
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

8-2011

Creating a Representation of Items and Version that Support Creating a Representation of Items and Version that Support

Efficient Evaluation of the Transaction-Time Axis in SML-Based Efficient Evaluation of the Transaction-Time Axis in SML-Based

Databases Databases

Kaylan Goutham Mekala
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mekala, Kaylan Goutham, "Creating a Representation of Items and Version that Support Efficient
Evaluation of the Transaction-Time Axis in SML-Based Databases" (2011). All Graduate Plan B and other
Reports. 59.
https://digitalcommons.usu.edu/gradreports/59

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fgradreports%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/59?utm_source=digitalcommons.usu.edu%2Fgradreports%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

1

CREATING A REPRESENTATION OF ITEMS AND VERSIONS

 THAT SUPPORT EFFICIENT EVALUATION OF

THE TRANSACTION-TIME AXIS IN

XML-BASED DATABASES

by

Kalyan Goutham Mekala

A report submitted in partial fulfillment

Of the requirements for the degree

of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Approved:

Dr.Curtis Dyreson Dr.Stephen W. Clyde
Major Professor Committee Member

Dr. Daniel Bryce
Committee Member

UTAH STATE UNIVERSITY

Logan, Utah

2011

2

ABSTRACT

Creating a Representation of Items and Versions That Support Efficient Evaluation of the
Transaction Time Axis in XML-based Databases

by

Kalyan Goutham Mekala, Master of Science
Utah State University, 2011

Major Professor: Dr. Curtis Dyreson
Department: Computer Science

This project was developed to create a platform for implementing the features

and query support provided by the transaction time axis (tt-axis). The basis for this

platform is a new numbering plan called item version timestamp level numbering

(IVTLN), and it extends an existing numbering plan, namely, dewey level numbering

(DLN), by including version and timestamp information. Thus, the transaction time axis

provides a temporal perspective for XML nodes in addition to non-temporal axes like the

ancestor and descendant axes. This project provides an efficient, extensible, and

comprehensible platform for the implementation of the new numbering plan and the

services provided by the transaction time axis.

3

AKNOWLEDGMENTS

I would like to thank my major professor, Dr. Curtis Dyreson, for all his support

and guidance through the course of this project. There were many trying times during

the design and development of this project, the consequence of which I have become a

better student and problem solver.

I also wish to thank my committee members, Dr. Stephen Clyde and Dr. Daniel

Bryce, for extending their support.

Kalyan Goutham Mekala

4

CONTENTS

ABSTRACT ...

ACKNOWLEDGMENTS ...

LIST OF FIGURES ...

LIST OF TABLES ...

CHAPTER

ORGANIZATION .. 8

PAPER - Prefix-based Node Numbering for Temporal XML 9

INTRODUCTION .. 33

OBJECTIVES AND METHODOLOGY .. 38

NEW NUMBERING PLAN .. 41

SCHEMA CHANGE .. 47

QUERYING ... 58

IMPLEMENTATION .. 67

MEMORY ANALYSIS ... 83

CONCLUSION .. 88

REFERENCES ... 91

5

LIST OF TABLES

Table 1. DLN for Course Info. ... 43

Table 2. Schema Change Tracking Table. ... 45

Table .3 Course Info (Instructor Name) Details During Fall 2000. 50

Table 4. Course Info (Instructor Name) Details During Spring 2001. 50

Table 5. DLN Changes to Course Info. ... 52

Table 6. Numbering Change Due to Schema Change. .. 53

Table 7. Change in Node ID Due to Schema Change (Schema Change Tracking Table) . . 56

Table 8. Future Access Table. .. 57

Table 9. Schema Change Tracking Table. ... 63

Table 10. Schema Change Tracking Table. ... 65

Table 11. Future Access Table for the current example. ... 65

6

LIST OF FIGURES

Figure 1. A temporal XML fragment. .. 10

Figure 2. An XML fragment. .. 10

Figure 3. A non-temporal XML data model instance (DOM instance). 14

Figure 4. Nodes with node numbers. .. 14

Figure 5. The second slice (at time 2). ... 17

Figure 6. The third slice (at time 3.) .. 17

Figure 7. The first slice as a temporal data model instance with items and versions

represented. ... 20

Figure 8. The second slice added... 21

Figure 9. The third slice added. ... 22

Figure 10. Element insert. ... 25

Figure 11. Element delete. .. 26

Figure 12. Value update. ... 26

Figure 13. Element move. ... 27

Figure 14. An XML file. .. 34

Figure 15. XQuery code. ... 35

Figure 16. Course Info (tree structure). .. 42

Figure 17. Data change in Course Info. ... 48

Figure 18. No schema change example. ... 51

Figure 19. No schema change (appending a child node after its deletion). 53

Figure 20. Before schema change. .. 54

7

Figure 21. Course Info after schema change. ... 55

Figure 22. The IVTLN class... 71

Figure 23. The Item (item) package. ... 72

Figure 24. The Collection class. ... 72

Figure 25. The DLN class in eXist db. ... 73

Figure 26. Adding a document to a collection (Sequence Diagram). 75

Figure 27. Creation of IVTLN objects (Sequence Diagram). .. 76

Figure 28. eXist db user login screen. .. 77

Figure 29. eXist Admin Client Screen. .. 78

Figure 30. eXist Client (left) and File selection (right) screens. ... 79

Figure 31. Screen shown while a document is being added. .. 80

Figure 32. eXist admin client screen (updated with bookstore4.xml). 81

Figure 33. bookstore4.xml. ... 82

Figure 34. Number of objects across five snapshots. .. 85

Figure 35. Memory usage (in bytes) across five snapshots. ... 85

Figure 36. Impact of add, delete, and update node operations on object count. 86

Figure 37. Impact of add, delete, update node operations on memory usage. 86

8

Chapter 1

ORGANIZATION

This report is organized it as follows. Chapter 2 comprises a paper co-authored

with Dr. Curtis Dyreson and submitted to the International Conference on Web

Information Systems Engineering (WISE 2011). The paper presents an easily digestible

summary of the research presented in the remainder of the report. Chapter 3 describes

research in XML, XQuery, XPath and the new numbering plan (IVTLN) that was devised

to support temporal queries and documents. Next, Chapter 4 discusses the objectives

and methodology of this research. Details of the new numbering plan (IVTLN), schema

changes, and their corresponding application in querying are provided in Chapters 5, 6,

and 7, respectively. Chapter 8 provides an in depth discussion of the implementation,

which uses an XML DBMS called eXist. Next, the details of the memory analysis are

provided in Chapter 9, followed by inferences and conclusions in Chapter 10.

9

Chapter 2

PREFIX-BASED NODE NUMBERING FOR TEMPORAL XML

Abstract. Prefix-based numbering (also called Dewey level order or Dewey

numbering) is a common, popular method for numbering nodes in an XML data

model instance or document. The nodes are numbered so that spatial relationships

(e.g., is a node a descendant of another) can be determined just from the numbers. In a

temporal XML data collection, the spatial relationships change over time as nodes are

edited, deleted, and inserted. In this paper, we adapt prefix-based numbering to support

the concise representation of items (elements that share the same identity over time)

and versions (changes to an item over time). We call our new numbering system time-

tunneling dynamic level numbering (TTDLN). We show how to create, store, and update

TTDLNs, and how they can be used to efficiently evaluate sequenced and non-

sequenced temporal queries.

Introduction

XML is an important language for data representation and exchange, especially in web

applications. XML is used to mark-up data by adding complex, descriptive structure. For

instance, data about a book could be meaningfully marked up in XML with <title>,

<author>, and <publisher> elements, each of which describes its enclosed data.

XML data collections change over time as new elements are inserted and

existing elements are edited and deleted. Timestamps can be added to XML data to

capture this editing history [1] [12]. As an example, Figure 1 shows a fragment of an

instance of a temporal XML data model for bibliographic data. The data in Figure 1

10

contains information about publishers, books, and authors; it also records when each

datum was put into the data collection, i.e., the timestamps represent the transaction-

time lifetime of each element [13]. The bibliography began on 12/21/01, and remains

current (until now). Information about the Butterfly Books publisher was entered on

 Figure 1. A temporal XML fragment.

 Figure 2. An XML fragment.

11

1/1/04, and it started publishing a book by Jane Austen on 2/2/04. The title of that book

was originally misspelled, and was corrected on 5/29/05.

Efficient evaluation and management of XML data have benefited from the

development of numbering schemes for an XML data instance. Among the various

numbering systems, prefix-based numbering is popular [14]. In prefix-based numbering,

the prefix of each node number is its parent’s node number. The node numbers are used

to improve the speed of query evaluation since any query language axis (e.g.,

preceding-sibling, ancestor, following, etc.) can be evaluated by just comparing

numbers.

