
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

Undergraduate Honors Capstone Projects Honors Program

5-2010

Autonomous Security Patrol System Autonomous Security Patrol System

Jake Erramouspe
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Erramouspe, Jake, "Autonomous Security Patrol System" (2010). Undergraduate Honors Capstone
Projects. 46.
https://digitalcommons.usu.edu/honors/46

This Thesis is brought to you for free and open access by
the Honors Program at DigitalCommons@USU. It has
been accepted for inclusion in Undergraduate Honors
Capstone Projects by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/honors
https://digitalcommons.usu.edu/honorsp
https://digitalcommons.usu.edu/honors?utm_source=digitalcommons.usu.edu%2Fhonors%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fhonors%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/honors/46?utm_source=digitalcommons.usu.edu%2Fhonors%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Autonomous Security Patrol System

by

Jake Erramouspe

Thesis submitted in partial fulfillment
of the requirements for the degree

of

DEPARTMENTAL HONORS

in

Electrical Engineering
in the Department of Electrical & Computer Engineering

Approved:

Thesis/Project Advisor Departmental Honors Advisor
Dr. YangQuan Chen Dr. Wynn Walker

Director of Honors Program

Dr. Christie Fox

UTAH STATE UNIVERSITY
Logan, UT

Spring 2010

Senior Design Project for

AUTONOMOUS SECURITY PATROL SYSTEM (ASPS)

ECE 5340 Mobile Robots / ECE 4850 Design 3

December 8,2009

Jake Erramouspe

Steve Gunderson

Brad Donohoo

Instructor Approval \5T or!, tf (Mlo
Dr. Wei Ren Date'
Department of Electrical Engineering
Utah State University

Supervisor d!\qt!1(\
Approval Date

Abstract

This project provides an efficient and cost-effective solution to building security

and active monitoring. The security is monitored and controlled by autonomous

patrol robots. Any indication of a security breach will result in an immediate alarm

and activation of the robot group to subdue and tranquilize the intruder.

Table of Contents

Acknowledgements 1

Introduction
Background
Problem Statement
Solution Summary
Similar Design Concepts
Engineering Impact
Future Possibilities

2

Problem Analysis
General Problem Specifications
Map Robot Specifications
PaifolRobotSpecfflcauons
Police Robot Specifications

6

Decision Analysis
General Problem Considerations
Map Robot Considerations
Patrol Robot Considerations
Police Robot Considerations

8

Solution Description
General Problem Solution
Map Robot Solution
PaifolRobotSowuon
Police Robot Solution

11

Performance Optimization 24

Testing 26

Reflections
Techn~alChallenges

32

Project Management
Personnel
Costs
Timeline

33

Conclusion 39

Appendices 41

Acknowledgements

Every engineering project is the result of contributions from the project's team

members as well as those whose guidance and consulting were influential and

necessary through the design process. The Autonomous Security Patrol System

has the following individuals to thank for its successful completion and

functionality:

Dr. Wei Ren for his technical design review and counsel

Dr. YangQuan Chen for his project guidance and review

Laura Vernon for her communication editing and review

1

Introduction

New robotic technologies are currently being used to aid humans in maximizing

the efficiency of particular tasks while in dangerous environments. We propose

to provide a robotic solution to help with a unique task regarding building

monitoring and security. This system is a replacement for human security guards.

The system implements autonomous robots with the capability of patrolling,

monitoring, and enforcing the security of an environment. Due to its functionality,

the project prototype will be called the Autonomous Security Patrol System

(ASPS).

Background

Population increases and widespread crime have led to an increased need for

security patrols in commercial and industrial environments. Businesses desiring

to protect their physical and intellectual property have long implemented human

security patrols inside their buildings.

Problem Statement

Human security patrols can often become inattentive to details within the

buildings as they become tired or bored. Humans can be put in harm's way

should they be faced with a violent intruder. In order to more effectively monitor

building security and keep human safety risks to a minimum, a new approach

must be explored.

2

Solution Summary

Robots can be used as a safer, more efficient, and more cost-effective solution to

this problem. Robots maintain constant alertness without tiring or growing bored

of their job. Due to their relatively low cost and ability to move rapidly through a

known environment, robots are a cost-effective solution to monitoring buildings

for security purposes. Some of these tasks have already been implemented, but

this is the first time they have been brought together as one complete system.

In order to elaborate the intended function of this system, the project is designed

around five basic objectives:

1. Map an unknown environment

2. Patrol the environment and search for intruders

3. Report intruder presence with an alarm

4. Shoot the intruder with a tranquilizer dart

5. Call for backup

The prototype must be able to demonstrate successful functionality with each of

the five design objectives. The system, in turn, is designed using three unique

robot functions to complete the objectives. These robot functions are used as

functional partitions to break up the project into manageable parts, and acted out

by three distinct robots to illustrate their contribution to the overall objectives of

the project. The three robots or functional partitions are the:

3

1. Map Robot: Creates the preliminary map of the environment, including all

obstacles and boundaries.

2.	 Patrol Robot: Navigates through checkpoints while using saved map

information to detect intruders. Discovering an intruder, the robot will

sound an alarm, fire a tranquilizer dart, and call for backup.

3.	 Police Robot: Drives to the intruder after the call for backup.

During today's project exhibition, the three robots along with their associated

functions will also be part of the project deliverables.

Similar Design Concepts

Research has been done to localize, if possible, other similar technologies for

mapping and patrolling an environment. The only project resembling the

Autonomous Security Patrol System implementation is a helicopter system

worked on by MIT graduate students. This helicopter system uses laser scanning

to create a similar point-based map of its surroundings for patrol and other

applications. Screen shots of the MIT helicopter's map program are shown in

Figures 1 and 2.

4

Figure 1

Figure 2

No ground based mapping technology of this type could be found in the

research. Especially no robotic security system is known to currently posses

similar functionality or design as this project.

5

Engineering Impact

The Autonomous Security Patrol System will have a globally beneficial impact

because it can be used anywhere in the world to enhance security systems and

keep human security guards out of harm's way. Economically, security costs will

be kept to a minimum while the alertness of the robot raises the level of security

effectiveness. Without effective security, a company's physical assets and

intellectual property are left in jeopardy. Enhanced building monitoring, then, is

an idea that appeals to companies worldwide.

Future Possibilities

Later applications of this system may include residential areas to protect families

from crime and vandalism. Outdoor security patrols using similar technologies

may also be designed. Beyond the functionality of this first prototype, the

possibilities of expansion both in breadth and depth are limitless.

Problem Analysis

The Autonomous Security Patrol System successfully implements three robot

functions that fulfill the five project objectives. The map robot is responsible for

exploring an unknown environment and creating a map that is transmitted to the

patrol robot. The patrol robot uses the map information to patrol the environment

and search for intruders. If the robot detects an intruder, it must sound an alarm,

fire a tranquilizer dart at the intruder, and call for backup assistance. The police

6

robot responds to the call for backup by receiving intruder coordinate information

from the patrol robot and navigating to it as quickly as possible.

General Project Specifications

The robot group must be able to interface together seamlessly in order to provide

an effective demonstration of their ability to monitor and control the security of an

environment. The fundamental design decision to be made is the selection of the

prototype's robot platform. The platform needs to have several sensors

surrounding it for obstacle avoidance and detection that would allow for a fairly

robust implementation. These sensors are used to read data in real-time and log

it for later use in the patrol robot. The platform must also allow for localization

monitoring through encoders or other sensor technology.

Map Robot Specifications

Due to its responsibility in recording a detailed map of the environment, the map

robot must be fairly accurate in its detection of boundaries and obstacles. It must

also be able to recognize where it is relative to its starting position so that it can

accurately record all viewed obstacles in an absolute format. The robot must also

follow some mapping algorithm to efficiently map a room with no areas

unexplored. This technique will require it to be able to handle multiple interior

obstacles and a myriad of outer wall configurations. The data file that it logs must

also follow some standard format that can easily and efficiently be interpreted by

the patrol robot when it uses it for intruder detection.

7

PauolRobotSpecificaNons

The patrol robot must be able to receive a data file from the map robot. This

information can then be used in conjunction with its own real-time sensor

feedback to patrol and search out intruders within the environment. Sensor

information will need to have some type of filtering so that stray sensor data will

not be mistaken for an intruder. This robot must be able to patrol the entire

environment several times while constantly watching for any object that was not

present during mapping. Some type of alarm flag will need to be created for the

case when an intruder is detected. The robot must also be equipped with some

type of gun that can fire a dart-like projectile 12-24 inches at an intruder. Care

must be taken to fire at the center of the intruder to accomplish a direct hit.

Coordinate information detailing the location of the intruder upon contact will be

transmitted to a police robot that is standing by for backup assistance.

Police Robot Specifications

The police robot must wait in a corner of the environment for the coordinate

information of an intruder. Upon receipt of this data, the police robot must be able

to quickly navigate to the intruder and avoid any obstacles that may be in the

way.

Decision Analysis

Options for creating the system were found to be endless. Due to the prototype

nature of the project, most decisions were made in order to create a

8

demonstration that would be as simple and clear as possible to illustrate the

engineering idea. The technology being created to fulfill the Autonomous Security

Patrol System objectives may later be easily implemented on other hardware and

using other techniques. This project satisfies the creation of a platform upon

which more future technological designs may be based.

General Project Considerations

Due to the prototype nature of the project, the simplest and most available robot

platform could be used. Amigo bots were found to be the most capable robots for

their size that would effectively demonstrate each of the five design objectives.

Their perimeter sonar arrays offer ample sensor data for obstacle avoidance and

detection. Their three wheeled design also helps to mitigate encoder problems

from wheel slipping. The onboard computers can also be used to interface with a

dart gun on the patrol robot. All robots are also outfitted with wireless

communication that allows for their total operation from a base station. Other

robot platforms that use laser range finding, infrared, GPS, and other mobility

configurations would be equally compatible with the project objectives. Amigo

bots, however, are a simple and elegant solution to minimize cost and

unnecessary engineering for a proof of concept design.

9

Map Robot Considerations

The Amigo bot platform with its associated Aria tools are more than enough

technology to fulfill the map robot's function of exploring and mapping an

unknown environment.

