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ABSTRACT 
 
 

Academic Performance as a Predictor of Student Growth in Achievement and  
 

Mental Motivation During an Engineering Design Challenge in  
 

Engineering and Technology Education 
 
 

by 
 
 

Nathan James Mentzer, Doctor of Philosophy 
 

Utah State University, 2008 
 
 

Major Professor: Dr. Kurt Becker 
Department: Engineering and Technology Education 
 
 

The purpose of this correlational research study was to determine if students’ 

academic success was correlated with: (a) the student change in achievement during an 

engineering design challenge; and (b) student change in mental motivation toward 

solving problems and critical thinking during an engineering design challenge. Multiple 

experimental studies have shown engineering design challenges increase student 

achievement and attitude toward learning, but conflicting evidence surrounded the impact 

on higher and lower academically achieving students. 

A high school classroom was chosen in which elements of engineering design 

were purposefully taught. Eleventh-grade student participants represented a diverse set of 

academic backgrounds (measured by grade point average [GPA]). Participants were 

measured in terms of achievement and mental motivation at three time points. 
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 Longitudinal multilevel modeling techniques were employed to identify 

significant predictors in achievement growth and mental motivation growth during the 

school year. Student achievement was significantly correlated with science GPA, but not 

math or communication GPA. Changes in achievement score over time are not 

significantly correlated with science, math, or communication. Mental motivation was 

measured by five subscales. Mental focus was correlated with math and science GPA. 

Mental focus increases over time were negatively correlated with science GPA, which 

indicated that the initial score differential (between higher and lower science GPA 

students) was decreased over time. Learning orientation and cognitive integrity were not 

correlated with GPA. Creative problem solving was correlated with science GPA, but 

gains over time were not correlated with GPA. Scholarly rigor was correlated with 

science GPA, but change over time was not correlated with GPA.  

(284 pages) 
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CHAPTER I 

 
INTRODUCTION 

 
 

Technological literacy is an important educational goal for all high school 

students (International Technology Education Association [ITEA], 2000). Scholars in 

technology education and engineering disciplines, as well as the general public, are 

expressing the need for technological literacy and asserting that our K-12 educational 

system must address the issue (Gamire & Pearson, 2006; Gorham, 2002; ITEA, 1996, 

2000; Pearson & Young, 2002). The impacts of our decisions related to technologies are 

complex, and the ability to make thoughtful decisions regarding the relationship between 

society and technology is essential for our nation’s continued economic prosperity 

(Pearson & Young). 

Though a need for a technologically literate citizenry is evident, many people do 

not possess the literacy to make informed decisions about technology. The ability for 

consumers, as well as business and political leaders, to weigh the impacts and 

implications of their decisions regarding the use and development of technologies is 

essential but currently insufficient (Pearson & Young, 2002). 

In Standards for Technological Literacy (STL), published by the ITEA, 

engineering in general, and engineering design, specifically, is included. Including 

engineering content in technology education curricula demands the field identify 

successful approaches to teaching engineering at the high school level. Engineering 

design challenges include the application of engineering principles to solve real world 

problems with an active, hands-on approach. Incorporating engineering design challenges 
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in formal coursework is one method of teaching the engineering process through practical 

application. “In brief, available research suggests that these kinds of courses appear to 

improve retention, student satisfaction, diversity, and student learning” (Dym, Agogino, 

Eris, Frey, & Leifer, 2005, p. 114). 

Researchers have considered the impact of gender, ethnicity, socioeconomic 

status, and age of student participants as factors related to student experience during the 

engineering design challenge. However, limited and conflicting evidence suggests the 

academic background of a student may impact their experience during the engineering 

design challenge. Technology education students typically represent a broad range of 

academic backgrounds, and, therefore, it is essential that we understand how engineering 

design challenges effects all students from low achieving to high. As technology 

education classes consider infusing engineering design, a natural concern emerges; does a 

student’s general academic success correlate with student achievement and mental 

motivation during an engineering design challenge? 

 The practical significance of this question is based on the nature of technology 

education student clientele. Technology education students represent a continuum of 

students ranging from academically successful to struggling in school. A variety of 

experimental studies have shown engineering design challenges increase student 

achievement and attitude toward learning (Cantrell, Pekca, & Ahmad, 2006; Dally & 

Zhang, 1993; Dunlap, 2005; Dym et al., 2005; Griffith, 2005; Irwin, 2005; Lentz & Boe, 

2004; Marra, Palmer, & Litzinger, 2000; Ricks, 2006; Romero, Slater, & DeCristofano, 

2006; Roselli & Brophy, 2006; Weir, 2004; Yaeger, 2002). If growth in student 
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achievement and motivation is uniform and uncorrelated with a general indicator of 

student success in school, infusing engineering concepts into technology education will 

be successful for all students. The primary motivation behind this study is the concern 

that student growth may not be uniform, and a correlation may exist with a student’s 

academic nature. If only highly successful students grow, or show dramatically higher 

growth than their less academically successful counterparts, caution must be used when 

implementing this educational strategy in a mixed class.  

 
Purpose and Objectives 

 
 
 The purpose of this correlational research study was to determine if a student’s 

academic success, measured by grade point average (GPA), is correlated with: (a) student 

change in achievement during an engineering design challenge; (b) student change in 

mental motivation toward solving problems and critical thinking during an engineering 

design challenge. 

 The following objectives will address the purpose of this study. 

1. Use longitudinal multilevel modeling techniques to correlate data on student 

grade point average scores with pre-, mid-, and post-achievement testing. 

2. Use longitudinal multilevel modeling techniques to correlate data on student 

grade point average scores with pre, mid, and post mental motivation testing. 

 
Procedures 

 
 
 The objectives of this study employ longitudinal multilevel analysis to establish 
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correlation. As stated by Gall, Gall, and Borg (1999), 

Correlational statistics are used for two primary purposes in educational research: 
(1) to explore the nature of the relationship between variables of interest to 
educators, and (2) to determine variables that can be used to predict important 
educational or personal characteristics of individuals that will not occur until later. 
(p. 219)  
 

The sample for this study included technology education students in two sections of 

“Industry & Engineering Systems” (Appendix A). This course; offered by an urban 

northwestern high school, was team taught by two teachers. The total enrollment for the 

two sections was 53 on the first day of class and dropped to 41 by the conclusion of the 

year. Both sections were taught by the same instructors with the same content and 

methods. This course was a year long and combined the concepts of engineering and 

technology education through two corequisite classes. Students received a science credit 

for the engineering as an applied physics class and an industrial technology credit for the 

materials processing and fabrication class. 

 The instructors of this course delivered a hands-on experience which aligned in 

content and delivery with typical technology education philosophy. The focal point of 

this course was an engineering design challenge in the spring term. In preparation for the 

challenge, students experienced a fall semester comprised of lecture and hands-on 

application of engineering (as applied physics) and metal fabrication technologies. 

Typical concepts included: motion, magnetism, electric motors, energy, power, forces, 

electricity, heat, and air pressure, as well as welding, machining, mechanical fasteners, 

cutting, and bending metals. 

 The infusion of engineering concepts into technology education courses was a key 
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element of this study. This was accomplished by applying the engineering concepts as 

related to physics, science, and math to a traditional technology education curriculum, 

and culminating with an engineering design challenge. The delivery of engineering 

concepts and technology education concepts was a central phenomenon to this research 

site. In this classroom, a technology education teacher had partnered with a physics 

teacher to deliver engineering content in a technology education atmosphere. While team 

teaching may provide many benefits, it is a rare occurrence. In generalizing the findings 

of this study, it is assumed that one teacher, skilled in technology education and familiar 

with engineering design methodologies, may be equally competent in delivering an 

engineering design challenge to a group of technology education students. 

 Data were gathered from student high school transcripts. This indicator of general 

academic aptitude will be considered as four factors: cumulative GPA, math GPA, 

science GPA, and reading/literature GPA. Additional data included a series of two tests. 

These tests assessed achievement and mental motivation. The two tests were 

administered on three occasions during the school year. Longitudinal multilevel analysis 

techniques were utilized to identify correlations between a student’s academic history and 

change in achievement during the engineering design challenge course. Mental 

motivation to apply critical thinking to solve challenging problems was also correlated to 

a student’s academic history with longitudinal multilevel analysis. 

 This correlational study did not inquire about the efficacy of an engineering 

design challenge. Previous quasi-experimental research (Cantrell et al., 2006; Dally & 

Zhang, 1993; Dunlap, 2005; Dym et al., 2005; Griffith, 2005; Irwin, 2005; Lentz & Boe, 
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2004; Marra et al., 2000; Ricks, 2006; Romero et al., 2006; Roselli & Brophy, 2006; 

Weir, 2004; Yaeger, 2002) has established that engineering design challenges are 

successful in increasing student achievement and attitude toward learning. To build upon 

this research base, this study addressed the potential relationship between students’ 

academic history, measured by GPA, and their experience during an engineering design 

challenge as measured by a cognitive achievement test and mental motivation test.  

 
Research Questions 

 
 

The broad research question for this study was: Do high school students of 

various academic backgrounds experience success equally as a result of an engineering 

design challenge? More specifically, this study had two main research questions. These 

questions were analyzed and evaluated for practical and statistical significance in the 

field.  

1.  Does a general indicator of previous academic success serve as a significant 

predictor of student learning as measured by an achievement test? 

 2.  Does student motivation toward solving problems and applying critical 

reasoning skills correlate with a general indicator previous academic success? 

 
Definition of Terms 

 
 

Engineering design challenge: For purposes of this research, an engineering 

design challenge was defined as a team based activity in which students engage in 

solving a real world problem. In this engineering design challenge, mathematical models 
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were developed to predict the behaviors of systems involved. Generally, physics and 

material properties provided insight as to what variables are important considerations for 

the desired outcomes. The data extracted from manipulating models served to guide 

experimentation. Design decisions were made based on model and experimental results.  

Integrative review: Integrating modern bodies of literature demand more 

sophisticated techniques of measurement and statistical analysis. Glass (1977) 

summarized an integrative review: 

The accumulated findings of dozens or even hundreds of studies should be 
regarded as complex data points, no more comprehensible without the full use of 
statistical analysis than hundreds of data points in a single study could be so 
casually understood. Contemporary research reviewing ought to be undertaken in 
a style more technical and statistical than narrative and rhetorical. (p. 352) 
 
Effect size:  “The term effect size suggests that the difference in two populations 

is the effect of something…” (Cohen, 2001, p. 218). This measurement was in terms of 

standard deviations and was calculated by subtracting the mean of the control group from 

the mean of the treatment group and dividing the difference by the standard deviation of 

the control group.  

Longitudinal research:  “In longitudinal research, researchers collect data from 

either the same or a different sample from a given population at two or more separate 

points in time” (Gall et al., 1999, p. 175). 

Multilevel analysis:  “The term ‘multilevel’ refers to a hierarchical or nested data 

structure, usually people within organizational groups, but the nesting may also consist of 

repeated measures within people, or respondents within clusters as in clusters sampling” 

(Hox, 2002, p. ix). “Longitudinal data, or repeated measures data, can be viewed as 
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multilevel data, with repeated measurements nested within individuals” (p. 73). 

Parsimonious:  Longitudinal multilevel modeling techniques purge the non-

significant effects from the model in order to identify a simpler model that is not over-

fitted or too sample specific. The simpler model does not statistically differ in its 

prediction capacity and is known as parsimonious (Tabachnick & Fidell, 2007).  

California Measure of Mental Motivation (CM3): As published by Insight 

Assessment (2007a):  

Critical thinking (CT) is now widely recognized as an essential educational 
outcome and a powerful and vital resource in one’s personal and civic life. 
Educators and employers now seriously acknowledge the centrality of critical 
thinking throughout the levels of K-12 and post secondary education. (p. 3) 
 

“The term critical thinking disposition refers to a person’s internal motivation to think 

critically when faced with problems to solve, ideas to evaluate, or decisions to make” 

(Insight Assessment, 2007a, p. 3). “The CM3 is designed to measure the degree to which 

an individual is cognitively engaged and mentally motivated toward intellectual activities 

that involve reasoning” (Insight Assessment, p. 4). 

Professional development: Glickman, Gordon and Ross-Gordon (2004) 

suggested: 

The essence of successful instruction and good schools comes from the thoughts 
and actions of the professionals in the schools. So, if one is to look for a place to 
improve the quality of education in a school, a sensible place to look is the 
continuous education of educators—that is, professional development. (p. 370) 
 

For the purposes of this study, a skill development program format was implemented, 

“This consists of several workshops over a period of months, and classroom coaching 

between workshops to assist teachers to transfer new skills to their daily teaching” 
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(Glickman et al., 2004, p. 375). 

 
Limitations of the Study 

 
This study was conducted in an urban northwestern city with a population of 

200,000 according to the city’s website. Porter Valley High School (pseudonym) served 

1,500 student in grades 9-12. Students enrolled in the elective course “Industry & 

Engineering Systems” were juniors pursuing a science and industrial technology credit. 

Ethnic diversity in this course was typical of northwestern communities with white 

students comprising the majority population. Students from underrepresented populations 

in engineering and technology comprised approximately 20% of the students enrolled in 

this elective course. 

 
Assumptions of the Study 

 
 

The following assumptions were made regarding this study. 

1. Students in the course participated voluntarily in the study. 

2. Students participating in the pilot study were similar to the students in the 

study. 

3. The instruments utilized for gathering data accurately measured achievement 

and mental motivation. 

4. Both course sections were taught equally. 

5. Researcher’s presence did not affect results of this study. 
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CHAPTER II 
 

REVIEW OF LITERATURE 
 
 

Problem Statement 
 
 

Technological literacy is an important educational goal for all high school 

students. Experts in technological fields, and the general public, are expressing the need 

for technological literacy and asserting that our K-12 educational system must address the 

issue (Gamire & Pearson, 2006; Gorham, 2002; ITEA, 1996, 2000; Pearson & Young, 

2002). The impact of decisions related to technologies are complex, and the ability to 

make thoughtful decisions regarding our relationship between society and technology is 

essential for our nation’s continued prosperity. 

Though a need for a technologically literate citizenry is evident, many people do 

not possess the literacy to make informed decisions about technology. The ability for 

consumers, as well as business and political leaders, to weigh the impacts and 

implications of their decisions regarding the use and development of technologies is 

essential but currently insufficient. 

Most experts agree that technological literacy includes an understanding of 

engineering design. In the STL published by ITEA, engineering in general, and 

engineering design, specifically, is included. To include engineering content in 

technology education curricula demands the field identifies successful approaches to 

teaching engineering at the high school level. Engineering design challenges are one 

method of teaching the engineering process through practical application.  
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Research shows that engineering design challenges have successfully improved 

student achievement and attitude toward learning (Cantrell et al., 2006; Dally & Zhang, 

1993; Dunlap, 2005; Griffith, 2005; Irwin, 2005; Lentz & Boe, 2004; Marra et al., 2000; 

Ricks, 2006; Romero et al., 2006; Roselli & Brophy, 2006; Weir, 2004; Yaeger, 2002). 

Engineering design challenges have been implemented and researched in elementary 

school through college and include the application of engineering principles to solve real 

world problems with an active, hands-on approach.  

Researchers have considered the impact of gender, ethnicity, socioeconomic 

status and age of student participants as factors related to student experience during the 

engineering design challenge. However, available evidence suggests the academic 

background of students may impact their experience during the engineering design 

challenge (Cantrell et al., 2006; Weir, 2004). Technology education students, typically, 

represent a range of academic diversity, while engineering students tend to be high 

achievers in math and science courses. As technology education classes consider infusing 

engineering design, a natural question emerges: does a student’s general academic 

success influence their achievement and mental motivation during an engineering design 

challenge? 

 
Technological Literacy  

 
 

Study Selection Criterion 
 
 
 The need for technological literacy has been well documented in the last ten 

years. Journals such as the Technology Teacher, The Journal of Engineering Education, 
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Journal of Technology Education, and the Journal of Industrial Technology Teacher 

Education are rich in evidence that a need exists. The National Academy of Engineering 

has been actively participating in the development of a body of literature identifying, 

assessing, and supporting the relationship between technological literacy and engineering 

education. The body of literature addressing technological literacy in this integrative 

review was selected based on the following criteria: (a) publication date of 1997 or later; 

(b) publication must be peer reviewed; and (c) publication must address technological 

literacy. Literature meeting the above criteria was coded for evidence of (a) the need for 

technological literacy, (b) a lack of technological literacy in U.S. society, (c) value of 

engineering as related to technological literacy, and (d) value of the STL. 

Combinations of the following keywords were used to develop this body of 

literature: engineering, high school, middle school, junior high, elementary, technological 

literacy, standards for technological literacy, engineering education standards, design 

challenge, problem based learning, challenge based instruction, cornerstone, capstone. In 

addition to the journals mentioned above, the following databases were searched: ERIC 

via EBSCO Host, Digital Dissertations, Wilson and Google Scholar. The summary of this 

data may be found in Appendix B. 

