
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Mechanization and Overhaul of Feature Featherweight
Java

Pedro da C. Abreu Jr.

Monogra�a apresentada como requisito parcial

para conclusão do Bacharelado em Ciência da Computação

Orientador

Prof. Dr. Rodrigo Bonifácio de Almeida

Brasília

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital de Monografias

https://core.ac.uk/display/196896964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade de Brasília � UnB

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Bacharelado em Ciência da Computação

Coordenador: Prof. Dr. Rodrigo Bonifácio de Almeida

Banca examinadora composta por:

Prof. Dr. Rodrigo Bonifácio de Almeida (Orientador) � CIC/UnB

Prof. Dr. Cláudia Nalon � CIC/UnB

Me. Thiago Mael de Castro � CIC/UnB

CIP � Catalogação Internacional na Publicação

Abreu Jr., Pedro da C..

Mechanization and Overhaul of Feature Featherweight Java / Pedro da

C. Abreu Jr.. Brasília : UnB, 2017.

67 p. : il. ; 29,5 cm.

Monogra�a (Graduação) � Universidade de Brasília, Brasília, 2017.

1. Design de Linguagem, 2. Semantica de Linguagem, 3. Java, 4. FOP,

5. Coq

CDU 004.4

Endereço: Universidade de Brasília

Campus Universitário Darcy Ribeiro � Asa Norte

CEP 70910-900

Brasília�DF � Brasil

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Mechanization and Overhaul of Feature Featherweight
Java

Pedro da C. Abreu Jr.

Monogra�a apresentada como requisito parcial

para conclusão do Bacharelado em Ciência da Computação

Prof. Dr. Rodrigo Bonifácio de Almeida (Orientador)

CIC/UnB

Prof. Dr. Cláudia Nalon Me. Thiago Mael de Castro

CIC/UnB CIC/UnB

Prof. Dr. Rodrigo Bonifácio de Almeida

Coordenador do Bacharelado em Ciência da Computação

Brasília, 1 de agosto de 2017

Dedicatória

Dedico este trabalho ao meu falecido pai Pedro Costa. Apesar de sua ausência, sua
vida e jornada é uma perene inspiração à minha vida.

E também à minha mãe Rosa Delmira, cuja resiliência, bravura e dedicação a iguala
aos grandes heróis da antiguidade.

i

Agradecimentos

No decorrer desta jornada acadêmica alguns personagens chaves cruzaram por ela,
in�uenciando profundamente minhas escolhas e meu desenvolvimento pessoal/pro�ssional.
Em todo um tempo de vida eu jamais seria capaz de pagar o favor que elas �zeram por
mim, o melhor que posso fazer é levar no peito a gratidão de ter convivido com cada uma
delas. Esta é uma lista não exaustiva destas pessoas e alguns de seus ensinamentos.

Agradeço em primeiro lugar ao meu orientador Rodrigo Bonifácio, �gura esta que não
cansa de me prover oportunidades de crescimento. Desde os tempos de infância acadêmica
em POO e LP ele vem me ensinando a sempre buscar por mais e nunca me deixar cair na
minha zona de conforto. Agradeço pela oportunidade de trabalhar levemente fora de sua
área de engenharia de software e me permitir focar em formalização. E acima de tudo
por ter feito tudo ao seu alcance para que eu participasse do OPLSS.

Agradeço ao sesol-4 do TCU, Andrézão, Larissa, Cibele, Maranho, Man Qi, Melgaço,
Dharlan, Naiara, Felipe, Vinícius, Vitão e Danilo. Caso não seja a melhor equipe de
TI entre todos órgãos públicos do Brasil, certamente é uma das melhores. Todos ali
são altamente bem quali�cados, trabalham duro, e nada menos que padrão Google de
qualidade é aceitável. Eu tenho a honra não só de dizer que estagiei lá, mas que são meus
amigos. Agradeço em particular ao meu chefe André Siqueira, que para mim é o modelo
vivo de um líder. E à Larissa Beatriz, que me recebeu e ensinou como se fosse um �lho.

Agradeço à minha mãe que sempre foi um exemplo vivo de determinação, que sempre
batalhou por aquilo que acredita, e mais de uma vez se sacri�cou por mim e meu irmão.
Se não fosse por ela eu não estaria onde estou, não somente no sentido de ter me provido
vida, mas uma boa escola, bons valores e sobretudo por nunca ter deixado de acreditar
em mim, sempre apoiando minhas decisões, por mais difíceis que elas fossem.

Agradeço ao Ben Lippmeier, por ter sido a razão chave de um excelente estágio no
NICTA, e também por ter me ensinado tanto apesar de eu não lhe ter provido nenhum
retorno palpável.

Agradeço aos professores dos departamentos de Ciência da Computação e da Matemática.
Os professores deste departamento provêm aulas de altíssimo nível, permitindo que os
alunos se formem tão capacitados quanto em universidades de ponta mundo afora. Agradeço
em especial aos professores: Jorge Lucero, Carla Castanho, Cláudia Nalon, Flávio Moura,
Marcos V. Lamar, Bruno Macchiavello, Genaína Nunes, Diego Marques, Lineu Neto, Pe-
dro Roitman e A. Pellegrini. Todos por serem apaixonados pelo que fazem e terem me
passado um pouquinho desta paixão.

Agradeço à comunidade do coq no freenode, que foram sempre muito solícitos em
sanar minhas dúvidas, por mais básicas que fossem.

Agradeço à Laura Silveira por ter estado ao meu lado por quase metade desta jornada.

ii

Agradeço aos meus padrinhos João e Márcia, por sempre me fornecer abrigo não
apenas em suas casas, mas em seus corações.

Finalmente agradeço a todos meus amigos e familiares. Zezinho, Paulo, João, Rodrigo,
Gaby, Alberto, Laio, Eric, Heloísa, Branco, Dani, Kure, Day, Gaby e Henrique para citar
alguns.

iii

Abstract

Specifying a language using an Interactive Theorem Prover (ITP) is seldom faith-
ful to its original pen-and-paper speci�cation. However, the process of mechanizing a
language and type safety proofs might also unearth insights for improving the original
speci�cation. In this work, we detail some design decisions related to our process of �rst
specifying Featherweight Java (FJ) in Coq and thus evolving such a speci�cation to prove
the type system properties of an revised version of Feature Featherweight Java (FFJ)�
a core-calculus for a family of languages that address variability management in highly
con�gurable systems, such as software product lines (SPLs); which we name as Overhaul
Feature Featherweight Java (FFJ?). Indeed, FFJ? is the �rst mechanization of FFJ, and
as such it might also help researchers to derive proofs about software product line re-
�nements without considering several assumptions about the underlying SPL assets. We
believe that the whole process led us to a clearer, unambiguous, and equivalent syntax
and semantics of FFJ, while keeping the proofs as well as our FJ extensions as simple as
possible.