PauolRobotConsiderations

The patrol robot particularly will take advantage of the onboard computer to

control a gun firing system mounted above. Originally, we considered designing a

complex gun system out of a solenoid, battery pack, and toy dart gun that would

be triggered by the onboard computer's serial port connection. This idea was

ruled out due to its complexity and the unnecessary amount of time needed to

design it. Its added mechanical complexity also could be potentially prone to

problems. Instead, a more elegant approach was taken using a generic brand 3

turret USB controlled missile launcher purchased off the internet. This gun

system was less expensive, more versatile, and less time consuming to

implement. It fires a small nerf-style foam dart with a sharpened thumbtack glued

to the tip with hot glue.

Police Robot Considerations

Originally the police robot was planned to receive intruder coordinate information

through some wireless communication aside from the TCP/IP connection that it

currently uses to run its program. Again in search of a more simple and effective

solution, it was decided that we could use a base station design to relay

10

information from the patrol robot to the police robot through the network

connection that it already had established. This eliminated the need for excess

components that would have only increased design costs and work.

Solution Description

The use of Amigo bots and Aria software tools allowed for rapid software

development to implement the robot functions as needed to satisfy the project

requirements.

General Problem Solution

The Amigo bots are a member of the Pioneer family. They are equipped with a

44.2368 MHz Reduced Instruction Set Computer (RISC) processor. The Amigo

bots have 32 KB of Random Access Memory (RAM) and 128KB of FLASH

memory. They use the software package Advanced Robotic Interface for

Application (ARIA) to run code, which is a C++ based open source development

tool allowing users to implement their own code using existing functions. There

are eight range-finding sonars that provide a complete 360 degree view of the

Amigo bot's surroundings. The range of these sensors is 10 cm to 5m and each

sonar sends an individual signal out at a rate of 25 Hz. The Amigo bot platform is

run from a 12VDC battery. Mounted on top of the Amigo bots are portable

computers that are connected to a wireless router allowing remote

communication from a base station or between Amigo bots. The robot group

utilizes wheel encoder data, sonar sensor readings, built in wireless

11

communication to the base station, and the onboard computer to fulfill all of the

design objectives.

Map Robot Solution

The map robot's program routine starts with it physically placed at an origin point

in the corner of an unknown environment. Its orientation is such that its left side

sonar may view the room and its right side sonar may follow the wall next to it.

This starting position and orientation of the map robot will be roughly marked so

that the patrol robot can start at the same position and orientation.

In order to reduce errors in placing both the map robot and patrol robot at exactly

the same starting positions, we implemented a localize function. This function

uses the sonar data to determine the offset of the robots relative to the walls

directly to the right and behind them. The code for this function is shown below:

void LabDataLogger: :Localize(void)
{

x_offset = myRobot->getSonarRange(7)*O.82i//sonar7 * cos(35)
y_offset = myRobot->getSonarRange(5) i

If the robots are run without the localize function, the map's origin is at a relative

location that changes depending on the starting position of the robot. As seen in

the Figure 3, running the robot with the localize function yields a starting point of

12

3000

t ..2500

.....-:-~._.n~''''1IlIlIIIL2000 •

• .,.~. 1

1
" .1.

·····r"··· f"
-2000

(0, 0) and because the patrol robot also uses this function the two maps will

coincide with each other, regardless of the exact starting position.

3500

,-"••

t Without Localization

f t With Local ization

3000 4000

Note: All position data is
represented in millimeters.

-2000

Fjgure 3

The mapping routine begins as the program starts and the robot follows the wall

to the right of it, circling the room in a counter-clockwise manner. The left side

sonar sensors are then free to view the environment and any obstacles that may

be present. Sonar feedback is used in conjunction with encoder data to calculate

the absolute (x, y) value of each observed obstacle or wall. The formulas used to

record x and yare:

(Xr•Yr): Robot current position

Sr: Robot current orientation

13

ds: Sonar distance read

Ss: Sonar sensor angle

(Xlog, Ylog): Logged absolute sonar coordinate

The code implementation for the coordinate data calculation is shown below:

for (sonar=O; sonar <= 7; sonar++)
{

s = myRobot->getSonarRange(sonar);

fprintf(dataFile, "\t%d", s);

sonAngle = getSonarAngle(sonar);

radAngle = (theta+sonAngle)*(3.1415926/180.0);

if (s < 1500)
{

abs x = (x + s*cos(radAngle)) + x_offset;
abs_y = (y + s*sin(radAngle)) + y_offset;

fprintf(coordData, "\n%.Of\t%.Of", abs_x, abs_y);
fflush(coordData) ;

The code has been optimized by using nested if and for loops. This technique

cuts down on code size and increases the readability for later troubleshooting.

The robot records the x and y values as calculated into a data file in a standard

format. If the robot sees any values greater than 5000 mm on its sonar, it will

disregard this value because it is not valid data. Since multiple sensor data is

14

used, all parts of the map will be explored using this technique including the

areas behind obstacles. Upon successful return to the starting origin, the map

robot ends its program and leaves the (x, y) map data file ready to be loaded into

the patrol robot's program. An example of a completed map is shown in Figure

4.

3000

.,."'
2500

I~:

.

..,. ..~~.
.
'..,.,......-~.....,. ~
 1.-1:_~- ..
.. ~.f

. .~

f
..

,

....."...... ,
.:
/ ,.'

'"
-1000 30001000 ..

-500

Note: All position data is
-1000 represented in millimeters.

Figure 4

The map robot's state diagram is shown in Figure 5.

15

..
Drive forward

Set dist.
maintained

Map Algorithm State Diagram

Find wall, wander

Set dist. not Capture sensor data
reached

...
Rotate parallel to wall

Navigate corner

Figure 5

Pauol Robot Solunon

The patrol robot's program routine starts with it physically placed in the same

position and orientation as the map robot. The patrol robot does not need to be

placed as precise because of the localize function being used. A remote desktop

connection also needs to be established on the base station with the robot's

onboard computer. The computer must be logged in, and the USB missile

launcher software installed and set as the active window on the remote

computer.

The patrol robot begins by loading the map information from the map robot data

file. A quick sort is performed on the data to reduce the burden on the processor.

The data is sorted first by the x-coordinate, then by the y-coordinate.

16

The robot is configured to begin patrolling the now known environment by

following the wall in a counter-clockwise manner. Using real-time sonar data from

all sides of the robot, it similarly calculates absolute (x, y) coordinates of sonar

feedback data as done by the map robot. This robot, however, compares each

data point with all data points in the map data file, looking for those outside of its

tolerance range of 150 millimeters from 5 known data file points. The code

implementation for the search coordinates is shown below:

#define TOLERANCE 150

void AnomalyDetect::SearchCoords(int x, int y, int angle)
{

int coord_found = Oi

int start = xcoords.size()/2i

if (xcoords [start] >= x){

for	 (int i=starti i>=Oi i--)
{
II searching from middle of xcoords array to xcoords[O]

if (xcoords[i] < (x+TOLERANCE) && xcoords[i] > (x-TOLERANCE))
{

if (ycoords [i] < (y+TOLERANCE) && ycoords[i] > (y-TOLERANCE))
{

coord_found++i
}

else{

for	 (int i=starti i<xcoords.size() i i++)
{
II searching from middle of xcoords array to xcoords.size()

if (xcoords[i] < (x+TOLERANCE) && xcoords[i] > (x-TOLERANCE))
{

if (ycoords [i] < (y+TOLERANCE) && ycoords[i] > (y-TOLERANCE))
{

coord_found++i
}

17

This function first searches and compares the x and y values of the logged data

array to the real-time value observed by the patrol robot's sonar, looking for

points outside the 150 millimeter tolerance. The tolerance is needed because

real world sensor readings are not perfectly accurate. If the observed data point

anomaly cannot be found in the stored data array, indicating a potential intruder,

then a coord_found counter is incremented. The code implementation for the

anomaly count is shown below:

if (coord_found <= MIN_COORD_CNT)

anomaly_count++;

If the real-time data point is not found within the 150 millimeter tolerance of 5

logged data array coordinates, an anomaly counter is incremented. When 25

anomaly counts have been observed, the anomaly points are recognized as an

intruder and the alarm flag is activated as shown in the following code:

if (anomaly_count >= MAX_ANOMALY) {

if (anomaly flag == false)

{

printf (" \n\nANOMALY FOUND! \n") ;
anomaly_flag = true;
anomaly_x = x-x_offset;
anomaly_y = y-y_offset;
anomaly_angle = angle;

18

The 25 points will then be averaged to find their midpoint. The patrol robot then

turns toward the midpoint and approaches it until within 60 centimeters as shown

in the following code:

if (anomalydetect.anomaly_flag true)

break;

printf("\ngoal: x: %d, y: %d, angle: %d\n",

anomalydetect.anomaly_x,anomalydetect.anomaly_y,

anomalydetect.anomaly_angle) ;

robot.lock() ;

robot.setVel(O) ;

robot.unlock();

PosDir.rotate(anomalydetect.anomaly_angle) ;

ArUtil::sleep(2000) ;

PosDir.goForward(lOO) ;

while (robot.getSonarRange (2) > 500 && robot.getSonarRange(3) >

500) ;

if (robot.getSonarRange(2) < robot.getSonarRange(3) > 500)
{

while (robot.getSonarRange(3) > 600)
PosDir.rotate(5) ;

}
else

{

while (robot.getSonarRange(2) > 600)

PosDir.rotate(-5);

robot.setVel(O) ;

robot.setRotVel(O) ;

printf("\nFIRE!!!! !!\n");

A function is then called in the program to find and set active the remote desktop

window on the base station computer. Once active, the program will send a

space press into the remote computer's window to trigger the firing mechanism.

This procedure utilizes the following code as shown below:

19

#include "windows.h"

RemoteDesktop = FindWindow(NULL, "192.168.1.43 - Remote
Desktop") ;

SetForegroundWindow(RemoteDesktop) ;

ShowWindow(RemoteDesktop,SW_SHOWNORMAL) ;

ArUtil: :sleep(1000);

II Send space bar command to remote desktop

keybd_event(VK_SPACE, Ox39, 0, 0);

keybd_event(VK_SPACE, OxB9, KEYEVENTF_KEYUP,O);

The USB missile launcher will fire a dart that has a sharpened thumb tack glued

to its tip. This thumb tack will pop a balloon that is used to simulate the intruder.

The loud bang of the balloon popping will be a great demonstration of the

neutralization of the intruder.

The patrol robot uses ArNetworking to communicate with the police robot. It acts

as the server, giving information to the client each time a request is made. The

patrol robot sends an anomaly detected flag, and its current x and y coordinates.