 
Defining Technological Literacy 

 
 

Three influential works have been recognized by the field of technology 

education as having orchestrated a foundation for defining technological literacy: STL, 

Technically Speaking and Tech Tally. A unifying theme emerging from these publications 
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was that technologically literate people are able to function in our modern technological 

society (Gamire & Pearson, 2006; ITEA, 2000; Pearson & Young, 2002). More 

specifically, technologically literate people must be knowledgeable, capable, critical 

thinkers, and decisions makers. The STL, published by ITEA, established a formal 

definition of technological literacy, “Technological literacy is the ability to use, manage, 

assess, and understand technology” (ITEA, p. 9). The uniform message is strong—people 

need to be technologically literate in order to be active, functioning members of our 

modern society.  

 
A Need for Technological Literacy 

 
 
 Sixty-six articles were identified relating to the need for technological literacy. 

Two articles specifically focused on the ITEA Gallup Polls (2002/2004) as measurements 

demonstrating the general public’s perception of a need for technological literacy. Sixty-

four articles directly supported the need for a technologically literate society, each 

pointing toward K-12 and/or post secondary education as the delivery mechanism for 

reaching this goal.  

The typical article supports the STL as a guide for promoting the development of 

technologically literate students. Generally, articles relied on the increasingly complex 

nature of our technologically advanced society as evidence that students must be capable 

of thinking critically about issues regarding technology in order to be highly functional 

contributors in society. Weber explained, “With the increasing complexity of technology, 

it is important for each citizen to be able to make informed decisions about the 
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technology that he or she uses” (2005, p. 28).  

Dugger, Meade, Delany and Nichols (2003), who were an instrumental force in 

developing the STL, reiterates their importance as related to developing a healthy, 

prosperous economic foundation for the U.S. economy. Meade adds agreement regarding 

the ubiquitous nature of technology, “technology is everywhere, and that all students 

need technological literacy” (2004a, p. 18). 

Gallup Polls were commissioned to identify a national perspective on 

technological literacy. A 2004 poll provided the opportunity to deepen and verify some of 

the conclusions drawn in 2002: 

Three conclusions drawn in the earlier study are both reinforced and extended by 
the additional data reported herein. They are repeated and slightly revised in the 
following: (a) The public understands the importance of technology in our 
everyday lives and understands and supports the need for maximizing 
technological literacy. (b) the public wants and expects the development of 
technological literacy to be a priority for K-12 schools. (c) men and women are in 
general agreement on the importance of being able to understand and use 
technology and on the need to include technological literacy as part of the 
schools’ curriculum. (Rose, Gallup, Dugger, & Starkweather, 2004, p. 11) 
 

These typical examples are representative of the 64 articles supporting the need for 

technological literacy. This expression of need is triangulated between experts in the field 

and a national sample of the general public. 

 
A Lack of Technologically Literate People in the U.S. 

 
 
 Of the 66 articles related to technological literacy, 28 directly addressed the 

current status of technological literacy in the United States. All 28 articles detailed 

perspectives that highlighted the lack of an adequate level of technological literacy. 
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Concerns hinge on the concept that technological literacy is a tool of understanding 

which can provide personal and professional opportunities, and a lack of literacy leads to 

ill-informed decision making. Russell (2005) explained: 

For example, citizens often find themselves in a position of needing to vote about 
certain issues that are very technological. They may not be well informed 
regarding these issues, yet need to make a decision on how to vote. (p. 23) 
 
Typically, publications refer to the lack of technologically literate employees in 

the U.S. labor market, “In addition, technical positions are currently unfilled due to the 

lack of a workforce with a sustained, if not growing, level of technological competency 

and a populace with a higher level of technological literacy” (Gorham, Newberry, & 

Bickart, 2003, p. 95). The demand for and lack of technologically literate people for the 

purposes of a strong society, capable political leaders, and cutting-edge economic 

advantages is voiced clearly in these publications. 

 
Technological Literacy Includes an Understanding of Engineering 

 
 

The role of engineering in developing technological literacy has been established 

in the STL. ITEA has identified 20 standards for facilitating the development of 

technological literacy. Standard number nine reads, “Students will develop an 

understanding of engineering design” (ITEA, 2000, p. 210). Support for the inclusion of 

engineering design in the field of technology education was evident in 65 of the 66 

articles that clearly articulated direct support for the STL. Thirty-three of these articles, 

specifically, mention engineering. This reference to engineering is further evidence of its 

particular importance to experts in the field. The articles that refer to engineering did not 
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state all 20 standards. Rather, these articles identified key standards for discussion. 

Gorham and colleagues (2003) described a synergistic relationship between engineering 

and technology education toward a common goal of technological literacy, suggesting the 

Engineering Criteria 2000 and STL (compared in Appendix C) show “clear connections” 

(p. 97).  

As suggested by Hailey, Erekson, Becker, and Thomas (2005), “The design 

process described in [STL] Standard 8 is very similar to the introductory engineering 

design process described in freshman engineering design texts with two notable 

exceptions” (p. 24).  

The first highlighted difference shows the role of analysis in introductory 
engineering design compared with Standard 8, which prescribes selecting an 
approach, making a model or prototype, and testing the approach. Engineering 
programs teach analysis as the decision making tool for evaluating a set of design 
alternatives, where ‘analysis’ means the analytical solution of a problem using 
mathematics and principles of science. (pp. 24-25) 
 
The second highlighted difference shows the importance of creating or making 
the designs, as prescribed by Standard 8, in contrast with the introductory 
engineering design process, which prescribes that students develop ‘design 
specifications’ so someone can create the design, not necessarily the engineer or 
engineering student. (p. 25) 
 

Appendix D shows a graphic comparison the two design processes published by Hailey 

and colleagues. 

Gattie and Wicklein (2005) compared the design process of engineering with that 

of technology education and conclude that similarities exist but differentiation is 

primarily involved with the application of math and science for predictive analysis: 

The technology education design process is directed toward the construction of a 
prototype model that can be tested for failure or success, but lacks the 
mathematical rigor that would enable the process to be repeated. Moreover, the 
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absence of analysis precludes the development of predictive results. This 
fundamental difference is the basis for change within the current technology 
education paradigm suggested in this paper, and is reflected by the survey results. 
(p. 8) 
 

This review suggests that one key component of engineering which may be infused into 

the technology education design process is the mathematical and scientifically based 

analytical steps necessary for prediction prior to prototyping. Technically Speaking serves 

as further evidence of the need for an understanding of engineering as part of developing 

technological literacy. “An engineering-led effort to increase technological literacy could 

have significant, long-term pay-offs, not only for decision makers in government but also 

for the public at large” (Pearson & Young, 2002, p. 112).  

Lewis (2005) suggested that one method of integrating engineering and 

technology education is through design challenges. This further corroborates the position 

made by Gorham and colleagues (2003) that a synergistic relationship is evident between 

the fields. Often, technology educators pose design challenges to students. As students 

progress through the technology education design model, the addition of predictive 

analysis to this procedure would facilitate the integration of engineering design. Lewis 

commented:  

Design appropriate for technology education is characterized by open-ended 
problems where the designer bridges the gap between past experiences and the 
current problem to be solved; one method of achieving this transition is through 
engineering design challenges. (p. 49) 
 
 

Characteristics of Engineering Design 
 
 

The definition of engineering design has been established by the Accreditation 
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Board for Engineering and Technology (ABET, 2007): 

Engineering design is the process of devising a system, component, or process to 
meet desired needs. It is a decision-making process (often iterative), in which the 
basic sciences, mathematics, and the engineering sciences are applied to convert 
resources optimally to meet these stated needs. (p. 21) 
 

Karl Smith (2000), in a reflective column in the Journal of Engineering Education, 

surveyed the teaching of engineering design focusing on the first and second year 

students. Smith highlights several texts which articulate engineering design on a level 

appropriate for early design experiences. Introduction to Engineering Design, by Eide, 

Jenison, Mashaw, and Northup (2001) was among the noteworthy texts and corroborates 

a similar proposition regarding an engineering design model by Dym and colleagues 

(2005). Table 1 draws a comparison between the Eide and Dym models of design. The 

Eide model is presented as a series of steps in an iterative process, however, for purposes 

of clarity, is shown through association with the underlying principles of the Dym model. 

 
Table 1 
 
Comparison of Eide and Dym Models for Engineering Design 

Dym Model (2005) Eide Model (1998, 2001) 
Design thinking as divergent-convergent 
questioning 

Identify the need /define problem/identify constraints/ 
specify evaluation criteria 

Thinking about designing systems  
a. Thinking about systems dynamics Define problem/identify constraints 
b. Reasoning about uncertainty  Analysis/mathematical predictions 
c. Making estimates Analysis/mathematical predictions 
d. Conducting experiments  

Making design decisions 
 

Search for solutions/generate alternative solutions/ 
optimization/decision/design specification 

Design thinking in a team environment  
The language of engineering design  Analysis/mathematical predictions/communicate design 

specification 
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 Key elements of engineering design for this study are outlined in Table 2. These 

elements represent a synthesis of the two models outlined in Table 1.   

 
Problem Definition 

 
Problem definition includes addressing well-defined and ill-defined questions, as 

stated by Dym and colleagues (2005): 

No sooner has a client or professor defined a series of objectives for a designed 
artifact than the designers–whether in a real design studio or in a classroom–want 
to know what the client really wants. What is a safe product? What do you mean 
cheap? How do you define the best? (p. 104) 
 

As part of defining the problem, a clear view of the need must be articulated in 

association with identifying the constraints governing the problem. This clear view of the  

 
Table 2 

Synthesis of Key Elements of Engineering Design 

Element Characteristics 

Problem definition 
 

Questioning 
Constraints 
Component/system level 
Evaluation criteria 

Solutions 
 

Research existing 
Brainstorm alternative 

Analysis/modeling 
 

Prediction 
Uncertainty 
Estimation 

Experimentation 
 

Empirical data gathering 
Based on analysis 
Prototyping 

Decision making 
 

Evaluation of potential solutions 
Optimizing 

Teamwork 
 

Working effectively on teams 
Communications 
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problem and its boundaries is well articulated in the literature and these two design 

models. 

 
Solutions 

 
 

Multiple solutions are identified through two venues: research existing solutions 

and creatively brainstorming alternative solutions. Strong design teams gather 

information from multiple sources, judge its quality, document their efforts (Davis, 

Gentili, Trevisan, & Calkins, 2002).  

 
Analysis/Modeling 

 
 

“Mathematical or analytical models used to express some aspect of an artifact’s 

function or behavior, where the behavior is in turn often derived from some physical 

principle(s)” (Dym et al., 2005, p. 108). This analysis should consider technical, 

financial, system, life-cycle, and potential failure (Davis et al., 2002). Modeling 

approaches are limited and incomplete at times, and, therefore, statistical tools should be 

considered to further understanding of the phenomenon. Estimation may be used since 

systems are complex, and modeling every aspect of the behavior is not always practical 

(Dym et al., p. 106). 

 
Experimentation 

 
 

Experimentation is guided by analysis and modeling for purposes of validating 

the model and providing empirical evidence where data is insufficient. “The design of 
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systems is rarely accomplished exclusively by applying fundamental scientific principles. 

In most cases, the design of systems also requires some use of empirical data and 

experimentation” (Dym et al., 2005, p. 106). An interactive relationship between 

experimentation and modeling serves to guide the development of understanding and 

design progression (Box & Liu, 1999). 

 
Decision Making 

 
 

“[D]esign is a rational process of choosing among alternatives” (Dym et al., 2005, 

p. 107). A decision matrix helps assist students in objectively considering the alternatives 

based on their advantages and disadvantages (Gomez, Oaks, & Leone, 2004). Quality 

design decisions involve full team participation and consensus and an optimized solution 

based on iteration and refinement (Davis et al., 2002). 

 
Teamwork/Communications 

 
 

ABET criterion 3(d) articulates a need for students to function on a 

multidisciplinary team. “[B]oth cornerstone and capstone project based courses are seen 

as opportunities to improve students’ ability to work in teams, as well as their 

communication skills” (Dym et al., 2005, p. 107). Good teams exhibit characteristics 

such as clear purpose, defined roles and responsibilities, inspiring climate and attitude, 

effective resource management, and an incentive implementation plan (Davis et al., 

2002). An essential component of design team success is communications. “Different 

languages are employed to represent engineering and design knowledge at different 
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times, and the same knowledge is often cast into different forms or languages to serve 

different purposes” (Dym et al., p. 108). Dym further suggested multiple communication 

mediums which include verbal, graphical, mathematical or analytical models, and 

numerical.  

 
Engineering Design Challenge 

 
 

Literature describing the engineering design challenge draws on various terms, 

which, while not synonymous, do refer to similar pedagogical approaches of interest to 

this study. The terms project based learning (PBL; Dym et al., 2005), active learning 

(Yaeger, 2002), problem based learning (Dunlap, 2005; Griffith, 2005; Irwin, 2005), 

challenge based instruction (CBI; Roselli & Brophy, 2006), interactive learning activities 

(Cantrell et al., 2006), project-driven approach (Dally & Zhang, 1993), design challenge 

(Romero et al., 2006), cornerstone design (Dym et al.), capstone design (Dym et al.), and 

team-based project-learning (Marra et al., 2000), all serve to generate literature for this 

review which embodies the following working definition of engineering design 

challenge. 

For purposes of this research, an engineering design challenge was defined: The 

engineering design challenge is a team based activity in which students engage in a real 

world problem. This iterative approach is initiated by negotiation of the problem 

definition. Design teams and clients work together to establish their problem and 

constraints. Information provided by modeling and analysis may illuminate new concerns 

or possibilities which encourages revisiting the problem definition. 
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Models are developed to predict the behaviors of systems involved. Generally, 

physics and material properties provide insight as to what variables are important 

considerations for the desired outcomes. These models may be simplistic and serve as 

estimates or complex and very closely represent actual system behavior. The data 

extracted from manipulating models serves to guide experimentation. The results inform 

model refinements. This cyclical nature is the key component differentiating engineering 

design challenges from other problem solving methodologies. Decisions are made based 

on model and experimental results. These decisions lead to optimizing the system based 

on the problem as defined by the client and engineering design team. 

The design challenge should integrate principles, concepts, and techniques 

learned in earlier engineering courses (Napper & Hale, 1999). The techniques learned 

previously can be contextualized and applied in the challenge. As stated by Marin, 

Armstrong, and Kays (1999): 

Students must first learn to crawl before they can walk or run. This means there 
must be sufficient course work in the appropriate engineering science upon which 
the capstone design experience will be built. The engineering science content of 
this course work should focus on the creative application of mathematical and 
scientific knowledge that is appropriate for the modern engineering practice of the 
engineering discipline. (p. 19) 
 

The application of mathematical and scientific knowledge is most frequently evident in 

modeling system behaviors. These models are representations in which the physical 

characteristics of a system can be described mathematically for prediction and 

explanation.  

As students are posed with ill-defined problems and expected to synthesize 

previously learned material in order to develop a solution to a problem, the need for 
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leadership and mentorship arises (Napper & Hale, 1999). The mentorship must focus on 

encouraging the student to take ownership of the problem and its design which includes 

problem definition. Students do not need to “solve” all aspects of a chosen problem. 

Rather, they should narrow their focus to one or two key elements of the design and do a 

thorough job on these elements. 

Students also need to be team leaders and are expected to take lead roles at 

different times during the design process. Carrol and Hirtz (2002) corroborate the Marin, 

Armstrong and Kay proposition that leadership and project management are key 

components of the design challenge, but also reinforce the need for mathematical 

modeling and a manufacturing consideration (p. 245). In their article, the challenge 

included designing a solar race car for the Sunraycer competition with two objectives: 

providing a multidisciplinary approach to the teaching and learning process and 

integrating new students into a design team. Teamwork is a critical aspect of the learning 

experience as design challenges (in the case of a solar powered race car) may be so 

complex that a single student could complete the challenge in a practical timeline. 

 
Engineering Design Challenges 

 
 

Published Integrative Literature Reviews 
 
 
 No quality integrative reviews have been published which effectively address the 

issue of engineering design challenge efficacy related to student learning. Clive Dym, a 

well-recognized authority in the field of engineering education, draws the following 

conclusion, “In brief, available research suggests that these kinds of courses appear to 



25 
  
improve retention, student satisfaction, diversity, and student learning” (Dym et al., 2005, 

p. 114). His judgment, while corroborated by other experts in the field, is based in data, 

“Beyond the anecdotal data (e.g., [125]), there is hard evidence that supports these 

assertions [126-138]. Assessment and outcomes research has been done much more 

vigorously in recent years (see [126] for a comprehensive survey)” (p. 110). A sample of 

four publications were reviewed from his 12 references and led to concerns regarding the 

quality of this “hard data” in addressing his claims on student satisfaction and student 

learning. Dym’s comprehensive survey, reference #126, (Adams, Turns, Martin, 

Newman, & Atman, 2004), was intended for publication but was not printed. The lead 

author returned an email copy of this revised paper, later published in 2006 (Turns et al., 

2006). This revision, however, is no longer a comprehensive survey addressing the 

assessment and outcome of engineering design challenge based instruction. 