Keywords: Language Design, Language Semantics, Java, FOP, Coq

iv

Contents

1 Introduction 1

2 Theory Fundamentals 3

2.1 Feature Oriented Programming . 3
2.2 Software Product Line . 3
2.3 A Running Example: The Expression Product Line in FOP Language . . . 5

3 Overview of FFJ and FFJ? 7

4 Overhaul Feature Featherweight Java 10

4.1 Syntax . 10
4.2 Lookup Functions . 11
4.3 Typing and Reduction . 14
4.4 Properties . 18

5 Related Work 20

6 Conclusion 21

References 22

v

Glossary

CA Core Assets. 4

CK Con�guration Knowledge. 4

FFJ Feature Featherweight Java. iv, v, 1, 2, 7, 8, 10�13, 20, 21

FFJ? Overhaul Feature Featherweight Java. iv, v, vii, viii, 2, 7�13, 16, 18, 21

FJ Featherweight Java. iv, 1, 2, 7, 8, 10, 11, 14, 16, 18, 20, 21

FM Feature Model. 4

FOP Feature Oriented Programming. 1�3, 7, 10

ITP Interactive Theorem Prover. iv

LFJ Lightweight Feature Java. 1

SPL Software Product Line. 1, 3, 4

vi

List of Figures

2.1 Cellphone OS feature model . 4
2.2 EPL feature model . 5
2.3 The base package of the Expression Product Line 5
2.4 Non-mandatory feature implementations of the Expression Product Line . 6

3.1 Order of lookup in FFJ? . 9

vii

List of Tables

4.1 FFJ? Syntax . 10
4.2 Subtype Relation . 12
4.3 Re�nement Relations . 12
4.4 Field Lookup . 13
4.5 Method Type Lookup . 14
4.6 Method Body Lookup . 14
4.7 Override Function . 15
4.8 Introduce Function . 15
4.9 Method Typing in FFJ? . 16
4.10 Class and Re�nement Typing in FFJ? . 16
4.11 Expression Typing . 17
4.12 Expression Computation . 17
4.13 Evaluation Context . 17

viii

Chapter 1

Introduction

Feature Oriented Programming (FOP) [31] is a design methodology and tools for
program synthesis [12]. It aims at the modularization of software systems in terms of
features. A feature implements a stakeholder's requirement and is typically an increment
in program functionality. When added to a software system, a feature introduce new
structures, such as classes and methods, and re�nes existing ones, such as extending
methods bodies.

There are several FOP languages and tools that provides varying mechanisms that sup-
port the speci�cation and composition of features properly, such as AHEAD [9], FSTCom-
poser [7], FeatureC++ [6], and more recently Delta-Oriented Programming [33]. FOP has
mostly been used to develop product-lines in disparate domains, including compilers for
extensible Java dialects [10], �re support simulators for U.S. Army [13], high-performance
network [14], and program veri�cation tools [24].

Since FOP provides such a powerful mechanism to deal with software variance, Soft-
ware Product Lines (SPLs) have made great use of its concepts. Just like the Ford's
product lines in the domain of automobile aims to provide customized automobiles at
reasonible price by providing the means for cheap customization. SPL aims to provide
customized software at a reasonable price by providing the means for cheap customization
using FOP concepts. At Section 2.3 we shall use SPL to explain the main FOP concepts.

Several attempts to formalize the type system of FOP languages have been made.
For instance, FFJ [5] is a proposed type system for FOP languages and tools, which is
developed on top of FJ [21] to provide a simple syntax and semantics conforming with
common FOP languages, incorporating constructs for feature composition.

Nevertheless, very few e�ort was made to mechanize a FOP language. In matter
of fact, only one FOP language was implemented with a proof assistant to date, that
is Lightweight Feature Java (LFJ) [16]. One of the reasons that make mechanizing a
language interesting is because it makes the proofs more reliable than peer review. Take
for an instance the Perko Pairs [27]. They were listed by C.N Little as di�erent knots in
1885, and only almost a century latter, in 1974 Ken Perko discovered [32] them to actually
be the same knot! In the history of mathematics there are several similar examples.

The idea behind mechanization is to check these proofs with the aid of a computer,
reducing signi�cantly the risk of errors, while leveraging automation for the tedious or
straightforward steps of the proof. As the system may grow, the mechanization makes
the proof a lot more reliable.

1

And also, mechanized proofs leads to a better organization when the system grows
larger. Better organization of the proof process allows to build teams for these proofs.
This allows to mechanize correctness properties of big, real world implementations, e.g.
compilers [26], �le systems [2, 8] and languages [20, 23].

The process of scrutinizing FFJ and de�ning unambiguously its semantics in Coq lead
us to some language speci�cation and implementation improvements. The biggest change
was to review and simplify the lookup functions of the re�nement table. Henceforth, we
refer this proposed calculus as FFJ? to distinguish it when comparing our implementation
to the original FFJ design. Altogether the improvements proposed in FFJ? makes the
transition more natural between FJ and FFJ, simplifying the auxiliary functions used
in the language speci�cation as well as the type safety proofs and lemmas. This allows
de�ning FFJ? with incremental changes to FJ syntax and semantics, and consequently,
incremental changes to proofs, leading to a clearer and simpler speci�cation of FFJ. The
implementations of FJ and FFJ are both open-source Coq developments12.

The main goal of this work is to present a novel mechanization of a FOP language. In
particular, the mechanization of FFJ?. Hence we can summarize the main contribution
of this work as follows:

1. The �rst mechanization of the FFJ type system

2. An improved speci�cation of FFJ, which may help other researchers to reason about
software product lines properties.

3. A report about the bene�ts of using a proof assistant to revamp an existing speci-
�cation of a non-mechanized language type system.

This thesis is organized as follows: Chapter 2 introduces software product lines and
FOP, Chapter 3 gives an introductory overview of FFJ? and explains the main di�erences
with FFJ, Chapter 4 formally describes our revamped FFJ and states the lemmas needed
to preserve FJ increment to FFJ type safety, ?? discuss related works and Chapter 6 is
the conclusion and shows possible future works.

1https://github.com/hephaestus-pl/coqfj
2https://github.com/hephaestus-pl/coqffj

2

https://github.com/hephaestus-pl/coqfj
https://github.com/hephaestus-pl/coqffj

Chapter 2

Theory Fundamentals

Under the context of software engineering, a lot of e�ort have been spent in the scope
of reuse. However most of the e�ort have been made code reuse, and not that much into
software reuse as a whole.

In this chapter we provide the necessary de�nitions to understand FOP, and how
this paradigm copes with software reuse. To simplify the understanding we will take the
examples under software product lines. This will also make clear how mechanizing a FOP
language shall bene�t real world applications.

