | 5.6              | 3.3                | 5.3     | 1.0     | 0.6   | 19.1         | 1.2 |
|         | EMC     | 12 | 1.39 | 2.3              | 2.6              | 0.8                | 2.8     | 0.7     | 0.9   | 20.1         | 1.0 |
|         |         | 13 | 1.84 | 8.4              | 8.9              | 5.2                | 9.1     | 0.5     | 0.1   | 11.1         | 1.2 |
| ASTER   |         | 14 | 2.19 | 10.6             | 11.3             | 6.8                | 11.2    | 0.5     | 0.0   | 10.0         | 1.3 |
| ASTER   | MC/WVD  |    | 1.93 | 22.0             | 21.7             | 19.3               | 0.3     | 0.0     | 0.7   | 16.3         | 0.9 |
|         |         | 10 | 1.39 | 3.4              | 3.4              | 1.4                | 0.8     | 0.7     | 1.3   | 17.9         | 0.5 |
|         |         | 11 | 1.07 | 1.3              | 1.0              | 0.7                | 0.5     | 1.1     | 1.6   | 18.8         | 0.4 |
|         | EMC/WVD | 12 | 0.92 | 0.0              | 0.1              | 0.0                | 0.2     | 1.0     | 1.6   | 16.0         | 0.3 |
|         |         | 13 | 1.08 | 2.4              | 2.5              | 1.4                | 1.1     | 0.1     | 0.7   | 11.1         | 0.4 |
|         |         | 14 | 1.28 | 4.1              | 4.5              | 2.6                | 1.4     | 0.1     | 0.6   | 11.6         | 0.5 |

一方,ASTER について見ていくと,MC 法は AVHRR のそれと比較して放射率の寄与率が小さくなっ ているのが特徴的で,マルチチャネル化が放射率による影響を抑える効果があることが分かる。EMC 法に ついても AVHRR の場合と同様の傾向を持つが,放射率の寄与率のチャネル依存性はより顕著になり,特 に Ch.12 での改善が著しい。Ch.12 における放射率の寄与率は総水蒸気量などの寄与率と同程度まで小さ くなっている。但し,いずれのチャネルにおいても, $\delta$ LST の寄与率に改善はほとんど無く,従って $\delta$ LST の効果が相対的に高くなっている。また,AVHRR の場合と同様に,MC 法及び EMC 法ともに水蒸気依 存型にすることによって,ほぼ全てのパラメータの寄与率が小さくなり,とりわけ放射率については顕著 である。Ch.12 では,EMC/WVD 法を使うことにより,もはや放射率の効果はほとんど無視できると言 える。

Table 19 及び Table 20 は,それぞれ放射率の下限値を 0.95 及び 0.98 とした場合の Table 18 と同様の表 である。いずれのセンサも,放射率の不確定性が小さく(すなわち,下限値が大きく)なるに伴い, *δ*LST の寄与率が顕著に低下することが注目される。また,ASTER では同様に放射率の寄与率も顕著に低下す るが,AVHRR にはこれは見られない。

|         | 411     | 1. | RMSE |                  |                  | contr              | ibutio | n ratio               | [%]   |              |     |
|---------|---------|----|------|------------------|------------------|--------------------|--------|-----------------------|-------|--------------|-----|
| sensor  | metnod  | сп | [K]  | $\epsilon_{min}$ | $\epsilon_{avg}$ | $\epsilon_{stdev}$ | W      | $\operatorname{elev}$ | $T_a$ | $\delta LST$ | LST |
|         | MC      |    | 1.37 | 33.9             | 29.8             | 13.9               | 0.0    | 0.2                   | 0.4   | 9.3          | 0.4 |
|         | FMC     | 4  | 1.00 | 14.8             | 10.9             | 11.2               | 0.8    | 1.0                   | 0.0   | 3.5          | 0.4 |
| AVHER   |         | 5  | 1.29 | 22.7             | 16.9             | 16.7               | 1.3    | 0.8                   | 0.0   | 2.9          | 0.4 |
| AVIIIII | MC/WVD  |    | 0.96 | 36.3             | 34.4             | 10.5               | 0.0    | 0.6                   | 0.6   | 7.8          | 0.2 |
|         | FMC/WVD | 4  | 0.64 | 9.7              | 7.3              | 7.0                | 0.3    | 1.7                   | 0.4   | 5.2          | 0.2 |
|         |         | 5  | 0.87 | 17.7             | 13.4             | 12.4               | 0.3    | 0.9                   | 0.4   | 5.4          | 0.2 |
|         | MC      | _  | 1.26 | 5.7              | 8.9              | 1.3                | 0.7    | 1.4                   | 0.6   | 10.4         | 0.4 |
|         |         | 10 | 1.17 | 1.5              | 2.7              | 0.1                | 2.6    | 2.3                   | 0.2   | 5.8          | 0.3 |
|         |         | 11 | 1.15 | 1.4              | 2.4              | 0.2                | 2.1    | 2.1                   | 0.3   | 6.7          | 0.3 |
|         | EMC     | 12 | 1.11 | 0.0              | 0.3              | 0.2                | 2.1    | 2.1                   | 0.3   | 6.5          | 0.3 |
|         |         | 13 | 1.22 | 0.0              | 0.1              | 0.7                | 4.0    | 1.5                   | 0.0   | 3.0          | 0.3 |
| ASTER   |         | 14 | 1.31 | 0.0              | 0.4              | 1.1                | 5.2    | 1.4                   | 0.0   | 2.2          | 0.3 |
| ADIEN   | MC/WVD  |    | 0.94 | 12.6             | 15.7             | 5.3                | 0.2    | 1.2                   | 0.7   | 9.0          | 0.2 |
|         |         | 10 | 0.86 | 3.9              | 4.5              | 1.2                | 0.5    | 1.8                   | 0.6   | 7.2          | 0.2 |
|         |         | 11 | 0.84 | 3.8              | 4.0              | 2.1                | 0.5    | 1.7                   | 0.6   | 7.7          | 0.2 |
|         | EMC/WVD | 12 | 0.81 | 0.3              | 0.4              | 0.1                | 0.5    | 1.7                   | 0.6   | 7.1          | 0.2 |
|         | ,       | 13 | 0.83 | 0.0              | 0.1              | 0.0                | 0.8    | 0.6                   | 0.3   | 4.3          | 0.1 |
|         |         | 14 | 0.87 | 0.1              | 0.7              | 0.3                | 0.9    | 0.4                   | 0.2   | 4.0          | 0.1 |

Table 19: Contribution ratios of various factors to the error of each method in the case that the lower limit of emissivity is 0.95. Each factor is the same with that in Table 18.

Table 20: Contribution ratios of various factors to the error of each method in the case that the lower limit of emissivity is 0.98. Each factor is the same with that in Table 18.

|                 |         | -h | RMSE |                  |                  | contr              | ibutio | n ratio               | [%]   |              |     |
|-----------------|---------|----|------|------------------|------------------|--------------------|--------|-----------------------|-------|--------------|-----|
| sensor          | method  | СП | [K]  | $\epsilon_{min}$ | $\epsilon_{avg}$ | $\epsilon_{stdev}$ | W      | $\operatorname{elev}$ | $T_a$ | $\delta LST$ | LST |
|                 | MC      |    | 0.95 | 28.5             | 29.5             | 16.9               | 0.9    | 1.7                   | 0.0   | 0.9          | 0.2 |
| sensor<br>AVHRR | FMC     | 4  | 0.84 | 17.7             | 18.4             | 10.9               | 2.9    | 2.6                   | 0.2   | 0.0          | 0.2 |
| AVHRR           |         | 5  | 0.96 | 32.5             | 33.6             | 19.3               | 4.3    | 2.5                   | 0.3   | 0.1          | 0.2 |
| Ανιιιιι         | MC/WVD  |    | 0.68 | 24.9             | 25.7             | 14.5               | 0.3    | 2.2                   | 0.2   | 2.9          | 0.1 |
|                 | FMC/WVD | 4  | 0.57 | 11.9             | 12.4             | 7.3                | 0.6    | 2.9                   | 0.1   | 1.7          | 0.1 |
|                 |         | 5  | 0.67 | 29.2             | 30.1             | 17.3               | 0.7    | 2.2                   | 0.1   | 1.5          | 0.1 |
|                 | MC      |    | 1.09 | 0.0              | 0.0              | 0.0                | 0.3    | 2.0                   | 0.8   | 11.0         | 0.3 |
| ASTER           |         | 10 | 1.05 | 0.0              | 0.0              | 0.0                | 1.4    | 2.8                   | 0.4   | 7.2          | 0.3 |
|                 |         | 11 | 1.07 | 0.0              | 0.0              | 0.0                | 1.1    | 2.7                   | 0.5   | 8.0          | 0.3 |
|                 | EMC     | 12 | 1.09 | 0.0              | 0.0              | 0.0                | 1.3    | 2.0                   | 0.4   | 7.4          | 0.3 |
|                 |         | 13 | 1.09 | 0.0              | 0.0              | 0.0                | 1.2    | 2.2                   | 0.4   | 7.2          | 0.3 |
| ASTER           |         | 14 | 1.08 | 0.1              | 0.1              | 0.1                | 1.4    | 2.2                   | 0.4   | 7.3          | 0.3 |
| ASIER           | MC/WVD  |    | 0.78 | 0.0              | 0.0              | 0.0                | 0.4    | 1.1                   | 0.4   | 5.1          | 0.1 |
|                 |         | 10 | 0.74 | 0.0              | 0.0              | 0.0                | 0.7    | 1.3                   | 0.2   | 3.8          | 0.1 |
|                 |         | 11 | 0.76 | 0.0              | 0.0              | 0.0                | 0.7    | 1.1                   | 0.3   | 4.2          | 0.1 |
|                 | EMC/WVD | 12 | 0.76 | 0.0              | 0.0              | 0.0                | 0.7    | 0.9                   | 0.3   | 4.2          | 0.1 |
|                 | ,       | 13 | 0.76 | 0.0              | 0.0              | 0.0                | 0.6    | 0.9                   | 0.3   | 4.2          | 0.1 |
|                 |         | 14 | 0.76 | 0.1              | 0.1              | 0.1                | 0.6    | 0.7                   | 0.3   | 4.4          | 0.1 |

#### 5.2.5 モデル条件の感度解析

水蒸気依存型の推定式を導出する際に与えた総水蒸気量 W の誤差,そして全ての推定式を導出する際に 与えた δLST と NEAT について,これらを変化させることにより,得られる各推定式の RMSE がどの程 度変化するかを調べた。放射率モデルは,次章以降の解析を考慮して,最小放射率が 0.95 以上のサンプル (AVHRR は 39 サンプル, ASTER は 18 サンプル)のみを使用した。

Table 21 は,水蒸気依存型の推定式において,Wの誤差を $0 \text{ g/cm}^2$ (常に正確なWを入手できるケース)から $0.5 \text{ g/cm}^2$ 刻みで $1.5 \text{ g/cm}^2$ まで変化させ,各誤差ごとに得られた推定式のRMSEである。表より,Wの精度が $0.5 \text{ g/cm}^2$ を超えるとRMSEの上昇率がやや大きくなる傾向が読み取れる。この非線形的な増加傾向は,François らが同様の解析を行って得た結果と整合する。

Table 22 及び Table 23 は,  $\delta$ LST の範囲 ( $\delta$ LST レンジ)と RMSE の関係で,前者が MC 法及び EMC 法,後者が MC/WVD 法及び EMC/WVD 法に対する結果である。 $\delta$ LST レンジは最小値を –5K に固定 し,最大値を –5K (すなわち $\delta$ LST は –5K のみ)から +25K まで 5K 刻みで変化させて与えた。各 $\delta$ LST レンジには 5K 刻みで  $\delta$ LST を与えたので,例えば –5~+10K の  $\delta$ LST レンジでは与えた  $\delta$ LST は –5K, +0K,+5K,+10K の4つとなる。まず,表間の比較より,推定式を水蒸気依存型にすることが $\delta$ LST レ ンジに対する感度を大きく 1/2 程度まで下げる効果があることが分かる ( $\delta$ LST レンジと前項の誤差因子  $\delta$ LST とは意味が異なることに注意する必要がある)。陸域では地表被覆物質の違いや陰影により  $\delta$ LST レ ンジが一般に大きいので,このことより,陸域観測には水蒸気依存型推定式が極めて有利であると言える。 また,各手法ごとをセンサ間で比較すると,ASTER の $\delta$ LST レンジに対する感度は AVHRR のそれより 小さく,マルチチャネル化の有効性が伺える。

Table 24 及び Table 25 は, NEAT と RMSE の関係で,前者が MC 法及び EMC 法,後者が MC/WVD 法 及び EMC/WVD 法に対する結果である。NEAT に関してはセンサ間の違いはあまり見られないが, EMC 法及び EMC/WVD 法の方が MC 法及び MC/WVD 法よりも NEAT に対する感度が多少大きいことが分 かる。

#### 5.2.6 モデル要素別の誤差解析と *d*LST 依存アルゴリズム

前項までで EMC/WVD 法の陸域観測への有用性が示された。そこで本項では, EMC/WVD 法について, 大気, 放射率, LST の各モデルの要素別の誤差傾向について調べた。放射率モデルは, 最小放射率が

| Uncertainty of<br>WV [g/cm <sup>2</sup> ] | AVHRR |         |      |      | ASTER   |       |       |       |       |  |  |
|-------------------------------------------|-------|---------|------|------|---------|-------|-------|-------|-------|--|--|
|                                           | MC/   | EMC/WVD |      | MC/  | EMC/WVD |       |       |       |       |  |  |
|                                           | WVD   | ch.4    | ch.5 | WVD  | ch.10   | ch.11 | ch.12 | ch.13 | ch.14 |  |  |
| 0.0                                       | 0.84  | 0.52    | 0.72 | 0.83 | 0.73    | 0.73  | 0.70  | 0.68  | 0.71  |  |  |
| 0.5                                       | 0.88  | 0.56    | 0.77 | 0.87 | 0.78    | 0.77  | 0.74  | 0.73  | 0.77  |  |  |
| 1.0                                       | 0.96  | 0.64    | 0.87 | 0.94 | 0.85    | 0.84  | 0.81  | 0.82  | 0.88  |  |  |
| 1.5                                       | 1.05  | 0.71    | 0.96 | 1.01 | 0.92    | 0.91  | 0.87  | 0.90  | 0.97  |  |  |

Table 21: RMSE [K] of water-vapor-dependent algorithms for various uncertainties of the water vapor amount. The lower limit of emissivity is 0.95.

Table 22: RMSE [K] of the MC and the EMC equations for various LST offset ranges. The lower limit of emissivity is 0.95.

| LST offset<br>range [K] | L    | AVHRF | {    | ASTER |                      |       |       |       |       |  |  |
|-------------------------|------|-------|------|-------|----------------------|-------|-------|-------|-------|--|--|
|                         | MC   | EMC   |      | MC    | $\operatorname{EMC}$ |       |       |       |       |  |  |
|                         | MO   | ch.4  | ch.5 | MO    | ch.10                | ch.11 | ch.12 | ch.13 | ch.14 |  |  |
| -5                      | 0.77 | 0.38  | 0.58 | 0.72  | 0.54                 | 0.53  | 0.52  | 0.48  | 0.52  |  |  |
| $-5 \sim +0$            | 0.91 | 0.59  | 0.82 | 0.85  | 0.75                 | 0.74  | 0.72  | 0.72  | 0.77  |  |  |
| $-5 \sim +5$            | 1.07 | 0.74  | 0.99 | 1.00  | 0.92                 | 0.91  | 0.88  | 0.91  | 0.98  |  |  |
| $-5 \sim +10$           | 1.20 | 0.86  | 1.12 | 1.12  | 1.04                 | 1.02  | 0.99  | 1.05  | 1.14  |  |  |
| $-5 \sim +15$           | 1.30 | 0.95  | 1.23 | 1.20  | 1.13                 | 1.11  | 1.07  | 1.16  | 1.25  |  |  |
| $-5 \sim +20$           | 1.39 | 1.03  | 1.32 | 1.27  | 1.19                 | 1.17  | 1.13  | 1.25  | 1.35  |  |  |
| $-5 \sim +25$           | 1.47 | 1.10  | 1.40 | 1.32  | 1.24                 | 1.22  | 1.17  | 1.31  | 1.42  |  |  |

Table 23: RMSE [K] of the MC/WVD and the EMC/WVD equations for various LST offset ranges. The lower limit of emissivity is 0.95.

| LST offset    | ŀ    | AVHRR   |      |      | ASTER   |       |       |       |       |  |  |
|---------------|------|---------|------|------|---------|-------|-------|-------|-------|--|--|
|               | MC/  | EMC/WVD |      | MC/  | EMC/WVD |       |       |       |       |  |  |
| range [K]     | WVD  | ch.4    | ch.5 | WVD  | ch.10   | ch.11 | ch.12 | ch.13 | ch.14 |  |  |
| -5            | 0.68 | 0.28    | 0.39 | 0.64 | 0.43    | 0.42  | 0.43  | 0.38  | 0.39  |  |  |
| $-5 \sim +0$  | 0.73 | 0.41    | 0.55 | 0.71 | 0.58    | 0.58  | 0.58  | 0.54  | 0.56  |  |  |
| $-5 \sim +5$  | 0.79 | 0.49    | 0.67 | 0.79 | 0.69    | 0.69  | 0.67  | 0.65  | 0.67  |  |  |
| $-5 \sim +10$ | 0.85 | 0.55    | 0.75 | 0.85 | 0.76    | 0.76  | 0.73  | 0.72  | 0.76  |  |  |
| $-5 \sim +15$ | 0.92 | 0.61    | 0.83 | 0.90 | 0.82    | 0.81  | 0.78  | 0.79  | 0.84  |  |  |
| $-5 \sim +20$ | 0.97 | 0.65    | 0.89 | 0.95 | 0.87    | 0.86  | 0.82  | 0.84  | 0.90  |  |  |
| $-5 \sim +25$ | 1.03 | 0.70    | 0.95 | 0.98 | 0.91    | 0.89  | 0.86  | 0.89  | 0.95  |  |  |

Table 24: RMSE [K] of the MC and the EMC equations for various NE $\Delta$ Ts. The lower limit of emissivity is 0.95.

|                   | AVHRR |      |      |      | ASTER |       |       |       |       |  |  |
|-------------------|-------|------|------|------|-------|-------|-------|-------|-------|--|--|
| NE $\Delta$ T [K] | MC    | EMC  |      | MC   | EMC   |       |       |       |       |  |  |
|                   |       | ch.4 | ch.5 | MO   | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |  |  |
| 0.0               | 1.31  | 0.89 | 1.21 | 0.81 | 0.75  | 0.71  | 0.74  | 0.80  | 0.94  |  |  |
| 0.1               | 1.36  | 0.97 | 1.26 | 0.99 | 0.90  | 0.87  | 0.84  | 0.93  | 1.06  |  |  |
| 0.2               | 1.47  | 1.16 | 1.40 | 1.14 | 1.04  | 1.02  | 0.97  | 1.07  | 1.19  |  |  |
| 0.3               | 1.62  | 1.39 | 1.58 | 1.26 | 1.17  | 1.16  | 1.11  | 1.22  | 1.31  |  |  |
| 0.4               | 1.79  | 1.62 | 1.77 | 1.38 | 1.30  | 1.29  | 1.25  | 1.36  | 1.44  |  |  |
| 0.5               | 1.95  | 1.83 | 1.95 | 1.49 | 1.43  | 1.42  | 1.39  | 1.49  | 1.56  |  |  |

|                   | 1    | AVHRR   | ,    |      | ASTER   |       |       |       |       |  |  |
|-------------------|------|---------|------|------|---------|-------|-------|-------|-------|--|--|
| NE $\Delta$ T [K] | MC/  | EMC/WVD |      | MC/  | EMC/WVD |       |       |       |       |  |  |
|                   | WVD  | ch.4    | ch.5 | WVD  | ch.10   | ch.11 | ch.12 | ch.13 | ch.14 |  |  |
| 0.0               | 0.91 | 0.53    | 0.80 | 0.61 | 0.55    | 0.52  | 0.55  | 0.47  | 0.57  |  |  |
| 0.1               | 0.95 | 0.61    | 0.85 | 0.76 | 0.68    | 0.65  | 0.63  | 0.59  | 0.68  |  |  |
| 0.2               | 1.05 | 0.79    | 0.96 | 0.86 | 0.77    | 0.76  | 0.72  | 0.72  | 0.79  |  |  |
| 0.3               | 1.17 | 0.97    | 1.10 | 0.94 | 0.85    | 0.84  | 0.81  | 0.82  | 0.88  |  |  |
| 0.4               | 1.28 | 1.13    | 1.22 | 1.00 | 0.93    | 0.92  | 0.90  | 0.91  | 0.96  |  |  |
| 0.5               | 1.39 | 1.27    | 1.33 | 1.06 | 0.99    | 0.99  | 0.97  | 0.99  | 1.03  |  |  |

Table 25: RMSE [K] of the MC/WVD and the EMC/WVD equations for various NE $\Delta$ Ts. The lower limit of emissivity is 0.95.

0.95 以上のサンプル (AVHRR は 39 サンプル, ASTER は 18 サンプル)のみを使用した。

Fig. 35 は, AVHRR の各チャネルに対する EMC/WVD 法について,大気モデルを構成する 964 の各プ ロファイルごとの RMSE を各プロファイルの総水蒸気量を横軸として示したプロットである。EMC/WVD 法は総水蒸気量に伴う誤差を低減した手法であるが,総水蒸気量が小さい範囲では,総水蒸気量が増加す るにつれて顕著に RMSE が増加する傾向が見られる。しかしながら,総水蒸気量が 2.5 g/cm<sup>2</sup> 付近に達す るとほぼ横ばいになるのが特徴的で,特に Ch.5 ではそれが著しい。Fig. 36 はバイアス誤差を示したもの であるが,バイアス誤差はほぼ 0K を中心に分布していることが分かる。

一方, Fig. 37 及び Fig. 38 は, ASTER のチャネル 10, 12, 14 に対する EMC/WVD 法について,上 記と同様の結果を示したものである。いずれも AVHRR の場合とほぼ同様の傾向が得られている。

Fig. 39 は, AVHRR の各チャネルに対する EMC/WVD 法について, 各サンプルの最小放射率と RMSE の関係を示したものである。RMSE は最小放射率にはあまり依存しないことが分かる。一方, Fig. 40 は, 同様にバイアス誤差との関係を示したものである。最小放射率が大きいサンプルでは正のバイアス誤差, 小さいサンプルでは負のバイアス誤差を持つ明瞭な傾向が見られる。

Fig. 41 及び Fig. 42 は, ASTER のチャネル 10, 12, 14 に対する EMC/WVD 法について,上記と同様の結果を示したものである。RMSE については,AVHRR と同様に最小放射率に対する依存性はあまり見られないが,バイアス誤差についても同様に最小放射率にあまり依存しておらず,この点はAVHRR とは異なっている。このことは,放射率のバイアス誤差に対してはマルチチャネル化が有利であることを示しており,5.2.4 項の結果と整合する。

Table 26 は, AVHRR の各チャネルについて, EMC/WVD 法の式を決定する際に使用した -5, +0, +10, +20K の各  $\delta$ LST ごとに RMSE 及びバイアス誤差を計算したものである。また, Table 27 は, ASTER の Ch.10, 12, 14 に対する同様の結果である。まず, バイアス誤差と  $\delta$ LST と間には明瞭な負の相関があ



Figure 35: Plots of the water vapor amount versus the RMSE of the EMC/WVD method for AVHRR (top: ch.4, bottom: ch.5). The lower limit of emissivity is 0.95.



Figure 36: Plots of the water vapor amount versus the bias error of the EMC/WVD method for AVHRR (top: ch.4, bottom: ch.5). The lower limit of emissivity is 0.95.



Figure 37: Plots of the water vapor amount versus the RMSE of the EMC/WVD method for ASTER (top: ch.10, middle: ch.12, bottom: ch.14). The lower limit of emissivity is 0.95.



Figure 38: Plots of the water vapor amount versus the bias error of the EMC/WVD method for ASTER (top: ch.10, middle: ch.12, bottom: ch.14). The lower limit of emissivity is 0.95.



Figure 39: Plots of the minimum emissivity versus the RMSE of the EMC/WVD method for AVHRR (top: ch.4, bottom: ch.5). The lower limit of emissivity is 0.95.


Figure 40: Plots of the minimum emissivity versus the bias error of the EMC/WVD method for AVHRR (top: ch.4, bottom: ch.5). The lower limit of emissivity is 0.95.



Figure 41: Plots of the minimum emissivity versus the RMSE of the EMC/WVD method for ASTER (top: ch.10, middle: ch.12, bottom: ch.14). The lower limit of emissivity is 0.95.



Figure 42: Plots of the minimum emissivity versus the bias error of the EMC/WVD method for ASTER (top: ch.10, middle: ch.12, bottom: ch.14). The lower limit of emissivity is 0.95.

| ALST. | ch.  | 4     | ch.5 |       |  |  |
|-------|------|-------|------|-------|--|--|
| 0101  | RMSE | bias  | RMSE | bias  |  |  |
| -5    | 0.59 | 0.23  | 0.78 | 0.31  |  |  |
| +0    | 0.53 | 0.09  | 0.72 | 0.13  |  |  |
| +5    | 0.56 | -0.02 | 0.76 | -0.02 |  |  |
| +10   | 0.63 | -0.10 | 0.86 | -0.13 |  |  |
| +20   | 0.85 | -0.20 | 1.16 | -0.29 |  |  |

Table 26: Errors [K] of the EMC/WVD method as a function of  $\delta$ LST for AVHRR channels 4 and 5. The lower limit of emissivity is 0.95.

ることが分かる。そして与えた  $\delta$ LST レンジの中心付近である  $0 \sim 5$ K 付近(すなわち LST が気温付近)の RMSE が最も小さく,それから離れると RMSE が大きくなっている。このように EMC/WVD 法の精度 は  $\delta$ LST に大きく依存する。

このような &LST に依存する誤差を軽減する 1 つの方法は &LST レンジを幾つかのサブレンジに区切り, 各サブレンジごとに推定式を最適化する方法である。これは Wan ら(1996)によって提案された AVHRR 及び MODIS に対する一般化 SW 法にも含まれている手法で [27],適当なサブレンジに対する式を用いて 計算した LST とその時の気温との差から &LST を計算し,その値を元に適切なサブレンジを持つ推定式を 決定して LST を再計算する反復解法である。EMC/WVD 法の場合には LST を直接計算しないが,次章 以降で述べる手法により LST を得ることができる。また,気温データが必要であり,Wan らは HIRS/2 や MODIS のプロダクトを使用することを提案しているが,全球解析データの使用も可能であると考えら れる。こうして,同アプローチを EMC/WVD 法に適用することは可能である。

Table 28 は, AVHRR の各チャネルの EMC/WVD 法について, -5, +0, +5, +10, +20K の各  $\delta$ LST ごとに最適化した推定式の RMSE ( $\delta$ LST dependent)と, Table 26 中の RMSE ( $\delta$ LST independent)の 比較である。また, Table 29 は, ASTER の Ch.10, 12, 14 に対する同様の結果である。実際には, LST の一次推定値や気温データの誤差を考慮すると, 各  $\delta$ LST ごとに推定式を最適化することは無く, 狭いサ ブレンジを複数設けて, 各サブレンジごとに推定式を求める方法が実用的であるため, ここで示した各  $\delta$ LST ごとの最適式よりは RMSE は大きくなる。しかしながら, このように  $\delta$ LST 依存とすることにより, EMC/WVD 法における  $\delta$ LST に伴う誤差をある程度軽減することが可能である。特に  $\delta$ LST が -5K の場 合に対しては, 改善効果が著しい。

| $\delta LST$ | ch.  | 10    | ch.2 | 12    | ch.14 |       |  |
|--------------|------|-------|------|-------|-------|-------|--|
|              | RMSE | bias  | RMSE | bias  | RMSE  | bias  |  |
| -5           | 0.81 | 0.34  | 0.78 | 0.32  | 0.76  | 0.25  |  |
| +0           | 0.75 | 0.14  | 0.72 | 0.15  | 0.74  | 0.11  |  |
| +5           | 0.77 | -0.01 | 0.74 | -0.01 | 0.78  | 0.01  |  |
| +10          | 0.85 | -0.14 | 0.80 | -0.13 | 0.89  | -0.10 |  |
| +20          | 1.05 | -0.33 | 1.00 | -0.32 | 1.15  | -0.27 |  |

Table 27: Errors [K] of the EMC/WVD method as a function of  $\delta$ LST for ASTER channels 10, 12 and 14. The lower limit of emissivity is 0.95.

Table 28: RMSE [K] of the  $\delta$ LST-independent and the  $\delta$ LST-dependent EMC/WVD methods for AVHRR channels. The lower limit of emissivity is 0.95.

| δLST | δLST-i | ndependent | δLST-α | $\delta { m LST}$ -dependent |  |  |
|------|--------|------------|--------|------------------------------|--|--|
| 0101 | ch.4   | ch.5       | ch.4   | ch.5                         |  |  |
| -5   | 0.59   | 0.78       | 0.28   | 0.39                         |  |  |
| +0   | 0.53   | 0.72       | 0.36   | 0.50                         |  |  |
| +5   | 0.56   | 0.76       | 0.48   | 0.66                         |  |  |
| +10  | 0.63   | 0.86       | 0.59   | 0.81                         |  |  |
| +20  | 0.85   | 1.16       | 0.77   | 1.05                         |  |  |

Table 29: RMSE [K] of the  $\delta$ LST-independent and the  $\delta$ LST-dependent EMC/WVD methods for ASTER channels. The lower limit of emissivity is 0.95.

| $\delta LST$ |       | $\delta { m LST}	ext{-independent}$ |       |       |       |       | $\delta { m LST}$ -dependent |       |       |       |  |
|--------------|-------|-------------------------------------|-------|-------|-------|-------|------------------------------|-------|-------|-------|--|
|              | ch.10 | ch.11                               | ch.12 | ch.13 | ch.14 | ch.10 | ch.11                        | ch.12 | ch.13 | ch.14 |  |
| -5           | 0.81  | 0.81                                | 0.78  | 0.74  | 0.76  | 0.43  | 0.42                         | 0.43  | 0.38  | 0.39  |  |
| +0           | 0.75  | 0.75                                | 0.72  | 0.70  | 0.74  | 0.51  | 0.50                         | 0.50  | 0.47  | 0.51  |  |
| +5           | 0.77  | 0.76                                | 0.74  | 0.74  | 0.78  | 0.64  | 0.62                         | 0.62  | 0.62  | 0.66  |  |
| +10          | 0.85  | 0.83                                | 0.80  | 0.83  | 0.89  | 0.75  | 0.73                         | 0.72  | 0.75  | 0.80  |  |
| +20          | 1.05  | 1.04                                | 1.00  | 1.06  | 1.15  | 0.92  | 0.89                         | 0.86  | 0.93  | 1.01  |  |

| wiew en ale | AVHRR |      |      |      | ASTER |       |       |       |       |  |
|-------------|-------|------|------|------|-------|-------|-------|-------|-------|--|
| [deg]       | MC    | EN   | ИC   | MC   |       |       | EMC   |       |       |  |
|             | MO    | ch.4 | ch.5 | MO   | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |  |
| 0           | 1.37  | 1.00 | 1.29 | 1.26 | 1.17  | 1.16  | 1.11  | 1.22  | 1.31  |  |
| 10          | 1.38  | 1.01 | 1.30 | 1.27 | 1.18  | 1.16  | 1.12  | 1.23  | 1.32  |  |
| 20          | 1.42  | 1.05 | 1.33 | 1.31 | 1.22  | 1.20  | 1.16  | 1.26  | 1.36  |  |
| 30          | 1.50  | 1.13 | 1.41 | 1.42 | 1.33  | 1.32  | 1.27  | 1.36  | 1.45  |  |
| 40          | 1.69  | 1.33 | 1.59 | 1.69 | 1.60  | 1.59  | 1.54  | 1.58  | 1.66  |  |

Table 30: RMSE [K] of the MC and the EMC equations optimized to view angle 0° as a function of view angle for AVHRR and ASTER. The lower limit of emissivity is 0.95.

