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Position Control of a Manipulator with Passive
Joints Using Dynamic Coupling

Hirohiko Arai, Member, IEEE, and Susumu Tachi, Member, IEEE

Abstract—This paper describes a method of controlling the
position of a manipulator composed of active and passive joints.
The active joints have actuators and position sensors. The
passive joints have holding brakes instead of actuators. While
the brakes are released, the passive joints are indirectly con-
trolled by the motion of the active joints using the coupling
characteristics of manipulator dynamics. While the brakes are
engaged, the passive joints are fixed and the active joints are
controlled. The position of the manipulator is controlled by
combining these two control modes. This paper describes the
basic principle of the control method and the conditions that
ensure the controllability of the passive joints. An algorithm for
point-to-point control of the manipulator is also presented. The
feasibility of the method is demonstrated by simulations for a
manipulator with two degrees of freedom.

I. INTRODUCTION

HE number of degrees of freedom of a manipulator is

usually equal to the number of joint actuators. In order
to decrease the weight, cost, and energy consumption of a
manipulator, various methods have been proposed for con-
trolling a manipulator that has more degrees of freedom than
actuators. However, these methods require special mecha-
nisms (e.g., drive chains, drive shafts, transmission mecha-
nisms) in addition to the basic links and joints. In this paper,
a method for controlling a manipulator having more joints
than actuators without using additional mechanisms is pre-
sented.

The dynamics of a manipulator has nonlinear and coupling
characteristics. When each joint is controlled by a local linear
feedback loop, these factors result in disturbances. The elimi-
nation of such disturbances has been one of the major prob-
lems in the control of a manipulator [1]-[5]. A design theory
for a manipulator arm that has neither nonlinearity nor
dynamic coupling has also been proposed [6]. However, the
force of this disturbarce is available to drive a joint that in
itself does not have an actuator.

Vukobratovi¢ and Juri¢i¢ [7] and Vukobratovi¢ and Stokié
[8] proposed an algorithmic control in which the states and
generalized forces of the system are partially programmed,
and the unknown states and unknown generalized forces are
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determined by the conditions of dynamic equilibrium. This
method is applied to the synthesis of biped gait [7] and biped
postural stabilization [8]. In the biped system, the degrees of
freedom between the foot and the ground have no actuators,
and they are controlled indirectly using dynamic coupling
with other powered degrees of freedom. Since dynamic equi-
librium is represented as a second-order differential equation,
a boundary condition is required to determine the state of the
system completely. Vukobratovi¢ et al. used the repeatability
condition of the biped gait as the boundary condition.

This paper describes a method of controlling the position
of a manipulator composed of active and passive joints. The
active joints have actuators and position sensors. The passive
joints have holding brakes instead of actuators. While the
brakes are released, the passive joints are indirectly con-
trolled by the motion of the active joints using the coupling
characteristics of manipulator dynamics. While the brakes are
engaged, the passive joints are fixed and the active joints are
controlled. As the passive joints can be fixed by brakes, the
boundary condition concerned with the active joints can be
determined arbitrarily. The total position of the manipulator
is controlled by combining these two control modes. The
condition that ensures controllability of the passive joints
while released is obtained. An algorithm for point-to-point
control of the manipulator is also presented. The feasibility of
the method is demonstrated by simulations for a manipulator
with two degrees of freedom.

II. PrincIPLE OF CONTROL METHOD

Consider a manipulator with n degrees of freedom. We
assume that r (r = n /2) degrees of freedom of the manipula-
tor are active joints with actuators and displacement sensors,
which is a typical structure of manipulator joints. The (n — r)
degrees of freedom are passive joints that have holding
brakes instead of actuators.

When the holding brakes are engaged, the active joints can
be controlled without affecting the state of the passive joints.
When the holding brakes are released, the passive joints can
move freely and are controlled indirectly by the coupling
forces generated by the motion of the active joints. The
position of the manipulator is controlled by combining these
two control modes.

