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By using incompressible single-fluid equations with a generalized Ohm’s law neglecting the
electron inertia, a linear eigenmode equation for a magnetic field perturbation is derived for
stationary equilibria in a slab geometry with velocity and magnetic shears. The general eigenmode
equation contains a fourth-order derivative of the perturbation in the highest order and contains
Alfvén and whistler mode components for a homogeneous plasma. The ratio of the characteristic ion
inertia length to the characteristic inhomogeneity scale length is chosen as a small parameter for
expansion. Neglecting whistler mode in the lowest order, the eigenmode equation becomes a
second-order differential equation similar to the ideal magnetohydrodynamic eigenmode equation
except for the fact that the unperturbed perpendicular velocity contains both electric and ion
diamagnetic drifts. A sufficient condition for stability against the Kelvin–Helmholtz instability
driven by shear in the ion diamagnetic drift velocity is derived and then applied to tokamaks.
© 2009 American Institute of Physics. �doi:10.1063/1.3247873�

I. INTRODUCTION

The investigation of hydromagnetic stability of plasmas
is of interest in such varied fields as the study of fusion
plasmas in magnetic confinement devices, the study of mag-
netospheric plasmas, and the study of space and astrophysi-
cal plasmas. Ideal magnetohydrodynamic �MHD� stability of
static plasma can be studied by a powerful minimizing prin-
ciple based on the self-adjointness of the force operator.1,2

Such an energy principle1 has been widely used for the in-
vestigation of stability of static plasmas in fusion devices1,2

and magnetospheres.3,4 However, the existence of plasma
flow is known to affect the stability of fusion plasmas. Also
Kelvin–Helmholtz instability driven by shear in the flow
velocity5 is important in space and astrophysical plasmas. It
is well known that a non-self-adjoint operator appears in
such a plasma equilibrium with flow.6 Therefore, the power-
ful minimizing principle based on the self-adjointness of the
force operator cannot be used to study the stability of a sta-
tionary plasma equilibrium with flow. Several different ap-
proaches have been made to study ideal MHD stability of
plasma equilibrium with flow.7–13 For fusion plasmas such an
approach has been highly developed to include a realistic
configuration of the plasma equilibrium.9–13

Although the plasma flow velocity in ideal MHD con-
sists of a parallel flow velocity and an E�B drift velocity,
the ion diamagnetic drift velocity appears for a nonuniform
pressure plasma and adds to the ideal MHD flow velocity
when the finite ion inertial length scale is taken into account
in single-fluid equations. Thus, single-fluid stability with fi-
nite ion inertial length scale is more complicated than ideal
MHD stability. Indeed, a fluid instability driven by a shear in
the ion diamagnetic drift velocity was recently found14 and it
causes magnetic fluctuations, which may cause heat trans-
port. Such a fluid instability or Kelvin–Helmholtz instability
driven by shear in the ion diamagnetic drift velocity is im-

portant in fusion plasmas since in magnetic confinement de-
vices there is an inevitable pressure gradient, i.e., the pres-
sure decreasing outward toward the wall. Thus, even if there
is no shear in the parallel flow velocity or in the electric drift
velocity �the E�B drift velocity�, a shear in the ion diamag-
netic drift velocity may appear and may cause this fluid in-
stability. This instability may be responsible for residual
magnetic fluctuations existent even in a quiescent plasma
such as H-mode,15 which is characterized by the appearance
of a steep pressure gradient. Although such an instability
occurs in a fluid regime, it requires taking into account the
finite ion inertial length scale in single-fluid equations, which
is beyond ideal MHD.14

Therefore, a new approach is necessary to investigate the
single-fluid stability against the fluid instability driven by
shear in the ion diamagnetic drift velocity. The purpose of
this study is then to provide a simple analytic method to
investigate the single-fluid stability of plasma equilibria with
shear in the ion diamagnetic drift velocity taking into ac-
count the finite ion inertial length scale.

In ideal MHD, an initial value approach based on the
assumption of time dependent eikonal has shown a stabiliz-
ing effect of the toroidal flow on tokamak ballooning
instabilities.10,13 An analytic solution for a circular tokamak
equilibrium also gives a stability criterion showing influence
of the sheared toroidal flows on tokamak stability.12 Whereas
a realistic three-dimensional geometry is necessary to inves-
tigate those influences of equilibrium flow on ideal MHD
pressure-driven modes in magnetic confinement devices, a
simple slab geometry and the Cartesian coordinate system
are used and thus geometrical effect is reduced to a minimum
in the present study. Such a simplification is possible since
the main focus of this study is the fluid instability of shorter
scales taking into account the finite ion inertial length scale,
which is assumed to be much smaller than the pressure gra-
dient scale length.
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Since the actual plasma in confinement devices such as
tokamaks also possesses a magnetic shear �see Fig. 1�, which
is introduced to gain ideal MHD stability, the inclusion of
magnetic shear is essential in order to study the stability of
fusion plasmas in confinement devices. Thus, in the present
study, a general eigenmode equation is derived for arbitrary
stationary equilibria with velocity shear and magnetic shear
by using single-fluid equations with a generalized Ohm’s
law, which includes Hall and electron pressure gradient
terms. The obtained single-fluid equations include ion dia-
magnetic drift velocity, which does not appear in ideal MHD
and appears only when the ion inertial length scale is taken
into account in single-fluid equations. All kinetic effects are
ignored. Although the obtained eigenmode equation contains
a fourth-order derivative of a magnetic field perturbation ow-
ing to the existence of the finite ion inertia length scale and
thus cannot be solved easily, it can be reduced to a second-
order differential equation by retaining the lowest order con-
tribution of the finite ion inertial length scale. In order to
investigate the stability of stationary plasma equilibria with
flow in the framework of single-fluid equations with the gen-
eralized Ohm’s law, such an approximation enables one to
obtain a simple quadratic form and a simple sufficient con-
dition for stability. This sufficient condition for stability is
reduced to the ideal MHD stability condition8 when the un-
perturbed ion diamagnetic drift velocity is neglected.

The organization of this paper is as follows. The basic
configuration of the plasma and basic equations are de-
scribed in Sec. II. Unperturbed states are described in Sec.
III. The general eigenmode equation is derived in Sec. IV.
Dispersion relations for uniform equilibrium are obtained
within several limits in Sec. V. The eigenmode equation for
small ion inertial length limit is derived in Sec. VI. A suffi-
cient condition for stability is obtained in Sec. VII. Discus-
sion and summary are given in Sec. VIII.