Prefix-based numbering schemes are currently designed only for non-temporal

data model instances which record the state of the data at just a single time point. For

temporal data management, prefix-based numbering falls short in several ways.

• Prefix-based numbering cannot capture node identity over time. A temporal data

collection has to track edits to a node over time and capture whether a node is

“new” or previously existed. It is important to observe that prefix-based

numbering is incapable of representing this identity over time since a node will

not always have the same node number; a node can switch to a new parent or

swap position with a sibling, both operations change its prefix and hence its

number.

• Prefix-based numbering does not represent node versions. Each time a node is

“edited,” a new version of that node is created. Query operations to find previous

or next versions of a node [8] need to be supported by the numbering scheme,

but versions are not currently part of a number.

• Prefix-based numbering does not support sequenced evaluation, in which a

12

temporal query is (logically) evaluated at each point in time [10]. The numbers do

not have any temporal extent so are incapable of being used for sequenced

evaluation of queries.

The challenge is to construct a numbering system for the items, versions, elements, and

other components of a persistent (or in memory) temporal document. The numbering

system should have the following properties.

• Conciseness – The space cost should be proportional to the size of the

document. For a temporal document, it should be linear in the number of items

and versions. Said differently, it should be linear in the size of an initial slice and

the size of changes over time to that slice.

• Efficient update – The cost of updating the numbers should be proportional to the

size of an edit. Small changes should require few updates.

• Efficient querying – The numbers will be used to compute “relationships”

between pairs of nodes, ideally in constant time. The non-temporal relationships

of interest are parent, ancestor, descendent, etc. Additional temporal

relationships of interest are sequenced and non-sequenced versions of all of the

non-temporal relationships, plus relationships about identity over time (is same

item) and changes over time (is same/later/earlier version). Ideally, all of these

relationships can be determined by simply examining or comparing a number for

each node.

In this paper, we extend prefix-based numbering to support the full panoply of temporal

operations. We focus on dynamic level numbers (DLNs) which are a typical kind of

prefix-based number. DLNs are used in eXist [2]. We show how timestamps can be

associated with DLNs, how items (elements that have identity over time) and versions of

13

those items can be represented, how sequenced and non-sequenced queries (e.g., find

next version) can be supported, how XUpdate edits are supported, and how all of this

can be implemented with minimal changes to an XML DBMS by capturing the temporal

history in an XML document [10].

The field of temporal databases has been an area of intense study for the past

25 years [22], with Oracle now perhaps having the most mature temporal support:

transaction-time, valid-time, and bitemporal tables, current modifications, and automatic

support for temporal referential integrity [18]. Concerning the representation of temporal

data and documents on the web, Grandi has created a bibliography of previous work in

this area [11]. Marian et al. [15] discuss versioning to track the history of downloaded

documents. Chien et al. [5] have researched techniques for compactly storing multiple

versions of an evolving XML document. Buneman et al. [3] provide another means to

store a single copy of an element that occurs in many snapshots. This paper differs from

all of the above papers since our focus is on node numbering schemes.

Dynamic Level Numbering (DLN)

For a non-temporal document, DLN is a popular node numbering scheme. In

DLN each node in a DOM is numbered as follows: a node is numbered p.k, where p (the

prefix) is the number of its parent and k represents that it is the kth sibling in document

order. We explain prefix numbering with an example. Figure 3 shows an XML data

instance for the fragment of a larger XML document that is shown in Figure 2. We focus

just on this fragment in the examples in the remainder of the paper. The instance is

represented as part of a larger tree with different kinds of nodes: element, text, attribute,

14

etc.; whitespace has been stripped. DLNs are assigned as shown in Figure 4.

The

Figure 3. A non-temporal XML data model instance

(DOM instance).

 Figure 4. Nodes with node numbers.

15

DLNs are shown below the elements. The node numbered p.1 (<part>) represents the

first child in document order relative to its parent (which has a DLN of p).

There are strategies for packing DLNs into as few bits as possible, making DLNs

relatively concise [14]. DLNs are also very efficient for queries [14]. Given two DLNs, we

can quickly compute (by comparing the numbers) a specific relationship (child, parent,

ancestor, descendent, following sibling, preceding, etc.) of one DLN relative to another.

For instance, p.1.1.2 can be compared to p.1.2. Since p.1.1.2 is neither a prefix nor a

suffix of p.1.2, it is not a child, parent, ancestor, or descendent. p.1.1.2 precedes p.1.2 in

document order, but is not a preceding sibling since the parent of p.1.1.2 (p.1.1) is

different from that of p.1.2 (p.1). The efficiency of DLNs in quickly determining these

relationships makes them ideal for query processing in XML DBMSs. There also exist

schemes for efficient updating [23]. Observe that inserting a node high in the tree may

force renumbering of an entire subtree, e.g., inserting a node before p.1.2 may force the

renumbering of p.1.2.1.3 to p.1.3.1.3. But by using fractional DLNs, renumbering

subtrees can often be avoided, e.g., the node inserted before p.1.2 becomes p.1.1/1,

indicating that it is between p.1.1 and p.1.2 (in fact, renumbering can be avoided entirely

[23]). This paper is orthogonal to fractional DLNs or other renumbering strategies.

Numbering a Temporal Document

In this section we extend DLN to number a temporal document or data collection.

Extending DLN is complicated by the fact that the DLNs “change” over time, even for

nodes that have the same temporal “identity.” We first develop a running example of

changes to a document, and then present our new numbering scheme using the

example.

16

Running Example

There are four basic edit operations: deletion, insertion, update, and subtree

move (which can be modeled as a sequence of deletions and insertions). The edits

could be specified in an update language like XUpdate, or applied directly in an XML

editor. In the running example, we focus on the effects of each kind of edit, treating each

edit (or combination of edits) as an individual snapshot or slice of an evolving temporal

document. Assume a second slice shown in Figure 5, which has one deletion from

the previous slice. The new slice is parsed and the (non-temporal) DLNs are assigned

as shown in Figure 5. Note that the DLN for element <color> changes from p.1.1.2 in

Figure 4 to p.1.1.1 in Figure 5.

Next a third slice is created by combining three edits: moving the <color>

element subtree from <supplier> to <part>, updating “engine” to “wing”, and inserting the

text “ACME” in the body of <supplier>. The third slice and its DLNs are shown in

Figure 6.

Time Tunneling DLN

Now let’s elaborate our new numbering scheme, which we call time-tunneling

DLN (TTDLN). We first describe the components of the TTDLN and then continue the

running example. In TTDLN, a temporal XML document consists of two separate but

related XML documents: a history document and an item document. (Additionally, the

current document can be stored in order to improve the speed of queries as of “now,” but

we do not discuss this optimization further in this paper.) The history document can be

thought of as the “coalescing” of all of the slices into a history. Each node in the history

has the following kinds of numbers.

17

• DLNH – The history document is an XML document ,so each node has a DLN.

• Time stamped DLN (tDLN) list – A tDLN is a DLN together with a timestamp.

The timestamp represents the lifetime of the DLN. Since the DLN may change

over time, each node stores a list of tDLNs.

 Figure 5. The second slice (at time 2).

 Figure 6. The third slice (at time 3.)

18

In addition to the history document, a temporal document has to identify items,

which capture node identity over time, and versions, which are changes to the items [7].

In previous research, we described how to associate nodes that persist across various

slices by gluing the nodes [9] [21]. When a pair of nodes is glued, an item is created. A

version is a change to the item over time.

For simplicity, let’s assume that every element is an item. The items and versions

are represented in the item document. The item document has the following kinds of

numbers.

• item number or DLNI – The item document is an XML document, so each

node has a DLN.

• item forward/backward chain number – The item forward (backward) chain

number is the next (previous) DLNI in the lifetime of the item (only present

when an item moves within the history document).

• version number list – Each version number in the list is v [b, e] where v is the

version number and [b, e] is the lifetime of the version.

• parent’s version number – A parent’s version number is w:z which is a range

of versions of the parent to which this node belongs, from version w to version z

(* represents an increasing latest version).

Figure 7 shows a temporal version of the initial slice in Figure 4. On the

left-side of the figure is the item/version document. On the right side is the history

document. (To simplify the figure, we have omitted the DLNHs for each node.) We have

added pointers to highlight the different kinds of information in each node. The item

corresponding to <supplier> has item number of “i.1.1”, a version number “1 [1, now]”

19

and a parent’s version number of “1:*”. There are no forward/backward chain numbers.