Table 31: RMSE [K] of the MC/WVD and the EMC/WVD equations optimized to view angle 0° as a function of view angle for AVHRR and ASTER. The lower limit of emissivity is 0.95.

| view angle | AVHRR |      |      |      | ASTER |       |       |       |       |  |
|------------|-------|------|------|------|-------|-------|-------|-------|-------|--|
| view angle | MC/   | EMC, | /WVD | MC/  |       | El    | MC/WV | D     |       |  |
| [deg]      | WVD   | ch.4 | ch.5 | WVD  | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |  |
| 0          | 0.96  | 0.64 | 0.87 | 0.94 | 0.85  | 0.84  | 0.81  | 0.82  | 0.88  |  |
| 10         | 0.97  | 0.65 | 0.88 | 0.95 | 0.86  | 0.85  | 0.82  | 0.83  | 0.88  |  |
| 20         | 1.00  | 0.68 | 0.90 | 0.99 | 0.91  | 0.90  | 0.87  | 0.87  | 0.93  |  |
| 30         | 1.08  | 0.76 | 0.99 | 1.15 | 1.07  | 1.06  | 1.03  | 1.00  | 1.06  |  |
| 40         | 1.30  | 0.99 | 1.21 | 1.53 | 1.47  | 1.46  | 1.41  | 1.32  | 1.37  |  |

#### 5.2.7 観測角の影響

本論文では,観測角0°の場合に対してシミュレーションを行ってきたが,前述した通り,実際には最大 で AVHRR が 55°程度,ASTER が 10°程度の観測角を持つ。そこで,MC法,EMC法,MC/WVD法, EMC/WVD法の各手法について,観測角0°の場合における推定式を,観測角0°,10°,20°,30°,40°の 各データセットに適用した時の誤差を計算した。各データセットは,観測角以外の条件は全て同じとした。 Table 30 に MC 法及び EMC 法に対して得られた結果を,Table 31 に MC/WVD 法及び EMC/WVD 法に対して得られた結果を示す。表より,Nずれの手法も観測角 20°付近までは誤差の増加が小さいが,そ れを超えると非線形的に大きくなることが分かる。これより,観測角が 20°を超えるケースでは,Nずれ の手法も式を改めて構築する必要があることが分かる。また,観測角に対しては ASTER の方が AVHRR よりセンシティブである。しかしながら,ASTER では観測角は最大でも 10°程度なので,実データに対 しては観測角の影響を考慮する必要は無い。

なお,観測角の影響を除去する方法としては,NESDISのMCSST推定式のように式自体に観測角を含める方法 [73] や,Wanら(1996)の一般化SW法のようにあらかじめ各観測角ごとに最適な係数を計算しておく方法 [27]がある。

#### 5.3 まとめ

本章で提案した EMC 法はマルチチャネル法よりも放射率に対する感度が小さい。また,その精度はチャ ネル依存性を持っており,AVHRR では Ch.4,ASTER では Ch.12 に対する各 EMC 法の精度が最も良く, 特に ASTER/Ch.12 の EMC 法では放射率の影響をほとんど受けない。係数が総水蒸気量の 2 次関数で示 される WVD アルゴリズム [32] を MC 法及び EMC 法に応用した MC/WVD 法及び EMC/WVD 法は,そ れぞれ元の手法と比べると放射率に対する感度が小さく,また  $\delta$ LST に対する感度も小さく,精度が高い。 一方,ASTER は

- AVHRR より NE△T が大きい
- 各チャネルは大気透過性が比較的高い波長帯に配置されている
- Ch.11 ~ 12 はオゾンの吸収効果を受ける

等の差分吸収アルゴリズムの適用上の短所を持つにも関わらず,ASTERの各手法はAVHRRのものと同 程度の精度が得られており,このことはマルチチャネル化が有効であることを示している。以上より陸域 観測においては(1)MC法よりEMC法(2)水蒸気依存型(3)マルチチャネル化,がそれぞれ有利で あると言える。例えば,総水蒸気量が±1g/cm<sup>2</sup>以内の精度で利用可能な条件下においてASTER/Ch.12 のEMC/WVD法を用いることにより,最小放射率が0.95以上の物質のみに適用する場合は0.81K,全て の地表被覆物質に適用する場合は0.92KのRMSEで地上レベルの地表輝度温度を推定可能である。但し, EMC/WCD法の精度は $\delta$ LSTによって大きく変化することに注意する必要があるが,これについては推 定式を $\delta$ LST依存型とすることによってある程度改善することが可能である。

なお,地上レベルの地表輝度温度はLST と共に放射率及び天空輝度の関数であるため,EMC 法や EMC/WVD 法を利用してLST を得るためには,これらのパラメータの分離が必要である。このことは LST を直接推定する MC 法や MC/WVD 法に比べるとやや扱いにくい印象を受けるが,天空輝度を何ら かの方法で推定できれば,TES と組み合わせることにより,LST ばかりでなく,放射率も同時に推定でき る可能性がある。但し,EMC 法や EMC/WVD 法は,精度がチャネルごとにに大きく異なることに注意 する必要がある。例えば,ASTER について EMC/WVD 法を全ての地表被覆物質に適用する場合,Ch.12 では RMSE が 0.92K であるのに対して,Ch.10 では 1.39K になってしまう。これは地表のスペクトル解 析などを行う場合には特に大きな影響を及ぼす可能性がある。こうした点を踏まえて次章以降では,本章

で提案した EMC 法や EMC/WVD 法を手法の一部として含む,より実用性の高い大気補正アルゴリズムの開発を試みる。

# 6 灰色画素を用いた段階的回帰分析に基づく大気補正アルゴリズム

前章で提案した EMC 法や EMC/WVD 法は,従来のマルチチャネル法に比べて陸域観測への適用性が 高いことが示されたが,地表被覆を問わずに高い精度でこれらを適用できるのは一部のチャネルに限られ, また,それらのチャネルから LST を得る場合にも天空輝度及び放射率を何らかの方法で別に与えなければ ならない問題があった。そこで本章では,灰色画素(放射率の下限値が1に近い画素)に EMC 法あるい は EMC/WVD 法を適用し,更に段階的に回帰分析を適用することによって各チャネルごとの大気効果パ ラメータを推定する大気補正アルゴリズムを提案する。提案手法は,EMC 法を利用すれば外部の大気デー タや標高データを必要としない自己推定型アルゴリズムとなり,また EMC/WVD 法を利用する場合も外 部データとして水蒸気量の概算値さえあれば良く,それ以外の大気データは必要としない。また,TES と 組み合わせることによって LST 及び放射率を導出することも可能である。

本章の前半では提案手法の原理を理論的に導出し,その有効性をシミュレーションに基づいて評価する。 そして後半では,シミュレーションに基づき,提案手法の誤差挙動について解析する。

6.1 手法の原理

6.1.1 透過率・光路輝度の推定

一般に陸域では,擾乱の激しい大気下や標高変化の大きい地域を除けば,大気効果パラメータの水平方 向の空間変動は地表パラメータのそれより十分に小さい。そこで,観測シーンを複数の領域に区切り,各 領域内では大気効果パラメータ(透過率,光路輝度,天空輝度)が画素に依存しないものと仮定すると,式 (2.34)は次式に書き換えられる。

$$I_{ij}(\mu) = \left[\epsilon_{ij}B_i(T_{sj}) + (1 - \epsilon_{ij})I_i^{\downarrow}\right]\tau_i(\mu) + I_i^{\uparrow}(\mu)$$
(6.1)

ここで j は画素番号である。式 (6.1) は次の線形モデルに帰着する。

$$Y_{ij}(\mu) = \tau_i(\mu)X_{ij} + I_i^{\uparrow}(\mu) \tag{6.2}$$

ここで,

$$Y_{ij}(\mu) = I_{ij}(\mu) \tag{6.3}$$

$$X_{ij} = \epsilon_{ij} B_i(T_{sj}) + (1 - \epsilon_{ij}) I_i^{\downarrow} = B_i(T_{gij})$$
(6.4)

である。

一般に  $Y_{ij}(\mu)$  は既知であるのに対し,  $X_{ij}$  は未知である。しかし, 領域内に  $X_{ij}$  が既知で互いに異なる画素が2個以上あれば,その領域における透過率及び光路輝度は線形回帰法によって推定できる。すなわち,

$$\tau_i(\mu) = \sum_{j=1}^n [Y_{ij}(\mu) - Y_{i\bullet}(\mu)] [X_{ij} - X_{i\bullet}] \left/ \sum_{j=1}^n [X_{ij} - X_{i\bullet}]^2 \right.$$
(6.5)

$$I_i^{\uparrow}(\mu) = Y_{i\bullet}(\mu) - \tau_i(\mu) X_{i\bullet}$$
(6.6)

ここで  $X_{i_{\bullet}} \ge Y_{i_{\bullet}}(\mu)$  はそれぞれ  $X_{ij}$  が既知の画素における  $X_{ij} \ge Y_{ij}(\mu)$  の平均値であり, n はそれらの 画素の数である。

T<sub>gij</sub>は EMC 法あるいは EMC/WVD 法によって推定可能である。 EMC/WVD 法の場合は外部データとして水蒸気量の概算値を必要とするが,精度的には EMC 法より有利である。

さて,5章で述べたように,EMC 法及び EMC/WVD 法にはチャネルごとに精度が大きく異なる問題が ある。上述の方法において,この問題をクリアするためのアプローチとしては次の2つが考えられる。

- 式(6.5)及び(6.6)では,必ずしも全ての画素の T<sub>gij</sub>を必要としない。そこで,放射率の下限値が 1に近い画素のみを選び出し,これらに EMC 法(あるいは EMC/WVD 法)を適用すれば,いず れのチャネルにおいても比較的高い精度で T<sub>gij</sub>を推定できる。例えば,放射率の下限値が0.95の画 素のみを選び出して EMC/WVD 法を適用すれば,AVHRR では0.64~0.87K,ASTER では0.81~ 0.87K の精度でそれぞれ T<sub>gij</sub>を推定可能である(Table 11参照)。なお,放射率の下限値が1に近い 画素を本論文では灰色画素(gray pixel)と呼ぶことにする。
- 2. 一部のチャネルに対しては地表被覆を問わずに比較的高い精度で EMC 法(あるいは EMC/WVD 法)を適用可能であり,例えば,AVHRR / Ch.4 では 0.93K,ASTER / Ch.12 では 0.92K の精度 で T<sub>gij</sub> を推定できる(Table 11 参照)。9.6µm 付近のオゾン吸収帯を除く熱赤外波長帯では,吸収 が大きく時空間変動が大きい大気分子は水蒸気のみであるため,一般に大気効果パラメータはチャネ ル間で高い相関があることが予想される。従って,EMC 法(あるいは EMC/WVD 法)の精度が高 いチャネルの大気効果パラメータを式(6.5)及び(6.6)から求め,残りのチャネルについては大気効 果パラメータのチャネル間相関に基づいて推定できる可能性がある。

アプローチ1では,放射率の不確定性が小さい植生や陸水,雪氷などが占める画素が画像中の各領域内 に複数存在する必要があり,手法の適用条件がシーンに大きく左右されることが大きな問題である。領域

| sensor | channel | $a_0$    | $a_1$    | $a_2$     | RMSE   |
|--------|---------|----------|----------|-----------|--------|
| AVHRR  | ch.4    | 0.020472 | 1.727892 | -0.078670 | 0.0321 |
|        | ch.5    | 0.030730 | 1.602954 | -0.059783 | 0.0357 |
|        | ch.10   | 0.028093 | 1.453320 | -0.007765 | 0.0641 |
|        | ch.11   | 0.032534 | 1.512337 | -0.019799 | 0.0380 |
| ASTER  | ch.12   | 0.021223 | 1.635675 | -0.051936 | 0.0214 |
|        | ch.13   | 0.019626 | 1.729266 | -0.078847 | 0.0305 |
|        | ch.14   | 0.024840 | 1.702252 | -0.074895 | 0.0343 |

Table 32: Regression coefficients and RMSE of Eq. ( 6.7) for AVHRR and ASTER. The unit of RMSE is in  $W/m^2/sr/\mu m$ .

内の灰色画素が1個以下の場合には本アプローチの適用は不可能であり,この場合には,周囲の領域から の内挿によって大気効果パラメータを決定するなどの処理が必要となる。一方のアプローチ2では,その 精度が,大気効果パラメータのチャネル間相関の程度に大きく依存する。但し,アプローチ1と異なり,灰 色画素が無くても適用可能である点は実用上有利である。

なお,実際に精度的に有効なのはアプローチ1のみであり,アプローチ2は EMC 法や EMC/WVD 法 の精度とほとんど変わらない。これについては次節でシミュレーションに基づいて示す。

#### 6.1.2 天空輝度の推定

6.1.1 項で提案した手法により透過率と光路輝度を推定できるが,LST及び放射率を推定するための大気補正には,天空輝度も必要である。そこで本項では,6.1.1 項の方法で得られた透過率及び光路輝度を用いて天空輝度を推定する方法について述べる。

Fig. 43 は,3章で与えた大気モデル(964 プロファイル)について,AVHRR / Ch.4 の直下観測での 光路輝度と天空輝度の間の関係を示したものである。また,Fig. 44 は,ASTER / Ch.10 に対する同様 の図である。これらの図より,天空輝度は直下観測の光路輝度と非常に良い相関関係があることが分かる。 従って,この性質を利用して天空輝度を回帰推定することが可能である。関数形には様々なものが考えら れるが,非線形性への対応と簡略性から,ここでは2次関数を採用する。すなわち,

$$I_i^{\downarrow}(0) = a_0 + a_1 I_i^{\uparrow}(0) + a_2 I_i^{\uparrow}(0)^2$$
(6.7)

により,直下観測の光路輝度を用いて天空輝度を推定する手法を提案する。Table 32 は,AVHRR 及び ASTER の各チャネルにおける回帰係数とRMSE を示す。



Figure 43: Plot of the path radiance at nadir view versus the sky radiance for AVHRR channel 4. 式(6.7)において,光路輝度を直下観測の場合のものに限定している理由は,光路輝度が観測角によっ て変化する量であるのに対して,天空輝度は観測角には依存しない量であるため,観測角が変化すると両 者の回帰精度が低下するためである。6.1.1項で述べた方法で計算される光路輝度は任意の観測角に対する 値であるため,これを式(6.7)にそのまま与えることはできない。従って,同一大気下における直下観測 に対する光路輝度を計算する方法が必要である。ここでは,任意の観測角に対する透過率及び光路輝度を 用いて直下観測の光路輝度を推定する方法を提案する。

まず,光路輝度を平均値の定理によって次のように変形する[30]。

$$I_{i}^{\uparrow}(\theta) = \int_{\tau_{0i}(\theta)}^{1} B_{i}(T) d\tau(\theta)$$
  
=  $B_{i}(T_{a})(1 - \tau_{0i}(\theta))$  (6.8)

ここで,  $\tau_{0i}(\theta)$  は観測角  $\theta$  における宇宙 地表間の透過率,  $B_i(T_a)$  は大気の平均放射輝度である。Fig. 45 は, 964の大気プロファイルについて, 観測角 0°及び 40°における  $B_i(T_a)$  を各観測角における透過率及び 光路輝度からそれぞれ計算し, 比較したものであるが, 図より, ここで与えた観測角の範囲では,  $B_i(T_a)$ は観測角にはほとんど依存しない量であることが分かる。すなわち, 少なくとも 40° までの観測角に対す



Figure 44: Plot of the path radiance at nadir view versus the sky radiance for ASTER channel 10. る光路輝度と同一大気下の直下観測での光路輝度は,極めて良い近似で次式の関係がある。

$$I_{i}^{\uparrow}(0) = I_{i}^{\uparrow}(\theta) \cdot \frac{1 - \tau_{0i}(0)}{1 - \tau_{0i}(\theta)}$$
(6.9)

一方,宇宙 地表間の観測において,観測角0°の気体総量(air mass)に対する観測角θの気体総量の 比は,θが60°までならば1%以内の精度でsecθと一致する[121]。従って,60°までの観測角に対する透 過率と同一大気下の直下観測での透過率は,良い近似で次式を満たす。

$$\tau_{0i}(0) = \tau_{0i}(\theta)^{\cos\theta} \tag{6.10}$$

Fig. 46 は,964 プロファイルについて,AVHRR / Ch.4 における観測角 10°,20°,30°,40°の透過率
 を式(6.10)により観測角 0°での値に変換したものと,観測角 0°での真の透過率を比較したものである。
 両者が極めて良く一致することが分かる。

最後に,式(6.10)を式(6.9)に与えることにより,次式が得られる。

$$I_i^{\uparrow}(0) = I_i^{\uparrow}(\theta) \cdot \frac{1 - \tau_{0i}(\theta)^{\cos \theta}}{1 - \tau_{0i}(\theta)}$$
(6.11)

こうして,式(6.11)により,観測角  $\theta$  での透過率及び光路輝度から直下観測での光路輝度を計算することができる。そして,得られた値を式(6.7)に与えれば,天空輝度を計算できる。



Figure 45: Comparison between the mean radiance of atmosphere for view angle  $^{\circ}$  and that for view angle 40° for AVHRR channel 4.



Figure 46: Comparison between the transmittance at nadir and the transmittance powered by  $\sec \theta$  ( $\theta = 10, 20, 30, 40$  degrees).

6.2 シミュレーションに基づく手法の実用性評価と処理フロー

#### 6.2.1 大気効果パラメータのチャネル間相関

6.1.1 項のアプローチ2は大気効果パラメータのチャネル間相関を仮定している。そこで,まず,この仮 定がどの程度成立するかについて検討する。

Fig. 47 は, 3.2 節の大気モデルについて,観測角が0°, 10°, 20°, 30°, 40°の場合における AVHRR の Ch.4 と Ch.5 の透過率間の関係を示したものである。観測角に関係なく,両者の間には極めて良い相関 関係が有ることが分かる。光路輝度,天空輝度の場合も同様である。

一方, Fig. 48 は,同じ大気モデルについて,観測角が0°の場合における ASTER の Ch.12 と Ch.11, Ch.12 と Ch.13 の透過率間の関係を示したものである(ASTER の場合は観測角が小さいため,ここでは 観測角として0°のみを与えている)。図より,いずれの組み合わせも相関は高いが,Ch.12 と Ch.11 の組 に比べ,Ch.12 と Ch.13 の組はやや相関が下がっている。また,Fig. 49 は Ch.13 と Ch.14 の透過率間の 関係であるが,Ch.12 と Ch.13 の関係と比べると極めて相関が高いことが分かる。ASTER について他の 組み合わせも同様に調べた結果,Ch.10~12 の間では互いに相関が高く,また Ch.13 と Ch.14 の間でも相 関が高いが,両グループ間の相関はやや低下することが分かった。これは両グループ間で水蒸気吸収機構 がやや異なり,前者が線吸収,後者が連続吸収が支配的であることに起因していると考えられる。光路輝 度,天空輝度の場合も同様の傾向を示した。

このように, チャネルの組み合わせによっては大気効果パラメータのチャネル間の相関は極めて高く, 一 方のチャネルの値を用いて他方のチャネルの値を推定することが可能である。なお, この場合の回帰関数 には様々なものが考えられるが,本論文では単純性を考慮して多項式を採用することとした。また,種々 のケースに対して,広いレンジに渡って適合性の良い最小次数を検討した結果,次数3以下では水蒸気量 が非常に多い条件に対して適合性が悪いケースが見られたため,ここでは次数4を採用することとした。 すなわち,チャネル*i*の大気効果パラメータ*x<sub>i</sub>*は,チャネル*ref*の同パラメータ*x<sub>ref</sub>*を用いて次式によ り計算する。

$$x_i = a_0 + a_1 x_{ref} + a_2 x_{ref}^2 + a_3 x_{ref}^2 + a_4 x_{ref}^2$$
(6.12)

Table 33 は, AVHRR の Ch.4 の各パラメータをレファレンスとして Ch.5 の各パラメータを推定する 場合及びその逆の場合について,それぞれの回帰式の RMSE を示す(光路輝度及び天空輝度の単位は [W/m<sup>2</sup>/sr/µm],観測角は 0 ~ 40°)。また, Table 34 は,各回帰式の係数である。例えば, Ch.4 及び Ch.5



Figure 47: Comparison of the transmittance between AVHRR channels 4 and 5.



Figure 48: Comparison of the transmittance between ASTER channels 12 and 11/13.



Figure 49: Comparison of the transmittance between ASTER channels 13 and 14.

の透過率について,使用した大気モデルの水蒸気プロファイルを系統的に10%変動させた時の変動は平均 的に0.03 程度であることから,Table 33 における各 RMSE は極めて小さな値であると言える。

一方, Table 35 は, ASTER について同様の計算を行った結果である(観測角は0°のみ)。また, Table 36~38 は, それぞれ透過率, 光路輝度, 天空輝度に対する各回帰式の係数である。前述したように, Ch.10~12 のグループと Ch.13~14 のグループの間で回帰推定を行う場合にやや精度が悪くなることが示されており, レファレンスチャネルの選び方には注意する必要があると言える。また, Ch.11~12 はオゾンの吸収効果を受けるため, 例えば Ch.12 をレファレンスチャネルとする場合, その誤差が他のチャネルに伝播することが予想されるが, この効果についてはここでの評価には含まれていない。これらの効果を含めたシミュレーションによる評価結果は次項で述べる。

### 6.2.2 シミュレーションに基づく2つのアプローチの実用性評価

6.1.1 項で述べた 2 つのアプローチ, すなわち

1. 灰色画素を選び出し,これらのみに EMC法(あるいは EMC/WVD法)を適用するアプローチ

2. EMC 法(あるいは EMC/WVD 法)の精度が高いチャネルのみに手法を適用し,他のチャネルは大気効果パラメータのチャネル間相関を利用するアプローチ

| narameter     | reference ch  | estima | ted ch. |
|---------------|---------------|--------|---------|
| parameter     | reference en. | ch.4   | ch.5    |
| transmittance | ch.4          | _      | 0.0028  |
| transmittance | ch.5          | 0.0018 | —       |
| path radianco | ch.4          |        | 0.0143  |
| path fadiance | ch.5          | 0.0123 | —       |
| sky radiance  | ch.4          | _      | 0.0175  |
| sky fadialice | ch.5          | 0.0137 | —       |

Table 33: RMSE of Eq. ( 6.12) for several channel-combinations for AVHRR. The unit of the radiance is in  $W/m^2/sr/\mu m$ .

Table 34: Coefficients of Eq. (6.12) for several channel-combinations for AVHRR. The unit of the radiance is in  $W/m^2/sr/\mu m$ .

| reference | estimated       | $a_0$                | $a_1$     | $a_2$     | $a_3$     | $a_4$     |  |  |  |
|-----------|-----------------|----------------------|-----------|-----------|-----------|-----------|--|--|--|
|           |                 | ${ m transmittance}$ |           |           |           |           |  |  |  |
| ch.4      | $\mathrm{ch.5}$ | 0.091111             | -0.445582 | 3.076654  | -2.947273 | 1.244076  |  |  |  |
| ch.5      | ch.4            | 0.075541             | 1.573492  | -1.335887 | 1.088295  | -0.413167 |  |  |  |
|           |                 | path radiance        |           |           |           |           |  |  |  |
| ch.4      | $\mathrm{ch.5}$ | -0.021662            | 1.647498  | -0.182293 | 0.02784   | -0.002225 |  |  |  |
| ch.5      | ch.4            | 0.019234             | 0.571825  | 0.080359  | -0.012047 | 0.001223  |  |  |  |
|           |                 | sky radiance         |           |           |           |           |  |  |  |
| ch.4      | $\mathrm{ch.5}$ | -0.022311            | 1.550008  | -0.136366 | 0.017645  | -0.00113  |  |  |  |
| ch.5      | ch.4            | 0.022501             | 0.608392  | 0.070263  | -0.008619 | 0.000659  |  |  |  |

| narometer            | reference ch  |        | es     | timated o | ch.    |        |
|----------------------|---------------|--------|--------|-----------|--------|--------|
| parameter            | reference cn. | ch.10  | ch.11  | ch.12     | ch.13  | ch.14  |
|                      | ch.10         |        | 0.0033 | 0.0048    | 0.0126 | 0.0168 |
|                      | ch.11         | 0.0045 |        | 0.0025    | 0.0098 | 0.0136 |
| ${ m transmittance}$ | ch.12         | 0.0082 | 0.0031 |           | 0.0078 | 0.0112 |
|                      | ch.13         | 0.0137 | 0.0085 | 0.0058    |        | 0.0026 |
|                      | ch.14         | 0.0164 | 0.0107 | 0.0073    | 0.0023 | —      |
|                      | ch.10         |        | 0.0421 | 0.0756    | 0.2097 | 0.2547 |
|                      | ch.11         | 0.0464 |        | 0.0346    | 0.1501 | 0.1903 |
| path radiance        | ch.12         | 0.0880 | 0.0366 |           | 0.1025 | 0.1384 |
|                      | ch.13         | 0.1787 | 0.1133 | 0.0725    |        | 0.0249 |
|                      | ch.14         | 0.2011 | 0.1313 | 0.0882    | 0.0220 |        |
|                      | ch.10         | _      | 0.0711 | 0.1246    | 0.3095 | 0.3662 |
|                      | ch.11         | 0.0772 |        | 0.0550    | 0.2160 | 0.2686 |
| sky radiance         | ch.12         | 0.1414 | 0.0574 |           | 0.1436 | 0.1921 |
|                      | ch.13         | 0.2675 | 0.1660 | 0.1046    |        | 0.0375 |
|                      | ch.14         | 0.2996 | 0.1925 | 0.1286    | 0.0340 |        |

Table 35: RMSE of Eq. (6.12) for several channel-combinations for ASTER. The unit of the radiance is in  $W/m^2/sr/\mu m$ .