II. BASIC CONFIGURATION AND EQUATIONS

One considers a slab geometry, in which unperturbed
quantities are functions of x only. The stability of the incom-
pressible plasma in this configuration is described by the
following equations:

��

�t
+ � · ��V� = 0, �1�

�
dV

dt
= J � B − �p , �2�

� � B = �0J , �3�

�B

�t
= − � � E , �4�

� · V = 0, �5�

� · B = 0. �6�

Here, � is the plasma mass density, V is the macroscopic
velocity of the plasma, B is the magnetic field, and p is the

plasma pressure. Another equation, which relates the electric
field E to V and B, is the generalized Ohm’s law, which is
derived from the equation of motion for the electron fluid.
Neglecting the electron inertia term, the generalized Ohm’s
law becomes

− ne�E + V � B� + J � B − �pe = 0, �7�

where n is the plasma density and pe is the electron pressure.

III. UNPERTURBED STATE

In order to allow a shear of the unperturbed magnetic
field one assumes generally

B0�x� = B0y�x�ŷ + B0z�x�ẑ , �8�

where the subscript 0 denotes the unperturbed state, ŷ and ẑ
are unit vectors in the y and z directions, respectively,
and subscripts y and z denote y and z components, respec-
tively. It is obvious from Eq. �8� that the field line curvature
vector �b ·��b=0, where b=B0 / �B0�=B0 /B0. Therefore,
field lines are straight and there are no pressure-driven
modes such as interchange or ballooning modes in the
present configuration.

Substitution of Eq. �8� into Eq. �3� yields

J0�x� = J0y�x�ŷ + J0z�x�ẑ , �9�

where

J0y = −
1

�0

dB0z

dx
, �10�

J0z =
1

�0

dB0y

dx
. �11�

Notice that the y-z plane is a flux surface.
Since E0 is a function of x only, E0�x� is generally ex-

pressed from Eq. �4� as

E0�x� = E0x�x�x̂ + E0yŷ + E0zẑ , �12�

where E0y and E0z are constants. Since one can remove
the effects of E0y and E0z by using a proper coordinate

FIG. 1. Magnetic field lines on two different flux surfaces in a tokamak are
plotted by solid lines. Dark gray and light gray surfaces are different flux
surfaces.
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transformation, one assumes for the sake of simplicity
E0�x�=E0x�x�x̂=E0�x�x̂.

Since J0�B0, �pe0, and E0 are all directed in the x
direction, one finds from Eq. �7� that V0�B0 must also be in
the x direction. Therefore, one has

V0�x� = V0y�x�ŷ + V0z�x�ẑ . �13�

Substitution of Eq. �13� into Eq. �2� yields the pressure bal-
ance equation J0�B0=�p0. Using this pressure balance
equation, one obtains from Eq. �7�

E0 + V0 � B0 =
1

n0e
� pio, �14�

where pi0= p0− pe0 and subscripts i and e denote ion and
electron species, respectively. From Eq. �14� one obtains

V0� =
E0 � B0

B0
2 −

1

n0eB0
2 � pi0 � B0, �15�

where the subscript � denotes the component perpendicular
to the unperturbed magnetic field.

On the other hand, one obtains from the electron fluid
equation of motion neglecting the inertia term

Ve0� =
E0 � B0

B0
2 +

1

n0eB0
2 � pe0 � B0. �16�

Therefore, one has

J0� = n0e�Vi0� − Ve0�� � n0e�V0� − Ve0��

=
1

B0
2B0 � �p0, �17�

where me /mi�1 was used, with mi and me being ion and
electron masses, respectively. This is consistent with the
pressure balance equation. The parallel component of the
unperturbed current J0� must satisfy J0� =n0e�Vi0� −Ve0��,
where the subscript � denotes the component parallel to the
unperturbed magnetic field. Notice that in the present fluid
treatment, Vi0� and Ve0� can be arbitrarily specified to satisfy
J0� =b ·J0=�0

−1b · ���B0�.
Let nN and BN be characteristic values of n0�x� and B0�x�

in the region considered. The nN and BN may also be consid-
ered normalization constants. Then n0�x� and B0�x� can be
written as n0�x�=nNn̄0�x� and B0�x�=BNB0�x�, where the
overbar represents the normalized quantity, which is an
order of one or smaller. Using nN and BN, one defines
VAN=BN /��0�N�BN /��0nNmi and the characteristic ion in-
ertia scale length �iN=VAN /�iN, where �iN is the ion gyro-
frequency defined by BN. Using VAN and �iN, nN can be writ-
ten as nN=BN / �e�0VAN�iN�. Let L be the shortest character-
istic inhomogeneity scale length, which is the shortest among
the scale lengths of B0, V0, n0, and pi0. Then, x can be
written by using L as x=Lx̄.

Since incompressibility is assumed, the sound speed is
infinite and hence the velocity must be normalized to VAN.
Therefore, from Eq. �15� one obtains

V0 = V0� +
E0 � B0

B̄0
2

−
1

2n̄0B̄0
2

�iN

L
�p̄i0 � B0, �18�

where E0=E0 / �VANBN�, p̄i0= pi0 / �BN
2 /2�0�, and �=� /�r,

with r being equal to xx̂+yŷ+zẑ. It is obvious from this
equation that the ion diamagnetic drift velocity appears in the
flow velocity only when �iN is retained. Therefore, there is
no ion diamagnetic drift velocity in the ideal MHD limit
�iN→0.