Each dashed line represents an annotation or connection between the item document

and the history document. The connection means that element <supplier> records that it

belongs to item “i.1.1”, and item “i.1.1” records that it tracks the element with tDLN “p.1.1

[1,now]”. Note that only elements are items. In general, any type of node could be an

item, but in the running example, we assume that the schema designer wants to capture

the history of elements rather than text or attribute nodes.

Next, we glue the second slice, yielding Figure 8. Changes are indicated in bold

in the figure. The timestamp in the tDLN of element name=″ACME″ is terminated since it

was deleted. A new tDLN is added for <color> (and descendants) since it changes from

p.1.1.2 to p.1.1.1 starting at time 2. In the item document, a new version number is

added for the item annotating <supplier>, and the version history of its left child is

updated (the right child is in versions 1 and 2, but * represents the latest version so no

changes are needed).

Next, a third slice extends the documents, as shown in Figure 9. Changes are

shown in bold. New items were created for the moved subtree and item

backward/forward chaining is utilized. The change to <part> creates two versions of the

element. The first version has children present from within the time interval “[1, 2]”. The

second version is children present from “[3, now]”.

There are four important points to observe about our two document approach. First, and

most importantly, the history document retains the shape of each slice so extant queries

can be directly applied. For example, the XPath query “//color [text () =”red”]” will locate

color nodes that contain the text “red” across the entire history of the document. Second,

20

Figure 7. The first slice as a temporal data model instance with items and versions represented.

21

Figure 8. The second slice added.

22

Figure 9. The third slice added.

23

the tDLNs capture document order and spatial positioning within each slice. Said

differently, sequenced evaluation of temporal queries can be supported by simply using

the tDLNs (and checking timestamp intersection). Third, the item document contains all

information necessary to navigate along temporal axes to access past/future versions of

elements [8]. Fourth, the history and item documents are append-only. Timestamps and

other information are modified but not deleted. Fifth, the history document and the item

document are XML documents, and so can be stored using existing native XML DBMSs,

with one caveat: changes to an attribute’s value will create multiple attribute children with

the same name. So, a small modification to a native XML DBMS is needed to store the

history document, e.g., in eXist, the HashMap of attributes must be changed to a

MultiValueMap, which supports duplicate keys.

The item document has one node for every item. There is generally one item for

every element in a history document. Nodes in the item document also grow in size over

time as new version numbers are added to the version number list. Every edit of an

element potentially creates a new version of the item connected to the element, so with

C changes; the size of each node is bounded by O(C). Thus, the item document size is

also bounded by O(C (N + M)).

To get a better feel for the cost, we designed four experiments using the XMark

benchmark [20]. We generated an XML document using a benchmark factor of 1,

yielding a document approximately 1.1GB in size with approximately two million

elements. We then wrote Java programs to randomly edit the document and update the

history and item documents. The edit operations insert an element, delete an element,

update the string value of an element, and move an element to a new parent. The

24

 operations choose elements at random from the existing document to use in the edit,

but only a single element is inserted, deleted, updated, or modified in each edit.

The first experiment tests the cost of the insert. We inserted two million elements,

essentially doubling the size of the document. Each insertion also added to the history

document, and created a new item in the item document. Figure 10 shows the

result. The Document line in the figure shows the size of the XMark document (a single

slice), which continues to grow as elements are inserted. The History Document line

plots the size of the history document, while the Item Document line plots the size of the

item document. The history document is always slightly larger than the current document

since each node in the history document includes tDLNs. The item document starts

small and grows very slowly.

Experiment two measures the cost of delete. Two million elements were deleted.

Figure 11 shows the result. The current document shrinks to nothing. The history and

item document stay the same size (only timestamps are updated as elements are

logically deleted). Experiment three measures the cost of update. Two million updates

were performed. The results are shown in Figure 12. The current document stays

the same size. (The size actually varies, but the variation is within a few MBs, not visible

in the graph.) Each update creates a new text node in the history document, so it

essentially doubles in size since text strings are the largest component in the document.

No items are created, but new versions are. The new versions add only a small amount

to the item document.

25

The final experiment measures element move. Two million moves were

performed. The results are shown in Figure 13. The moves change the size of the

XMark

 Figure 10. Element insert.

26

 Figure 12. Value update.

 Figure 11. Element delete.

27

 Figure 13. Element move.

document only by a small amount (not visible in the graph). Each move creates a new

item and updates the forward/backward chaining, so the item document doubles in size.

The history document also doubles in size as each move is a logical deletion and a

physical insertion.

The experiments confirm the analysis that the space cost is linear in the size of

the original slice and the number of changes over time.

XUpdate

XUpdate is a simple data modification language for updating an XML document.

In XUpdate we can insert, delete, and update elements, attributes, and text content. We

focus on element operations in this section.

When an element is inserted as illustrated in Figure 9, at most one node is added

to the history document and one item to the item document. (A new item or history node

28

is not added if the item previously existed in the history, but was deleted.) For the

item/version document, the new item may create a new version of its parent, but only the

parent’s version number list needs to be updated (all the other children include the latest

parent version automatically). So at most, one node is added and one node is modified.

For the history document, if the inserted history node is the last child, the change is

simple, only one node needs to be added; no other nodes change. However, if the

inserted node is not the last child, for every following sibling, the insertion will force the

renumbering of the subtree (assuming that fractional DLNs are not used) rooted at the

sibling, adding a new tDLN to each node in the subtree. So for the history document, the

cost of an insertion varies between O (1) and O (N) where N is the combined size of the

affected subtrees. Using fractional DLNs can lower this cost substantially, but is

orthogonal to this paper.

The deletion of an element terminates the lifetime in a tDLN for that element and

trigger the renumbering of each subtree rooted at following siblings (just as in the non-

temporal case), adding a new tDLN to each node. For the item document, the deletion

terminates the lifetime of the current version of the item, and creates a new version of its

parent, affecting at most two nodes. So, the cost is similar to insertion.

The modification of an element creates a new version of the item to which that

element corresponds, changing at most one node in the item/version document. The

modification also changes the name, text, or attribute value in the history document, but

does not impact the DLNs, so the modification adds one new node to the history

document (text and attributes are generally modeled as nodes), but does not change

any DLNs.

29

In summary, XUpdate operations can be applied to a temporal XML document.

The cost of an operation is similar to that of the non-temporal case.

Query Evaluation

The additional space needed for node numbers in the TTDLN scheme pays off in

evaluating queries. In this section, we consider sequenced versions of DLN operations,

as well as non-sequenced extensions that encompass both version- and item-related

queries. Just as with their DLN counterparts, the temporal operations are implemented

by manipulating the numbers without referring to the actual document.

Sequenced Spatial Relationships

DLNs have predicates to determine whether a specific relationship holds

between two nodes. There is one predicates for each axis: parent, child, ancestor,

preceding, etc. As canonical examples, we consider only two such predicates.

• IsParent(X, Y) – Is node X a parent of node Y?

• IsFollowing(X, Y) – Does node X follow node Y (in document order)?

The sequenced version of these predicates determines whether the relationship

holds at every point in time for a given time interval from [b, e].

• isParentSeq(X, Y, b, e) – Is node X a parent of node Y in the history document

at each time between time b and e? We can evaluate this by examining the

tDLNs in each node. Let Z be a tDLN in node Y that intersects [b, e]. Then, for

every tDLN, W, in node X such that the timestamp of W intersects that of Z, test

whether isParent (W, Z) holds. Essentially, this is the same logic as the

nonsequenced case, except for the additional processing of the timestamps.

• isFollowingSeq(X, Y, b, e) – Does node X follow node Y (in document order)

between times b and e? We can evaluate this by utilizing the tDLNs of X and

30

Y. Let Z be a tDLN in Y that intersects [b, e]. Then, for every tDLN, W, in X

such that the timestamp of W intersects that of Z, test whether isFollowing (W,

Z) holds.

Unsurprisingly, the other sequenced predicates have a similar form.

Sequenced Constructors

DLN operations also include constructors that build children or parents relative to

a node. The sequenced versions of these constructors are similar to their non-

sequenced brethren.

• getParentSeq(X, b, e) – Get the parent of X in the history document at each

time between time b and e. We can quickly find the parent by examining the

tDLNs of X. Let Z be a tDLN in node X that intersects [b, e]. Then, getParent (Z)

is in the list of sequenced parents.

• getChildren(X, b, e) – Get the children of X in the history document at each

time between time b and e. Let Z be a tDLN in X that intersects [b, e]. Then,

Add getChildren (Z) to the list of children returned by the constructor.