Dym cited Pavelich and Moore (1996), whose study compared engineering 

freshmen to sophomores and freshmen to seniors and attributed intellectual development 

to the engineering design experiences. The internal validity of this study is low since the 

effect of maturation and history may account for the developmental changes rather than 

the treatment of engineering design experiences. Adams, Turns, and Atman (2003) 

compared freshmen and senior engineering students at the university level. However, 

they did not distinguish between students who had experienced engineering design 

challenges. Therefore, the developmental data gathered, and conclusions drawn, do not 

support the assertion that engineering design was the primary influential factor. The last 

study considered in the judgment regarding the quality of literature surveyed by Dym was 
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published by Olds and Miller (2004), which surveyed students 4, 5, and 6 years after their 

experience with a freshmen design course and attributed student success to this one 

isolated event. This conclusion elicits concern regarding the internal validity of the study, 

specifically, maturation and history. In conclusion, while experience may have led Dym 

to appropriate conclusions which passed the peer review process, this sample of data was 

determined to be low quality, generally, addressing the assertion of retention rather than 

student satisfaction or student learning. Of the four references sampled, internal validity 

issues and external validity issues could account for the findings rather than the 

engineering design experiences. The remaining eight references included studies on 

general retention data, rather than student learning and attitude toward learning, and 

included personal communications which were not published, as well as a reference to a 

resource online which was no longer available. 

 
Study Selection Criterion 

 
 

A body of literature was established to shed light on the efficacy of engineering 

design challenges related to student learning and attitude toward learning. Engineering 

design challenges have been of increasing interest in the domain of engineering and 

technology education in recent years. Literature was reviewed from sources including the 

Technology Teacher, The Journal of Engineering Education, Journal of Technology 

Education, Journal of Industrial Technology Teacher Education, and the National 

Academy of Engineering. 

 For purposes of this review, 13 studies have been selected. Selection criteria 
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included the following: (a) publication date of 1993 or later; (b) publication must be peer 

reviewed; and (c) research must focus on engineering content delivered using the 

characteristics of an engineering design challenge defined for this study. Literature 

meeting the above criteria was coded for evidence of (a) research design, (b) student 

achievement, (c) student attitude toward learning, and (d) study quality. 

Combinations of the following keywords were used to develop this body of 

literature: engineering, high school, middle school, junior high, elementary, technological 

literacy, standards for technological literacy, engineering education standards, design 

challenge, problem based learning, challenge based instruction, cornerstone, capstone. In 

addition to the journals mentioned above, the following databases were searched: ERIC 

via EBSCO Host, Digital Dissertations, Wilson, and Google Scholar.  

Studies were discovered, but rejected, which exhibited extremely low internal 

validity. Validity was considered extremely low if the results could be attributed entirely 

to other events or variables rather than the independent variables in the study. After the 

selection criteria had been met, data were gathered from each study and was summarized 

in Table 3. 

 Each study was either of quantitative or mixed design. The mixed studies 

supported their qualitative data and conclusions with quantitative data, thus, it was 

deemed reasonable to consider the quantitative data in the study as representative of the 

general conclusions drawn by the authors. Studies ranged from university to elementary 

level. Typically, two dependent variables were considered, student achievement and 

attitude toward learning. Student achievement was the primary concern since it was  



 

Table 3 
 
Summary of Study Characteristics and Results 
 
  Research design 

──────────────────────────── 
Student achievement 

───────────────────────────── 
Student attitude 

───────────────────────────── 
Study quality 

─────────── 

Author, year n Univ HS MS Elem 
Control 
group 

Single 
group Measurement Improvement Sig.* SMDES Measurement Improvement Sig.* SMDES High Med Low 

Roselli & 
Brophy (2006) 

300 X    X X Exam X  .12 Course 
evaluation 

X X .08 X   

Yaeger (2002) 150 X    X  Exam X  .02      X  

Weir (2004) 78 X    X  Exam X  .42 Survey X  .17 X   

Dally & Zhang 
(1993) 

37 X     X Instructor 
perception 

X   Instructor 
perception 

X     X 

Marra et al. 
(2000) 

53 X     X Perry scheme X X .65     X   

Dunlap (2005) 31 X     X     Self-efficacy 
scale 

X X 5.00  X  

Irwin (2005) 139  X   X  Exam X X .65     X   

Griffith (2005) 504  X   X      Survey X X .23   X 

Cantrell et al. 
(2006) 

434  X   X  Exam X       X   

Rogers (2005) 62  X   X      Instructor 
perception 

X  .70  X  

Ricks (2006) 131   X   X Exam X X 2.08 Survey X X 1.02 X   

Romero et al. 
(2006) 

25    X  X Instructor 
perception 

X   Instructor 
perception 

X    X  

Lentz & Boe 
(2004) 

25    X  X Instructor 
perception 

X   Instructor 
perception 

X    X  

* p < .05
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considered a measurement of student learning. Attitude toward learning was of interest 

since the field of education generally recognizes a relationship between student attitude 

toward learning and student learning. As articulated in a National Academy of 

Engineering publication (Gamire & Pearson, 2006),  

The committee does not consider attitude to be a cognitive dimension in the same 
way knowledge, capability, and critical thinking and decision making are. 
However, a person’s attitude toward technology can provide a context for 
interpreting the results of an assessment. In other words, what a person knows—
or does not know—about a subject can sometimes be correlated with his or her 
attitude toward that subject. (p. 3) 
 

This importance of student attitude toward learning is also evident in the literature as 9 of 

the 13 studies considered for this integrative review measured attitude toward learning as 

an outcome.  

 Study quality was rated as a composite consideration of internal and external 

validity. A typical “lower” quality study used instructor perceptions as their 

measurement. Lower quality studies had multiple internal validity issues such as Rogers 

(2005) who drew comparisons between Project Lead the Way teachers (PLTW) and non-

PLTW technology teachers. His conclusions on pre-engineering assume that PLTW 

teachers are teaching engineering and non-PLTW teachers are not. This may generally be 

true, but the assumption was not substantiated by data and was, therefore, suspect. 

Yeager (2002) used a control and experimental group of self-selected engineering majors. 

This study was rated lower in quality due to a threat of internal validity, specifically, 

history and differential selection. Students in the experimental group not only experience 

the intervention, but were required to attend class for 25% more time than their 

counterparts in the control group. Two sections of the course were taught and students 
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elected to participate in either section, knowing the treatment required additional time, 

thus, an argument could be made that sections were not similar at the onset of this study. 

 
Student Achievement 

 
 
 Ten studies measured student achievement, and each indicated positive change, 

refer to Table 3. This change was typically measured by an exam, generally, a semester 

exam on the college level or a unit exam in secondary education. Exams were typically 

multiple choice. Some were developed specifically for the research project, while others 

were traditionally used in the course. Marra and colleaegues (2000) differed from the 

other studies because she used the Perry Scheme as a measure of achievement:  

William G. Perry developed a quantifiable measure of intellectual development 
from studies of Harvard and Radcliffe college students in the 1960s. The Perry 
model has a range of “positions” from 1 to 9, each representing an increasingly 
complex and mature level of intellectual development. Several Perry positions are 
relevant to college student development and to first-year students in particular. (p. 
39) 
 

One study at the university level and both studies at the elementary level used instructor 

perception of student improvement as their sole indicator of achievement. While 

instructor perception is a bias and subjective measure, it may be appropriate for 

consideration on the elementary level as a reasonable means of measuring student 

understanding of content material, thus, these elementary studies were rated with a 

medium quality. Instructor perception on the University level is not the most appropriate 

measure of achievement and, therefore, Dally’s 1993 study was rated relatively low on 

the quality scale. 

 A typical study at the college level used either multiple sections as control and 
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treatment groups or previous year semester test results as control and current semester 

test results as the experimental group. Notable results emerged from two of the four high 

school research studies which considered student achievement. Irwin (2005) conducted a 

high quality study with control and experimental groups and delivered a problem based 

learning activity including three units over an eight week span. Results were statistically 

significant (p < 0.05) with an standardized mean difference effect size of 0.65, considered 

medium (Cohen, 2001, p. 222). Cantrell and colleagues (2006) conducted a study 

wherein engineering design challenge activities supplemented the standard curriculum, 

and student performance was compared to statewide statistics on the standardized tests. 

This study concluded engineering modules reduced achievement gaps of most ethnic 

minority groups. Weir (2004) also differentiated her data based on student groups, but 

she considered an academic top half and an academic lower half in a university 

engineering course. Her conclusion was that the upper half improved significantly 

(p < 0.05), while the lower half was not significantly (p > 0.10) different between the pre 

and posttest measures. 

 In general, these data suggest that learning techniques associated with engineering 

design challenges are successful in improving student achievement. Specifically, Weir 

(2004) and Cantrell and colleagues (2006) presented conflicting results. The Cantrell et 

al. study represented a collaborative effort between the College of Education and the 

College of Engineering at the University of Nevada and middle school science teachers. 

The partnership program administered during the 2005 school year was entitled Teachers 

Integrating Engineering into Science. Three units of instruction were collaboratively 
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developed which included web-based simulation activities, lesson plans, a design project, 

and assessment. Results of the assessment were disaggregated by gender ethnicity, 

special education and socioeconomic level. The study sample included 434 eighth-grade 

student participants in approximately 30 classrooms and compared mean scores to similar 

groups from the previous year. This study concluded that typically low achieving 

students, disaggregated by their ethnic minority status, improved more dramatically than 

did typically high achieving students. The study conclusion was that engineering design 

challenges generally reduce the achievement gap. In contrast, Weir concluded that 

engineering challenges extend the achievement gap by improving the academically 

successful students disproportionately to lower achieving students. Weir developed an 

“active-based-learning curricula,” which was implemented in an experimental control 

treatment design on the undergraduate level in transportation engineering. Active 

learning strategies implemented in the experimental group included questioning, problem 

solving in individual and group settings as well as discussions to apply knowledge to 

“real-life” problems. The control group course was taught one year prior to the treatment 

group course, consisting of 78 junior and senior students at Worcester Polytechnic 

Institute (WPI). 

 
Student Attitude Toward Learning 

 
 
 Nine of the 13 studies considered attitudinal measures (refer to Table 3). The 

measures ranged from motivation, perception of value, enthusiasm, enjoyment, self 

efficacy to teamwork. This broad range of meanings, while differing, all refer to a 
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student’s perceived experience in the classroom and hold the potential to reflect a 

positive improvement. Of the nine studies considering attitude, all showed some level of 

improvement with four studies indicating statistically significant improvement at the 

p < 0.05 level. Standardized mean difference effect sizes ranging from 0.08 to 5.00. 

Attitude effects do not appear to covary with study quality since high-quality studies have 

both high and low effects. 

 Typical attitudinal measures were either: researcher generated survey 

questionnaires with no mention of validation or instructor (teacher) perceptions. One 

study used the course evaluations as an instrument. This course evaluation, while a 

standardized measurement instrument, was not developed for the purpose of measuring 

student attitude. Rather, its purpose is a rating of the quality of instruction. While each 

study did show improved attitude, conclusions drawn must be conservative. Low effect 

sizes may be artificially low as a result of inappropriate instruments, not designed to 

answer the question at hand. Large effect sizes may be over-inflated, again, as a result of 

poorly constructed instruments. Thus, for the purpose of this study, an instrument was 

administered which had been developed and validated, specifically, for measuring 

attitude in high school students.  

 
Need for Further Research 

 
 
 This integrative review, generally, concludes approaches to teaching which 

include application of an engineering design challenge increase student learning and 

improve student attitudes regarding learning. This conclusion is based on a representative 
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sample which surveys elementary through university studies. One area of contention yet 

to be resolved is whether engineering design challenges work equally well with 

successful and struggling learners.  

 Technology education has typically been a curricular area where a broad range of 

students can be successful, from the academically gifted students to the academically 

challenged students. Many experts in the field are voicing stronger concerns that 

engineering should be a more integral part of technology education. With this infusion of 

engineering into technology education, an increasingly diverse group of student clientele 

will be enrolling in these courses. Engineering, traditionally reserved for the 

academically elite students, will be intersecting a broad cross section of the general 

education populace. This interface necessarily includes a subset of students who are 

challenged by traditionally “academic” material. The emergent question to be addressed 

in this study was: do high school students of varying academic aptitudes experience 

success equally as a result of an engineering design challenge?  
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CHAPTER III 
 

METHODOLOGY 
 
 

The significance of this study was to build a research body of evidence regarding 

student participation in an engineering design challenge. Experimental research has 

shown that students, generally, improve as measured by achievement and attitude toward 

learning as a result of engineering design activities more dramatically than without these 

activities. This study seeks to shed light on the relationship between achievement during 

an engineering design challenge and mental motivation as predicted by a student’s 

academic background. The practical significance of this study was twofold. First, 

technology education students may not all benefit equally from an introduction of 

engineering concepts through an engineering design challenge. Unfortunately, as 

discussed in the literature review, current literature was sparse and ambiguous on this 

topic. Second, students in engineering education courses differ in academic backgrounds. 

An understanding of the relationship between student background and their potential 

growth during an engineering design challenge was beneficial in developing a strong 

educational experience for both fields. 

“It is important to realize that not all research involves experiments; much of the 

research in some areas of psychology involves measuring differences between groups 

that were not created by the researcher” (Cohen, 2001, p. 8). The purpose of this 

correlational research study was to determine if students’ academic success was 

correlated with: (a) a change in achievement during an engineering design challenge, and  

(b) a change in mental motivation toward solving problems and critical thinking during 
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an engineering design challenge.  

The criteria variables for this study were a student’s change in cognitive 

achievement (specific to the course in study) and motivation to apply critical thinking and 

reasoning skills to solve problems. This change was established by measurements on 

three occasions during the school year. An achievement test was developed in 

cooperation with the course instructors based on course goals and objectives. The need 

for a valid and reliable instrument was of paramount importance, and, therefore, a six-

step procedure for criterion referenced tests was adopted as presented by Schloss and 

Smith (1999). The criterion variable of mental motivation to apply a student’s critical 

thinking and reasoning skills was measured by a professionally developed instrument 

known as the California Measure of Mental Motivation (CM3). This instrument has been 

validated for high school students and was considered reliable (Insight Assessment, 

2007b).  

Longitudinal multilevel analysis techniques were employed to evaluate potential 

correlations between the predictor variables and the outcome variables. “The term 

‘multilevel’ refers to a hierarchical or nested data structure, usually people within 

organizational groups, but the nesting may also consist of repeated measures within 

people, or respondents within clusters as in clusters sampling” (Hox, 2002, p. ix). This 

multilevel analysis modeling facilitated the longitudinal repeated measures design. It also 

controlled for differences between course sections and enabled the predictors to be 

differentiated by subject area. 
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Research Hypotheses 
 
 

Research (Cantrell et al., 2006; Weir, 2004) suggests conflicting evidence 

regarding a relationship between academic success and the efficacy of an engineering 

design challenge. Two null hypotheses were developed regarding the relationship 

between engineering design challenge efficacy and a student’s academic background. 

The null hypotheses were that any correlation that existed between a student’s academic 

background and their change in achievement or mental motivation throughout the school 

year was due to chance.  

 
Research Question 

 
 
 A survey of the related literature has indicated that engineering design challenges 

are successful. Available evidence does not address definitively the potential relationship 

between a student’s general academic success and their growth during an engineering 

design challenge. The emergent broad research question for this study was: do high 

school students of varying academic aptitudes experience success equally as a result of an 

engineering design challenge? More specifically, this study had two main research 

questions: (a) Does a general indicator of previous academic success serve as a 

significant predictor of student learning as measured by an achievement test, and (b) does 

student motivation for solving problems and applying critical reasoning skills correlate 

with a general indicator of previous academic success? 
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Instructional Setting 
 
 
 A high school classroom has been identified in which a physics teacher partners 

with a technology education teacher to infuse and apply engineering concepts in a course 

called, “Industry and Engineering Systems.” This junior level, high school course 

includes an academically diverse array of students and a semester long engineering 

design challenge. In the fall term, students participated in hands-on learning experiences 

which represent an intersection of technology education and applied physics, for 

example; concepts such as motion, forces, electricity, magnetism and simple machines, as 

well as welding, machining, mechanical fasteners, cutting and bending metals. During the 

spring term, students applied these concepts in design teams to the Electrathon America 

challenge (Appendix E). The spring term culminated with fabrication, testing, redesign 

and, finally, racing the student designed and built electric cars. 

 Classroom lecture, activities and lessons modeled infusion of engineering 

concepts into a technology education classroom. Typical technology education projects 

included magnetic levitation cars, Lego/solar cars, gearing systems, and electric motors. 

These projects facilitated the marriage of practical application with engineering. The 

instructor’s classroom goals included encouraging the students to see the application of 

math, science, language arts to hands-on projects and learning basic engineering concepts 

(M. Brewer, personal communication, December 1, 2006). As stated in the syllabus, the 

course is comprised of a science component and industrial technology component: 

SCIENCE:  Physics itself is the study of how things around us in the real world 
work and why they do the things that they do.  Engineering is largely the 
application of physics.  The course will use mostly hands-on activities to explore 
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and discover the major concept of physics dealing with motion, forces (such as 
gravity), and simple machines.  We will also study areas of electricity, heat, 
magnetism, aerodynamics, and air pressure.  This course will introduce many 
concepts of engineering and the designing of systems.  The student will learn 
mostly by doing small group projects or labs.  We will then apply this knowledge 
to real life activities.  
 
