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Abstract-Aimed for t he  design of superconducting II CXLCULXTIO~U METHOD 
digital circuits, a direct method is proposed to esti- 
mate the inductance of three-dimensional microscopic A. T h e o T e h d  backJTo?Lnd 

are both discretized; without free-energy minimiza- 
tion technique, we just solve a set of linear equations 
considering a spatially-discrete model. Computer sim- 
ulation was carried out for various shapes of supercon- 
ductors, and the simulated results agreed well with the 
Chang's formula in a model which can be regarded as 
two-dimensional. The magnetic field distribution also 
agreed well with the theoretical value. 

I .  INTRODUCTIOB 

Recently, Single Flux Quantum Logic (SFQL) in which 
the logic states are decided whether one flux quantuni 
exists in a one-junction interferometer or not has been 
studied actively [l] The accurate estimation of the loop 
inductance is needed for designing the SFQL because the 
value of the inductance decides the logic operation of the 
circuit. Some calculation methods for two-dimensional 
models have been reported so far (e.g., the Chang's for- 
mula [ 2 ] ) .  However, for designing the actual complicated 
circuits, three-dimensional analyses are required. More- 
over, in the case where the size of devices becomes as 
sinal1 as several hundred nanometers, the penetration of 
the magnetic flux must be considered. 

In this paper, we propose a new method to  estimate 
the inductance of three-dimensional microscopic super- 
conducting loop The effects of the penetration of mag- 
netic flux are accuiately reflected in this method A 
spatially-discrete model is set up, and the loop inductance 
including the kinetic inductance is calculated with the dis- 
tribution of the current caused by the trapped flux. The 
characteristic of this method is that the current-density 
clistribution is directly given as the solution of simultane- 
ous equations. They are derived from the Maxwell eyua- 
tions and the expression of the momentum, which both are 
linear iii respect of the vector potential and the current- 
density Not only the inductance but also the magnetic 
flux distribution is given by a very simple expression 
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L =  

where J ( T )  is the current-density, a,(= h/.3e) is a flux 
quantum, and S is a cross section of the loop. The kinetic 
inductance is also included in L (see the Appendix). As 
(1) shows, J (  T) must be known before we calculate the 
loop inductance. 

Current-density distribution in a superconducting loop 
is obtained as follows. When the density of the Cooper 
pairs n, is distributed uniformly, the expression of the 
momentum is written as 

hVB = 7n*vu, + e * A  (2) 
where 8 is the phase, m* is the effective mass of the 
Cooper pairs, v s  is the velocity of the Cooper pairs, 
e* = -2e is the effective charge of the Cooper pairs, and 
A is the vector potential. 

By substituting the relation between w, and the 
current- density 

for ( 2 ) ,  the following expression is obtained: 

(4) 

where = nl*/nse*L = poxL, and X is the London pene- 
tration depth. 

The total vector potential A is the sum of A,, the vec- 
tor potential macle by the current, and Af,  the vector 
potential made by the external magnetic field; 

A = A, + Af (5) 
A, is expressed with the Maxwell equations as 

where the integration is over the entire superconductor. 
J ( r )  is obtained by solving (4)-(6) which are linear 

in respect of the vector potential and the current-density, 
but it is impossible in most cases to  solve these equa- 
tions analytically. In the next section, a spatially-discrete 
model is set up. 
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Fig. 1. Spatially-discrete model 

B. Spatially-discrete model 

4 superconductor is divided into small cubes whose 
edge is a [ m ]  long, and the center of adjacent cubes a.re 
connected by “path”s. The structure macle of all these 
paths is called a “current network”, and the smallest loop 
made of pa.ths is called a “mesh” (Fig. 1). Assuming that 
the current flows only in these paths, the current distri- 
bution is represented by the current flowing this network 
[3]. We also a,ssunie tha.t the nuniber of all paths is jVp, 
the number of all meshes is :Vn,, and the i-th path has fol- 
lowing parameters: J ;  as the current-density, A C i  as the 
vector potential macle by the current, A f i  as the vector 
potential macle by the external magnetic field, and & a,s 
the phase difference. 