2.1 Feature Oriented Programming

Feature-oriented programming (FOP) is a development approach that supports the
stepwise re�nement strategy for software constructions [11]. Using FOP, a system is
typically decomposed in (somewhat new) modular unities (named features) that resemble
mixing layers [15], and thus are orthogonal to the typical object-oriented decomposition
in terms of class hierarchies. Successful FOP usage scenarios have been reported in the
literature for the domains of highly con�gurable systems and software product lines [3, 28].
FOP has been implemented using both programming language extensions and tooling
support, such as Java AHEAD Tool Suite [9] and FeatureC++ [6].

2.2 Software Product Line

In the 70's the concept of software families was introduced by Parnas [30]. It's main
goal was to enhance the versatility to the development of the artefact's non-functional re-
quirements. Upon this, the concept of SPL was formalized with the purpose of projecting
several softwares with similar characteristics under a single domain.

Sommerville [35] de�nes SPL as one of the most e�ective approaches to reuse. And
de�nes it as a set of applications with a common architecture and shared components.

As the name suggest, SPL idea comes from Ford's product lines. With a product line
it is possible to build several di�erent specializations of the same product, while improving
e�ciency and reducing cost. This allow mass individualization of the products, i.e. even
though the industry is still delivering products in mass scale, it still provides somewhat
individualized products for di�erent kinds of clients. The analogue still holds for SPL, it

3

Figure 2.1: Cellphone OS feature model

proposes a framework which allows to build several di�erent specializations of the software,
while reducing delivery time which by its turn reduces cost.

Take for example a SPL illustrated in 2.1 for a mobile phone operational system.
Every cellphone must be able to make calls and receive calls and have a screen. But there
are optional features, such as having a GPS, being able to reproduce media, etc.

Formally a SPL is de�ned by a triple: the Feature Model (FM), Core Assets (CA),
and the Con�guration Knowledge (CK).

The FM is the set of all features. They may be: obligatory, optional, alternative, and,
and or.

The CA is everything useful in the process of development, such as documentation,
test cases, code, and so on.

The CK is a mapping between features to assets, driving product generation.
With that in hand it is possible to compose the assets in order to provide a new

product. However, it is not guaranteed that this composition process is safe, i.e. that
every asset selected copes well with each other. This leads us to the safe composition
problem.

In order to tackle this safe composition problem, one could manually inspect FM,
CK and implementation to understand the dependencies between assets for all products.
However, since SPLs can quickly scale to hundreds of products, this is often impractical.

Another approach would be to generate every single product, compile and test them.
While this is an useful and safe approach, it does not scale given the exponential factor
in every feature introduction.

This is where formal methods shines. With formal methods it is possible to study
how features interact with each other, postulate properties and provide safety theorems
for SPLs without having to generate every single product.

4

2.3 A Running Example: The Expression Product Line

in FOP Language

Figure 2.2: EPL feature model

In this section we illustrate the use of
FOP through an AHEAD implementation of
a slight adaptation of the Expression Product
Line (EPL) [38]�Figure 2.3 shows the EPL
feature model. Regarding our design deci-
sions, in this case we implemented the manda-
tory features using a base AHEAD pack-
age (Figure 2.3), which declares a class hi-
erarchy involving an interface (Expression)
and several classes (Value, BinaryExpression,
AddExpression, and SubExpression), and one
AHEAD package for each non-mandatory fea-
ture (see Figure 2.4). Note that an AHEAD
package contains either (a) plain Java entities (class or interface) declarations or (b) Java
entities re�nements. A re�nement might override methods declared in other packages
or introduce new attributes or methods in existing classes or interfaces. In this simple
example, we do not implement any method overriding through class re�nements�the
re�nements only introduce new elements to the Base AHEAD package of Figure 2.3.

interface Expression {
 public Value eval();
}

abstract class BinaryExpression implements Expression {
 Expression lhs;
 Expression rhs;
}

class Value implements Expression{
 public Value eval() { return this; }
}

class AddExpression extends BinaryExpression {
 public Value eval() { return lhs.eval() + rhs.eval(); }
}

class SubExpression extends BinaryExpression {
 public Value eval() { return lhs.eval() - rhs.eval(); }
}

Figure 2.3: The base package of the Expression Product Line

The details of the EPL AHEAD non-mandatory feature packages are as follows.

• Features integer and double re�ne the Value class of the Base package by intro-
ducing a new attribute named value, either with type int or double. According
to the EPL feature model, only one of these features might be selected for a given
product.

• The expressions feature introduces two new expressions to those declared in the
Base package, one for multiplication and another for division. This particular
feature does not re�ne existing classes, only introduces new ones.

5

• The pretty_printer feature introduces the support for pretty printing expressions.
It re�nes the Expression interface and the BinaryExpression and Value classes,
introducing a new method print() and also a new attribute (operator) for the
BinaryExpression class.

refines Value {
 double value;
 double getValue() { return value; }
}

refines Value {
 int value;
 int getValue() { return value; }
}

class DivExpression extends BinaryExpression {
 public Value eval() { return lhs.eval() / rhs.eval(); }
}

class TimesExpression extends BinaryExpression {
 public Value eval() { return lhs.eval() * rhs.eval(); }
}

(a) integer feature package (b) double feature package

(c) expressions feature package

refines Value {
 public String print() { return “” + value; }
}

refines BinaryExpression {
 String operator;
 public String print() { return lhs.print() + operator + rhs.print(); }
}

(d) prety_printer feature package

refines Expression {
 public String print();
}

Figure 2.4: Non-mandatory feature implementations of the Expression Product Line

6

Chapter 3

Overview of FFJ and FFJ?

FFJ is a core calculus for FOP, which was built upon an extension of FJ�a minimal
subset of Java. In FFJ, classes can be added and modi�ed by the introduction of a
new feature, that is, an existing class can be extended by a class re�nement. A class
re�nement is declared like a conventional class, though preceded by the keyword refines.
For example, refines class C {. . . } refers to a class re�nement that re�nes the class C.
The same can be achieved for method introduction and modi�cation. Methods re�nement,
however, override a previous de�nition of the corresponding method.

To fully mechanize FFJ, we had to disambiguate and enhance the language to some
extent that it deserves the attention of formally documenting these changes. Even though
these changes are signi�cant, as discussed in chapter 4, the philosophy of FFJ, FOP, and
Stepwise Re�nement are maintained. In FFJ, as well as in FFJ?, classes can be added
and modi�ed by the introduction of a new feature. An existing class can be extended by
a class re�nement. A class re�nement is declared like a class but preceded by the keyword
refines. For example, refines class C@feat {. . . } refers to a class re�nement that
re�nes the class C. This way, a re�nement may add new �elds, and methods to the class
and override existing methods.

A syntactical di�erence between FFJ and FFJ? is that, in FFJ?, the feature notion
appears in the abstract syntax tree (AST) of the language. While the designers of FFJ
argue that the programmer does not have to explicitly state which feature a class or
method belongs to, we favored the approach of stating the feature in the name of every
re�nement. This greatly simpli�es the structure of the formalism of the language and
can be seen as an information gathered by the parser to build the AST, and thus the
actual code expressed using the concrete syntax of this language might not have these
annotations.