The normalized form of the generalized Ohm’s law �7�
becomes

E + V � B −
�iN

L

J � B

n̄
+

1

2n̄

�iN

L
�p̄e = 0, �19�

where J=��B and p̄e= pe / �BN
2 /2�0�. In the ideal MHD

limit �iN→0, one obtains the frozen-in law E+V�B=0.
Since the characteristic ion inertia scale length is given

by �iN=�mi / ��0nNe2�, �iN=2.3 cm for a typical plasma
density nN=1020 m−3 in tokamaks. Therefore, for a typical
minor radius 	1.0 m for tokamaks, �iN /L is considered to
be much smaller or smaller than unity. Therefore, one can
consider �=�iN /L as the small parameter. As is obvious from
Eqs. �18� and �19�, if one removes terms containing �, one
obtains ideal MHD equations. For the characteristic ion Lar-
mor radius �LiN, one obtains �LiN /�iN=��i0N /2=�p̄i0N /2,
where �i0N is the characteristic ion plasma beta value. Since
�i0N is typically 0.05�5%� for tokamaks, �LiN /�iN�0.16.
Thus, one has L	�iN
�LiN for tokamaks. The pressure p in
Eq. �2� is generally a pressure tensor and there is a finite ion
Larmor radius correction term in the pressure tensor. How-
ever, since L	�iN
�LiN holds for tokamaks, the present
analysis, which retains only the ion inertial scale length in
Eqs. �18� and �19� and neglects the finite ion Larmor radius
term, is justified.

IV. EIGENMODE EQUATION

A. Representation of the linear perturbation

One assumes that any physical quantity Q�r , t� can be
expressed as follows:

Q�r,t� = Q0�x� + Q̃1�r,t� , �20�

where r=r�x ,y ,z� and the subscript 1 denotes a linear per-
turbation. By defining k=kyŷ+kzẑ, one further assumes that

Q̃1�r,t� = Q1�x�exp�− i��t − k · r��

= Q1�x�exp�i�kyy + kzz − �t�� . �21�

Since the equation of motion for the electron fluid �7� is
solved, the present single-fluid equations can describe a
whistler wave, which is a right-handed circularly polarized
wave rotating in the electron gyration direction. Therefore,
the eigenmode equation for a perturbation in the present gen-
eral MHD equilibria becomes a wave equation for Alfvén or
whistler waves when the plasma and the magnetic field are
uniform and the wave vector has a component parallel to the
unperturbed magnetic field. Thus, the eigenmode equation
contains a Laplacian operator. It follows that one can obtain
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the eigenmode equation straightforwardly by taking x com-
ponents of the curl of the curl of the equation of motion �2�
and the generalized Ohm’s law �7� since ����Q
=��� ·Q�−�2Q immediately yields the Laplacian of Q.
Taking the curl of Eqs. �2� and �7� also deletes �p and �pe

terms in those equations.

B. Curl of curl of the equation of motion

First, by taking the curl of Eq. �2�, dividing the resultant
equation by �, and then taking the curl of the resultant equa-
tion one obtains

�ln �
� · ��V · ��V�� − � �V

�t
+ �V · ��V�2 ln �

+ �� �V

�t
+ �V · ��V · �� � ln �

− �� ln � · ��� �V

�t
+ �V · ��V −

�

�t
�2V

+ �
� · ��V · ��V�� − �2��V · ��V�

=
1

�
� � � � �J � B� + ��

1

�
� � �� � �J � B�� .

�22�

One obtains after some calculation

�� � � � �J � B��1x

=
k2

�0
i�k · B0�B̃1x +

i

�0

��� d2

dx2 �k · B0�B̃1x − �k · B0�
d2B̃1x

dx2 � , �23�

where subscript 1 on the bracket represents the first order
linear perturbations in the bracket and k2=ky

2+kz
2. Therefore,

taking the x component of the linear perturbation of Eq. �22�,
one obtains

d ln �0

dx
�� d

dx
�k · V0�V1x + �

dV1x

dx
� + �� d2

dx2 − k2�V1x

+ � d2

dx2 �k · V0�V1x

=
k2

�0�0
�k · B0�B1x

+
1

�0�0
�� d2

dx2 �k · B0�B1x − �k · B0�
d2B1x

dx2 � ,

�24�

where �=�−k ·V0. Equation �24� gives a relation between
V1x�x� and B1x�x�. Notice that this equation contains terms of
O��� since V0 and � contain terms of O���. When terms of
O��� are neglected, this equation is valid for the ideal MHD.

For a flute mode satisfying k ·B0=0, Eq. �24� gives

d ln �0

dx
�� d

dx
�k · V0�V1x + �

dV1x

dx
� + �� d2

dx2 − k2�V1x

+ � d2

dx2 �k · V0�V1x = 0. �25�

This equation becomes the eigenmode equation for V1x�x�
and has been derived previously14 to show the existence of
Kelvin–Helmholtz instability driven by shear in the ion dia-
magnetic drift velocity. Since there is no Alfén or whistler
mode for k ·B0=0 and also there is no fast magnetosonic
mode propagating perpendicularly to the unperturbed mag-
netic field owing to the incompressible assumption in the
present problem, this equation is not a wave equation but an
equation describing the vortex motion. Indeed, for the hydro-
dynamic case, Eq. �25� gives an eigenmode equation. When
�0 is constant, Eq. �25� becomes Rayleigh’s stability
equation16 in hydrodynamics.

Notice that in Eq. �25�, V0� given by Eq. �15� includes
the E�B drift and the ion diamagnetic drift. For ideal MHD,
V0� becomes the E�B drift velocity only and this eigen-
mode equation becomes the same as that derived by
Chandrsekhar5 for a configuration in which the flow velocity
�the E�B drift velocity� is perpendicular to the unperturbed
magnetic field.

C. Curl of curl of the generalized Ohm’s law

Next, in order to obtain the eigenmode equation for
B1x�x�, one needs another equation to relate V1x�x� to B1x�x�.
This equation can be obtained by taking the curl of the curl
of the generalized Ohm’s law �7�.