The value of the anomaly flag is dependent upon whether the patrol robot has

detected an intruder. The following code shows how the packet that the police

robot requests, is stored:

void ASPS_ServerlnfoRobot::update(ArServerClient *client,

ArNetPacket *packet)

{
ArNetPacket sending;

myRobot->lock() ;

sending.byte4ToBuf((int)alarm_flag) ;

sending.byte4ToBuf((double)myRobot->getX());

sending.byte4ToBuf((double)myRobot->getY()) ;

20

myRobot->unlock() ;

client->sendPacketUdp(&sending) i

The patrol robot's state diagram is shown in Figure 6.

Patrol Robot State Diagram

Navigate to Next Checkpoint

•
Capture Sensor Data

Compare to Recorded Data

If Outside of 3-4 Inch Tolerance I.•
Set Alarm Flag, Send Coord. Of

Intruder to Police Robot

•
Orient Toward Intruder & within 12

24 Inches

•
Fire Dart, Idle

If Observed Points are
within 3-4 Inch

Tolerance

Figure 6

Police Robot Solution

The police robot is placed in a corner of the environment during both the

mapping and patrolling stages. It remains inactive in that corner until it receives

21

the intruder coordinate from the patrol robot. It then can maneuver as quickly as

possible to that point while avoiding obstacles and the patrol robot along the way.

Once it reaches a distance of 60 centimeters 'from the intruder, it stops. The

police robot uses the other half of ArNetworking and takes on the client position.

It asks the patrol robot for three pieces of information every 100 ms, an anomaly

flag, and the patrol robots current x and y position. Once it receives this

information, the police bot checks the value of the anomaly flag as can be seen

in the following code:

OutputHandler::handleOutput(ArNetPacket *packet)
{

alarm_flag = (int) packet->bufToByte4() i

myX = (double) packet->bufToByte4() i

myY = (double) packet->bufToByte4() i

if (alarm_flag == 1)
{

printf ("Alarm received! \n"
"X: %If, Y: %If\n'',myX,myY) i

fflush (stdout) i

myClient- >requestStop ("update") i

alarm = Ii

If the anomaly flag has not been set, the robot stays inactive. But as soon as the

police robot sees that the anomaly flag has been set, it starts running its

program. In order to drive to the location of the intruder the police robot had to

know where it was at relative to the starting position of the patrol robot. This

would allow the two robots to localize their positions to each other. This action is

accomplished in the code below:

22

#define POLICE X OFF (-450)

#define POLICE Y OFF 1100

robot.setVel(lOO) ;

ArUtil::sleep((outputHandler.myX - POLICE_X_OFF)*lO);

robot.setDeltaHeading(-90);

ArUtil::sleep(abs((POLICE_Y_OFF - outputHandler.myY)*lO»;

robot.setVel(lOO);

We first defined the offset between the patrol robot and the police robot's starting

position. We then set the velocity of the police robot to 100 mm/sec. To 'figure

out how far to drive, we took the current value of the patrol robot, sent to us over

the network, and subtracted off the offset of the two robots. This would give us a

distance in millimeters of how far we needed to travel. To convert this to a time

unit, we multiplied it by 10, because this would match our units for velocity and

distance. The police robot turned itself 90 degrees toward the intruder once it

had gone its complete x distance. It then continued in the appropriate y direction

toward the intruder to give back up to the patrol robot. The police robot's state

diagram is shown in Figure 7.

23

Police Robot State Diagram

'--__Ch_e_ck_A_lar_m_F_lag__--'1 ~ IIf Not Set I
I If Set I•

Receive Coordinate of Intruder from

Patrol Robot

•

Navigate to Intruder

•

Idle

Figure 7

Performance Optimization

Several key design elements were found to be bottlenecks to smooth

performance of the robot system. Care had to be taken with each of these

elements to refine the design into streamlined processes.

Due to the possibility of large amounts of sonar data being logged by the

mapping robot, attention had to be paid to how the (x, y) data file would store the

information. We implemented vectors instead of a typical array. This allowed us

to increase the size of our data field without having to know exactly how large it

needed to be. We decided that after the data was stored, we would have the

program numerically sort all of it in order so that the patrol robot could compare

24

its values more rapidly. Instead of needing to search the entire file for close

values, it would only need to search less than halfway through the data for a

match.

The wall following algorithm used by both the map and patrol robots also needed

work to keep the robot steady. Small damping was implemented to keep the

robot driving on a straighter course instead of oscillating back and forth as it tried

to follow a straight wall. Another feature that was added to the wall following was

the ability to re-find the wall if, for some reason the robot gets out of range of the

wall.

Inside corners of the environment also posed a problem for sonar reflection. The

wall following algorithm had to use better sonar monitoring techniques in the

program to allow the robot to make a clean 90 degree turn at each corner.

Traces of this problem still exist sometimes during testing, although we have

been able to minimize it substantially.

Another helpful feature we added to all of our code was to use global variables.

This allowed us to change our parameters in one place, rather than trying to keep

track of changing all of the variables throughout the code. This simplified

optimizing our code and cut out possibility of errors.

25

Testing

In order to test the project, each functional partition has first been tested

individually, then all together as a harmonious system. Each robot outputs

several different data files to allow for troubleshooting problems. Preliminary

testing of the map robot was using a computer simulation to test its data logging

functionality. Resulting data values from the (x, y) list were then plotted in excel

and compared to the simulation map. These results are shown in Figures 8 and

9.

•

Mobile Eyes Simulation

Figure 8

26

VI • ,. 0::i:L::
..~'t;r\ ,.. ~~.,,~.

:',;,
•

~..
------·---',·~~-~--tL......;.------

•-: I"-.,,,'.,
;:....~",~__~.·r--Jl,:.71,'...: 4 :~·t, ~:.'.... '.' \~. '. t.;

• .# # '!t:'.,.,...."',•••"., W

if
?j
i~: _>... . " -

jr
~I

'''''~."... . .:1,
!
~

.:
! ~ · '
· /,.. '~ · :!.

'.
-~~..

Data Logger Information

Figure 9

As shown, the resultant sonar information closely resembles the unknown

environment. Testing on the actual robot sensors resulted in similar data. Figures

10 and 11 below show pictures of an unknown environment with overlays from

both the map robot and patrol robot sensor feedback. It can easily be seen how

the robots interpreted what they saw as a wall, obstacle, or intruder.

27

r

Figure 10

Figure 11

28

Much of the testing was completed during design as new functions were

implemented or adjustments were made to program tolerances. Unique

environments with different obstacle positions and layouts were used in order to

understand the program's ability to make decisions and have the robots

maneuver effectively as autonomous units. After component and functional

partition testing was completed, the complete system was tested together

through several runs. After tolerances had been tightened and error allowances

made for inaccurate sonar reflection and other variables, the system performed

magnificently. Figure 12 shows one of our runs with the complete system

running. The blue represents the map that the map robot complied and the red

represents the patrol robot's map. The two maps line up quite nicely, due to our

localization function. We still have some points that are not part of the actual

map, but come from reflections off non ideal surfaces. These points are fine. The

different robots will always get the same information because the sonar reflects

off the various objects the same each time. The anomaly was placed behind the

obstacle in the middle, so the patrol robot would not initially see the anomaly.

29

Starting Position

Starting PO::~~~ ~1 ; . ·.~
of Police Robot ~. "'=-:j:;'. ~·.~~::r:-··"';···":::·~-'~'''':...---.•.•.•.•;r;,-:":..:-:-:....... "~"-_ •

I • ,.... ••• • l: Jl::~..... • ~

".

....,...·1'7---;;=------1-1---------------,-------~-;:__-

•••"\.;. .J...~.... ~
•:.,.;.tr; ·: ."...-;

.'
...

Intruder
Position

••:1'~...........
•• 1500

." ./

1000

.

; ~
HJfJ·Ie---t-----=-----'--;-:-~;__--·___.liI~-~~--_____l-------

.'
~

.. •
.
:r"
I·' ~ l1liI:' • •• I

• MapRobot

• Patrol Robotof Patrol Robot

, .

" .

300 3000

Figure 12

This test demonstrates the complete functionality of each of our components

working together. Our system will work in any environment that meets our

requirements.

Figures 13 and 14 shown below are examples of what our command prompts

look like for the patrol robot and police robot. The command prompts were

essential for our troubleshooting. They helped us to know where the robots were

in their respective programs.

"" :
"" "o.

... ~

30

Patrol Robot Command Prompt

co, Command Prompt ' ::;t-::1,m,

Figure 13

Police Robot Command Prompt

,-" Command Prompt "- "t, •
C:,Prograro Files'HobileRobots'Aria'bin>ASPS_Police -rh 192.168.1.13
Client now connected to seruer.
Seruer connected to us on udp port 7272
Connected to seruer.
~ou may press escape to exit
Connected to remote host 192.168.1.13 through tcp.

Syncing 0
Syncing 1
Syncing 2
Connected to robot.
Name: not~set
Type: Pioneer
Subtype: amigo-sh
Loaded robot parameters from amigo-sJ,.p
Alarm receiued!
X: 938.000000, ~: 607.000000

Seruer shutting down and closed connection.

Disconnected from seruer.

ArSocket::read: called after socket closed

Connection to 127.0.0.1 closed

Lost connection to seruer <couldn't recu).

Disconnecting from robot.

AC

C:,Pro ram Files'MobileRobots'Aria'bin>

Figure 14

31

Reflections

Upon viewing the complete system function perfectly the first time, it is easy to

see how effective robots could be at actively monitoring and enforcing building

security. This project was thoUght up, designed and implemented in one

semester and yet maintains far reaching implications for security worldwide. This

prototype system clearly demonstrates the robot security concept's feasibility in

real world situations. If more engineering time and money were invested into

similar projects that build off of this idea, we truly believe that globally

implementing our system would make the world a safer place.

Technical Challenges

This section will talk about some of the problems we faced along the way of

completing our system.

During our mapping robot design we were having trouble following the wall

consistently. The robot would dive into walls or would lose its way when going

around a corner. After heavily analyzing our output files to see what type of data

the robot was outputting, we determined that we were not taking in data from our

sonar often enough. The robot would get lost because it was relying on old data

and the new data, when it was taken in, was quite a bit different. To fix this

problem, we created a getNewSonar function and placed it inside our if and for

loops, where it originally would not get new data.