INDUSTRIAL TECHNOLOGY:  In this part of the course, we will be using 
mostly metals but to some degree all of the technology lab facilities here at Porter 
Valley, including mechanics, electronics, drafting and woods.  We will learn to 
use these facilities to design, construct, and test some of our major projects. 
Emphasis will be placed upon machine and tool safety, individual skill building, 
proper tool selection and setup, and operation.  The labs will provide a bridge 
between what we learn in the classroom to practical applications in a real world 
setting.  We will apply technology, and the skills we have learned in math, 
science and communication to several major projects. 
 

During the fall 2007 semester, teachings provided a foundational knowledgebase for the 

spring 2008 term. In early January 2008, students started the engineering design 

challenge with a 1/10th scale model of an electric car and driver. Teams of 2-6 students 

designed, modeled and built their Electrathon vehicle. Constraints were imposed by the 

Electrathon rule book and local facilities. Designs were optimized for minimal weight, 

tire scrub, air resistance, and other characteristics. Predictive analysis was incorporated 

into the modeling in the form of model car wind tunnel testing, gear ratio calculation, 

power demand calculation, and battery life to distance traveled ratios. Understanding 

these parameters was developed in the fall term by building and testing smaller projects 

such as magnetic levitation cars and calculating horsepower capacity of a student built 

electric motor. 

 
Participating Instructors 

 
 

For purposes of anonymity, the participating teachers, district, and students will 
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be referred to with pseudonyms. Moe Brewer has been designing, building and racing 

vehicles with students for over 14 years while Oly Rivet has been teaching for 10 years. 

Mr. Brewer and Mr. Rivet usually have over 75 students enrolled in the Industry and 

Engineering Systems courses in which they teach students to think, problem solve, and 

work as teams to design, build, modify, maintain, and race an Electrathon vehicle. 

Mr. Brewer is a certified teacher in his state with a physics, math and chemistry 

background. Mr. Rivet is a certified career and technical education teacher endorsed in 

manufacturing technology. They teach courses at Porter Valley High School, which 

served approximately 1,500 students in grades 9-12. 

 
Study Participants 

 
 

Of critical importance to generalizability is sample size. In the two sections that 

participated in the study, a total of 53 11th-grade students made up the sample. These 

students represented a typical classroom in the northwestern states including students 

who are academically high achievers and students who struggle with their performance in 

school. According to the instructors, students who elected to take this class, generally, 

have one of two motivations: they were headed to college to be engineers or were 

students having failed freshmen and/or sophomore science and needed a credit to 

graduate. Thus, the academic diversity ensured this study had the potential to discover 

trends and correlations across a broad range of student achievers. 
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Institutional Review Board 
 
 
 The institutional review board was apprised of this study and approved the study 

as exempt #2, protocol number 1838 (Appendix F). The school district provided a written 

letter of support for this study (Appendix G). Letters of information for the participating 

teachers may be found in Appendix H and a letter for students and parents in Appendix I 

regarding the pilot achievement test. The school district used their letterhead to mail the 

formal letter of information to parents for this study (Appendix J). 

 
Data Collection Procedures 

 
 

Overview 
 
 

In order to address the research questions, a correlational study was conducted in 

which data were gathered on student achievement and mental motivation during the 

course. Quantitative data were gathered on three occasions, October, December, and 

April. Multiple measurements facilitated analysis of changes during the student 

experience, as well as establishing trends. The multiple measurements lent power to the 

statistical techniques employed and strengthened conclusions based on data. Trends and 

changes during the year were compared statistically to a general indicator of each 

student’s academic success. This indicator was an analysis of the junior students’ grade 

point average which includes math, science, and literature/reading scores 

(communications).  

 “Achievement tests are designed to provide information about how well test 
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takers have learned what they have been taught in school” (Gay & Airasian, 2000, p. 

154). The United States Department of Education (2008) recognized the importance of 

student achievement in the organization’s mission statement by having stated, “ED's 

[U.S. Department of Education’s] mission is to promote student achievement …” 

Achievement was measured by a test developed in partnership between the researcher 

and the classroom teachers. This test was based, specifically, on the goals and objectives 

of the course, and test items were drawn from validated test banks which included state 

departments of education and textbook publishers. A pilot test was generated, 

administered, and results analyzed to ensure validity and reliability of the instrument. 

Three similar variations of this multiple choice test were created from the pilot test and 

utilized during the study. 

 Mental disposition assessment complements achievement testing since it 

measured the students’ motivation to attempt to solve a problem by thinking critically 

about issues. Mental motivation measurements were made using the CM3. An overview 

may found in Appendix K. The CM3 test assessed a student’s motivation to apply critical 

thinking and reasoning skills for decision making or problem solving. Importantly, this 

test has been validated for use with high school students and is considered reliable 

(Appendix L). 

 Measures of achievement and mental motivation provided an opportunity to 

understand the extent to which students were motivated to solve complex problems and 

think critically during engineering design challenges. This understanding of the 

correlation between a student’s academic history and growth during an engineering 
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design challenge complements the growing literary body which indicates that engineering 

design challenges are successful but failed to identify a student’s academic background as 

a potential predictor of growth. This repeated measures design allowed the researcher to 

identify cognitive growth in terms of achievement and affective growth related to mental 

motivation for the purpose of correlation with a general indication of a student’s 

academic history.  

Based on the earlier definition of an engineering design challenge, an assessment 

rubric was developed and utilized to quantify the extent to which characteristics of an 

engineering design challenge have been implemented by the instructors during this 

course, thus, differentiating it from other problem solving methodologies. Each site visit 

during the school year included administration of achievement and mental motivation 

tests in addition to observation and assessment of the learning environment. The 

observations served to extend the generalizability of this research by ensuring a rich 

description of the teaching methods and content. Engineering design challenges may take 

many forms, varying by instructor, classroom, and age group. In order to ensure 

generalizability, thorough documentation was deemed necessary to describe the specific 

content and methods of delivery.  

 
Instrumentation 

 
 
 Correlational studies are comprised of predictors and outcome variables. “A 

correlation coefficient is a precise mathematical expression of the types of relationships 

between variables…. In other words, the coefficient indicates the extent to which scores 
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on one variable co-vary with scores on another variable” (Gall et al., 1999, p. 212). 

Predictor variables in this study were scores on grade point averages in math, science and 

reading/literature. Outcome or criterion variables were the changes in achievement 

measured by a multiple choice test and motivation to apply critical thinking skills as 

measured by the CM3. 

 
Predictor–Academic Performance 
 

Student grade point average was used as a general indicator of student academic 

performance. The school district personnel promptly delivered transcripts for 52 of the 53 

participants. The remaining transcript was unavailable to the district because the student 

had transferred, and the original school had not complied with district requests for the 

transcript. Participants with predictor data were removed from analysis, as explained by 

Hox (2002), “If explanatory variables are missing, the usual treatment is again to remove 

the case completely from the analysis” (p. 95). Grade point averages were computed for 

each student’s freshmen and sophomore years which represented a cumulative grade 

point. Additionally, classes recognized for graduation purposes as math, science and 

communication, were tabulated and averages computed. 

 
Outcome–Cognitive Achievement 
 
 Pilot test development and administration. Criterion variables included 

achievement and motivation to apply critical reasoning skills. A suitable test had not been 

developed for measuring the extent to which the goals and objectives of this course have 

been reached. Therefore, an instrument was developed and pilot tested. Schloss and 
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Smith (1999) proposed a six-step methodology for developing and testing an instrument. 

This method was adapted to develop a cognitive achievement test. 

Step one was identifying the skills being studied. The researcher, in collaboration 

with the course instructors, had identified skills taught which relate strongly to 

engineering, particularly statics and dynamics courses in preparation for application to an 

engineering design challenge. Triangulation of findings was done through examination of 

course material including syllabus, handouts, worksheets, and researcher observation.  

Step two involved enumerating skills wherein the skills identified were broken 

down into smaller elements which could be measured. The researcher differentiated 

between conceptual and mathematical understanding of the engineering related materials.  

Step three included establishing test specification, skills, and subskills that were 

identified, specifically, for this test and a multiple choice format was selected. The pilot 

test, as suggested by one of the course instructors, has been developed primarily to 

measure a conceptual understanding to minimize ambiguity with questions which 

required conceptual and mathematical understanding.  

In step four, test items were developed. In order to reduce bias and increase 

reliability, test items were selected from external sources rather than researcher 

developed. These external sources included released test items from state departments of 

education from a comprehensive survey of 50 states. The other source of test items was 

publishers of texts pertaining to technology education, engineering and physics. Many of 

these publishers supply test banks to teachers for classroom use matching the needs for 

this study.  
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Step five focused on a scoring procedure. As a result of test specification, step 

three, a multiple choice test, includes an answer key. The answer key was researcher 

generated based on the test sources and course instructor verified.  

The final step, six, included evaluating reliability and validity. A pilot test was 

assembled and administered to students during the 2006-2007 spring term near the 

conclusion of the school year. These pilot students were expected to be comparable to the 

students participating in the main study, since they were in the same courses with the 

same instructors. The pilot test was administered in the late spring just as the posttest was 

in April of the 2007-2008 school year. A Kuder-Richardson 20 (KR-20) statistical 

analysis was used to refine the pilot test and develop a final version of the exam. As 

explained by Gall and colleagues (1999): 

The KR-20 formula is a method of calculating the reliability of a measure 
containing items that are scored dichotomously (e.g., correct-incorrect). A high 
reliability coefficient (i.e., approaching 1.00) indicates item consistency, meaning 
that individuals who choose one answer to some items tend to choose the same 
answer to other items. Correlation coefficients between .73 and .86 indicate that 
the course examinations have good but not perfect reliability in terms of the 
consistency with which they measure students' course-related understanding and 
ability. (p. 260) 
 

For purposes of this study, .80 as identified by Gall and colleagues as “good” was used as 

a target benchmark target during the test development. Content validity was addressed as 

skill areas were represented by multiple questions, and a statistical assessment of the 

variance among set questions was computed. Also, one of the course instructors, with 14 

years of classroom experience, verified the test items represented the teaching goals and 

objectives. The concurrent validity of the pilot test was established by course instructors’ 

observation of a correlation between pilot test scores and observed student performance 
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during the school year. Refer to Appendix M for the pilot test. 

 Achievement test development and administration. From the pilot test, three 

similar versions were developed (refer to Appendix N for version A, Appendix O for 

version B, and Appendix P for version C). Each of these versions has the same test 

specification, targeting the same skills. Each test version has a combination of alternate 

questions, modified questions and a few repeated questions. Inherent in the fact that the 

tests are different, student mean scores varied slightly. To ensure changes over time were 

student changes rather than instrumentation changes, a randomized test administration 

was followed. During each test administration, one-third of the students received each 

version of the test. At the conclusion of the term, all students had taken each test version, 

but not in the same order. Students were randomly assigned to groups for the purposes of 

test taking. Each group took a different version of the exam during each testing session as 

shown in Table 4.  

The 43-item pilot test was analyzed using two measures, the Kuder-Richardson-

20 (KR-20) and an indication of the relative difficulty of each item. The test was reduced 

from 43 pilot questions to a 30-question test and became version A. The final KR-20 for 

 
Table 4 
 
Procedures for Administrating Achievement Test  

Test version 

Student group 1  Student group 2   Student group 3 

Pre Mid Post  Pre Mid Post  Pre Mid Post 

A x         x    x    

B   x    x         x  

C     x     x      x    
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version A was 0.781. From version A, additional questions were developed to form 

versions B and C that were considered comparable. These additional questions fell into 

one of three categories: original, modified and repeated. Original questions were utilized 

as found from the test banks. Modified questions were based on original questions but 

modified from their original form for one of two reasons: (a) to make them relevant, and 

(b) to use them again in another version. A typical example of a question modified to be 

more relevant dealt with distance, velocity, and rate calculations and was changed to 

include locations proximate to the research location. Another example of a typical 

modified question would be one that solicited students to identify which gear ratio 

provides the most torque changed to most speed or least speed. In some instances, 

questions were repeated verbatim since comparable questions were not located, and 

modifying the format was impractical. Table 5 shows 90 questions distributed among the 

three versions. Sixty-six items were original as found in standardized test sources. 

Thirteen questions were modified and reused in another version, and a total of 11 

questions were repeated.  

Graphics accompanied some of the questions, and the test versions have a 

consistent proportion of questions with and without graphics. Most questions provided 

 
Table 5 
 
Origination of Achievement Instrument Items 

Test version Original Modified Repeated 

A 28 2 0 

B  21 4 5 

C  17  7   6 
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four response options for students. While a few questions offered three responses, the 

distribution of these questions was also held constant across the test versions. Most 

questions targeted a conceptual understanding of the material presented while a small 

percentage included an applied mathematical component. These applied questions were 

evenly distributed across test versions. The table in Appendix Q identifies the six skill 

areas targeted in this course, test item origin, and references comparable questions across 

each test version. 

 
Outcome–Mental Motivation 
 
 The second outcome variable was motivation to apply critical thinking and 

reasoning skills to solve problems. The Mental Measurements Yearbook was used as a 

guide for identifying motivational measurement instruments. Search criteria included 

critical thinking and reasoning, and motivation. The population was limited to high 

school students. The California Critical Thinking Dispositions Inventory (CCTDI) was 

narrowed from a list of potential tests. After an extended conversation with a 

representative of Insight Assessment—The California Academic Press, the CM3 was 

identified as more appropriate for high school students. The CM3 measures a student’s 

motivation to apply critical thinking skills and reasoning to solve problems. Five areas 

were assessed as explained by Insight Assessment: 

1. Mental Focus/Self-Regulation: The person scoring high in mental focus is 
diligent, focused, systematic, task-oriented, organized and clear-headed. 

 
2. Learning Orientation: A person scoring high in learning orientation strives to 

learn for learning's sake; they value the learning process as a means to 
accomplish mastery over a task. These individuals are eager to engage in 
challenging activities, they value information and evidence gathering, they 
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recognize the importance of giving reasons to support a position, and they 
take an active interest and are engaged in school. 

 
3. Creative Problem Solving: The person scoring high in creative problem 

solving is intellectually curious, creative, has a preference for challenging and 
complicated activities, is imaginative, ingenious, and artistic. 

 
4. Cognitive Integrity: Individuals scoring high in cognitive integrity are 

motivated to use their thinking skills. They are positively disposed toward 
truth seeking and open-mindedness. 

 
5. Scholarly Rigor: Scholarly Rigor is the disposition to work hard to interpret 

and achieve a deeper understanding of complex or abstract material. A person 
with a high score on this scale exhibits a strong positive disposition toward 
scholarly rigor would not to put off by the need to read a difficult text or to 
analyze complicated situations or problems. (Insight Assessment, 2007c) 

 
This assessment of motivation to apply critical thinking skills was complementary to the 

achievement test. The achievement test measured a student’s ability to apply conceptual 

material learned in class while the mental motivation test measured students’ inclination 

toward attempting to solve the problems. In a conversation regarding student growth and 

development during the engineering design challenge, one of the course instructors 

commented that often students describe to him their discovery of “relevance.” The 

students realized the importance of theoretical principles since they related to practical 

application. This discovery on the students’ behalf was combined with enthusiasm and an 

excitement of learning and thinking, according to the instructor. In addition to measuring 

cognitive growth, a student’s motivation to learn and apply newly learned concepts was 

pertinent to this study. The importance of this motivation was that it represents a 

development in the student. A student who was motivated to think critically would be 

inclined to perform better on future achievement tests because they are applying their 

knowledge base and exploring new academic material (Participating instructor, M. 
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Brewer, personal communication, December 1, 2006). 

