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Abstract

In this paper we generalize to higher dimensions several types of fermion actions on

the hyperdiamond lattice including a two-parameter class of minimal-doubling fermions

“Creutz fermion” and a simple fermion with sufficient discrete symmetry “BBTW

fermion”. Then it is shown that they possess some properties in common with the

four-dimensional case: BBTW fermions in higher even dimensions inevitably yield

unphysical degrees of freedom. Creutz fermions are defined on the distorted lattices,

and they lose the high discrete symmetry of the original lattices. We also find properties

specific to the higher-dimensional cases. The parameter range for Creutz action to

yield minimal-doubling and physical fermions becomes narrower with the dimension

getting higher, thus it becomes more and more difficult to realize minimal-doubling. In

addition, we generalize the subspecies of Creutz and BBTW actions including a new

class of minimal-doubling actions “Appended Creutz action”.
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§1. Introduction

The relativistic electron system on a two-dimensional honeycomb lattice, graphene,1) has

been attracting a great deal of attention for these several years. From the viewpoint of

lattice field theory, the electron in this system is regarded as a fermion appropriate for the

lattice simulation since it has some desirable properties such as locality, chiral symmetry, the

minimal number of fermion doublings and sufficient discrete symmetry for a good continuum

limit. Among them, the minimal fermion doubling is the most outstanding characteristic in

this fermion. Although there exist only two (or three) light quarks in QCD, one fermion with

chiral symmetry and other common features on a four-dimensional lattice yields massless

fermions of multiple number of two in a continuum limit as a result of Nielsen-Ninomiya’s

no-go theorem.2)–4) In addition, the lattice fermions which bypass the no-go theorem such

as domain-wall fermion5), 6) and overlap fermion7) satisfying Ginsparg-Wilson relation8) de-

mand an expensive numerical task. On the other hand, as the two light quarks, chirality

of the minimal-doubling two fermions have opposite signs. Therefore the chirally symmet-

ric fermion including only minimal number of doublers (two fermions) will be much faster

and more useful in the lattice simulation since the two fermion degrees of freedom can be

directly interpreted as the two light quarks in QCD. In the past, Wilczek9) and Karsten10)

proposed the fermion action with the minimal number of doublings called “Karsten-Wilczek

fermion”. However, since this action lacks sufficient discrete symmetry to prohibit relevant

and marginal operators to be generated through quantum corrections, one need fine-tuned

parameters to take a good continuum limit. Therefore, successful construction of the chi-

rally symmetric fermion both with minimal-doubling and the requisite discrete symmetry

has been longed for.

Recently, there have been some attempts to generalize the graphene, which possesses both

the minimal doublers and the sufficient discrete symmetry, to a four-dimensional system and

apply it to the lattice QCD simulation. In these attempts they try to construct Dirac

fermion on a four-dimensional honeycomb lattice, called hyperdiamond lattice, with keeping

the desirable properties.

The naive Dirac fermion on a hyperdiamond lattice was constructed by Bedaque et.

al.11) by defining left and right-handed fermions on the two sublattices respectively. This

“Bedaque-Bachoff-Tiburzi-WalkerLoud (BBTW) fermion” action includes only the nearest

hopping terms and has the sufficient discrete symmetry, although it yields more than the

minimal number of doublings. In our recent work12) it is pointed out that this fermion action

inevitably produces unphysical poles of fermion propagator since the BBTW Dirac operator

independently includes iγµ-terms and γµγ5-terms corresponding to vector and axial-vector

2



functions.

The most successful Dirac fermion on the hyperdiamond lattice is “Creutz fermion” with

the two parameters (B,C), which had been proposed by Creutz13) before BBTW fermion

was presented. What is notable about Creutz fermion is that it exhibits the minimal amount

of fermion doublers. However it is pointed out in Ref. 12), 14) that this action lacks suffi-

cient discrete symmetry to prohibit the redundant operators like Karsten-Wilczek fermion.15)

Thus it has no advantage in the lattice simulation compared to the conventional lattice

fermions, although it still attracts our interest because of its exotic properties.

The purpose of this paper is to generalize the fermion actions on the hyperdiamond

lattice including BBTW and Creutz actions to higher dimensions. It is quite non-trivial

if we can construct fermions on the higher-dimensional hyperdiamond lattice since it has

non-trivial lattice structure unlike the hypercubic lattice. Besides, the general-dimensional

viewpoint leads to deeper understanding of these fermions. In this paper we successfully

construct the several types of fermions on general-dimensional hyperdiamond lattices. Then

we find that BBTW fermion inevitably yields unphysical poles of fermion propagator also in

higher dimensions. On the other hand Creutz fermions in higher dimensions are defined on

distorted hyperdiamond lattices as long as one keeps physicality of the fermion poles, and

the action loses the high discrete symmetry of the original lattice as the four-dimensional

case. It is pointed out that the range of the parameters for Creutz action to yield minimal-

number and physical fermions becomes narrower with the dimension getting higher. Thus,

in higher dimensions it becomes more and more difficult to realize the minimal-doubling

Creutz fermion. We also derive the higher-dimensional versions of the special parameter

conditions, one of which is called “Creutz condition” in which the fermion poles form an

exact hyperdiamond lattice in momentum space, and the other of which is called “Boriçi

condition” in which the lattice becomes orthogonal.