In addition, an FFJ? program has a table with every class declaration (CT) and another
table with every class re�nement (RT). We make this distinction to simplify the extension
from FJ in Coq, since with this decision we eliminate the need to match whether a class
in the table is a re�nation or a declaration. From this RT we can retrieve the composition
order of the re�nements and build the re�nement chain of the program, which is used
to check if features were composed correctly and does not references features that have
not been introduced yet. We rede�ne the denotation of RT from FFJ. In the original
version, it was used to retrieve the re�nement name given a re�nement declaration. This
is no longer necessary in FFJ?, since that information is already encoded in the abstract

7

syntax.
Finally, in the original de�nition of FFJ, the lookup functions are somewhat circum-

voluted. Accordingly, we propose a very di�erent approach for them, with the aim as
been not only as formal and simple as possible, but also easy to evolve from our mech-
anized version of FJ. To this end, we eliminate the need for reverse �eld lookup, reverse
method lookup, and the re�nement relation. A formal description with all these changes
is given in Section 4.2. Note that, we were only able to conceive these improvements while
formalizing FFJ? in Coq.

In Listings 3.1 and 3.2 we revisit the EPL example from Section 2.3 this time using
FFJ? instead of AHEAD.

1 class Expr extends Object {
2 Expr () { super () ; }
3 }
4
5 class Add extends Expr {
6 Expr a ; Expr b ;
7 Add(Expr a , Expr b) {super () ; this . a=a ; this . b=b ; }
8 }
9
10 class Sub extends Expr {
11 Expr a ; Expr b ;
12 Sub(Expr a , Expr b) {super () ; this . a=a ; this . b=b ; }
13 }

Listing 3.1: EPL Class Table

1 r e f i n e s class Expr@Eval {
2 r e f i n e s Expr () { o r i g i n a l () ; }
3 int eva l () {return 0 ;}
4 }
5
6 r e f i n e s class Add@Eval {
7 r e f i n e s Add(Expr a , Expr b) { o r i g i n a l (a , b) ; }
8 r e f i n e s int eva l () {return this . a . eva l () + this . b . eva l () ; }
9 }
10
11
12 r e f i n e s class Sub@Eval {
13 r e f i n e s Add(Expr a , Expr b) { o r i g i n a l (a , b) ; }
14 r e f i n e s int eva l () {return this . a . eva l () − this . b . eva l () ; }
15 }

Listing 3.2: EPL Re�nement Table

Typically, a programmer applies multiple re�nements to a class by composing a se-
quence of features. The ordered list of re�nements is called a re�nement chain. The order
in which a re�nement introduced matters, and a re�nement that is introduced right before
another is called predecessor.

As class inheritance, re�nements cannot introduce a �eld with the same name already
declared before. Methods, on the other hand, may overload an already introduced class,
this can be seen in Sub@Eval eval and Add@Eval eval. Overloading, on the other hand,
is not allowed, i.e. if the programmer wants to introduce the a method with a name that

8

is already used, it must have the same number of arguments, the same argument types
and the same return type as the previous function de�nition.

The distinction between method introduction and overriding allows the type system
to check if an introduced method inadvertently replaces an existing one with the same
name. The distinction also allows the type system to check if there is proper a method
to be overridden.

In order to retrieve the correct �elds or the correct method of a class, it is necessarily
to walk in the subclass re�nement correctly. As shown in Figure 3.1 �rst start from the
last re�nement of a class, walk through every predecessor, and when you get to the last
re�nement, you go to the class, and �nally to the superclass last re�nement. And so on
until you reach the Object class, which is the root class of all class hierarchies.

Figure 3.1: Order of lookup in FFJ?

9

Chapter 4

Overhaul Feature Featherweight Java

4.1 Syntax

The Syntax of FFJ is a straightforward FOP extension of FJ. We follow the same
scheme of the FFJ original de�nition in [5] and present the modi�ed rules from FFJ to
FFJ? highlighted with shaded yellow boxes and new rules highlighted by shaded purple
boxes. Also notice that the successor and the re�nement relations were simply dropped
for being unnecessary by now.

R ::= re�nement names:
C@feat

CD ::= class declarations:
class C extends D {	C 	f; K 	M}

CR ::= class re�nements:
refines class R {	C 	f; KD 	M 	MR}

K ::= constructor declarations:
C(C 	f){super(f); this.	f=	f;}

KD ::= constructor re�nements:
refines C(E 	h, 	C 	f){original(f); this.	f=	f;}

M ::= method declarations:
C m (C 	x) {return e;}

MR ::= method re�nements:
refines C m (R 	x) {return e;}

e ::= expressions:
x variable
e.f �eld access
e.m(e) method invocation
new C(e) object creation
(C)e cast

v ::= values:
new C(e) object creation

Table 4.1: FFJ? Syntax

The syntax of FFJ? constructs is given at Table 4.1. The metavariables A, B, C, D
and E ranges over class names, f and g range over �eld names; m ranges method name; x
ranges over variable, v ranges over values, feat ranges over feature names. We assume
that the set of variables includes the special variable this, which cannot be used as the
name of an argument of a method.

10

We write 	f as a shorthand for a possibly empty sequence f1, . . . , fn and similarly
for 	C, 	x, 	e, etc. We abbreviate the operations on pairs of sequences �	C 	f� for �C1 f1,. . . ,
Cn fn� and �this.	f=	f;� as a shorthand for �this.	f1=	f1; . . . , this.	fn=	fn;�. We write
empty sequence as •.

A class declaration class C extends D {	C 	f; K 	M} introduces a class C with super-
class D. This class has �elds 	f of type 	C, a constructor K and methods 	M. The �elds of
the class C is 	f added to the �elds of its superclass D, all of them must have distinct
names. Methods, on the other hand, may override another superclass method with the
same name. Method override FFJ? is basically method rewriting. Methods are uniquely
identi�ed by its name, i.e. overloading is not supported.

A class re�nement refines class C@feat {	C 	f; KD 	M 	MR} introduces a re�nement
of the class C and belongs to the feature feat. This re�nement contains the �elds 	f of
type 	C, a constructor re�nement KR, methods declarations 	M and method re�nements MR.
Like class declarations, the �elds of a class re�nement R are added to the �elds of its
predecessor, which is explained in more detail in Section 4.2.

Constructor declaration C(C 	f){super(f); this.	f=	f;} and a constructor re�nement
refines C(E 	h, 	C 	f) {original(f); this.	f=	f;} introduce a constructor for the class
C with �elds 	f of type 	C. The constructor declaration body is simply a list of assignment of
the arguments with its correspondent �eld preceded by calling its superclass constructor
with the correspondent arguments. The constructor re�nement only di�ers from construc-
tor declaration that instead of calling the superclass constructor it will call its predecessor
constructor (denoted by original).