 Validity and reliability of the CM3 instrument are critical to this study (see 

sample CM3 items in Appendix R).  Reliability has been computed using the Cronbach’s 

alpha and published by Insight Assessment, “The internal consistency of scores obtained 

using the CM3 was evaluated using Cronbach’s alpha coefficient. In the three validations 

studies, alpha coefficients ranged as follows [refer to Table 6]” (2007, p. 27). In addition 

to reliability assessments, the CM3 has been studied for its external validity, predictive 

validity and discriminant validity, published by Insight Assessment: 

Three forms of validity studies were performed. First, the CM3 scales were 
investigated in relation to previously validated measures of student motivation 
and behavior (external validity). Second, the hypothesis that the disposition 
toward CT [Critical Thinking] is positively related to academic achievement was 
tested by examining correlations between the CM3 scales and students’ 
standardized test scores and GPA (predictive validity). Third, discriminant 
validity of the CM3 was demonstrated using correlations with the Marlowe-
Crowne Social Desirability Index. (Insight Assessment, 2007c, p. 27) 
 
 

Evidence of Engineering Design 
 
 

Application of the engineering design process was measured through a  

 
Table 6 
 
Cronbach’s Alpha Coefficient for CM3 

Focus area Cronbach’s alpha 

Learning orientation .79 - .83 

Creative problem-solving .70 - .77 

Mental focus .79 - .83 

Cognitive integrity .53 - .63 

Scholarly rigor NA 

(Insight Assessment, 2007c, p. 27) 
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quantitative observation matrix. “Quantitative observations are ways of measuring 

classroom events, behaviors, and objects” (Glickman et al., 2004, p. 260). This 

quantitative matrix highlighted the criteria established for this study as synthesized from 

Dym et al. (2005), Eide, Jenison, Mashaw, and North (1998) and Edie et al. (2001). This 

model included a focus on six main engineering design elements: 

1. Problem Definition 

2. Solutions 

3. Analysis / Modeling 

4. Experimentation 

5. Decision Making 

6. Teamwork. 

The matrix observation form (Appendix S) includes a rubric for quantification of the 

extent to which these elements were present in the classroom learning environment. The 

rubric form (Appendix T) was adopted from earlier work of Davis et al. (2002) in which 

the authors focused on program assessment and accountability. Davis’ work paralleled in 

content and purpose the evaluation goal of this study which was to assess the extent 

engineering design was facilitated in the classroom. Their rubric was modified and 

adapted to fit the specific content of this study and the high school classroom.  

 Each lesson observed during the fall term was subject to evaluation with the 

observation matrix and data serves as evidence of the extent to which engineering design 

was being utilized in the classroom supporting the goals and objectives of this study. 

Qualitative notes accompany each observation, thus, providing evidence for the narrative 
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component of this study which highlights classroom pedagogy. 

 
Contextualizing the Research Setting 

 
 
 Based on the nature of an engineering design challenge, variance can be expected 

in content and delivery between instructors and classes. In order to extend 

generalizability, a series of observations were planned. During these observations, 

qualitative data served to aid in triangulation of the quantitative matrix data. 

Participant observation involves establishing rapport in a new community; 
learning to act so that people go about their business as usual when you show up; 
and removing yourself every day from cultural immersion so you can 
intellectualize what you've learned, put it into perspective, and write about it 
convincingly. (Bernard, 1994, p. 137) 
 

In order to most effectively establish this rapport, each site visit was planned for two 

weeks duration. Gaining entry to the research site means study participants forget a 

researcher is present and “let down their guard” (Gans, 1968). After entry has been 

gained, test administration and observations were conducted. Documents were gathered 

including lesson plans, student handouts, and student generated materials. These 

documents and observations served to present a comprehensive description of the 

research site, teaching method employed, and content delivery. This descriptive data 

facilitates replication and extends generalization by situating quantitative research 

findings within the research setting.  

 
Data Analysis 
 
 Analysis strategies were employed, as suggested by Creswell (1998), which 

included a general review of all information, feedback from informants, data reduction, 
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and categorization. Data analysis was conducted as conceptualized by Creswell (1998) as 

a “spiral” (p. 143). Data collection lead to data management, reading and memoing, 

describing, classifying and interpreting and finally representing. This iterative process 

evolved as the study progressed thus shaping the data collection and being shaped by data 

which were collected and interpreted. 

 Data collection included journaling observations during instructor lectures where 

the researcher was seated in a student desk near the back corner of the classroom. The 

researcher took an active role in moving among groups of students as they worked on 

projects in the lab settings. Quotes, as well as observations, were documented. The 

researcher regularly asked the students what they were doing and why, probing for a 

verbalized explanation in student language. Care was taken to minimize leading questions 

from the dialog, and limit interactions to what became typical questions, “how and why.” 

Students grew accustomed to this regular inquiry and would anticipate the questions 

before the researcher would ask. This regular dialog became a natural interaction between 

the researcher and students. 

 Observational journal data were voluminous. At the conclusion of each day of 

observation, data were reviewed. A typed summary was created to synthesize the daily 

routines which included a reflective portion where the memoing process, as described by 

Creswell, was implemented. Observations and memoing were recorded in a field 

notebook in the form of descriptive and reflective notes, described by Creswell (1998):  

“Descriptive notes” where the researcher records a description of the activities 
and a drawing of the physical setting. Moreover, the researcher provides  
“reflective notes”—notes about the process, reflection on activities, and summary 
conclusions about the activities for later theme development. (p. 128)  
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These summaries served to maintain the iterative nature between observation and 

analysis which is foundational to qualitative inquiry.  

 Documents were collected from the students and teachers. All students were 

required by their instructors to journal as a part of their daily routine. As students 

completed assignments, they would submit a report for evaluation to the instructors. This 

report included their daily journal, student data collected, analysis completed (typically in 

the form of a worksheet) and a written reflective component in which students were 

asked to describe the process and what they could have improved for next time. Data 

were scanned digitally and archived from student reports for later analysis.  

 Data analysis continued with “getting a sense of the whole database” (Creswell, 

1998, p. 143). All data were reviewed multiple times to prepare for classifying. Data 

categorization followed a constant comparative strategy as outlined by Bogdan and 

Biklen (1982), Stainback and Stainback (1988), and Taylor and Bogdan (1998). This 

strategy involved a six-step methodology wherein categories were created by important 

issues or recurring events. Additional data was collected to provide many examples for 

each category. Categories were dynamic and flexible as new data shaped the description. 

Patterns and relationships were identified and additional data collection served to refine 

findings. 

 Data coding and themes generation was, in part, established a priori to parallel the 

six elements of engineering design for this study. These six elements had emerged from 

the literature review and were implemented as a primarily focus of the professional 

development. Theme generation was not limited to these six elements and as data were 
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reviewed, additional emergent themes were established.  

 
Verification 
 

“Qualitative researchers strive for ‘understanding,’ that deep structure of 

knowledge that comes from visiting personally with informants, spending extensive time 

in the field, and probing to obtain detailed meanings” (Creswell, 1998, p. 193). 

Verification that data were collected and interpreted appropriately was critical to the 

quality of this study. As Eisner (1991) suggested, “We seek a confluence of evidence that 

breeds credibility, that allows us to feel confidence about our observations, 

interpretations, and conclusions” (p. 110).  

Multiple procedures of verification were followed in this study. Creswell (1998) 

suggested engaging in a minimum of two of eight procedures presented. For purposes of 

verification in this study, the researcher has utilized five procedures: prolonged 

engagement in the field; triangulation; clarifying researcher bias; member checks; and 

rich, thick description. The researcher has made five site visits, four of which spanned a 

total of six weeks and included observation of the interactions between the participating 

teachers and their students. This extended series of observations provided the researcher 

with data saturation and ensured multiple observations for each theme established. 

Triangulation was addressed through connecting gathered observations, student generated 

documents, teacher generated documents, and informal interviews which spanned 53 

students in two sections of the classes participating. Researcher bias was briefly 

presented in the findings section prior to describing the results so that the reader may 

understand how the researcher’s background might influence the interpretation and 
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approach. Member checks were conducted through formal meetings with the 

participating instructors scheduled during each of the four observational visits. The entire 

qualitative findings section was presented to the participating teachers for feedback and 

corrections. As noted by Lincoln and Guba (1985), member checking was “the most 

critical technique for establishing credibility” (p. 314). Rich, thick descriptions presented 

in the results section which “…allows the reader to make decisions regarding 

transferability” (Creswell, 1998, p. 203).  

 
Professional Development 

 
 

Two experienced teachers participated in this study by allowing the researcher to 

measure changes in their students. These teachers represent diverse backgrounds in a 

dynamic team teaching environment. These teachers teach a course entitled, “Industry & 

Engineering Systems,” which spans two periods. In this course, students receive two 

course credits—an industrial technology credit and a science credit. 

In preparation for the research study, both teachers agreed to participate in 

professional development on infusing engineering design into their classrooms. The 

purpose of the researcher lead professional development was not to make drastic changes 

in the existing curriculum and pedagogy. Instead, a collaborative professional 

development was designed and conducted to facilitate the application of the engineering 

design elements established for this study through existing classroom opportunities.  

A three day professional development was conducted with the teachers late in the 

summer of 2007 (Agenda found in Appendix U, Objectives found in Appendix V). 



58 

During the design phase of this professional development, it was noted that: 

[Teacher] ... change requires multiple opportunities to learn, to practice, to 
interact using, and to reinforce new behaviors. Thus, although a single workshop 
may be a good kick-off for learning and can result in new knowledge or 
awareness on the part of participants, additional opportunities are needed for long-
lasting change. (Loucks-Horsley, Hewson, Love, & Stiles, 1998, p. 93) 
 

Additional opportunities were planned to support the implementation and refinement of 

the engineering design elements at the research site. “...Teachers acquire and use new 

skills more readily when there is follow-up into their own classrooms” (Glickman et al., 

2004, p. 372). To provide this follow-up, classroom observation, and feedback focused 

on the implementation of engineering design conducted during each site visit. The site 

visit included informal and formal follow-up regarding the appropriate application of 

engineering design in the classroom. A three stage model of professional development 

was utilized, as presented by Glickman, which included orientation, integration, and 

refinement (Glickman et al.).  

 
Orientation 

 
 

The orientation stage was initiated with greetings and a tour of the facility. The 

researcher established the relevance of, and need for, technological literacy, as paralleled 

in the literature review. Next, the orientation phase focused on comparing and contrasting 

the Standards for Technological Literacy design process with the engineering design 

process. In this dialog, the means by which the engineering design process was 

established for the purpose of this study were discussed, rooted in the foundation of Eide 

and Dym. The orientation phase concluded with a case study and used Dr. Mark 
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Tufenkjian’s design challenge of a penetrometer calibration test trench (personal 

communication, August 9, 2007). This design challenge presented an open-ended 

problem in which a solution was established that hinged on the control of two pertinent 

variables in sand deposition. The key theme of this case, for purposes of professional 

development, was to encourage the teachers to consider their design challenge in terms of 

a limited number of key variables which students can measure and manipulate. Three 

overarching themes of the orientation stage included establishing the benefits of 

participating, responsibilities of each party involved and acknowledging personal 

concerns of the participating teachers. 

 
Integration 

 
 

The penetrometer calibration design challenge set a foundation for the integration 

phase since it established an analogy to the small design challenges in the fall and the 

large scale electric car design challenge in the spring. In this stage of professional 

development, the researcher presented an expanded explanation of the element of 

engineering design including: 

1. Problem Definition 

2. Solutions 

3. Analysis / Modeling 

4. Experimentation 

5. Decision Making 

6. Teamwork. 
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A professional development package was created highlighting these six elements and 

associating detailed descriptions in reference texts that accompanied the overview (refer 

to Table 7). Four texts were chosen since they provided detailed explanation of specific  

 
Table 7 
 
Engineering Design Process Reference 
 
Engineering design Detailed descriptions 

Problem definition  
     Questioning Engineering design, Dym and Little (2004), page 17-21 
     Constraints Engineering design, Dym and Little (2004), page 17-21 
     Evaluation criteria Engineering design, Dym and Little (2004), page 17-21 
Solutions Engineering design, Dym and Little (2004), page 29-30, 98-108 
     Research existing Engineering your future, Gomez, page 335 
     Brainstorm alternative Engineering your future, Gomez, page 332-338 
Analysis/modeling  
     Prediction Engineering fundamentals and problem solving, Eide, page 69, 83 
     Uncertainty Engineering design thinking, teaching, and learning, Dym et al. (2005), page 

106 
     Estimation Engineering design thinking, teaching, and learning, Dym et al. (2005), page 

106 
Experimentation  
     Based on analysis Engineering design thinking, teaching, and learning, Dym et al. (2005), page 

106 
     Empirical data 
gathering 

Engineering design thinking, teaching, and learning, Dym et al. (2005), page 
106; ZEUS, page 8, 9, 11 

     Prototyping Engineering design thinking, teaching, and learning, Dym et al. (2005), page 
106 

Decision making Decision matrix: Engineering your future, Gomez, page 361; Engineering 
design, Dym and Little (2004), page 44; ZEUS, page 7 
Functions/means chart: Engineering design, Dym and Little (2004), page 120 
Functions/means tree: Engineering design, Dym and Little (2004), page 85 
Time line chart: Engineering design, Dym and Little (2004), page 172 
Objective tree: Engineering design, Dym and Little (2004), page 58 

     Evaluation of solutions Constraints/objectives chart engineering design, Dym, page 110 
     Optimizing Modeling example: Energy model, motion model; ZEUS, page 11-12 
Teamwork Team calendar: Engineering design, Dym and Little (2004), page167 
     Working effectively Engineering design, Dym and Little (2004), page 32-38 

Responsibilities chart: Engineering design, Dym and Little (2004), page164 
     Communication Engineering design thinking, teaching, and learning, Dym et al. (2005), page 

108 
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elements of engineering design and examples of classroom applications for the teachers 

to emulate in their instructional setting: 

1. Engineering Fundamentals and Problem Solving (Eide, Jenison, Northup, & 

Mickelson, 2008) 

2. Engineering Design: A Project-Based Introduction (Dym & Little, 2004) 

3. Engineering Your Future: A Project-Based Introduction to Engineering 

(Gomez et al., 2004) 

4. Engineering the Future (Pierik, 2008) 

In addition to the texts, two documents supported the explanation of engineering design 

and its application in the classroom: 

 1.  Engineering Design Thinking, Teaching, and Learning (Dym et al., 2005) 

 2.  Zero-Emission Utah State Snowmobile (ZEUS; Brown et al., 2007) 

 The texts and documents were utilized to provide detailed explanation and 

exemplars for each of the six identified engineering design elements. Table 7 identifies 

the engineering design elements and references further detail by title, author and page 

number. This table was a key element in the professional development package 

accompanying a copy of each text and document for reference at the research site. This 

material was reviewed with the teachers for the purpose of applying this model to their 

instructional strategies. 

 
Fall Engineering Design Summary Matrix 
 
 A matrix was developed to facilitate identifying how the elements of engineering 

design were experienced by the students. The matrix was an agreement reached among 
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the teachers and the researcher regarding the implementation of engineering design 

elements as shown in Appendix W. A summary matrix was created to demonstrate the 

frequency that each element of the engineering design process was covered in the fall 

semester (Table 8). In addition to the implementation of engineering design elements, 

students were required to maintain a design journal with notes from the lectures including 

relevant science and physics principles. 

 
Table 8 
 
Engineering Design Application Frequency Matrix, Fall 2007 
 

Engineering design elements 

Lesson/activity 

Mag lev 
Electric 
motors 

Solar/gearing 
systems 

Lego/ 
solar car 

1/10 scale 
model 

Problem definition 
     Questioning    x x 
     Constraints x x x x x 
     Evaluation criteria x x x x x 
Solutions 
     Research existing x x  x x 
     Brainstorm alternative x x  x x 
Analysis/modeling 
     Prediction x x x x x 
     Uncertainty x x x x  
     Estimation x  x  x 
Experimentation 
     Based on analysis x x x x x 
     Empirical data gathering  x x x x x 
     Prototyping x x  x x 
Decision making 
     Evaluation of solutions x x x x x 
     Optimizing x x x x x 
Teamwork 
     Working effectively  x x x x 
     Communication x x x x x 
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Spring Design Challenge 
 
 The spring semester was, initially, approached with the same method as the fall in 

which the researcher intended to identify how each lesson would fit into the application 

of the engineering design. The spring semester, however, was presented to the students as 

a large learning project in which lessons were delivered in a “just-in-time” format and 

were flexible and dynamic, based on the needs of the students. This lack of formal 

structure inhibited the systematic identification of fitting the lessons in the engineering 

design elements and instead, lent itself to a qualitative documentation of how each area 

would be addressed throughout the semester. 

During the professional development, the researcher, in cooperation with both 

teachers, identified learning experiences planned for the spring during which the elements 

of engineering design would be applied. This planning process was initiated during the 

summer of 2007 in the first formal professional development meetings and revised in 

October and December during refinement meetings as the teachers’ understanding of 

engineering design (and the researcher’s understanding of the classroom) evolved. This 

agreement was not intended to be all encompassing of every learning experience. Rather, 

it was an overview. The teachers were familiar with the six elements and expressed 

interest in utilizing these elements during additional appropriate opportunities which may 

arise. Generally, the instructors followed through with plans made during the professional 

development and qualitative data were gathered to document the application of 

engineering design. This data is presented in the findings section for purposes of 

contextualizing the research setting. 
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Refinement 
 
 

As part of Glickman’s three-pronged approach to professional development, 

refinement serves to solidify the key concepts and reinforce their application in the 

classroom. It also provides a forum for dialog between the practicing teachers and coach. 

As a component of each site visit, the researcher observed the teachers working with 

students. Engineering design content and delivery methods were observed, and feedback 

was provided to the teachers. Some feedback was provided immediately when the 

opportunity presented itself (i.e., walking from the classroom to the lab or when students 

were working in the lab and the teacher had a moment). More focused and formal 

feedback was delivered and discussed in a meeting planned once per visit. Feedback from 

the teachers was solicited in the form of evaluation forms found in Appendix X. During 

these more formal meetings, the researcher provided guidance as a coach, but also 

maintained an atmosphere conducive to discussions regarding how to implement 

engineering design. In this forum, the researcher attempted to facilitate a collegial 

atmosphere where both teachers could openly discuss their concerns and critique their 

efficacy relative to delivering design to their students.  