• getSliceDLN(X, t) – Get the DLN in the slice of node X at time t. Extract the

DLN from the tDLN in node X at time t.

Other constructors (getAncestors, getDescendants, etc.) are variations of the

above constructors.

Non-sequenced Operations

The item document is used primarily for non-sequenced operations. A non-

sequenced operation tunnels through time between different states of a document.

• nextVersion(X, v) – Extract the time of version v+1 of history node X. We can

evaluate this by first following the connection to the item for X (node X stores

31

the item number or DLNI for the item). From the item, we extract the version

number list. Next, we traverse the list until we locate version v+1. If no version

v+1 exists, check whether the item has a forward item reference. If not,

there is no version v+1 for this item. Otherwise, follow the forward

reference to the first version of the next item. Assume that the version starts at

time t. Return t. (Alternatively, we could build the text of version v+1 by

visiting each child of the item to determine whether it is a member of version

v+1. For the item and its children that are members of the version, we traverse

the connection back to the corresponding history nodes to obtain the text of

the version.)

• previousVersion(X, v) – Similar to nextVersion(X, v).

Since the item numbers are essentially DLNs, all of the (non-temporal) DLN

operations can be applied to item numbers.

• parentItem(X) – Return item P, the parent of item X. The item number for P,

is a prefix for that of X.

• childItems(X) - Return the list of items that are the children of item X. Find

the smallest k such that there is no item with item number X.k, then build a list of

items X.1 through X.k-1.

Conclusion

Prefix-based numbering is a node numbering scheme that promotes the efficient

querying of XML data. In prefix-based numbering, a node is numbered using its parent’s

number as a prefix. The scheme cannot be applied to a temporal data collection since

parent node numbers (the prefixes) change over time. In this paper, we present a new

node numbering scheme that we call time-tunneling dynamic level numbering (TTDLN).

32

Prefix-based numbering remains at the core of TTDLN, but the new scheme

splits a document into two pieces: a history document, which is the history of the XML

document over time, and an item document that keeps track of node identity over time

and node versions. In the history document, each DLN is transformed into a list of time

stamped DLNs. In the item document, each DLN becomes an item number, a list of

version numbers and timestamps, a range of parent versions, and a forward/backward

reference to a new/previous position of the item in the history. We show how TTDLNs

can be maintained in XUpdate operations and how they can be used to support

sequenced and non-sequenced temporal query operations.

33

Chapter 3

INTRODUCTION

Introduction to XML

Extensible Markup Language (XML) is a language used to describe information

in documents for communication. The main feature of XML is to provide a mechanism to

represent information in a hierarchical manner, using tags and thereby making it self-

descriptive. XML can represent data pertaining to diverse data sources, such as

structured, semi-structured, relational databases and object repositories.

The basic unit of an XML file is called a node. A node can be of type element,

text or attribute. An element node is represented using a ta and it has a name. The

attribute node has a name and a value. A text node has only text. The attribute and text

nodes are each associated with an element node. For example, let us consider a sample

XML file (Figure 14). As we can see in Figure 14, the information is structured in a

hierarchical manner. The node named bookstore is called the root element of the

document. It has one child element node named book. The book element node also has

seven child nodes out of which there are five element nodes, namely, title, author, year,

price, and pub, as well as two attribute nodes called category and genre. The element

named title has two child nodes, the first being ‘lang’ which is an attribute node, and the

second being ‘Harry Potter’ which is a text node. So, the element book resembles a

record in any relational database. The important thing to note is that XML information is

aimed at representing information in a structured manner and the structure itself

provides the relation and meaning to the information.

34

Figure 14. An XML file.

Introduction to XQuery and XPath

Because XML follows a standard structure for representing information, we can

also query for required information by filtering over the data present in it. This may be

performed using XQuery, a query language to query information from an XML document

(source). XQuery is the counterpart of SQL in the context of XML-based databases or

resources. There is also the need for representing various sections of information

present in XML using an expression language. This is done through the use of XPath

expressions. XPath provides the syntax to represent elements or parts present in an

XML document. It uses path expressions to navigate through the nodes present in an

XML document. For example, to represent the node title in the XML file present in Figure

14, we use the XPath expression /bookstore/book/title. XQuery is built on XPath

expressions. It uses a type of expression called FLOWR, which is a sequence of

statements representing For, Where, Order by, and Return. This expression is similar to

an SQL select statement with where and order by clauses. For example, to query all the

titles of the books whose price is less than $30, we use the XQuery code present in

Figure 15.

35

Figure 15. XQuery code.

Node ID and Numbering Plan

It’s not always convenient to identify a node based on its path using XPath

expressions. An XML store may contain many documents that might have nodes with

the same name. For this reason, implementations of XML stores provide nodes with a

unique identity using a property called node id. The node ID is essentially a number.

There are several numbering plans proposed to define the node IDs. The Dewey level

numbering (DLN) system is one such plan that provides decimal numbers as node IDs.

Stated differently, the DLN is based on the Dewey decimal classification system.

This type of numbering helps in representing the level (or depth) of a node in the

document as well as the relation between two nodes of the document. For example, the

node with node id 1.1 would be the parent of the node with id 1.1.x (where x represents

the order of this node among the children of the parent node (with node id as 1.1)).

Problem and Proposed Solution

Currently, XML data storage and querying is limited to non-temporal needs. But

consider an application that might require data relative to a specific period in an

environment wherein data changes are quite frequent. For example, if an educational

institution wishes to check for the instructor’s details for a course, say CS 4444 during

the year 2001, it is not possible to query the current XML store from a temporal

36

perspective. Such situations form the basis for the need of an index that can associate

nodes or data in general to time.

We propose a solution that would add temporal features to the existing XML

nodes. These temporal features primarily include the following properties:

• Version: This property keeps track of the version numbers. It starts from 1

(one) for the oldest version and counts by increments of one for every new

version of the node.

• Timestamp: This property provides details about a node’s creation and

deletion or modification. In general, it provides the details about the life time

of a node.

• Item: Some node information needs to be persistent over time. Such nodes

are termed as items. So, this property provides a reference to details about

the node, which are persistent across various revisions of the document.

This plan forms the basis for the need of a new axis that is composed of the above

mentioned properties namely version, timestamp, and item.

The transaction- time axis (tt-axis) is proposed to satisfy this requirement. The

proposed tool is useful for storing and referencing information that is maintained through

a period of time. The tt-axis provides a temporal axis for XML data in addition to other

axes like the ancestor, descendant, etc., which are non-temporal axes. Thus, with the

addition of the new tt-axis, nodes can be queried or filtered based on a specific time

period. For example, to retrieve all of the nodes holding the information about the

instructor for the course CS 6700 during January 2006, the query may be formulated to

37

include the time period in addition to the general xpath information (Example doc

(“Course information.xml”)/course[@name=”CS 6700”]/instructor (time=January 2006)).

The query is then executed by using the tt- axis in addition to the generic xml axis. First,

the results of the generic axis search query are determined. Next, these results are

filtered using the tt-axis for matching nodes that are active during the specified period

(January 2006).

Since the DLN numbering plan does not have a reference for the newly proposed

temporal properties, we propose a new numbering plan to accommodate the temporal

properties and provide support in the implementation of the tt-axis described above. This

new numbering plan extends the existing numbering plan, namely called DLN. The new

numbering plan is named as item version timestamp level numbering (IVTLN). As the

name suggests, IVTLN consists of version, timestamp, and item information in addition

to the information provided by the existing numbering plan DLN.

38

Chapter 4

OBJECTIVES AND METHODOLOGY

Overall Goal

The goal of this project is to create a representation of items and versions to

support efficient evaluation of the tt-axis. We evaluated system efficiency with respect to

the transaction-time and space usage. So, the trade-off considered here is the time

taken for executing temporal queries vis-a-vis the additional memory utilized for the

purpose of constructing the transaction-time index.

This project provides the option to store data in a time sensitive manner,

including storing data based on record or creation times, and updating the same using

timestamps and versions. This primarily involves the creation and implementation of a

platform for time-based indexing and its associated data structures. The final product

helps in querying the database from a time period perspective, so, internally a node’s

information is retained in spite of it updates through time.

XML Database Considered

The XML-based database we chose chosen for our implementation is the Exist

Db developed by Wolfgang Meier. eXist-db is an open source database management

system built using XML technology based on the Java platform. It stores XML data

according to the XML data model and features efficient, index-based XQuery

processing.

39

Tasks

The following tasks were identified in the planning and implementation of the tt-

axis for eXist db.