32

Sonar reflections are problems that have to be dealt with when using the robots

in a real environment. There is no escaping this imperfection and because of this

we had to allow for tolerances when comparing our data. One of the largest

problems we had was pickup up bad data when we first started our mapping and

patrol robots. Because we started our robots in a corner, the sonar would be

reflected and not travel back to the robot. To fix this problem, we tested several

distances away from the wall to find one where our reflections were minimized.

This distance was found to be 43 centimeters from the wall in each direction.

Another problem we faced was starting the robot before the sonar had a chance

to turn on and begin calculating distances. To fix this problem we initialized the

sensors and told the robot to sleep for two seconds. This would allow the robot

to turn on its sensors and collect valid data.

Project Management

As a complex engineering project, the Autonomous Security Patrol System

required good planning in order to be completed on time and within budget.

Without a concert effort of team members to accomplish project objectives, this

prototype design would certainly have been a failure.

Personnel

This project has been brought to life through the work of Jake Erramouspe, Steve

Gunderson, and Brad Donohoo. As a team we have worked together to

brainstorm, plan, design, and implement the Autonomous Security Patrol

33

System. Each individual took on responsibilities according to their strengths and

abilities. Everyone was held accountable for their responsibilities by peer review.

Jake Erramouspe acted as team leader to coordinate our design efforts and

assure all work being done was within the scope of the project objectives. Jake

worked on all of the software design engineering. He was also responsible for

his lab book and project documentation. Steve Gunderson handled most of the

project documentation including the organization of presentation slides, website,

lab book, poster and final report. He worked on hardware engineering with the

patrol robot gun system along with its implementation. Brad Donohoo took care

of scheduling and the timelines to always assure that tasks were being

completed in order and according to plan. He also was involved with software

design responsibilities for the robot map, patrol and networking algorithms.

Both Jake and Steve are using the Autonomous Security Patrol System as their

senior design project for Utah State University's Department of Computer and

Electrical Engineering. Over 480 man hours have been spent between the two in

order to complete this project.

Costs

The Autonomous Security Patrol System project proposal included a preliminary

budget of $300 for material costs and $100 for software costs. After component

options were considered and design choices weighed, the preliminary design

costs were down to $40 total. After making the last change of the gun system

34

component, the resulting total project cost of the gun system with balloons

including tax and shipping was $28.04. The total was a mere 7% of the originally

estimated budget. This reduction can be directly related to good design

simplification and component research. Receipts of the project expenditures are

shown in Figures 15 and 16.

r:«ttOOi

-..: : I

.,. .,
ax 18f;~' " ; ~

rQTlil
Cas!
Cl"J,l¥j t

\Lj~ "'~,' ~'-#"r~;~ ;;tr~,~S:> jJ;~;lJ~~'

tk'\(~~",+,J ·.t~_,.,.;; ~ ..~y ~ ~'~!Jn~ ~/)('i

".~;".; :';,\/:-, "or ~~':: ft'~.~"',1 C: e)\:ri.~l~.i(·

.,,0:', 'I ~ i, ~~:. ':- tff .. t~...b :; t C-)1 c.t!~n~-s ~~(':

\:1,:,~r ..\;r~<,:'.- ~';r ~1!~ ,"):J~;f~ ~~£t1t:.:

qL~t Hold,,':
~1 ': '[}))' ;L~"> ~~. f;.:):) '"

$at ur;~h \I ' 31l' '.\~) 1)3

5l.~)~ .:: 1';,j:~t"~~

Figure 15

35

Order Placed: October 22, 2009
Amazon.com orcler number: 104-1028638·9207432
Order Total: $25.61

Shipped on October 22, 2009

Items Ordered Price
1 of: USB Missile Launcher with 3 Foam Missiles 517.99
Condition; New
Sold by; Computer Geeks (~.~LQ[Qfi~)

Shipping Addre;is: Item(s) Subtotal: $17.99

Steve Gunderson Shipping & Handling: $7.62

930 N 600 E APT 55
_w ___

LOGAN, UT 84321·3497 Total Before Tax: $25.61
United States Sales tax: $0.00

.........
Shipping Speed: Total for this Shipment: $25.61
Standard

Payment Information

Payment Methctd: Item(s) Subtotal: $17.99
MasterCard I Last digits: 4736 Shipping 8< Handling: $7.62

Billing Address:
Steve Gunderson
930 N 600 E APT' 5S
LOGAN, UT 8432:1-3497
United States

Total Before Tax: $25.61
Estimated Tax: $0.00

Grand Total: $25.61

Figure 16

Timeline

Both a Gantt Chart and Pert Chart are used to understand the timeline of project

functional partitions and specific tasks. The Gantt Chart shows an overall burn

down of project related tasks and their associated due dates. The Pert Chart

illustrates these tasks as dependent bodies that are completed sequentially and

grouped according to the different functional partitions. The charts are shown in

Figures 17 and 18.

36

......
ro

GAnTT ';:~~-'
Sepl.m~er ;o:e IOctober <DOg INo",,,~,, 2009 ID"'~ter JIllpr(I/c'L"1

:-~~-'~-~ \v.., JI 1:'k 33 ~"k 39 ~4D 1:"k.!ll ~"k 42 ~'<ok43 lwl!l!k ~li!l!t J5 ~'<ok 45 ~"k 47 -~"i 18 ~"'k 49

Da1M SlltlSvst3ms I·:~~ ;--~,:·i.:;- ·;.:~.,~::,~'}-r··+:;~~'t~;,;.~o~,~-·:-f~,jJ\,j,~,;;e;.,;i"~:j;;;~l"'':;';::·"·~(:l~>r,:.~'~'~'' .,Yo;:,'~,"1

Consiaints IJ .;;i-'C"::';;;":':"[::'::,?,:";:~U':':d:~·':;:*i\'..'~iJ<~~~i.i:;:;'~:~'i':,~,.:~~7,,:-~;;.c::;,;1

1·{~!,',,:l~>'d ·';i::_-t.:::1,_-'·4:'·.,~;;:~~

L :C' ;.'<-' ..;·.:.·.~,:~o,: ',...:{~,,:~''- ;:,.. -, '~!

f-"'''''''"'«''h• , ,;.',•• ";"Q

• J"-"d;','" ,';'1
I,,,,, .,;;,'",<, ,

,.,; ,.',h
~

li5B=
.~

,·,.:,.,•••',1
1---','.';:;",

~'~'QJ~-~

I:'w,~?';:,t;.v:li;;':":<~'"ri.;:·,h
... - .

I::.(~:it)'{' ,,,:;~;'!·::,'~~j;,~",':K,t::!,'.rjl:t;&l,;~q~·.S~~:n

iii
I ',~';' .;i: :~:, /',i' l'f;~ _~ :'--' :"~'f,~~::,}~,~".~,) "~~" ':, ," ,'". ""~:(., J.'~[;\~.'j::~:,;,::, ':';-',"h'·:'.~·:1;';'~N:,c· ': ·;~,;;:,,<':,:":'c:VS,}\·o[",:;,;·~,- ;.:; "~: "','i;-..:'.: '.',-';:,"";:- "'~--;, .-.;,:;::::,- :-','"~~l ,;,':$:-':'''.'':' /'-:"'l'.:;"'.'-;:\'\" ,:,. ".',:-;,~,; "~,~~ .:;,. ,:: ;':.;, :~;, ;":,~,:,?"H:i:r~~:,~?i:-<;:j ;':':~ ',: ':,.,), ~.;;..,.:,,:-?~~~~,~..,.~::<;;."ij--<lrr'~:.'t~k,:tIh

•

p,~

Prl;lnUllill)'ASSMIllti

Slau~ ReDort 1
SIOOJs Report 1DUll

Preltrllni1ry DesIgn Rl!\<ll!\V

PDRD"
hlerviewwith Of. Chen
Fil:ill D~slgn Re'li9w

Cleale 5otwarp. TaMf4l
,A,C.C-3pl DO'MIloadable ~

D,t,ot Objetl Nol OIl Mop

Asstun C1"IeC~Polnls

A1goli1hm for DrNing to Chetklolnb
FlgUIGOu1lNh.. IQ il EmtrmnrilntP;bcl Bolli;

snoolTarg,l
5eno 5KJ1<l11o Poi" Dot
Finish;d Patrol ~000t

PoMcP.ROM'l

Recei\1! Signal tom Patol Oat

IJgOlill1m tl DrM,g 10 Ch"l<point,
SholltTargE!1

Fini5hed Police Ro~ol

FiI,llza1oo Tasks

Demonrtnon J)Je

Final Repolt
Fin::!1 Report Due

ub 80"

Lab Book.Due

.....
~

~
~

.~
u.

00

Detect statlonar...

start 1119109 h
End: 11n4109
DlI'ation: 5

store Date

stert:11116109
End: 11121109
Duration: 5

Down'OlId Dota I•••

start 11116109
End: 11121 109
DlI'ation: 5

f-

Algorithm for M•••

start 11 mlO9
End: 11127109
Durslon: 4

I--'

Receive Signal f ...

start 10126109
End: 10131109
Dt.red:ion: 5

Algorithm for Dr...

start 1112109
End: 11fT109
DlI'atIon:5

End: 11 n3109
Duration: 4

rShoot Target

I st.rt: 1119109

1
I)

Create Software... Accept Downlo...

start 10112109 stert 10115109
End: 10117109End: 10115109

Durallo" 3 Duration: 2

m

finished Map R.••

start: 11127109
End: 11128109
Duration: 1

Anished Potrol N'

start 10119109

Detect Object No••• -start 10130.09 ----------~

j
~.. co

e
End: 10131109End: 10122109 ::::IDuration: 1Duration: 3 C)

LL

...
Assign Check P••• Algorithm for Dr...

start 10119109 start: 10122109
End: 10122109 End: 10127109
DureIion: 3 Our8tion: 3

finished Police ;..

start 11113109
End: 11114109
Duration: 1

Agure Out WIler...

start: 10128109
End: 10130109
Durmion: 4

Shoot Target

start 10126109
End: 10130109
Durallon: 4

start 10126
End: 10130109
Duratlcn: 4

Conclusion

This report serves to explain in detail all engineering aspects of the Autonomous

Security Patrol System project. This project is an efficient and cost-effective

solution to building security and active monitoring. Robots are a great solution to

aid humans in helping secure and monitor dangerous environments. This system

does not eliminate the human element; it simply enhances the current process.