 
Analysis 

 
 

Data analysis was conducted using longitudinal multilevel modeling techniques. 

This analysis allowed multiple predictor variables to be analyzed in this repeated 

measures design for prediction of student achievement and mental motivation. 

“…Applications of multilevel models are longitudinal research and growth curve 
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research, where a series of several distinct observations are viewed as nested within 

individuals…” (Hox, 2002, p. 1). Predictor variables included high school grade point 

average (general indicator of academic history), time, and section. The main predictors of 

concern were the grade point averages for each academic area (science, math, and 

communications). This predictor served as a variable with which a correlation was 

identified with the outcome variables. The predictor of time was critical since it had three 

time points, pre (October), mid (December), and post (April). Change in students was 

expected as a result of time, and, therefore, our knowledge of the time point served to 

establish a growth trend. While two sections of students have enrolled in this course, 

membership in a section cannot be assumed as random chance. Scheduling conflicts may 

have impacted student enrollment rather than random chance alone. The researcher has 

noted that an advanced math class conflicted with one of the sections of this course. To 

control for these factors, the section membership was recorded and entered into the 

model. The ability to control for these differences strengthened the model by reducing 

variability. 

Hox (2002) commented on the application of multilevel analysis in repeated 

measures designs: 

Longitudinal data, or repeated measures data, can be viewed as multilevel data, 
with repeated measurements nested within individuals. In its simplest form, this 
leads to a two-level model, with the series of repeated measures at the lowest 
level, and the individual persons at the highest level. (p. 73) 
 

In this study, as suggested by Hox, level one is the three time points. Level two is the 

individual level including three predictor scores (math, science, communications), the 

class section, achievement scores and mental motivation scores. In the modeling strategy, 
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the power of this statistic was increased by having multiple data collection points rather 

than only a pre and posttest design (Hox, 2002).  

 Efforts were made to ensure all students’ participating in the study were present 

during the testing sessions. A 2-week stay at the research site facilitated data gathering 

from all students. In the rare event that a student was not available during this time, 

multilevel analysis results were not jeopardized by missing cases. The data available 

were used and contributed to the model regardless of one or more missing data points. 

This strength served to ensure a large sample size. 

 In the modeling process, the main effects of predictors were considered in 

addition to their interactions with time. Interactions between main effects were analyzed 

including the effect of academic history and time. Slopes and intercepts of main effects 

and interactions were interpreted. This analytic modeling strategy facilitated an 

understanding of relationship between a student’s general academic history and changes 

in achievement and mental motivation during an engineering design challenge. 

 
Summary 

 
 

As stated by Gall and colleagues (1999): 
 
Educators hold many beliefs about how the different characteristics of the groups 
or individuals with whom the work relate to one another. They also are constantly 
searching for attributes that help them predict the future success of their students, 
or of individuals for whom they have administrative responsibility. The 
techniques of correlational research provide a precise means for testing these 
beliefs and for improving predictions. For these reasons, correlational research 
plays an important role in the quest to improve the knowledge base upon which 
educational practice rests. (pp. 220-221) 
 
This correlational study determined the extent to which a student’s academic 
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success is correlated with: (a) a change in achievement during an engineering design 

challenge; and (b) a change in mental motivation toward solving problems and critical 

thinking during an engineering design challenge. Multiple measurements of achievement 

and attitude were conducted from October to April and facilitated analysis of trends in 

student growth. The growth was correlated with a general indication of a student’s 

academic success. Conclusions to the research questions were drawn focused on the 

efficacy of an engineering design challenge for students who were academically 

successful and those who were struggling academically. 
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CHAPTER IV 

RESULTS 

 
 The purpose of this correlational research study was to determine if academic 

success is correlated with: (a) student change in achievement during an engineering 

design challenge, and (b) student change in mental motivation toward solving problems 

and critical thinking during an engineering design challenge. 

 This section provides qualitative and quantitative data. The qualitative section is 

presented to address a description of the context within which the quantitative data were 

gathered. While the teaching of engineering to high school students is not a new concept, 

it has not evolved into a standardized practice. Further, ambiguity surrounding infusing 

engineering into technology education curriculum takes a variety of forms based on 

locale and interpretation. 

 This study draws conclusions based on quantitative data collected from students 

engaging in engineering design challenges. It is germane to interpreting this quantitative 

data that the environment surrounding the daily routines, activities and infusion of 

engineering design specific to this research site is provided.  

 
Quantitative Data 

 
 
 Students were measured at three time points: early October, mid-December and 

late April with two instruments. One instrument measured achievement developed 

specifically for this study as described in the methodology section. Mean scores on the 

different versions of the achievement test were compared. Reliability and ANOVA 
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testing were conducted on the mean achievement instrument scores using SPSS software 

version 15.0.0. In the methodology section, validity and reliability were discussed in the 

development of this test. 

The other instrument was purchased to measure mental motivation and has been 

validated and determined reliable for repeated measures designs with high school 

students. Repeated administrations of the mental motivation instrument were conducted 

with adequate elapsed time such that one version was administered three times without 

jeopardizing validity. This is further examined in the discussion, implications and 

recommendation section. 

Longitudinal multilevel modeling was utilized to address research question one 

and two. Modeling was conducted with R software version 2.7.0 and the linear mixed-

effects models package version 0.99875-9 (Bates, Maechler, & Dai, 2008). 

 
Description of Sample 

 
 
 Two sections of students participated in this study by enrolling in two corequisite 

courses. The total sample size was 53 students on the first of October. Three students 

failed to complete the fall semester, and an additional nine students dropped the course at 

the conclusion of the fall semester. Forty-one students were actively participating in the 

study when data collection was completed in late April. Table 9 shows demographic data 

summarizing the participant sample. Student enrollment was evenly split between both 

sections, with dropout rates consistent between sections. Female enrollment in October 

was 9.50% but increased to 12.20% as a result of male dropout.  
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Table 9 
 
Study Demographic Data on Participants 
 

 October (Pre) December (Mid) April (Post) Average 

Study n 53 50 41 48 

Section: 
     1 
     2 

 
28 
25 

 
26 
24 

 
21 
20 

 
25 
23 

Gender: 
     Female 
     Male 

 
5 

48 

 
5 

45 

 
5 

36 

 
5 

43 

Special education 
Accommodations 

15 15 13 14 

Ethic status:a 
     Majority 
     Minority 
     Unreported 

 
32 
11 
10 

 
32 
11 
7 

 
31 
9 
1 

 
32 
10 
6 

Mean cumulative GPAb 2.04 2.08 2.16 2.09 
a based on student self identification.  
b based on transcript data grades 9 and 10, GPA scale 0-4. 

 

Cumulative GPA had an overall mean of 2.09, on a scale of 0-4. Changes in 

student enrollment over time increased GPA, which resulted from a disproportionately 

higher dropout rate of students with low grade point averages. While mean GPA 

increased, this change was not statistically significant as indicated by Table 10. 

Table 11 compared the high school population data to the study demographic 

data. The percentage of students served by special educational accommodations in this 

study was 30.00% which is approximately 2.50 times that of the high school. Ethnic 

diversity data was not reported by all participants. An average of 12.50% did not report. 

Of the students who did report identifying themselves with an ethnic background, 

approximately one-quarter of them (24.50%)  
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Table 10 
 
One-Way ANOVA Summary Table for GPA Change over Time 

Tests SS df MS F Sig. 

Mean GPA      

     Between 0.30 2 0.15 0.21 0.808 

     Within 99.92 140 0.71   

     Total 100.23 142    

 

 
Table 11 
 
School Demographic Data Comparing Study and School Percentages 
 

 
 High Schoola Study 

Special education accommodations 12.60 30.00 

Ethnic diversity: 
     Majority 
     Minority 

 
78.10 
21.90 

 
75.50 
24.50 

Limited English proficiency 1.40 NA 

Free and reduced lunch 39.00 NA 
a based on school district publication 

 

were not Anglo American, Caucasians. This proportion is just a few percentage points 

higher than the school statistic of 21.90%. Data were not collected on limited English 

proficiency or free and reduced lunch specific to this study; however, the school reported 

1.40% and 39.00%, respectively. 

 
Data Considered in Statistical Analysis 

 
 

Quantitative data were gathered to address the research question. These variables 

included the following. 



72 

Section. This course was offered in two sections. One section was offered in the 

morning, and the second was offered in the afternoon. Advanced placement courses were, 

also, offered in the morning which competed for enrollment. Students who chose to 

enroll in advanced placement courses and this study were excluded from enrollment in 

the morning section. Knowledge of section of enrollment allowed this factor to be 

controlled and tested for statistical differences. 

Special education status. Nearly one third of the students enrolled were being 

served by special educational accommodations. By identifying this student population, 

regression analysis was able to control for and test this disaggregated subgroup. 

Gender and ethnic diversity. Statistical analysis has a greater chance of accurately 

detecting differences that exist between groups if the sample sizes of those groups are 

substantially large. A field specific definition of minority/majority groups was adopted 

for this study which collapsed the gender and ethnic divisions into a larger binary 

variable. This field specific definition aligns with the fields of engineering and 

technology education wherein Caucasian and Asian males are overrepresented while 

females and other ethnic groups are underrepresented. 

Cumulative GPA. Student transcripts were gathered, and a student’s academic 

success was indicated by a cumulative grade point average during the freshmen and 

sophomore years. This GPA was based on a 0-4 point scale with weighted courses 

considered as a fifth point on the scale. 

Content area specific GPA. Student transcripts were disaggregated by math, 

science and communication courses. Individual grade point averages were calculated for 
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each area. The school district identified into which category each course was associated, 

and GPA’s in these categories were computed on the 0-4 point scale. 

Achievement test. Student responses were gathered with a 30-item achievement 

test repeated on three administrations. Development of the test was discussed in the 

methodology section, and instrument analysis was discussed with findings for research 

question one. 

Mental motivation. The California Measure of Mental Motivation (CM3) 

identified five subscales. Each subscale was addressed independently for purposes of 

addressing the research questions and represents a continuous score on a 0-50 scale in 

this repeated measure. These subscales were mental focus, learning orientation, creative 

problem solving, cognitive integrity, and scholarly rigor. 

 
Findings for Research Question One 

 
Analysis of Achievement Instrument 
 

Research question number one addressed the students’ change in achievement 

during an engineering design challenge. Data were collected through an achievement test 

developed for this study. Three versions were administered to the participants on three 

occasions. On each occasion approximately one third of the class took each test version. 

Thus, at the completion of data collection, each student had taken each version, but the 

order in which students took the versions varied at random. Kuder-Richardson 20 (KR-

20) formula was used to determine the reliability of the test instruments. KR-20 

coefficients ranged from 0.707 to 0.901, lowest in the pretest administration, as shown in 
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Table 12. Average coefficients for each version ranged from 0.781 to 0.805. Gall and 

colleagues (1999) indicated that this range of coefficient indicates good reliability.  

Figure 1 shows student performance on the achievement tests.  Mean scores 

dropped between October (70% correct) and December (66% correct) but showed gains 

between December and April (72% correct). Table 13 shows variations between versions  

 
Table 12 
 
Kuder-Richardson 20 Reliability Data for Achievement Tests 
 

 Test version 
──────────────────────── 

Achievement test A B C 
October 2007 0.71 0.79 0.71 
December 2007 0.90 0.77 0.84 
April 2008 0.73 0.80 0.87 
     Average 0.78 0.79 0.81 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mean achievement scores compared across multiple time points. 
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Table 13 
 
Descriptive Data for Achievement Tests by Administration 
 

 M 
(percent correct) SD n 

 
October    

     A 70.20 14.00 17 
     B 70.20 16.00 19 
     C 70.40 13.90 16 
     Averagea 70.20   
    
December    
     A 61.80 23.20 15 
     B 72.90 15.30 17 
     C 63.00 19.40 18 
     Averagea 66.00   
    
April    
     A 75.70 13.60 14 
     B 74.60 15.50 11 
     C 67.50 19.90 16 
     Averagea 72.20   
 

 a Average is weighted. 

 
for each test administration. Pretest variation was very small, 0.20% between versions. 

Variation increased in December to 11.10% and dropped a few percentage points to 

8.20% in April. ANOVA tests show no statistically significant differences between the 

versions at each time point (see Table 14). 

 
Hypothesized Model 
 

A two-level longitudinal multilevel model assessed the effects of cumulative 

grade point average, grade point average in math, science, and communication courses, 

course section, special education accommodation, minority status, and mental motivation 

as measured by the CM3 assessment on achievement. It was expected that a potential 

correlation existed between change indicated by the achievement test and GPA.  



76 

Table 14 
 
One-Way ANOVA Summary Table for Test Versions by Administration 

Tests SS df MS F Sig. 

October      

     Between 0.00 2 0.00 0.00 0.999 

     Within 1.07 49 0.02   

     Total 1.07 51    

December      

     Between 0.13 2 0.06 1.67 0.199 

     Within 1.76 47 0.04   

     Total 1.89 49    

April      

     Between 0.06 2 0.03 1.04 0.364 

     Within 1.07 38 0.03   

     Total 1.13 40    

  

 First-level units were repeated measures within individual study participants. Data 

from 144 achievement tests were considered for analysis. Second-level units were 53 

participants in this study. 

 In the hypothesized model, individuals and time are declared random effects to 

assess variability among individuals within time points, as well as variability among time 

points. Also, one of predictors, mental motivation, was declared a random effect, 

reflecting the hypothesis that there would be individual differences in the association 

between mental motivation and achievement.  

 
Longitudinal Multilevel Modeling of Achievement 

A main-effects-only model was created and tested against a main effects model 
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that included interactions of time and each predictor. Significance testing was conducted 

using likelihood ratio tests comparing the model fit using R. Significant interactions were 

included in a model, which was then reduced in a top-down approach. A reduction 

technique was employed where the least significant predictors were removed one at a 

time. Each model iteration was compared to the previous model using likelihood ratio test 

to determine if it was statistically different. The final model was not significantly 

different than main effects only model, χ2 (7, N = 123) = -193.466 + 198.118 = 4.6526, 

p > 0.05. Statistically significant predictors in this model are special education status, 

GPA in previous science courses, and the CM3 subscale of creative problem solving. 

Special education students tended to underperform their peers. Students who maintained 

a higher science GPA and also students scoring higher on creative problem solving 

tended to demonstrate an increase in achievement scores. A student’s status as an 

underrepresented population member and CM3 subscale cognitive integrity were 

included in the model but were not statistically significant. No significant interactions 

were discovered with any predictor and time, which indicates that no significant changes 

over time were discovered relative to the predictors. Predictor data is shown in Table 15. 

Note slope estimates were reported as items correct on the 30-question achievement test. 

 
Findings for Research Question Two 

 
 
Descriptive Data on Mental Motivation 

Research question number two addressed the students’ change in mental  

motivation during an engineering design challenge. Data were collected through an  
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Table 15 
 
Longitudinal Multilevel Modeling of Achievement Results 

Variable Name Variance SD Scale Estimate 
Std. 

Error t value 
Random effects        
 STUDY_ID (Intercept) 12.56 3.54     
 Residual        5.79 2.41     
 number of obs: 123, groups: STUDY_ID, 43     

Fixed effects        
 Intercept     12.57 2.41 5.21 
 Special education    0,1 -2.90 1.36 -2.13 
 Underrepresented population   0,1 -2.01 1.26 -1.60 
 GPA science    0-4 1.24 0.60 2.09 
 Creative problem solving   0-50 0.14 0.05 2.57 
 Cognitive integrity    0-50 0.11 0.06 1.93 

 

instrument purchased for this study from Insight Assessment. The CM3 measured five 

subscales of mental motivation: mental focus, learning orientation, creative problem 

solving, cognitive integrity, and scholarly rigor. Means for each subscale are presented in 

Table 16 and, generally, show small growth over time. Scales range from 0-50 and are 

interpreted by categorization as shown in Table 17. 

 
Hypothesized Model 
 

A two-level longitudinal multilevel model assessed the effects of cumulative 

grade point average, grade point average in math, science, and communication courses, 

course section, special education accommodation, and minority status on mental 

motivation. It was expected that a potential correlation existed between change indicated 

by the CM3 and GPA.  
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Table 16 
 
Descriptive Data for CM3 Tests by Administration 
 

 October, n = 48 
──────────── 

December, n = 49 
──────────── 

April, n = 41 
──────────── 

 Ma SD Ma SD Ma SD 
Mental focus  27.27 8.09 26.45 7.70 27.54 7.40 
Learning orientation 31.90 6.42 31.49 8.46 33.29 7.63 
Creative problem solving 29.27 8.20 31.02 8.82 31.39 9.40 
Cognitive integrity 33.00 6.61 31.78 7.20 33.44 8.07 
Scholarly rigor 26.27 5.73 26.88 6.29 27.76 5.89 
Average 29.54  29.52  30.68  

a Scale 0-50. 