In our recent paper12) the subspecies of Creutz and BBTW actions are discussed. In

this paper we also generalize these subspecies. And it is shown that all of them produce

unphysical fermion degrees of freedom. In addition we generalize to higher dimensions a

new class of minimal-doubling actions “Appended Creutz action” proposed in 12). Then it

is pointed out that this fermion has the deformed momentum-space structure which leads

to the modified Creutz and Boriçi conditions compared to the original Creutz action.

In Sec.2 we study the hyperdiamond lattices in general dimensions. In Sec.3 we generalize

BBTW fermion to higher even dimensions and study the properties. In Sec.4 we generalize

Creutz fermion and investigate the characteristics, and also study the subspecies of Creutz

and Bedaque actions in general even dimensions. In Sec.5 we show a higher-dimensional

version of Appended Creutz action. Sec.6 is devoted to a summary and discussion.
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§2. Hyperdiamond lattice

In this section, we formulate general-dimensional hyperdiamond lattices. To construct

higher-dimensional lattices, we start with some geometries. When we denote a d-dimensional

object, d+ 1 points are required. For example, a line can be described when two points are

given. In the cases of the diamond lattice (d = 3) and the honeycomb lattice (d = 2), each

site has four and three isotropic bonds, respectively. Therefore, they realize the isotropic

“minimal-bond lattices” in each dimensional space. Generalizing this property, we define

d-dimensional hyperdiamond lattice with d+ 1 vectors {eα} satisfying

eµ · eν =

{

1 for µ = ν

cos θd for µ 6= ν
. (2.1)

Due to the isotropic condition of the lattice, the bond vectors sum up to zero,

d+1
∑

µ=1

eµ = 0. (2.2)

And the inner products between these vectors can be obtained by (2.2) as

cos θd = −1/d. (2.3)

Then we present an explicit expression of d-dimensional bond vectors satisfying these con-

ditions,

e1 = ( c1s2 · · · sd−1sd, c2s3 · · · sd, · · · , cd−2sd−1sd, cd−1sd, cd )

e2 = ( s2 · · · sd−1sd, c2s3 · · · sd, · · · , cd−2sd−1sd, cd−1sd, cd )

e3 = ( 0, s3 · · · sd, · · · , cd−2sd−1sd, cd−1sd, cd )
...

ed−1 = ( 0, 0, · · · , sd−1sd, cd−1sd, cd )

ed = ( 0, 0, · · · , 0, sd, cd )

ed+1 = ( 0, 0, · · · , 0, 0, 1 )

(2.4)

with cµ ≡ cos θµ = −1/µ, sµ ≡ sin θµ =
√

µ2 − 1/µ. Another expression of the four-

dimensional hyperdiamond lattice is presented in 11), 12).

Next, let us define primitive vectors {aµ} which characterize the translation invariance of

the lattice. As shown in Fig.1, an unit cell of the hyperdiamond lattice has two sites, called

A and B site. Specifying one of the bond vectors ed+1 as the vector from A to B in the same

unit cell, primitive vectors become

aµ = eµ − ed+1 for µ = 1, · · · , d. (2.5)

4



(a)
e3e1 e2(b) a2a1()

Fig. 1. Two dimensional diamond (honeycomb) lattice. (a) unit cells are encircled and consist of

two kinds of sites, shaded A and open B sites. (b) bond vectors {eµ} from A to B sites and

(c) primitive vectors {aµ} characterizing translation symmetry of the lattice.

When the position of an A site is denoted as x =
∑d

µ=1 xµaµ, the corresponding B site is

on the site of x + ed+1. Therefore, (d + 1)-th vector ed+1 transforms A and B sites to each

other in the same unit cell. This fact is similar to the Clifford algebra, and ed+1 = −∑d
µ=1 eµ

corresponds to γd+1 ∝ γ1 · · ·γd which generates the chiral transformation.

Here it is shown that the angle between the primitive vectors does not depend on the

dimensionality of the lattice,

cos η =
aµ · aν

|aµ| |aν | =
1

2
for µ 6= ν. (2.6)

This reads the angle η = π/3, and thus the equilateral triangular structure is observed in

any dimensions. The shortest length between the sites of the same sublattice is of course

given by |aµ| =
∣

∣eµ − ed+1
∣

∣. Then, aµ − aν = eµ − eν also gives the shortest length. Thus the

number of the nearest unit cells is d(d + 1), and the Wigner-Seitz cell consists of d(d + 1)

hyperplanes. This unit cell structure will play an important role in section 5 on considering

some lattice actions.

On the other hand, reciprocal vectors {bµ}, basis for the momentum space are obtained

as

bµ =
d

d+ 1
eµ for µ = 1, · · · , d (2.7)

satisfying aµ · bν = δµ
ν . An arbitrary momentum vector p is represented by non-orthogonal

basis,

p =

d
∑

µ=1

(p · aµ) bµ. (2.8)

As the primitive vectors, let us find the nearest reciprocal sites. The unit reciprocal vector

gives the shortest length between the reciprocal sites, |bµ| = d/(d + 1). This length is also

obtained by |b1 + · · · + bd| = d/(d+ 1). Then, the number of the nearest reciprocal sites is

2(d+ 1) and the Brillouin zone can consist of them.
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§3. Higher-dimensional BBTW action

We now introduce higher-dimensional actions on the hyperdiamond lattices defined in the

previous section. In this section, we consider higher-dimensional generalizations of BBTW

action proposed in 11). BBTW action is a naive lattice action preserving the symmetry of

the exact hyperdiamond lattice.