The successful fulfillment of five project objectives makes this prototype

successful. The objectives are:

1.	 Map an unknown environment

2.	 Patrol the environment and search for intruders

3.	 Report intruder presence with an alarm

4.	 Shoot the intruder with a tranquilizer dart

5.	 Call for backup

To demonstrate this functionality effectively, three disti~ct robot functions are

designed uniquely. The robot functional partitions are:

1.	 Map Robot: Creates the preliminary map of the environment, including all

obstacles and boundaries.

2.	 Patrol Robot: Navigates throUgh checkpoints while using saved map

information to detect intruders. Discovering an intruder, the robot will

sound an alarm, fire a tranquilizer dart, and call for backup.

3.	 Police Robot: Drives to the intruder after the call for backup.

39

The video demonstration shown during the project exhibition illustrates how

effectively robots can work to maintain a high level of security in an environment.

As a prototype and proof of concept, the Autonomous Security Patrol System has

been an overwhelming success. Many qualified individuals have already made

comments regarding the future impact of this type of research. It is our hope that

continued engineering time will be invested into this idea to make the world a

better place through autonomous robot solutions.

40

Appendices

MapRobot.cpp

1***
Brad Donohoo, Steve Gunderson, Jake Erramouspe
ASPS: Automated Security Patrol System
Map Robot
27 October 2009

***/

#include "Aria.h"

#include "LabDataLogger.h"

#include "RobotPosDir.h"

int main(int argc, char** argv)
{

bool start true;

II mandatory init

Aria: : init () ;

II set up our parser

ArArgumentParser parser(&argc, argv);

II set up our simple connector

ArSimpleConnector simpleConnector(&parser);

II robot

ArRobot robot;

II add sonar

ArSonarDevice sonarDev;

II wall follower

RobotPosDir PosDir(&robot);

II load the default arguments

parser. 10adDefaultArguments () ;

II parse the command line
if (!Aria: :parseArgs() I I !parser.checkHelpAndWarnUnparsed())
{

Aria: : 10gOptions() ;

exit (1) ;

II a key handler so we can do our key handling

ArKeyHandler keyHandler;

II let the global aria stuff know about it

Aria: :setKeyHandler(&keyHandler);

II toss it on the robot

robot.attachKeyHandler(&keyHandler) ;

printf("You may press escape to exit\n");

II add the sonar to the robot

robot.addRangeDevice(&sonarDev) ;

41

II set up the robot for connecting

if (lsimpleConnector.connectRobot(&robot))

{

printf("Could not connect to robot ... exiting\n");

Aria: :exit (1);

I**********************DATALOGGER CODE
HERE**************************I

LabDataLogger datalogger(&robot);

datalogger.NewLogFile("output. txt II , "coords.txt");

datalogger.LogData() ;

1**1

II start the robot running, true so that if we lose connection the
run stops

robot.runAsync(true) ;

II turn on the motors

robot.comInt(ArCommands::ENABLE, 1);

II This is how we will send commands to the robot.

ArActionInput input ("input") ;

robot.addAction(&input, 50);

while(robot.isConnected())

{

Arutil: :sleep(4000);

PosDir.wallFound = 0;

if (start == true)
{

datalogger.Localize() ;
datalogger.CleanLogfile(l output.txt", "coords.txt");
start = false;

while (1)

{

PosDir.findWall() ;

while(PosDir.wallFound == 1) {
PosDir.followWall() ;

robot.waitForRunExit() ;

42

II now exit

Aria: :exit(O);

return 0;

LabDataLogger.h

1***
Brad Donohoo, Steve Gunderson, Jake Erramouspe

ASPS: Automated Security Patrol System

LabDataLogger Class

24 September 2009

***1

#ifndef LABDATALOGGER H
#define LABDATALOGGER H

#include <fstream>
#include <iostream>

using std:: ios;
using std: :ofstream;

class LabDataLogger
{
protected:

ArRobot *myRobot;

FILE* dataFile; IIFile for saving data

FILE* coordData; IIFile for saving coords

ArFunctorC<LabDataLogger> myFunctor;

double x_offset;

double y_offset;

public:
III Constructor
AREXPORT LabDataLogger: : LabDataLogger (ArRobot *robot);
III Destructor
AREXPORT LabDataLogger: :-LabDataLogger();

AREXPORT int getSonarAngle(int s);

AREXPORT void Localize (void) ;

AREXPORT void LogData(void);

AREXPORT void OpenLogFile(const char* logFileNamel, const char*

logFileName2) ;
AREXPORT void CloseLogFile(void);
AREXPORT void CleanLogfile(const char* logFileNamel, const char*

logFileName2) ;
AREXPORT void NewLogFile(const char* logFileNamel, const char*

logFileName2) ;
} ;

#endif II LABDATALOGGER H

43

LabDataLogger.cpp

/***
Brad Donohoo, Steve Gunderson, Jake Erramouspe
ASPS: Automated Security Patrol System
LabDataLogger Class
24 September 2009

***/

#include "Aria.h"

#include "ArExport.h"

#include "ArRobot.h"

#include "LabDataLogger.h"

#include <fstream>

#include <iostream>

#include <cmath>

AREXPORT LabDataLogger::LabDataLogger(ArRobot *robot) myFunctor(this,

&LabDataLogger::LogData)

{

myRobot = robot;

myRobot->addUserTask("LabDataLogger", 50, &myFunctor);

AREXPORT LabDataLogger: :-LabDataLogger(void)
{

if (dataFile)
fclose(dataFile);

if (coordData)
fclose(coordData) ;

AREXPORT int LabDataLogger: :getSonarAngle(int sonar)
{

switch (sonar)
{
case 0:

return 90;
case 1:

return 41;
case 2:

return 15;
case 3 :

return -15;
case 4:

return -41;
case 5:

return -90;
case 6:

return -145;
case 7 :

return 145;

}

AREXPORT void LabDataLogger: :Localize(void)

44

x offset myRobot->getSonarRange(7) *0.82; //sonar7 *
cos(35)

y_offset myRobot->getSonarRange(5) ;

printf(lIx off: %f, y_off: %f\n",x_offset,y_offset);

AREXPORT void LabDataLogger: : LogData (void)
{

int sonar, s, sonAngle;
float radAngle;
double abs_x, abs_y;
double x = myRobot->getX();
double y = myRobot->gety();
double theta = myRobot->getTh();

fprintf(dataFile, l\t%.Of\t%.Of\t%.Of", x, y, theta);

for (sonar=O; sonar <= 7; sonar++)
{

s = myRobot->getSonarRange(sonar);

fprintf(dataFile, "\t%d", s);

sonAngle getSonarAngle(sonar) ;

radAngle (theta+sonAngle) * (3.1415926/180.0) ;

if (s < 1500)
{

(x + s*cos(radAngle)) + x_offset;
(y + s*sin(radAngle)) + y_offset;

fprintf(coordData, l\n%.Of\t%.Of", abs_x, abs_y);
fflush(coordData) ;

fprintf(dataFile, "\n");

fflush(dataFile) ;

AREXPORT void LabDataLogger: :OpenLogFile(const char* logFileName1,
const char* logFileName2)

dataFile = fopen(logFileName1, "a");

coordData = fopen(logFileName2, "a");

AREXPORT void LabDataLogger: :CloseLogFile(void)
{

fclose(dataFile) ;
fclose(coordData) ;

45

AREXPORT void LabDataLogger: :CleanLogfile(const char* logFileNamel,
const char* logFileName2)

fclose(dataFile) i

fclose(coordData) i

dataFile = fopen(logFileNamel, "w") i

fprintf(dataFile,
,,\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n\n", "X", "Y", "Theta",
"sonarO", "sonarl", "sonar2 ", "sonar3", " sonar4 ", "sonar5", " sonar6 " ,
"sonar7") i

coordData fopen(logFileName2, "w") i

AREXPORT void LabDataLogger::NewLogFile(const char* logFileNamel, const
char* logFileName2)

dataFile = fopen (logFileNamel, "w") i

fprintf(dataFile,
"\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n\n", "X", "Y", "Theta",
"sonarO", "sonarl", "sonar2 ", II sonar3 ", "sonar4", "sonar5 ", II sonar6 II ,

"sonar7") ;

coordData fopen(logFileName2, "W");

RobotPosDir.h

/***

Brad Donohoo, Steve Gunderson, Jake Erramouspe
ASPS: Automated Security Patrol System
Follow Wall Class
20 October 2009

***/

#ifndef ROBOTPOSDIR H
#define ROBOTPOSDIR H

#define SPEED 70

class RobotPosDir
{
protected:

ArRobot *myRoboti

public:

bool initialSonarAcquired ;

AREXPORT RobotPosDir: :RobotPosDir(ArRobot *robot);
//Constructor

AREXPORT RobotPosDir: :-RobotPosDir();

46

int newSonarData[9];

const static int minDist 590;

const static int maxDist 610;

int wallFound;

AREXPORT void rotateTowardsWall(int MinSonNum);

AREXPORT int getMinSonarNum(int sO, int sl, int s2, int s3, int

s4, int s5, int s6, int s7);
AREXPORT int getMinSonar(int s);
AREXPORT bool findWall(void);
AREXPORT void getNewSonar(void);
AREXPORT bool notpointingWall(float);
AREXPORT void rotate (double) ;
AREXPORT void speciaIDistance();
AREXPORT void goForward(double velocity);
AREXPORT void followWall(void);

} ;

#endif II ROBOTPOSDIR H

RobotPosDir.cpp

1***
Brad Donohoo, Steve Gunderson, Jake Erramouspe

ASPS: Automated Security Patrol System

Follow Wall Class

20 October 2009

***/

#include <fstream>
#include <iostream>
#include <math.h>
using namespace std;

#include "Aria.h"
#include "ArRobot.h"

#include "RobotPosDir.h"
#include "ArExport.h"

AREXPORT RobotPosDir: :RobotPosDir(ArRobot *robot)
IIConstructor

{
myRobot = robot;

}
AREXPORT RobotPosDir::-RobotPosDir()

IIDestructor
{

delete myRobot;
}

AREXPORT int RobotPosDir: :getMinSonarNum(int sO, int sl, int s2, int
s3, int s4, int s5, int s6, int s7)
{