Let us define G=ne�E+V�B�. Then, the generalized
Ohm’s law �7� becomes G=J�B−�pe. Therefore, one
obtains

� � � � G = � � � � �J � B� . �26�

By using Eq. �14� one obtains

G̃1 =
ñ1

n0
� pi0 + n0e�Ẽ1 + Ṽ1 � B0 + V0 � B̃1� . �27�

Owing to the quasineutrality of the plasma, one has
�=mini+mene��mi+me�n. Therefore, taking the linear per-
turbation of Eq. �1�, one obtains

ñ1 =
1

i�

dn0

dx
Ṽ1x. �28�

Substituting Eq. �28� into Eq. �27� and then taking the curl of
the curl of Eq. �27�, one obtains
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�� � � � G�1x

= − i
k2

�n0

dn0

dx

dpi0

dx
Ṽ1x + in0e��� � B�1x

+ ie
dn0

dx
�k · Ẽ1� + in0e�k · B0��� � V�1x

− ie�n0�ky
dB0z

dx
− kz

dB0y

dx
� +

dn0

dx

��kyB0z − kzB0y�Ṽ1x + ie�n0�ky
dV0z

dx
− kz

dV0y

dx
�

+
dn0

dx
�kyV0z − kzV0y�B̃1x. �29�

Thus, in order to express �����G�1x by using Ṽ1x

and B̃1x, one needs to express ���B�1x=�0J̃1x, k · Ẽ1, and

���V�1x by using Ṽ1x and B̃1x. One first takes the x compo-
nent of the linear perturbation of ��G=�� �J�B� and
obtains

�k · B0�J̃1x = ��n0e + k · J0�B̃1x + n0e�k · B0�Ṽ1x. �30�

Substituting Eq. �27� into G̃1=J0� B̃1+ J̃1�B0−�p̃e1

and adding the y component of the resultant equation multi-
plied by ky, and the z component of the resultant equation
multiplied by kz, one obtains by using Eq. �30�

k · Ẽ1 =
1

n0e
�ky�J0z − n0eV0z� − kz�J0y − n0eV0y�

−
kyB0z − kzB0y

k · B0
��n0e + k · J0�B̃1x −

ik2

n0e
p̃e1.

�31�

By taking the x component of the linear perturbation of
the curl of Eq. �2�, one obtains by using Eq. �30�

�� � V�1x =
1

�
��ky

dV0z

dx
− kz

dV0y

dx
� −

n0e

�0
�k · B0�Ṽ1x

−
n0e

�0
B̃1x. �32�

Taking the x component of the linear perturbation of Eq.
�26� and using Eqs. �29�–�32�, one obtains

�−
k2

�n0

dn0

dx

dpi0

dx
+ �0�n0e�2� +

n0e�k · B0�
�

��ky
dV0z

dx
− kz

dV0y

dx
� −

n0e

�0
�k · B0� − e�n0�ky

dB0z

dx
− kz

dB0y

dx
�

+
dn0

dx
�kyB0z − kzB0y��V1x + �n0e��0��n0e + k · J0�

k · B0
+

1

n0

dn0

dx
�kyJ0z − kzJ0y −

kyB0z − kzB0y

k · B0
��n0e + k · J0�

−
�n0e�2

�0
�k · B0� + e�n0�ky

dV0z

dx
− kz

dV0y

dx
��B1x − i

1

n0

dn0

dx
k2pe1

=
k2

�0
�k · B0�B1x +

1

�0
�� d2

dx2 �k · B0�B1x − �k · B0�
d2B1x

dx2 � . �33�

One thus has obtained another relationship between V1x�x�
and B1x�x�. Notice that pe1�x� is also included in this equa-
tion. If one multiplies � on both sides of this equation, this
equation contains O��1�, O��2�, and O��3� terms.

D. General eigenmode equation

Equations �24� and �33� constitute a set of necessary
equations to obtain the eigenmode equation for B1x�x�. In
order to close this equation, pe1 must be expressed by using
V1x and B1x. Therefore, some specific assumptions are nec-
essary to close Eqs. �24� and �33�. However, it is obvious
from Eq. �33� that when n0�x� is constant, pe1 does not ap-
pear in Eq. �33� and the coupled set of Eqs. �24� and �33� is
closed.

When k ·B0=0, the eigenmode equation becomes Eq.
�25� and there is no need to use Eq. �33� in order to obtain
the eigenmode equation. However, for a nonflute mode sat-
isfying k ·B0�0, the coupled set of Eqs. �24� and �33� must
be used to obtain the eigenmode equation for B1x. First, one
obtains from Eq. �33�

R1�x�V1x + R2�x�B1x + R3�x�pe1

=
k2

�0
�k · B0�B1x +

1

�0
�� d2

dx2 �k · B0�B1x

− �k · B0�
d2B1x

dx2 � , �34�

where
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R1�x� = −
k2

�n0

dn0

dx

dpi0

dx
+ �0�n0e�2�

+
n0e�k · B0�

�
��ky

dV0z

dx
− kz

dV0y

dx
�

−
n0e

�0
�k · B0� − e�n0�ky

dB0z

dx
− kz

dB0y

dx
�

+
dn0

dx
�kyB0z − kzB0y� , �35�

R2�x� =
n0e��0��n0e + k · J0�

k · B0
+

1

n0

dn0

dx
�kyJ0z − kzJ0y

−
kyB0z − kzB0y

k · B0
��n0e + k · J0� −

�n0e�2

�0
�k · B0�

+ e�n0�ky
dV0z

dx
− kz

dV0y

dx
� , �36�

R3�x� = − i
1

n0

dn0

dx
k2. �37�

From Eq. �34� one obtains

V1x = P1�x�B1x + P2�x�
d2B1x

dx2 + P3�x�pe1, �38�

where

P1�x� =
1

R1
�− R2 +

1

�0
�k2�k · B0� +

d2

dx2 �k · B0�� , �39�

P2�x� = −
1

R1�0
�k · B0� , �40�

P3�x� = −
R3

R1
. �41�

Substituting Eq. �38� into Eq. �24�, one obtains

T1
d4B1x

dx4 + T2
d3B1x

dx3 + T3
d2B1x

dx2 + T4
dB1x

dx
+ T5B1x

+ T6
d2pe1

dx2 + T7
dpe1

dx
+ T8pe1 = 0, �42�

where

T1 = �P2, �43�

T2 = ��d ln �0

dx
P2 + 2P2�� , �44�

T3 =
d ln �0

dx
�� d

dx
�k · V0�P2 + �P2��

+ � d2

dx2 �k · V0�P2 + ��P1 + P2� − k2P2�

+
1

�0�0
�k · B0� , �45�

T4 = ��d ln �0

dx
P1 + 2P1�� , �46�

T5 =
d ln �0

dx
�� d

dx
�k · V0�P1 + �P1��

+ � d2

dx2 �k · V0�P1 + ��P1� − k2P1�

−
1

�0�0
�k2�k · B0� + � d2

dx2 �k · B0�� , �47�

T6 = �P3, �48�

T7 = ��d ln �0

dx
P3 + 2P3�� , �49�

T8 =
d ln �0

dx
�� d

dx
�k · V0�P3 + �P3��

+ � d2

dx2 �k · V0�P3 + ��P3� − k2P3� , �50�

where the prime denotes a derivative with respect to x.
Thus, one finds that the general eigenmode equation for