The equations of motion of a manipulator can be written as
follows

M(q)G+b(q,§)=u

(1)

where

b(q,¢) = h(q.4) +T¢ +g(q)
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and
geR” are joint displacements,
ueR” are generalized forces,
g(q)eR” are gravitational forces,
h(q, §)eR" are Coriolis and centrifugal forces,
M(q)eR"™" is the inertia matrix, and
I'eR™”" is the viscosity friction matrix.

The displacements of r joints, including all the (n — r)
passive joints, are selected from the elements of g and set as
a vector Yy eR” (since r=n/2, r=n—r). When r>n
—r, ¥ is composed of the displacements of the (n — r)
passive joints ¥, € R"~" and those of the (2r — n) active
joints ¢, €R*~". When r = n — r, all the joints repre-
sented by ¢ are passive. In addition, all the remaining
(n — r) joints-are active, and their displacements are repre-
sented as ¢ € R”~". The generalized forces of the r active
joints are expressed as 7€ R". When the passive joints are
free, the generalized forces of the passive joints are equal to
zero. The elements of g and u are then rearranged as

¢ n—r
q=|:$:|:'_’= ¢acl 2r-n
l// n—r

pas

u=[6]:_r. 2)

Accordingly, M(q) and b(g, ¢) are also rearranged and
partitioned as follows:

_ M, (q) My(q) |-
M(q)_[le(‘I) Mzz(‘])}

n—r r

b(q,q) - [bl(q’ q):|’ (3)

bz(q ’ q) nor’
When (2) and (3) are substituted for (1), we obtain

n-r

M, é+Muf+b =1

(42)

(40)

The elements of M are functions of g. The elements of &
are functions of g and §. M,;,, M,,, M,,, M,,, b,, and b,
can be calculated from the dynamic model of the manipulator
if the measured value of joint displacement and velocity at
each joint is substituted in ¢ and ¢ of (3). Furthermore,
when desired values J;d are assigned to the accelerations v,
(4b) is considered a linear equation with regard to é. The
coefficient matrix M,, corresponds to the dynamic coupling
between the accelerations of ¢ and the generalized forces of
the passive joints, and it depends upon the structure and mass
distribution of the manipulator. If M,, is nonsingular, (4b)
can be solved uniquely for ¢ as

‘2; = —M{11M22\Zd - Mfllbz- (5)
When (5) is substituted in (4a), we obtain
T= (M12 - M11M2—11M22)‘Z’.d + b, - M11M2_|lb2- (6)

Myé + My + b, = 0.
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If we apply these generalized forces 7 to the active joints, the
resulting accelerations will be d) and 1;,,.

In other words, while the passive joints are free, the
accelerations ¥ of r joints, including the (n — r) passive
joints .., can be arbitrarily determined by applying the
generalized forces 7 to the r active joints. The accelerations
é of the remaining (n — r) active joints are determined by
¥, and cannot be adjusted arbitrarily. However, in addition
to the accelerations, the initial displacements and velocities
are required to prescribe the motion completely. The initial
displacements of the passive joints are the displacements at
the moment the brakes are released. The initial velocities of
the passive joints are zero. The initial displacements and
velocities of the active joints are determined arbitrarily by
controlling the active joints with the passive joints fixed.

While the passive joints are fixed, their velocities and
accelerations are zero. The displacements, velocities, and
accelerations of the active joints can then be controlled
without affecting the passive joints.

By organizing the motion pattern using a combination of
these two modes, the total position of the manipulator is
controlled. In Section IV, an example of the organization of
this pattern is described.

III. CONTROLLABILITY AND OUTPUT CONTROLLABILITY

In this section, we present the theoretical basis of the
proposed method from the standpoint of linear system theory
[91. First, we investigate the controllability of a manipulator
system with passive joints. The system is uncontrollable (in
the sense of linear system theory) if no gravity and no
friction act on the passive joints. In such a case, simultaneous
positioning of all the joints is impossible. Therefore, the
holding brakes of the passive joints are necessary to ensure
the positioning capability of the manipulator.