Let us start with Clifford algebras to consider spinor structures of lattice fermions. We

choose a representation of 2m-dimensional Clifford algebra as

Γ (2m)
µ = τ1 ⊗ Γ (2m−2)

µ =

(

0 Γ
(2m−2)
µ

Γ
(2m−2)
µ 0

)

for µ = 1, · · · , 2m− 1, (3.1)

Γ
(2m)
2m = τ2⊗1[2m−1] =

(

0 −i1[2m−1]

i1[2m−1] 0

)

, Γ
(2m)
2m+1 = τ3⊗1[2m−1] =

( 1[2m−1] 0

0 −1[2m−1]

)

,

(3.2)

where τ ’s are Pauli matrices acting on the sublattice structure of the hyperdiamond lat-

tice, and 1[n] is the n-component identity matrix. These gamma matrices Γ ’s satisfy anti-

commutation relations, {Γ (2m)
µ , Γ

(2m)
ν } = 2δµν1[2m]. For convenience, we denote Γ (2m) as a

2m-dimensional vector,

Γ (2m) =

(

0 γ̄(2m)

γ(2m) 0

)

(3.3)

with

γ(2m) =
(

Γ
(2m−2)
1 , · · · , Γ (2m−2)

2m−1 , i1[2m−1]

)

, γ̄(2m) =
(

Γ
(2m−2)
1 , · · · , Γ (2m−2)

2m−1 ,−i1[2m−1]

)

.

(3.4)

As discussed in the previous section, the hyperdiamond lattice consists of two sublattices.

Such a sublattice structure can be interpreted as an internal degree of freedom, e.g. stag-

gered fermion.16) To construct Dirac fermion on 2m-dimensional hyperdiamond lattice, we

introduce 2m−1-component fermions ψA, ψB on A and B sites. In the case of the hyper-

diamond lattice, they are interpreted as chiral, Weyl fermions. Here we notice that ψA, ψ̄B

are left-handed, ψ̄A, ψB are right-handed, and ψA and ψ̄A are not hermite conjugate, but

independent degrees of freedom.

We then consider lattice actions on the hyperdiamond lattices with nearest neighbor hop-

pings, which we call the higher-dimensional BBTW action. Because an A site is surrounded

by only B sites, and vice versa, nearest neighbor hoppings correspond to off-diagonal parts

of Dirac operator. In odd dimensional cases, we can not choose all of space-time gamma

matrices as off-diagonal, and thus a lattice action can not be naively constructed with only
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nearest neighbor hopping terms. Thus we introduce 2m-dimensional BBTW action

SBBTW =
∑

x

[

2m
∑

µ=1

(

ψ̄A
x−aµ

(

γ(2m) · eµ
)

ψB
x − ψ̄B

x+aµ

(

γ̄(2m) · eµ
)

ψA
x

)

+ψ̄A
x

(

γ(2m) · e2m+1
)

ψB
x − ψ̄B

x

(

γ̄(2m) · e2m+1
)

ψA
x

]

. (3.5)

We note that, to construct the lattice action, eµ should not be the bond vector, and thus

the primitive vector should not be associated with them by the relation aµ = eµ − e5.

In momentum space,∗) this action is rewritten as

SBBTW =

∫

d2mp

(2π)2m
Ψ̄ (−p)D(p)Ψ (p) (3.6)

with

Ψ (p) =

(

ψA(p)

ψB(p)

)

, Ψ̄(p) =
(

ψ̄A(p) ψ̄B(p)
)

, (3.7)

and the associated Dirac operator becomes

D(p) = i

2m
∑

µ=1

(

Γ (2m) · eµ
)

sin pµ + Γ
(2m)
2m+1Γ

(2m) ·
(

2m
∑

µ=1

eµ cos pµ + e2m+1

)

. (3.8)

We can also write down the alternative representation of the Dirac operator such that the

chiral symmetry is easy to see as following,

D(p) =

(

0 z(p)

−z†(p) 0

)

, (3.9)

z(p) = (γ(2m) · e2m+1)1 + (γ(2m) · e2m)eip2m + · · ·+ (γ(2m) · e1)eip1. (3.10)

Then, one can confirm the chiral invariance of this Dirac operator by looking into the relation

with Γ
(2m)
d+1 as

Γ
(2m)
2m+1D(p)Γ

(2m)
2m+1 = D†(p) = −D(p). (3.11)

To investigate fermionic excitations in the lattice action, we expand this operator with two

kinds of chiral, anti-hermitian basis, iΓ (2m) and Γ
(2m)
2m+1Γ

(2m) as

D(p) = i

2m
∑

µ=1

xµ(p)Γ (2m)
µ +

2m
∑

µ=1

yµ(p)Γ
(2m)
2m+1Γ

(2m)
µ , (3.12)

where explicit coefficients for the choice of the expression of the hyperdiamond lattice (2.4)

are represented as

xµ(p) =

(

2m
∏

ν=µ+1

sν

)(

cµ

µ
∑

ν=1

sin pν + sin pµ+1

)

for µ = 1, · · · , 2m− 1, (3.13)

∗) We use non-orthogonal coordinates such as pµ = p · aµ.
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yµ(p) =

(

2m
∏

ν=µ+1

sν

)(

cµ

µ
∑

ν=1

cos pν + cos pµ+1

)

for µ = 1, · · · , 2m− 1, (3.14)

x2m(p) = c2m

2m
∑

ν=1

sin pν , y2m(p) = c2m

2m
∑

ν=1

cos pν + 1. (3.15)

According to BBTW’s paper,11) we now search spectral zeros of Dirac operator (3.8) of the

form p = p̃B(σ1, · · · , σ2m) with σµ = sgn(pµ), and we assume that #{σµ = +1} = #{σµ =