Method declaration C m (C 	x) {return e;} and method re�nement refines C m (C 	x)

{return e;} introduce a method m of return type C with arguments 	C 	x and body e.
Method declarations can only appear inside a class declarations or re�nement, whereas
method re�nement should only appear inside a class re�nement. There is such a distinc-
tion between method declaration and method re�nement for allowing the type checker to
recognize the di�erence between method re�nement and inadvertent overriding/replace-
ment.

A class table CT is a mapping from class names C to class declarations CD. A re�nement
table RT is a mapping from re�nement name C@feat to re�nement declarations. An FFJ
program consists of a triple (CT, RT, e) of a class table, a re�nement table and an
expression. Throughout the rest of the paper the CT and the RT are assumed to be
always �xed to lighten the notation.

4.2 Lookup Functions

In FFJ as well as in FJ types are classes and classes have a subclass relation de�ned by
the syntax of class declaration. To navigate this subclass relation in the CT, the auxiliary
operator <: is given in Table 4.2, this operator is the re�exive and transitive closure of
the subclass relation.

The CT is expected to satisfy some sanity conditions:

• CT (C) = class C. . . for every C ∈ dom(CT)

• Object /∈ dom(CT)

11

• for every class name C (except Object) appearing anywhere in CT, we have C ∈
dom(CT)

• there are no cycles in the subtype relation induced by CT, i.e., the relation <: is
antisymmetric

Subtyping

C <: C

C <: D C <: E

C <: E

class C extends D { ... }

C <: D

Table 4.2: Subtype Relation

In FFJ? we fetch the re�nement precedence via its position in the RT, i.e. if a re�ne-
ment of a class appears �rst in the RT it will be applied �rst. These functions to navigate
the RT are all de�ned in Table 4.3

First we have the function class_name which retrieves the name of a class re�nement.
Next we de�ne the function refinements_of C to retrieve the re�nements of a given

class in the same order as they were introduced in the RT.
To navigate the precedence we de�ne the pred and the last functions. The pred func-

tion will get a class re�nement as an argument, �lter re�nements of the same class of R as
	R, fetch the index n of R in 	R and return the element P at the position n−1 in 	R (denoted
by the get function). Notice that pred is a partial function because it is not de�ned if the
a re�nement is the �rst re�nement.

The last function retrieves the last re�nement of a given class C. This is needed because
in FFJ? we navigate the re�nement chain backwards, from the last re�nement to the �rst,
looking for a given method or �eld.

Class Name

R = C@feat

class_name R = C

Re�nements of a class

filter (λR · class_name R == C) RT = 	R

refinements_of C = 	R

Predecessor

refinements_of (class_name R) = 	R index R 	R = n get (n− 1) 	R = P

pred R = P

Last

refinements_of C = 	R tail 	R = R

last C = R

Table 4.3: Re�nement Relations

With this in hand we can de�ne the actual lookup functions fields,mtypes andmbody.
They are taken directly from FFJ de�nition, with a new hypothesis and an extra rule.

12

The extra rule and hypothesis makes reference to dealing with the re�nements. This is
necessary to make the proofs easier to maintain, since all we need to do is to provide a few
acceptance lemmas about these new lookup functions which we name fieldsR, mtypeR
and mbodyR.

fieldsR simply retrieves the �elds of all re�nements up to that point in the re�nement
chain.

mtypeR and mbodyR tries to �nd the last introduction to a method, and retrieves
its type or body. These two de�nitions greatly di�ers from FFJ to FFJ?. In FFJ mtype
would retrieve the typing of the �rst method introduction, whereas in FFJ? it will retrieve
the type of the last method re�nement, and only later we de�ne the rules for guarantying
that the re�nement always has the same type of the method declaration. This was made
to greatly simplify the proof that states that if a method has mtype then it also has a
mbody, since both functions follows the same structure the proof is straightforward.

refines R {	C 	f; KR 	M 	MR} ¬pred R

fieldsR R = 	C 	f

refines R {	C 	f; KR 	M 	MR} pred R = P

fieldsR C = fieldsR P, 	C 	f

fields Object= •

class C extends D {	C 	f; K 	M} ¬last C
fields C = fields D, 	C 	f

class C extends D {	C 	f; K 	M} last C = R

fields C = fields D, 	C 	f,fieldsR R

Table 4.4: Field Lookup

Override function in Table 4.7 inductively guaranties that a method or method re�ne-
ment respects the type of the method was introduced for the �rst time, which can be in
a super class or in a previous re�nement.

Introduce in Table 4.8 function checks if a method was not yet declared earlier in the
re�nement chain.

Every class and re�nement of a FFJ? program is assumed to respect the well-formednes
rules de�ned in Table 4.10. A well formed class have only well formed methods. And a
well formed class re�nement only have well formed methods and well formed method
re�nements. A well formed method and method re�nement must has a closed expression
e under the variables of the function parameters. e must a subtype of the return type of
the function. And if a function with the same name was declared before, it must have the
same name. If a method re�nement is declared in a class re�nement, this rule guarantess
that it will override the superclass accordingly.

13

refines class R {	C 	f; KR 	M 	MR} B m (B 	x) {return e;} ∈ 	M

mtypeR (m, R) = 	B → B

refines class R {	C 	f; KR 	M 	MR} m /∈ 	M

refines B m (B 	x) {return e;} ∈ MR

mtypeR (m, R) = 	B → B

refines class R {	C 	f; KR 	M 	MR}

m /∈ 	M m /∈ MR pred R = P

mtypeR (m, R) = mtypeR (m, P)

class C extends D {	C 	f; K 	M} B m (B 	x) {return e;} ∈ 	M

last C = R ¬mtypeR (m, R)

mtype (m, C) = 	B → B

class C extends D {	C 	f; K 	M} m /∈ 	M

last C = R ¬mtypeR (m, R)

mtype (m, C) = mtype (m, D)

class C extends D {	C 	f; K 	M} last C = R

mtype (m, C) = mtypeR (m, R)

Table 4.5: Method Type Lookup

refines class R {	C 	f; KR 	M 	MR} B m (B 	x) {return e;} ∈ 	M

mbodyR (m, R) = 	x.e

refines class R {	C 	f; KR 	M 	MR} m /∈ 	M

refines B m (B 	x) {return e;} ∈ MR

mbodyR (m, R) = 	x.e

refines class R {	C 	f; KR 	M 	MR}

m /∈ 	M m /∈ MR pred R = P

mbodyR (m, R) = mbodyR (m, P)

class C extends D {	C 	f; K 	M} B m (B 	x) {return e;} ∈ 	M

last C = R ¬mbodyR (m, R)

mbody (m, C) = 	x.e

class C extends D {	C 	f; K 	M} m /∈ 	M

last C = R ¬mbodyR (m, R)

mbody (m, C) = mbody (m, D)

class C extends D {	C 	f; K 	M} last C = R

mbody (m, C) = mbodyR (m, R)

Table 4.6: Method Body Lookup

4.3 Typing and Reduction

The typing and computation rules for expressions are listed in tables 4.11 and 4.12
respectively. They are the same as FJ. An environment Γ is a �nite mapping from variables
to types, written c̄ : C̄. The typing judgment for expressions has the form Γ ` e : C, read
�in the environment Γ, expression e has type C�.