Under these assumptions, (4)-(6) are discretized re- 
spectively; 

/Ac)  = ill I .I) i 9) 

where IX) = t ( X 1 ,  X,, ..., XLyp) is a column vector, and hl 
is an iVP x LVp matrix which depends on only the shape of 
the superconductor. We used V6 = AO/u = @ / a  to derive 
(7). From (7)-(9), the following expression is derived: 

where E is identity matrix. 
The unknowns in (10) are 1.1) and Id), so the total iiiii~i- 

ber of them is ai\.., though the nuniber of equations is only 
:Vp. We must add the next two conditions to  solve; (i) the 
continuity of current and (ii) the quantization of flusoid. 

The first condition means that 1.1) ca.n be expressed 
with less pwameters because the current must satisfy 
the Iiirchhoff’s Current Law. Actually, the independent 
variables are the density of the loop current which flows 
around a mesh, so IJ )  is expressed as 

JJ) = R J m )  (11) 

where tin) = t (ml ,  m 2 ,  ..., mLyn,) is a column vector, in; is 
the loop-current-density of the i-th mesh, and R is :Vp x 
X,,, matrix whose elements a,re 0,-1, or 1. This condition 
:educes the total number of the unknowns from 2iVp to 
vp + :vm. 

(a) Superconducting loop (b) Current network 

Fig. 2. Two-dimensional curreiit network 

The second condition puts restrictions on Id). For in- 
stance, let us consider that n flux qimnta are trapped in a 
loop whose current network is two-dimensional (Fig. 2). 
The phase change of the Cooper pair along an arbitrary 
anticlockwise route is -??IT if the route contains the loop 
inside (e.g. Cl), 0 otherwise (e.g. Cz). In the discretiz~ed 
model, this fact is expressed as 

where the JVm-th mesh is the loop in which the flusoid 
exist. t R  Id) is the column vector whose i-th element is the 
sum of the phase difference on the paths which compose 
the i-th mesh. Therefore, tR  14) is writ,ten as 

tRI$) = t ( O , O , .  . . ,0 ,  - 2 1 1 ~ )  (13) 

As this expression is a set of :Vm equations, the total num- 
ber of the eqimtions becomes A T p  + Xm., which equals to  
the number of the unknowns. We now can solve the set 
of linear equations. 

By substituting (11) for (10) and mdtiplying (10) by 
t R  from left, a set of jVm equations is derived; 

R ( h E  + M) R I,m) 

Qo t = -‘n IAf) - - (0,0,  . . . , o ,  -2rzn) (14) 
2 T U  

where all parameters ase known except lm). lm) is ob- 
tained by solving (14). 

Iloop, the total current which flows around the loop, is 
given by U , ~ , I ~ I ~ ~ ,  because the other mesh- currents flow lo- 
cally and don’t effect the value of the loop current. There- 
fore, the loop inducta.nce is given by 

a,, the magnetic flux which penetrate:; the ,-th mesh, 
is equal to  the 2-th element of atRIA), because is the 
contour integral of the vector potential A along the r-th 
mesh. By multiplying t R  by (7) from left and using (11) 
and (13), a t R  1-4) is given by 

a f R  1-4} = -a,ltRR 11.) + ‘ ( O , O , .  , . ,O, i ~ @ o )  (16) 

Thus the loop inductance and the magnetic flux distrihu- 
tion are calculated with these simple expressions. 
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Fig. 3.  Positions of the i- thpnd j-th path 

The matrix A4 is calculated as follows. :ViJ J j  is the vec- 
tor potential on the i-th path made by the current which 
flows on the j - th  path. As the current and the rector po- 
tential macle by the current are parallel, M i j  is 0 when the 
i-th pa.th and the j - th  p t h  are orthogonal. Though the 
shape of the path is described as one cylinder in Fig. 1, 
the actual shape is a cube whose edge is a[ni]. We regard 
that it is made of the 16 cylinders as an approximation to  
make the calculation easy. When the i-th and j - th  path 
are along the 2 direction aid located like Fig. 3,  i2l; j  is 
calculated as 

where (z,,y,,z,) is the coordinates of the center of the 
i-th path, and ( y j k ,  z J k )  is the coordinates of the center 
axis of the k-th cylinder in the j - th  path. 