のそれぞれの実用性を,EMC/WVD法を用いる場合を例としてシミュレーションに基づいて検証した。

アプローチ1は灰色画素のみに適用するため、ここでは、シミュレーションにおける放射率モデルとし て、サンプルナンバー92のDistwaterのみを与えた(Table 3 参照)。そして、使用するEMC/WVD法 の式は、AVHRR 及びASTERの各チャネルに対し、放射率の下限値を0.95として最適化した式を用い た(Table 11の下限値0.95の行に対応)。一方のアプローチ2では、レファレンスチャネルをAVHRRで はCh.4、ASTERではCh.12とし、使用するEMC/WVD法の式はこれらのチャネルにおいて放射率の下 限値を0.65として最適化した式を用い(Table 11の最下行に対応)、チャネル間相関の式はこれらのチャ ネルをレファレンスとする各式を用いた。但し、アプローチ1との比較のため、アプローチ1と同様にシ ミュレーションにおける放射率モデルはサンブルナンバー92のDistwaterのみを与えた。以上の条件に加 えて、両アプローチとも、大気モデルには964の大気プロファイル、*δ*LSTには平均が5Kで標準偏差を 変数とした正規乱数によって生成した100個のセット(*δ*LST セット)を与え、大気プロファイルと*δ*LST の各組み合わせごとに観測放射輝度を計算した。従って、各センサの各チャネルについて、1つの大気プ ロファイルにつき100個の観測放射輝度が計算されたことになる。ここで、*δ*LSTの標準偏差(以下では、 *δ*LST<sub>stdev</sub>と記す)を変数とした理由は、式(6.5)が*δ*LST<sub>stdev</sub>に大きく依存することが予想されるため

|           |           | 1         |            |            |            |            |
|-----------|-----------|-----------|------------|------------|------------|------------|
| reference | estimated | $a_0$     | $a_1$      | $a_2$      | $a_3$      | $a_4$      |
| ch.10     | ch.11     | 0.131178  | 0.75768    | 1.20854    | -1.991521  | 0.870334   |
| ch.10     | ch.12     | 0.142223  | 1.034852   | 0.91537    | -2.018091  | 0.890068   |
| ch.10     | ch.13     | 0.225512  | -1.131262  | 7.956759   | -9.72803   | 3.674123   |
| ch.10     | ch.14     | 0.358613  | -2.656771  | 11.804041  | -13.367769 | 4.860156   |
| ch.11     | ch.10     | -0.74419  | 5.119923   | -9.863249  | 9.924439   | -3.396019  |
| ch.11     | ch.12     | 0.095825  | 0.660921   | 1.021831   | -0.940136  | 0.134863   |
| ch.11     | ch.13     | 0.977715  | -5.797049  | 15.15546   | -12.820881 | 3.472045   |
| ch.11     | ch.14     | 1.267758  | -7.675799  | 18.253184  | -14.37014  | 3.506253   |
| ch.12     | ch.10     | 1.139236  | -7.207276  | 19.427506  | -21.062086 | 8.83111    |
| ch.12     | ch.11     | 1.023332  | -5.505107  | 14.657135  | -14.909499 | 5.783671   |
| ch.12     | ch.13     | -0.795912 | 5.67928    | -12.939499 | 16.16251   | -7.113818  |
| ch.12     | ch.14     | -1.544754 | 10.328519  | -24.699215 | 29.030876  | -12.131376 |
| ch.13     | ch.10     | 2.669094  | -16.785523 | 42.681713  | -45.470312 | 17.900993  |
| ch.13     | ch.11     | 1.640035  | -9.190235  | 24.312376  | -26.062641 | 10.27199   |
| ch.13     | ch.12     | 0.83934   | -3.523344  | 10.774247  | -11.891688 | 4.766611   |
| ch.13     | ch.14     | -0.239876 | 2.17689    | -3.056515  | 3.493526   | -1.370394  |
| ch.14     | ch.10     | 1.403285  | -8.844412  | 25.182856  | -28.808815 | 12.047646  |
| ch.14     | ch.11     | 0.939818  | -4.628369  | 14.218431  | -16.502545 | 6.934481   |
| ch.14     | ch.12     | 0.576075  | -1.558077  | 6.358682   | -7.760446  | 3.343075   |
| ch.14     | ch.13     | 0.120325  | 0.623782   | 1.094725   | -1.483975  | 0.641477   |

Table 36: Coefficients of Eq. ( 6.12) for several channel-combinations for ASTER (transmittance).

| reference        | estimated | $a_0$     | $a_1$    | $a_2$     | $a_3$     | $a_4$     |
|------------------|-----------|-----------|----------|-----------|-----------|-----------|
| ch.10            | ch.11     | 0.024107  | 0.759909 | -0.060124 | 0.02783   | -0.002132 |
| ch.10            | ch.12     | 0.033475  | 0.534421 | -0.046702 | 0.034469  | -0.002541 |
| ch.10            | ch.13     | -0.036406 | 0.537529 | -0.145183 | 0.108149  | -0.011058 |
| ch.10            | ch.14     | -0.055075 | 0.602809 | -0.173626 | 0.130813  | -0.014366 |
| ch.11            | ch.10     | -0.03976  | 1.361937 | 0.085105  | -0.067102 | 0.008308  |
| ch.11            | ch.12     | 0.020219  | 0.676012 | 0.030877  | 0.020314  | -0.00313  |
| ch.11            | ch.13     | -0.027002 | 0.535105 | 0.061874  | 0.095415  | -0.016772 |
| ch.11            | ch.14     | -0.039654 | 0.568262 | 0.097054  | 0.10316   | -0.019833 |
| $\mathrm{ch.12}$ | ch.10     | -0.100018 | 2.191498 | -0.322732 | -0.001944 | 0.005844  |
| ch.12            | ch.11     | -0.033723 | 1.523977 | -0.194598 | 0.021042  | -0.00012  |
| ch.12            | ch.13     | -0.021671 | 0.619993 | 0.402205  | -0.05333  | -0.000958 |
| $\mathrm{ch.12}$ | ch.14     | -0.030794 | 0.63371  | 0.527401  | -0.087037 | 0.0009    |
| ch.13            | ch.10     | 0.027444  | 2.678148 | -1.035003 | 0.225898  | -0.017916 |
| ch.13            | ch.11     | 0.055784  | 1.860192 | -0.659718 | 0.147831  | -0.011732 |
| ch.13            | ch.12     | 0.054281  | 1.293236 | -0.36705  | 0.083728  | -0.006494 |
| ch.13            | ch.14     | -0.011177 | 1.067555 | 0.062921  | -0.019988 | 0.001602  |
| ch.14            | ch.10     | 0.059816  | 2.460262 | -0.923339 | 0.193517  | -0.014499 |
| ch.14            | ch.11     | 0.078079  | 1.711546 | -0.595493 | 0.12783   | -0.00951  |
| ch.14            | ch.12     | 0.069612  | 1.194368 | -0.343573 | 0.07537   | -0.005439 |
| ch.14            | ch.13     | 0.010879  | 0.935987 | -0.047478 | 0.013524  | -0.000956 |

Table 37: Coefficients of Eq. ( 6.12) for several channel-combinations for ASTER. (path radiance). The unit of the radiance is in  $W/m^2/sr/\mu m$ .

| reference | estimated | $a_0$     | $a_1$    | $a_2$     | $a_3$     | $a_4$     |
|-----------|-----------|-----------|----------|-----------|-----------|-----------|
| ch.10     | ch.11     | 0.033863  | 0.829196 | -0.068346 | 0.018584  | -0.00108  |
| ch.10     | ch.12     | 0.041381  | 0.636145 | -0.053198 | 0.019471  | -0.001076 |
| ch.10     | ch.13     | -0.073294 | 0.601311 | -0.059324 | 0.039934  | -0.00315  |
| ch.10     | ch.14     | -0.101986 | 0.660048 | -0.066326 | 0.04574   | -0.003875 |
| ch.11     | ch.10     | -0.051161 | 1.232447 | 0.119609  | -0.044675 | 0.003697  |
| ch.11     | ch.12     | 0.018725  | 0.752396 | 0.010161  | 0.009025  | -0.000915 |
| ch.11     | ch.13     | -0.067721 | 0.60013  | 0.095995  | 0.021536  | -0.003619 |
| ch.11     | ch.14     | -0.090401 | 0.637163 | 0.122722  | 0.020495  | -0.004109 |
| ch.12     | ch.10     | -0.113625 | 1.802713 | -0.02929  | -0.039897 | 0.004778  |
| ch.12     | ch.11     | -0.030289 | 1.363392 | -0.068297 | -0.000926 | 0.000659  |
| ch.12     | ch.13     | -0.06046  | 0.692177 | 0.263721  | -0.032053 | 0.000443  |
| ch.12     | ch.14     | -0.078436 | 0.71615  | 0.329694  | -0.046009 | 0.001033  |
| ch.13     | ch.10     | 0.056738  | 2.255362 | -0.513797 | 0.07315   | -0.003776 |
| ch.13     | ch.11     | 0.107403  | 1.633809 | -0.355918 | 0.055096  | -0.002942 |
| ch.13     | ch.12     | 0.101098  | 1.219329 | -0.21745  | 0.034774  | -0.001782 |
| ch.13     | ch.14     | -0.015117 | 1.048986 | 0.039241  | -0.008862 | 0.000466  |
| ch.14     | ch.10     | 0.094233  | 2.125244 | -0.490355 | 0.069827  | -0.003517 |
| ch.14     | ch.11     | 0.134411  | 1.539512 | -0.341002 | 0.051813  | -0.002623 |
| ch.14     | ch.12     | 0.121217  | 1.150206 | -0.21382  | 0.033299  | -0.001577 |
| ch.14     | ch.13     | 0.015062  | 0.9532   | -0.031614 | 0.006412  | -0.000287 |

Table 38: Coefficients of Eq. ( 6.12) for several channel-combinations for ASTER. (sky radiance). The unit of the radiance is in  $W/m^2/sr/\mu m$ .

で,特に  $\delta$ LST<sub>stdev</sub> が小さい場合には同式の分母が小さくなり,解が不安定になる可能性があるためであ る。今回は, $\delta$ LST<sub>stdev</sub> として 0.4,0.6,0.8,1,1.5,2,3,5,7,10K の 10 通りを与え,評価した。ま た,衛星高度,観測方向,NE $\Delta$ T,オゾンの不確定性誤差等の与え方は3章と同様としたが,オゾンの不 確定性誤差は各大気プロファイルごとに同一のものを与えた(すなわち,1つの大気プロファイルに対し て生成した 100 個の観測放射輝度には同一のオゾン誤差が与えられた)。

こうして,アプローチ1及び2のそれぞれについて,1つの大気プロファイルに対して生成した100個の観測放射輝度から1つの透過率及び1つの光路輝度を計算した。この作業は,ある大気下における100個の水域の観測放射輝度から,その大気の透過率及び光路輝度を推定することに相当する。そして,実際には水域のみから推定された大気効果パラメータは他の任意の地表被覆物質が占める画素の大気補正に利用されることから,上記で得られた各大気プロファイルごとの透過率及び光路輝度の推定値を用いて3章のシミュレーションモデル(964大気プロファイル,-5,+0,+10,+20Kの*δ*LST,97 サンプルの放射率モデル)の各観測放射輝度を大気補正し,得られた地上レベルの地表輝度温度を真値(実際に与えた値)と比較してRMSEを計算した。なお,透過率及び光路輝度の推定に用いられる大気プロファイルと大気補正される観測放射輝度の大気プロファイルはここでは同一としたが,これは領域内では大気プロファイルが水平方向に均一であるという手法自体の仮定に基づくものである。

Table 39 はアプローチ 1 を用いた場合の結果で,AVHRR 及び ASTER の各チャネルについて,  $\delta$ LST<sub>stdev</sub> ごとの RMSE を示している(単位は Kelvin)。表より,  $\delta$ LST<sub>stdev</sub> が小さい場合には RMSE が極めて大 きく,大気補正法として機能しないことが分かる。これは,上述したように,式(6.5)の分母が0に近く なって解が不安定性になるためである。 $\delta$ LST<sub>stdev</sub> が 2 ~ 3K 以上になると全体的に解が安定している。し かしながら,水域は熱容量が大きいために一般に温度の時空間変動が小さく,水域のみの観測データを用 いて 2 ~ 3K 以上の  $\delta$ LST<sub>stdev</sub> を得ることは現実的には困難であると思われる。従って,植生等,他のカテ ゴリとの組み合わせによって大きな  $\delta$ LST<sub>stdev</sub> を得る必要があると言える。このようなケースに対する評 価は,6.3.2 項にて行う。なお,3K 以上の  $\delta$ LST<sub>stdev</sub> については,ASTER では Table 11 から予想される 精度(0.81 ~ 0.87K)が得られているが,AVHRR では同表から予想される精度(0.64 ~ 0.87K)と比較し てやや悪い精度が得られている。これは,AVHRR による EMC/WVD 法では,水氷のサンプルに対する 精度があまり良くないことに関係している(Fig. 39 及び Fig. 41 において,最も最小放射率が大きい2つ のサンプルがナンバー 92 及び 93 の Distwater 及び Seawater である)。

| - | AIST .     | AVHRR |       | ASTER |       |       |       |       |  |  |
|---|------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| _ | 0LD Istdev | ch.4  | ch.5  | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |  |  |
| _ | 0.4        | 4.03  | 18.82 | 36.79 | 5.21  | 4.55  | 6.45  | 21.66 |  |  |
|   | 0.6        | 2.22  | 8.15  | 16.55 | 2.94  | 2.69  | 3.63  | 14.28 |  |  |
|   | 0.8        | 1.43  | 3.82  | 6.39  | 1.89  | 1.76  | 2.29  | 7.75  |  |  |
|   | 1          | 1.05  | 2.35  | 3.52  | 1.36  | 1.27  | 1.59  | 3.80  |  |  |
|   | 1.5        | 0.75  | 1.39  | 1.53  | 0.92  | 0.85  | 0.92  | 1.49  |  |  |
|   | 2          | 0.70  | 1.20  | 1.05  | 0.83  | 0.76  | 0.76  | 0.98  |  |  |
|   | 3          | 0.69  | 1.13  | 0.87  | 0.82  | 0.75  | 0.70  | 0.77  |  |  |
|   | 5          | 0.70  | 1.13  | 0.85  | 0.83  | 0.76  | 0.70  | 0.74  |  |  |
|   | 7          | 0.71  | 1.14  | 0.86  | 0.83  | 0.76  | 0.70  | 0.74  |  |  |
| _ | 10         | 0.73  | 1.16  | 0.87  | 0.84  | 0.76  | 0.70  | 0.74  |  |  |

Table 39: RMSE [K] of the approach 1 for several standard deviations of  $\delta$ LST. The mean of  $\delta$ LST is +5K. Emissivity sample is no. 92 (see Table 3).

一方, Table 40 はアプローチ 2 を用いて得られた結果である。 $\delta$ LST<sub>stdev</sub> が 2K 付近でいずれも解が安定しているが,それらの値はいずれのチャネルも Table 11 の最下行のものとほぼ同じ値となっていることが分かる。すなわち,アプローチ 2 は EMC/WVD 法の精度改善に寄与していないと言える。この傾向はレファレンスチャネルを変えた場合も同様で,このことは,レファレンスチャネルにおける大気効果パラメータに含まれる誤差が式(6.12)を通じて伝播した値と,そのチャネルでの EMC/WVD 法の誤差がほぼ等価であることを意味している。

以上の結果, EMC/WVD 法の精度を改善する効果があり, 実用手法として利用できる可能性があるのは, アプローチ1のみであると結論付けることができる。EMC 法についても同様である。

6.2.3 大気効果パラメータ・LST・放射率推定の処理フロー

本章におけるこれまでの結果に基づき,大気効果パラメータを推定するアルゴリズムとして以下を提案 する。

1. 対象シーンを適当な領域に分割する。

2. 各領域から灰色画素を抽出する。この手法については 6.2.4 項で述べる。

 5. 灰色画素数が基準を超える各領域について, EMC 法(あるいは EMC/WVD 法)と式(6.5) 及び式 (6.6)を適用して透過率及び光路輝度を推定する(EMC/WVD 法を利用する場合は全球解析データ

| _ | AIST .       | AVHRR |      | ASTER |       |       |       |       |  |  |
|---|--------------|-------|------|-------|-------|-------|-------|-------|--|--|
| _ | 0 LO 1 stdev | ch.4  | ch.5 | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |  |  |
|   | 0.4          | 1.66  | 3.24 | 8.60  | 3.52  | 1.51  | 5.89  | 7.24  |  |  |
|   | 0.6          | 1.15  | 2.11 | 5.32  | 1.91  | 1.12  | 3.76  | 5.47  |  |  |
|   | 0.8          | 1.01  | 1.77 | 3.00  | 1.30  | 0.97  | 2.05  | 3.59  |  |  |
|   | 1            | 0.97  | 1.67 | 1.86  | 1.11  | 0.91  | 1.31  | 2.19  |  |  |
|   | 1.5          | 0.97  | 1.61 | 1.45  | 1.02  | 0.89  | 1.00  | 1.30  |  |  |
|   | 2            | 0.98  | 1.61 | 1.42  | 1.02  | 0.89  | 0.99  | 1.24  |  |  |
|   | 3            | 0.99  | 1.62 | 1.42  | 1.02  | 0.90  | 1.00  | 1.24  |  |  |
|   | 5            | 1.00  | 1.63 | 1.42  | 1.02  | 0.90  | 1.02  | 1.26  |  |  |
|   | 7            | 1.01  | 1.64 | 1.42  | 1.03  | 0.91  | 1.02  | 1.27  |  |  |
| _ | 10           | 1.03  | 1.67 | 1.41  | 1.03  | 0.91  | 1.04  | 1.29  |  |  |

Table 40: RMSE [K] of the approach 2 for several standard deviations of  $\delta$ LST. The mean of  $\delta$ LST is +5K. Emissivity sample is no. 92 (see Table 3).

等から総水蒸気量の概算値を得る必要がある)。但し, EMC法(あるいは EMC/WVD法)による 地上レベルの地表輝度温度の分散が基準値よりも小さい領域は解が不安定になる可能性があるため, 灰色画素数が基準を超えない領域と同様に計算を行わない。このように計算を行わない領域を欠損 領域と呼ぶことにする。

4. 透過率及び光路輝度が得られた各領域について, 6.1.2 項の方法により天空輝度を推定する。

5. 欠損領域における大気効果パラメータを周囲の推定値からの水平内挿によって求める。この方法につ いては 6.2.5 項で述べる。

上記の方法を,本論文ではGray Pixel(GP)法と呼ぶことにする。本手法の精度や問題点については,次 節でシミュレーションに基づいて検証する。

GP 法によって推定される大気効果パラメータを用いて大気補正を行い, TE 分離を施せば LST 及び放 射率を推定することが可能である。処理のフローを Fig. 50 に示す。

6.2.4 灰色画素の抽出法

6.2.3 項で述べた処理手順2における灰色画素の抽出については,例えば次のような方法を用いる。

1. 簡易大気補正及び TE 分離による放射率の概算値を使用する方法

全球解析データが利用可能であるなら,これらに基づいて簡易大気補正を行い,更に適当な TE 分離



Figure 50: Flow chart of the GP method.

を施すことにより放射率の概算値が得られる。そして,これに基づいて灰色画素を選定する。Fig. 50 の Refining はこの方法に基づいて灰色画素の抽出精度を上げるプロセスであり,GP 法を1回適用 して大気補正及び TE 分離を行い,得られた放射率に基づいて再び灰色画素を選定するものである。 もし,全球解析データが無ければ最初に全ての画素を灰色画素と見なして GP 法を適用し,Refining プロセスにより灰色画素を再抽出することも可能である。但し,この場合,シーン全体に灰色画素が 多く存在していることが前提条件となる。

2. 放射率マップを使用する方法

同一地域をモニタリングする場合など,既に対象地域の放射率マップが得られている場合には,これ に基づいて灰色画素を選定することができる。この方法の場合,ミスレジストレーションや表面状態 (被覆や含水量等)の変化に伴う放射率の時間的変動に注意する必要がある。

3. 土地被覆分類画像を使用する方法

可視近赤外データ等と併用して土地被覆分類を行い,水域や植生域等,灰色画素が占めるカテゴリー に属する画素を選定する。この方法の場合,ミスレジストレーションの問題に加え,分類カテゴリー と放射率の対応付けの妥当性に注意が必要である。

6.2.5 欠損領域における大気効果パラメータの水平内挿

6.2.3 項の処理手順5 における欠損領域の水平内挿は,数値予報における客観解析と同様の手順で行うこ とができる。数値予報における客観解析法には,多項式法,修正法,最適内挿法,スペクトル法,変分法な どがあり[118],現在の主流は最適内挿法である。最適内挿法は,観測値だけでなく,観測誤差や格子点と 観測点との距離,観測データの空間分布とデータ同士の相関などの情報を解析値に反映することができる 優れた解析手法である[49]。現在,数値予報の分野では最適内挿法から変分法に移行されつつあるが,変 分法は運動方程式や静力学の式などの予測方程式や診断方程式を使い,これを満足する解析値を決める手 法であり,ここでの水平内挿処理には馴染まない。こうした理由から,本項では最適内挿法に基づいて欠 損領域における大気効果パラメータを推定する手法を提案する。

最適内挿法は,ある点における解析値の初期値からの偏差を周囲の観測値の初期値からの偏差の線形結 合によって表現する。すなわち,解析点 k における解析値を xk, 初期値を x0,k とし,周囲に n 個の観測

点があるものとして,観測点iにおける観測値を $x_i$ ,初期値を $x_{0,i}$ とすると, $x_k$ は次式で表される。

$$x_k = x_{0,k} + \sum_{i=1}^n p_i(x_i - x_{0,i})$$
(6.13)

ここで, *p<sub>i</sub>* は解析値の平均2 乗内挿誤差が最も小さくなるように理論的に与えられる係数で, 最適荷重と 呼ばれる。最適荷重 *p<sub>i</sub>* の関係式は次式で与えられる [119]。

$$\sum_{j=1}^{n} \mu_{ij} p_j + \lambda_i p_i = \mu_{ki}$$
 (6.14)

ここで, $\mu_{ij}$ は*i*,*j*の2点間における解析要素の相関係数, $\lambda_i$ は観測値の誤差分散 $\eta_i$ を初期値の誤差分散 *m* で除した値で観測値の品質を示すパラメータである。一般には,2点間の相関係数は2点間の距離だけ の関数であると仮定されることが多い。式(6.14)を*i* = 1,2,...,*n* で連立させることにより,解析点*k* に 対する最適荷重 $p_1, p_2, \ldots, p_n$ が得られる。

次に,最適内挿法に基づく大気効果パラメータの水平内挿の手順を示す。以下では,客観解析における 観測点,解析点と同じ意味で観測画素,解析画素という言葉を用いる。また,下記の処理は各チャネルの 各大気効果パラメータごとに行う。

- 1. 全ての非欠損領域について,大気効果パラメータの各推定値を各領域の中心画素における値とし,こ れらを観測画素と見なす。
- 中心画素以外の非欠損領域内の画素と欠損領域内の全画素について,適当な初期値(例えば観測画素の値の平均値等)を与え,これらを解析画素とみなす。
- 3. 各解析画素について,影響半径 R<sub>e</sub> 以内にある観測画素を全て選択し,式(6.14)によって各観測画素の最適荷重を決め,式(6.13)によって大気効果パラメータを計算する。ここで式(6.14)における相関係数 µ<sub>ij</sub> については,2点 i 及び j の間の距離 r<sub>ij</sub> の関数として表現する。この関数については様々なものが考えられるが,例えば,以下の Cressman の荷重関数 [74] などが利用できる。

$$\mu_{ij} = \begin{cases} \frac{R^2 - r_{ij}^2}{R^2 + r_{ij}^2} & \text{if } 0 \le r_{ij} \le R\\ 0 & \text{otherwise} \end{cases}$$
(6.15)

上式では,距離 R が大きいほど周囲との相関が大きくなる。ここで, $R_e$  やR, $\lambda_i$ は,これを客観的に定める基準選びが難しいため,実データに基づいて経験的に定める必要がある。

 全ての解析画素の大気効果パラメータを決定できない時は、大気効果パラメータが得られた解析画素を新たな観測画素と見なして再度3に進む。この作業を全ての解析画素の大気効果パラメータが 得られるまでくり返す。

この方法では,少なくともシーン中に非欠損領域が1つあれば全画素の大気効果パラメータを得ることが できる。非欠損領域が全く存在しない場合には,エラーとなる。

# 6.3 シミュレーションに基づく GP 法の検証

GP 法は以下のようなケースで誤差が大きくなることが予想される。

- 1. 灰色画素が極めて少ないケース
- 2. EMC 法(あるいは EMC/WVD 法)を適用する灰色画素間の LST 変動が小さいケース(式(6.5)の分母が小さくなり, 解が不安定になる)
- 3. 領域内の大気効果パラメータが不均質であるケース(擾乱の激しい大気や標高変化の大きい地域で 生じる)
- 4. 選定した灰色画素の中に非灰色画素が多数含まれるケース

ケース1については灰色画素数に閾値を定めることにより,検知することができ,欠損領域として扱うことになる。シーン内の全ての領域が欠損領域である場合にはアルゴリズムの適用は不可能である。ケース2については6.2.2項で既に評価した通りであり,安定解を得るためにはLSTの標準偏差として2~3K以上が必要である。以上を踏まえ,本節では,ケース3及び4におけるGP法の誤差挙動について述べることとする。

#### 6.3.1 領域内の大気効果パラメータの不均質性に伴う誤差の挙動

GP 法は領域内の大気効果パラメータが均質であることを仮定しているため,これが成り立たない場合 には誤差の原因となる。例えば,領域内に雲塊が存在する場合にはその近傍で大気状態は大きく変化する。 また,大気プロファイルが水平方向に一様であっても標高変化の激しい地域では,大気効果パラメータは 標高変化に依存して大きく変動する。 例として領域内の大気効果パラメータが2種類存在する場合には,地表放射輝度(式(6.4))と観測放 射輝度の間の散布図は Fig. 51 の様になる。ラインA が透過率が大きい側の画素の位置を示し,ラインB が透過率が小さい側の画素の位置を示す。各ラインの傾きが透過率であり,y切片が光路輝度である。 般には透過率が小さいほど光路輝度が大きくなるため,図のような交点が存在する。今,交点における地 表放射輝度を  $B_i(T_x)$ とし,ラインA,Bに対応する透過率及び大気の平均放射輝度(式(6.8)参照)をそ れぞれ  $\tau_{Ai}$ 及び  $B_i(T_{Ai})$ ,  $\tau_{Bi}$ 及び  $B_i(T_{Bi})$ としたとき,交点上では以下の式が成り立つ。

$$\tau_{Ai}B_i(T_x) + (1 - \tau_{Ai})B_i(T_{Ai}) = \tau_{Bi}B_i(T_x) + (1 - \tau_{Bi})B_i(T_{Bi})$$
(6.16)

ゆえに,

$$B_i(T_x) = B_i(T_{Ai}) + (B_i(T_{Bi}) - B_i(T_{Ai})) \frac{1 - \tau_{Bi}}{\tau_{Ai} - \tau_{Bi}}$$
(6.17)

Fig. 52 は 964 プロファイルについて AVHRR / Ch.4 における透過率と大気の平均放射輝度の関係を示したものであり,透過率が小さいほど大気の平均放射輝度は大きくなる傾向が見られる。従って,式(6.17)の右辺第 2 項は,多くの場合,正の値を取る。すなわち, $B_i(T_x)$ は $B_i(T_{Ai})$ より大きな値を取る。また, $B_i(T_x)$ は,A及び Bの大気の平均放射輝度の差が同じならば,Bの透過率が Aの透過率に近いほど大きな値を取る。

GP 法では, この  $B_i(T_x)$  と EMC 法(あるいは EMC/WVD 法)による  $B_i(T_{gi})$  の間の相対的な関係に よって誤差の取り方が変わってくる。ここでは,大気が安定している場合でも大気効果パラメータの不均 質性の原因となり得る標高変化について,誤差との関係を考察する。

今, GP 法を適用する領域内に 2 つの標高が存在するものとする。一般には標高が高いほど LST が小さ くなるため,低温側の灰色画素は標高の大きい側,すなわち透過率が大きい Fig. 51 のライン A 上に存在 し,高温側の灰色画素は標高の小さい側,すなわち透過率が小さい同図のライン B 上に存在するものとす る。こうして,これらを組み合わせて回帰分析を行うことにより,透過率及び光路輝度が 1 つずつ推定さ れる。ここで,ライン A 上にある低温側の灰色画素が  $B_i(T_x)$  より高温側にあるか低温側にあるかによっ て誤差の取り方が変わってくる。

低温側の灰色画素が  $B_i(T_x)$  より高温側にある場合の模式図を Fig. 53 に示す(Case 1)。ここで,数字の00 は低温の灰色画素が存在している位置を示す。一方,数字の1は,高温の灰色画素存在している位置を示す。この時,GP 法によって得られる大気補正ラインはライン C のようになる。すなわち,A 及び B のいずれよりも,透過率は小さく,光路輝度は大きく推定される。なお,図から明らかなように,この誤



Figure 51: Plot of the surface radiance versus the observed radiance in a heterogeneous atmospheric condition. The line A is a high transmittance line, the line B is a low transmittance line, and  $B_i(T_x)$  is the intersection point.

差は,低温及び高温の灰色画素の温度差が大きいほど小さくなる(但し, *d*LST が大きい場合には,EMC 法(あるいは EMC/WVD 法)の誤差が増加することに注意が必要である)。

一方,低温側の灰色画素が $B_i(T_x)$ より低温側にある場合はもう少し複雑である(Case 2)。Fig. 54 に 模式図を示す。図のように,低温の灰色画素の位置0は $B_i(T_x)$ (交点)より低温側に存在する。一方,高 温側の灰色画素の位置は, $B_i(T_x)$ に対して低温側,同じ,高温側の3通りが考えられ,順に図の1,2,3 に相当する。1の場合の大気補正ラインはC<sup>2</sup>であり,この場合は,A及びBのいずれよりも,透過率は大 きく,光路輝度は小さく推定される。2の場合の大気補正ラインはラインAに一致し,透過率及び光路輝 度はAに対するものと同じとなる。3の場合の大気補正ラインはC<sup>22</sup>であり,この場合の透過率及び光路輝 度は,A及びBの中間的な値を取る。

MODTRAN3.7 内臓の 6 つの標準大気モデルについて, GP 法を適用する領域内に 0km と 0.5km の 2 つの標高が存在する場合に,交点に対応する温度  $T_x$  と各標高の地表気温  $T_{air,0}$ ,  $T_{air,0.5}$  の関係を調べた。 得られた結果を Table 41 に示す。表には,各標高の灰色画素の LST が各地表気温に等しい場合(すなわ ち,  $\delta$ LST が 0 の場合)に,各大気モデルが Fig. 53 及び Fig. 54 で示したケースのどれに対応するかにつ いても示してある。温暖湿潤な大気では  $T_x$  が相対的に大きく, Fig. 54 で示した Case 2 に対応しており,



Figure 52: Plot of the transmittance versus the mean atmospheric radiance for AVHRR channel 4.



Figure 53: Plot of the surface radiance versus the observed radiance in a heterogeneous atmospheric condition for case 1; (A) a high transmittance line, (B) a low transmittance line, (C) a correction line based on the GP method, (0) a gray pixel at low LST, and (1) a gray pixel at high LST.



Figure 54: Plot of the surface radiance versus the observed radiance in a heterogeneous atmospheric condition for case 2; (A) a high transmittance line, (B) a low transmittance line, (C',C") a correction line based on the GP method, (0) a gray pixel at low LST, and (1-3) a gray pixel at high LST.