47

int min1, min2, min3, min4, minS, min6, min7;

min1 sO > sl ? sl sO;

min2 s2 > s3 ? s3 s2;

min3 s4 > sS ? sS s4;

min4 s6 > s7 ? s7 s6;

mins min1 > min2 ? min2 min1;

min6 min3 > min4 ? min4 min3;

min7 minS > min6 ? min6 minS;

if (min7 -- sO)
return 0;

else if (min7 -- sl)

return 1·,

else if (min7 -- s2)

return 2 ;

else if (min7 -- s3)

return 3 ;

else if (min7 -- s4)

return 4 ;

else if (min7 -- sS)

return 5;

else if (min7 -- s6)

return 6;

else if (min7 -- s7)

return 7 ;

AREXPORT int RobotPosDir: :getMinSonar(int s)
{

switch(s)
{

case 0:

return newSonarData[O] ;

break;

case 1 :

return newSonarData[l] ;

break;

case 2 :

return newSonarData[2] ;

break;

case 3 :

return newSonarData[3]

break;

case 4:

return newSonarData[4]

break;

case 5 :

return newSonarData[S]

break;

case 6:

return newSonarData[6] ;

break;

case 7 :

return newSonarData[7] ;

48

break;

/************* find the wall *******************/

AREXPORT bool RobotPosDir::findWall()

{

int diff;

int minSonar = SOOO;

int minSonNum = SO;

int BadSonarData = true;

int bogusSonarcount = 0;

printf("\nMade it to Find Wall function\n");

getNewSonar() ;
printf("\nSonarO = %d, Sonarl = %d, Sonar2 = %d, Sonar3 =%d,

Sonar4 =%d, SonarS =%d, Sonar6 = %d, Sonar7 = %d", newSonarData[O],
newSonarData[l] , newSonarData[2] , newSonarData[3] , newSonarData[4] ,
newSonarData[S], newSonarData[6], newSonarData[7]);

printf("\nComputing min sonar ... \n");
minSonNum =

getMinSonarNum(newSonarData[O] ,newSonarData[l] ,newSonarData[2] ,newSonar
Data[3] ,newSonarData[4] ,newSonarData[S] ,newSonarData[6] ,newSonarData[7]
) ;

minSonar = getMinSonar(minSonNum);

printf("\nminSonar = %d, minSonNum %d", minSonar, minSonNum);

if (minSonar > (minDist+lO))

{

printf("\nminSonar is in range. Now we rotate.");

rotateTowardsWall(minSonNum) ;

printf("\nRotated towards wall");

ArUtil: :sleep(3000);

while(minSonar> (minDist+lO))

{

goForward(SPEED) ;

getNewSonar() ;
printf("\nSonarO = %d, Sonarl = %d, Sonar2 = %d,

Sonar3 =%d, Sonar4 =%d, SonarS =%d, Sonar6 = %d, Sonar7 = %d",
newSonarData[O], newSonarData[l] , newSonarData[2], newSonarData[3],
newSonarData[4], newSonarData[S], newSonarData[6] , newSonarData[7]);

printf (" \nComputing min sonar ... \n") ;
minSonNum =

getMinSonarNum(newSonarData[O] ,newSonarData[l] ,newSonarData[2] ,newSonar
Data[3] ,newSonarData[4] ,newSonarData[S] ,newSonarData[6] ,newSonarData[7]
) ;

minSonar = getMinSonar(minSonNum);

49

if (minSonNum != 2 I I minSonNum != 3)
{

rotateTowardsWall(minSonNum) i

}

printf("\nminSonar %d, minSonNum %d", minSonar,
minSonNum) i

}
myRobot->setVel(O) i

printf("\nClose enough! Now rotate so we are facing
directly towards wall.");

printf("\nFacing wall. Now rotate so sensor 5 is pointing
at wall.") i

rotate(90.0) ;

}

else II rotate so sensor 5 is facing wall

{

switch (minSonNum)

{

case 0:
printf("\nSonar 0 is min sonar");
rotate(180.0) i

printf("\nWe are rotating 180 Pos deg");
break;

case 1:
printf (" \nSonar 1 is min sonar");
rotate (131. 0) ;
printf("\nWe are rotating 131 Pos deg");
break;

case 2:
printf("\nSonar 2 is min sonar");
rotate(105.0) ;
printf("\nWe are rotating 105 Pos deg");
break;

case 3:
printf("\nSonar 3 is min sonar");
rotate(75.0) i

printf("\nWe are rotating 75 Pos deg");
break;

case 4:
printf("\nSonar 4 is min sonar") i

rotate(49.0) ill lock and unlock are in rotate
printf("\nWe are rotating 49 Pos deg");
break;

case 5:

break;

case 6:
printf("\nSonar 6 is min sonar");
rotate(-55.0) ;11 lock and unlock are in rotate
printf (" \nWe are rotating 55 Neg deg");
break;

case 7:
printf("\nSonar 7 is min sonar");

50

rotate(-125.0) ;11 lock and unlock are in rotate
printf("\nWe are rotating 125 Neg deg");
break;

default:
printf("\nWe are hosed hit default");
break;

wallFound = 1;

Arutil: :sleep(5000);
return true;

1************* Get new Sonar Data *******************1
AREXPORT void RobotPosDir: :getNewSonar (void)
{

float X;
float y;
int sonar;
int range;

for (sonar=O; sonar <= 7; sonar++)

range = myRobot->getSonarRange(sonar);
newSonarData[sonar] = range;

myRobot->getEncoderPose() ;
x= myRobot->getEncoderPose() .getX()
y= myRobot->getEncoderPose() .gety()

1************* What to do if not pointing to the wall
*******************/

AREXPORT bool RobotPosDir: :notpointingWall(float limit)
{

float diff;
diff = newSonarData[2] - newSonarData[3];

if «abs(diff) <= limit) && (newSonarData[2] <= maxDist)
{

printf("\nWe are now pointing at the wall");
return false;

}
else

return true;

AREXPORT void RobotPosDir: :rotateTowardsWall(int minSonNum)
{

Ilpoint towards nearest sonar reading
switch (minSonNum)
{

case 0:

51

printf("\nSonar 0 is min sonar");

rotate(90.0);

printf("\nWe are rotating 90 Pos deg");

break;

case 1:
printf("\nSonar 1 is min sonar");
rotate(41.0) ;
printf("\nWe are rotating 41 Pos deg");
break;

case 2:

break;

case 3:

break;

case 4:
printf("\nSonar 4 is min sonar");
rotate(-41.0) ;11 lock and unlock are in rotate
printf("\nWe are rotating 41 Neg deg");
break;

case 5:
printf("\nSonar 5 is min sonar");
rotate(-90.0) ;11 lock and unlock are in rotate
printf("\nWe are rotating 90 Neg deg");
break;

case 6:
printf("\nSonar 6 is min sonar");
rotate(-145.0);11 lock and unlock are in rotate
printf("\nWe are rotating 145 Neg deg");
break;

case 7:
printf("\nSonar 7 is min sonar");
rotate(145.0);11 lock and unlock are in rotate
printf("\nWe are rotating 145 POs deg");
break;

default:
printf("\nWe are hosed hit default");
break;

1************* Rotate the Robot *******************1
AREXPORT void RobotPosDir::rotate(double degrees)
{

myRobot->lock(); IILock robot so paramcan be altered
myRobot->setDeltaHeading(degrees) ;
myRobot->unlock(); II Unlock to allow action

printf ("\nRotating %3.2f deg", degrees);

1************* Set Velocity *******************1
AREXPORT void RobotPosDir: : goForward (double velocity)
{

myRobot->lock() ; IILock robot so paramcan be altered

myRobot->setVel(velocity) ;

printf("\nGoing forward");

myRobot->unlock() ; II Unlock to allow action

52

1************* Distance From Wall while Following *******************1
AREXPORT void RobotPosDir: : specialDistance ()
{

getNewSonar() ;

if (newSonarData[4] < (minDist-50))

{

myRobot->setDeltaHeading(8) ;
myRobot->setVel(SPEED) ;

}
if (newSonarData[5] <=minDist) Ilrobot is too close on right side
{

if (newSonarData[4] < maxDist) Iiturn left
{

myRobot->setDeltaHeading(5) ;

myRobot->setVel(SPEED) ;

}
else if (newSonarData[5]>maxDist) Ilrobot is too far away from

wall

myRobot->setDeltaHeading(-5) ;

1************* Follow the Wall *******************1
AREXPORT void RobotPosDir: :followWall(void)
{

int minSonar = 5000;

int minSonNum = 50;

printf("\nMade it to FOLLOW WALL function\n");

getNewSonar() ;

printf("\nSonarO = %d, Sonarl = %d, Sonar2 = %d. Sonar3 =%d.
Sonar4 =%d. Sonar5 =%d. Sonar6 = %d. Sonar7 = %d", newSonarData[O],
newSonarData[l], newSonarData[2], newSonarData[3], newSonarData[4],
newSonarData[5], newSonarData[6], newSonarData[7]);

minSonNum =
getMinSonarNum(newSonarData[O] ,newSonarData[l] ,newSonarData[2] ,newSonar
Data[3] ,newSonarData[4] ,newSonarData[5] ,newSonarData[6] ,newSonarData[7]
) ;

minSonar = getMinSonar(minSonNum);

if (minSonar > 3000)

{

wallFound = 0;

return;

goForward(SPEED) ;

ArUtil: :sleep(400);

specialDistance(); II maintain distance from wall

53

getNewSonar() ;

if((newSonarData[2] < maxDist) I I (newSonarData[3) < maxDist))
{

myRobot->lock() ;

myRobot->setVel(O) ;

myRobot->unlock() ;

Arutil: :sleep(lOOO);
1*****************

INSIDE CORNER
******************1
printf("\nComing to a wall straight ahead -> Rotating 90

deg CCW\n");

rotate(90) ;

ArUtil: :sleep(2000);

myRobot->lock();

myRobot->setRotVel(O.O) ;

myRobot->unlock() ;

goForward(SPEED) ;

getNewSonar() ;

/************************************
OUTSIDE CORNER

************************************/

II if sonar 3, 4 and 5 are infinite -> assume at at least a 90
degree corner

if((newSonarData[5] > 1000) && (newSonarData[4] > 1000) &&
(newSonarData[3] > 1000))