• Create and extend items: As each slice of the document is parsed, we

need to recognize the nodes that persist over time. We name such nodes

as ‘items’ and the process as ‘itemization of nodes.’ Currently, all element

type nodes are treated as items, and we may refine the same or extend

the same to other node types such as text and attribute nodes.

• Create versions: Every time a node is parsed, we check if the node is

present in the database. If found, we compare the existing node with the

new node. If there is some difference in their properties, we classify the

new node as a new version of the existing node which itself would be the

previous version of the new node. Else if none of the existing nodes

match, the new node is assigned a version property that makes it the very

first version.

• Create timestamps or lifetime: Every node is assigned a life time or

timestamp property that contains the node’s creation time, deletion or

modification time. For a new node, the deletion or modification time is 0 or

until changed, denoting that the node is currently active. Modification of a

node gives rise to a new version. So, the old version’s deletion time is

updated to the current time which is also the creation time of the new

version.

40

Work Plan

 In order to complete this project in a timely manner, we developed a plan to

implement tt-XPath (Transaction-Time XPath) in eXist. Our plan included studying the

workings and backend of the eXist database. It also included the study of various

custom data structures and techniques followed during the development of eXist

database source code.

 Our plan also encompassed adding our modules to eXist source. This includes

the analysis of scope and support for additional modules by eXist database source code.

Additionally, the plan included implementation of new features and identifying the impact

of such implementation on the existing features.

Criteria

The criterion followed during the process of tt-axis implementation was first to

construct a plan to describe a new model for indexing, new query support, and xupdate

changes, and second to implement code modules based on the proposed plan.

41

Chapter 5

NEW NUMBERING PLAN

Introduction

The current plan was designed with a view to provide and support temporal index

to XML data. This includes creation of the tt-axis which helps in querying data pertaining

to a specific period of time (temporal data). This axis also helps in setting a base (pivot)

time slice pointer to a time period and then traversing the past and future versions of that

node.

The result is specific to a particular time slice (period). Thus, data that has been

updated can be stored and viewed for future reference. Consequently, this axis allows

viewing of old data that was modified during subsequent versions. Hence, the axis

provides a mapping between data and its time stamp.

Basis for the New Index

The new index is based on transaction- time of a particular transaction. This can

be the write operation, which may involve the creation of a new node, the modification of

an existing node, or the read operation, which involves reading information from an

existing node,

Basis for and Description of New Numbering Plan

A new numbering plan was devised based on the index mentioned above.

42

Figure 16. Course Info (tree structure).

Consider the tree in Figure 16; the new numbering plan is created including the

index in 4.2 as follows. The new numbering plan is an extension to the Dewey level

numbering (DLN) plan followed in eXist db.

Existing Numbering Plan

Currently, the numbering plan followed in eXist db is based on node IDs using

the DLN, as shown in Table 1.

43

.

Table 1. DLN for Course Info.

Node Node Ids

Registrar

1

Department

1.1

Course

1.1.1

Prerequisite

1.1.1.1

Code

1.1.1.2

Teacher

1.1.1.3

cs223

1.1.1.1.1

cs541

1.1.1.2.1

Julie

1.1.1.3.1

44

New Numbering Plan

As stated above, in this project, we propose a new numbering plan to implement

the tt-axis. This new numbering plan extends the existing numbering plan, DLN. The

new numbering plan is named item version timestamp level numbering (IVTLN). As the

name suggests, the IVTLN consists of version and timestamp information in addition to

the information provided by the existing numbering plan. So, IVTLN includes a time

stamp and a few bits representing version and schema change identifiers.

Timestamp

This section of the node ID may have three parts, namely:

• Start timestamp: the time when the node was created.

• Last read timestamp (optional) : time when the node was last read.

• End timestamp: time when the node info was modified.

Representing Timestamps

We use the format yyyymmddhh as the means to represent the timestamp of a

transaction. Thus, currently nodes can be compared up to the level of hours of their

creation or modification.

For example, assuming that the tree provided in Figure 16 above was created

on 8th January 1999 at 21:00 hrs. The start timestamp of all the nodes present in the tree

would be < yyyyMMddHH>, i.e., <1999010821>, and the corresponding end timestamp

would point to 0, meaning currently active or alive.

Bits Representing Schema Change and Version Identifiers

In addition to the time stamp, the new numbering plan includes bits representing

the occurrence of schema change (0/1/2 – no/yes after/yes before respectively) and

45

version range (m-n, where m, n are the current and most recent version numbers of the

current node, respectively).

For example, if the root node (registrar) in the previous example (Figure 16) has

no schema change and if this is the first version of this node, the new node ID is Dewey

no, <time stamp>.Schema change bit. (m-n version range), where m – represents the

current version of the node and n - represents the version number of the latest version.

So, it is 1<199901, 199901, until changed>.0.(1-1) and if there were a schema change

and this were the second version of this node, the new node id would be 1<199901,

199901, until changed>.2. (2-2). (Note: Here, the schema change bit of 2 indicates the

current version was created after a schema change).This would also have an entry in

the schema change tracking table.

Table 2. Schema Change Tracking Table.

Note in Table 2, the schema change bit is 2 only for the node version created

immediately after a schema change. Also, the schema change bit is updated to 1 from 0

in the old node ID so as to indicate that there was a schema change after this version.

Updating a Node

A node that was changed gives rise to a new version and is assigned a new label

(a new time stamp, version bits, and schema change bit). The previous version is

46

considered to be logically deleted, so its deletion time stamp is updated with the creation

time stamp of the new version.

Thus, for example a node (1<199901, 199901, until changed>.0.(2-2)) that was

updated in September 2000 would result in the following steps:

1) Create a new node with the node id as 1<200009, 200009, until changed>.0.(3-

3), assuming there was no schema change.

2) Update the node ID of the old version to 1<199901, 199901, 200009>.0.(2-3).

Here, we update the delete time stamp as well as the maximum version range

value. (Changes are represented in bold).

47

Chapter 6

SCHEMA CHANGE

Description

When a node is moved into a different document or as a child to a different

parent, we treat such a change as a schema change or transition. Since our current

numbering and indexing plan has no method to track such changes, we propose a

technique to satisfy this requirement. This technique acts as an addition to IVTLN.

Schema change may be explained with the help of the following cases.

No Schema Change

Some transactions or changes do not affect the schema of the document.

Following are some of the cases with description which fall into this category.

Case where the child version changes. Let’s consider Figure 17, here a teacher's

name for a course was updated from Miguel to Julie during January 2001.

From the figure above we can observe that the node value was changed from

Miguel to Julie for the node Teacher. The change has occurred during January of 2001.

So we consider the node with value as Miguel active from its creation time which is

December 1999 to its deletion (logically) in January 2001. Figure 17 shows the change

in more detail. The following tables (Table 3 and Table 4) provide the node id details for

both the versions corresponding to the root node (registrar) and the changed node

(Miguel to Julie).

48

Figure 17. Data change in Course Info.

D
ec

em
b

er
 1

9
9
9

 J

an
u
ar

y
 2

0
0
1

49

 Please not the change from the instructor name from ‘Miguel’ to ‘Julie’

during the years 1999 to 2001 respectively.

50

Table 3. Course Info (Instructor Name) Details During Fall 2000.

Table 4. Course Info (Instructor Name) Details During Spring 2001.

As we can see, the root node and other nodes are not affected by the update;

hence, their IDs remain unchanged, whereas the child of the node teacher node was

changed from Miguel to Julie.

51

A new node (Julie) is created for the new version with a new time stamp and

version range. The old (Miguel) node's ID is updated to include the delete time stamp.

The version range is updated from 1-1 to 1-2 as following,

Miguel - 1.1.1.3.1<199912, 199912, 200101>.0. <1-2>.

It should be noted that the version range of the child node Julie is not altered.

Figure 18 shows the case wherein the parent version changes and the new version

retains the child of the old version.

Figure 18. No schema change example.

teacher version chg instructor

 Julie

52

Table 5. DLN Changes to Course Info.

In Figure 19, we see that the teacher node undergoes two version changes. We

note that after the first change from teacher to instructor, its child node (Julie) was

deleted, and the same child node (Julie) was added as a child after the second change.

In this case, we treat it as update (to the child node Julie) since an intermediate version

of the parent (i.e., instructor) does not have a child.

While updating, if the old node is read first and then updated, we need to update

both the read and delete time stamps, whereas if it is a blind update, only the delete time

stamp is updated.

53

Table 6. Numbering Change Due to Schema Change.

Figure 19. No schema change (appending a child node after its deletion).

54

Figure 20. Before schema change.