寒冷乾燥な大気では  $T_x$  が相対的に小さく, Fig. 53 で示した Case 1 に対応している。従って,例えば,熱帯モデルでは透過率を overestimate する傾向があり,亜北極冬モデルでは透過率を underestimate する傾向があることが分かる。但し,これらの傾向は  $\delta$ LST が異なれば変わることに注意する必要がある。

#### 6.3.2 非灰色画素の混入に伴う誤差の挙動

GP 法では,精度の向上のため,灰色画素(例えば放射率の下限値が0.95以上の画素)に対して最適化 された EMC 法(あるいは EMC/WVD 法)の式を用いる。従って,抽出した灰色画素の中に非灰色画素 が混入している場合には誤差を生じる。そこで,本項では,以下に示す手順によりそのようなケースに対 する評価を行った(基本的手順は6.2.2項の冒頭で示したものと同様である)。ここでは EMC/WVD 法を 用いる場合について評価を行い,放射率の下限値=0.95に対して最適化した式を使用した(Table 11の下 限値0.95の行に対応)。

1. 放射率モデルより, *n* 個のサンプル  $N_{\epsilon,j}$  (j = 1, 2, ..., n) を選ぶ。

2. 各サンプルに対し,  $\delta$ LST の平均が  $\delta$ LST $_{avg,j}$ ,標準偏差が  $\delta$ LST $_{stdev,j}$  である正規乱数により,  $S_j$ 

Table 41: Comparison between the temperature  $T_x$  at an intersection and the surface air temperature  $T_{air}$  for 6 model atmospheres for AVHRR channel 4 in the case that an area has two elevations 0km and 0.5km. The model case (see Figs. 53 & 54) for each atmosphere with  $\delta$ LST = 0 is also shown. TRM: Tropical model, MLS: Midlatitude summer, MLW: Midlatitude winter, SAS: Subarctic summer, SAW: Subarctic winter, USS: 1976 US standard.

|                     | $\mathrm{TRM}$ | MLS        | MLW        | SAS        | SAW        | USS        |
|---------------------|----------------|------------|------------|------------|------------|------------|
| $T_{air,0}$         | 299.7          | 294.2      | 272.2      | 287.2      | 257.2      | 288.2      |
| $T_{air,0.5}$       | 296.7          | 291.95     | 270.45     | 284.45     | 258.15     | 284.95     |
| $T_x$               | 298.06         | 292.48     | 266.73     | 284.41     | 248.94     | 283.66     |
| $T_{air,0} - T_x$   | 1.64           | -0.53      | 3.72       | 0.04       | 9.21       | 1.29       |
| $T_{air,0.5} - T_x$ | -1.36          | -0.53      | 3.72       | 0.04       | 9.21       | 1.29       |
| model case          | Case $2-3$     | Case $2-1$ | Case $1-1$ | Case $1-1$ | Case $1-1$ | Case $1-1$ |

個の  $\delta$ LST セットを生成する。なお ,  $\sum_{j=1}^{n} S_j = 100$  とする。

- 964の各大気プロファイルごとに, n 個のサンプルを組み合わせた計 100 個の δLST セットから,各 チャネルにつき 100 個の観測放射輝度データセットを作成する。各種条件等は 6.2.2 項の手順と同じ とする。
- 4.964の各大気プロファイルについて,100個の観測放射輝度データセットに対して GP 法を適用し, 透過率及び光路輝度の推定値を得る。
- 5.3章と同じシミュレーションモデルに対し,4で得た透過率及び光路輝度の推定値を用いて地上レベルの地表輝度温度を計算し,実際に与えた値と比較して誤差を計算する。そして RMSE を計算する。

n 個のサンプルの選び方や各サンプルに与える  $\delta LST_{avg,j}$ ,  $\delta LST_{stdev,j}$ ,  $S_j$  を変えることにより, 非灰 色画素の様々な混入状況をシミュレートすることができる。Table 42 は,今回検討した画素構成のリストで ある。表中の rock, soil, veg., water は,それぞれ Table 3 中の No.2 (Granite.h1), No.74 (Mollisols), No.81 (White pine), No.93 (Distwater)に対応している。 $\delta LST_{avg,j}$  及び  $\delta LST_{stdev,j}$ は, rock には2 セット,他には1セットを与え,両変数とも一般的な状況を考慮して water≤veg.≤soil≤rock を満たすよう に与えてある。構成物質の数は, case 1 から5 までは1つ, case 6 から 10 までは rock, soil, water のうち の1つに veg.を加えた計2つになっている。case 6 から 10 における2物質の混合比は, case 8 以外では全 て 50:50, case 8 では5:95 で veg.を多くしてある。case 6 と7 では rock の  $\delta LST_{avg,j}$ 及び  $\delta LST_{stdev,j}$ の値のみが異なり, case 7 と 8 では混合比のみが異なる。2 種類の異なる  $\delta LST$  セットを混合する case 6 から 10 については,混合後の  $\delta LST_{stdev}$  (計算値)も示してある。

| <b>CD</b> 50 |                       | compon             | ent 1                         |     |          | total              |                            |    |                      |
|--------------|-----------------------|--------------------|-------------------------------|-----|----------|--------------------|----------------------------|----|----------------------|
| case         | material              | $\delta LST_{avg}$ | $\delta \mathrm{LST}_{stdev}$ | S   | material | $\delta LST_{avg}$ | $\delta {\rm LST}_{stdev}$ | S  | $\delta LST_{stdev}$ |
| 1            | rock                  | 15                 | 5                             | 100 |          |                    |                            |    | _                    |
| 2            | $\operatorname{rock}$ | 5                  | 3                             | 100 |          | _                  |                            |    |                      |
| 3            | soil                  | 5                  | 3                             | 100 |          |                    |                            |    | —                    |
| 4            | veg.                  | 3                  | 2                             | 100 |          |                    |                            |    | _                    |
| 5            | water                 | 0                  | 1                             | 100 |          |                    |                            |    | _                    |
| 6            | $\operatorname{rock}$ | 15                 | 5                             | 50  | veg.     | 3                  | 2                          | 50 | 7.5                  |
| 7            | $\operatorname{rock}$ | 5                  | 3                             | 50  | veg.     | 3                  | 2                          | 50 | 2.9                  |
| 8            | $\operatorname{rock}$ | 5                  | 3                             | 5   | veg.     | 3                  | 2                          | 95 | 2.1                  |
| 9            | soil                  | 5                  | 3                             | 50  | veg.     | 3                  | 2                          | 50 | 2.9                  |
| 10           | water                 | 0                  | 1                             | 50  | veg.     | 3                  | 2                          | 50 | 2.3                  |

Table 42: 10 model cases that an area has one or two surface materials. The average and the standard deviation of  $\delta$ LST were given for each material (unit: Kelvin). S is the number of  $\delta$ LST generated. rock: granite.h1 (no.2), soil: mollisols (no.74), veg.: white pine (no.81), water: distwater (no.93).

Table 43: Channel emissivity for each material. The minimum emissivity is shown in bold face.

| material | $\mathbf{s}$ ample | $\operatorname{sample}$ | AVHRR |       | ASTER |       |       |       |       |
|----------|--------------------|-------------------------|-------|-------|-------|-------|-------|-------|-------|
| materiar | name               | no.                     | ch.4  | ch.5  | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |
| rock     | granite.h1         | 2                       | 0.913 | 0.952 | 0.775 | 0.731 | 0.716 | 0.908 | 0.936 |
| soil     | mollisols          | 74                      | 0.973 | 0.980 | 0.956 | 0.958 | 0.955 | 0.973 | 0.975 |
| veg.     | white pine         | 81                      | 0.978 | 0.982 | 0.984 | 0.980 | 0.980 | 0.978 | 0.979 |
| water    | distwater          | 93                      | 0.991 | 0.985 | 0.983 | 0.984 | 0.985 | 0.991 | 0.990 |

Table 43 は, AVHRR 及び ASTER の場合の各サンプルのチャネル放射率である。各サンプルにおける 太字で示した値は各センサにおける最小放射率である。いずれのセンサにおいても, rock のみが灰色画素 の条件(最小放射率が 0.95 以上)を満たしていないことが分かる。

得られた結果を Table 44 に示す。同表には,各センサの各チャネルについて, case 1~10 に対する GP 法の RMSE を示してある。まず, case 1 及び2 の結果より, rock では,  $\delta$ LST に関係なく著しく大きな誤 差を生じることが分かる。灰色画素かつ  $\delta$ LST の標準偏差が 2K 以上である case 3 及び4 では,良好な結 果が得られているが,灰色画素であっても  $\delta$ LST の標準偏差が 1K である case 5 では精度が大きく低下し ており,これは 6.2.2 項で示した結果と同じである。case 6 及び7 は veg. と rock が同じ比率で混在する ケースであり, rock における  $\delta$ LST のパラメータのみが異なる場合であるが, case 1 及び2 の結果と同様 に  $\delta$ LST に関係なく大きな誤差を生じている。一方, case 8 は, case 7 とは混合比のみが異なり, rock の

|      | AVHRR |      | ASTER |       |       |       |       |  |  |  |
|------|-------|------|-------|-------|-------|-------|-------|--|--|--|
| Case | ch.4  | ch.5 | ch.10 | ch.11 | ch.12 | ch.13 | ch.14 |  |  |  |
| 1    | 1.54  | 2.62 | 4.91  | 3.20  | 3.11  | 5.95  | 7.02  |  |  |  |
| 2    | 1.47  | 2.51 | 4.60  | 4.15  | 4.25  | 5.78  | 6.76  |  |  |  |
| 3    | 0.42  | 0.57 | 0.86  | 0.79  | 0.78  | 0.80  | 0.91  |  |  |  |
| 4    | 0.48  | 0.77 | 0.97  | 0.76  | 0.72  | 0.73  | 0.95  |  |  |  |
| 5    | 1.23  | 3.30 | 3.58  | 1.38  | 1.18  | 1.53  | 3.85  |  |  |  |
| 6    | 1.22  | 2.15 | 6.64  | 2.91  | 2.80  | 8.64  | 12.00 |  |  |  |
| 7    | 1.56  | 2.92 | 6.15  | 2.51  | 1.47  | 15.24 | 24.65 |  |  |  |
| 8    | 0.69  | 1.17 | 3.14  | 1.55  | 1.13  | 4.41  | 6.35  |  |  |  |
| 9    | 0.44  | 0.62 | 0.85  | 0.76  | 0.73  | 0.73  | 0.81  |  |  |  |
| 10   | 0.65  | 1.02 | 0.92  | 0.87  | 0.81  | 0.76  | 0.93  |  |  |  |

Table 44: RMSE [K] of the GP method with the EMC/WVD method for the 10 model cases. After the atmospheric effect parameters at each channel were estimated for each case, the RMSE was calculated using the original emissivity model.

割合が 5% と少ないケースである。case 7 と比較すると誤差が大幅に小さくなっているが,特に ASTER で は実用的な精度には至っていない。従って,rock がわずか 5%の場合でも精度に対して大きなインパクトを 与えると考えて良い。従って,GP 法の前処理である灰色画素の抽出処理はより正確に行う必要があり,特 に非灰色画素の混入を極力避けるようにする必要がある。case 9 及び 10 は灰色画素同士が混在するケース であるが,いずれも良好な結果が得られている。AVHRR の case 10 でやや精度が悪いのは,EMC/WVD 法の精度が水氷に対してやや悪いこと(5.2.6 項)に起因していると思われる。

# 6.4 まとめ

灰色画素に段階的な回帰を適用して大気効果パラメータを推定する自己推定型大気補正アルゴリズム グレーピクセル(GP)法を提案した。この手法は(1)観測シーンを複数の領域に区切る(2)各領域 から灰色画素を抽出する(3)灰色画素にEMC法(あるいはEMC/WVD法)を適用して地上レベルの 地表輝度温度を求める(4)これと観測放射輝度の間で回帰を取り,各領域の透過率及び光路輝度を推定 する(5)これらを用いた回帰により天空輝度を推定する,という手順から成る。

GP 法の精度が灰色画素における  $\delta$ LST のばらつきに依存することは理論的に明らかであるが、AVHRR や ASTER に対する評価では、 $\delta$ LST の標準偏差が 2K 未満では誤差が大きく実用的で無いが、これが 2 ~ 3K を超えると精度がほぼ一定の値に収束することを確認した。これより、一般に LST の空間変動が小さ
い水域のみに本手法を適用すると誤差が生じやすいため,植生等,他の灰色画素カテゴリーと組み合わせ て δLST の標準偏差を大きく取るようにした方が良い。

領域内の大気効果パラメータが不均質である場合に生じる誤差については,2つの異なる標高が存在する ケースについて考察を行った。その結果,このようなケースでは大気状態によって誤差挙動が異なり,一 般的な傾向として温暖湿潤大気では透過率を overestimate,寒冷乾燥大気では underestimate することが 分かった。

また,抽出した灰色画素に非灰色画素が混入した場合における誤差については,混入の仕方を変えた10 通りのケースについて評価した。その結果,灰色画素のみから構成され, *δ*LST の標準偏差が2K を超え る4ケースでは,AVHRRで0.42~1.02K,ASTERで0.72~0.97Kの良好な大気補正精度が得られたが, 非灰色画素が混入することによる精度低下は大きく,非灰色画素をわずか5%含むケースでも実用精度に達 しないことを確認した。これより,GP 法の前処理である灰色画素の抽出処理はより正確に行う必要があ り,特に非灰色画素の混入を極力避けるようにする必要があると言える。

このように GP 法は,領域内に十分な LST のばらつきを持つ十分な数の灰色画素があって,かつ領域内 の大気効果パラメータが均質である時,正確な大気データや標高データを使わずに実用的精度で大気補正 を行えるという大きな長所を持つと言える。しかしながら,こうした適用上の制約条件は全球に対応した 定常処理システムへの実装には不利であり,例えば,灰色画素が一般に少ない乾燥地域や表面温度の空間 変動が一般に小さい海域などでは,本手法の適用は困難であると思われる。従って,本手法は灰色画素が 一般に多く存在する湿潤地域等でのモニタリング用に向いていると考えられる。

# 7 全球解析データの高精度化に基づく実用的大気補正アルゴリズム

全球解析データは全球大気の3次元情報を定期的に与えるため,定常処理システムの大気補正における 大気データソースとして好都合である反面,4章で述べたようにデータ(気温及び水蒸気プロファイル)の 精度に問題がある。特に,4.1節で述べたように,水蒸気プロファイルに含まれる誤差については放射伝達 計算に大きなインパクトを与えるため,オリジナルのプロファイルをそのまま使用した場合には実用的な 大気補正精度が得られない場合もある。

一方,5章で提案した EMC/WVD 法は,水蒸気量の概算値を与えれば比較的高精度に画素単位の大気 補正を行うことが可能であるが,放射率の不確定性が大きい場合には精度がチャネル間で大きく異なる問 題がある。また,LST や放射率を推定するためには,天空輝度を別に与える必要がある。

また,6章で提案した GP 法は,正確な大気データや標高データを使わずに大気効果パラメータを推定 することができるが,適用領域中に LST が適度にばらついた灰色画素をある程度必要とし,また適用領域 内では大気効果パラメータは均一であることが必要である。そのため,適用性に問題があり,全球の定常 処理システムへの実装には不向きである。

これらの成果を受けて本章では,上記の各手法と数値予報における客観解析を組み合わせることにより, 高い適用性と高い精度を合わせ持つ実用的な大気補正アルゴリズムを提案し,検証する。提案手法は原理 的には全球解析データの精度を画素単位で修整して放射伝達計算するもので,その適用性は全球解析デー タに基づく単バンドアルゴリズムと同等であり,その精度はラジオゾンデデータに基づく単バンドアルゴ リズムと同等以上である。まず,7.1節では提案手法の原理や実装のための高速化などについて述べ,7.2 節及び7.3節ではシミュレーションに基づく検証結果について述べる。そして7.4節ではAVHRR データ に基づく検証結果について述べる。

### 7.1 WVS法

#### 7.1.1 原理

以降では,簡単化のため,観測角は省略して表記する。

まず,水蒸気プロファイルに対するスケーリングファクター  $\gamma$ を導入する。 $\gamma$  は水蒸気プロファイルの全高度に乗ずる一定の係数である。今,ある水蒸気プロファイル P' が水蒸気プロファイル P をファクター

γ でスケーリングして得られたものとすると,次式が成り立つ。

$$\gamma = \frac{U'}{U} = \frac{w'(z)}{w(z)} \tag{7.1}$$

ここで, U 及び U' はそれぞれ P 及び P' の総水蒸気量, w(z) 及び w'(z) はそれぞれ P 及び P' の任意高度 z での水蒸気量である。P と P' が一致する場合には,  $\gamma$  は 1 である。

今,全球解析データにおいて,水蒸気プロファイルのみをファクター $\gamma$ でスケーリングして計算される チャネル*i*の透過率及び光路輝度をそれぞれ $\tau_i(\gamma)$ , $I_i^{\uparrow}(\gamma)$ とする。 $\tau_i(1)$ 及び $I_i^{\uparrow}(1)$ はそれぞれオリジナル の全球解析データに対する透過率及び光路輝度である。ここで,観測放射輝度 $I_i$ を $\tau_i(\gamma)$ 及び $I_i^{\uparrow}(\gamma)$ を用 いて大気補正した時の地上レベルの地表輝度温度を $T_{qi}(\gamma)$ とする。すなわち,

$$B_i(T_{gi}(\gamma)) = \frac{I_i - I_i^{\uparrow}(\gamma)}{\tau_i(\gamma)}$$
(7.2)

5.2節で述べたように,灰色画素に対しては, $\mathrm{EMC}/\mathrm{WVD}$ 法はいずれのチャネルにおいても精度よく $T_{ai}$ を推定できる。例えば,総水蒸気量が $\pm 1 
m g/cm^2$ の精度で利用可能である場合,最小放射率が0.95以上の 画素に対しては、AVHRR で 0.64~0.87K、ASTER で 0.81~0.87KのRMS 誤差で T<sub>qi</sub>を推定可能である (Table 11 参照)。そこで,灰色画素において,全球解析データから計算される T<sub>gi</sub> と EMC/WVD 法から 計算される T<sub>ai</sub> が一致する様に全球解析データ中の水蒸気プロファイルをスケーリングする ( すなわち , 両 者の $T_{ai}$ が一致する様に式 (7.2)の $\gamma$ を選ぶ)ことにより,水蒸気プロファイル中のバイアス誤差を低減で きると考えられる。ここで,水蒸気プロファイルのバイアス誤差に注目したのは,4.1節で述べたように水 蒸気プロファイルの誤差が単バンドアルゴリズムに大きなインパクトを与えることを考慮したためである が、実際には、水蒸気プロファイルにはバイアス誤差以外にもランダム誤差があり、また気温やオゾン等 の他の気象要素にも誤差が存在する。しかしながら、上記のようにして決定した  $\gamma$  は  $T_{gi}$  が EMC/WVD 法の結果と整合するに決定されるため,これら様々な誤差の効果は全てγに集約される。すなわち,ここ で決定される  $\gamma$  は厳密には実際の水蒸気プロファイルのバイアス誤差に対応するのではなく,種々の誤差 の総和と等価な水蒸気プロファイルのバイアス誤差に対応するものである。これについての詳細は,72節 にて改めて述べる。なお,複数のチャネルからそれぞれ  $\gamma$ を計算すると, $\gamma$ の推定誤差や EMC/WVD 法 のチャネル依存性などにより,必ずしもチャネル間で $\gamma$ が一致しない問題があるが,これについては7.1.3項にて述べる。

さて,全球解析データの誤差が系統的であるならば,同じ大気プロファイル下において得られる  $\gamma$  は, 定義上標高には依存しない。こうして,仮にある領域の大気状態が真値及び全球解析データ共に水平方向

に一様であるならば、その領域内の $\gamma$ は灰色画素・非灰色画素に関わらず同じ値を取ることになる。こう して、画像内の灰色画素に対して求められた $\gamma$ を一種の気象観測値とみなし、数値予報のデータ同化で行 われている客観解析と同様の手順により水平内挿することにより、画像内の全ての画素の $\gamma$ を決定するこ とができる。そして、これを元に水蒸気プロファイルをピクセル単位で修整することにより、単バンドア ルゴリズムの精度を向上できるものと考えられる。但し、灰色画素の $\gamma$ はNEATによるランダム誤差な どの影響を受けるため、上記で得られる $\gamma$ の分布図には高周波誤差が乗る可能性がある。 $\gamma$ は大気現象を 反映することから、近傍ならばそれほど大きく変化しないと予想されるため、高周波誤差を除去するため に水平内挿の前後にメジアンフィルタなどを用いた $\gamma$ の平滑化を行うと良い。

上記で提案した手法を Water Vapor Scaling (WVS)法と呼ぶことにする。Fig. 55 は,WVS 法の基本 的な処理フローである。ここでは,平滑化処理は水平内挿の後に行っている。太線で囲んだデータは入力 データである。なお,次項以降では,灰色画素の抽出法,γと透過率・光路輝度の計算,天空輝度の計算, γの水平内挿,実装のための高速計算アルゴリズムについて述べていくが,これらを含んだ詳細な処理フ ローは Fig. 58 で示す。

#### 7.1.2 灰色画素の抽出法

灰色画素の抽出については GP 法と同様の手順(6.2.4 項)で行えば良い。以下に示す各手法は, GP 法のそれらと基本的に同じである。

1. 簡易大気補正及び TE 分離による放射率推定値を使用する方法

オリジナルの全球解析データに基づいて簡易大気補正を行い,これに適当な TE 分離を施すことに よって得られる放射率の近似値に基づいて灰色画素を選定する。この方法の場合,全球解析データに 含まれる誤差によっては灰色画素の一部が抽出されないケースや一部の非灰色画素が灰色画素とし て抽出されるケースが生じる可能性がある点に注意する必要がある。

2. 放射率マップを使用する方法

同一地域をモニタリングする場合など,既に対象地域の放射率マップが得られている場合には,これ に基づいて灰色画素を選定することができる。この方法の場合,ミスレジストレーションや表面状態 (被覆や含水量等)の変化に伴う放射率の時間的変動に注意する必要がある。



Figure 55: Basic flowchart of the water vapor scaling (WVS) method. Bold boxes mean input data.

### 3. 土地被覆分類画像を使用する方法

可視近赤外データ等と併用して土地被覆分類を行い,水域や植生域等,灰色画素が占めるカテゴリー に属する画素を選定する。この方法の場合,ミスレジストレーションの問題に加え,分類カテゴリー と放射率の対応付けの妥当性の問題がある。

上で述べたように,手法2や手法3にはミスレジストレーションや放射率の時間変動などの問題がある。 一方,手法1にはそれらの問題は無く,手法2や手法3のように放射率マップや可視近赤外データなどの 新たな外部データを必要としない点では定常処理システムに実装しやすいものと考えられる。但し,上述 したように全球解析データの誤差による抽出精度の低下に注意が必要であり,この問題については7.3節 でシミュレーションに基づいて評価する。

7.1.3 スケーリングファクター γ と透過率・光路輝度の計算

本項では, EMC/WVD 法による地上レベルの地表輝度温度を用いて  $\gamma$  を計算する方法と, こうして得られた  $\gamma$  を用いて透過率及び光路輝度を計算する方法について述べる。ここでは簡単化のため, チャネル及び観測角を省略して表記する。

さて,LOWTRAN で用いられている Pierluissi の2重指数バンドモデル関数は,次式によって吸収分子の透過率を計算する [121]。

$$\tau = \exp\{-(CW)^a\}$$
(7.3)

ここで, C はバンドモデル吸収係数, a は吸収物質及び波長帯に依存するパラメータ, W は荷重吸収物質 量で気圧 P・気温 T の関数として

$$W = (P/P_0)^n (T_0/T)^m U$$
(7.4)

によって表される。*P*<sub>0</sub> 及び *T*<sub>0</sub> は標準状態の気圧及び気温(1 atm, 273 K), *m* 及び *n* は吸収物質及び波 長帯に依存するパラメータ, *U* は吸収物質量で密度及び光路長の積に比例する。

まず,RTCによって計算されるバンドモデル透過率を,水蒸気に依存する成分 $\tau_w$ とその他の成分 $\tau_o$ の 積で表し, $\tau_w$ を Pierluissi のモデルを用いて近似する。

$$\tau = \tau_o \tau_w \approx \tau_o \exp\{-(CW)^a\} = \tau_o \tau_w' \tag{7.5}$$

 $\tau_w$ には水蒸気のバンド吸収成分と連続吸収成分が含まれている。一般にこれらの成分は異なる関数で記述

されるため,式 (7.5) は厳密には正しくないが,ここで扱う透過率の精度の範囲内で上式が成立するもの と考える。こうして,水蒸気プロファイルをファクター  $\gamma$  でスケーリングして得られる透過率  $\tau(\gamma)$  は,式 (7.5)を用いると次のように表される。

$$\tau(\gamma) = \tau_o \cdot (\tau_w')^{\gamma^a} \tag{7.6}$$

次に,2つの異なるスケーリングファクター  $\gamma_1$ 及び  $\gamma_2$ について RTC により計算された透過率  $\tau(\gamma_1)$ 及び  $\tau(\gamma_2)$ を用いることにより, $\tau_a$ 及び  $\tau_w'$ は

$$\tau_o = \tau(\gamma_1)^{-\gamma_2^a/(\gamma_1^a - \gamma_2^a)} \cdot \tau(\gamma_2)^{\gamma_1^a/(\gamma_1^a - \gamma_2^a)}$$
(7.7)

$$\tau_{w}' = \tau(\gamma_1)^{1/(\gamma_1^a - \gamma_2^a)} \cdot \tau(\gamma_2)^{-1/(\gamma_1^a - \gamma_2^a)}$$
(7.8)

のように書ける。従って,式(7.6)~(7.8)より,ある $\gamma$ に対応する透過率 $\tau(\gamma)$ は, $\tau(\gamma_1)$ 及び $\tau(\gamma_2)$ を用いて次式により計算できる。

$$\tau(\gamma) = \tau(\gamma_1)^{(\gamma^a - \gamma_2^a)/(\gamma_1^a - \gamma_2^a)} \cdot \tau(\gamma_2)^{(\gamma_1^a - \gamma^a)/(\gamma_1^a - \gamma_2^a)}$$
(7.9)

逆に, ある  $\tau(\gamma)$  に対応する  $\gamma$  は次式により計算できる。

$$\gamma = \left(\frac{\ln(\tau(\gamma)^{\gamma_1^a - \gamma_2^a} \cdot \tau(\gamma_1)^{\gamma_2^a} \cdot \tau(\gamma_2)^{-\gamma_1^a})}{\ln(\tau(\gamma_1)/\tau(\gamma_2))}\right)^{1/a}$$
(7.10)

一方,光路輝度については,まず平均値の定理によって次のように変形する[30]。

$$I^{\uparrow} = \int_{\tau}^{1} B(T) d\tau$$
  
=  $B(T_a)(1-\tau)$  (7.11)

ここで, $B(T_a)$ は大気の平均放射輝度である。 $B(T_a)$ は水蒸気スケーリングの過程で変化しないことから, 光路輝度  $I^{\uparrow}(\gamma)$ は, $\tau(\gamma)$ , $\tau(\gamma_1)$ 及び  $I^{\uparrow}(\gamma_1)$ を用いて次式で表される。

$$I^{\uparrow}(\gamma) = \frac{1 - \tau(\gamma)}{1 - \tau(\gamma_1)} \cdot I^{\uparrow}(\gamma_1)$$
(7.12)

従って,式(7.9)及び(7.12)を式(7.2)に与えることにより次式が得られる。

$$B(T_{g}(\gamma)) = \frac{1}{\tau(\gamma)} \left( I - \frac{I^{\uparrow}(\gamma_{1})}{1 - \tau(\gamma_{1})} \right) + \frac{I^{\uparrow}(\gamma_{1})}{1 - \tau(\gamma_{1})}$$
  
$$= \tau(\gamma_{1})^{-\frac{\gamma^{a} - \gamma^{a}_{2}}{\gamma^{a}_{1} - \gamma^{a}_{2}}} \cdot \tau(\gamma_{2})^{-\frac{\gamma^{a}_{1} - \gamma^{a}}{\gamma^{a}_{1} - \gamma^{a}_{2}}} \cdot \left( I - \frac{I^{\uparrow}(\gamma_{1})}{1 - \tau(\gamma_{1})} \right) + \frac{I^{\uparrow}(\gamma_{1})}{1 - \tau(\gamma_{1})}$$
(7.13)

こうして,2つの異なる  $\gamma$  に対する透過率とそのうちの1つの  $\gamma$  に対する光路輝度があれば,ある任意の  $\gamma$  に対する  $T_g(\gamma)$  を式 (7.13)を用いて計算できる。逆にある  $T_g(\gamma)$  に対する  $\gamma$  は,式(7.13)を  $\gamma$  につい て解いた次式によって得られる。

$$\gamma = \left(\frac{\ln\left(\left(\frac{B(T_q) - I^{\dagger}(\gamma_1)/(1 - \tau(\gamma_1))}{I - I^{\dagger}(\gamma_1)/(1 - \tau(\gamma_1))}\right)^{(\gamma_1^a - \gamma_2^a)} \cdot \frac{\tau(\gamma_2)^{\gamma_1^a}}{\tau(\gamma_1)^{\gamma_2^a}}\right)}{\ln(\tau(\gamma_2)/\tau(\gamma_1))}\right)^{1/a}$$
(7.14)

この式は,WVS 法において EMC/WVD 法の  $T_g$  に一致する  $\gamma$  を見つける際に利用できる。この場合に は,例えば,全球解析データのオリジナルプロファイルと適当な  $\gamma$  でスケーリングしたプロファイルに対 して透過率及び光路輝度を RTC で計算しておき,これらを上式の  $\gamma_1$  及び  $\gamma_2$  の各パラメータに対応させ れば良い。但し,式(7.14)は, $\tau(\gamma_1)$ 及び  $\tau(\gamma_2)$ が互いに近い値を取る時には右辺の分母が0 に近くなり, RTC の誤差に対する感度が非常に大きくなることに注意する必要がある。これは, $\gamma_1 \ge \gamma_2$  が非常に近い 値だったり,透過率が1 に近いケースで生じる可能性がある。従って, $\gamma_1 \ge \gamma_2$  の差は十分に取るように し,透過率が1 に近い場合にはそもそも全球解析データの誤差が大気補正誤差に与える影響は非常に小さ いので適用から除外した方が良い。

なお, $\gamma$ は本来各画素ごとに一意に定まるが,式(7.14)による $\gamma$ の計算は各チャネルごとに実行可能で あり、これが種々の誤差因子の影響を受けるため、得られる $\gamma$ は必ずしもチャネル間で一致しない。そこ で,この問題に対しては,例えば以下のような方法により対処する。

ある特定のチャネルの γ を使用する (特定チャネル法)。

全チャネルから得られた γ の平均値を用いる(平均値法)。

チャネルごとにそれぞれの γ を使用する (チャネル依存法)。

明らかに3番目の方法ではγが1つの画素で一意に定まらないため,水蒸気プロファイルも一意に定まら ないが,ここでは,最適解を得るための1つの方法として挙げた。7.2.2項では,シミュレーションに基づ いて上記手法の比較評価を行い,結果として特定チャネル法が有効であることを示す。

こうして, EMC/WVD 法の  $T_g$  に一致する  $\gamma$  を見つけたら,式 (7.9) 及び式 (7.12) を用いることにより,その  $\gamma$  に対する透過率及び光路輝度を計算することができる。

さて,式(7.13)や式(7.14)中のパラメータ *a* は,あらかじめ各チャネルごとに最適値を決定しておく 必要がある。また,上述の方法による *γ*の決定精度は,式(7.5)の精度に依存する。そこで,3章で与え

た大気モデル (964 プロファイル)を用いて AVHRR 及び ASTER の各チャネルにおけるパラメータ a の 最適値を求め,それらを用いた時の  $\gamma$  の決定精度を評価することにした。

各チャネルに対する *a* は次のように計算した。まず 3 つの異なるスケーリングファクター  $\gamma_1$ ,  $\gamma_2$ ,  $\gamma_3$  を 設定し,各プロファイルごとに透過率  $\tau(\gamma_1)$ ,  $\tau(\gamma_2)$ ,  $\tau(\gamma_3)$  を計算した。次に,各プロファイルごとに  $\tau(\gamma_1)$ 及び  $\tau(\gamma_2)$  を式 (7.9) に与えて  $\tau(\gamma_3)$  を計算した。そして,RTC による  $\tau(\gamma_3)$  と式 (7.9) による  $\tau(\gamma_3)$  の 差を全プロファイルで計算し,その 2 乗和が最小となる *a* を計算した。ここで注意すべきことは,1より 大きい  $\gamma$  を与えた場合,大気プロファイルによってはある高度での水蒸気量が飽和水蒸気量を超えてしま い,正しい  $\tau(\gamma)$  が得られないことである。そこで,各チャネルに対する *a* の計算にあたっては, $\gamma_1 = 0.7$ ,  $\gamma_2 = 1.0$ ,  $\gamma_3 = 0.9$  として計算を行った。

Table 45 は得られた各チャネルの *a* と RMSE ( $\tau$ (0.9)の推定誤差)を示す。表より,各 RMSE は極め て小さく(MODTRAN の場合,透過率の出力は標準で小数点以下4桁である),これより式(7.5)が極 めて良い近似であることが分かる。得られた *a* の値は,LOWTRAN で採用されている水蒸気のバンド吸 収に対する値(350~1000 cm<sup>-1</sup> で 0.5299,1005~1640 cm<sup>-1</sup> で 0.5416)[121]と比較するとかなり大きい が,これは本論文の*a* はバンド吸収に加えて連続吸収の効果が含まれているためである。

Fig. 56 は, AVHRR / Ch.4 の  $\tau$ (0.9) について, MODTRAN3.7 による計算値と式 (7.9) による計算値 ( $\gamma_1 = 0.7$ ,  $\gamma_2 = 1.0$ とし, 上で得られた a を使用)を比較したもので,両者は非常によく一致している。一方, Fig. 57 は同様に  $\tau$ (1.3) について比較したものだが,式(7.9)の計算値の方が MODTRAN による計算値より小さな透過率を与えている例が幾つか見られる。これらは  $\gamma = 1.3$  でスケーリングすることにより一部の高度で飽和水蒸気量に達したプロファイルであり,MODTRAN の計算上では水蒸気量が  $\gamma = 1.3$ より少なく扱われたために式 (7.9)の計算値と食い違っているのである。実際に式 (7.9)を適用する場合には,各プロファイルの  $\gamma$ に上限値があることに注意しなくてはいけない。

#### 7.1.4 天空輝度の計算

天空輝度 *I*<sup>↓</sup> については , 7.1.3 項の方法で得られた透過率 *τ* と光路輝度 *I*<sup>↑</sup> を用いて計算できる。この方 法は 6.1.2 項で述べた方法と同様で,以下の式を用いる (θ は観測角)。

$$I^{\downarrow} = a_0 + a_1 \left( I^{\uparrow} \cdot \frac{1 - \tau^{\cos \theta}}{1 - \tau} \right) + a_2 \left( I^{\uparrow} \cdot \frac{1 - \tau^{\cos \theta}}{1 - \tau} \right)^2$$
(7.15)

| $\operatorname{sensor}$ | $_{\rm channel}$ | parameter $a$ | RMSE     |
|-------------------------|------------------|---------------|----------|
| AVHER                   | 4                | 1.892888      | 0.000273 |
| AVIIIII                 | 5                | 1.851900      | 0.000427 |
|                         | 10               | 1.278345      | 0.000505 |
|                         | 11               | 1.445515      | 0.000435 |
| ASTER                   | 12               | 1.654055      | 0.000330 |
|                         | 13               | 1.899760      | 0.000271 |
|                         | 14               | 1.899311      | 0.000311 |

Table 45: Band model parameter a and RMSE of  $\tau(0.9)$  for AVHRR and ASTER.