−1} = m. In this case, some coefficients vanish, x2m(p) = yµ(p) = 0 (µ = 1, · · · , 2m − 1),

and the operator (3.12) reduces to

D(p) = iτ1 ⊗
(

2m−1
∑

µ=1

xµ(p)Γ (2m−2)
µ − y2m(p)1[2m−1]

)

. (3.16)

Thus, four eigenvalues of Dirac operator are given by

± i



±

√

√

√

√

2m−1
∑

µ=1

x2
µ(p) + y2m(p)



 , (3.17)

and the condition that Dirac operator has zero modes is
∑2m−1

µ=1 x2
µ(p) = y2

2m(p). Solving this

condition, we obtain poles of BBTW Dirac operator,

cos p̃B = 1, − m

m+ 1
. (3.18)

The former kind of poles are degenerated at pµ = 0 and the number of poles is one, but the

number of the latter kind of poles is

(

2m

m

)

= (2m)!/(m!)2. In the four-dimensional case,

a pole at pµ = 0 and non-zero valued poles located on p1 = −p2 = −p3 = p4 = cos−1 (−2/3),

etc. are obtained, and they are consistent with our result.11)

Indeed this action is chiral invariant as shown in (3.10). However, as discussed in our

recent paper,12) BBTW Dirac operator includes not only iΓ -terms but ΓΓd+1-terms corre-

sponding to vector and axial-vector functions, i.e. BBTW Dirac operator (3.8) is rewritten

as

D(p) =
2m
∑

µ=1

[

i
(

Γ (2m) · eµ
)

qµ cos p̃B −
(

Γ
(2m)
2m+1Γ

(2m) · eµ
)

σµqµ sin p̃B

]

+ O(q2) (3.19)

with expanded momentum around a pole pµ = p̃Bσµ + qµ. This means that we can not

apply Nielsen-Ninomiya’s no-go theorem2)–4) to this kind of lattice actions, and there exist

no guarantees for the number of doublers and the covariance of poles. In fact, non-zero

valued poles can not be reduced to covariant Dirac form, which correspond to unphysical, or

mutilated fermions.17)–19) Thus, we claim that BBTW fermions describes unphysical degrees

of freedom also in higher dimensions.
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§4. Higher-dimensional Creutz action

In this section, we generalize the minimal-doubling action proposed by Creutz.13) Creutz

action was directly constructed in momentum space, then the spatial configuration of the

action was shown in 11). Creutz action is based on the hyperdiamond lattice deformed by

two parameters, and includes non-nearest neighbor hopping terms.

According to the above discussion, we deform a higher-dimensional hyperdiamond lattice

(2.4) by two parameters, B and C, as the four-dimensional case,∗)

e1 = ( c1s2 · · · sd−1sd, c2s3 · · · sd, · · · , cd−2sd−1sd, cd−1sd, Bcd )

e2 = ( s2 · · · sd−1sd, c2s3 · · · sd, · · · , cd−2sd−1sd, cd−1sd, Bcd )

e3 = ( 0, s3 · · · sd, · · · , cd−2sd−1sd, cd−1sd, Bcd )
...

ed−1 = ( 0, 0, · · · , sd−1sd, cd−1sd, Bcd )

ed = ( 0, 0, · · · , 0, sd, Bcd )

ed+1 = ( 0, 0, · · · , 0, 0, BC )

(4.1)

where we note that these bond vectors reduces to these of the exact hyperdiamond lattice

by choosing the particular parameters: B = C = 1. Then we construct Creutz action on

2m-dimensional distorted hyperdiamond lattice

SC =
1

2

∑

x

[

2m
∑

µ=1

(

ψ̄A
x−aµ

(

Σ(2m) · eµ
)

ψB
x − ψ̄B

x+aµ

(

Σ(2m) · eµ
)

ψA
x

−ψ̄A
x+aµ

(

Σ̄(2m) · eµ
)

ψB
x + ψ̄B

x−aµ

(

Σ̄(2m) · eµ
)

ψA
x

)

+ψ̄A
x

(

Σ(2m) · e2m+1
)

ψB
x − ψ̄B

x

(

Σ(2m) · e2m+1
)

ψA
x

−ψ̄A
x

(

Σ̄(2m) · e2m+1
)

ψB
x + ψ̄B

x

(

Σ̄(2m) · e2m+1
)

ψA
x

]

(4.2)

where Σ(2m) and Σ̄(2m) are 2m-dimensional vectors,

Σ(2m) =
(

Γ
(2m−2)
1 , · · · , Γ (2m−2)

2m−1 ,1[2m−1]

)

, Σ̄(2m) =
(

Γ
(2m−2)
1 , · · · , Γ (2m−2)

2m−1 ,−1[2m−1]

)

,

(4.3)

which are similar to γ(2m) and γ̄(2m) expressed in (3.4), but their 2m-th components are

“twisted”. In this sense, this action requires “spinor twist”. As the case of BBTW fermion,

eµ can be different from the bond vector of the lattice. Actualy, the lattice structure in real

space is determined by the reciprocal vectors characterizing the momentum space lattice

structure.12)

∗) Our notation is different from the four-dimensional case:11), 13) B →
√

d + 1B.
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In this case, however, the action includes non-nearest neighbor site hoppings. For A to B

terms, a forward hopping is just a nearest neighbor one, and vice versa. On the other hand,

an A to B backward hopping and a B to A forward hopping can not be represented by a

nearest, but third neighbor one (see Fig.1). This means that non-nearest neighbor hoppings

are required for constructing Creutz fermion on the hyperdiamond lattice.

