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1.2

History Past

The classical method of Monge. Given

F (x , y , u, ux , uy ) = 0 add G (x , y , u, ux , uy ) = 0

so that ux = A(x , y , u), uy = B(x , y , u) is consistent [Jacobi, Lie].

The generalization of the Monge method to 2nd order PDE leads to
the methods of Ampère and Darboux (and [Cartan, 1910])

F (x , y , u, p, q, r , s, t) = 0 add G (x , y , u, p, q) = 0

F (x , y , u, p, q, r , s, t) = 0 add G (x , y , u, p, q, r , s, t) = 0

F (x , y , u, p, q, r , s, t) = 0 add G (3rd ord) = 0

The compatible equation G = 0 is called an intermediate integral
(order, complete, general ...)
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1.3

History Past

• Goursat and his students made many detailed investigations
regarding the existence of these intermediate integrals.

• Classification of DI systems were made for restricted classes of
equations.

• In more recent times an extended classification of DI systems has
been given [Sokolov].

• Higher order symmetries and conservation laws for these equations
have been studied [Sokolov, IA, Kamran, Juras, and Bieseeker].

• Bäcklund transformations for the classical DI systems of Goursat
were studied [Clelland and Ivey].

• DI systems always appear in geometric studies of PDE and in
equivalence problems [eg. D. The].

• Many papers in the theoretical physics literature (σ-models) on
integrable systems unwittingly arrive at DI systems.
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1.4

Vessiot’s Fundamental Discovery

Prior to 1939, the method of Darboux was always viewed from the
viewpoint of compatibility theory. The method had no group
theoretic interpretation.

This changed with a fundamental observation of Vessiot.

uxy = e
u, uxx −

1

2
u

2
x = f (x), uyy −

1

2
u

2
y = g(y)

px = f (x) +
1

2
p

2
ṗ = a(x) + b(x)p + c(x)p2.

This is a Ricatti equation. Riccatti equations are ODE of Lie type,
associated to SL2.

Vessiot’s great idea was to turn this around. For each equation of
Lie type associated to a Lie group (dim ≤ 3), he produced a DI
equation of the form uxy = f (x , y , u, ux , uy ).

He reproduced the classical classification of Goursat and even
integrated one of the equations which the master was unable to
solve.

But the groups arising in Vessiot’s approach are not symmetry
groups in the usual sense.
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1.5

History Present

Vassiliou showed that the Vessiot group for the classical DI systems
could in fact be constructed by derived flag calculations.

IA, Fels and Vassiliou built upon these ideas in a recent article
which:

• gives a far-reaching generalization of the definition of DI in terms
of EDS.

• introduces the general idea of a non-linear superposition formula
for EDS.

• gives a general derivation of the Vessiot group.

• proves that the Vessiot group is an invariant of any DI system.

• uses the Vessiot group to construct a non-linear superposition
formula for any DI system.

• gives a completely algorithmic integration procedure, much better
that the classical one.
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1.6

Example

Starting from uxy = eu, the theory tells us to

• Consider two copies of jet space

J
3(R,R)[x ,X ,X �,X ��,X ���] and J

3(R,R)(y ,Y ,Y �,Y ��,Y ���)

• Look to the diagonal action of SL(2) with infinitesimal generators

∂X + ∂Y , X∂X + Y ∂Y ,
1

2
X

2∂X +
1

2
Y

2∂Y ,

• Calculate the reduced differential system (J3 × J3)/SL(2), that is,
calculate joint differential invariants.

• In the context of this simple example, the lowest order joint
differential invariant gives the general solution.

u = log
2X �Y �

(X − Y )2
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Bäcklund
Transformations

History Future

References

1.6

Example

Starting from uxy = eu, the theory tells us to

• Consider two copies of jet space

J
3(R,R)[x ,X ,X �,X ��,X ���] and J

3(R,R)(y ,Y ,Y �,Y ��,Y ���)

• Look to the diagonal action of SL(2) with infinitesimal generators

∂X + ∂Y , X∂X + Y ∂Y ,
1

2
X

2∂X +
1

2
Y

2∂Y ,

• Calculate the reduced differential system (J3 × J3)/SL(2), that is,
calculate joint differential invariants.