55

Schema Change

When a node is moved as child to a different node or when a node is missing in

some of the intermediate versions of the document while still retaining its information, we

note such changes as schema or plan change since the alignment of the node with

respect to its document has changes. In other words, it becomes a child of a different

node(s).

The following cases provide an example and description about the effect of

schema change and the necessary steps to update the same in our index and

numbering plan.

Let’s consider the case wherein schema change occurs. Consider the Couse Info

tree before schema change, as in Figure 20, and the same tree after schema change, as

in Figure 21.

Figure 21. Course Info after schema change.

In this case an entry is added in the schema change tracking table to represent

the change as shown in Table 7.

56

Table 7. Change in Node ID due to Schema Change.

As shown in Table 7, after the schema change, the schema change bit of the old

node is set to 1 and the schema bit of the new version would be set to 2. So, a schema

change bit of 1 indicates that a schema change has occurred after the current node.

Similarly, a schema change bit of 2 indicates that the current node version was created

after a schema change. An entry is added in another table called the future access table

(Table 8) which stores the latest version of numbers of all the nodes for that schema.

Said table helps in avoiding the overhead of updating all the node IDs with the recent

version identifier across different schemas (if there were some schema changes).

57

Table 8. Future Access Table.

58

Chapter 7

QUERYING

Querying for Versions

Referring to the examples in Figure 17 and Figure 18, if we need to query the

teacher node version(s) during the time slice (December 2000), we first check for the

node IDs of all the teacher nodes whose time stamp range (duration between creation

and read timestamp / deletion time stamp (if defined)) match the time slice requested in

the query. So for a query like

/tt-past slice (‘Dec 2000’) /registrar/department/course/teacher

the node with id 1.1.1.3< 200012, 200012, 200101>.0.(1-2) is returned. If the next

(future) version of the previous resultant node is requested, we check for the node with

id 1.1.1.3<200101, 200101, until changed >.0.(2-2)

Note the check here is a simple match with respect to node id (1.1.1.3) numbers

and version numbers (2-2), so the timestamp is ignored. If found, the same is returned;

else, a schema change might have occurred, so a check is performed over the schema

change tracking table (as in the table above) taking the current sliced node’s ID as the

key.

If an entry is found with the node ID as the key in the schema change, tracking

table then its corresponding value is returned as the resultant node id (5.2.1< 200101,

200101, until changed>.1. (2-2)). Here, we just check for the node number which is

5.2.1 and the version range which is 2-2.

59

Hence, navigation between nodes of the same type is performed first by

assuming there was no schema change, and only on failure of this case is a schema

change considered and checked with the help of the schema change tracking table to

get the required result (node ID). The same strategy can be applied for querying

(navigating) between future as well as past versions of a node.

Querying for Axis Data

Querying for information based on the axis is performed using the steps below.

Axis Description

The ancestor axis points to the set of nodes that are ancestors to the current

node. This axis starts from the parent of the current node at its root. The descendant

axis points to the set of all the descendant nodes of the current node.

Implementation of Axes Using the Current Plan

 The current numbering plan with transaction- time index helps in retrieving or

loading information for the two axes as follows:

Ancestor axis: Let the current node id be 1.1.3.2.1<200009, 200009, until

changed>.0.<2-2>. Then, we compute the list of ancestor node numbers as

1.1.3.2 (Parent of the current node) …...... Level 4

1.1.3 …...Level 3

1.1 ...Level 2

1 (document root). …..................................Level 1

60

 Problem: At each level we get a list of node versions. For example, in the fifth

(5th) level we may have many nodes with node number as 1.1.3.2 and the IDs as

1.1.3.2<200009, 200009, uc>.0.<10-10>

1.1.3.2<199901, 200009, 200009>.0.<09-10>

1.1.3.2<199801, 199801, 199901>.0.<08-10>

1.1.3.2<199701, 199701, 199801>.0.<07--10>

1.1.3.2<199601, 199601, 199701>.0.<06-10>

Solution: We consider only those node versions whose timestamp range (the

time between creation and delete time stamp, if the delete time stamp is defined)

contains the creation time of the current node. Since the current node creation time

stamp from its node id 1.13.2.1<200009,200009,uc>.0.<2-2> is 200009, we select only

those ancestor nodes at the above level that contain 200009 in its slice range (creation

time – read /(delete time stamp -1)). Thus, from the above set, we filter out the node

versions and get the required node version(s) which is/are ancestor(s) of the current

node which in this case is 1.1.3.2<200009,200009,uc>.0.<10-10>.

Descendant axis: Let us consider the current node id as

1.1.3.2.1<200009,200009,uc>.0.<2-2>. We may then derive the node numbers of the

descendants as

1.1.3.2.1.X (X can be 1,2,3, ...)

1.1.3.2.X.X

1.1.3.2.X.X.X

61

and so on, depending on the depth of the document.

 Problem: Even here, we get a set of nodes at each level that have to be

compared with the current node version to retrieve the required version matching

descendants of the current node.

Solution: Here, we compare the slice range of the current node which is 200009-

200009 since the delete time stamp is not defined (uc). We check whether the creation

time stamp value of the descendant node(s) is within the time slice range of the current

node. We then get only those descendant nodes that belong to the current node version.

Note: While checking for axes, the schema change is not considered since we

treat the schema change as a version change.

XPath

XPath is the syntax that represents elements or parts present in the xml

document. It uses path expressions to navigate through the nodes present in an xml

document. XPath was defined by the World Wide Web Consortium. So Xpath provides a

way to navigate through the XML tree based on a given criteria.

Tt-XPath

The transaction- time Xpath (or tt-Xpath) is an extension to Xpath. The tt-Xpath

adds new axes and methods in addition to the ones provided by Xpath based on the

transaction- time axis. So, tt-Xpath provides support for queries based on the following

newly created axes based on tt-axis.

Tt-XPath Axes

In addition to the existing axes, the following are provided by tt-XPath.

62

tt-Past - to get all the past versions of the current node.

tt-Future- to get the available node versions.

tt-Past-known- to get only the known past versions.

tt-Future-known- to get only the known future versions.

Let the current id be 1.1.3.2.1<200009, 200009,200019>.0.<23-50>. From the node id

we know that there are a total of 50 versions of the current node and the current version

is the 23rd version which implies that there are 22 past versions. Now, we fetch the

previous versions as stated in the paragraph below. We consider only the version range

and node number and ignore the timestamps for version comparison.

 The node versions of the following form are considered and taken into the

result, 1.1.3.2.1<X,X,X>.0.<(n-1)-50> where X can be any time slice and n is the current

version number which in this case is 23. Thus, we consider all previous version

numbers, which is from 22 to 1.

1.1.3.2.1 <X,X,X>.0.<22-50>

1.1.3.2.1 <X,X,X>.0.<21-50>

.

.

1.1.3.2.1 <X,X,X>.0.<2-50>

1.1.3.2.1 <X,X,X>.0.<1-50>

63

 While traversing through the previous versions, we check for a schema bit of

2. Once we detect the same (as in the example below), we infer a schema change in the

past (previous to the node which contains the schema bit as 2). We then check for the

entry in the schema change table so as to get the previous version.

Example:

1.1.3.2.1 <X,X,X>.0.<22-50>

1.1.3.2.1 <X,X,X>.0.<21-50>

.

.

1.1.3.2.1 <X,X,X>.2.<10-50>

So, the previous version is in a different schema.

 We check in the schema change table (Table 9) in the right column (after

schema change column) for the entry containing 1.1.3.2.1, and then check for the node

number in the corresponding left column for the node number before the schema

change.

Table 9. Schema Change Tracking Table.

64

 This provides us with the node 3.2.1<X,X,X>.1.<9-9> which is the ninth

version of the current node. Then, we again trace back to continue finding the previous

versions.

3.2.1<X,X,X>.0.<8-9>

.

.

till 3.2.1<X,X,X>.0.<1-9>.

This way, we get the set of all the previous / past versions of the current node

with / without schema changes.

Let the current node have the ID 1.1.3.2.1<200009, 200109, uc>.0. <23-50>.

From the node ID it is evident that we have node versions up to 50, with the current

version as the 23rd. We next find nodes having the following format.

1.1.3.2.1<X,X,X>.0.<24-50>

.

.

.

till 1.1.3.2.1<X,X,X>.0.<50-50>

65

If there were a schema change, we would notice a node with the schema change

bit as 1. We next search in the schema change table an entry for the current version (for

example 1.1.3.2.1<X,X,X>.1.<32-32>.

We check for the corresponding node ID after the schema change in the right

column, and we check for the entry in the Future Access table (Table 11).