14

mtype (m, D) = 	D → D implies C = D and C0 = D

override m D 	C C0

class C extends D {	C 	f; K 	M} C0 m (C 	x) {return e;} ∈ 	M

¬ pred R R = C@feat

overrideR m R 	C C0

refines class P {	C 	f; KR 	M 	MR} C0 m (C 	x) {return e;} ∈ 	M

pred R = P

overrideR m R 	C C0

refines class P {	C 	f; KR 	M 	MR} m /∈ 	M

pred R = P overrideR m P 	C C0

overrideR m R 	C C0

Table 4.7: Override Function

pred R = S ¬ mtypeR (m, S)

introduce m R

¬ pred R R = C@feat class C extends D {	C 	f; K 	M} m /∈ 	M

introduce m R

Table 4.8: Introduce Function

15

x̄ : C̄, this : C ` t0 : E0 E0 <: C0
CT(C) = class C extends D {. . . } override(m, D, C̄→ C)

C0 m (C̄ x̄){return t0; } OK in C

x̄ : C̄, this : C ` t0 : E0 E0 <: C0 R = C@feat

CT(C) = class C extends D {. . . } RT(R) = refines R {. . . M̄ . . . }
override(m, D, C̄→ C) introduce m R m ∈ M̄

C0 m (C̄ x̄){return t0; } OK in R

x̄ : C̄, this : C ` t0 : E0 E0 <: C0 R = C@feat

RT(R) = refines R {. . . M̄, MR . . . } m /∈ M̄ m ∈ MR

overrideR(m, R, C̄→ C)

refines C0 m (C̄ x̄){return t0; } OK in R

Table 4.9: Method Typing in FFJ?

K = C (D̄ ḡ, C̄ f̄) {super(ḡ); this.f̄ = f̄} fields(D) = D̄ ḡ M OK in C

class C extends D {	C 	f; K 	M} OK

M OK in R MR OK in R

refines class R {	C 	f; KR 	M 	MR} OK

Table 4.10: Class and Re�nement Typing in FFJ?

The reduction relation is of the form e→ e′, read �expression e reduces to expression
e′ in one step�, We write → ∗ for the re�exive and transitive closure of →.

There are three reduction rules, one for �eld access, one for method invocation, and
one for casting. We write [d̄ = x̄, e = y]e0 for the result of replacing x1 by d1, x2 by
d2, . . . , xn by dn, and y by e in the expression e0.

With the absence of side e�ects, there is no need of stack or heap for variable binding.
In Table 4.13 we de�ne the evaluation context. An evaluation context is to represent a

term with a hole in it. This way there exists a plug function that will insert a term in that
context. This makes easy the job to represent which kinds of expressions are expected
to be stuck and which are not in our progress theorem. That being said, evaluation
contexts roughly follows the same syntax as the syntax of the expressions, taking the
necessary care to preserve the order of evaluation of the language. Since FJ and FFJ? are
non-deterministic, no much care is needed.

Here our evaluation context denotes a reduction happening:

• "Right here", represented by �;

• In the expression of a �eld access;

• In the object of a method invocation;

• In some of the arguments of a method invocation;

16

Γ ` x : Γ(x) (T-Var)

Γ ` e0 : C0 fields (C0) = C̄ f̄

Γ ` e0.fi : Ci

(T-Field)

Γ ` e0 : C0 mtypes (m, C0) = D̄ → C Γ ` ē : C̄ C̄ <: D̄

Γ ` e0.m(ē) : C
(T-Invk)

fields(C) = D̄ f̄ Γ ` ē : C̄ C̄ <: D̄

Γ ` new C(ē) : C
(T-New)

Γ ` e0 : D D <: C

Γ ` (C) e0 : C
(T-UCast)

Γ ` e0 : D C <: D C 6= D

Γ ` (C) e0 : C
(T-DCast)

Γ ` e0 : D C ≮: D D ≮: C stupid warning

Γ ` (C) e0 : C
(T-SCast)

Table 4.11: Expression Typing

fields (C) = C̄f̄

(new C(ē)).fi → ei
(R-Field)

mbody (m,C) = x̄.e0

(new C (ē)).m (d̄)→ [d̄/x̄, new C (ē)/this]e0
(R-Invk)

C <: D

(D)(new C (ē))→ new C (ē)
(R-Cast)

Table 4.12: Expression Computation

• In the expression being cast;

• In some of the arguments of an object creation.

E ::= � | E.fi | E.m(ē) | e.m(ēl, E, ēr) | (C) E | new C(ēl, E, ēr)

Table 4.13: Evaluation Context

17

4.4 Properties

In this transition from FJ to FFJ? a few additional lemmas were needed. They are
only related to the lookup functions, since FFJ? does not alter the typing rules or the
reduction rules. This means that the main safety theorems presented by Igarashi et al
[21] remain perfectly unchanged.

Below we list a few of the most important lemmas. The de�nition FFJ? was well
thought so they are all straightforward. And �nally the progress and preservation theo-
rems.

Only lemma 4.5 is interesting enough for the complete proof.
These lemmas follows the idea of extending the original lemmas stated for FJ with

the FFJ? de�nitions, specially for the lookup functions.

Lemma 4.1 (Typed method has body). If mtype(m,C) = B̄→ B

then ∃x̄ ∃e such that mbody(m,C) = x̄.e

Firstly, in FJ we had lemma 4.1, which states that it is possible to fetch the body of
a function given the mtype function. Since mtype and mbody are symmetrical on their
de�nition, this is straightforward.

Now it is needed to extend that lemma with mtypeR and mbodyR, and since they
were also implemented to be symmetrical this is also straightforward. However it is also
necessary to prove its converse, i.e. mbodyR implies mtypeR since it is used the negation
of mtypeR on the de�nitions.

Lemma 4.2 (Typed method has body - Re�nement). If mtypeR(m,R) = B̄→ B

then ∃x̄ ∃e such that mbodyR(m,R) = x̄.e

Lemma 4.3 (Body method has type - Re�nement). If mbodyR(m,R) = x̄.e
then ∃B ∃B such that mtypeR(m,R) = B̄→ B

Next it is needed to show that method signatures respects the signatures at the super-
classes. Which is also straightforward by the de�nition of override and overrideR. We
provide the proof of lemma 4.5 it is also necessary an inner induction on overrideR.