Second, we investigate the output controllability of the
system. The output is composed of displacements and veloci-
ties of some of the joints. For output controllability, the
number of joints we assign displacements and velocities
(output joints) must be less than or equal to the number of
active joints. Including the released passive joints, we can
simultaneously control as many joints as the number of active
joints. Therefore, the number of passive joints should be less
than or equal to the number of active joints.

Finally, we show the relationship between the linear ap-
proximation and analytical expression by proving that the
conditions of output controllability are equivalent to the
conditions necessary to solve the generalized forces of the
active joints (i.e., M,, is nonsingular).

A. Linear Approximation Model

At first, the equations of motion of the manipulator are
linearized to obtain a state variable representation. Since the
inertia matrix M(q) is generally nonsingular, (1) is trans-
formed as

G-M(q) 'u+M(qg)"'b(g,4)=0. (7

In order to ensure equilibrium while the passive joints are
free, it is assumed that gravitational forces do not act on the

More — on the ongde.
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passive joints and that the friction of the passive joints can be ignored. When (7) is linearized in the neighborhood of the
equilibrium point, the system can be represented by the following state equation:

X = Ax + Br
[ o 0 I, o 1,
0 0 0 I ,
4= ab, ab, ab, ab,
-Ny— 11 g 1oz 115
¢ 1 a¢ ay |"7
ab, ab, ab, ab,
_Nzla_¢‘ 21W 213_‘;{s 213*‘/'/ r
[0 Ja--
0 |-
B=1N |-
_N21 r
6¢ n—r
oy |-
Y= 66 |n-s
54 -
where ( Next, we make the variable transformation x = Tz using T
- N(q) Ny(g) |-~
M(q) ' = . = =
N, (q) Nyp(q) |~ t=Az+ Br (12)
r n-r (9)  where
ab, ab, ab, ab, ab, ab, ab, ab,
96 1T Ty m 9 11T gy A a6 2T gy 2 dp 12T Ty 2
A=T"'4T= I, 0 0 0
0 0 0 0
0 0 I,_, 0
The state variables 6¢, 6y, 64:, B,L consist of the deviations _ I,
of the joint displacements and velocities from the equilibrium B=1'B=|0
point. The input is the generalized forces 7 of the active 0
joints (in this case, the number of inputs r and choice of ¢, 0
Y is arbitrary, so it is not necessary for ¥ to include all the M, 56 + M, 5¢
passive joints). B M,,56 + M5y
z=T 'x=

B. Controllability
Here, the 27 X 2n matrix T is introduced as

o N, O N,

0O N, 0 N,
T = :
N, O N, 0 (10)
Ny 0 N, 0
and T is nonsingular. T~' is given by
[ 0 0 M, M,
_— M, M, O 0 (11)

0 0o M, M,

M, My 0 0

—

My,8¢ + My, 8y
M, 8¢ + M,,6¢

When the controllability matrix ¥ is calculated to investi-
gate the controllability of system (12)

AB - A1 B

V=
ab, b,
Ir _a_d; 1= W 21
=0 I, ok (13)
0 0 0
0 0 0
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Since rank [l_’] = 2r < 2n, system (12) is uncontrollable.
Hence, system (8), which is equivalent to (12), is also
uncontrollable. In other words, when the displacements and
velocities of # joints are simultaneously controlled with the
generalized forces of r (< n) active joints, there exists a
domain that the manipulator cannot reach by an input even in
the neighborhood of the equilibrium point.

C. Output Controllability
Here, the output of the system (12) is taken as

y=Cz

B

C= 0 Ny 0 Nypjr
(N, 0 N, 0|

n-r n-~r

(14)

The displacements and velocities of r joints are the output. If

the system is output controllable, the existence of an input 7
that transfers the output 6y, 5y from an arbitrary value to
zero is guaranteed. The complete condition for output con-
trollability of systems (12) and (14) is that the rank of matrix

N=[CB CAB CA* B--- CA"" B equals 2r.