Table 10. Schema Change Tracking Table.

Table 11. Future Access Table for the current example.

66

We then learn the maximum version number for the node in the new schema is 50. We

continue the search for future versions as follows:

7.5.2<>X,X,X>.0.<34-50>

.

.

till 7.5.2<>X,X,X>.0.<50-50> .

The tt-past-known and tt-future-known axes are similar to the their counterparts

tt-part and tt-future, respectively, the only difference being that here the time slice range

for comparison is strictly between the creation and read time stamps and not between

creation and delete timestamps even if the delete timestamp is defined.

67

Chapter 8

IMPLEMENTATION

eXist Db Source Code Study

The eXist database provides a free source code for development and

enhancements. This project includes various code and test packages used during the

current version of the eXist db product. A study of these modules was important to

understanding the design and scope of this project and accordingly develop and add our

modules to it.

eXist Storage Hierarchy

The eXist Db saves documents into its database in the following hierarchy.

 DB->Collections -> Documents.

Thus, a database instance may have one or more collections, and each

collection may have one or more documents.

Modules Added

Numbering.ttaxis.item - This package consists of classes that help in creating

new item number instances. This package is responsible for the structure and creation of

IVTLN objects.

Numbering.ttaxis.item.BerkelyDB -This package contains classes to implement

the storage of tt-axis item numbering into Berkeley DB (persistent storage).

68

Implementation

The eXist db stores documents inside collections. Each collection can have one

or more documents. Documents are added using the user interface into the collection.

The following five steps occur upon adding a new or modified document.

1) Document ID is generated for the current document.

2) The document gets parsed using a parser based on Simple API for XML

(SAX) parser. During the parsing, the nodes are identified and assigned a

type (element, attribute, or text). They are also assigned a NodeId unique

to each node.

3) The nodes are stored into the respective index.

 The various types of indexes in eXist are

- NativeElementIndex: for element type nodes.

- NativeTextEngine: for text type nodes.

- NativeValueIndex: for index based on node’s value.

- NativeValueIndexByName: for index based on the node’s name.

4) Finally, exist checks if there was a document instance stored previously

having the same document ID as the current one. If such a document

exists, it is replaced with the current one; else the current one is stored

into the repository.

5) Once the document is stored, it is available for querying purposes.

Updating Index in eXist

In eXist, the class named NativeBroker is responsible for creating and updating

indexes.

69

Package: org.exist.storage

Class Name: NativeBroker.java

Description: This is implemented on the basis of the Observer design pattern.

Where the 'subject' of observation is this (NativeBroker) class and the 'observers'

are the various indexes namely

- NativeElementIndex

- NativeTextEngine

- NativeValueIndex

- NativeValueIndexByName

 Once there is some change (transaction causing some change to the storage) in

the subject (NativeBroker instance), a notification is sent to the corresponding

observer(s) index for modification.

Important Classes

Some of the important classes and their description follow:

• IVTLN.java (Figure 22) - This class holds the information about an item

(element). Information stored here includes ID item identifier, TDLN Dewey level

number of the item with the timestamp, TIDLN item number of the item with its

timestamp, and the VersionTS version of the item with its timestamp.

• Collection.java (Figure 24) - This class represents a collection instance and

contains functions to add a document. Documents are stored inside a collection.

A collection instance may contain any number of documents.

70

• DLN.java (Figure 25) - The class that implements the existing (Dewey Level

Numbering) plan in eXist.

• Indexer.java - This class implements the document parser for the XML

documents. It uses SAX parser.

 An item may have one or more instances of TDLN, TIDLN and VersionTS.

The figures in the following pages describe some of the above mentioned

classes from a class perspective. Class Diagrams in general present the properties of

class i.e. they depict the details about a class’s members which are its variables and

methods. The class diagrams for the classes Collection.java and DLN.java have been

shortened to cover only the essential methods.

71

Figure 22. The IVTLN class.

72

Figure 23. The Item (item) package.

Figure 24. The Collection class.

73

Important Method Sequences

The following subsections describe the important method execution sequences

that define our approach for implementation.

Figure 25. The DLN class in eXist db.

74

Adding a Document Instance to a Collection (Backend). The diagram in

Figure 26 illustrates the communication between classes while adding a new document

to the collection.

Creation of IVTLN Objects for Items. The process of execution followed during

the identification and creation of IVTLN objects for item (elements) is as in Figure 27.

Front-end (GUI) Diagrams. The new plan implementation works only in the

backend. The front-end would still remain the same. IVTLN objects are created or

updated while a document is added into the collection.

The figures from Figure 28 to Figure 33 show the process of adding a document

(bookstore4.xml) to the default collection in an eXist db.

75

Figure 26. Adding a document to a collection (Sequence Diagram).

76

Figure 27. Creation of IVTLN objects (Sequence Diagram).

77

Figure 28. eXist db user login screen.

78

Figure 29. eXist Admin Client Screen.

79

Upon clicking the menu item “add a document,” the screen shown in Figure 30

appears. This screen allows the user to browse and select a document to add into the

collection.

Upon selecting a file the following screen is displayed while the document gets

added into the collection (Figure 32).

Figure 30. eXist Client (left) and File selection (right) screens.

80

Figure 31. Screen shown while a document is being added.

It is as this point a document gets parsed with the help of SAX parser instance

provided in Indexer.java. Once the parsing is completed and the document gets added

into the collection, we perform a walkthrough over this document instance.

During this walkthrough, the items (elements) are identified and the

corresponding IVTLN objects are created and loaded with version and timestamp

information. Once this is done, the screen shown in Figure 33 appears. Notice the newly

added document bookstore4.xml in the list (Figure 32).

The new document can be viewed and queried for data. On clicking the

document item in the list we may view the document as the shown in Figure 34.

81

Figure 32. eXist admin client screen (updated with bookstore4.xml).

82

Figure 33. bookstore4.xml.

83

Chapter 9

MEMORY ANALYSIS

Description

The main trade-off while considering the new numbering plan is between the

features added to the additional memory used. We evaluated the following elements

from the perspective of memory.

Tool

The tool used here is the Profiler provided by Netbeans IDE.

Memory Perspective

We captured the following memory occupancy of a sample xml file

(bookstore31.xml) for analysis.

Bookstore31.xml

The following are the memory occupancy details derived using the Netbeans

profiler.

DLN (Objects)

Type: org.exist.numbering.DLN

Memory used (in bytes)

IVTLN and Related

Type: IVTLN (related classes)

Memory used (in bytes)

As can be seen from the above results, there is an increase

about 40% due to the creation and storage of new data.

is the benefits provided by timestamp

memory occupancy.

Analysis

We now analyze the growth of objects

eight different timestamps. The results

corresponding memory usage of type DLN and IVTLN related classes can be seen in

Figure 34 and Figure 35,

As can be seen from

count and memory used initially due to the addition of the document i

and they stay constant after that.

org.exist.numbering.DLN

Memory used (in bytes): 59248

elated Objects

(related classes)

Memory used (in bytes): 23432

As can be seen from the above results, there is an increase in memory usage of

about 40% due to the creation and storage of new data. The point to be considered here

is the benefits provided by timestamp- and version-based querying to the additional

We now analyze the growth of objects with respect to the memory used across

eight different timestamps. The results for the growth in the number of objects and the

corresponding memory usage of type DLN and IVTLN related classes can be seen in

 respectively.

As can be seen from Figure 34 and Figure 35, there is an increase in the object

count and memory used initially due to the addition of the document into the collection

and they stay constant after that.

84

memory usage of

point to be considered here

based querying to the additional

with respect to the memory used across

for the growth in the number of objects and the

corresponding memory usage of type DLN and IVTLN related classes can be seen in

, there is an increase in the object

nto the collection

85

Figure 34. Number of objects across five snapshots.

Figure 35. Memory usage (in bytes) across five snapshots.

As can be seen from Figure 36 and Figure 37, the growth in objects and memory

usage is linear for both DLN and IVTLN related objects.

0

5000

10000

15000

20000

25000

1 2 3 4 5

o
b

je
ct

 c
o

u
n

t

snapshots

DLN

IVTLN (related)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5

m
e

m
o

ry
 (

in
 b

y
te

s)

snapshots

DLN

IVTLN (related)

86

Figure 36. Impact of add, delete, and update node operations on object count.

Figure 37. Impact of add, delete, update node operations on memory usage.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6

o
b

je
ct

 c
o

u
n

t

snapshot

DLN

IVTLN (related)

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6

m
e

m
o

ry
 u

sa
g

e
 (

in
 b

y
te

s)

snapshot

DLN

IVTLN(related)

87

Snapshots 1 to 3 represent behavior while adding nodes to the document.