Figure 56: Comparison of  $\tau(0.9)$  between MODTRAN outputs and estimates from Eq. (7.9) for AVHRR channel 4.



Figure 57: Comparison of  $\tau(1.3)$  between MODTRAN outputs and estimates from Eq. (7.9) for AVHRR

AVHRR 及び ASTER の各チャネルに対する回帰係数  $a_0$ ,  $a_1$ ,  $a_2$  と上式の精度は Table 32 に示されている。

## 7.1.5 スケーリングファクター $\gamma$ の水平内挿

channel 4.

非灰色画素の γ を得るための水平内挿には,数値予報における客観解析法を利用できる。GP 法におけ る欠損領域の水平内挿(6.2.5項)と同様に,本項においても最適内挿法を採用し,これをアレンジした以 下の手法により γ の水平内挿を行う。

- 1. 全画素について, γ の初期値を1とする(すなわち,オリジナルの全球解析データが大気の初期状態)。
- 2. 各灰色画素について, EMC/WVD 法と式 (7.14) から γ を計算する。
- 3. 各非灰色画素について,影響半径  $R_e$  以内にある灰色画素を全て選択し,式(6.14)によって各灰色 画素の最適荷重を決め,式(6.13)によって $\gamma$ を計算する。ここで式(6.14)における相関係数  $\mu_{ij}$ に ついては,2点 i 及びjの間の距離  $r_{ij}$ の関数として表現する。この関数については様々なものが考

えられるが, 例えば, 以下の Cressman の荷重関数 [74] などが利用できる。

$$\mu_{ij} = \begin{cases} \frac{R^2 - r_{ij}^2}{R^2 + r_{ij}^2} & \text{if } 0 \le r_{ij} \le R\\ 0 & \text{otherwise} \end{cases}$$
(7.16)

上式では,距離 R が大きいほど周囲との相関が大きくなる。ここで,影響半径  $R_e$  や距離 R は,これ を客観的に定める基準選びが難しいため,実データに基づいて経験的に定める必要がある。また,品 質パラメータ  $\lambda_i$  は, EMC/WVD 法と全球解析データの  $\gamma$  の誤差分散の比であるが,これは全球解 析データの誤差特性や地表カテゴリ,大気条件などによっても変化すると思われる。これらについて は不明な点も多いため,現実的には全画素で一定の経験値を使用する方法が無難であると思われる。

4. 全ての非灰色画素の  $\gamma$  を決定できない時は, $\gamma$  が得られた非灰色画素を新たな灰色画素と見なして再度 3 に進む。この作業を全ての非灰色画素の  $\gamma$  を決定するまでくり返す。

この方法では、少なくともシーン中に灰色画素が1個あれば全画素の $\gamma$ を得ることができる。灰色画素が 全く存在しない場合には、全画素の $\gamma$ を初期値(すなわち, $\gamma = 1$ )のままとする。この場合はオリジナ ルの全球解析データを修整せずにそのまま大気補正に使うことを意味する。すなわち、シーン中に灰色画 素が少なくとも1個あれば WVS 法によるプロファイル修正が可能であり、最悪、灰色画素が1個も無い 場合でもオリジナルの全球解析データに基づく大気補正が可能である。以上のシナリオにより、WVS 法は 全球解析データに基づく単バンドアルゴリズムと同等の極めて高い適用性を持つことになる。

7.1.6 実装のための高速計算アルゴリズム

全球解析データに基づく単パンドアルゴリズムは,各格子点の大気プロファイルを各画素に水平内挿し, 各画素ごとに放射伝達計算を行うものである。この処理はリモートセンシングデータの一般的な画素数を 考慮すると極めて計算時間を要すること,衛星熱赤外センサデータの典型的な空間分解能が100~1000m 程度であるのに対して全球解析データの格子間隔は50~250km 程度と2~3桁低いことなどを考慮する と,このような1画素ごとの放射伝達計算は非常に効率が悪く,無駄が多い。また,WVS法では,各灰色 画素ごとに2つの異なる γ に対する2回の放射伝達計算が必要であるため,更に多くの計算時間が必要と なる。

この問題に対し,ASTER / TIR の標準大気補正アルゴリズムでは高速計算アルゴリズムを採用している [40]。その概略は以下の通りである。

- 1. 対象シーンを幾つかの格子 (例えば 15km 間隔) に区切る。
- 2. 各格子点について,全球解析データからの水平内挿によって大気プロファイル(気温,相対湿度,ジ オポテンシャル高度)を求める。
- 3. 各格子点について、上で得られた大気プロファイルと周囲の代表的な幾つかの標高値を組み合わせ、
   各標高値ごとに大気効果パラメータを放射伝達計算する。
- 4. シーン中の各画素について,緯度経度及び標高値をキーとして,近傍の格子点から大気効果パラメー タを水平内挿する。

WVS 法においても同様のアプローチにより計算を高速化することができる。以下に,その手法を示す。

- 1. 対象シーンを幾つかの格子 (例えば 15km 間隔) に区切る。
- 2. 各格子点について,全球解析データからの水平内挿によって大気プロファイル(気温,相対湿度,ジオ ポテンシャル高度)を求める。以下,このプロファイルを $P_a$ と記す。 $P_a$ は全球解析データに $\gamma_a = 1$ を与えて作成したプロファイルと見なす。
- 3. 各格子点について, プロファイル  $P_a$  に適当な  $\gamma_b$  (例えば 0.7) を与えてプロファイル  $P_b$  を作る。
- 各格子点について、プロファイル Pa と周囲の代表的な幾つかの標高値を組み合わせ、プロファイル Pa の各標高値に対する透過率及び光路輝度を放射伝達計算して求める。プロファイル Pb についても 同様に行う(但し、光路輝度は求めなくても良い)。
- 5. 対象シーンから晴天下にある灰色画素を抽出する。
- 6. 各灰色画素について,緯度経度及び標高値をキーとする4近傍格子点からの水平内挿により, $\gamma_a$ に 対する(すなわち,プロファイル $P_a$ に対する)透過率 $\tau_a$ 及び光路輝度 $I_a^{\uparrow}$ を計算する。同様にして, 各灰色画素における $\gamma_b$ に対する透過率 $\tau_b$ を計算する。
- 7. 各灰色画素について,観測放射輝度,EMC/WVD法による地上レベルの地表輝度温度, $\gamma_a$ , $\gamma_b$ , $\tau_a$ ,  $I_a^{\uparrow}$ , $\tau_b$ を式 (7.14)に与え, $\gamma$ を計算する。
- 8. 7.1.5 項で述べた  $\gamma$  の水平内挿法により,全ての画素の  $\gamma$  を計算する。また, $\gamma$  の高周波誤差を除去 するため,メジアンフィルタなどによる平滑化を行う。



Figure 58: Flowchart of the WVS method with the fast calculation algorithm. Bold boxes mean input data.

9. 各画素について, 6 と同様にして  $\tau_a$ ,  $I_a^{\uparrow}$ ,  $\tau_b$  を水平内挿し, これらの値と  $\gamma_a$ ,  $\gamma_b$ , 上で得られた  $\gamma$  を式 (7.9) 及び式 (7.12) に与えて修正後の透過率及び光路輝度を計算する。

10. 各画素について, 7.1.4 項の方法により, 透過率及び光路輝度から天空輝度を推定する。

以上,これまでに述べた WVS 法の処理フローをまとめると Fig. 58 のようになる。太線で囲んだデー タは入力データである。

# 7.2 グレーピクセルモデルに基づく WVS 法の検証

本節では,3章で作成したシミュレーションモデルから灰色画素のみで構成されるサブセット—グレー ピクセルモデル—を作成し,これに基づいて WVS 法の有効性を検証する。また,γの計算値がチャネル 依存性を持つ問題(7.1.3項)に対し,これを一意に決定する最適な方法を評価する。

7.2.1 シミュレーションの方法

本節では,グレーピクセルモデルに基づいて WVS 法と従来手法(全球解析データに基づく単バンドアル ゴリズム)の比較評価を行う。グレーピクセルモデルとは,3章で作成したシミュレーションモデル(964 プロファイル×97 サンプル×56LST = 467,540 条件)のサブセットで,灰色画素のみから構成される。 本論文では,チャネル放射率の最小値が0.95以上の画素を灰色画素と定める。この基準によると,3章の 放射率モデル(97 サンプル)のうち,グレーピクセルモデルを構成するサンプルはAVHRRでは39 サン プル,ASTERでは18 サンプルとなり,AVHRRでは計187,980条件(964 プロファイル×39 サンプル ×56LST),ASTERでは計86,760条件(964 プロファイル×18 サンプル×56LST)となる。グレーピ クセルモデルに基づく評価では,灰色画素の抽出誤差は含まれず,灰色画素に対する大気補正精度が検証 される。すなわち,灰色画素が正確に抽出されていることを前提とし,これらの灰色画素に対してWVS 法による大気補正精度の改善効果がどの程度あるかを評価する。灰色画素の抽出誤差と非灰色画素におけ る大気補正誤差も考慮した検証は7.3節にて行う。

本節では,幾つかのケースに対して WVS 法と従来手法を比較評価するが,いずれのケースにおいても 以下を基本処理としている。

- 1. ある選択した  $\gamma_{true}$ ,  $\gamma_a$ ,  $\gamma_b$  をグレーピクセルモデルの大気プロファイルに与えて,  $P_{true}$ (真のプロファイル),  $P_a$ (全球解析データの大気プロファイル),  $P_b$ (WVS法において,  $P_a$  とペアで使用するプロファイル)を作成する。 $P_{true}$ と  $P_a$ は評価するケースによっては別の大気プロファイルから作成することもあるが,  $P_b$ はいずれのケースも  $P_a$ と同一の大気プロファイルから作成する。
- 2.  $P_a$  に対する透過率  $\tau_a$  及び光路輝度  $I_a^{\uparrow}$ ,  $P_b$  に対する透過率  $\tau_b$  を計算する。
- 3. δLST を −5, +0, +5, +10, +20K から 1 つ選び,放射率サンプルを AVHRR の場合は 39 サンプルの 中から 1 つ, ASTER の場合は 18 サンプルの中から 1 つ選ぶ。

- 4. 選択した P<sub>true</sub>, δLST, 放射率サンプルに対する各チャネルの観測放射輝度 I を 3.6 節の方法により 計算する(NEΔT やオゾン量の不確定性誤差も含む)。また,真の地上レベルの地表輝度温度 T<sub>g,true</sub> も計算する。
- 5. EMC/WVD 法による地上レベルの地表輝度温度と $\tau_a$ ,  $I_a^{\uparrow}$ ,  $\tau_b$ ,  $\gamma_a$ ,  $\gamma_b$  を式 (7.14) に与え,  $\gamma$  を計 算する。ここで, EMC/WVD 法に与える水蒸気量は  $P_a$  から得られる値を使用する。
- 6.  $\tau_a$ ,  $I_a^{\uparrow}$ ,  $\tau_b$ ,  $\gamma_a$ ,  $\gamma_b$ ,  $\gamma$  を式 (7.9) 及び式 (7.12) に与え, 修正後の透過率  $\tau_{wvs}$  及び光路輝度  $I_{wvs}^{\uparrow}$  を 計算する。
- 7.  $\tau_{wvs}$  及び  $I_{wvs}^{\uparrow}$  を観測放射輝度 I に与えることにより, WVS 法による地上レベルの地表輝度温度  $T_{g,wvs}$  を計算する。また,  $\tau_a$  及び  $I_a^{\uparrow}$  を観測放射輝度 I に与えることにより, 従来手法による地上レベルの地表輝度温度  $T_{g,org}$  を計算する。これらを  $T_{g,true}$  と比較することにより, それぞれの大気補正誤差を計算する。
- 8. 上記の処理を,大気プロファイル数(964)× δLST 数(5)×放射率サンプル数(AVHRR は 39, ASTER は 18)の各組み合わせに対して実行し,WVS 法及び従来手法のそれぞれについて,大気補 正誤差を集計して RMS 誤差を計算する。

ところで,実際の WVS 法では  $\gamma$  の平滑化により NEAT の影響が減じられる。この処理をシミュレート するため,各条件について,観測放射輝度 I を 25 個ずつ生成してそれぞれから  $\gamma$  を計算し (NEAT によ りそれらは互いに多少異なる),25 個の  $\gamma$  のメジアンをその条件に対する  $\gamma$  とした。また前述したように, 透過率が 1 に近いケースでは式 (7.14)の精度が悪くなる可能性があり,また大気効果もそれほど大きくな いので,この場合には一律  $\gamma = 1$  とした (詳細は次項で述べる)。さらに品質チェックのため, $0.3 \le \gamma \le 2$ を満たさない  $\gamma$  は上記のメジアン計算の過程で除外し,25 個全ての  $\gamma$  がこの範囲にない場合には  $\gamma = 1$  とした。

### 7.2.2 スケーリングファクター γ のチャネル依存性と最適決定法

7.1.3 項で述べたように,式(7.14)による  $\gamma$ の計算結果は,種々の誤差因子により,必ずしもチャネル間 で一致しない。本項では,以下の3つの $\gamma$ 決定法について,シミュレーションに基づく比較評価を行った。

ある特定のチャネルの γ を使用(特定チャネル法)

- ・ 全チャネルから得られた γ の平均値を使用(平均値法)
- チャネルごとにそれぞれの γ を使用(チャネル依存法)

なお,7.1.3項でも述べたように,チャネル依存法ではγが1つの画素で一意に定まらないため,水蒸気プロファイルも一意に定まらないが,最適解を得るための1つの方法としてここでは検討した。

本評価では,AVHRR 及び ASTER の各チャネルについて, $P_{true}$ を 964 の各プロファイルの  $\gamma = 0.7$  の ものとし, $P_a$  をそれぞれ同じプロファイルの  $\gamma = 1$  のものとして,上記の各手法ごとに WVS 法を適用 し,その RMSE を計算した。このケースでは,全てのプロファイルに対して  $\gamma = 0.7$ を推定できれば,誤 差が最も小さくなるはずである。なお,透過率が1 に近いケースにおいて  $\gamma$  の計算が不安定になることの 対処方法として,平均値法ではチャネル間の最大透過率が0.93 を超えるプロファイルに対して,また特定 チャネル法及びチャネル依存法では当該チャネルの透過率が0.93 を超えるプロファイルに対してそれぞれ  $\gamma = 1$ とし,スケーリングを行わないものとした。

AVHRR について,上記の各アプローチに対して得られた結果を Table 46 に示す。まず,同表中の RMSE と,Table 11 中の放射率下限値 = 0.95 に対する EMC/WVD 法の RMSE を比較すると,ほぼ同程度の精 度が得られており,WVS 法の有効性が示される。次に,各  $\gamma$  決定法の RMSE を比較すると,それぞれの 誤差の間にそれほど大きな違いは見られないが,多少 Ch.5 を使う特定チャネル法の誤差が小さいと言え る。一方,Table 47 は ASTER に対する同様の表であるが,こちらは  $\gamma$  決定法の RMSE の間に明瞭な差 が見られる。明らかに Ch.10 を使う特定チャネル法の精度が最も良く,逆に最も精度が悪いのは Ch.12 を 使う特定チャネル法である。これはどのチャネルの RMSE も同様の傾向を持っており,このことは,例 えば Ch.12 自身から得た  $\gamma$  を用いて Ch.12 の補正をするよりも Ch.10 から得た  $\gamma$  を用いて Ch.12 の補正 をする方が精度が高いことを物語っている。従って,平均値法やチャネル依存法は必ずしも最適であると は言えない。以上の結果より,以降では, $\gamma$ 決定法として,AVHRR では Ch.5 を使う特定チャネル法を, ASTER では Ch.10 を使う特定チャネル法を採用する。

7.2.3 3つのケースに対する従来アルゴリズムとの比較検証

本項では,グレーピクセルモデルを用い,以下の3つのケースについて WVS 法及び従来手法の比較評価を行った。

1. 水蒸気プロファイルの系統誤差のみを持つケース

Table 46: RMSE of the WVS method based on; (1) using the  $\gamma$  of specific channel, (2) using the average of  $\gamma$  among channels, and (3) using  $\gamma$  of each channel (channel-dependent). The  $\gamma$  values for  $P_{true}$ ,  $P_a$  and  $P_b$  are 0.7, 1.0 and 0.7 respectively. The sensor is AVHRR, and the NE $\Delta$ T is 0.12 K.

| method                     | RMS  | E [K] |
|----------------------------|------|-------|
| method                     | ch4  | ch5   |
| specific (ch4)             | 0.58 | 0.97  |
| specific $(ch5)$           | 0.55 | 0.89  |
| average                    | 0.56 | 0.92  |
| ${\rm channel}$ -dependent | 0.58 | 0.89  |

Table 47: RMSE of the WVS method based on; (1) using the  $\gamma$  of specific channel, (2) using the average of  $\gamma$  among channels, and (3) using  $\gamma$  of each channel (channel-dependent). The  $\gamma$  values for  $P_{true}$ ,  $P_a$  and  $P_b$  are 0.7, 1.0 and 0.7 respectively. The sensor is ASTER, and the NE $\Delta$ T is 0.3 K.

| method             |      | $\mathbf{RMSE}$ [K] |      |      |      |  |  |  |
|--------------------|------|---------------------|------|------|------|--|--|--|
| method             | ch10 | ch11                | ch12 | ch13 | ch14 |  |  |  |
| specific (ch10)    | 0.92 | 0.65                | 0.62 | 0.66 | 0.81 |  |  |  |
| specific $(ch11)$  | 1.26 | 0.83                | 0.72 | 0.91 | 1.16 |  |  |  |
| specific $(ch 12)$ | 1.48 | 0.95                | 0.79 | 1.05 | 1.35 |  |  |  |
| specific $(ch 13)$ | 1.29 | 0.86                | 0.74 | 0.85 | 1.08 |  |  |  |
| specific $(ch 14)$ | 1.18 | 0.79                | 0.70 | 0.76 | 0.95 |  |  |  |
| average            | 1.16 | 0.76                | 0.67 | 0.80 | 1.01 |  |  |  |
| channel-dependent  | 0.92 | 0.83                | 0.79 | 0.85 | 0.95 |  |  |  |

2. 水蒸気及び気温プロファイルの系統誤差のみを持つケース

3. プロファイル形状が異なるケース

(1) 水蒸気プロファイルの系統誤差のみを持つケース

964 の各大気プロファイルごとに, $P_{true}$ は  $\gamma_{true} = 0.7, 0.8, 0.9, 1.0$ を, $P_a$ 及び  $P_b$ は  $\gamma_a = 1.0$ 及び  $\gamma_b = 0.7$ を与えて作成し, WVS 法と従来手法を比較評価した。

Table 48 に,各  $\gamma_{ture}$ における WVS 法及び従来手法の大気補正誤差(AVHRR 及び ASTER の各チャネ ルにおける地上レベルの地表輝度温度の RMSE [K])を示す。例えば真のプロファイルが全球解析データ のプロファイルの  $\gamma = 0.8$  である時,これをそのまま用いて AVHRR / Ch.4 の大気補正を行うと RMSE が 1.67K であるのに対して(従来手法),WVS 法を用いると 0.51K ということになる。Fig. 59 及び Fig. 60 は,それぞれ AVHRR (Ch.4 及び Ch.5)及び ASTER (Ch.10,12,14)について,横軸を  $\gamma_{ture}$ とし て表の値をグラフ化したものである。これらの結果に示すように,従来手法では全球解析データの水蒸気 プロファイルの系統誤差が大きくなると著しく大気補正誤差が増加するのに対して,WVS 法では系統誤 差に対する感度が極めて小さい。また,従来手法では,系統誤差に対する感度はチャネルによって大きく 異なるが,WVS 法ではチャネル間の差がとても小さく,この特徴は特に地表のスペクトル解析を行う場 合には大変都合が良い。なお,全球解析データのプロファイルが真のプロファイルに極めて近い場合には, 両手法の精度が逆転する。但し,精度の逆転が生じるためには,全球解析データの水蒸気プロファイルの 誤差が数%以内であることが必要であり,これはラジオゾンデの最も良い場合の精度に相当する。従って, 実際の全球解析データがこの精度を満足することは考えにくく,このことは WVS 法の優位性を示すもの である。

次に,  $\gamma_a = 0.7$ ,  $\gamma_b = 1.0$ とし, その他は全て先ほどと同じ条件を与えて比較評価を行った。先ほどの 例では,  $P_{true}$ の方が $P_a$ より水蒸気量が少ない(又は同じ)ケースを想定したが,ここでは逆に $P_{true}$ の 方が $P_a$ より水蒸気量が多い(又は同じ)ケースを想定するものである。Table 49 に得られた結果を示す。 WVS 法の精度はほとんど $\gamma_{true}$  に依存しないが,従来手法の精度は $\gamma_{true}$ が $\gamma_a$ の値である 0.7 から離れる に従って大きく低下しており, Table 48 の結果と同様(但し,増減の方向は逆)の結果が得られている。 なお, WVS 法において,  $\gamma_{true}$ が0.7 の場合の方が1.0 の場合よりわずかに精度が悪いのは, EMC/WVD 法の式が元のプロファイル( $\gamma = 1.0$ )に対して最適化されているためと考えられる。

| method<br>WVS<br>normal | •     | AVHRR |      | ASTER |              |      |      |      |      |
|-------------------------|-------|-------|------|-------|--------------|------|------|------|------|
|                         | ltrue | ch4   | ch5  |       | ${\rm ch}10$ | ch11 | ch12 | ch13 | ch14 |
|                         | 0.7   | 0.55  | 0.89 |       | 0.92         | 0.65 | 0.62 | 0.66 | 0.81 |
| WVS                     | 0.8   | 0.51  | 0.81 |       | 0.84         | 0.63 | 0.62 | 0.62 | 0.75 |
| W V 5                   | 0.9   | 0.48  | 0.74 |       | 0.79         | 0.64 | 0.64 | 0.60 | 0.72 |
|                         | 1.0   | 0.47  | 0.71 |       | 0.79         | 0.66 | 0.67 | 0.64 | 0.77 |
|                         | 0.7   | 2.43  | 4.47 |       | 2.59         | 1.75 | 1.45 | 2.36 | 3.09 |
| normal                  | 0.8   | 1.67  | 3.02 |       | 1.76         | 1.22 | 1.06 | 1.64 | 2.13 |
| normai                  | 0.9   | 0.87  | 1.53 |       | 0.96         | 0.73 | 0.70 | 0.90 | 1.14 |
|                         | 1.0   | 0.16  | 0.19 |       | 0.46         | 0.44 | 0.52 | 0.39 | 0.41 |

Table 48: RMSE of the WVS and the normal methods for AVHRR and ASTER as a function of  $\gamma_{true}$  with  $\gamma_a=1.0$  and  $\gamma_b=0.7$ .



Figure 59: Plot of RMSE versus  $\gamma_{true}$  with  $\gamma_a=1.0$  and  $\gamma_b=0.7$  for the WVS and the normal methods for AVHRR channels 4 and 5.



Figure 60: Plot of RMSE versus  $\gamma_{true}$  with  $\gamma_a=1.0$  and  $\gamma_b=0.7$  for the WVS and the normal methods for ASTER channels 10, 12 and 14.

| method | <b>^</b> /. | AVE  | IRR  |                 |      | ASTER | l    |      |
|--------|-------------|------|------|-----------------|------|-------|------|------|
|        | ]true       | ch4  | ch5  | $\mathrm{ch}10$ | ch11 | ch12  | ch13 | ch14 |
|        | 0.7         | 0.59 | 0.89 | 0.92            | 0.74 | 0.71  | 0.72 | 0.87 |
| WVS    | 0.8         | 0.56 | 0.81 | 0.83            | 0.72 | 0.73  | 0.69 | 0.82 |
| VV V.5 | 0.9         | 0.54 | 0.74 | 0.78            | 0.71 | 0.75  | 0.67 | 0.80 |
|        | 1.0         | 0.56 | 0.71 | 0.79            | 0.72 | 0.78  | 0.70 | 0.85 |
|        | 0.7         | 0.14 | 0.15 | 0.41            | 0.41 | 0.48  | 0.34 | 0.35 |
| normal | 0.8         | 0.63 | 1.04 | 0.84            | 0.64 | 0.62  | 0.69 | 0.83 |
| normai | 0.9         | 1.28 | 2.09 | 1.52            | 1.08 | 0.92  | 1.27 | 1.57 |
|        | 1.0         | 1.96 | 3.16 | 2.23            | 1.56 | 1.30  | 1.92 | 2.37 |

Table 49: RMSE of the WVS and the normal methods for AVHRR and ASTER as a function of  $\gamma_{true}$  with  $\gamma_a=0.7$  and  $\gamma_b=1.0$ .

(2) 水蒸気及び気温プロファイルの系統誤差のみを持つケース

前述のケースでは,水蒸気プロファイルのみに系統誤差があるケースについて検証したが,実際には気 温プロファイルにも誤差が含まれていることが一般的である。そこで,ここでは,水蒸気プロファイルに 加えて気温プロファイルにも系統誤差がある幾つかのケースに対して,WVS法と従来手法の比較評価を 行った。

Table 50 に示す結果は、いずれも  $\gamma_a = 1.0$ 、 $\gamma_b = 0.7$ とし、 $P_{true}$ として以下の各条件を与えて WVS 法 及び従来手法の RMSE を計算したものである。なお  $\delta T_{true}$ は、元の気温プロファイルに加える全高度共 通のオフセット値である。

•  $P_a$  と同じ ( $\gamma_{true} = 1.0/\delta T_{true} = +0$ )

- 水蒸気プロファイルは同じ,気温プロファイルは+3 K ( $\gamma_{true} = 1.0/\delta T_{true} = +3$ )
- 水蒸気プロファイルは 0.9 倍,気温プロファイルは +1 K ( $\gamma_{true} = 0.9/\delta T_{true} = +1$ )

• 水蒸気プロファイルは 1.1 倍,気温プロファイルは -1 K ( $\gamma_{true} = 1.1/\delta T_{true} = -1$ )

• 水蒸気プロファイルは 0.8 倍,気温プロファイルは -2 K ( $\gamma_{true} = 0.8/\delta T_{true} = -2$ )

• 水蒸気プロファイルは 0.8 倍,気温プロファイルは +2 K ( $\gamma_{true} = 0.8/\delta T_{true} = +2$ )

表より, WVS 法は上記のいずれの条件に対してもほぼ同様の精度を持つのに対して,従来手法では一部の 条件で大きな誤差を持つことが分かる(例えば, $\gamma_{true} = 0.8/\delta T_{true} = +2$ のケースなど)。これらの結果 より, WVS 法は本来は水蒸気プロファイルの系統誤差を除去する手法であるが,気温プロファイルの系統 誤差も除去する性質を持つことが分かる。

このような性質を持つ理由の1つは,  $\gamma$  が EMC/WVD 法による地上レベルの地表輝度温度と整合する 様に決められるためである。すなわち, WVS 法では,水蒸気や気温などの誤差が全て水蒸気プロファイル のバイアス誤差と見なされ,その"集約された水蒸気プロファイル誤差"に対する"有効スケーリングファ クター"として  $\gamma$  が決定されるためである。従って,仮に水蒸気プロファイルに誤差が含まれていない場 合でも他の誤差によって  $\gamma$  は必ずしも1にはならず,それらの誤差を効果的に除去する様な  $\gamma$  が選ばれる のである。

理由のもう1つは,水蒸気プロファイルによる大気補正誤差と気温プロファイルによるそれとが類似し たチャネル依存性を持っているためである。このことは Fig. 61 に端的に示されている。同図は,中緯度夏

| mathad                  | a /ST                         | AVI  | IRR  |      |      | ASTER | l.   |      |
|-------------------------|-------------------------------|------|------|------|------|-------|------|------|
| method<br>WVS<br>normal | ' <i>irue</i> /01 <i>true</i> | ch4  | ch5  | ch10 | ch11 | ch12  | ch13 | ch14 |
|                         | 1.0/+0                        | 0.47 | 0.71 | 0.79 | 0.66 | 0.67  | 0.64 | 0.77 |
|                         | 1.0/+3                        | 0.49 | 0.74 | 0.89 | 0.66 | 0.63  | 0.62 | 0.74 |
| WVS                     | 0.9/+1                        | 0.47 | 0.75 | 0.82 | 0.63 | 0.63  | 0.59 | 0.71 |
| ** *5                   | 1.1/-1                        | 0.63 | 0.93 | 0.93 | 0.74 | 0.74  | 0.81 | 1.03 |
|                         | 0.8/-2                        | 0.53 | 0.80 | 0.78 | 0.64 | 0.65  | 0.64 | 0.76 |
|                         | 0.8/+2                        | 0.50 | 0.82 | 0.93 | 0.64 | 0.61  | 0.60 | 0.74 |
|                         | 1.0/+0                        | 0.16 | 0.19 | 0.46 | 0.44 | 0.52  | 0.39 | 0.41 |
|                         | 1.0/+3                        | 1.32 | 2.47 | 1.72 | 1.18 | 0.98  | 1.29 | 1.69 |
| normal                  | 0.9/+1                        | 1.21 | 2.22 | 1.39 | 0.98 | 0.87  | 1.21 | 1.57 |
| normai                  | 1.1/-1                        | 1.32 | 2.37 | 1.47 | 1.04 | 0.92  | 1.32 | 1.69 |
|                         | 0.8/-2                        | 1.12 | 1.90 | 1.09 | 0.82 | 0.79  | 1.14 | 1.43 |
|                         | 0.8/+2                        | 2.22 | 4.15 | 2.56 | 1.72 | 1.39  | 2.15 | 2.83 |

Table 50: RMSE of the WVS and the normal methods for 6 cases that water-vapor and air-temperature profiles include errors.