 

Table 17 

Score Interpretation for CM3 

Score on CM3 scale Interpretative category 
0-9 Strongly negative 
10-19 Somewhat negative 
20-30 Ambivalent 
31-40 Somewhat disposed 
41-50 Strongly disposed 

Note: Table adopted from California Measure of Mental 
Motivation Score Interpretation Document, refer to 
Appendix Y for full document. (Insight Assessment, 2006) 
 
 
 
 First-level units were repeated measures within individual study participants. Data 

from 144 mental motivation tests were considered for analysis. Second-level units were 

53 participants in this study. 

In the hypothesized models, individuals and time are declared random effects to 

assess variability among individuals within time points, as well as variability among time 
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points. Mental motivation was modeled for each subscale yielding a total of five models 

for consideration. 

 
Longitudinal Multilevel Modeling of  
Mental Motivation  
 

A main effects only model was created and tested against a main effects model 

that included interactions of time and each predictor. Significance testing was conducted 

using likelihood ratio tests comparing the models using R. Significant interactions were 

included in a model which was then reduced in a top-down approach. A reduction 

technique was employed where the least significant predictors were removed one at a 

time. Each model iteration was compared to the previous model using likelihood ratio test 

to determine if it was statistically different. This process was employed for each of the 

five mental motivation subscales. 

Mental focus. According to the CM3, a student scoring high in mental focus was 

diligent, focused, systematic, task-oriented, organized, and clear-headed. Mental focus 

scores significantly increased over time. A full model was developed which included 

main effects and significant interactions. A parsimonious fixed slope model was reduced 

from the full model which was not statistically different, χ2 (3, N = 123) = 769.84 – 

766.74 = 3.1021, p > 0.05. Statistically significant main effects in this model were GPA 

in math, science and time. Students scoring higher in previous math and science courses 

also tended to be more mentally focused than their peers.  

A significant negative interaction was discovered between time and science GPA, 

as shown in Figure 2. A student’s status as an underrepresented population member was 
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 Figure 2. Mental focus scores across time points by science GPA. 

 

included in the model but was not statistically significant. This indicates that knowledge 

of a student’s status as an underrepresented populations increased model fit significantly. 

However, as a predictor, underrepresented students tended to demonstrate a slightly 

higher outcome score on mental focus.  Predictor data is shown in Table 18. Note that 

slope estimates are reported in points on a 0-50 scale. 

 Learning orientation. A student scoring high in learning orientation was 

motivated by the desire to increase knowledge and skill base as published with the CM3. 

Learning orientation scores did not significantly change over time. A parsimonious 

random slope model was reduced from the main effects only model which was not  
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Table 18 
 
Longitudinal Multilevel Modeling of Mental Focus Results 

Variable Name Variance SD Scale Estimate 
Std. 

Error t value 
Random effects        
 STUDY_ID (Intercept) 34.09 5.84     
 Residual        16.43 4.05     
 number of obs: 123, groups: STUDY_ID, 43     

Fixed effects        
 Intercept     14.41 3.02 4.77 
 Underrepresented population   0,1 1.38 2.08 0.66 
 GPA math    0-4 2.68 1.29 2.08 
 Time   1-3 2.48 0.90 2.76 
 GPA science    0-4 3.55 1.43 2.49 
 Time*GPA Science     -1.29 0.42 -3.04 

 

statistically different, χ2 (5, N = 123) = 769.84 – 766.74 = 7.3034, p > 0.05. No 

statistically significant main effects were included in this model. No significant 

interactions were discovered with any predictor and time, which indicated no significant 

changes over time were discovered. A student’s membership in an underrepresented 

population is included in the model but was not statistically significant. Predictor data 

was shown in Table 19. Note that slope estimates are reported in points on a 0-50 scale. 

Creative problem solving. According to the CM3, a student scoring high in 

creative problem solving has a tendency to approach problem solving with innovative or 

original ideas and solutions. Creative problem solving scores significantly increased over 

time. A parsimonious random slope model was reduced from the main effects only model 

which was not statistically different, χ2 (4, N = 123) = 776.28 – 774.50 = 1.7767, p > 

0.05. Statistically significant main effects in this model are science GPA and time.  
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Table 19 
 
Longitudinal Multilevel Modeling of Learning Orientation Results 

Variable Name Variance SD Corr. Scale Estimate 
Std. 

Error t value 
Random effects         
 STUDY_ID (Intercept) 17.42 4.17      
 Time 5.45 2.33 -.28     
 Residual        13.73 3.71      
 number of obs: 123, groups: STUDY_ID, 43      

Fixed effects         
 Intercept      31.34 .97 32.15 
 Underrepresented population    0,1 .63 1.74 .37 

 

Students scoring higher in previous science courses tended to score higher than their 

peers. A student’s membership in an underrepresented population was included in the 

model but was not statistically significant. No significant interactions were discovered 

with any predictor and time, which indicated no significant changes over time were 

discovered. Predictor data is shown in Table 20. Note that slope estimates are reported in 

points on a 0-50 scale. 

Cognitive integrity. A student scoring high in cognitive integrity was motivated to 

use thinking skills in a fair minded fashion, seek the truth, and be open minded. Cognitive 

integrity scores did not significantly change over time. A parsimonious fixed slope model 

was reduced from the main effects only model which was not statistically different, χ2 (6, 

N = 123) = 786.3 – 777.56 = 8.7385, p > 0.05. No statistically significant main effects are 

included in this model. A student’s membership in an underrepresented population was 

included in the model but was not statistically significant. No significant interactions  
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Table 20 
 
Longitudinal Multilevel Modeling of Creative Problem Solving Results 

Variable Name Variance SD Corr. Scale Estimate 
Std. 

Error t value 
Random effects         
 STUDY_ID (Intercept) 32.83 5.73      
 Time 2.96 1.72 .34     
 Residual        12.19 3.49      
 number of obs: 123, groups: STUDY_ID, 43      

Fixed effects         
 Intercept      24.51 2.35 10.43 
 Time     1-3 1.17 .47 2.48 
 Underrepresented population    0,1 -1.50 2.40 -0.62 
 GPA science     0-4 2.28 1.07 2.13 

 

 

were discovered with any predictor and time, which indicated no significant changes over 

time were discovered. Predictor data was shown in Table 21. Note that slope estimates 

are reported in points on a 0-50 scale. 

Scholarly rigor. A student scoring high in scholarly rigor would tend to work hard 

to interpret and achieve a deeper understanding of complex or abstract material. 

Scholarly rigor scores did not significantly change over time. A parsimonious random 

slope model was reduced from the main effects only model which was not statistically 

different, χ2 (5, N = 123) = 713.36 – 709.24 = 4.1195, p > 0.05. The statistically 

significant main effect in this model was GPA in science. Students scoring higher in 

previous science courses tended to score higher than their peers. A student’s association 

with an underrepresented population is included in the model but is not statistically  
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Table 21 
 
Longitudinal Multilevel Modeling of Cognitive Integrity Results 

Variable Name Variance SD Scale Estimate 
Std. 

Error t value 
Random effects        
 STUDY_ID (Intercept) 33.34 5.77     
 Residual        19.11 4.37     
 number of obs: 123, groups: STUDY_ID, 43     

Fixed effects        
 Intercept     32.39 1.17 27.61 
 Underrepresented population   0,1 .14 2.08 .07 

 

 

significant. No significant interactions were discovered with any predictor and time, 

which indicated no significant changes over time were discovered. Predictor data was 

shown in Table 22. Note that slope estimates are reported in points on a 0-50 scale. 

 
Quantitative Data Summary 

 
Student achievement was significantly correlated to science GPA, but not math or 

communication GPA. Achievement score changes over time are not significantly 

correlated with science, math or communication. Mental motivation was measured by 

five subscales. Mental focus was correlated with math and science GPA. Mental focus 

increases over time were negatively correlated with science GPA, meaning that the initial 

score differential (between higher and lower science GPA students) was decreased over 

time. Learning orientation and cognitive integrity were not correlated with GPA. Creative 

problem solving was correlated with science GPA, but gains over time were not  
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Table 22 
 
Longitudinal Multilevel Modeling of Scholarly Rigor Results 

Variable Name Variance SD Corr. Scale Estimate 
Std. 

Error t value 
Random effects         
 STUDY_ID (Intercept) 28.76 5.36      
 Time 6.04 2.46 -.67     
 Residual        7.04 2.65      
 number of obs: 123, groups: STUDY_ID, 43      

Fixed effects         
 Intercept      23.59 1.37 17.18 
 Underrepresented population    0,1 .07 1.43 .05 
 GPA science     0-4 1.82 .64 2.83 

 

 
correlated with GPA. Scholarly rigor was correlated with science GPA, but change over 

time was not correlated with GPA.  

Knowledge of a student’s status as an underrepresented population in engineering 

and technology education improved model fit statistically for each outcome considered. 

While this predictor significantly improved the model, it was not a statistically significant 

predictor. Chance alone may be responsible for the necessity of this predictor in the 

model, or a large variance may be masking discovery of an important correlation.  

 
Contextualizing the Research Environment 

 
 
 Researcher bias is an inevitable factor in presenting qualitative data. The 

researcher in this study was a former high school technology education teacher with five 

years experience and adhered to high expectations of students. The researcher had a 
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personal interest in engineering and felt that engineering design could be successfully 

integrated into technology education curriculum. 

With this bias presented, the following qualitative data represents a description of 

what students were encouraged to accomplish during a fall and spring semester at Porter 

Valley High School. Student quotes, teacher quotes and observations triangulate a 

common message: Engineering design elements were being applied by the students.  

The study was set in a classroom where engineering design was integrated into a 

technology education curriculum. This integration was taught by two instructors, and this 

research demonstrates a marriage of technical education focused on fabrication with an 

understanding of the underlying science and math principles governing the physical 

world. 

For both teachers to understand the purpose of the research, they received 

professional development focused on six engineering design elements: 

1. Problem Definition 

2. Solutions 

3. Analysis / Modeling 

4. Experimentation 

5. Decision Making 

6. Teamwork 

These six elements became main themes of the qualitative data for describing the context 

of the research site. These themes served to focus data gathering efforts. 

Data were collected on the teaching practices which shaped the learning 
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environment in the form of observations, documents, and curricular plans. Qualitative 

data collected portray evidence that engineering design was a major focus of this course 

and that students were practicing these elements of engineering design. Additionally, 

these data serve to demonstrate a model for infusing engineering design into technology 

education. 

The researcher conducted four data gathering visits to the research site, totaling 

six weeks of classroom observation. Observations began October 1, 2007, and concluded 

April 25, 2008. Time was split evenly between fall and spring semesters and included a 

Saturday racing event.  

 Students who participated in this study enrolled in two corequisite courses. The 

courses were scheduled together, facilitating the use of a larger block of time as needed. 

The fall semester and spring semester were formatted differently based on the goals and 

educational approaches utilized. During the fall term, the courses were distinctly 

independent, and the instructors acted in relative isolation from each other. One instructor 

focused on metal fabrication techniques, and the other instructor focused on teaching 

engineering as applied physics through a hands-on design based format. The concluding 

projects for each course in the fall term set the stage for design and fabrication of the 

engineering design challenge that officially began with the spring term. The spring term 

was initiated by assembling teams and focusing on defining the problem. The lab 

environment was a common area shared by both instructors. While students were in the 

lab, the instructors worked interchangeably with teams assisting with design and 

fabrication. Instructors consulted with each other when in doubt, but, generally, both 
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were comfortable with all aspects of the design and fabrication. Though typically both 

instructors were present, one was either on his planning period or responsible for another 

group of students (unrelated to the study) who were sharing the lab. 

 
Fall Semester 

 
 

Six main units of instruction were used in teaching engineering design during the 

fall term. These six units included magnetic levitation, electric motors, solar power, 

gearing, and two scale modeling experiences. These units were examined during the 

teacher professional development in order to identify opportunities to integrate each of 

the six elements of engineering design identified for this study. Agreement was reached 

with the teachers as to how and when these six elements would be included during the 

fall term. Data were gathered to demonstrate the teacher and student interaction with 

these six elements. Examples of students’ work are presented in combination with 

classroom observations. 

 
Problem Definition 
 

Throughout the fall term, students were presented a variety of challenges. The 

responsibility for defining the problem transitioned from a heavily teacher defined 

problem to a student defined problem as the semester progressed. A review of student 

journals revealed students were focusing on identifying the problem. An excerpt from 

Jerome’s journal highlighted his reflection, “Our project was to design and construct [a] 

maglev car with a propeller propulsion that will be balanced [and] stable. And race the 

full length of a 16 foot track in the shortest amount of time.” Cori illustrated her thoughts 
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as she went beyond the surface level problem to recognize aerodynamics are a key 

subcomponent of the actual problem at hand, “The first thoughts I had on doing this 

project were on how I was going to be able to make my car aerodynamic. I figured I 

would have to carve out the body to….” Students identified constraints as part of their 

problem definition. Near the end of the fall semester, students were assigned the design 

problem of creating a 1/10 scale model as a prototype for their electric car. One constraint 

they faced was an ergonomic accommodation of the driver. In Cori’s words: 

Starting this project, it seemed like a lot of work, in order to make the miniature 
car work. So to start it off we began by taking all of our needed measurements of 
our driver. This would allow us to build the frame and body of the car around that 
of our driver’s body. 
 

Cori’s comments described Figure 3, which shows data gathered by a student team on 

their driver’s dimensions. This constraining factor was of constant consideration as it 

interacted with aerodynamics and physical size restrictions for the cars. In another 

project, constraints were laid out in the design brief presented to the students by the 

instructor in bullet point style.  

Figure 3. One-tenth scale driver sketch with dimensions. 
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 Evidence of evaluation criteria was produced by the instructors and the students. 

During a few projects, students were presented with a rubric sheet that included 5-10 

areas on which their project would be evaluated. This was a teacher generated form 

presented with the project briefing. Johan stated in his journal, “We tested the 5 minute 

run time. Our motor exceed the 5 minutes and ran for 15 minutes plus.” In this instance, 

the student group had set a more stringent goal than had the instructor, but evaluation 

criteria followed the same testing procedures. Johan followed up with, “We were really 

proud!” Additionally, students evaluated their peers and each other using a teacher 

generated rubric, further discussed under the teamwork heading. 

 
Solutions 
 

Students were expected to develop solutions to their challenges, these solutions 

evolved from research of existing solutions and brainstorming alternative solutions. As 

written by Johan, “When we started our project, we look at the examples and tried to see 

how we could perfect it. We decided to make.…” The instructors provided examples of 

previous student work and often presented a critique of a few examples during lecture. 

Students were encouraged to brainstorm and expected to document with sketches the 

various ideas developed. Evidence of the brainstorming sessions was a required 

component of student journals and assembled into a final report which accompanied the 

project for a grade. Students were expected to report details describing their solutions. 

Cori commented: 

I figured I would have to carve out the body to make a chamber for the air to go 
through so the propeller would have more wind hitting it. The next thing I thought 
about was how to raise the motor up. I decided to use slightly thicker pieces of 
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foam so that they were more stable and have the edged rounded so that it would 
add to the aerodynamics of my car. 
 
 

Analysis/Modeling 
 

Students conducted analysis in a variety of activities. Students learned about gear 

ratios and practiced calculations of motor rotations per minute and wheel rotations per 

minute given a certain gear ratio. They were expected to be able to calculate gear ratios 

based on a given sprocket’s number of teeth and a pulley’s diameter. They also worked 

through calculations to determine the velocity of a car, given a gear ratio, motor RPM 

and wheel diameter. Students began to articulate connections between variables 

governing velocity of their moving projects. Johan stated: “In all, I found that the less 

friction and less wind resistance, the better your car will go down the track, and the faster 

it will move.” This realization that specific variables govern the physical behavior of our 

world was a key component of this course according to the instructors.  

Students made calculations of power based on the voltage and amperage 

generated by a pair of solar panels. They practiced calculating power to discover the 

power produced by a series circuit, and a parallel circuit should be the same while the 

voltage and amperage vary inversely. Students also gathered data on solar power wattage 

based on distance to a light source. Students took six measurements, calculated power 

and created a data table. An example of Chinelo’s data is shown in Table 23.  

In this example, he made a few multiplication errors in calculating wattage; 

however, the plot of distance and power (refer to Figure 4) appropriately resembles an 

exponential curve. Using this data analysis, students were asked to estimate the power at  
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Table 23 
 
Example of Chinelo’s Solar Power Data Based on Distant to Light Source 

Distance (inches) Voltage (volts) Current (amps) Power (watts) 

0 2.35 .55 1.245 

3 2.82 .31 0.626 

6 1.94 .265 0.680 

9 1.85 .24 0.444 

12 1.81 .24 0.316 

24 1.74 .06 0.123 
Note. Data gathered from student worksheet. 
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Figure 4. Digital representation of student hand drawn plot. 
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a distance they had not measured. Chinelo predicted, based on his curve, the power at 20 

inches from the source would be approximately 0.159 watts.  