111. RESULTS OF CALCULATIOX 

A. Inductance 

With our method and the Chang’s formula [2], the loop 
inductance of the model shown in Fig. 4ja) is calculated 
as a fiinction of the thickness of the superconductor TY. 
Though this formula is only for two-dimensional models, 
we apply the formula to this three-dimensional model with 
an ingenious way, which is as follows. This model has a 
plane of symmetry which is perpendicular to  the y axis. 
It is shown with broken lines. If the flux is trapped in the 
loop, it makes the current distribution. When the current- 
density vector at a point is expressed as ( . Iz ,  J y ,  J z ) ,  that 
of the symiiietricd point with respect to  the plane be- 
comes ( - J z ,  Jv, J z ) .  Therefore, assuming that the super- 
coilductor is divided by this plane, one side plays a role 
of the ideal ground plane to  the other. The equivalent 
model of Fig. 4(a) becomes Fig. 4(b) where the other 
side is repla,ced by the ground plane. As its cross section 
is like Fig. 4(c), the self inductance per the unit length 
is calculated with the Chang’s formula. Considering the 
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(d) Calculated results 

F I ~  4 Inductance 

current network of this model, the length of the arm is 
regarded as 15u The total inductance of the two arm is 
calculated as 

L = 15u x 2 x A KtW a [O.h + X coth (F) 
+ X coth ( y )  + BX cosech 

where Iit is the fringe field factor, ,d is the paianieter 
which depends on the shape of the strip line, and th  
thickness of the ground plane is regarded as infinity. Thi 
value is expected to  be equal to the loop inductance 

As this formula is applicable in the case where the su-) 
perconductor is much larger than the London penetra-’ 
tion depth, the parameters are chosen as a = 250[nm], 
X = 5O[nm]. The results of the computation and t 
Chang’s formula are shown in Fig. 4(d). Agreement b 
tween the two is quite good. 

B. Magnetic f i e l d  drstrzbutzon 

The magnetic field distribution in a superconductin 
block is calculated. The model and its current netmor 
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(d) Calculated results and theoretlcal value at y = 4a 

Fig 5 SIagnetic field distribution 

are shown in Fig. 5(a) and (b). The parameters are set as 
w = X = 50[nm], and the block is in the external uniform 
magnetic field Bo. In Fig. 5(c), the calculated magnetic 
field distribution at the 5th layer ( 2  = 5w) is shown. w’e 
can see how the magnetic flux is excluded from the block. 
The numerical analysis of each layer at y = 4n is shown in 
Fig. 5(d), where “1-D theory” is calculated assuming that 
flux decays exponentially from the surface. As Fig. 5(d) 
shows, according as the magnetic flux goes the center of 
the block along the z direction, the flux is excluded more 
and the profile becomes like that of the one-dimensional 
theoretical value. 

11.. COYCLUSION 

We have proposed a method to  calculate the inductance 
of a microscopic superconducting loop. In this method, 
the superconductor is divided into small cubes, and the 

current-density distribution is directly given as the so- 
lution of linear simultaneous equations which are derived 
from the Maxwell equations and the expression of momen- 
tum. The results agreed well with the Chang’s forniula in 
a model which can be regarded as two-dimensional. The 
magnetic field distribution also agreed well with the the- 
oretical value. 

X P P E N D IX 

It is explained as follows that L given by n ~ o / I j O o p  in- 
cludes the kinetic inductance. The total energy of this 
system TV is the sum of the nia.gnetic energy WnL = 

J,, A . J d v  and the kinetic energy W k  = $ s,, AJ . J d u .  
In the discrete model, TTJ is written a:; 
2 

(20) 

(21) 

1 1 w = 7 ( ~ ~ ~ ~ ) a 3  7 + , ~ ( 4 4 ~ . 3  
... 

U 3  
= -{(.JI(AE + M ) l J )  -t (Jplf)] ’7 

(22) 

(23 )  

(‘25) 
1 
2 
1 
2 

= - n @ o  &nym 

= :n@o hoop (26) , 

where (XI is a row vector, and we used (7)-(14) for the 
transformations. On the other hand. W is expressed as 

1 1 
~.t’ = - L , , I ; ~ ~ ~  + 3 ~ k ~ ; o o p  (27) 2 - 

where L ,  is the magnetic inductaiice and LI,  is the kinetic 
inductance, From (26) and (271, n@o/lioOp = L ,  + L k  is 
derived. 
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