モデルを例として,ASTER / TIR の各チャネルについて気温プロファイル誤差とそれと等価な水蒸気プロファイル誤差を示したものであり(誤差はいずれもバイアス),これがチャネル間であまり違わないことを示している。例えば,+1Kの気温プロファイル誤差と等価な水蒸気プロファイル誤差は-8.4~-6.8%の範囲に収まっている。

これらの結果として,気温プロファイル誤差は良い精度で水蒸気プロファイル誤差の一部として見なされ,"有効スケーリングファクター"によって水蒸気プロファイル誤差と共に精度よく除去されるのである。

(3) プロファイル形状が異なるケース

これまでは水蒸気や気温のプロファイルが系統誤差を持つケースのみを扱った。これは  $P_a \ge P_{true}$  がほ ぼ同じプロファイル形状を持つことを想定するものであるが,実際には両者のプロファイル形状が大きく 異なるケースも考えられる。そこで,964 の各プロファイルについて, $P_a \ge P_{true}$  をそれぞれ別の大気プ ロファイルから作成することにより,このようなケースに対する評価を行った。但し,例えば極域に熱帯 のプロファイルが存在することなどは非現実的であるため,ここでは1月及び7月の各月の各緯度ごとに 1つのプロファイルを選び,それをその月のその緯度における $P_{true}$  と定めた。なお,この方法でも,例 えば乾燥地域のプロファイルが湿潤地域の $P_{true}$  として使用されるなど,必ずしも現実的ではない組み合 わせも生じ得ることを述べておく。なお, $P_b$  は $P_a$  と同一のプロファイルに $\gamma_b = 0.7$ を与えて作成し,標



Figure 61: The relative bias error of a water-vapor profile giving the same error on atmospheric correction with the absolute bias error of an air-temperature profile for ASTER channels for the midlatitude summer model.

Table 51: RMSE of the WVS and the normal methods in the case that true profiles are different in shape from profiles given atmospheric correction.

| method | AVI  | IRR  |      |      | ASTER | L    |      |
|--------|------|------|------|------|-------|------|------|
| method | ch4  | ch5  | ch10 | ch11 | ch12  | ch13 | ch14 |
| WVS    | 0.82 | 1.44 | 1.22 | 0.82 | 0.72  | 0.77 | 0.92 |
| normal | 2.79 | 5.17 | 3.23 | 2.10 | 1.68  | 2.70 | 3.58 |

### 高は各点ごとの真値を与えた。

Table 51 に WVS 法及び従来手法の RMSE を示す。WVS 法の結果をこれまでの結果と比較すると,両 センサともやや精度が低下している。特に水蒸気に敏感な AVHRR / Ch.5 や ASTER / Ch.10 において やや大きな誤差が生じている。しかしながら,従来手法の誤差が極めて大きいことを考慮すると,WVS 法 がこのようなプロファイル形状が異なるケースに対しても誤差を大きく低減する効果を持つことが分かる。

# 7.3 一般化モデルに基づく WVS 法の検証

7.2 節のグレーピクセルモデルに基づく検証では,灰色画素が正確に抽出されていることを前提とし,こ れらの灰色画素に対して WVS 法による大気補正精度の改善効果がどの程度あるかを評価した。従って,灰 色画素の抽出に伴う誤差(灰色画素が抽出されなかったり,非灰色画素が灰色画素として抽出されること に伴う誤差)や,灰色画素から推定した γ を非灰色画素の大気補正に使用する場合の精度については扱わ なかった。

そこで本節では,より一般性を高めるため,3章で作成したオリジナルのシミュレーションモデル(964 プロファイル×97サンプル×58LST = 467,540条件,ここでは一般化モデルと呼ぶ)を使用し,更に全球 解析データによる簡易大気補正とTE分離に基づく灰色画素の抽出処理(7.1.2項の手法1)を含めて前節 と同様の検証を行った結果について述べる。なお,AVHRRの熱赤外域2チャネルについてはTE分離が 確立されていないため,ここではASTER / TIRに対してのみ検証を行い,TE分離法としてはASTER / TIRの標準TESアルゴリズム(付録A.2参照)を構成するMMD法を使用した。

7.3.1 シミュレーションの方法

本項におけるシミュレーションの方法は,以下の点を除けば前節のものと同様である。

- 一般化モデルを使用する。
- *P<sub>a</sub>* を用いた簡易大気補正と MMD 法に基づいて灰色画素を判定する。
- 大気条件ごとに γ を集計して平均を取り,それをその大気条件に対する γ とする(非灰色画素にも γ を与えるため)。
- 非灰色画素も含めて大気補正誤差を計算する。

以下に具体的な処理手順を示す。

- 1. ある選択した  $\gamma_{true}$ ,  $\gamma_a$ ,  $\gamma_b$  を一般化モデルの大気プロファイルに与えて,  $P_{true}$ ,  $P_a$ ,  $P_b$  を作成する。これらの作成基準は前節と同様である。
- 2.  $P_a$  に対する透過率  $\tau_a$ , 光路輝度  $I_a^{\uparrow}$ , 天空輝度  $I_a^{\downarrow}$ ,  $P_b$  に対する透過率  $\tau_b$  を計算する。
- 3. *δ*LST を -5,+0,+5,+10,+20K から1つ選び,放射率サンプルを97 サンプルの中から1つ選ぶ。
- 4. 選択した  $P_{true}$ ,  $\delta$ LST, 放射率サンプルに対する各チャネルの観測放射輝度 I を 3.6 節の方法により 計算する (NEAT やオゾン量の不確定性誤差も含まれる)。また,真の地上レベルの地表輝度温度  $T_{q,true}$ も計算する。

- 5. 観測放射輝度 I に τ<sub>a</sub> 及び I<sup>↑</sup><sub>a</sub> を与えて地上レベルの地表放射輝度を計算し,これと I<sup>↓</sup><sub>a</sub> を MMD 法に 与えて各チャネルの放射率を計算する。そして,最小放射率が 0.95 以上であれば灰色画素,そうで なければ非灰色画素と判定する。
- 6. 灰色画素ならば, EMC/WVD 法による地上レベルの地表輝度温度と $\tau_a$ ,  $I_a^{\uparrow}$ ,  $\tau_b$ ,  $\gamma_a$ ,  $\gamma_b$  を式 (7.14) に与え,  $\gamma$  を計算する。ここで, EMC/WVD 法に与える水蒸気量は $P_a$  から得られる値を使用する。 また,前節と同様に $\gamma$ は25 データのメジアンとする。 $\gamma$ の拘束条件等についても前節と同様である。
- 7. 1つの大気条件について,上記の処理を δLST(5条件)×放射率(97条件) = 485条件行い,灰色 画素のγを集めて平均を取り,その大気条件に対するγとする(すなわち,その大気条件を持つ485 条件は全て同じγを持つ)。灰色画素が1つも存在しない大気条件については,以降の誤差の算出処 理からは除外する。
- 8. 各大気条件について,  $\tau_a$ ,  $I_a^{\uparrow}$ ,  $\tau_b$ ,  $\gamma_a$ ,  $\gamma_b$ ,  $\gamma$  を式 (7.9) 及び式 (7.12) に与え, 修正後の透過率  $\tau_{wvs}$ 及び光路輝度  $I_{wvs}^{\uparrow}$  を計算する。
- 9. 各条件について,大気条件ごとに共通の  $\tau_{wvs}$  及び  $I_{wvs}^{\uparrow}$  を観測放射輝度 I に与えることにより, WVS 法による地上レベルの地表輝度温度  $T_{g,wvs}$  を計算する。また, $\tau_a$  及び  $I_a^{\uparrow}$  を観測放射輝度 I に与える ことにより,従来手法による地上レベルの地表輝度温度  $T_{g,org}$  を計算する。そして,これらを  $T_{g,true}$  と比較することにより,それぞれの大気補正誤差を計算する。

10. WVS 法及び従来手法のそれぞれについて,大気補正誤差を集計して RMSE を計算する。

2.3.6 項で述べたように, MMD 法は分光放射率のチャネル間の最大差(最大値と最小値の差)と平均値の間の線形関係に基づく TE 分離である(付録 A.2 参照)。ここでは,最大差 *MMD* と平均値  $\epsilon_{mean}$ の関係式として次式を使用した。

$$\epsilon_{mean} = 1.00037967 - 0.38671709 \times MMD^{0.61478072} \tag{7.17}$$

上式の関数形は ATBD に記載されているものと同じであるが [46], 各係数値は Table 3 に含まれる 37 サンプル(火成岩 12 サンプル, 堆積岩 4 サンプル, 変成岩 4 サンプル, 土壌 9 サンプル, 植生 4 サンプル, 水氷 4 サンプル)の放射率データを用いた回帰分析により今回計算した値である。

7.3.2 3つのケースに対する従来アルゴリズムとの比較検証

本項では,7.2.3 項と同様の以下の3つのケースについて,一般化モデルに基づく WVS 法及び従来手法の比較評価を行った。

1. 水蒸気プロファイルの系統誤差のみを持つケース

2. 水蒸気及び気温プロファイルの系統誤差のみを持つケース

3. プロファイル形状が異なるケース

(1) 水蒸気プロファイルの系統誤差のみを持つケース

Table 52 及び Fig. 62 は,964 の各大気プロファイルについて, $\gamma_{true} = 0.7, 0.8, 0.9, 1.0, \gamma_a = 1.0$ ,  $\gamma_b = 0.7$  を与えた場合の結果である。また,Table 53 は,各プロファイルについて,同様の $\gamma_{true}$  と  $\gamma_a = 0.7, \gamma_b = 1.0$  を与えた場合の結果である。これらの結果より,灰色画素の抽出誤差や非灰色画素の 大気補正誤差を含めた場合でも前節と同様に WVS 法の優位性が示されたと言える。

ところで,例えば Fig. 62 を見ると,WVS 法の精度が EMC/WVD 法から期待される精度(0.8~0.9K) よりも一部かなり良い精度が得られており,いわゆる従来手法との精度の逆転が  $\gamma_{true} = 1$  に極めて近い所 で生じているのが分かる。このように WVS 法の精度が高くなっている理由は,ここでのシミュレーショ ンでは各大気条件ごとに  $\gamma$  を平均するため,EMC/WVD 法に起因するランダム誤差が低減されるためで ある。また,従来手法の精度も全体に 7.2.3 項の精度より高くなっているが(例えば, $\gamma_{true} = 0.7$  に対す る Ch.10 の RMSE は,7.2.3 項では 2.43K であるが,ここでは 1.91K である),これは灰色画素が得られ なかった大気条件についてはここでの誤差の計算からは外されるためである。このように 7.2.3 項のシミュ レーション結果とは  $\gamma$  の計算方法や誤差を計算する条件構成に違いがあるため,比較する場合には注意が 必要である。

なお,今回,このように大気条件ごとに $\gamma$ を平均化したのは,実際の処理と同様に非灰色画素にも $\gamma$ を与えて大気補正誤差の計算に含めるためであるが,実際の処理でこうした $\gamma$ の平均化による高精度化を得るには, $\gamma$ の水平内挿処理においてなるべく多様な地表条件(放射率,LST)から $\gamma$ を計算し,平均化する必要がある。これは地表条件にも大きく依存する処理であるため,実際の WVS 法の精度はここでの結果より多少低下するかも知れない。

| method | $\gamma$ of $P_{true}$ | ch10 | ch11 | ch12 | ch13 | ch14 |
|--------|------------------------|------|------|------|------|------|
|        | 0.7                    | 1.09 | 0.69 | 0.54 | 0.77 | 0.98 |
| WVS    | 0.8                    | 0.88 | 0.60 | 0.49 | 0.69 | 0.87 |
| ** * 5 | 0.9                    | 0.63 | 0.48 | 0.43 | 0.50 | 0.60 |
|        | 1.0                    | 0.56 | 0.47 | 0.42 | 0.47 | 0.54 |
|        | 0.7                    | 1.91 | 1.23 | 0.93 | 1.51 | 2.00 |
| normal | 0.8                    | 1.50 | 1.00 | 0.79 | 1.31 | 1.73 |
| normai | 0.9                    | 0.91 | 0.65 | 0.55 | 0.83 | 1.06 |
|        | 1.0                    | 0.46 | 0.40 | 0.38 | 0.39 | 0.42 |

Table 52: RMSE of the WVS and the normal methods for ASTER channels as a function of  $\gamma_{true}$  with  $\gamma_a=1.0$  and  $\gamma_b=0.7$ . The general model was used.



Figure 62: Plot of RMSE versus  $\gamma_{true}$  with  $\gamma_a=1.0$  and  $\gamma_b=0.7$  for the WVS and the normal methods for ASTER channels 10, 12 and 14. The general model was used.

| method       | $\gamma$ of $P_{true}$ | ch10 | ch11 | ch12 | ch13 | ch14 |
|--------------|------------------------|------|------|------|------|------|
|              | 0.7                    | 0.71 | 0.56 | 0.49 | 0.56 | 0.67 |
| WVS          | 0.8                    | 0.55 | 0.47 | 0.44 | 0.45 | 0.52 |
| <b>W V</b> D | 0.9                    | 0.73 | 0.53 | 0.47 | 0.64 | 0.79 |
|              | 1.0                    | 1.21 | 0.78 | 0.64 | 1.07 | 1.37 |
|              | 0.7                    | 0.41 | 0.37 | 0.35 | 0.35 | 0.35 |
| normal       | 0.8                    | 0.80 | 0.58 | 0.48 | 0.64 | 0.78 |
| normai       | 0.9                    | 1.43 | 0.97 | 0.76 | 1.17 | 1.49 |
|              | 1.0                    | 2.10 | 1.41 | 1.10 | 1.76 | 2.24 |

Table 53: RMSE of the WVS and the normal methods for ASTER channels as a function of  $\gamma_{true}$  with  $\gamma_a=0.7$  and  $\gamma_b=1.0$ . The general model was used.

(2) 水蒸気及び気温プロファイルの系統誤差のみを持つケース

次に,水蒸気と気温の両プロファイルに系統誤差があるケースについて検証を行った。7.2.3 項と同様に 以下の条件を与えた。

- $P_a$  と同じ ( $\gamma_{true} = 1.0/\delta T_{true} = +0$ )
- 水蒸気プロファイルは同じ,気温プロファイルは+3 K( $\gamma_{true} = 1.0/\delta T_{true} = +3$ )
- 水蒸気プロファイルは 0.9 倍,気温プロファイルは +1 K ( $\gamma_{true} = 0.9/\delta T_{true} = +1$ )
- 水蒸気プロファイルは 1.1 倍,気温プロファイルは -1 K ( $\gamma_{true} = 1.1/\delta T_{true} = -1$ )
- 水蒸気プロファイルは 0.8 倍,気温プロファイルは -2 K ( $\gamma_{true} = 0.8/\delta T_{true} = -2$ )
- 水蒸気プロファイルは 0.8 倍,気温プロファイルは +2 K ( $\gamma_{true} = 0.8/\delta T_{true} = +2$ )

得られた結果を Table 54 に示す。まず WVS 法の結果を見ると, RMSE が条件にはあまり依存しなかった 7.2.3 項の結果と比べ,条件による違いがやや見られるが,いずれの条件に対しても実用レベルの精度が得られていると言える。一方,従来手法は一部に極めて大きな誤差を持つ条件があり(例えば, $\gamma_{true} = 0.8/\delta T_{true} = +2$ のケース), 7.2.3 項で見られたものと同様の傾向が見られる。

(3) プロファイル形状が異なるケース

次に,プロファイル形状が異なるケースに対する検証を行った。 $P_{true}$ , $P_a$ , $P_b$ の与え方は7.2.3 項と同様である。得られた結果を Table 55 に示す。

| method | $\gamma/\delta T_{true}$ | ch10 | ch11 | ch12 | ch13 | ch14 |
|--------|--------------------------|------|------|------|------|------|
|        | 1.0/+0                   | 0.56 | 0.47 | 0.42 | 0.47 | 0.54 |
|        | 1.0/+3                   | 0.99 | 0.70 | 0.57 | 0.65 | 0.76 |
| WVS    | 0.9/+1                   | 0.72 | 0.51 | 0.43 | 0.50 | 0.60 |
| ** * 5 | 1.1/-1                   | 1.02 | 0.70 | 0.58 | 0.88 | 1.14 |
|        | 0.8/-2                   | 0.89 | 0.67 | 0.60 | 0.84 | 1.04 |
|        | 0.8/+2                   | 0.91 | 0.59 | 0.44 | 0.51 | 0.61 |
|        | 1.0/+0                   | 0.46 | 0.40 | 0.38 | 0.39 | 0.42 |
|        | 1.0/+3                   | 1.62 | 1.11 | 0.87 | 1.14 | 1.46 |
| normal | 0.9/+1                   | 1.28 | 0.87 | 0.69 | 1.05 | 1.36 |
| normai | 1.1/-1                   | 1.40 | 0.96 | 0.77 | 1.21 | 1.57 |
|        | 0.8/-2                   | 1.01 | 0.74 | 0.65 | 1.02 | 1.30 |
|        | 0.8/+2                   | 1.83 | 1.19 | 0.88 | 1.26 | 1.65 |

Table 54: RMSE of the WVS and the normal methods for 6 cases that water-vapor and air-temperature profiles include errors. The general model was used.

Table 55: RMSE of the WVS and the normal methods in the case that true profiles are different in shape from profiles given atmospheric correction. The general model was used.

| method | ch10 | ch11 | ch12 | ch13 | ch14 |
|--------|------|------|------|------|------|
| WVS    | 1.31 | 0.90 | 0.70 | 0.95 | 1.20 |
| normal | 1.56 | 1.06 | 0.80 | 1.12 | 1.41 |

7.2.3 項の結果と同様に,系統誤差のみを考慮した場合と比べると WVS 法の精度がやや低下している。 一方,従来手法については,誤差計算の違いにより,7.2.3 項の結果よりやや高い精度が得られている。従っ て,WVS 法の精度と従来手法の精度の違いが7.2.3 項の結果よりは小さくなっているものの,7.2.3 項と 同様に,やはり全てのチャネルにおいて WVS 法が優位であることが示されている。

# 7.4 AVHRR データに基づく WVS 法の検証

本節では,豊後水道周辺領域における AVHRRの Ch.4 及び Ch.5 の観測データを用いて WVS 法及び従 来手法(全球解析データに基づく単バンドアルゴリズム)の比較検証を行った結果について述べる。

使用した全球解析データは,ASTER/TIR の標準大気補正アルゴリズムにも採用されている NCEP の GDAS プロダクトのうち,気圧ベースで水平分解能が1°のものである(付録 A.1 参照)。放射伝達計算に は MODTRAN3.7 を使用し,GDAS プロダクトに含まれないオゾンや二酸化炭素等のプロファイルや高 高度のプロファイルは中緯度夏モデルのものを与え,エアロゾルは Rural-VIS=23km モデルを与えた。



Figure 63: Location of the test area in the AVHRR channel 1 data on September 9, 1998.

### 7.4.1 テストエリア

本節で使用した AVHRR データは, 1998 年 9 月 9 日 14 時 39 分頃(JST)に日本上空を通過した NOAA14 号による観測データである。このデータから,今回は豊後水道付近を中心とする緯経度 3° 四方の領域(131°E ~134°E, 32°N~35°N)をテストエリアとして選定した。まず AVHRR データを緯経度座標系で1 画素が 30arcsec となるように最近隣内挿法により再配列した後,テストエリア部分の切り出しを行った。この場 合,切り出し画像のサイズは 360 カラム× 360 ラインとなる。

Fig. 63 は Ch.1 の観測画像(最近隣内挿法による再配列後)で,画像中の白い四角で囲んだ領域がテストエリアである。テストエリアはほぼ衛星の直下に位置し,エリア内の観測角は最大でも 14°程度である。 Fig. 64 は,GTOPO30 より抽出したテストエリアの標高データである。見やすくするため,海域は白く表示されている。テストエリア内の標高は,同データでは 0~1759m の範囲にある。



Figure 64: Elevation data for the test area extracted from GTOPO30.

まず,従来手法により,AVHRR データの各画素ごとの大気効果パラメータ(透過率,光路輝度,天空輝度)を計算した。これらのパラメータは,まずAVHRRの観測時刻における注目画素でのGDAS プロファ イルを水平内挿して求め,次にこれと標高及び観測角をRTC に与えることにより計算できるが,GDAS プロダクトの水平分解能が1°であることや観測方向がほぼ直下であること,そして計算の効率化を考慮し て,ここでは以下の手順により計算した。

- GDAS プロダクトの各格子点(1° 刻み,以下ではGDAS 格子点と記す)について,注目時刻(1998 年9月9日14:39JST)を挟む2時刻(同日の9:00JST 及び15:00JST)のGDAS プロファイルから 時刻に関する線形内挿を行うことにより,注目時刻でのGDAS プロファイルを計算する。ここで,時 刻に関する線形内挿は,プロファイルの各気圧レベルごとに行う。
- 2. 各 GDAS 格子点について,上で得られたプロファイルを用いて7つの標高(0~1800m まで 300m 刻み)に対する大気効果パラメータを RTC により計算する。
- 3. テストエリア内の各画素について,4近傍のGDAS格子点における標高別の各大気効果パラメータ から緯度・経度・標高をキーとする線形内挿を行うことにより,各大気効果パラメータを決定する。

Fig. 65 は,上記の方法によって得られたテストエリアにおける Ch.4 の透過率分布図である。

7.4.3 WVS 法の適用

(1) 総水蒸気量の計算

WVS 法を適用するための準備として,まず,EMC/WVD 法を適用する際に与える総水蒸気量の分布図 をGDAS プロダクトを用いて作成した。作成方法は7.4.2項における大気効果パラメータの計算手順と同 様で以下の通りである。

- 1. 各 GDAS 格子点について,注目時刻を挟む2時刻のGDAS プロファイルから時刻に関する線形内挿 を行うことにより,注目時刻でのGDAS プロファイルを計算する。
- 2. 各 GDAS 格子点について,上で得られたプロファイルを用いて7つの標高(0~1800mまで300m刻)
   み)に対する総水蒸気量を計算する。



Figure 65: Transmittance at AVHRR channel 4 calculated from original GDAS profiles and GTOPO30.



Figure 66: Column water vapor amounts calculated from original GDAS profiles and GTOPO30.

3. テストエリア内の各画素について,4近傍のGDAS格子点における標高別の総水蒸気量から緯度・ 経度・標高をキーとする線形内挿を行うことにより,総水蒸気量を決定する。

Fig. 66 は,上記の方法によって得られたテストエリアにおける総水蒸気量の分布図である。

(2) 灰色画素の抽出

次に,灰色画素の抽出を行った。AVHRR データは熱赤外チャネルが2 チャネルと少なく,TE 分離の精 度があまり期待できないため,ここでは AVHRR の Ch.1 及び Ch.2 の観測データと G TOPO30 を使用す ることによって次のように行った。

- 1. Ch.1 の DN 値がある閾値を超えたものを雲域画素と判定する。ここで,閾値は目視判読によって決定した。
- 2. 雲域以外の画素について, GTOPO30の no data を意味するコード 9999 を基に海域画素を抽出



Figure 67: Scene classification map produced from VNIR images and GTOPO30. white: sea or vegetation, gray: other land surfaces, black: clouds.

する。

3. 雲域及び海域以外の画素について, Ch.1 及び Ch.2 の DN 値(それぞれ, R 及び IR と記す)を次式
 に与えて正規化植生指標(NDVI)を計算し, 閾値を超えたものを植生域画素と判定する。

$$NDVI = \frac{IR - R}{IR + R} \tag{7.18}$$

ここで, 閾値は文献 [120] を参考に 0.4 と定めた。

4. 雲域,海域,植生域以外の画素をその他の画素とする。このうち,海域と植生域のみを灰色画素と する。

なお,ここでは簡単化のため上記の方法を用いたが,雲域や植生域の判定に使用した閾値は大気状態や太 陽入射角などによって変動するため,定常処理システムで上記の方法を用いることは難しい。

Fig. 67 は,上記の方法によって得られたテストエリアにおけるシーン分類図である。白色で示された画素が灰色画素(海域又は植生域)を示し,灰色又は黒色で示された画素が非灰色画素(灰色が植生域以外の陸域,黒色が雲域)を示す。
(3) WVS 法による大気効果パラメータの計算

まず,7.4.2 項で作成した透過率及び光路輝度の各分布図を,7.1.6 項における  $\tau_a$  及び  $I_a^{\dagger}$  の各分布図と 考える。すなわち, $\gamma_a = 1.0$  である。次に,各 GDAS 格子点について,時間補間した GDAS プロダクト の水蒸気プロファイルを  $\gamma = 0.7$  でスケーリングして新たなプロファイルを作成し,このプロファイルに 7.4.2 項と同様の手順を適用してテストエリアにおける透過率の分布図を計算した。これを 7.1.6 項におけ る  $\tau_b$  の分布図と考える。すなわち, $\gamma_b = 0.7$  である。これらを基に,テストエリアの各画素における  $\gamma$  の 計算を以下の手順で行った。

- Fig. 67 で灰色画素と判定された各画素について, EMC/WVD 法を適用して地上レベルの地表輝度 温度を推定する。ここで, EMC/WVD 法の式は放射率の下限値が 0.95 の式を,総水蒸気量のデー タは Fig. 66 で得たものを用いる。
- 2. 各灰色画素について,観測放射輝度,EMC/WVD法による地上レベルの地表輝度温度, $\gamma_a$  (= 1.0),  $\gamma_b$  (= 0.7),  $\tau_a$ ,  $I_a^{\uparrow}$ ,  $\tau_b$  を式 (7.14) に与え,  $\gamma$  を計算する。但し,  $0.5 \le \gamma \le 2$  を満たさないもの は異常値と見なして除外する。
- 3. 7.1.5 項で述べた手順により, 灰色画素の  $\gamma$  から非灰色画素の  $\gamma$  を水平内挿する。ここで, 今回は影響半径  $R_e$  を 5 画素とし, 品質パラメータ  $\lambda_i$  を 0.25 とする。
- $4.5 \times 5$ のオペレータサイズのメジアンフィルタを用いて $\gamma$ の平滑化を行う。

今回のテストデータの場合,海域の占める割合が大きかったために,水平内挿前に  $\gamma$  が得られた画素数 は全 129,600 画素中 89,583 画素であり,約 69%に達した。残りの 31%の画素の  $\gamma$  は計 5 回の反復 (7.1.5 項の手順 4 を参照)により全て水平内挿された。

Fig. 68 は,上記の方法によって得られたテストエリアにおける  $\gamma$  の分布図である。全体に  $\gamma$  は 1.0 よ り大きい値が得られており,これは GDAS の水蒸気プロファイルを全体に湿潤側にシフトする必要性を 示している。特に大きな値が得られている画素は主に雲域である。雲域は非灰色画素として扱われるため, EMC/WVD 法はそもそも適用されないが,このように雲域の  $\gamma$  が全体に大きいのは,雲域として判定さ れなかった雲の縁辺部からの水平内挿によるものである。雲の縁辺部が大きい  $\gamma$  を持っていることは,こ れらの領域が周囲の晴天域より水蒸気量が極めて多い事実と整合するものであり,WVS 法が正しく機能 していることを示すものである。



Figure 68: Scaling factor  $\gamma$  image for the test area.

こうして,全画素の $\gamma$ を決定した後,各画素ごとに $\tau_a$ , $I_a^{\uparrow}$ , $\tau_b$ , $\gamma_a$ , $\gamma_b$ , $\gamma$  を式(7.9)及び式(7.12)に 与えることにより,各画素における修正後の透過率及び光路輝度を推定した。

7.4.4 WVS 法と従来手法の比較評価

(1) 地上レベルの地表輝度温度に基づく比較評価

まず,WVS 法と従来手法のそれぞれから得られた大気効果パラメータを用いて大気補正を行い,各チャ ネルの地上レベルの地表輝度温度をそれぞれ計算した。Fig. 69 は,Ch.4 に対する地上レベルの地表輝度 温度の手法間の差(WVS 法の値から従来手法の値を引いたもの)である。雲域を無視すると,WVS 法に よる推定値は従来手法による推定値と比べて同程度か,もしくは 3K 程度までの範囲で大きい値を示して いる。WVS 法による推定値が特に大きい領域は,Fig. 67 で示した雲の周辺領域であるケースが多いが, 例えば(32°N,133°E)付近などでは,Fig. 67 に雲は見られない。Fig. 66 を見ると,GDAS プロダクト ではこの領域の総水蒸気量が周囲より少なくなっており,WVS 法ではこれを補う様に大きい γ を与えて いるのが分かる(Fig. 68 参照)。同様の傾向は国東半島沖の海域にも見ることができる。これらは GDAS プロダクト側にある誤差を WVS 法が正しく低減していることを示しているのであるが,この根拠につい ては後述する。

(2) 海面放射率に基づく比較評価

上では,地上レベルの地表輝度温度が両手法間で全体的に0~3K 程度異なることを示したが,この結果のみから各手法の絶対精度について言及することはできない。そこで,次に海面放射率に基づく比較評価を行った。

海面温度(表皮水温)は風や日射などの気象条件によって大きく変動するため,これに基づいて大気補 正アルゴリズムを評価するには,通常,衛星観測に同期した高精度な表皮水温計測データが必要である。 一方,海面放射率は観測角や海上風によって多少変動するものの,それらの影響は小さく,特に今回のテ ストデータのように全体に直下観測に近い場合には充分に小さいと考えて良い[57]。従って,海面放射率 を用いることにより,大気補正アルゴリズムの性能評価を高い精度で行うことが可能である。今回,テス トエリアとして海域を多く含む領域を選定した最も大きな理由は,このような海面放射率ベースの検証を 行うためである。なお,ここで検証するいずれの大気補正法も本来の主たるターゲットは陸域であるが,



Figure 69: Difference of the surface brightness temperature at ground level between the WVS and the normal methods.