an arbitrary equilibrium configuration and a nonflute mode
becomes a fourth-order ordinary differential equation with
respect to B1x. Notice that for ideal MHD the general eigen-
mode equation for a nonflute mode becomes a second-order
ordinary differential equation8 since higher-order derivatives
associated with smaller scale whistler modes are not neces-
sary. Since pe1, dpe1 /dx, and d2pe1 /dx2 terms are contained
in the eigenmode equation �42�, this eigenmode equation is
not closed unless pe1 is expressed in terms of B1x. When
n0�x� is constant, however, T6, T7, and T8 vanish and Eq. �42�
is closed within itself. Notice that for a flute mode satisfying
k ·B0=0, T1 and T2 vanish and the eigenmode equation be-
comes a second-order ordinary differential equation with re-
spect to B1x. For the flute mode the eigenmode equation with
respect to V1x is also closed as Eq. �25� shows irrespective of
n0�x�. Except for those special cases, pe1 must be expressed
by using B1x in order to close the eigenmode equation �42�.
In determining pe1, it should be noted that there is a con-
straint � ·Ve=0 since � ·V=� ·J=0 holds.

V. DISPERSION RELATION FOR UNIFORM
EQUILIBRIUM

In order to investigate the relation of the coupled set of
Eqs. �24� and �33� or the eigenmode equation �42� to disper-
sion relations of Alfvén and whistler modes in a uniform
magnetic field, one assumes that B0�x� and �0�x� are constant
and V0�x�=0. Then, V1x�x� and B1x�x� can also be Fourier
expanded in the x direction to have

V1x�x� = V1x� eikxx, �51�

B1x�x� = B1x� eikxx. �52�

Substitution of Eqs. �51� and �52� into the coupled set of
Eqs. �24� and �33� yields the following dispersion relation:
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��2 −
�kp · B0�2

�0�0
2

=
�2�kp · B0�2kp

2

�0
2�n0e�2 , �53�

where the propagation vector kp=k+kxx̂ and kp
2 =k2+kx

2=kx
2

+ky
2+kz

2. Notice that since B0 is assumed to be in the y-z
plane, k ·B0=kp ·B0.

By defining VA
2 =B0

2 / ��0�0�, �i=VA /�i, and �i=eB0 /mi,
Eq. �53� can be rewritten as

��2 − �k�VA�2�2 = �i
2�2�k�VA�2kp

2, �54�

where k� means the component of kp parallel to the unper-
turbed magnetic field. A similar equation, which also in-
cludes the electron inertia term, has previously been derived
for a uniform plasma from two-fluid equations.17

Let us consider various limits of Eq. �54�. When kp is
perpendicular to B0, k� is equal to zero. Therefore, Eq. �54�
gives simply �=0. Thus, there is no propagating mode for
kp�B0. In the ideal MHD limit, this is reasonable since in
the present case there is no fast magnetosonic mode propa-
gating perpendicularly to the magnetic field owing to the
incompressible assumption. In single-fluid formalism using
the generalized Ohm’s law, this is also reasonable since
Alfvén and whistler modes cannot propagate perpendicularly
to B0.

In the ideal MHD limit, the ion inertial length �i→0.
Thus, Eq. �54� can be written as

�2

kp
2 = VA

2 cos2 � , �55�

where � is the angle between the unperturbed magnetic field
and the direction of propagation vector kp. This is the same
as the dispersion relation of the Alfvén mode.

Next, when �2
�i
2
 �k�VA�2, Eq. �54� becomes

�2

kp
2 =

�B0

�0n0e
cos � . �56�

For �i����e and ���pe, where �e=eB0 /me and �pe is
the electron plasma frequency, the well-known cold-plasma
dispersion relation is simplified to give

nr
2 =

�pe
2

���e cos ��
, �57�

where

nr =
�kp�c

�
�58�

is the index of refraction and c is the light speed. This is a
simplified whistler mode dispersion relation, which was first

used to explain the whistler mode propagation along the
earth’s magnetic field.18 This dispersion relation does not de-
pend on ion and electron masses and means that ions are
immobile because of �
�i and electrons have electric
drifts. It is obvious that Eqs. �56� and �57� agree. Therefore,
for �2
�i

2
 �k�VA�2, the whistler mode is included in the
dispersion relation �54�. Although massless electrons are as-
sumed in obtaining Eq. �54�, the electric drifts of electrons in
the whistler wave electric field are properly described by the
present single-fluid equations.

Finally, let us consider the propagation parallel to B0. In
this case, the cold-plasma dispersion relation is obtained by

calculating ion and electron contributions to J̃�1 and is given
by Eq. �3-45� of Spitzer,19

1

VA
2

�2

k�
2 = �1 

�

�i
��1 �

�

�e
� , �59�

where �i /�e�1 is assumed. In the limit of massless electron
�me→0�, Eq. �59� becomes

1

VA
2

�2

k�
2 = 1 

�

�i
. �60�

Equation �60� is further reduced to

��2 − k�
2VA

2�2 = k�
4�i

2�2VA
2 . �61�

This dispersion relation for parallel propagation becomes
identical with Eq. �54� since k� =kp for parallel propagation.
Thus, one finds that when the plasma and the magnetic field
are uniform and when kp ·B0�0, the present single-fluid
equations contain Alfvén and whistler modes.

VI. EIGENMODE EQUATION FOR SMALL ION INERTIA
LENGTH LIMIT

The general eigenmode equation �42� for B1x, which is a
fourth-order differential equation, is too complicated to solve
for practical applications. Therefore, in this section, a simpli-
fied eigenmode equation is obtained by taking a small ion
inertial length limit. When the plasma and magnetic field are
uniform and k ·B0�0, this simplification corresponds to re-
taining only Alfvén mode and dropping whistler mode.