N=C

~I

ab, ab, .
_N21

Z[O N21] I, _a_d"Nll_a‘L
N21 0 0 I *%

r

(15)

From (15), the condition of output controllability is equiva-
lent to the nonsingularity of N,,. Hence, if /V,, is nonsingu-
lar, it is possible to set ¢ and yb at desired values and to
perform local positioning in the neighborhood of the equilib-
rium point.

Recall that r is the number of active joints. If r=n —r,
we can select the r joints represented by ¥ so as to include
the (n — r) passive joints. In such a case, all the passive
joints can be positioned with the generalized forces of the
active joints. On the other hand, the displacements and
velocities of joints greater than r are not output controllable
irrespective of the output matrix C since the rank of matrix
N in (15) is less than or equal to 2r. Hence, at least
(n — 2r) passive joints cannot be controlled if r < n - r.

Furthermore, it can be proved that this condition agrees
with the condition that M,, must be nonsingular, and there-
fore (4b) has a solution. This means that if and only if the
accelerations of r joints, including (n — r) passive joints,
can be arbitrarily determined by the generalized forces of r
active joints without linear approximation, systems (12) and
(14) become output controllable.

Proposition: When the n dimensional square matrix

M My, ir
M= 1 12
M, My|n-r

n—r r

531

is nonsingular and the inverse matrix of M is represented as

M- = [Nu le]”“’

N21 N22
n n-r

(b)

the complete condition that M,, is nonsingular is that N, is
nonsingular.

Proof: First, the sufficient condition is verified. Since N,,
is nonsingular, when
—N, Ny ] o
()

is postmultipled using both sides of (b)

oM~ = [ 0 Ny, = Ny Ny, ' Ny .""
Ny, Ny, r

(d)
Since both @ and M are nonsingular, QM ™! is also nonsin-
gular. Accordingly, the vectors from the first to the (n — r)th
row of QM™' are linearly independent and N, —
N, N5,'N,, (= N4) is nonsingular. Further, if

In—r 0 n—r
P = -
“szN*l AL

n—r r

is postmultiplied using both sides of (d)

pomt=| O NeT
N, 0 |r

Next, we postmultiply (f) by M to obtain

PQ = POM~'M

_ N*M21 N*M22 (g)
NyMy,,  NyMy,
Since
PQ - In»r _]Vll‘}VZ_l1 (h)
—NyNz' I+ N, Nx' Ny Ny'

from (c) and (), M,, = Nx'. Accordingly, M,, is nonsin-
gular. With respect to the necessary condition, the exact
same proof can be made when M and N are exchanged. W

IV. CONTROL ALGORITHM

In controlling the position of a manipulator, several control
algorithms can be devised according to the way in which the
two control modes are combined. As an example, point-to-
point (PTP) control is considered here.

Since the passive joints are controlled with the brakes
released (brakes-oFF) and the active joints are controlled with
the brakes engaged (brakes-on), the control mode should be

LI
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Trajectory Generation of y
Wa(t). Walt), Ya(t) (T1St<T2)
i
Initial Values of ¢, ¢
9(T1), &(T1)

=

() = - MiiMuije - Miib;
T(t) = (M2 - MuM3iMap)ipa + by - MiiM3ib,

+AT

S(+ATI= O+ ¢ (s3ds
+AT

S(H+ATI=0()+;" d(s)ds

Fig. 1. Control algorithm in brake-oFF period.

changed at least once so all the joints of the manipulator can
reach the desired position. It is considered difficult to control
both the passive and active joints simultaneously to reach the
desired position precisely while the passive joints are free. In
the simplest control algorithm sequence, therefore, first the
passive joints are positioned while the passive joints are free,
then the remaining active joints are positioned while the
passive joints are fixed.