Snapshots 3 to 5 represent changes when nodes are deleted from a document. The last

snapshot represents the impact of modifying a node in the document.

The growth is the highest when nodes are added. During node deletion, we

observe that there is a decline in the count of DLN objects, but there is a rise in IVTLN

related objects due to the deletion or modification of existing timestamps and the

corresponding creation of new timestamp based objects. During node modification,

however, there is not a significant change with respect to the DLN’s object count and

memory usage. There is some rise in the number of IVTLN objects and the

corresponding rise in memory usage due to the creation of objects for the new versions.

Inference

As can be seen from the above results, there is an increase in memory usage of

about 40% due to the creation and storage of new data. The tradeoff to be considered

here is the features provided by timestamp- and version-based querying to the additional

memory occupancy.

88

Chapter 10

CONCLUSION

This project set out to store and reference data in a time specific manner. There

are two primary operations involved in implementing this feature. The first involves

storing a node with metadata to include its creation time, deletion, or modification time.

The second consists of retrieving the nodes that are filtered based on timestamp and

version matching. Both operations require a platform to index nodes based on

timestamps (creation and deletion or modification). We call this new index the

transaction-time axis (tt-axis).

The tt-axis covers the various versions of a node in a document starting from the

earliest to the latest. In addition to the timestamps, the tt-axis also includes version

references that provide information about the various versions present for a given node

and also for navigating across it. A new numbering plan called item version timestamp

level numbering (IVTLN) is introduced to help in the construction of the tt-axis. This new

numbering plan extends the current numbering plan Dewey level numbering (DLN) used

in eXist db by adding timestamp and version identifiers.

A new strategy called itemization of nodes is introduced wherein the nodes are

qualified as items. An item is a node provided with timestamp and version information.

In other words, an item is a qualified node provided with the new numbering plan IVTLN.

There is just one item instance for all the versions of a node. Therefore, the relation

between the various versions of a node to its item is many to one. Currently, itemization

of nodes is limited to element nodes, but it may be extended to other node types like text

and attribute nodes.

89

Schema Change is when either a node is moved to a different parent or a node is

absent (deleted) in some versions of the parent node. Since such changes need to be

tracked and considered while navigating through versions, we introduce a solution using

the help of a table known as the Schema Change Tracking table and bits representing

schema change in the new numbering plan IVTLN. Also a new table named Future

Access table is introduces to minimize the number of updates.

Querying is performed in two phases. The first phase is based on executing

XPath expressions, while the second phase takes the result from the first phase and

filters the result by comparing the queried time reference with a node version’s time

stamp range (time between its creation and deletion or modification). A node version is

added to the result only if its time stamp range encompasses the requested time slice.

Two new modules were added, namely, numbering.ttaxis.item and

numbering.ttaxis.item.berkelyDb, for implementing the IVTLN numbering plan and

storing the IVTLN information for document nodes in a persistent manner, respectively.

The later has classes to store and update timestamp and version information for

documents by creating and providing access to a persistent store.

Our goal is to build an efficient time based querying system and the platform

required for it. The current plan (IVTLN) is aimed at replacing the existing numbering

plan. i.e., DLN, used in exist db. The trade-off in applying the proposed plan is between

the additional features supported to the additional memory utilized by the resources to

support the new plan.

Results from the analysis of the memory perspective show that the growth in

object count and their memory usage is linear for both IVTLN and DLN. It should be

noted that there is more growth in DLN, as currently IVTLN uses DLN. Thus, if IVTLN

90

were extended to replace DLN by incorporating its features, which is also the wider goal

of our project, we would likely see see better results.

The current plan would be of good use in organizations that collect and reference

data pertaining over a long period of time, e.g. ,records stored and used in academic

institutions, defense studies, etc.

Future Work and Enhancements

The current plan supports itemization of element nodes. This concept of

itemization may further be extended to other node types like attribute and text thereby

extending the versioning feature to them.

Currently, the implementation does not cover plan change tracking and handling.

We could extend our implementation to handle the plan change feature to increase the

current plan’s scalability.

The current plan could further be extended to include more information so as to

reduce number of passes for reading XML document information (xml parsing). There is

also some scope for reducing some redundancy (optimization) in data required to

execute the tt-axis based functions especially with respect to evaluating tt-axis functions

that require a comparison over time or versions.

The current plan can further be applied to other XML-based databases to check

for performance and support.

91

REFERENCES

[1] T. Amagasa, M. Yoshikawa, and S. Uemura. A data model for temporal XML

documents. In DEXA 2000, 334-344.

[2] T. Bohme and E. Rahm. Supporting efficient streaming and insertion of XML data in

RDBMS. In DIWeb 2004, 70-81.

[3] P. Buneman, S. Khanna, and W. C. Tan, Why and where: A characterization of data

provenance. In ICDT, 2001, 316-330.

[4] P. Buneman et al., Keys for XML. Computer Networks, 2002. 39(5): 473-487.

[5] S. Chien, V. Tsotras, and C. Zaniolo, Efficient schemes for managing multiversion

XML documents. VLDB Journal, 2002. 11(4): 332-353.

[6] J. Chomicki, Efficient checking of temporal integrity constraints using bounded history

encoding. ACM Transactions on Database Systems, 1995. 20(2): pp. 149-186.

[7] F. Currim, S. Currim, C. Dyreson, R. T. Snodgrass. A tale of two schemas: Creating a

temporal XML schema from a snapshot schema with τXSchema. In EDBT 2004, 348-

365.

[8] C. Dyreson. Observing transaction- time semantics with TTXPath. In WISE, 2001.

[9] C. Dyreson, R.T. Snodgrass, F. Currim, S. Currim. Schema-mediated exchange of

temporal XML data. In ER 2006, 212-227.

[10] D. Gao, R. T. Snodgrass. Temporal slicing in the evaluation of XML queries. In

VLDB, 2003, 632-643.

[11] F. Grandi, An Annotated Bibliography on Temporal and Evolution Aspects in the

WorldWideWeb. 2003, TimeCenter Technical Report.

92

[12] F. Grandi, F. Mandreoli, and P.Tiberio. Temporal modelling and management of

normative documents in XML format. Data & Knowledge Engineering, 2005, 54(3): 327-

254.

[13] C. S. Jensen and C. Dyreson (editors), A Consensus Glossary of Temporal

Database Concepts – February 1998 Version. In Temporal Databases: Research and

Practice, LNCS 1399, Springer-Verlag, 1998, 367-405.

[14] C. Li and T. W. Ling. An improved prefix labeling scheme: A binary string approach

for dynamic ordered XML. In DASFAA, 2005, 125-137.

[15] A. Marian et al. Change-centric management of versions in an XML warehouse. In

VLDB, 2001, 581-590.

[16] S. B. Navathe and R. Ahmed. Temporal relational model and a query Llanguage.

Information Sciences, 1989. 49(1): 147-175.

[17] B. Nguyen et al., Monitoring XML data on the web. In SIGMOD, 2001, 437-448.

[18] Oracle Corporation, Application Developer’s Guide – Workspace Manager, 10g

Release 1, December 2003.

[19] F. Rizzolo and Al. A. Vaisman. Temporal XML: Modeling, indexing and query

processing. VLDB Journal, 2007, DOI 10.1007/s00778-007-0058-x.

[20] A.Schmidt, et al. XMark: A benchmark for XML data management. In VLDB 2002,

974-985.

[21] R. Snodgrass, et al. Validating quicksand:Temporal schema versioning in

tauXSchema. Data Knowl. Eng. 65(2): 223-242 (2008).

[22] A. Tansel, et al.Temporal databases: Theory, design, and implementation,

Benjamin/Cummins Publishing Company, 1993.

93

[23] J.X. Yu, D. Luo, X. Meng, H. Lu. Dynamically updating XML data: Numbering

scheme revisited. World Wide Web 8(1): 5-26 (2005).

[24] Xyleme, A dynamic warehouse for XML data of the web. IEEE Data Engineering

Bulletin, 2001. 24(2): p. 40-47.

[25] C. Dyreson and K.G. Mekala, Numbering nodes in temporal XML data instance.

Submitted to SSTD 2011, Minneapolis, MN, USA.

[26] K.G. Mekala. Develop a plan to implement ttXpath. Report submitted during

Summer 2009, Utah State University, USA.

	Creating a Representation of Items and Version that Support Efficient Evaluation of the Transaction-Time Axis in SML-Based Databases
	Recommended Citation

	Microsoft Word - 263863-text.native.1314724230.docx