After dividing by �kVAN�2, Eq. �33� can be written in the
dimensionless form as
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�� �

kVAN
�2

−
1

�̄0

�k̂ · B0�2 +
�iN

L
� k̂ · B0

n̄0
�k̂y

dV̄0z

dx̄
− k̂z

dV̄0y

dx̄
� − � 1

n̄0

�

kVAN
�k̂y

dB̄0z

dx̄
− k̂z

dB̄0y

dx̄
� +

1

n̄0
2

�

kVAN

dn̄0

dx̄
�k̂yB̄0z − k̂zB̄0y��

− ��iN

L
�2 1

2n̄0
3

dn̄0

dx̄

dp̄i0

dx̄
�V̄1x +

1

k̂ · B0

�

kVAN
�� �

kVAN
�2

−
1

�̄0

�k̂ · B0�2 +
�iN

L
� k̂ · B0

n̄0
�k̂y

dV̄0z

dx̄
− k̂z

dV̄0y

dx̄
�

− � 1

n̄0

�

kVAN
�k̂y

dB̄0z

dx̄
− k̂z

dB̄0y

dx̄
� +

1

n̄0
2

�

kVAN

dn̄0

dx̄
�k̂yB̄0z − k̂zB̄0y�� + ��iN

L
�2� k̂ · B0

n̄0
3

dn̄0

dx̄
�k̂y

dB̄0y

dx̄
+ k̂z

dB̄0z

dx̄
�

−
1

n̄0
3

dn̄0

dx̄
�k̂yB̄0z − k̂zB̄0y�k̂ · �� � B0��B̄1x −

i

2
��iN

L
�2kL

n̄0
3

dn̄0

dx̄

�

kVAN
p̄e1

= ��iN

L
�2 1

n̄0
2

�

kVAN
��kL�2�k̂ · B0�B̄1x + �� d2

dx̄2 �k̂ · B0��B̄1x − �k̂ · B0�
d2B̄1x

dx̄2 � , �62�

where k̂=k /k, k̂y =ky /k, k̂z=kz /k, V̄0y =V0y /VAN, and

V̄0z=V0z /VAN. This equation contains O��1�, O��2�, and
O��3� terms.

In the following, one considers low-frequency waves,
which satisfy O�� / �kVAN��	1. Since the characteristic ion
inertia length �iN is smaller than L in tokamaks, �=�iN /L is
considered to be a small parameter. For Kelvin–Helmholtz
instability driven by shear in the ion diamagnetic drift veloc-
ity, the stability analysis shows that k�Lp�1 for instability,14

where Lp is the scale length of the pressure gradient. Since

k=�k�
2+k�

2 �k� for tokamaks and L�Lp, one also assumes
that kL is smaller than one. For fusion plasmas p̄i0 and p̄e1

are also orders of one or smaller.
One first writes Eq. �18� as

V0 = V00 + �V01, �63�

where

V00 = V0� +
E0 � B0

B̄0
2

, �64�

V01 = −
1

2n̄0B̄0
2
�p̄i0 � B0. �65�

Then, in order to obtain the lowest order approximation,
one neglects O��2� and O��3� terms in Eq. �62� and obtains

�S1 + �S2�V̄1x + ��S3 − �S4�S1 + �S2S3�B̄1x = 0, �66�

where

S1 = ��̄ − k̂ · V00�2 −
1

�̄0

�k̂ · B0�2, �67�

S2 = − 2��̄ − k̂ · V00�k̂ · V01 +
k̂ · B0

n̄0

��k̂y
dV̄00z

dx̄
− k̂z

dV̄00y

dx̄
� −

��̄ − k̂ · V00�
n̄0

���k̂y
dB̄0z

dx̄
− k̂z

dB̄0y

dx̄
� +

1

n̄0

dn̄0

dx̄
�k̂yB̄0z − k̂zB̄0y� ,

�68�

S3 =
1

k̂ · B0

��̄ − k̂ · V00� , �69�

S4 =
1

k̂ · B0

k̂ · V01. �70�

Here,

�̄ =
�

kVAN
, �71�

V̄00y =
B0 · V0

B̄0
2

B̄0y −
Ē0B̄0z

B̄0
2

, �72�

V̄00z =
B0 · V0

B̄0
2

B̄0z +
Ē0B̄0y

B̄0
2

. �73�

Since � is a small parameter, one can, in principle, ex-

press V̄1x and B̄1x by the power series of �. Therefore, V̄1x can

be written as V̄1x=�n=0
� �nV̄1xn. However, since only O��0�

and O��1� terms are retained in Eq. �62� to obtain Eq. �66�, it
is enough to retain only terms up to �1 in the power series

expansion. Thus, one can write V̄1x and B̄1x as

V̄1x = V̄1x0 + �V̄1x1, �74�

B̄1x = B̄1x0 + �B̄1x1. �75�
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Substituting Eqs. �74� and �75� into Eq. �66�, one obtains

�S1 + �S2��V̄1x0 + �V̄1x1� + ��S3 − �S4�S1 + �S2S3�

��B̄1x0 + �B̄1x1� = 0. �76�

Since Eq. �76� is a mathematical identity including parameter
�, all coefficients of powers of � must vanish. Therefore, by
equating the coefficient of �0 zero, one has

S1�V̄1x0 + S3B̄1x0� = 0. �77�

By equating the coefficient of �1 zero, one has

S1�V̄1x1 + S3B̄1x1 − S4B̄1x0� + S2�V̄1x0 + S3B̄1x0� = 0. �78�

In an ideal MHD plasma, S1=0 is of special interest
since it means that the wave phase velocity along the unper-
turbed magnetic field, which is calculated using the Doppler
shifted frequency, is equal to the Alfvén speed. However, in
a real plasma, such a condition, i.e., S1=0, does not have a
special significance since the Doppler shifted frequency is

�̄− k̂ ·V0 and not �̄− k̂ ·V00. Therefore, the case of S1=0
does not need special attention and one assumes S1�0.
Then, from Eqs. �77� and �78� one has

V̄1x0 + S3B̄1x0 = 0 �79�

and

V̄1x1 + S3B̄1x1 − S4B̄1x0 = 0. �80�

By multiplying � to Eq. �80� and then adding the result-
ant equation to Eq. �79�, one obtains

V̄1x + �S3 − �S4�B̄1x + �2S4B̄1x1 = 0. �81�

If the last term proportional to �2 is neglected in this equation
in accord with the omission of terms of O��2� and higher
orders in Eqs. �66�, �74�, and �75�, one has

V̄1x = −
�

k̂ · B0kVAN

B̄1x. �82�

The denormalized form of Eq. �82� is

V1x = −
�

k · B0
B1x. �83�

This is a simplified relation between V1x�x� and B1x�x�, when
terms of order �2 and higher orders are neglected.