PTP control is possible with this sequence alone, but to
make it even easier, a brakes-oN period is added before the
brakes-orr period. This brakes-oN period provides kinetic
energy to the link mechanism through the active joints so that
the passive joints can move easily and thus unnecessary
motion of the active joints is reduced. Consequently, the
period of positioning is divided into the following three
phases:

Phase I: ¢ joints are fixed (T < ¢ < T, brakes oN)
Phase II: ¢ joints are free (T, < ¢t < T,, brakes OFF)
Phase III: y joints are fixed (T, < t < T, brakes oN)

In phase II, r joints, including all the passive joints, are
controlled along a desired trajectory. In phases I and III, the
remaining (n — r) active joints are controlled from the initial
position to the final position.

First, the trajectory and the generalized forces in phase I
are calculated off-line as follows (Fig. 1).

Step 1: Desired displacements, velocities and accelera-
tions Y,u(1), Y (1), ¥ () (T, <=t < T,) of r
joints, including all the passive joints, are pre-
scribed. (In addition, ¥ (7)) = ¢,(T,) =0is a
boundary condition because at the moment of
brake switching, the passive joints must be at
rest.)

Step 2: The initial displacements ¢(7,) and velocities
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d;(Tl) of the remaining (n — r) joints are as-
signed.

Step 3: Equations (5) and (6) are used to determine
7(T)) and ¢(T)).

Step 4: (T, + AT) and ¢(T, + AT) are determined
by numerical integration of ¢(r). Here, AT is
the sampling interval.

Step 5: Steps 3 and 4 are repeated, and the generalized

forces 7, accelerations §, velocities ¢, and dis-

placements ¢ are determined for the rest of
phase II.

The results of these off-line calculations are used for feedfor-
ward compensation. Moreover, the boundary values of ¢ and
¢ between the phases I, III, and II are determined using this
result.

When the control is executed in real time, the following
feedback control is applied:

Vo =1q +Kv(‘i’d - ‘/’) + K,(Va— V)
+K,./ (¥y — ¥) dr,

(K,, K,, K,: diagonal gain matrix).

(16)

Here, ¥,, y,, and y, are the desired values of displace-
ments, velocities, and accelerations given in step 1 and
and ¥ are the measured values of displacements and veloci-
ties. Accelerations v obtained in (16) are substituted in J}d
of (6) and the generalized forces 7 are determined. In this
case, the actual values for ¢ and qS can be obtained by
measurement, and numerical integration is not required. From
(4a), (5), (6), and (16)

(\;d - 11/) + K.,(\Ld - \b) + Kp(wd -¥)
+K, [ Ga-w)ar=0. (11)

Therefore, Y, — V is guraranteed to converge to zero if K,
K ,, and K, are correctly chosen.

In phases I and III, the control of the joint angles ¢ is
similar to an ordinary manipulator. In phase I, ¢ is con-
trolled from the initial position ¢(7,) to #(7,) and é is
controlled from cis(To) =0 to d'>(T1). In phase U, ¢ is
controlled from ¢'(T2) to the final position ¢(7;) and é is
controlled from @(T,) to <13(T 3) = 0. Using the algorithm
discussed above, the position of the manipulator can be
controlled between any two points.

V. SIMULATION

In order to confirm the feasibility of the proposed method,
the control of a two-degrees-of-freedom manipulator (Fig. 2)
is considered. The mass distributions of links 1 and 2 are
assumed to be uniform. The required actuator torque, the
positioning time, etc. are then evaluated. Specifically, (5) and
(6) are expressed as follows:

_ MZZIZ; + 1)211(‘1/)4’)2

¢~ My, (¥)

(18)
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Mz=1kg, 12=7.5 x 107> kgm®

Joint2 (Brake}

My=2kg, 1, =1.5 x10° kgm®

Joint { (Actuator)
Fig. 2. Two-degrees-of-freedom manipulator.

Brake ON : @
Brake OFF : O

(¢,¥) : (0,0) — (T/2,T/3)

Fig. 3. Simulated motion of the manipulator.