As the previous section, we discuss Dirac operator in momentum space

SC =

∫

d2mp

(2π)2m
Ψ̄ (−p)D(p)Ψ (p) (4.4)

where Ψ , Ψ̄ are defined in (3.7), and this Dirac operator is expanded as

D(p) = i

2m
∑

µ=1

ξµ(p)Γ (2m)
µ (4.5)

with

ξµ(p) =

(

2m
∏

ν=µ+1

sν

)(

cµ

µ
∑

ν=1

sin pν + sin pµ+1

)

for µ = 1, · · · , 2m− 1,

(4.6)

ξ2m(p) = B

(

C + c2m

2m
∑

ν=1

cos pν

)

. (4.7)

Immediately two poles of this operator are obtained as p(±) = ± (p̃C, · · · , p̃C) with cos p̃C =

C. To prohibit extra poles such as p = (p̃C, · · · , p̃C, π − p̃C), the range of the parameter C

should be
m− 1

m
< C < 1. (4.8)

This minimal-doubling condition reduces to 1/2 < C < 1 in the d = 4 (m = 2) case, as is

consistent with the result in Ref. 13). In addition, in the case C = 1, the number of poles is

one, but this only one pole corresponds to an unphysical fermion as in the four-dimensional

case.12) Thus, it is impossible to define Creutz fermion on the exact hyperdiamond lattice

in general even dimensions since the bond vectors (4.1) reduce to these of an exact hyper-

diamond lattice only with the parameters B = C = 1. As a result, the discrete symmetry of

the lattice itself and the action breaks down from symmetric group Sd+1 to Sd. That means

that the action is not invariant under permutations of d+1 but d bonds of the hyperdiamond

lattice. This situation is also the case as four-dimensional Creutz fermion. We note that the

Dirac operator of this lattice fermion can be written in the same form as Eq.(3.9), and thus

it is easily confirmed that the action is chiral-invariant.
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In Ref. 13), Creutz chose the two parameters to place poles on the four-dimensional

hyperdiamond lattice. To discuss a lattice structure of poles in momentum space, we then

expand Dirac operator (4.5) around a pole with pµ = p̃C + qµ,

ξµ(p) = C

(

2m
∏

ν=µ+1

sν

)(

cµ

µ
∑

ν=1

qν + qµ+1

)

+ O(q2) for µ = 1, · · · , 2m− 1,

(4.9)

ξ2m(p) = −BSc2m

2m
∑

ν=1

qν + O(q2) (4.10)

with S =
√

1 − C2. In the case C = 1, since the coefficient of Γ
(2m)
2m vanishes, the Dirac oper-

ator (4.5) can not be reduced to 2m-dimensional covariant form, while (2m−1)-dimensional

covariance is preserved,

D(p) = i

2m−1
∑

µ=1

ξµ(p)Γ (2m)
µ ≡ i 6k. (4.11)

This means that only one (2m−1)-dimensional chiral fermion is derived from 2m-dimensional

lattice. Although this is similar to domain-wall fermion,5), 6) this fermion (4.11) is not lo-

calized in (2m − 1)-dimensional subspace. Domain-wall fermion is obtained by twisting

boundary condition of the mass term in fifth direction to be localized on four-dimensional

subspace. The reason why this kind of excitation appears in Creutz fermion is explained

as follows. In this case (4.11), the gamma matrix for 2m-direction is treated specially in

(4.3) because its sign is twisted. In fact, the reduced dimension corresponds to the direc-

tion in which the gamma matrix is twisted. However the domain-wall-like fermion (4.11) is

not localized on (2m − 1)-dimensional subspace because we do not consider the mass term

depending on the 2m-th direction.

We then consider momentum space structure. According to the coefficients of gamma

matrices, momentum space basis is obtained as

b1 = ( Cc1s2 · · · sd−1sd, Cc2s3 · · · sd, · · · , Ccd−2sd−1sd, Ccd−1sd, −BScd )

b2 = ( Cs2 · · · sd−1sd, Cc2s3 · · · sd, · · · , Ccd−2sd−1sd, Ccd−1sd, −BScd )

b3 = ( 0, Cs3 · · · sd, · · · , Ccd−2sd−1sd, Ccd−1sd, −BScd )
...

bd−1 = ( 0, 0, · · · , Csd−1sd, Ccd−1sd, −BScd )

bd = ( 0, 0, · · · , 0, Csd, −BScd )

.

(4.12)

Thus, an angle between these vectors is derived from a norm and an inner product,

cos η =
bµ · bν

|bµ| |bν |
=
B2S2c2d + C2s2

dcd−1

B2S2c2d + C2s2
d

. (4.13)
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We then consider the condition that the lattice of poles in momentum space becomes the

exact hyperdiamond lattice, which we call the hyperdiamond condition (Creutz condition13)).

This is given by cos η = 1/2 as compared with (2.5). Another condition that the pole lattice

becomes orthogonal, which we call the orthogonal condition (Boriçi condition20)) is given by

cos η = 0. The former, hyperdiamond condition requires an additional condition that d+ 1

distances coincide,
∣

∣p(+) − p(−)
∣

∣ =
∣

∣p(+) −
(

p(−) + 2πb1

)∣

∣ = · · · =
∣

∣p(+) −
(

p(−) + 2πbd

)∣

∣. As

a result, we obtain Creutz condition

p̃C =
π

d+ 1
, C = cos

(

π

d+ 1

)

, B = (d+ 1) cot

(

π

d+ 1

)

, (4.14)

and Boriçi condition

C = cos p̃C, B =
√
d+ 1 cot p̃C. (4.15)

Here we can choose arbitrary p̃C satisfying the minimal-doubling condition (4.8). These

conditions are reduced to the four-dimensional version in Ref. 13) by choosing d = 4 and

replacing B →
√
d+ 1B.