If one defines

h�x� =
B1x�x�
k · B0

= −
V1x�x�

�
, �84�

substitution of Eq. �83� into Eq. �24� yields

d

dx
��0��2 −

�k · B0�2

�0�0
dh

dx
� − �0k2��2 −

�k · B0�2

�0�0
h

= 0. �85�

This is the eigenmode equation for B1x�x� when terms of
order �2 and �3 are neglected in Eq. �62�. When k ·B0=0, Eq.
�85� becomes identical with Eq. �25�. The eigenmode equa-
tion �85� is the same as the eigenmode equation for ideal

incompressible MHD �Ref. 8� except for the fact that V0� in
Eq. �85� includes the E�B drift velocity and the ion dia-
magnetic drift velocity, which is absent in ideal MHD.

For a uniform equilibrium without a flow, substitution of
Eq. �52� into Eq. �85� yields

kp
2��2 − k�

2VAN
2 � = 0. �86�

Therefore, unlike Eq. �54� the whistler mode dispersion �56�
is not included in Eq. �86� owing to the neglect of terms of
order �2 and �3 in Eq. �62�.

VII. SUFFICIENT CONDITION FOR STABILITY

From Eq. �85� one can derive a simple quadratic form to
study stability following the same procedure as used
previously.8 Multiplying Eq. �85� by h�, where the asterisk
denotes the complex conjugate, and then by operating �−�

� dx,
one obtains

�
−�

�

�0��2 −
�k · B0�2

�0�0
�dh

dx
�2

dx

+ �
−�

�

�0k2��2 −
�k · B0�2

�0�0
�h�2dx = 0, �87�

where one assumed that h����=0. This equation can be
reduced to

A�2 + 2B� + C = 0, �88�

where

A = �
−�

�

�0���2dx 	 0, �89�

B = − �
−�

�

�0�k · V0����2dx , �90�

C = �
−�

� ��0�k · V0�2 −
�k · B0�2

�0
���2dx , �91�

and

���2 � �dh

dx
�2

+ k2�h�2. �92�

From Eq. �88� one obtains

� =
− B � �B2 − AC

A
. �93�

Since B2 and A are positive definite, a sufficient condition for
stability becomes

C � 0. �94�

This condition is derived under the neglect of O��2� and
O��3� terms in Eq. �62� and is the same as the sufficient
stability condition for ideal incompressible MHD �Ref. 8�
except for the fact that V0 in Eq. �91� includes the ion dia-
magnetic drift velocity, which is a finite ion inertial length
correction to the ideal MHD flow velocity �see Eq. �63��.
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The sufficient stability condition �94� was not obtained
from a variational principle such as the energy principle,1

which states that a plasma equilibrium is stable if and only if
the minimum of the potential energy of ideal MHD is posi-
tive or equal to zero. Therefore, Eq. �94� is different from
stability criteria used in fusion1,2 and magnetospheric3,4 plas-
mas, which are obtained from the energy principle and ex-
pressed by using unperturbed quantities. That is, the coeffi-
cients A, B, and C in Eq. �88� contain an unknown function
��x�. Thus, a sufficient condition for stability �94� cannot be
evaluated until the unknown function ��x� is determined.
However, in a special case condition �94� provides a useful
sufficient condition for stability, which is expressed by using
unperturbed quantities only. That is, when

��0�k · V0�2�max � � �k · B0�2

�0


min
, �95�

where the subscripts max and min denote the maximum and
minimum values of quantities in the brackets in the region
for integration, respectively, condition �94� is satisfied be-
cause of ��0�k ·V0�2−�0

−1�k ·B0�2��0 for all x. Since Eq.
�95� contains only unperturbed quantities, it is not necessary
to know the unknown function ��x� in evaluating Eq. �95�.
Thus, Eq. �95� is a useful sufficient condition for stability.

As can be seen from Eq. �95�, k ·B0 must be nonzero and
large in order to satisfy this condition. This suggests that a
sufficient amount of magnetic shear, which makes �k ·B0�2

large, can suppress a magnetic fluctuation excited by Kelvin–
Helmholtz instability driven by shear in the ion diamagnetic
drift velocity. However, since the �k ·B0�2 term in Eq. �91�
represents a line bending term, the field line bending, which
occurs when k ·B0�0, contributes to stabilization with the
stabilizing magnetic tension force and the magnetic shear
itself is not responsible for the stabilization. Therefore, a
large magnetic field without shear may well also stabilize
this fluid instability.

In a real plasma, the compressibility may also contribute
to stabilization. However, since incompressibility is assumed
in the present analysis, there is no condition related to the
compressibility. Even if the compressibility is taken into ac-
count, the above sufficient condition for stability �95� would
remain important since tokamaks have a typical � value of
several percent and the magnetic energy dominates the inter-
nal energy.

The lowest order approximation used in deriving Eq.
�94� means that although higher-order corrections involving
whistler mode components are neglected, the effect of the
finite ion inertial length scale is accurately taken into account
in calculating V0 �see Eq. �63�� and hence in obtaining a
sufficient condition for stability �94�.

VIII. DISCUSSION AND SUMMARY

For a flute mode satisfying k ·B0=0, the existence of the
Kelvin–Helmholtz instability driven by shear in the ion dia-
magnetic drift velocity has been proven when there is no
unperturbed electric field14 and when there is an unperturbed
electric field yielding an unperturbed E�B drift velocity.20

An unstable flute mode �k ·B0=0� found by solving com-

pressible Hall MHD equations for a one-dimensional current
sheet configuration with E0=0 �Ref. 21� is also essentially
driven by shear in the ion diamagnetic drift velocity, al-
though no mention of the shear in the ion diamagnetic drift
velocity was made. Since a shear in the ion diamagnetic drift
velocity in a nonuniform pressure plasma is essential in this
instability, this instability cannot be found by a stability
analysis for a uniform plasma,22 even if ion inertial effects
are taken into account.