いずれの手法も陸域・海域を問わずに同様の論理で適用可能であること,また海面放射率を用いることに よって陸域よりも精度の高い検証が可能であることから,ここでは海域を用いた評価を行った。この場合, 陸域に特徴的な条件である地表被覆,LST,標高等の大きな空間変動の影響を評価に取り込むことはでき ないが,全球解析データの誤差の影響やWVS法によるその改善効果は充分に評価可能である。

まず, Fig. 67 に基づいて晴天下の海域にある画素を選定した。同図に示すように,今回のデータでは海 域の大部分は晴天下にある。そしてこれらの画素に対し,WVS 法及び従来手法のそれぞれから得られた 大気効果パラメータを用いて,以下の処理を行った。

- Ch.4 について,地上レベルの地表輝度温度,海水の室内測定放射率(=0.9903)(Table 3 のサンプ ル No.92), 天空輝度を用いて海面温度を計算する(式(2.57)を参照)。ここで,天空輝度は,WVS 法の場合は式(7.15)を用いた計算値,従来手法の場合はRTCを用いた計算値を使用する。
- 2. Ch.5 について,地上レベルの地表輝度温度,天空輝度,そして上で得た海面温度を用いて海面放射 率を計算する。

3. Ch.5 について,上で得た海面放射率と海水の室内測定放射率(=0.9859)の差を計算する。

こうして得た Ch.5 における海面放射率の誤差は,大気補正アルゴリズムの誤差の程度を表す指標となる。 但し,大気補正誤差によっては,海面温度は正しくないが海面放射率が偶然に正しくなる可能性もあるた め,今回のようにチャネル数が少ない場合には多少の注意が必要である。

Fig. 70 及び Fig. 71 は, それぞれ WVS 法及び従来手法による結果 (Ch.5 の海面放射率の誤差)である。 これらの図を見て最初に気付くのは, Fig. 70 は全体に海面放射率の誤差が均一であるのに対して, Fig. 71 はかなり不均一であることである。これは,従来手法による大気補正精度が場所によって大きく異なって いるのに対し, WVS 法による大気補正精度は均一であることを示している。また, Fig. 69 において地上 レベルの地表輝度温度が手法間で大きく異なっている領域に注目すると, Fig. 71の従来手法による結果 では海面放射率が極めて小さく推定されているのが分かる。これより, Fig. 69 で見られた手法間の差は, 従来手法側に誤差があり, WVS 法側に誤差がほとんど無いことによって生じたと考えることができる。

ところで, Fig. 70 における海面放射率の誤差は,均一性が高いものの,全体に正のバイアスが乗って いる。実際,WVS法と従来手法による海面放射率の誤差をそれぞれ度数分布で示すと,Fig. 72 のように なる(雲域には一部極めて大きな誤差が含まれるため,-0.1~0.1の範囲についてのみ示した)。図より,

WVS 法の分布は分散がかなり小さくなっているものの,そのピークは 0.01~0.02 程度正の方向に片寄っ ている。実際,-0.1~0.1 の範囲について,海面放射率の誤差の平均値及び標準偏差を求めると 0.013 及 び 0.011 となる(ちなみに従来手法ではそれぞれ-0.012 及び 0.021 であり,バイアスは負の方向に同程 度,標準偏差は約 2 倍である)。このように WVS 法の結果にやや正のバイアスが生じているのは,Fig. 40 に示したように,AVHRR に対する EMC/WVD 法が大きい最小放射率を持つ物質に対して正のバイア スを生じる傾向を持つためである(Fig. 40 では,最小放射率が最も大きい 2 つの点が蒸留水及び海水の サンプルである)。従って,水域の割合が大きい今回のテストエリアでは,EMC/WVD 法が全体に正の バイアスを持ち,結果として海面放射率も正のバイアスを持ったと言える。なお,5.2.6 項でも述べたよう に,EMC/WVD 法におけるこうしたバイアスの傾向はチャネル数が少ない AVHRR に特有のものであり, チャネル数が多い ASTER では,最小放射率はほとんどバイアスに影響しない(Fig. 38 参照)。

Fig. 73 は,放射率下限値= 0.97 に対する EMC/WVD 法の式(使用した放射率は 12 サンプル)を用 いて得られた,Fig. 72 と同様の図である。このように放射率の不確定性をやや狭める(すなわち灰色画 素の基準をやや厳しくする)ことにより,バイアスがほぼ除かれることが分かる。実際,-0.1 ~ 0.1 の範 囲について誤差の平均値及び標準偏差を求めるとそれぞれ 0.0022 及び 0.0098 となり,従来手法のそれら (-0.012 及び 0.021)と比べて,バイアスは 1/5 以下,標準誤差は 1/2 以下となっている。

なお,特に AVHRR におけるこうした放射率下限値の選び方の問題に対しては,最初に簡単な土地被覆 分類を行い,分類項目ごとに放射率下限値の異なる EMC/WVD 推定式を適用する方法が有効かも知れな い。また,上述のように,ASTER の場合は EMC/WVD 法の精度は地表被覆物質にあまり依存しないが, 放射率下限値についてはやはり実データに基づいてチューニングする必要があるだろう。

#### (3) 植生放射率に基づく比較評価

植生については,前述の水域のように室内測定放射率を真値と仮定することは難しい。その理由は,植 生の場合には空間密度や表面形状,植生の種類の違いなどによって放射率が異なるためである。しかしな がら,一般には密な植生域の放射率は多重散乱効果により近似的に黒体に近い性質を持つことが知られて いることから,ここでは陸域上での手法の比較検証を行うため,Fig.67 で植生と判定された画素が密な植 生域であると考え,さらに Ch.4 の放射率として一律 0.97 を仮定して,前述の水域と同様の手順によって 検証を行った。この 0.97 という数値に誤差があると,これを用いて得られる Ch.5 の放射率にも誤差が派 生するが,対象とする各画素が密な植生域であるならば,Ch.5 の放射率に派生する誤差はバイアス的で,



Figure 70: Error map of the sea surface emissivity at channel 5 derived from the WVS method. The truth is the laboratory emissivity for sea water (= 0.9859).



Figure 71: Error map of the sea surface emissivity at channel 5 derived from the normal method. The truth is the laboratory emissivity for sea water (= 0.9859).



Figure 72: Frequency distribution of the error of the sea surface emissivity at channel 5 derived from the WVS and the normal methods. The EMC/WVD equation for the lower limit of emissivity of 0.95 was used.



Figure 73: Frequency distribution of the error of the sea surface emissivity at channel 5 derived from the WVS and the normal methods. The EMC/WVD equation for the lower limit of emissivity of 0.97 was used.

ばらつきはそれほど大きくならないものと考えられる。

Fig. 74 及び Fig. 75 は,それぞれ WVS 法及び従来手法による結果(Ch.5 の放射率)である。植生以 外の画素は白抜きしてある。両図を比較すると,WVS 法による放射率の方が従来手法による放射率より 空間的ばらつきがやや小さいように見受けられる。これをより明確に示すため,Ch.5 の放射率の度数分布 を示したものが Fig. 76 である。同図より,明らかに WVS 法の方が Ch.5 の放射率のばらつきが小さいこ とが分かる。このように,Ch.5 の放射率のばらつきが一方の手法のみでより大きく表れていることは,従 来手法側に大気補正誤差が多く含まれていることを示していると考えるのが妥当である。また分布のピー クに注目すると,WVS 法では Ch.4 の放射率値(=0.97)に極めて近いのに対し,従来手法ではそれより 小さい側にややずれている。このように,WVS 法において Ch.4 と Ch.5 の放射率が近い値を持ったこと は,Ch.4 の放射率として与えた 0.97 という値が妥当であったことを示している。なお,Ch.5 の放射率の 平均値及び標準偏差は,WVS 法がそれぞれ 0.9683 及び 0.0108,従来手法がそれぞれ 0.9540 及び 0.0183 である。前述の海面放射率に基づく検証と同様に,陸上においても WVS 法の標準誤差は従来手法の 1/2 程度となっている。

7.5 まとめ

全球解析データの高精度化に基づく実用的な大気補正アルゴリズムとして WVS 法を提案した。この手法は,シーン内に最低1個の灰色画素があれば全球解析データの精度を改善でき,また,仮に灰色画素が 全く無い場合でもオリジナルの全球解析データに基づく大気補正が可能であるため,全球の定常処理シス テムに実装可能な極めて高い適用性を持つ手法である。

シミュレーションに基づいて WVS 法と従来手法(全球解析データに基づく単パンドアルゴリズム)の 比較評価を行った結果では,WVS 法の精度はラジオゾンデデータに基づく単パンドアルゴリズムの精度 と同等もしくはそれ以上であり,将来型サウンダ(EOS-PM/AIRS や METOP/IASI)に基づく単パンド アルゴリズムの精度より高いことが示された。また,本手法は水蒸気プロファイルのバイアス誤差を除去 することを目的に設計されたが,気温プロファイルのバイアス誤差も同様に除去する効果があり,またバ イアス以外の誤差にも対応できることが示された。さらに,豊後水道付近を中心とする緯経度 3° 四方の AVHRR データを用いた検証結果では,従来手法が大きな誤差を生じた雲の縁辺部などにおいても WVS 法は良い精度を維持し,海面放射率に基づく評価では,従来手法と比べてパイアス誤差が1/5以下,標準 誤差が1/2 以下であった。また,密な植生域を用いた陸上での比較検証においても海上と同様の結果が得



Figure 74: Emissivity at channel 5 of vegetation surfaces derived from the WVS method. Emissivity at channel 4 of vegetation surfaces was assumed to be 0.97.



Figure 75: Emissivity at channel 5 of vegetation surfaces derived from the normal method. Emissivity at channel 4 of vegetation surfaces was assumed to be 0.97.



Figure 76: Frequency distribution of the emissivity at channel 5 of vegetation surfaces derived from the WVS and the normal methods. Emissivity at channel 4 of vegetation surfaces was assumed to be 0.97. The EMC/WVD equation for the lower limit of emissivity of 0.95 was used.

られた。

なお,上ではWVS 法の精度はラジオゾンデデータに基づく単バンドアルゴリズムの精度と同等もしくは それ以上と述べたが,これはラジオゾンデの観測精度を根拠にしている。本論中には延べてないが,WVS 法は熱赤外データ自身を大気補正に使うため,除去される大気効果は各画素の観測光路内の大気分子によ る効果に時間的・幾何的に完全に一致しているのに対し,ラジオゾンデの場合は,各画素の観測光路に沿っ たプロファイル観測を衛星観測に同期して瞬時に行うことは到底できるものではない。このように,大気 補正における「光路の完全一致性」と「完全同期性」という点からも,WVS 法の有効性を述べることがで きる。

以上を総合して,本章で提案した WVS 法は極めて実用的な手法であると結論付けることができる。

### 8 結論

本論文は,熱赤外マルチスペクトルセンサによる陸域観測データのための実用的な大気補正アルゴリズ ムを開発することを目的とした。

まず,従来のアルゴリズムの中で最も実用的である全球解析データに基づく単バンドアルゴリズムにつ いて,シミュレーションモデル及び日本周辺のAVHRRデータに基づく検証を行った。シミュレーション モデルに基づく検証では,気温及び水蒸気の各プロファイル誤差の典型値に注目し,水蒸気のプロファイ ル誤差が大気補正における主たる誤差因子となり得ることを示した。また,AVHRRデータに基づく検証 では,霞ヶ浦におけるフィールド実験に基づく検証,衛星直下画素に基づく検証,GPS可降水量データに 基づく検証を行った。それらの結果からは,AVHRR/Ch.4において,日本の夏場でおよそ±1 程度,冬 場でおよそ±0.5 程度の大気補正精度が得られたが,水蒸気吸収,特に連続吸収が大きいCh.5ではCh.4 より精度がかなり悪いことを示し,こうした大気補正精度のチャネル依存性が地表のスペクトル解析に大 きな影響を及ぼす可能性を指摘した。更に,全球解析データの時空間分解能以下の局所的な気象現象によっ て大気補正誤差を生じることや,雲の少々の混入により大きな負の残差を生じることを示した。また,定 常気象観測点が希薄な南半球では今回の結果より精度が更に悪くなる可能性も述べた。

次に,放射率の不確定性を考慮した陸域観測のための差分吸収アルゴリズムの開発を行った。最初に導入 した EMC 法は観測輝度温度のチャネル間の線形和によって地上レベルの地表輝度温度を推定する手法で あり,MC 法に比べて放射率の不確定性に対するロバスト性が高い特徴を持つことを示した。また,EMC 法に François 6の WVD アルゴリズムを取り入れた EMC/WVD 法は,EMC 法より更に種々の誤差因子 に対してロバストであり,放射率が不確定な条件下でも高精度に地上レベルの地表輝度温度を推定可能で あることを示した。一般に ASTER / TIR は(1)大気透過性の良い波長帯に各チャネルが配置されてい る(2)NEAT が 0.3K とやや大きい(3)一部のチャネルがオゾン吸収帯に位置している,などから差 分吸収アルゴリズムが適さないと言われているが,例えば水蒸気量が±1g/cm<sup>2</sup>以内の精度で利用可能な 条件下において ASTER/Ch.12 に対して EMC/WVD 法を用いた場合,最小放射率が 0.95 以上の物質の みに適用する場合は 0.81K,全ての地表被覆物質に適用する場合は 0.92K の RMSE で地上レベルの地表輝 度温度を推定可能であり,十分に実用レベルの精度が得られることを示した。但し,地上レベルの地表輝 度温度は LST と共に放射率及び天空輝度の関数であるため,EMC/WVD 法を利用して LST を得るため にはこれらのパラメータの分離が必要であること,また EMC/WVD 法の精度はチャネル間で大きく異な ること,などの問題点も指摘した。

次に提案した GP 法は,観測シーンを複数の小領域に区切った後,各領域内の灰色画素を抽出して EMC 法あるいは EMC/WVD 法を適用し,地表放射輝度と観測放射輝度の間で回帰を取ることによって各領域 ごとの透過率及び光路輝度を推定すると共に,透過率及び光路輝度の各推定値に基づいて天空輝度を回帰 推定する手法である。EMC 法を使う場合には外部の大気データや標高データを必要としない自己推定型 アルゴリズムであるというメリットがあり,また EMC/WVD 法を使う場合も総水蒸気量の概算値さえあ れば大気効果パラメータの推定が可能で,精度的には EMC 法を使う場合も以り有利である。但し,灰色画 素における LST の標準偏差が 2K 未満のケースでは誤差が大きくなるため,水域のように LST の空間変 動が小さい灰色画素カテゴリーに対しては他のカテゴリー(植生等)と組み合わせて LST のごらつきを大 きく取る必要がある。また,原理的に小領域内で大気効果パラメータが不均質なケースでは誤差を生じる が,例えば2つの標高が存在するケースでは,温暖湿潤大気では透過率を overestimate,寒冷乾燥大気で は透過率を underestimate する傾向があることが示された。また,抽出した灰色画素の中に非灰色画素が わずか 5%程度混入するケースでも実用精度に達しない可能性があるため,前処理である灰色画素の抽出 処理は正確に行う必要がある。以上より,GP 法は自己推定型であるというメリットを持つ反面,上記のよ うな精度低下を引き起こす幾つかの要因により,全球対応の定常処理システムへの実装には向いていない。

以上のような成果を受けて最後に開発した手法は,全球解析データの高精度化に基づく大気補正アルゴ リズム – WVS法 – である。この手法は,上記の各手法と数値予報における最適内挿法を組み合わせた手 法で,シーン内に最低1個の灰色画素があれば全球解析データの精度を改善でき,また,仮に灰色画素が 全く無い場合でもオリジナルの全球解析データに基づく大気補正が可能であるため,全球の定常処理シス テムに実装可能な極めて高い適用性を持つ。また,同時に提案した高速計算アルゴリズムにより,実用時 間で処理を実行できる。精度においては,水蒸気プロファイルの系統誤差ばかりでなく,気温プロファイ ルの系統誤差も同様に大きく低減する効果が認められ,従来手法(全球解析データに基づく単バンドアル ゴリズム)よりもこれらの誤差に対する感度が極めて小さいことが示された。そして,その精度は,水蒸 気プロファイルが数%程度の精度で利用可能なケースにほぼ匹敵し,これはラジオゾンデによる同期観測 データを使用する場合と同等もしくはそれを上回る精度で,将来型サウンダの観測データを使用する場合 よりも精度が高いものである。プロファイル形状が全く異なるケースに対しても,多少の精度の低下はあ るものの,従来手法に比べて極めて高い精度を持つことが示された。また,AVHRRデータを利用した検 証では,従来手法が大きな誤差を生じるケースに対しても WVS 法は良い精度を維持し,海面放射率に基 づく評価では前者の手法と比べてパイアス誤差が1/5 以下,標準誤差が1/2 以下であり,植生放射率に基

づく評価でも同様の結果が得られた。更に, WVS 法には「光路の完全一致性」と「完全同期性」という大気補正アルゴリズムに有利な2つの特徴も持っている。

以上を総合して,本論文で開発した WVS 法は,陸域における熱赤外マルチスペクトルデータの実用的 な大気補正アルゴリズムであると結論付けることができる。 本研究を進めるに際して東京大学大学院工学系研究科の六川修一助教授には多大なる御指導及び御鞭撻 を賜った。また,第4章及び第7章で使用した AVHRR データの一部について,御提供を賜った。

ASTER サイエンスチーム会議の場では,本論文を執筆するに当たって様々な御助言を頂いた。特に, NASA/JPL の F. Palluconi 氏,アリゾナ大学の K. Thome 氏,佐賀大学の新井康平氏,元気象研究所の 高島勉氏,長崎大学の森山雅雄氏,東京工業大学の松永恒雄氏,地質調査所の土田聡氏,カリフォルニア 大学サンタバーバラ校の Z. Wan 氏などの諸氏には多くの有意義な御助言を頂いた。

本論文の全般で使用したスペクトルライブラリは元米国ジョーンズホプキンズ大学の J. Salisbury 氏より御提供を賜った。また, ASTER の応答関数は ASTER サイエンスチームを通じて富士通(株)より御 提供頂いたプレフライトモデル測定データを使用した。

第4章で使用した AVHRR データの一部は環境庁国立環境研究所情報解析室の御厚意により, GPS 連続 観測システムデータは国土地理院測地観測センターの御厚意により御提供を賜った。また, 霞ヶ浦におけ るフィールド実験は ASTER プロジェクトの一部として実施され,(財)資源・環境観測解析センターには 多大なる御支援を賜った。同センター調査研究部の町田晶一元研究員,土肥直之研究員,東京大学大学院 生の作野裕司氏,茨城大学学生諸氏には同実験データ取得時に甚大なる御支援を頂いた。また,GPS 可降 水量の計算については,筑波大学大学院生の佐々木太一氏より有意義な情報を頂いた。

以上の各位に対し,ここに深甚なる感謝の意を表する次第である。

## 参考文献

- Asrar, G., and R. Greenstone, 1995 MTPE/EOS reference handbook, NASA/Goddard Space Flight Center, Greenbelt, MD, 277p, 1995.
- [2] Sellers, P. J., F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, Ther first ISLSCP Field Experiment (FIFE), Bull. Amer. Meteorol, Soc., Vol.69, No.1, pp.22-27, 1988.
- [3] Schmugge, T. J., W. P. Kustas, and K. S. Humes, Monitoring land surface fluxes using ASTER observations, *IEEE Trans. Geosci. Remote Sens.*, Vol.36, No.5, pp.1421-1430, 1998.
- [4] 中根和郎, 幾志新吉, NOAA AVHRR のGAC データを用いたアジア各地の月平均気温の推定, 日本 リモートセンシング学会誌, Vol.13, No.1, pp.14-26, 1993.
- [5] Shinha, A., Relative influence of lapse rate and water vapor on the greenhouse effect, J. Geophys. Res., Vol.100, No.D3, pp.5095-5103, 1995.
- [6] Zhang, L., R. Lemeur, and J. P. Goutorbe, A one-layer resistance model for estimation regional evapotransipiration using remote sensing data, in Agricul. and Forest Meteorol., Vol.77, pp.241-261, 1995.
- [7] 金子大二郎, 日野幹雄, TM と国土数値情報を用いた海風による地表温度低下効果の解析, 日本リモー トセンシング学会誌, Vol.13, No.3, pp.1-14, 1993.
- [8] 近藤昭彦, 菅野洋光, 三上岳彦, ランドサット TM 夜間熱映像と DTM の重ね合わせによる斜面温暖
  帯の解析, 日本リモートセンシング学会誌, Vol.12, No.2, pp.33-42, 1992.
- [9] 近藤昭彦, 栗原昭子, 三上岳彦, ランドサットデータによる関東平野の諸都市のヒートアイランド強度の解析, 日本リモートセンシング学会誌, Vol.13, No.2, pp.32-42, 1993.
- [10] 浦井稔, 磯部一洋, 夜間ランドサットデータによる雲仙火山の表面温度の推移, 日本リモートセンシン グ学会誌, Vol.15, No.1, pp.3-15, 1995.
- [11] 堀口郁夫, 劉大力, 谷宏, 町村尚, NOAA/AVHRR データによる森林火災地の植生指数と地表面温度 による回復状況の解析, 日本リモートセンシング学会誌, Vol.14, No.2, pp.14-23, 1994.
- [12] 金子大二郎, 日野幹雄, 蒸発散に伴う森林温度の低下に関する TM による実態把握, 日本リモートセンシング学会誌, Vol.13, No.1, pp.1-13, 1993.
- [13] 川村政和,山口靖,宮城県鬼首地域における赤外線熱映像調査 地熱探査技術試験等検証調査栗駒地域,物理探鉱,Vol.35, No.6, pp.13-29, 1982.

- [14] Watson, K., Regional thermal-inertia mapping from an experimental satellite, Gephys., Vol.47, No.12, pp.1681-1687, 1982.
- [15] 梅干野晃, 飯野秋成, ひとまとまりの面積ごとにみた都市緑被の放射温度分布の実態, 日本リモート センシング学会第17回学術講演会論文集, pp.9-10, 1994.
- [16] Dozier, J., and Z. Wan, Development of practical multiband algorithms for estimating land-surface temperature from EOS/MODIS data, Adv. Space Res., Vol.14, No.3, pp.381-390, 1994.
- [17] Prabhakara, C, G. Dalu, and V. G. Kunde, Estimation of sea surface temperature from remote sensing in the 11- to 13-μm window region, J. Geophys. Res., Vol.79, No.33, pp.5039-5044, 1974.
- [18] Deschamps, P. Y., and T. Phulpin, Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12μm, Bound. Layer Met., Vol.18, pp.131-143, 1980.
- [19] Becker, F., The impact of spectral emissivity on the measurement of land surface temperature from a satellite, Int. J. Remote Sens., Vol.8, No.10, pp.1509-1522, 1987.
- [20] Ottle, C., D. Vidal-Madjar, Estimation of land surface temperature with NOAA9 data, Remote Sens. Environ., Vol.40, pp.27-41, 1992.
- [21] Becker, F., and Z.-L. Li, Towards a local split window method over land surfaces, Int. J. Remote Sens., Vol.11, No.3, pp.369-393, 1990.
- [22] Sobrino, J. A., C. Coll, and V. Caselles, Atmospheric correction for land surface temperature using NOAA-11AVHRR channels 4 and 5, *Remote Sens. Environ.*, Vol.38, pp.19-34, 1991.
- [23] Vidal, A., Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data, Int. J. Remote Sens., Vol.12, No.12, pp.2449-2460, 1991.
- [24] Kerr, Y. H., J. P. Lagouarde, and J. Imbernon, Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm, *Remote Sens. Environ.*, Vol.41, pp.197-209, 1992.
- [25] Coll, C., V. Caselles, J. A. Sobrino, and E. Valor, On the atmospheric dependence of the splitwindow equation for land surface temperature, Int. J. Remote Sens., Vol.15, No.1, pp.105-122, 1994.
- [26] Sobrino, J. A., Z. L. Li, M. P. Stoll, and F. Becker, Improvements in the split-window technique for land surface temperature determination, *IEEE Trans. Geosci. Remote Sens.*, Vol.32, No.2, pp.243-253, 1994.

- [27] Wan, Z., and J. Dozier, A generalized split-window algorithm for retrieving land-surface temperature from space, *IEEE Trans. Geosci. Remote Sens.*, Vol.34, No.4, pp.892-905, 1996.
- [28] Salisbury, J. W., and D. M. D'Aria, Infrared (8-14µm) remote sensing of soil particle size, *Remote Sens. Environ.*, Vol.42, No.2, pp.157-165, 1992.
- [29] 浦井稔, 松永恒雄, 石井武政, 中国モウス砂漠で採取された砂丘砂の土壌水分量と熱赤外域分光放射 率との関係, 日本リモートセンシング学会誌, Vol.17, No.4, pp.14-23, 1997.
- [30] McMillin, L. M., Estimation of sea surface temperatures from two infrared window measurements with different absorption, J. Geophys. Res., Vol.80, No.36, pp.5113-5117, 1975.
- [31] Barton, I. J., A. M. Zavody, D. M. O'Brien, D. R. Cutten, R. W. Saunders, and D. T. Llewellyn-Jones, Theoretical algorithms for satellite-derived sea surface temperatures, J. Geophys. Res., Vol.94, No.D3, pp.3365-3375, 1989.
- [32] François, C., and C. Ottlé, Atmospheric corrections in the thermal infrared: global and water vapor dependent split-window algorithms - applications to ATSR and AVHRR data, *IEEE Trans. Geosci. Remote Sens.*, Vol.34, No.2, pp.457-470, 1996.
- [33] Becker, F., P. Ramanantsizehena, and M. Stoll, Angular variation of the bidirectional reflectance of bare soils in the thermal infrared band, *Appl. Opt.*, Vol.24, No.3, pp.365-375, 1985.
- [34] Kimes, D. S., and J. A. Kirchner, Directional radiometric measurements of row crop temperatures, Int. J. Remote Sens., Vo.4, pp.299-311, 1983.
- [35] Li, Z.-L., and F. Becker, Feasibility of land surface temperature and emissivity determination from AVHRR data, *Remote Sens. Environ.*, Vol.43, No.1, pp.67-85, 1993.
- [36] Wan, Z., and Z.-L. Li, Physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, *IEEE Trans. Geosci. Remote Sens.*, Vol.35, No.4, pp.980-996, 1997.
- [37] Price, J. C., Land surface temperature measurements from the split window channels of the NOAA
  7 Advanced Very High Resolution Radiometer, J. Geophys. Res., Vol.89, No.D5, pp.7231-7237, 1984.
- [38] Hook, S. J., A. R. Gabell, A. A. Green, and P. S. Kealy, A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies, *Remote Sens. Environ.*, Vol.42, No.2, pp.123-136, 1992.

- [39] Ottlé, C., and M. Stoll, Effect of atmospheric absorption and surface emissivity on the determination of land surface temperature from infrared satellite data, *Int. J. Remote Sens.*, Vo.14, No.10, pp.2025-2037, 1993.
- [40] Palluconi, F., G. Hoover, R. Alley, M. J. Nilsen, and T. Thompson, An atmospheric correction method for ASTER thermal radiometry over land, ASTER Algorithm Theoretical Basis Document (ATBD) Rev.2, 1996.
- [41] Kealy, P.S. and A.R.Gabell, Estimation of Emissivity and Temperature Using Alpha Coefficients, in Proc. of the Second Thermal Infrared Multispectral Scanner (TIMS) Workshop, JPL Publication 90-55, pp.11-16, 1990.
- [42] Realmuto, V. J., Separating the effects of temperature and emissivity : Emissivity spectrum normalization, in Proc. of the Second Thermal Infrared Multispectral Scanner (TIMS) Workshop, JPL Publication 90-55, pp.31-35, 1990.
- [43] Stoll, M., Land surface temperature and emissivity retrieval from passive remote sensing measurements, in Proc. of the Third Thermal Infrared Multispectral Scanner (TIMS) Workshop, JPL Publication 91-29, pp.10-13, 1991.
- [44] Kahle, A. B., and R. E. Alley, Separation of temperature and emittance in remotely sensed radiance measurements, *Remote Sens. Environ.*, Vol.42, No.2, pp.107-112, 1992.
- [45] 松永恒雄, 熱赤外分光放射率の平均及び最大, 最小値の経験的関係を用いた温度 放射率分離手法, 日本リモートセンシング学会誌, Vol.14, No.3, pp.230-241, 1994.
- [46] Gillespie, A. R., S. Rokugawa, S. J. Hook, T. Matsunaga, and A. B. Kahle, Temperature / Emissivity separation, ASTER Algorithm Theoretical Basis Document (ATBD) Ver.2.0, 1995.
- [47] Barducci, A., and I. Pippi, Temperature and emissivity retrieval from remotely sensed images using the 'grey body emissivity' method, *IEEE Trans. Geosci. Remote Sens.*, Vol.34, No.3, pp.681-695, 1996.
- [48] Schmugge, T., S. J. Hook, and C. Coll, Recovering surface temperature and emissivity from thermal infrared multispectral data, *Remote Sens. Environ.*, Vol.65, pp.121-131, 1998.
- [49] 気象庁, 数値予報のための衛星データ同化, 数値予報課報告-別冊第45号, 132p., 1999.
- [50] Kalnay, E., M. Kanamitsu, and W. E. Baker, Global numerical weather prediction at the National Meteorological Center, Amer. Meteorol. Soc., Vol.71, No.10, pp.1410-1428, 1990.
- [51] 時岡達志,山岬正紀,佐藤信夫,気象の数値シミュレーション,東京大学出版会,247p.,1993.