TABLE I
SIMULATION RESULTS

Positioning Time T, - Tp<1.78s

Actuator Torque |74] =2.3Nm
Actuator Velocity |¢| <29rad/s
Actuator Acceleration | 6| < 12.6 rad/s?
Brake Torque | 74| < 0.96 Nm
M, (¥)My, | . Y
r=|My(y) - =22V iy p
12(\1’) le(\ﬁ) 14 112(‘[’)‘75‘//
+D (J/)ll/z _ Mll(‘//)Dzn(\I’) o)
My(¥)

The trajectory of ¢ in phase II is assigned arbitrarily. The
acceleration/deceleration curve is chosen to follow a sinu-
soidal function in order to reduce the required actuator
torque. The maximum value of | ¥ | is assigned so that the
actuator torque is limited to a certain value, 7,-T, is ob-
tained from the values of ¥/(T)) and ¥(T}).

The initial values of ¢ and ¢ (¢(T,), ¢(T,)) can be
arbitrarily selected. The trajectory of ¢ is determined by
steps 2-5 in Section IV, and thereafter ¢(7,) and 43( T,) are
calculated. The acceleration/deceleration of ¢ along phases I
and III also follows a sinusoidal function.

An example of PTP control is illustrated using a stick
diagram of the two-link manipulator (Fig. 3). Since (18) and
(19) have solutions only when M, # 0, control of the
manipulator is possible within the domain of —2.30 < ¥ <
2.30. The maximum positioning time, maximum torque, and
so on are evaluated by varying the values of ¢(73), ¥(T;)
and Y(T,) by = /6 steps within the following domain (Table
D.

m ™
*(T,) = 0,- 7= ¥(To) = 3

m T s
05¢(T3)55,*55\I/(T3)55-
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Fig. 4. Comparison between actuators and brakes. Actuator: dc servo
motor with harmonic-drive gears. Brake: electromagnetic brake with a
friction disk. (a) Weight. (b) Energy consumption. (c) Cost.

In this case, the maximum values of | ¢ | in phases I and III
and |¢ | in phase II are 47 rad/s?. Within this domain,
positioning between any two points is completed within 1.8 s,
and the performance required of the actuator and the brake
can be satisfied with commercially available components.

Furthermore, the coefficients that depend upon the mass
and length of the link in (18) are cancelled out. Therefore,
so long as the configuration and mass distribution of the
manipulator are geometrically similar, the positioning time
T, — T, yields the same maximum values with respect to the
same maximum value of acceleration |¢| and ||, irre-
spective of the link mass or length.

L8
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VI. CoNcLusION

In this paper, a dynamic coupling method has been pro-
posed for controlling the position of a manipulator with
passive joints. The paper also described the basic principles
and the conditions under which control is possible. The
feasibility of the method is demonstrated by simulations for a
manipulator with two degrees of freedom. In addition, funda-
mental experiments are now being carried out with an experi-
mental manipulator.

Since the proposed method depends on a dynamic model of
a manipulator, this method is more effective when applied in
combination with dynamic modeling and identification meth-
ods [10].

We examined the controllability of the manipulator using
the nonsingularity condition of the inertia matrix. However,
it is preferable to represent the degree of controllability with
quantitative criteria like output-controllability gain [9].

When some joint actuators of a manipulator are exchanged
for holding brakes with the proposed method, we can build a
light-weight, energy-saving, low-cost manipulator. As an
example, in Fig. 4 we compare the weight, energy consump-
tion, and cost of brakes (electromagnetic type with a friction
disk) with those of actuators (dc servo motor with harmonic-
drive reduction gears). The parameters of brakes are much
smaller than those of the actuators in all respects. We can
take advantage of these merits by applying them to simple
assembly robots, control of redundant manipulators, etc.
Space applications (e.g., space manipulators, expansion of
space structures) may also be effective because there is no
gravity influence.
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