For a flute mode satisfying k ·B0=0, the stability of fi-
nite Larmor radius hydrodynamics was also studied.23 How-
ever, since an electrostatic perturbation was assumed, insta-
bility driven by shear in the ion diamagnetic drift velocity14

could not be obtained. This instability driven by shear in the
ion diamagnetic drift velocity is essentially fluidlike and not
driven by an inverse Landau damping. Therefore, this insta-
bility is different from drift instability and is considered to be
more universal.

In tokamaks, there is a magnetic shear and therefore, it is
impossible to have k ·B0=0 everywhere. Thus, the flute
mode stability is not relevant to tokamaks and the stability
condition �95� is necessary to seek tokamak parameters en-
suing stability. Let us assume that there is no parallel flow
and V0=V0�. Since k� ·V0� becomes a maximum when k�

is parallel to V0�, the sufficient condition for stability �95�
becomes

��0�k�V0��2�max � ��0
−1�k�B0�2�min. �96�

Therefore, one obtains for stability

�0 max�k�maxV0�max�2 � �0
−1�k�minB0 min�2, �97�

where subscripts max and min in this equation and following
equations represent those values at radial positions,
where �0�k�V0��2 is maximized and �k�B0�2 is minimized,
respectively.

From Eq. �97� one obtains for stability

MA �
V0�max

VA min
���0 min

�0 max

k�min

k�max
, �98�

where VA min=B0 min /��0�0 min.
Inequality �97� gives a sufficient condition for stability.

By using ion beta �i max defined by 2�0pi0 /B0 max
2 , the scale

length of the pressure gradient Lp, and the ion inertial scale

length �i max defined by �mi / �n0 max�0e2�, Eq. �97� can be
expressed as

�i max �
2Lp

�i max

B0 min

B0 max

Lpk�min

Lpk�max
, �99�

where one assumed that the unperturbed electric field is zero
and used �V0��= ��pi0�B0 / �n0eB0

2��� pi0 / �Lpn0eB0�. The
stability analysis of the Kelvin–Helmholtz instability driven
by shear in the ion diamagnetic drift velocity for k ·B0=0
shows that 2ak�max�1 for instability, where 2a is the width
of the shear of the ion diamagnetic drift velocity. Therefore,
by assuming Lp�2a the most pessimistic form of Eq. �99�
becomes
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�i max �
2Lp

�i max

B0 min

B0 max
Lpk�min �100�

for stability. Here, k�min=2� /��min and ��min is the parallel
wavelength. Since ��min is the periodicity length in the par-
allel direction, the most pessimistic limit of Eq. �100� can be
obtained by assuming ��min=��min, where ��min is the length
of the field line passing through the point in the radial direc-
tion, where �k�B0�2 is minimum. That is,

�i max �
4�Lp

2

�i max��min

B0 min

B0 max
�101�

for stability.
Although this is a very crude evaluation of the sufficient

condition for stability, Eq. �101� may give a reasonable para-
metric dependence of a maximum achievable �i max in order
to satisfy the stability condition for the Kelvin–Helmholtz
instability driven by shear in the ion diamagnetic drift veloc-
ity in tokamaks. Condition �101� contains an ion inertial
scale length �i max, which is zero in the ideal MHD limit.
Condition �101� shows that when ��min is smaller, the sheared
ion diamagnetic flow is more stable since the stabilizing
magnetic tension force is larger. In tokamaks, when toroidal
magnetic geometries have rational surfaces, the field line is
closed and the field line length is a function of the plasma
safety factor q. When toroidal magnetic geometries have er-
godic surfaces, ��min is considered to be infinite. When q is
an integer, ��min is nearly proportional to q. Therefore, in
such a case, the sheared ion diamagnetic flow is more un-
stable for larger q. Although this seems somewhat unphysi-
cal, this is reasonable on physical grounds since if the field
line length is larger, the stabilizing magnetic tension force is
smaller. For erdgodic surfaces, ��min is considered to be infi-
nite and therefore, there is no stabilizing tension force and
the instability cannot be stabilized by the tension force. Con-
dition �101� also shows a strong dependence of the stability
on Lp and that for larger Lp the sheared ion diamagnetic drift
is more stable.

The above observation suggests that even for ideal MHD
stable tokamaks there is a small scale magnetic fluctuation in
the vicinity of the ion pressure gradient, which is destabi-
lized by the Kelvin–Helmholtz instability driven by shear in
the ion diamagnetic drift velocity.14 Since the ion pressure
gradient is mainly in the radial direction, this magnetic fluc-
tuation has an eigenmode structure, which is peaked near the
ion pressure gradient and decays radially on both sides. The
magnetic fluctuation is elongated along the field line. When
the toroidal magnetic field is much stronger than the poloidal
field, this is elongated almost in the toroidal direction. For
such a configuration the ion diamagnetic drift is mainly a
poloidal flow and the magnetic fluctuations are periodic in
the poloidal direction with Lpk��1 according to the stability
analysis for k ·B0=0.14 Therefore, the periodic length in the
poloidal direction is nearly equal to ��2�Lp. This magnetic
fluctuation is of fluid origin �not destabilized by an inverse
Landau damping� and can be completely stabilized by stabi-
lizing magnetic tension force when the stability condition
�101� is satisfied.

In summary, a fourth-order general eigenmode equation
for a magnetic field perturbation has been derived for an
arbitrary plasma equilibrium in a slab geometry in the frame-
work of incompressible single-fluid equations with a simpli-
fied generalized Ohm’s law. For a uniform plasma the eigen-
mode equation for k ·B0�0 gives dispersion relations for
Alfvén and whistler modes. For a special case of k ·B0=0,
the eigenmode equation is reduced to a second-order differ-
ential equation, which was derived previously.14 For a gen-
eral case of k ·B0�0, the ratio of the characteristic ion iner-
tia length to the shortest characteristic scale length of the
inhomogeneity is chosen as a small parameter for expansion.
By retaining the finite ion inertial length correction in the
unperturbed flow velocity but neglecting higher-order whis-
tler mode components, a simple quadratic form is obtained to
investigate the general stability. A sufficient condition for
stability against the Kelvin–Helmholtz instability driven by
shear in the ion diamagnetic drift velocity is obtained from
this quadratic form. Although the application of the present
results is restricted to an equilibrium in a slab geometry, the
obtained sufficient condition for stability provides a useful
method to investigate the single-fluid stability of a general
stationary plasma equilibrium with velocity shear and mag-
netic shear.
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