• In the context of this simple example, the lowest order joint
differential invariant gives the general solution.

u = log
2X �Y �

(X − Y )2



History Past

Vessiot’s
Fundamental
Discovery

History Present

Intermediate
Integrals and
Differential
Invariants

Classification

Primitive and
Imprimitive Actions

Cauchy Problem
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1.7

Intermediate Integrals and Differential Invariants

Every intermediate integral for any DI system is in fact a differential
invariant for the Vessiot group action.

All the classical work of Goursat on studying intermediate integrals
is in fact (essentially) covered by Lie’s work on differential invariants
and invariant differential operators [Olver].
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1.8

Classification

From this new viewpoint:

There are as many DI EDS as there are symmetry groups of
differential equations!

BUT, only certain symmetry groups of very special DE will lead to
DI EDS representing a desired type of equation.
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1.9

Primitive and Imprimitive Actions

We have calculated all systems of DI equations arising from vector
field systems in the plane [Lie, GLKO].

• Vessiot groups with imprimitive actions give ”triangularized” DI
systems – essentially known examples

• Vessiot groups with primitive actions give genuinely new examples.
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1.10

Cauchy Problem

The Vessiot group dicates the solvability of the Cauchy problem.

• Let I be a DI integrable system. If the Vessiot group is solvable
then the Cauchy problem can be solved by quadratures.

•

uxy = e
u

3 ∗ uxxu
3
yy + 1 = 0
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1.11

Bäcklund Transformations

The subgroups of the Vessiot group can be used to construct
Bäcklund transformations for any DI integrable system

• All previously constructed examples can easily be derived by
symmetry reduction.

• Many new examples can easily be derived by symmetry reduction.

• The equation

uxy =

�
1− u2

x

�
1− u2

y

sin u

has Vessiot group SO(3). But SO(3) has no real 2 dimensional
subalgebras and therefore it does not admit a 1-dimensional
Bäcklund transformation to the wave equation.
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Bäcklund Transformations

The subgroups of the Vessiot group can be used to construct
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1.12

History Future

• clean up the theory of generalized symmetries for DI systems.

• verify Sokolov’s classification using group theoretical methods.

• analyze completely the Toda lattice systems (parabolic geometries
associated to simple Lie algebras).

• study multi-soliton solutions from our group theoretic non-linear
superposition viewpoint.

• decide what to do about ‘parabolic’ DI systems ([Cartan, 1911])
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Bäcklund
Transformations

History Future

References

1.12

History Future

• clean up the theory of generalized symmetries for DI systems.

• verify Sokolov’s classification using group theoretical methods.

• analyze completely the Toda lattice systems (parabolic geometries
associated to simple Lie algebras).

• study multi-soliton solutions from our group theoretic non-linear
superposition viewpoint.

• decide what to do about ‘parabolic’ DI systems ([Cartan, 1911])



History Past

Vessiot’s
Fundamental
Discovery

History Present

Intermediate
Integrals and
Differential
Invariants

Classification

Primitive and
Imprimitive Actions

Cauchy Problem
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Appl. 18 (1939), 1–61.
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[35] V. V. Sokolov and A. V. Ziber, On the Darboux integrable hyperbolic
equations, Phys Lett. A 208 (1995), 303–308.

[36] M. Biesecker, Geometric Studies in Hyperbolic Systems in the Plane, Utah
State University, 2004. PhD thesis.



History Past

Vessiot’s
Fundamental
Discovery

History Present

Intermediate
Integrals and
Differential
Invariants

Classification

Primitive and
Imprimitive Actions

Cauchy Problem
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