We now remark consistency between the Creutz condition (4.14) and the minimal-

doubling condition (4.8). The parameter should behave as C → 1 with the large d limit

because the lower bound of (4.8) goes to its upper bound as O(1/d). Indeed the Creutz con-

dition gives C → 1 with d≫ 1, but it converges faster as O(1/d2) since cos(1/x) ∼ 1−1/(2x2)

with large x. Thus the Creutz condition (4.14) satisfies the minimal-doubling condition (4.8)

for any dimensions.

On the other hand, for the Boriçi condition (4.15), in particular C = S = 1/
√

2 is chosen

for simplicity in Ref. 20). This parameters, however, can not satisfy the condition (4.8) with

sufficiently large d. Generally speaking, the minimal-doubling condition (4.8) hardly realizes

in the large d limit since the range of the parameter becomes so narrow.

Some related lattice actions

Some lattice actions which are related to four-dimensional Creutz action have been con-

sidered in 12) to discuss remarkable features of Creutz action: (i) non-nearest neighbor

hoppings, (ii) twisting spinor structure, and (iii) distorting the hyperdiamond lattice. It is

shown that the lattice action based on the hyperdiamond lattice which includes only phys-

ical lattice fermions satisfies all of the above conditions, and unphysical fermions arise in

the other lattice actions. In particular, the non-nearest neighbor hopping is essential for

constructing the physical lattice fermion. Both of iΓ -terms and ΓΓd+1-terms arise in lattice

actions without non-nearest neighbor hoppings, and thus Nielsen-Ninomiya’s no-go theorem,

which is based on Poincaré-Hopf theorem for vector function, cannot be applied to this kind

12



of lattice actions. However, adding non-nearest neighbor hoppings to obtain Dirac operator

including only iΓ -terms, the lattice action lacks the high discrete symmetry of the hyper-

diamond lattice due to non-nearest neighbor hoppings.∗) The sufficient discrete symmetry

is required for suppressing the redundant operators generated by the loop corrections, and

thus it is an important property for the lattice simulation.

We now consider some higher-dimensional lattice actions from the viewpoint of the three

features of Creutz action discussed above. One of related actions is obtained by dropping

the non-nearest neighbor hopping terms of Creutz action, which was originally considered

in 11) and called Dropped Creutz action.12) Its higher-dimensional generalization is easily

constructed on the hyperdiamond lattice from (4.2),

SdC =
1

2

∑

x

[

2m
∑

µ=1

(

ψ̄A
x−aµ

(

Σ(2m) · eµ
)

ψB
x − ψ̄B

x+aµ

(

Σ(2m) · eµ
)

ψA
x

+ψ̄A
x

(

Σ(2m) · e2m+1
)

ψB
x − ψ̄B

x

(

Σ(2m) · e2m+1
)

ψA
x

]

. (4.16)

This action is similar to BBTW action (3.5) and given by the modification of 2m-th gamma

matrix, iΓ
(2m)
2m → Γ

(2m)
2m+1Γ

(2m)
2m . It also possesses a pole at p = 0, but its covariance is broken

as i ~Γ (2m) · ~k + Γ
(2m)
2m+1Γ

(2m)
2m k2m.

Another lattice action based on the (distorted) hyperdiamond lattice is called Untwisted

Creutz action,12) which is given by modifying the spinor structure of Creutz action as

Σ(2m) → γ(2m). The higher-dimensional generalization is given by

SutC =
1

2

∑

x

[

2m
∑

µ=1

(

ψ̄A
x−aµ

(

γ(2m) · eµ
)

ψB
x − ψ̄B

x+aµ

(

γ(2m) · eµ
)

ψA
x

−ψ̄A
x+aµ

(

γ̄(2m) · eµ
)

ψB
x + ψ̄B

x−aµ

(

γ̄(2m) · eµ
)

ψA
x

)

+ψ̄A
x

(

γ(2m) · e2m+1
)

ψB
x − ψ̄B

x

(

γ(2m) · e2m+1
)

ψA
x

−ψ̄A
x

(

γ̄(2m) · e2m+1
)

ψB
x + ψ̄B

x

(

γ̄(2m) · e2m+1
)

ψA
x

]

. (4.17)

This action includes the minimal-doubling fermions, but their covariance are also broken as

i ~Γ (2m) · ~k + Γ
(2m)
2m k2m. In the case C = 1, they are reduced to only one, but unphysical pole

i ~Γ (2m) · ~k which is the same as (4.11).

As a result, the higher-dimensional hyperdiamond lattice actions including a physical

pole is Creutz and BBTW action. However BBTW action also includes unphysical poles.

Thus the lattice actions which yield only physical poles are Creutz action and the modified

∗) The lattice action based on the distorted hyperdiamond lattice lacks the sufficient discrete symmetry

even if one drops the non-nearest hopping terms because, in the first place, the lattice distortion lowers the

discrete symmetry of the lattice.
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(a) (b) ()
Fig. 2. Two-dimensional analogues of hoppings to nearest neighbor unit cells: (a) nearest site

hoppings, (b) non-nearest site hoppings included by Creutz action and (c) the remaining nearest

unit cell hoppings included only by Appended Creutz action.