Lemma 4.4 (Subtype respects method types). If class C extends D {	C 	f; K 	M}

then mtype(m,C) = mtype(m,D)

Lemma 4.5 (Re�nement respects method types). If class C extends D {	C 	f; K 	M}

then ∀feat, mtypeR(m,C@feat) = mtype(m,D)

Proof. By induction onmtypeR. Letmtype(m,D) = D̄ → D0 andmtypeR(m,R) = D̄′ → D′
0.

1. Case m is de�ned on the method declarations of C@feat, since m declaration is
well formed we have override(m,D, D̄′ → D′

0).

2. Case m is de�ned on the method re�nements of C@feat, Since C@feat is well
formed we have overrideR(m, (C@feat), D̄ → D0), we proceed by induction on the
structure of overrideR.

(a) Case C@feat is the �rst re�nement we havemtype(m,C) = mtypeR(m,C@feat),
by well- formedness of method in a class (Table 4.9) we have override(m, C, D̄ ′ → D′

0)

18

(b) Case C@feat has a predecessor P , and P declares m by well formed of method
in a re�nement (Table 4.9) we have override(m,P, D̄′ → D′

0)

(c) Case C@feat has a predecessor P but P does not declare m the thesis follows
trivially by the induction hypothesis.

3. Case C@feat does not declare m the thesis follows trivially by the induction hy-
pothesis.

The last two lemmas are about type checking the body of a function given the return
of mtype or mtypeR and mbody or mbodyR.

Lemma 4.6 (A1.4 - Method body is typable). If mtype (m, C) = D̄ → D
and mbody (m, C) = x̄.e, then ∃C <: D, ∃C0 <: D0, this : D, x̄ : D̄ ` e : C0

Lemma 4.7 (Method body is typable - Re�nement). If mtypeR (m, C@feat) = D̄ → D
and mbodyR (m, C@feat) = x̄.e, then ∃C <: D, ∃C0 <: D0, this : D, x̄ : D̄ ` e : C0

Theorem 4.1 (Preservation). If Γ ` e : C and e→ e′, then Γ ` e′ : C ′ for some C ′ <: C.

For the proof refer to [21].

Theorem 4.2 (Progress). Suppose e is closed, well-typed normal form.
Then either (1) e is a value, or (2) for some evaluation context E, we can express e as
e = E[(C)(newD(ē))], with D ≮: C.

Proof. Straightforward by induction on type derivation.

19

Chapter 5

Related Work

Several techniques have been proposed to implement high con�gurable systems. Some
of them are based on source code annotations, such as the well-known C preprocessor [36]
and Color IDE [25]. Others rely on compositional approaches, such as Feature-Oriented
Programming [9, 11], Delta-Oriented Programming [33], and Aspect Oriented Program-
ming [1, 22]. Nevertheless, it is important to note that, in high con�gurable systems
(such as software product lines), testing and formal veri�cation are considered challeng-
ing tasks, in particular because, in this context, these activities must deal with a potential
huge number of products and also consider not only source code artifacts, but also high-
level variability assets (such as feature and con�guration models).

In this scenario, several researchers have explored the use of core-calculus for languages
that support the development of high con�gurable systems, including Imperative Feather-
weight Delta Java [34], Feature Featherweight Java [5], and Lightweight Feature Java [18].
To the best of our knowledge, the work of Delaware et al. was the �rst to mechanize a core
calculus of a language designed for high con�gurable systems (in this case, Lightweight
Feature Java) [18]. Di�erently, here in this paper we explored the �rst mechanization of
FFJ which, according to Apel et al., is a calculus that addresses the essentials aspects
of several existing implementations of feature-oriented programming languages, including
FST Composer and AHEAD [5].

For the purpose of evolving our FJ mechanization to FFJ, we could have explored some
of the design decisions discussed in previous and elaborate works, such as Product Line
of Theorems [17], Data Types à la Carte [37], and Meta-theory á la Carte [19]. However,
we faced with an engineering trade-o� here: although the use of such an infrastructure
could improve the reuse between FJ and FFJ implementations in Coq, the accidental
complexity involved in these approaches will actually reduce the comprehensibility of our
speci�cations and probably delay the conclusion of our implementations. Therefore, in
our opinion, there is still a gap to guarantee proof extensibility of type systems.

20

Chapter 6

Conclusion

Our experience of formalizing FFJ using Coq enabled us to not only better understand
FFJ, but also to improve and simplify its original speci�cation and handwritten proofs.
For instance, our version of FFJ expects explicit annotations to relate class re�nements
to the corresponding features�this is similar to the approach discussed by Delaware at
al. [18], where features appear as the modular unities of compositions. Here, the idea of
making include in the syntax the annotation of class re�nements with its features is made
to provide a trivial way to reference the re�nement, simplifying the lookup functions.

Actually, our process started by formalizing FJ, and then evolving this formalization
towards FFJ. To make our language implementation and proofs more clear, we decided not
to use some advanced language features and recent idioms of Coq (such as those discussed
in Meta-theory à la Carte [19]). For this reason, and considering that data types in Coq
are not extensible, we have to copy and paste our original FJ de�nition to our FFJ Coq
source code repository. Our original FJ de�nition includes 22 inductive de�nitions, 31
lemmas, and 19 tactics. Instead, our FFJ speci�cation includes 39 inductive de�nitions,
61 lemmas, and 34 new tactics. Due to our design decisions detailed in the previous
sections, we were able to preserve all FJ lemmas in FFJ�though we had to change the
proofs related to four of the original FJ lemmas. That is, even with the naive approach for
reusing de�nitions, our decisions related to FFJ allowed us to preserve several de�nitions
present in our FJ speci�cation.

We believe that our FFJ speci�cation might help other researchers to verify software
product line (SPL) properties considering not only high level variability artifacts of a
SPL (such as feature and con�guration models), but also a core calculus of programming
languages (such as FFJ). For instance, several works discuss the safe evolution of product
lines [29], assuming that the asset base (e.g., source code) builds upon a language having
well-formedness and re�nements rules.

As future work to continue the mechanization of FFJ discussed in Type Safety for
Feature-Oriented Product Lines [4], which culminates in the demonstration that every
valid program of a well-typed product line is well-typed. It would also be interesting and
worthwhile to enhance our mechanization of FFJ? to the concept of deltas, which in a
nutshell, would be the removal of features.