{

minSonNum =
getMinSonarNum(newSonarData[O] ,newSonarData[l) ,newSonarData[2] ,newSonar
Data[3] ,newSonarData[4] ,newSonarData[5] ,newSonarData[6) ,newSonarData[7]
) ;

minSonar = getMinSonar(minSonNum);

if (minSonar > 3000)

{

wallFound = 0;

return;

printf("\nOutside corner -> Slowly rotating CW\n");

myRobot->lock(); IILock robot so paramcan be altered
myRobot->setRotVel(-12.0) ;
myRobot->unlock()i II Unlock to allow action

getNewSonar() i

while (newSonarData [4] >1200 && newSonarData[3] >1000)

54

minSonNum =

getMinSonarNum(newSonarData[O] ,newSonarData[l] ,newSonarData[2] ,newSonar
Data[3] ,newSonarData[4] ,newSonarData[S] ,newSonarData[6] ,newSonarData[7]
) ;

minSonar = getMinSonar(minSonNum);

printf("\nOutside corner, Sonar3 = %d, Sonar4 %d ll I

newSonarData[3] ,newSonarData[4]);

if (minSonar > 3000)
{

wallFound = 0;
return;

}

getNewSonar() ;

myRobot->setRotVel(O.O) ;

getNewSonar() ;

PatrolRobot2.Cpp

1***
Brad Donohoo, Steve Gunderson, Jake Erramouspe

ASPS: Automated Security Patrol System

Patrol Robot

12 November 2009

***/

#include "Aria.h"

#include "ArNetworking.h"

#include "ASPS_ServerlnfoRobot.h"

#include "AnomalyDetect.h"

#include "RobotPosDir.h"

#include "windows.h"

using namespace std;

int main(int argc, char **argv)

{

bool start = true;

HWND RemoteDesktop;

Aria: :init();

II our base server object

ArServerBase server;

55

II set up our parser

ArArgumentParser parser(&argc, argv);

II set up our simple connector

ArSimpleConnector simpleConnector(&parser);

II robot

ArRobot robot;

ArServerSimpleOpener simpleOpener(&parser);

II set up a gyro, if installed

ArAnalogGyro gyro (&robot) ;

II sonar, must be added to the robot, for teleop and wander

ArSonarDevice sonarDev;

II wall follower

RobotPosDir PosDir(&robot);

II gotoAnomaly action

ArActionGoto gotoAnomaly(lgoto",ArPose(O.O,O.O) ,200,400,150,7);

robot.addAction(&gotoAnomaly,90) ;

II load the default arguments

parser.loadDefaultArguments() ;

ArClientSwitchManager clientSwitchManager(&server, &parser);

II parse the command line ... fail and print the help if the parsing
fails

liar if the help was requested
if (!Aria::parseArgs() I I !parser.checkHelpAndWarnUnparsed())
{

Aria: :logOptions();

Aria: : exi t (1) ;

II Set up file directories

char fileDir[1024];

ArUtil: :addDirectories(fileDir, sizeof(fileDir),

Aria: :getDirectory() ,
IArNetworking/examples") ;

II first open the server up

if (!simpleOpener.open(&server, fileDir, 240))

{

if (simpleOpener.wasUserFileBad())

printf(IIBad user/password/permissions file\n");

else

printf("Could not open server port\n");

exit(1) ;

II a key handler so we can do our key handling

ArKeyHandler keyHandler;

II let the global aria stuff know about it

Aria: : setKeyHandler(&keyHandler) ;

II toss it on the robot

robot.attachKeyHandler(&keyHandler) ;

printf("You may press escape to exit\n");

56

II add the sonar to the robot

robot.addRangeDevice(&sonarDev) ;

II attach services to the server

ASPS_ServerlnfoRobot serverlnfoRobot(&server, &robot);

Ilhere is where the robot send to the client

ArServerlnfoSensor serverlnfoSensor(&server, &robot);

ArServerlnfoDrawings drawings (&server) ;

drawings.addRobotsRangeDevices(&robot) ;

II set up the robot for connecting

if (!simpleConnector.connectRobot(&robot))

{

printf("Could not connect to robot ... exiting\n");

Aria: :exit (1);

I*********************ANOMALY DETECTION CODE
HERE********************I

AnomalyDetect anomalydetect(&robot);

anomalydetect.OpenCoordFile("coords.txt", "patrol_output.txt");

anomalydetect.ReadData() ;

anomalydetect.Detect() ;

/**/

II log whatever we wanted to before the runAsync

simpleOpener.checkAndLog() ;

II now let it spin off in its own thread

server.runAsync() ;

printf("Server is now running ... \n");

clientSwitchManager.runAsync() ;

II start the robot running, true means that if we lose connection the
run thread stops

robot.runAsync(true) ;

II turn on the motors

robot.comInt(ArCommands: : ENABLE, 1);

while(robot.isConnected())

{

ArUtil::sleep(4000) ;

PosDir.wallFound = 0;

if (start == true)
{

anomalydetect.Localize() ;

anomalydetect.start_detect true;

57

start false;

while(l)

{

PosDir.findWall() ;

while(PosDir.wallFound == l){
PosDir.followWall() ;
if (anomalydetect.anomaly_flag true)

break;

if (anomalydetect.anomaly_flag true)
break;

printf("\ngoal: x: %d, y: %d, angle:
%d\n",anomalydetect.anomaly_x,anomalydetect.anomaly_y,anomalydetect.ano
maly_angle) ;

robot.lock() ;

robot.setVel(O);

robot.unlock() ;

PosDir.rotate(anomalydetect.anomaly_angle) ;

ArUtil: :sleep(2000);

PosDir.goForward(lOO) ;

while (robot.getSonarRange (2) > 500 && robot.getSonarRange(3) >

500) ;

if (robot.getSonarRange(2) < robot.getSonarRange(3) > 500)
{

while (robot.getSonarRange(3) > 600)
PosDir.rotate(5) ;

}

else

{

while (robot.getSonarRange(2) > 600)
PosDir.rotate(-5) ;

robot.setVel(O) ;

robot.setRotVel(O) ;

printf("\nFIRE!!!!! !\n");

II open remote desktop window
RemoteDesktop = FindWindow(NULL, "192.168.1.10 - Remote

Desktop") ;
SetForegroundWindow(RemoteDesktop);
ShowWindow(RemoteDesktop,SW_SHOWNORMAL) ;

ArUtil: :sleep(lOOO);

II Send space bar command to remote desktop

keybd_event(VK_SPACE, Ox39, 0, 0);

58

- - -

keybd_event(VK_SPACE, OXB9, KEYEVENTF_KEYUP,O);

II Set alarm flag to notify Police Bot
serverlnfoRobot.alarm_flag = 1;

ArUtil: :sleep(1000);
II reset alarm flag
serverlnfoRobot.alarm_flag 0;

ArUtil: :sleep(10000);

Aria: :exit (0);

robot.waitForRunExit() ;
Aria: :exit (0);
return 0;

AnomalyDetect.h

/***

Brad Donohoo, Steve Gunderson, Jake Erramouspe
ASPS: Automated Security Patrol System
AnomalyDetect Class
12 November 2009

***/

#ifndef ANOMALYDETECT H
#define ANOMALYDETECT H

#include <cstdlib>
#include <cstdio>
#include <fstream>
#include <iostream>
#include <vector>
using namespace std;

class AnomalyDetect
{
protected:

ArRobot *myRobot;

FILE* dataFile; IIFile for reading coords

FILE* outputFile; IIFile for writing coords

ArFunctorC<AnomalyDetect> myFunctor;

vector<int> xcoords;

vector<int> ycoords;

double x_offset;

double y_offset;

public:
III Constructor
AREXPORT AnomalyDetect: :AnomalyDetect (ArRobot *robot);

59

III Destructor

AREXPORT AnomalyDetect::-AnomalyDetect();

bool start_detectj

AREXPORT void QuickSort (int left, int right);

AREXPORT void PrintLists();

AREXPORT int getSonarAngle(int s);

AREXPORT void ReadData(void);

AREXPORT void SearchCoords(int x, int y, int angle);

AREXPORT void Localize (void) ;

AREXPORT void Detect (void) ;

AREXPORT void OpenCoordFile(const char* logFileName1,const char*

logFileName2) j

bool anomaly_flag;

int anomaly_x;

int anomaly_y;

int anomaly_angle;

#endif II ANOMALYDETECT H

AnomalyDetect.cpp

1***
Brad Donohoo, Steve Gunderson, Jake Erramouspe

ASPS: Automated Security Patrol System

AnomalyDetect Class

12 November 2009

***/

#include "Aria.h"

#include "ArExport.h"

#include "ArRobot.h"

#include "AnomalyDetect.h"

#include <fstream>

#include <iostream>

#include <cmath>

#include <string>

#include <vector>

using namespace std;

#define BUF SIZE 256

#define TOLERANCE 300

#define MAX ANOMALY 25

#define MIN

-
COORD - CNT 5

int anomaly_count = OJ

AREXPORT AnomalyDetect: :AnomalyDetect (ArRobot *robot) myFunctor(this,

&AnomalyDetect: :Detect)

{

myRobot = robot;

60

myRobot->addUserTask("AnomalyDetect", 50, &myFunctor);

start_detect = false;

//SET ANOMALY FLAG HERE
anomaly_flag = false;

AREXPORT AnomalyDetect: :-AnomalyDetect(void)
{

if (dataFile)
fclose(dataFile) ;

AREXPORT int AnomalyDetect: :getSonarAngle(int sonar)
{

switch(sonar)
{
case 0:

return 90;
case 1:

return 41;
case 2 :

return 15;
case 3 :

return -15;
case 4:

return -41;
case 5:

return -90;
case 6 :

return -145;
case 7 :

return 145;

AREXPORT void AnomalyDetect: : QuickSort (int left, int right)
{

int i = left, j = right;
int tmp;
int pivot = xcoords[(left + right) / 2];

/* partition */
while (i <= j) {

while (xcoords[i] < pivot)
i++;

while (xcoords[j] > pivot)
j--;

if (i <= j) {
tmp = xcoords[i];
xcoords[i] xcoords[j];
xcoords[j] = tmp;

tmp = ycoords[i];
ycoords[i] = ycoords[j];

61

ycoords[j] tmp;

i++;
j - - ;

};

1* recursion *1

if (left < j)

QuickSort (left, j);

if (i < right)

QuickSort(i, right);

AREXPORT void AnomalyDetect: :PrintLists()
{

int i;
for(i=O;i<xcoords.size() ;i++)

printf("x: %d, y: %d\n",xcoords[i] ,ycoords[i]);