- [52] Lyon, R. J. P., Analysis of rocks by spectral infrared emission (8 to 25 microns), Econ. Geol., Vol.60, pp.715-736, 1965.
- [53] Salisbury, J. W., L. S. Walter, and D. D'Aria, Midinfrared (2.5 to 13.5 μm) spectra of igneous rocks, USGS Open File Report 88-686, Reston, VA, 126pp, 1988.
- [54] Salisbury, J. W., and N. M. Milton, Thermal infrared (2.5- to 13.5-μm) directional hemispherical reflectance of leaves, *Photogram. Engrg. Remote Sens.*, Vol.54, No.9, pp.1301-1304, 1988.
- [55] Salisbury, J. W., and D. M. D'Aria, Emissivity of terrestrial materials in the 8-14μm atmospheric window, *Remote Sens. Environ.*, Vol.42, No.2, pp.83-106, 1992.
- [56] 中川一朗, 日本分光学会測定法シリーズ 16 振動分光学, 学会出版センター, 261p., 1987.
- [57] Masuda, K., T. Takashima, and Y. Takayama, Emissivity of pure and sea waters for the model sea surface in the infrared window regions, *Remote Sens. Environ.*, Vol.24, No.2, pp.313-329, 1988.
- [58] 外岡秀行, 衛藤秀章, 星仰, 二宮芳樹, 松永恒雄, 山口靖, 熱赤外域における建設材料の分光特性に関する基礎的研究, 日本リモートセンシング学会第 17 回学術講演会論文集, pp.119-120, 1994.
- [59] Dozier, J., and S. G. Warren, Effect of viewing angle on the infrared brightness temperature of snow, Water Resources Res., Vol. 18, No.5, pp.1424-1434, 1982.
- [60] Labed, J., and M. P. Stoll, Angular variation of land surface spectral emissivity in the thermal infrared - Laboratory investigations on bare soils, Int. J. Remote Sens., Vol.12, pp.2299-231, 1991.
- [61] Rees, W. G., and S. P. James, Angular variation of the infrared emissivity of ice and water surfaces, Int. J. Remote Sens., Vol.13, No.15, pp.2873-2886, 1992.
- [62] http://www.hitran.com/
- [63] Anderson, G. P., F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kinball, and R. A. McClatchey, FASCODE / MODTRAN / LOWTRAN : Past/Present/Future, in Proc. of The 18th Annual Review Conference on Atmospheric Transmission Models, 1995.
- [64] Kneizys, F. X., E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough, Users guide to LOWTRAN 7, AFGL-TR-88-0177, Air Force Geophys. Lab., HANSCOM AFB, MA, 137pp, 1988.
- [65] Berk, A., L. S. Bernstein, and D. C. Robertson, MODTRAN: A moderate resolution model for LOWTRAN 7, Spectral Sciences Inc., Burlington, MA, 48pp, 1989.

- [66] Vermote, E., D. Tanre, J. L. Deuze, M. Herman, and J. J. Morcrette, Second Simulation of the Satellite Signal in the Solar Spectrum (6S), 6S User Guide Ver. 1.7.
- [67] Wang, J., G. P. Anderson, H. E. Revercomb, and R. O. Knuteson, Validation of FASCODE3 and MODTRAN3: Comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions, Appl. Opt., Vol.35, No.30, pp.6028-6040, 1996.
- [68] Wiscombe, W. J., and J. W. Evans, Exponential-sum fitting of radiative transmission functions, J. Comput. Phys., Vol.24, No.,4, pp.416-444, 1977.
- [69] Thome, K., B. Markham, P. Slater, and S. Biggar, Radiometric calibration of Landsat, *Photogram. Engrg. Remote Sens.*, Vol.63, No.7, pp.853-858, 1997.
- [70] Mika, A. M., Three decades of Landsat instruments, Photogram. Engrg. Remote Sens., Vol.63, No.7, pp.839-852, 1997.
- [71] 藤定広幸, ASTER センサシステムの概要, 日本リモートセンシング学会誌, Vol.15, No.2, pp.8-15, 1995.
- [72] Thome, K., K. Arai, S. Hook, H. Kieffer, H. Lang, T. Matsunaga, A. Ono, F. Palluconi, H. Sakuma, P. Slater, T. Takashima, H. Tonooka, S. Tsuchida, R. M. Welch, and E. Zalewski, ASTER preflight and inflight calibration and the validation of level 2 products, *IEEE Trans. Geosci. Remote Sens.*, Vol.33, No.4, pp.1161-1172, 1998.
- [73] Kidwell, K. B., NOAA polar orbiter data users guide, U.S. Government Printing Office: 1995-630-673, 1995.
- [74] 気象衛星センター, TOVS データ処理システムの解説, 気象衛星センター技術報告特別号, 156p., 1983.
- [75] Mutlow, C., ATSR-1/2 User Guide, 27p., 1998.
- [76] Barbieri, R., Draft of the MODIS level 1B algorithm theoretical basis document ver. 2.0 (ATBMOD-01), 70p., 1997.
- [77] http://ltpwww.gsfc.nasa.gov/MODIS/MODIS.html.
- [78] Kahle, A. B., and L. C. Rowan, Evaluation of multispectral middle infrared aircraft images forlithologic mapping in the East Tintic Mountains, Utah, *Geology*, Vol.8, pp.234-239, 1980.
- [79] Palluconi, F. D., and G. R. Meeks, Thermal Infrared Multispectral Scanner (TIMS): an investigator's guide to TIMS data, JPL Publication 85-32, 1985.
- [80] http://ltpwww.gsfc.nasa.gov/MAS/Home.html.

- [81] http://masterweb.jpl.nasa.gov/.
- [82] Becker, F., and Z.-L. Li, Temperature-independent spectral indices in thermal infrared bands, *Remote Sens. Environ.*, Vol.32, pp.17-33, 1990.
- [83] Anding, D., and Kauth, R., Estimation of sea surface temperature from space, *Remote Sens. Environ.*, Vol.1, pp.217-220, 1970.
- [84] Saunders, P. M., Aerial measurement of sea surface temperature in the infrared, J. Geophys. Res., Vol.72, p.4109-4117, 1967.
- [85] 横山隆三, 丹波澄雄, 渡辺孝志, Split Window 法による海表面温度推定式の係数項の性質について, 日本リモートセンシング学会誌, Vol.12, No.3, pp.21-27, 1992.
- [86] Sobrino, J. A., Z.-L. Li, and M. P. Stoll, Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperature, *IEEE Trans. Geosci. Remote Sens.*, Vol.31, No.5, pp.946-952, 1993.
- [87] Strong, A. E., Monitoring El Chichón aerosol distribution using NOAA-7 satellite AVHRR sea surface temperature observations, *Geofisica Intl.*, Vol.23, No.2, pp.129-141, 1984.
- [88] Walton, C., Satellite measurement of sea surface temperature in the presence of volcanic aerosols, J. Climate Appl. Meteorol., Vol.24, No.6, pp.501-507, 1985.
- [89] Weinreb, P. M., G. Hamilton, and S. Brown, Nonlinearity corrections in calibration of Advanced Very High Resolution Radiometer infrared channels, J. Geophys. Res., Vol.95, No.C5, pp.7381-7388, 1990.
- [90] Minnett, P. J., The regional optimization of infrared measurements of sea surface temperature from space, J. Geophys. Res., Vol.95, pp.13497-13510, 1990.
- [91] Harris, A. R., and I. M. Mason, An extension to the split-window technique giving improved atmospheric correction and total water vapour, Int. J. Remote Sens., Vol.13, No.5, pp.881-892, 1992.
- [92] Yu, Y., and I. J. Barton, A non-regression-coefficients method of sea surface temperature retrieval from space, Int. J. Remote Sens., Vol.15, No.6, pp.1189-1206, 1994.
- [93] Walton, C. C., Nonlinear multichannel algorithm for estimating sea surface temperature with AVHRR satellite data, J. Appl. Meteor., Vol.27, pp.115-124, 1988.

- [94] Chédin, A., N. A. Scott, C. Wahiche, and P. Moulinier, The improved initialization inversion method: A high resolution physical method for temperature retrievals from TIROS-N series, J. Clim. Appl. Meteorol., Vol.24, pp.128-143, 1985.
- [95] Jedlovec, G. J., Precipitable water estimation from high-resolution split window radiance measurements, J. Appl. Meteorol., Vol.29, pp.863-877, 1990.
- [96] Ulivieri, C. and G. Cannizzaro, Land surface temperature retrievals from satellite measurements, Acta Astronautica, Vol.12, No.12, pp.997-985, 1985.
- [97] Prata, A. J., and C. M. R. Platt, Land surface temperature measurements from the AVHRR, in Proc. of 5th AVHRR Data Users Conference, June 25-28, Tromso, Norway, EUM P09, pp.433-438, 1991.
- [98] Ulivieri, C., M. M. Castronuovo, FR. rancioni, and A. Cardillo, A split window algorithm for estimating land surface temperature from satellites, Adv. Space Res., Vol.14, No.3, pp.59-65, 1994.
- [99] Wan, Z., and W. Snyder, MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD) (Version 3.2), NAS5-31370, 75p., 1996.
- [100] NGDC/WDCA MGG-ETOPO5 Documentation, http://www.ngdc.noaa.gov/mgg/global/etopo5 .HTML.
- [101] U.S. Geological Survey, GTOPO30 Documentation, Sioux Falls, SD, U.S. Geological Survey, EROS Data Center, http:// edcwww.cr.usgs.gov/landdaac/gtopo30 /README.html, 1997.
- [102] NCEP/NCAR CDAS, Reanalysis Project Home Page, http://wesley.wwb.noaa.gov/reanlysis.html.
- [103] 外岡秀行, 六川修一, 地表面物質の分光放射率に見られる線形性と温度・放射率分離手法, 日本リモー トセンシング学会第 15 回学術講演会論文集, pp.169-172, 1993.
- [104] 国立天文台編, 理科年表(第71冊), 丸善, 1998.
- [105] Experimental web site of Suranjana Saha at the Global Modeling Branch, EMC, NCEP, USA, http://lnx40.wwb.noaa.gov/.
- [106] 外岡秀行, 六川修一, 石井吉徳, 温度・放射率分離手法における大気補正誤差の影響評価とその低減手法, 日本リモートセンシング学会誌, Vol.13, No.2, pp.33-43, 1993.
- [107] Barton, I. J., Satellite-derived sea surface temperatures: Current status, J. Geophys. Res., Vol.100, No.C5, pp.8777-8790, 1995.

- [108] Yokoyama, R., and S. Tanba, Estimation of sea surface temperature via AVHRR of NOAA-9 comparison with fixed buoy data, Int. J. Remote Sens., Vo.12, No.12, pp.2513-2528, 1991.
- [109] Sakaida, F., and H. Kawamura, Estimation of sea surface temperatures around Japan using the Advanced Very High Resolution Radiometer (AVHRR) /NOAA-11, J. Oceanogr., Vol.48, pp.179-192, 1992.
- [110] 丹波澄雄, 深澤昌彦, 横山隆三, 海表面鉛直温度観測システムデータに基づいた衛星海表面温度の精度検証, 第 22 回日本リモートセンシング学会学術講演会論文集, pp.39-42, 1997.
- [111] 鳥羽良明編, 大気・海洋の相互作用, 東京大学出版会, 336p, 1996.
- [112] 丹波澄雄,相馬孝志,渡辺孝志,横山隆三, Split Window Function による海表面温度推定誤差と気象・ 海象条件,日本リモートセンシング学会誌, Vol.11, No.4, pp.21-32, 1991.
- [113] Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system, J. Gephys. Res., Vol.97, No.D14, pp.15787-15801, 1992.
- [114] 畑中, 辻, 市川, 木股, 萬納寺, 野村, 青梨, 柴田, 内藤, 第1回 GPS 気象学ワークショップ報告, 天気, Vol.43, pp.181-186, 1996.
- [115] 万納寺信崇, 国土地理院 SINEX ファイルから可降水量を計算する方法, http://db00.cr.chiba-u.ac.jp/gps\_met/GpsHome\_j.html, 1998.
- [116] 大谷竜, 辻宏道, 萬納寺信崇, 瀬川爾朗, 内藤勲夫, 国土地理院 GPS 観測網から推定された可降水量,
  天気, Vol.44, pp.317-325, 1997.
- [117] 有山俊朗, 六川修一, レーウィンゾンデに基づく日本の大気モデルの作成と ASTER TIR の大気補正 における水蒸気量プロファイルの影響評価, 日本リモートセンシング学会誌, Vol.15, No.3, pp.2-15, 1995.
- [118] **清水喜允**, 数値予報(下) 客観解析法, 気象研究ノート, 134 号, pp.251-272, 1978.
- [119] 増田善信, 気象学のプロムナード3 数値予報, 東京堂出版, 1981.
- [120] Running, S. W., C. Justice, V. Salomonson, D. Hall, J. Barker, Y. Kaufman, A. Strahler, A. Huete, J.-P. Muller, V. Vanderbilt, Z. Wan, and P. Teillet, Terrestrial remote sensing science and algorithms planned for EOS/MODIS, *Int. J. Remote Sens.*, Vol.15, No.17, pp.3587-3620, 1994.
- [121] Kneizys, F. X., L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A.

Clough, The MODTRAN 2/3 report and LOWTRAN 7 model, Phillips Laboratory, Geophysics Directorate: F19628-91-C-0132, 1996.

- [122] Huang, F., Description of NOAA/NMC gridded data products, http://spsosun.gsfc.nasa.gov /nmc\_rev4.html, 1995.
- [123] ftp://nic.fb4.noaa.gov/pub/fnl/fnl.inventory.
- [124] WMO, Guide to GRIB, http://www.wmo.ch/web/www/reports/Guide-binary-2.html.
- [125] Spectral ratio method for measuring emissivity, *Remote Sens. Environ.*, Vol.42, No.2, pp.113-116, 1992.
- [126] AIUB Bernese GPS Software Page, http://www.cx.unibe.ch/aiub/bernese.html.
- [127] GPS MET/JAPAN DATABASE, http://133.82.233.178/gpsmet/.

#### その他、第2章で引用した文献

Nicodemus, F. E., Directional reflectance and emissivity of an opaque surface, *Appl. Optics.*, Vol.4, No.7, pp.767-774, 1965.

- 会田勝,大気と放射過程,東京堂出版,1982.
- 小倉義光, 一般気象学, 東京大学出版会, 1984.
- 櫛田孝司, 光物性物理学, 朝倉書店, 1991.
- 工藤恵栄,分光の基礎と方法,オーム社,1985.
- 近藤純正編著,水環境の気象学 地表面の水収支・熱収支,朝倉書店,1994.
- (財)資源・環境観測解析センター編・発行、新編リモートセンシング用語辞典、1996.
- 高木幹雄,下田陽久監修,画像解析ハンドブック,東京大学出版会,1991.
- 土屋清編著,リモートセンシング概論,朝倉書店,1990.
- 物理学辞典編集委員会編,物理学辞典,培風館,1992.

# 略語

- **AATSR** Advanced Along Track Scanning Radiometer
- ${\bf AFRL}\,$  Air Force Research Laboratory
- AIRS Atmospheric Infrared Sounder

AMeDAS Automated Meteorological Data Acquisition System

**ARC** Ames Research Center

**ASTER** Advanced Spaceborne Thermal Emission and Reflection radiometer

ATBD Algorithm Theoretical Basis Document

 $\mathbf{ATOVS}\xspace$  Advanced TOVS

 ${\bf ATSR}\,$  Along Track Scanning Radiometer

AVHRR Advanced Very High Resolution Radiometer

**AVIRIS** Airborne Visible InfraRed Imaging Spectrometer

**BRDF** Bidirectional Reflection Distribution Function

**CDAS** Climate Data Assimilation System

 ${\bf COADS}$  Comprehensive Ocean-Atmosphere Data Set

**CPSST** Cross Product SST

 ${\bf DEM}~$  Digital Elevation Model

**DN** Digital Number

 ${\bf DVF}\,$  Double Variable Function

ECMWF European Centre for Medium Range Weather Forecasts

**EMC** Environmental Modeling Center

EMC Extended Multichannel

EMC/WVD Extended Multichannel / Water Vapor Dependent

 ${\bf ENVISAT} \ \, {\rm Environmental \ Satellite}$ 

EOS Earth Observing System

EOS-PM Earth Observing System - Post Meridiem

**ERS** European Remote Sensing Satellite

ESA European Space Agency

ETM+ Enhanced Thematic Mapper Plus

ETOPO5 Earth Topographic Five Minute Grid

EUMESAT EUropean organization for exploitation of MEteorological SATellites

FASCODE Fast Atmospheric Signature Code

FWHM Full Width at Half Maximum

 ${\bf GDAS}\,$ Global Data Assimilation System

GENLN2 General Line-by-Line atmospheric transmittance and radiance model

 ${\bf GEOS}\ {\rm Goddard}\ {\rm EOS}$ 

 ${\bf GP}\;\;{\rm Gray}\;{\rm Pixel}$ 

 ${\bf GPS}\,$ Global Positioning System

**GRIB** GRIdded Binary

GTOPO30 Global Topographic Thirty Arcsecond Grid

HIRS High Resolution Infrared Sounder

HITRAN HIgh TRANsmission

IASI Improved Atmospheric Sounding Interferometer

ICRCCM InterComparison of Radiation Codes used in Climate Models

**IFOV** Instantaneous Field of View

**JPL** Jet Propulsion Laboratory

 ${\bf JST}\,$  Japan Standard Time

LANDSAT Land Remote Sensing Satellite

LBLRTM Line-by-line radiative transfer model

LBL Line-by-Line

LOWTRAN Low Resolution Transmittance Code

LST Land Surface Temperature

MASTER MODIS / ASTER Airborne Simulator

MAS MODIS Airborne Simulator

MC Multichannel

MC/WVD Multichannel / Water Vapor Dependent

 $\mathbf{MCSST}$  Multichannel SST

MCT Mercury Cadmium Telluride

**METOP** METeorology OPerational satellite

MISR Multi-Angle Imaging Spectroradiometer

MMD Mean and Max-Min Difference

MODIS Moderate Resolution Imaging Spectroradiometer

MODTRAN Moderate Resolution Transmittance Code

 $\mathbf{MP}$  Multi-Pixel

MP/GP Multi-Pixel / Gray Pixel

 ${\bf MPL}\,$  Mandatory Pressure Levels

MP/RC Multi-Pixel / Reference Channel

MSU Microwave Sounding Unit

 $\mathbf{MTPE}\ \mathrm{Mission}\ \mathrm{To}\ \mathrm{Planet}\ \mathrm{Earth}$ 

**NASA** National Aeronautics and Space Administration

**NCEP** National Centers for Environmental Prediction

NDVI Normalized Difference Vegetation Index

 $\mathbf{NE}\Delta\mathbf{T}$  Noise Equivalent Delta Temperature

**NESDIS** National Environmental Satellite, Data and Information Service

 ${\bf NLSST}$  Non-linear SST

NOAA National Oceanic and Atmospheric Administration

 $\mathbf{QA}$  Quality Assurance

QUAD Quadratic

**RMSE** Root Mean Square Error

 ${\bf RT\,C}\,$  Radiative Transfer Code

SAGE Stratospheric Aerosol and Gas Experiment

SINEX Software-INdependent EXchange format

SST Sea Surface Temperature

SSC Stennis Space Center

SSM/I Special Sensor Microwave / Imager

 ${\bf SW}\,$  Split Window

 ${\bf SWF}$  Split Window Function

SWVR Split Window Variance Ratio

**TES** Temperature and Emissivity Separation

**TE** Temperature and Emissivity

TIGR TOVS Initial Guess Retrieval

**TIMS** Thermal Infrared Multispectral Scanner

**TIROS** Television and InfraRed Observation Satellite

 ${\bf TIR}~{\rm Thermal}~{\rm Infrared}$ 

 ${\bf TISI} \ {\bf Temperature-independent} \ {\bf Spectral} \ {\bf Index}$ 

TMS TM Simulator

 ${\bf TM}\,$  Thematic Mapper

TOMS Total Ozone Mapping/Monitoring System/Spectrometer

TOVS TIROS Operational Vertical Sounder

**USGS** United States Geological Survey

 $\mathbf{WMO}~$  World Meteorological Organization

 $\mathbf{WVD}~$  Water Vapor Dependent

WVS Water Vapor Scaling

付録

## A.1 NCEP / GDAS とそのプロダクト

NCEP の GDAS[50],[122]-[123] は, ラジオゾンデ, 航空機, 船, 人工衛星, 地上観測所などの気象観測 データの客観解析と数値予報モデルを組み合わせた典型的な4次元データ同化システム(現業解析モデル) であり,他の全球モデルに対して最適な初期値を提供することを目的としている。解析時刻は00Z,06Z, 12Z,18Zの1日4時刻で(ZはUTC時刻を示す),観測データの入電打ち切り時刻は00Zが0600Z,06Z が0930Z,12Zが2000Z,18Zが2200Zである。

水平方向の離散化は球面調和関数を用いたスペクトル法によって行い,解像度は T126 のものと T62 の ものがある。ここで,T126 及び T62 は,スペクトルモデルの切断が三角形で,切断波数がそれぞれ 126 及び 62 であることを示し,T126 が約 105km,T62 が約 209kmの解像度に相当する。また,鉛直方向の 離散化は地表から約 2.7hPa までを σ 座標ベースで 28 層に区切っている。計算時間ステップは約 10 分で ある。なお,1998 年より T170 / 42 層への移行作業が進められている様である(T170 は約 80kmの解像 度に相当)。

プロダクトの解析パラメータには,ジオポテンシャル高度,温度,相対湿度,東西風速,南北風速,鉛直 p 速度,渦度などがあり,これらが全球の各水平格子点の各鉛直レベルに対して与えられる。また,SST, 氷密接度,積雪深,被雲率などのプロダクトもある。プロダクトの水平格子間隔は,緯経度で1°×1°のも のと  $2.5^{\circ} \times 2.5^{\circ}$ のものがあり,基本的にT126システムは前者を,T62システムは後者を生成する様だが, 例外もある<sup>12</sup>。鉛直レベルの取り方には,気圧ベース(1000~10hPa)のものと温位ベース(270~650K) のものがある。 $\sigma$ ベースのものもあるが,これはモデルの直接出力(スペクトル係数)を与えるものであ る。プロダクトのフォーマットは,一部プロダクトを除いてWMOのGRIB[124]が採用されている。これ らのプロダクトはインターネットを通じて入手が可能である。URLの例を以下に示す。

- http://wesley.wwb.noaa.gov/ncep\_data/index\_sgi62.html
- ftp://larry.gsfc.nasa.gov/pub/ncep\_data/
- ftp://nic.fb4.noaa.gov/pub/fnl/

なお,GDAS プロダクトには,上記に述べた4つの解析時刻に対するプロダクト以外に統計値プロダク <sup>12</sup>例えば,T126システムによる1°×1°プロダクトからの内挿によって2.5°×2.5°プロダクトを作ることも行われている[122]。 また,解析パラメータによって異なるケースもある。



Figure 77: Geopotential height at 850 hPa pressure level from GDAS product for 1998/9/9/00Z.

トがあるが,現時点でインターネットを通じて利用可能なのは2.5°×2.5°の日平均プロダクトのみの様で ある。実際,このような統計値プロダクトについては,NCEPではGDASより再解析モデルのCDAS[102] の方が充実している。水平格子間隔は2.5°×2.5°と粗いが,各種解析パラメータの日平均や月平均,解析 時刻別月平均などの統計値プロダクトが古いものでは1950年前後から現在まで作成されており,インター ネットを通じて以下のURLより入手可能である。

• http://wesley.wwb.noaa.gov/reanlysis.html

Fig. 77 ~ 79 はそれぞれ GDAS プロダクトから抽出されるジオポテンシャル高度,気温,相対湿度の全球分布の例で,本論文で使用した 1998 年 9 月 9 日 00Z における GDAS プロダクトから抽出した 850hPa 気圧面における各パラメータの全球分布である。

### A.2 ASTER/TIR の標準 TES アルゴリズム

ASTER/TIR の標準 TES アルゴリズムの概要について ATBD に従って述べる [46]。

ASTER の標準 TES アルゴリズムは, ASTER/TIR の 5 つのチャネルにおける地表直上の上向き分光 放射輝度及び下向き分光放射照度を主な入力データとし,地表面温度と 5 つの地表面分光放射率を主な出 カデータとするアルゴリズムである。本アルゴリズムは以下の 3 つの TES アルゴリズムを組み合わせたも のである。

1. 改良型最大放射率正規化法 [42]



Figure 78: Air temperature at 850 hPa pressure level from GDAS product for 1998/9/9/00Z.



Figure 79: Relative humidity at 850 hPa pressure level from GDAS product for 1998/9/9/00Z.

2. 比放射率法 [125]

3. MMD 法 [45]

アルゴリズムを構成するモジュール群について述べる。

前処理モジュール 変数の初期値入力,地表面反射分の除去を行う。

- 改良型最大放射率正規化法モジュール 最大放射率正規化法は5 チャネルの分光放射率の中の最大値(最大 放射率)を一定値と仮定して未知数を減らす TES である。ここで採用している改良型最大放射率正 規化法は,従来の最大放射率正規化法に地表面反射分の除去や最大放射率の修正処理を加えたもの である。
- 比放射率法/MMD 法モジュール 比放射率法は本来は分光放射率の絶対値ではなく,分光放射率の比を計 算することによって地表面温度の影響を除去し,分光放射率の情報を取り出す手法である。ここで は,最大放射率正規化法で得られた分光放射率をその平均値で除することにより平均値が1に正規 化された放射率を計算する。MMD 法は分光放射率のチャネル間の最大差(最大値と最小値の差)と 平均値の間の線形関係に基づくTES である。ここでは,最大差の代わりに標準偏差,平均値の代わ りに最小放射率を使用するオプションもある。また経験式は,非線形性を考慮したものを使用する。
- 反復判断モジュール 収束判定を行い, 収束であれば後処理モジュールへ, 未収束の場合は再び改良型最大 放射率正規化法モジュールに進む。
- 後処理モジュール 品質保証(QA)データ作成を行う。これは,プロダクトの推定精度や TES アルゴリズ ムの実行状態等のデータを含むものである。QA には,全プロダクト共通の QA 及びプロダクト独自 の QA がある。また,それぞれについて,シーン全体の統計的 QA 及びピクセルごとの QA がある。

## A.3 国土地理院の GPS 連続観測網データを用いた可降水量の推定

GPS 衛星からの電波伝播は地球大気により遅れが生じる。この遅れ時間に光速を乗じて計算される伸長 距離を大気遅延量と呼ぶ。大気遅延量には伝播経路の屈折による幾何学的な遅延量と大気分子による速度 的な遅延量があるが,通常,GPS の場合には低空の障害物やマルチパスの影響を避けるなどの目的で仰角 10°以上の衛星のみを利用するので前者の影響は無視でき,後者の遅延量のみを考慮すればよい。一方,後 者による遅延量は乾燥大気分子による遅延量(静水圧遅延量)と水蒸気による遅延量(湿潤遅延量)に分
けられるが,海抜0mでのそれらの値は前者がおよそ2m程度,後者が数cm~数10cm程度と前者の方が はるかに大きい。しかしながら,前者は地上気圧値から高精度に推定することができるのに対して後者は 水蒸気の時空間変動のために推定することが難しいため,GPSによる精密測位では後者が主たる誤差因子 となる。

さて,天頂方向<sup>13</sup>での湿潤遅延量(天頂湿潤遅延量)*ZWD*と可降水量*PWV*は次のように比例関係に ある。

$$PWV = \Pi \times ZWD \tag{A.1}$$

ここで,

$$\Pi = \frac{10^6}{R_v (k + k'/T_m)}$$
(A.2)

$$T_m = \frac{\int P_v/Tdz}{\int P_v/T^2dz} \tag{A.3}$$

であり,  $R_v$  は水蒸気の気体定数, k 及び k' は実験的に定められる係数,  $P_v$  は水蒸気分圧, T は気温, z は 高度である。 $T_m$  は気温プロファイルを水蒸気分圧プロファイルで重み付けた平均気温であり, 水蒸気分圧 が大きい高度の気温をより反映した値を持つ。一般に気温の変動は下層で大きく, また水蒸気も多いので,  $T_m$  は地上気温と良い相関があり, 地上気温を用いた回帰式による推定も可能である。

こうして,まず,GPSの天頂大気遅延量から地上気圧に基づいて天頂静水圧遅延量を差し引いて天頂湿 潤遅延量を求め,次にT<sub>m</sub>を地上気温などから求めて比例係数IIを計算することにより可降水量を計算す ることができる。

現在,国土地理院では,各GPS電子基準点におけるRINEXファイルと呼ばれる受信データをスイス・ ベルン工科大学の基線解析ソフトBernese[126]によって解析し,3時間平均の結果を配付している。出力 ファイルのSINEXファイル,もしくはそれから対流圏部分のみを切り出したTRPファイルの中にモデル 大気に対する大気遅延量に加えるべき補正量*zcorr*が含まれており,この値から各GPS電子基準点におけ る可降水量の3時間平均値を計算することができる。*zcorr*から可降水量を計算する手順は以下の通りで ある[115]。

1. GPS 電子基準点の高度(楕円体高)とモデルパラメータ(参照高度とそこでの気圧,気温,湿度で, SINEX ファイル中に記述されている)を用いてモデル大気 Saastamoinen に対する天頂大気遅延量

*ztd*0 を計算する。

<sup>&</sup>lt;sup>13</sup>大気遅延量は GPS 衛星の仰角に依存して変化するが,扱いを容易にするため,通常はマッピング関数と呼ばれる関数を用いて 全て天頂方向の大気遅延量に変換して取り扱う。

- 2. 上記の *ztd*0 に SINEX ファイル中の *zcorr* を加算することにより,真の天頂大気遅延量 *ztd* を計算 する。
- 3. 実際の地上気圧の観測値を用いて天頂静水圧遅延量 zhd を計算する。地上気圧については,現在,各GPS 電子基準点での観測が行われていないので,近傍の気象官署の観測値や数値予報モデルなどの値から内挿して与えることになる。可降水量を1mm以下の誤差で求めるためには地上気圧の誤差は約 3hPa 以下であれば良いので,一般にはこうした計算による誤差は大きなものではない。
- 4. ztd から zhd を差し引くことにより,天頂湿潤遅延量 zwd を計算する。
- 5. 式(A.1)より, zwd と地上気温から可降水量を計算する。地上気温についても,現在,GPS 電子基準点での観測が行われていないので,近傍のアメダスの観測値や数値予報モデルなどの値から内挿して与えることになる。地上気温の10Kの差は比例係数に高々3%程度の変化しか与えないので,この計算の誤差はそれほど大きくない。

なお,現在,日本のGPS気象学のプロジェクトによりGPS可降水量の解析結果のデータベース化が進められており[127],これが利用できるようになれば上記の処理を一般ユーザーが行う手間は省けるものと思われる。