Creutz action which we present in the next section, called Appended Creutz action. This

situation is the same as the four-dimensional case.12)

§5. Higher-dimensional Appended Creutz action

It has been pointed out in 11),12) that Creutz action includes not only nearest neighbor

but non-nearest neighbor hopping terms. These non-nearest interaction terms represent hop-

pings to non-nearest sites, but to nearest unit cells. Although the locality of the continuum

theory is often broken via non-nearest hopping terms of the lattice field theory, the locality

of Creutz action is not broken in the continuum limit21), 22) because the action includes only

hopping terms to nearest unit cells.

On the other hand, the number of nearest unit cells is d(d+ 1) as explained in section 2

, and thus all of nearest unit cell hoppings are not yet included by Creutz action. We then

consider Creutz action including all of nearest unit cell hopping terms,

SaC = SC +
1

2

∑

x

[

∑

µ<ν

(

ψ̄A
x−aµ+aν

(

Σ(2m) · (eµ − eν)
)

ψB
x − ψ̄B

x+aµ−aν

(

Σ(2m) · (eµ − eν)
)

ψA
x

−ψ̄A
x+aµ−aν

(

Σ̄(2m) · (eµ − eν)
)

ψB
x + ψ̄B

x−aµ+aν

(

Σ̄(2m) · (eµ − eν)
)

ψA
x

)]

. (5.1)

The additive terms of (5.1) represent the remaining nearest unit cell hoppings shown in

Fig. 2, and this action is a higher-dimensional generalization of Appended Creutz action

presented in our previous work.12)

The momentum space representation of the Dirac operator is given by

D(p) = i

2m
∑

µ=1

(

ξµ(p) + ξ(+)
µ (p)

)

Γ (2m)
µ (5.2)

where ξµ(p) are already defined as (4.6) and (4.7), and ξ
(+)
µ (p) are additive terms derived
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from the remaining nearest unit cell terms,

ξ(+)
µ (p) =

(

2m
∏

ν=µ+1

sν

)(

(cµ − 1)

µ
∑

ν=1

sin(pν − pµ+1) + cµ

µ−1
∑

ν=1

2m
∑

λ=µ+2

sin(pν − pλ)

+

2m
∑

ν=µ+2

sin(pµ+1 − pν)

)

for µ = 1, · · · , 2m− 1, (5.3)

ξ
(+)
2m (p) = 0. (5.4)

Thus we obtain exactly the same two poles as Creutz action, p(±) = ±(p̃C, · · · , p̃C) with

cos p̃C = C, and the minimal-doubling condition is also given by (4.8).

We then expand the Dirac operator around a pole as pµ = p̃C + qµ to investigate the

momentum space structure,

ξ(+)
µ (p) = 2m

(

2m
∏

ν=µ+1

sν

)(

cµ

µ
∑

ν=1

qν + qµ+1

)

+ O(q2) for µ = 1, · · · , 2m− 1.

(5.5)

This expression is proportional to (4.9), and thus the total contribution to the coefficient

of Γ
(2m)
µ becomes ξµ(p) + ξ

(+)
µ (p) = (1 + d/C)ξµ(p). Thus the momentum space basis is

obtained,

b1 = ( (d+ C)c1s2 · · · sd−1sd, (d+ C)c2s3 · · · sd, · · · , (d+ C)cd−1sd, −BScd )

b2 = ( (d+ C)s2 · · · sd−1sd, (d+ C)c2s3 · · · sd, · · · , (d+ C)cd−1sd, −BScd )

b3 = ( 0, (d+ C)s3 · · · sd, · · · , (d+ C)cd−1sd, −BScd )
...

bd−1 = ( 0, 0, · · · , (d+ C)cd−1sd, −BScd )

bd = ( 0, 0, · · · , (d+ C)sd, −BScd )

.

(5.6)

As the case of Creutz action discussed in section 4, the angle between the reciprocal vectors

(5.6) is given by

cos η =
bµ · bν

|bµ| |bν |
=
B2S2c2d + (d+ C)2s2

dcd−1

B2S2c2d + (d+ C)2s2
d

. (5.7)

Therefore, we obtain Creutz condition such that two poles constitute the exact hyperdiamond

lattice on the momentum space,

p̃C =
π

d+ 1
, C = cos

(

π

d+ 1

)

, B = (d+ 1)
d+ cos

(

π
d+1

)

sin
(

π
d+1

) , (5.8)
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and Boriçi condition such that reciprocal vectors are orthogonal,

C = cos p̃C, B =
√
d+ 1

d+ cos p̃C

sin p̃C
. (5.9)

These conditions are almost the same as (4.14) and (4.15). They are easily given by shifting

the parameter B ∝ C/S → (d + C)/S while C is not modified. Thus the modified Creutz

condition (5.8) also satisfies the minimal-doubling condition (4.8) for any dimensions.

In the case of Appended Creutz action, it is shown that the same minimal-doubling poles

and a slightly modified momentum space structure are obtained as the case of Creutz action.

In the action, 2m-dimensional vectors eµ − eν are considered in hopping terms, but 2m-th

components of them are constantly zero. Thus these terms hardly affect the lattice action

in 2m-th direction. As a result, we conclude that the effect of the remaining nearest unit

cell hopping terms is small.

§6. Discussion

In this paper we generalize the several types of fermions on the hyperdiamond lattice to

higher even dimensions and extract the characteristics of them, some of which are common

to the four-dimensional case and others of which are specific to the higher-dimensional cases.