21

References

[1] Vander Alves, Pedro Matos, Leonardo Cole, Paulo Borba, and Geber Ramalho. Ex-
tracting and evolving mobile games product lines. Software Product Lines, pages
70�81, 2005. 20

[2] Sidney Amani and Toby Murray. Specifying a realistic �le system. arXiv preprint
arXiv:1511.04169, 2015. 2

[3] Sven Apel and Christian Kästner. An overview of feature-oriented software develop-
ment. Journal of Object Technology, 8(5):49�84, 2009. 3

[4] Sven Apel, Christian Kästner, Armin Gröÿlinger, and Christian Lengauer. Type
safety for feature-oriented product lines. Automated Software Engineering, 17(3):251�
300, 2010. 21

[5] Sven Apel, Christian Kästner, and Christian Lengauer. Feature Featherweight Java:
A Calculus for Feature-oriented Programming and Stepwise Re�nement. In Proceed-
ings of the 7th International Conference on Generative Programming and Component
Engineering, GPCE '08, pages 101�112, New York, NY, USA, 2008. ACM. 1, 10, 20

[6] Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake. FeatureC++:
On the Symbiosis of Feature-Oriented and Aspect-Oriented Programming. In Gen-
erative Programming and Component Engineering, pages 125�140. Springer, Berlin,
Heidelberg, September 2005. 1, 3

[7] Sven Apel and Christian Lengauer. Superimposition: A Language-Independent Ap-
proach to Software Composition. In Software Composition, pages 20�35. Springer,
Berlin, Heidelberg, March 2008. 1

[8] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin Rinard. Verifying
a �le system implementation. In International Conference on Formal Engineering
Methods, pages 373�390. Springer, 2004. 2

[9] D. Batory. Feature-oriented programming and the AHEAD tool suite. In Proceedings.
26th International Conference on Software Engineering, pages 702�703, May 2004.
1, 3, 20

[10] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for implementing domain-
speci�c languages. In Proceedings. Fifth International Conference on Software Reuse
(Cat. No.98TB100203), pages 143�153, June 1998. 1

22

[11] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise re�nement. IEEE
Transactions on Software Engineering, 30(6):355�371, June 2004. 3, 20

[12] Don Batory. A Tutorial on Feature Oriented Programming and Product-lines. In
Proceedings of the 25th International Conference on Software Engineering, ICSE '03,
pages 753�754, Washington, DC, USA, 2003. IEEE Computer Society. 1

[13] Don Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder. Achieving Exten-
sibility through Product-Lines and Domain-Speci�c Languages: A Case Study. In
Software Reuse: Advances in Software Reusability, pages 117�136. Springer, Berlin,
Heidelberg, June 2000. 1

[14] Don Batory and Sean O'Malley. The Design and Implementation of Hierarchical
Software Systems with Reusable Components. ACM Trans. Softw. Eng. Methodol.,
1(4):355�398, October 1992. 1

[15] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings of the Eu-
ropean Conference on Object-oriented Programming on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA/ECOOP '90, pages 303�311, New
York, NY, USA, 1990. ACM. 3

[16] Benjamin Delaware, William Cook, and Don Batory. A machine-checked model of
safe composition. In Proceedings of the 2009 workshop on Foundations of aspect-
oriented languages, pages 31�35. ACM, 2009. 1

[17] Benjamin Delaware, William Cook, and Don Batory. Product lines of theorems.
In Proceedings of the 2011 ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA '11, pages 595�608. ACM,
2011. 20

[18] Benjamin Delaware, William R. Cook, and Don Batory. Fitting the pieces together:
A machine-checked model of safe composition. In Proceedings of the the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC/FSE '09, pages 243�
252, New York, NY, USA, 2009. ACM. 20, 21

[19] Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory à la
carte. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL '13, pages 207�218, New York, NY,
USA, 2013. ACM. 20, 21

[20] Pieter H Hartel. Formalising java safety�an overview. In Smart Card Research and
Advanced Applications, pages 115�134. Springer, 2000. 2

[21] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: AMin-
imal Core Calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396�
450, May 2001. 1, 18, 19

[22] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Je�rey Palm, and
William G. Griswold. An Overview of AspectJ, pages 327�354. Springer Berlin
Heidelberg, 2001. 20

23

[23] Gerwin Klein and Tobias Nipkow. A machine-checked model for a java-like language,
virtual machine, and compiler. ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(4):619�695, 2006. 2

[24] R. E. Kurt Stirewalt and Laura K. Dillon. A Component-based Approach to Build-
ing Formal Analysis Tools. In Proceedings of the 23rd International Conference on
Software Engineering, ICSE '01, pages 167�176, Washington, DC, USA, 2001. IEEE
Computer Society. 1

[25] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software product lines.
In 2008 ACM/IEEE 30th International Conference on Software Engineering, pages
311�320, May 2008. 20

[26] Xavier Leroy et al. The compcert veri�ed compiler. Documentation and user's
manual. INRIA Paris-Rocquencourt, 2012. 2

[27] CN Little. Xxx.�non-alternate±knots. Earth and Environmental Science Transac-
tions of The Royal Society of Edinburgh, 39(3):771�778, 1900. 1

[28] Mira Mezini and Klaus Ostermann. Variability management with feature-oriented
programming and aspects. In ACM SIGSOFT Software Engineering Notes, vol-
ume 29, pages 127�136. ACM, 2004. 3

[29] Laís Neves, Leopoldo Teixeira, Demóstenes Sena, Vander Alves, Uirá Kulezsa, and
Paulo Borba. Investigating the safe evolution of software product lines. ACM SIG-
PLAN Notices, 47(3):33�42, 2012. 21

[30] David Lorge Parnas. On the design and development of program families. IEEE
Transactions on software engineering, (1):1�9, 1976. 3

[31] Christian Prehofer. Feature-oriented programming: A fresh look at objects. In
ECOOP'97 � Object-Oriented Programming, pages 419�443. Springer, Berlin, Hei-
delberg, June 1997. 1

[32] Dale Rolfsen. Knots and links, volume 346. American Mathematical Soc., 1976. 1

[33] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. Delta-Oriented Programming of Software Product Lines. In Software Product
Lines: Going Beyond, pages 77�91. Springer, Berlin, Heidelberg, September 2010. 1,
20

[34] Ina Schaefer, Lorenzo Bettini, and Ferruccio Damiani. Compositional type-checking
for delta-oriented programming. In Proceedings of the Tenth International Conference
on Aspect-oriented Software Development, AOSD '11, pages 43�56. ACM, 2011. 20

[35] Ian Sommerville. Software Engineering. Addison-Wesley Publishing Company, USA,
9th edition, 2010. 3

[36] Richard M. Stallman and Zachary Weinberg. The c preprocessor. Technical report,
Free Software Foundation, 2014. 20

24

[37] WOUTER SWIERSTRA. Data types à la carte. Journal of Functional Programming,
18(4):423�436, 2008. 20

[38] Mads Torgersen. The expression problem revisited. In European Conference on
Object-Oriented Programming, pages 123�146. Springer, 2004. 5

25

	Dedicatória
	Agradecimentos
	Abstract
	Introduction
	Theory Fundamentals
	Feature Oriented Programming
	Software Product Line
	A Running Example: The Expression Product Line in FOP Language

	Overview of FFJ and FFJ+
	Overhaul Feature Featherweight Java
	Syntax
	Lookup Functions
	Typing and Reduction
	Properties

	Related Work
	Conclusion
	References