AREXPORT void AnomalyDetect: : ReadData (void)
{

char buf[BUF_SIZE];
int x, y, i;

while(!feof(dataFile)) {

fgets(buf,BUF_SIZE,dataFile) ;

x = atoi(strtok(buf, "\t"));

Y = atoi(strtok(NULL, "\n"));

xcoords.push_back(x) ;

ycoords.push_back(y) ;

fclose(dataFile) ;

QuickSort (0, (xcoords.size()-l));

PrintLists() ;

printf ("\n") ;

AREXPORT void AnomalyDetect: :SearchCoords(int x, int y, int angle)
{

int coord_found = 0;
int start = xcoords.size()/2;

if (xcoords [start] >= x) {

for (int i=start; i>=O; i--)

II searching from middle of xcoords array to
xcoords [0]

if (xcoords[i] < (x+TOLERANCE) && xcoords[i] > (x-
TOLERANCE))

if (ycoords[i] < (y+TOLERANCE) && ycoords[i] >

(y-TOLERANCE))

62

coord_found++;

}
else{

for (int i=start; i<xcoords.size(); i++)

{

II searching from middle of xcoords array to
xcoords.size()

if (xcoords[i] < (x+TOLERANCE) && xcoords[i] > (x-
TOLERANCE))

if (ycoords[i] < (y+TOLERANCE) && ycoords[i] >
(y-TOLERANCE))

coord_found++;

if (coord_found <= MIN_COORD_CNT)

anomaly_count++;

if (anomaly_count >= MAX_ANOMALY) {

if (anomaly flag == false)

{

printf (" \n \nANOMALY FOUND! \n") ;
anomaly_flag = true;
anomaly_x = x - x_offset;
anomaly_y = y - y_offset;
anomaly_angle angle;

AREXPORT void AnomalyDetect::Localize(void)
{

x offset myRobot->getSonarRange(7) *0.82; Iisonar7 *
cos(35)

y_offset myRobot->getSonarRange(5) ;

printf(lI x_off: %f, y_off: %f\n",x_offset,y_offset);

AREXPORT void AnomalyDetect: :Detect(void)
{

int sonar, s, sonAngle;
float radAngle;
double abs_x, abs_y;
double x = myRobot->getX();
double y = myRobot->getY();
double theta = myRobot->getTh() ;

63

- -

if (start_detect == true)
{

for (sonar=O; sonar <= 7; sonar++)

{

s = myRobot->getSonarRange(sonar);

sonAngle getSonarAngle(sonar);

radAngle (theta+sonAngle) * (3.1415926/180.0) ;

if (s < 1500)

{

x + s*cos(radAngle) + x_offset;
y + s*sin(radAngle) + y_offset;

fprintf(outputFile, "\n%.Of\t%.Of", abs_x,

fflush(outputFile) ;

//check xcoord array for points within
tolerance

SearchCoords(abs_x,abs_y,getSonarAngle(sonar)) ;

AREXPORT void AnomalyDetect: :OpenCoordFile(const char*

logFileName1,const char* logFileName2)

{

char buf[BUF_SIZE];

dataFile = fopen(logFileName1, "r");

fgets(buf,BUF_SIZE,dataFile);

outputFile = fopen(logFileName2, "w");

ASPS ServerlnfoRobot.h

/***
Brad Donohoo, Steve Gunderson, Jake Erramouspe
ASPS: Automated Security Patrol System
ASPS ServerInfoRobot
30 November 2009

***/

#ifndef ASPS SERVERROBOTINFO H
#define ASPS SERVERROBOTINFO H

#include "Aria.h"

64

#include "ArServerBase.h"

class ArServerClient;

class ASPS ServerlnfoRobot
{
public:

III Constructor

AREXPORT ASPS_ServerlnfoRobot(ArServerBase *server, ArRobot *robot);

III Destructor

AREXPORT -ASPS_ServerlnfoRobot();

III The function that sends updates about the robot off to the client

AREXPORT void update(ArServerClient *client, ArNetPacket *packet);

int alarm_flag;

protected:
ArServerBase *myServer;
ArRobot *myRobot;

ArFunctor2C<ASPS ServerlnfoRobot, ArServerClient * ArNetPacket *>
myUpdateCB;
};

#endif

ASPS_ServerlnfoRobot.Cpp

1***
Brad Donohoo, Steve Gunderson, Jake Erramouspe

ASPS: Automated Security Patrol System

ASPS ServerlnfoRobot

30 November 2009

***1

#include "Aria.h"

#include "ArExport.h"

#include "ASPS ServerlnfoRobot.h"

#include "ArServerMode.h"

AREXPORT ASPS ServerlnfoRobot: :ASPS_ServerlnfoRobot (ArServerBase
*server,

ArRobot *robot)
myUpdateCB(this, &ASPS_ServerlnfoRobot: :update)

myServer = server;

myRobot = robot;

alarm_flag = 0;

myServer->addData ("update",

"gets an update about the patrol robot status (you
should request this at an interval)",

65

&myUpdateCB, "none",
"byte4: alarm_flag, byte4: x, byte4: y", "RobotInfo",

"RETURN_SINGLE") ;

AREXPORT ASPS ServerInfoRobot: :-ASPS_ServerlnfoRobot()
{
}

AREXPORT void ASpS_ServerlnfoRobot: : update (ArServerClient *client,
ArNetPacket *packet)

ArNetPacket sending;

myRobot->lock() ;

sending.byte4ToBuf((int)alarm_flag);

sending.byte4ToBuf((double)myRobot->getX());

sending.byte4ToBuf((double)myRobot->getY());

myRobot->unlock() ;

client->sendPacketUdp(&sending);

PoliceRobot.cpp

/***

Brad Donohoo, Steve Gunderson, Jake Erramouspe

ASPS: Automated Security Patrol System

Police Robot

30 November 2009

***/

#inc1ude "Aria.h"
#include "ArNetworking.h"

#define POLICE X OFF (-450)
#define POLICE Y OFF 1100
#define POLICE TH OFF o

/** This class requests continual data updates from the server and
prints them

* out.
*/

class OutputHandler
{
public:

OutputHandler(ArClientBase *client);

virtual -OutputHand1er(void);

66

III This callback is called when an update on general robot state
arrives

void handleOutput(ArNetPacket *packet);

int alarm;
double myX;
double myY;

protected:

III The results from the data update are stored in these variables
II@{
int alarm flag;

II@}
ArClientBase *myClient;

1** These functor objects are given to the client to receive updates
when they

* arrive from the server.
*1

II@{
ArFunctor1C<OutputHandler, ArNetPacket *> myHandleOutputCB;
II@}

} ;

OutputHandler: :OutputHandler(ArClientBase *client)
myClient(client),
myHandleOutputCB(this, &OutputHandler: :handleOutput)

alarm = 0;

1* Add a handler for anomaly position, and request it to be called
every 100 ms *1

myClient->addHandler("update", &myHandleOutputCB);
myClient->request(" update", 100);

OutputHandler: :-OutputHandler(void)
{

1* Halt the request for data updates *1
myClient- >requestStop ("update") ;

void OutputHandler: :handleOutput(ArNetPacket *packet)

alarm_flag = (int) packet->bufToByte4();
myX (double) packet->bufToByte4();
myY = (double) packet->bufToByte4();

if (alarm_flag == 1)
{

printf("Alarm received!\n"
"X : %If, Y: %I f \ n" I myX I myY) ;

67

fflush(stdout) ;

myClient- >requestStop ("update ") ;

alarm = 1;

1* Key handler for the escape key: shutdown all of Aria. *1
void escape(void)
{

printf("esc pressed, shutting down aria\n");

Aria: :shutdown();

int main(int argc, char **argv)

1* Aria initialization: *1

Aria: :init();

II set up our parser

ArArgumentParser parser (&argc, argv);

II set up our simple connector

ArSimpleConnector simpleConnector(&parser);

II robot

ArRobot robot;

II sonar, must be added to the robot, for teleop and wander

IIArSonarDevice sonarDev;

II Create our client object

ArClientBase client;

ArClientSimpleConnector clientConnector(&parser);

II load the default arguments

parser.loadDefaultArguments() ;

1* Check for -help, and unhandled arguments: *1

if (!Aria: :parseArgs() I I !parser.checkHelpAndWarnUnparsed())

{

Aria: :logOptions();

exit(O);

1* Connect our client object to the remote server: *1

if (!clientConnector.connectClient(&client))

{

if (client.wasRejected(})
printf("Server '%s' rejected connection, exiting\n",

client.getHost(}) ;
else

printf("Could not connect to server '%s', exiting\n",
client.getHost());

exit(l) ;

68

printf("Connected to server.\n");

1* Create a key handler and also tell Aria about it *1

ArKeyHandler keyHandler;

Aria: : setKeyHandler(&keyHandler) ;

II toss it on the robot
robot.attachKeyHandler(&keyHandler) ;
printf("You may press escape to exit\n");

II add the sonar to the robot
Ilrobot.addRangeDevice(&sonarDev) ;

II set up the robot for connecting
if (!simpleConnector.connectRobot(&robot))
{

printf("Could not connect to robot ... exiting\n");
Aria: :exit (1) ;

II run the client in a background thread
client.runAsync() ;

II start the robot running, true means that if we lose connection the
run thread stops

robot.runAsync(true) ;

II turn on the motors
robot.comInt(ArCommands::ENABLE, 1);

II create output handler object that will receive the alarm
OutputHandler outputHandler(&client);

while(robot.isConnected())
{

if (outputHandler.alarm 1)
{

robot. lock () ;
robot.setVel(100) ;
robot.unlock() ;

ArUtil: :sleep((outputHandler.myX - POLICE_X_OFF) *10) ;

robot. lock () ;
robot.setVel(O) ;
robot.unlock() ;

robot.lock() ;
robot.setDeltaHeading(-90);
robot.unlock() ;

robot.lock() ;

69

robot.setVel(lOO) ;
robot.unlock() ;

ArUtil::sleep(abs((POLICE_Y_OFF
outputHandler.myY)*lO)) ;

robot.lock() ;
robot.setVel(O) ;
robot.unlock() ;

Aria: :exit(O);

Aria: :shutdown();

return 0;

70

	Autonomous Security Patrol System
	Recommended Citation

	tmp.1277136742.pdf.YNSAu