In Sec. 3, it is pointed out that BBTW fermions in higher even dimensions inevitably pro-

duce unphysical poles of fermion propagator since the BBTW Dirac operator independently

includes iΓ -terms and ΓΓd+1-terms as the four-dimensional case.12) Thus we can conclude

that simple construction of Dirac fermion on higher-dimensional hyperdiamond lattice leads

to unphysical degrees of freedom.

In Sec. 4 we also construct the minimal-doubling fermion action called Creutz action

in general even dimensions. We show that it is defined on the distorted lattice as long

as one keeps physicality of the poles of propagator, and the action loses the high discrete

symmetry of the original lattice as the four-dimensional case. It is pointed out that the

range of the parameters for Creutz fermion to yield the minimal amount of physical fermions

becomes narrower with the dimension getting higher. Thus, in higher dimensions it becomes

more and more difficult to realize minimal-doubling in Creutz fermion. We also derive the

higher-dimensional versions of the specific parameter conditions, Creutz condition and Boriçi

condition. These generalized conditions reduce to the original four-dimensional conditions

by setting d = 4. In addition we generalize the subspecies of Creutz and BBTW actions

discussed in our recent paper. Then it is shown that all of them include unphysical degrees

of freedom as the four-dimensional case.

In Sec. 5 we study a higher dimensional version of the new minimal-doubling fermion, Ap-
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pended Creutz action. Then it is pointed out that this fermion has the modified momentum-

space structure leading to the modified Creutz and Boriçi conditions compared to the original

Creutz action. This type of fermion has been discussed for the first time in our recent paper,

so it will be valuable to investigate the properties in more detail.

Finally, let us comment on symmetries of BBTW and Creutz fermions. BBTW fermion

action in general even dimensions has high discrete symmetry of alternating group Ad+1 as

well as chiral symmetry. However these symmetries have nothing to do with physics since

this action yields unphysical degrees of freedom in principle. On the other hand Creutz

action in general even dimensions describes only physical fermions, thus it is meaningful to

discuss symmetries of this action. It has chiral symmetry, but possesses only the discrete

symmetry of Sd. As seen in the four-dimensional case,14) the low discrete symmetry may

lead to the generation of marginal and relevant operators through quantum corrections. We

need to look into this topic in the future work.

Acknowledgments

We would like to thank T. Onogi for reading the manuscript and useful discussions. We

also thank Y. Kikukawa for valuable comments. TM is supported by Grant-in-Aid for the

Japan Society for Promotion o Science (JSPS) Research Fellows.

References

1) A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The

electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109, [arXiv:0709.1163].

2) H. B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 1. Proof by

Homotopy Theory, Nucl. Phys. B185 (1981) 20.

3) H. B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 2. Intuitive

Topological Proof, Nucl. Phys. B193 (1981) 173.

4) H. B. Nielsen and M. Ninomiya, No Go Theorem for Regularizing Chiral Fermions,

Phys. Lett. B105 (1981) 219.

5) D. B. Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett.

B288 (1992) 342, [hep-lat/9206013].

6) V. Furman and Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions,

Nucl. Phys. B439 (1995) 54, [hep-lat/9405004].

7) H. Neuberger, More about exactly massless quarks on the lattice, Phys. Lett. B427

(1998) 353, [hep-lat/9801031].

8) P. H. Ginsparg and K. G. Wilson, A Remnant of Chiral Symmetry on the Lattice,

17

http://arxiv.org/abs/0709.1163
http://arxiv.org/abs/hep-lat/9206013
http://arxiv.org/abs/hep-lat/9405004
http://arxiv.org/abs/hep-lat/9801031


Phys. Rev. D25 (1982) 2649.

9) F. Wilczek, Lattice Fermions, Phys. Rev. Lett. 59 (1987) 2397.

10) L. H. Karsten, Lattice fermions in euclidean space-time, Phys. Lett. B104 (1981) 315.

11) P. F. Bedaque, M. I. Buchoff, B. C. Tiburzi, and A. Walker-Loud, Search for Fermion

Actions on Hyperdiamond Lattices, Phys. Rev. D78 (2008) 017502, [arXiv:0804.1145].

12) T. Kimura and T. Misumi, Characters of Lattice Fermions Based on the Hyperdiamond

Lattice, arXiv:0907.1371.

13) M. Creutz, Four-dimensional graphene and chiral fermions, JHEP 0804 (2008) 017,

[arXiv:0712.1201].

14) P. F. Bedaque, M. I. Buchoff, B. C. Tiburzi, and A. Walker-Loud, Broken Symmetries

from Minimally Doubled Fermions, Phys. Lett. B662 (2008) 449, [arXiv:0801.3361].

15) S. Capitani, J. Weber, and H. Wittig, Minimally doubled fermions at one loop, Phys.

Lett. B681 (2009) 105, [arXiv:0907.2825].

16) L. Susskind, Lattice Fermions, Phys. Rev. D16 (1977) 3031.

17) W. Celmaster, Gauge Theories on the Body - Centerd Hypercubic Lattice, Phys. Rev.

D26 (1982) 2955.

18) W. Celmaster and F. Krausz, Fermion Mutilation on a Body centered Tesseract, Phys.

Rev. D28 (1983) 1527.

19) J. M. Drouffe and K. J. M. Moriarty, Gauge Theories on a Simplical Lattice, Nucl.

Phys. B220 (1983) 253.
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