 As a component of learning analysis, students encountered inconsistencies in data 

collection. Students attempted to deal with uncertainty in measurement and performance 

by taking multiple measurements and calculating averages. The researcher observed 

teams talking about outliers (though not using this term) when referring to measurements 

that were dramatically higher or lower than other data collected. Typically, students 

noticed outliers when they inadvertently started a timer too early or late in comparison to 

other trials. They used the average speed or times in their calculations. This allowed 

teams to compare their data to other groups with more confidence that their 

measurements (and calculations based on these measurements) represented reality.  

 
Experimentation 
 

Each unit of instruction had some element of experimentation. Students gathered 

data and prototyped a solution to each challenge. In Cori’s words, “Today we listened to 

[Mr. Brewer] explain how to use the multi-meter. Then, we went and started finding the 

volts, amps, and watts that the four different solar panels had.” This journal excerpt 

reflects on gathering data on power based on the distance the solar panel was to the light 

source. In a following activity, students created a winch powered by the solar panels and 

lifted small weights. By measuring the amount of weight and time to lift a set height, 

students could compute a horsepower calculation based on a series or parallel circuit. 

Cori explained: 

Today [Mr. Brewer] explained more on how to setup the gearing to test which 



95 

type of circuit is better in providing more horsepower. Then Asmara and I got to 
test our system. We also took and did 3 trials of each of the three types of circuits 
to get a more accurate timing. 
 

In determining horsepower, students made multiple trials, varying the amount of weight 

being lifted. The resulting horsepower increased to a peak, then dropped as the motor 

became overloaded. These various horsepower calculations were not graphically plotted 

by the students, but a trend was discovered that would have looked like a parabola, where 

a peak power can be discovered based on an optimal balance of torque and speed. 

Students added or removed weights and recalculated horsepower to optimize their output. 

Information gathered from these calculations informed student choices on a solar 

powered car design. This data provide a starting point for experimentation using the same 

motor and optimal circuit wiring (series, parallel, series-parallel).  

 Following the theme of power calculation, students designed and fabricated an 

electric motor (refer to Figure 5). In this challenge, students refined their design based on  

 

 
Figure 5. Student sketch of electric motor design. 
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data gathered on horsepower. A string was wrapped around the armature and used as a 

winch to lift weight. Using the same technique as the solar power calculations, students 

analyzed the horsepower output of their motor made changes to increase performance. 

Jovan commented of the iterative process,  

My second problem was, I couldn’t get my brushes to work. This problem came 
with baggage. My coils weren’t wired the right way and then I had to make my 
brushes to where they wouldn’t short but also have contact for as long as possible. 
I fixed it by kinking my brush to a point and having it lightly touch the 
commutators. 
 

Jovan articulated in his report that the experimentation he was conducting tied to an 

understanding that the magnetic fields caused motion (and power) in the motor. The 

longer the brushes contacted the commutators, the more powerful his motor. He 

recognized a tradeoff in the increased contact time with the commutators and the 

increased potential of a short circuit (if overlap occurred). 

 
Decision Making 
 

Students were presented with opportunities to make many decisions throughout 

the fall semester. Observational evidence suggested that students used sketching and 

conversation to discuss alternative solutions. When students were working in teams, they 

discussed ideas and often, concurrently, attached valve judgments. While students were 

encouraged to separate brainstorming from decision making, regularly students engaged 

in the two activities, simultaneously. In addition, students reflected on their decisions 

when asked how it could be improved. Cori stated in a reflection of the 1/10 scale model: 

Some of the ideas I have to make our full size car better, that were not considered 
while making the 1/10 scale car is to have the foot pedal instead of a thumb 
throttle. Some advantages to a foot throttle are in having a more familiar feel in 
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the driving of the car. The second reason that this would be preferable is that there 
are frequently problems with the thumb throttles jamming or breaking during a 
race, taking lots of valuate time to fix. One disadvantage of this however is that it 
would limit the height of the people that we could have drive our car.  
 

In this excerpt from her final report, one decision is considered with advantages and 

disadvantages. Students documented decisions they made in a similar fashion 

highlighting choices and identifying positive and negative attributes in order to make an 

informed decision. Dante reflected on decisions he made on a magnetic levitation car, “I 

learned here that making it look cool doesn’t make it move[,] so for the Electrathon 

vehicle in the spring, I will make it simple but with all the necessary components made 

right for functionality.” 

 Quantitative data were also used to drive decision making. Students used 

calculations of horsepower to assess changes in their electric motor designs and 

determine how to wire the solar panels. In brainstorming and preparing a design for the 

1/10 scale model car, students gathered quantitative data on driver size (discussed 

earlier). These data served to constrain decisions on how the driver would comfortably fit 

into the car when designing the 1/10 scale model. Jovan provided evidence that he used 

quantitative information presented in lecture to drive decision making process during the 

design of the electric motor. Jovan noted a relationship between magnetic strength and 

distance in his electric motor design, “I want to have my armature to clear my field 

magnets barely. [Mr. Brewer] said if it’s twice the distance it only retains 1/4 of the 

magntivity [magnet strength].”  
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Teamwork 
 

Teamwork was a critical aspect of this course. Students started the semester with 

a project in which they worked as individuals, but as the semester progressed, nearly all 

activities required students to participate in teams. This progression from individual to 

small groups (then larger groups) allowed students to practice their communication and 

leadership skills. Students were presented with information on team dynamics such as 

how to select team members, leadership and group responsibilities. One of the student 

handouts suggested students considered team members carefully, “As with all team 

selections you may want to have a member with different skills than you so that they can 

help complete various tasks.” The team leader, “…should be able to delegate tasks well, 

not try to do it by themselves.” As the semester progressed, team members gained 

autonomy in their work habits. Early in the semester, each team member was involved 

with nearly all aspects of the project, but as the semester progressed, team member 

autonomy was practiced. Students were expected to discuss plans and divide 

responsibilities to complete the jobs as suggested in a handout, “The team leader will 

compile a list of the members of the team and each person will chose one or more tasks 

on the car that they will be in charge of.” 

Communication was an important element of teamwork and was used in various 

forms. Students had formal team meetings where a leader facilitated progress, recorder 

compiled notes on brainstorming, plans and delegation of responsibilities. Cori, her 

team’s leader, documented, “I was the one who measured out and did configurations on 

the foam. Asmara would then cut out the pieces that I measured and Cédrick would do a 
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fantastic job of sanding them down.” Student sketches were a required part of the 

journaling and reporting process. In Figure 6, Jenson, Joseph, and Jace finalized their 

sketch for the 1/10 scale model car. This form of visual communication was 

commonplace among the students as was verbal communication in team meetings. 

 
Fall Emergent Themes 

 
 

Two strong emergent themes developed throughout the fall semester and were 

interwoven into each learning experience. One was the intense focus on preparation for 

 

 
 
Figure 6. Sketching as a form of team communication. 
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the large spring design challenge. The other emergent theme was a transition from well-

defined problems to ill-defined and was increasingly open-ended as the semester 

progressed. 

 The focus in the fall on preparation for the spring challenge was discussed with 

the students and observed by the researcher. Each activity in the fall connected to some 

aspect of designing, fabricating, and learning to work as a team. Students learned to weld 

and practiced cutting, bending, and mechanically fastening metal in methods that could 

be used in layout and construction of the electric car. Students practiced on the same 

metal thickness and welding positions that would be directly transferable to the spring 

challenge.  

Aerodynamics of the magnetic levitation car directly transferred to their electric 

car body with an intermediate step learning about fiberglass plug-mold technologies 

through their 1/10 scale model car design. Analysis of gear ratios and calculating speed 

based on motor rpm during their solar car activity transferred to the larger wheels in their 

spring challenge. The realization that theoretically gearing the car to go faster may 

actually make the car go slower (as the motor stalls) was a real experience in optimizing 

the gear ratio of the solar car and winch. 

Team size gradually increased in preparation for teams of up to six students in the 

spring. Thus, practice in leadership and participation were practiced before the spring 

challenge. While the rules for the spring challenge were well-defined, they focused 

primarily on safety and fair competition. Car design was largely an open-ended and ill-

defined problem. As the fall semester progressed, students experienced an increase in 
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their responsibility to determine the problem definition and evaluation criteria.  

One of the capstone fall projects included a 1/10 scale model car, designed, and 

fabricated from steel frame members. Teams made fully articulated scale driver models 

to ensure the frame design fit their driver. Wheels and steering linkage were functional. 

Moving the steering wheel (or levers, as the case may be) moved 1/10 scale tie-rods 

which moved steering wheels. Mockup batteries and motors were in place to demonstrate 

fit and consideration of weight and balance issues.  

The other capstone fall project was a miniature frame welded from full size 

material. This frame project was fixtured on a small section of plywood and laid out just 

as the full size car would be a few weeks later. Students discovered the challenges 

associated with cutting and fabricating steel tube and flat stock at predetermined angles. 

The instructor provided some of the dimensions as constraints and allowed students to 

design other aspects of the frame. The required dimensions forced student teams to figure 

out how to measure and fixture their material to match specifications. This learning 

experience transferred to the full size car project as their design specifications were laid 

on a larger plywood board, and angles were critical for steering and frame squareness.  

 Early projects in the semester were clearly defined and had focused evaluation 

criteria determined by the instructors. Design briefs listed evaluation criteria for the 

students to follow. The magnetic levitation design brief stated, “Design and construct a 

maglev car with a propeller propulsion that will be balanced, stable, and race the full 

length of a 16 foot track in the shortest amount of time.” Students were provided with a 

list of constraints and materials available. In another early activity, students designed an 
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electric motor. Their design had some freedom, but a 19-step assembly method narrowed 

the list of potential solutions. Each motor looked different and, in particular, students’ 

designs for the brushes varied. However, in later assignments, a much greater degree of 

freedom was promoted, thereby, expanding the problem and solution space with ill-

defined problems.  

As the capstone fall project, the 1/10 scale model provided students with many 

opportunities to address creatively the problem. The design was required to be scaled 

and, potentially, a car the team might want to build in the spring. Decisions on steering, 

weight distribution, driver position, frame and roll bar design were entirely up to the 

students. This ill-defined problem yielded many unique and differing solutions. Students’ 

problem definitions varied from rider comfort as a priority to aerodynamics as a higher 

priority, evident in the rider position from recumbent to upright. Ergonomics and 

aerodynamics are examples of design considerations (at times conflicting), but additional 

considerations such as safety, impact resistance, durability, and weight were in students’ 

dialogs.  

 
Spring Semester 

 
 
 The spring semester marked a dramatic change in educational pedagogy. Students 

focused on one large design project, rather than multiple small ones. The two-period 

block was supervised by one instructor during the first half and the other instructor during 

the second half. The instructors were observed discussing what they would present to the 

students in order to blend appropriately reinforcement of important concepts without 
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repeating instruction. Students had one goal: to design and build an electric car for the 

weekend races. A sense of competition was felt as participation in each weekend race 

lead to an increased state standing. The state standing score for each car was a composite 

score for the season to date. Students actively participated in as many races as possible to 

increase their team’s standing. Excitement surrounded the competition which carried over 

to the classroom and motivated student teams. 

 
Problem Definition 
 

In defining the problem, teams were encouraged to ask questions of the 

instructors, peers, and students who had previously taken the course. Teams defined for 

whom the vehicle was designed and what purpose the vehicle would serve. Students 

informally identified issues of ergonomics, weight and balance, driver view of other cars, 

maneuverability in tight corners, and aerodynamics. 

Constraints were imposed on the project which included the Electrathon 

competition rules (Electrathon America, 2007). While non-negotiable, these rules 

governed only two aspects of the design: safety and fair competition. Teams had a limited 

supply of materials and a seventy-five dollar budget for consumables not provided by the 

teachers for the challenge. Funds were raised by some ambitious teams, but these teams 

were constrained to work during personal time (extracurricular). Teams were constrained 

by a limited timeline of two periods per day. While the lab was open informally after 

school hours, the expectation was that students could solve the problem in the allotted 

time. Team designs and fabrication had to be considered a safe and appropriate use of 

tools and materials by the instructors. Additionally, cars were constrained to a physical 



104 

size limit for facilitating storage and transportation to the competitions. Students further 

defined their own constraints, such as: all members of the team could fit in the car, rather 

than just the team’s designated driver. 

Student designs were evaluated on multiple levels. Evaluation was done by the 

instructors as to how well the design conformed to Electrathon safety guidelines. 

Students made informal evaluations of designs during the brainstorming sessions. The 

extent to which the prototype car followed the design was consistently and informally 

evaluated by students. Jerome commented, “Today we made a crappy roll bar that wasn’t 

symmetrical! We ended up starting a new one.” 

 
Solutions 
 

Opportunities to research existing solutions were provided. Exemplar cars 

representing previous successes and failures were stored in the lab for student inspection. 

Students spent time driving various cars from previous years and informally evaluating 

the overall feel of the car, and assessing individual aspects (i.e., steering, drive train, 

ergonomics, etc.).  

Students were encouraged to conduct a miniature “literature review,” wherein, 

they searched the internet, books, magazines, pictures, and other sources. Students 

photographed, videotaped, and interviewed teams from other schools during 

competitions. A sense of information sharing was evident at the race attended by the 

researcher. Students were not only sharing current plans, but ideas for future designs and 

tools.  

 Students were required to document evidence of brainstorming. Participants 
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conducted formal and informal brainstorming in individual and group settings. Many 

sketches and ideas were described in daily journaling and team reports. One example of 

sketching potential car designs is displayed in Figure 7. 

For the car design, activities in the fall served as brainstorming evidence in the 

form of 1/10 scale models of the frame and body. These models included functional 

steering linkage, an articulated model driver, wheels, battery, motor, and wiring  

 

 

Figure 7. Keila’s brainstorming sketch. 
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mockups. A mini-frame project using a jig provided rich experiences upon which to 

flavor the spring brainstorming activities. Students had a realistic impression of the 

challenges involved with alignment, welding, and metal fabrication from their capstone 

fall term projects. Students were encouraged to consider multiple solutions and not fixate 

on their first idea. The 6-3-5 brainstorming method of team idea generation was used by 

teams. In this process, each team member generated three ideas. The ideas were described 

or sketched on a piece of paper and passed to the other team members. Each team 

member was expected to provide written comment or annotation to the ideas. The name 

“6-3-5” is, thus, derived from a six student team, generating three ideas each and passing 

their paper to the other five students for comment. Collen’s ideas included the following:  

I think we should use a drop axle so that it is easy to assemble, plus it would fit 
the [driver’s] body. The hand steering would be best for more room in the center. 
No suspension due to addition height from little parts. For the body, we should 
have a fiberglass nosecone with an aluminum body. A canopy roll bar would be 
good. 
 

Peer commented included, “I agree with everything,” “Sounds good,” “Yep,” “I agree 

because it would make the car better.” Typically, student comments focused on 

agreement, “Yes, allows more aerodynamics.” “I think it [would] be better to have a 2 

handle steering because it would be easier for the driver to drive.” 

 
Analysis/Modeling 
 

Analysis and modeling was facilitated on multiple levels. In the professional 

development, agreement was reached that students would be presented with the concept 

of energy modeling. It should be noted that the researcher did not directly observe a 

formal presentation of the energy model. However, the instructors were observed 
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lecturing on components of the energy model and its relationships to car performance 

and, therefore, it is presented here as agreed upon. 

As discussed in the professional development, the energy model provides focus 

for students as they attempt to refine their design and optimize car performance. On a 

conceptual level, energy conversions were modeled in terms of “losses.” Chemical 

energy in the battery was converted to electrical energy. A portion of the energy is 

utilized in creating forward motion of the vehicle. However, energy was “lost” in terms 

of friction which is resisting the goal of forward motion. In this model, the focus was 

reducing energy “loss” by minimizing rolling resistance, drive train friction and wind 

resistance. These three variables were discussed as functions of aspects of the design 

process that students were capable of manipulating. Rolling resistance was discussed as a 

function of Ackerman steering, toe in/out, axle tightness, tire pressure, wheel bearing 

friction, and brake drag. Drive train friction was a function of chain tension, sprocket 

alignment, and motor bearing friction. Wind resistance was modeled as a function of 

aerodynamic drag. It was recognized that this model is limited, but it was, purposefully, 

created to maintain a developmentally appropriate means of analysis for high school 

junior students.  

Quantitative analysis of rolling resistance was conducted by measuring battery 

voltage and amperage draw of the motor. While driving the cars, students paid attention 

to their speed, measured by a bicycle computer and amperage draw (measured by a 

shunt). This data provided feedback to drivers in order to maximize battery life and 

distance traveled. Students used this data to drive decisions on gear ratios. Most students 
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could explain their gear ratio, why they chose this ratio and identify their predicted speed. 

Ackerman steering was analyzed using paper on the floor. While the car drove 

slowly over the paper, any sliding of the paper indicated improper turning radius on that 

wheel. Wheels were spun by hand and timed to measure bearing and axle friction. Drive 

train friction was measured by lifting the drive wheel and measuring amp draw of the 

motor. Wind resistance was modeled using the 1/10 scale cars with bodies created in a 

wind tunnel by measuring drag force with a scale. Students dealt with uncertainty by 

taking multiple measurements and averaging the values. Additionally, students were 

asked why outliers may be present in their data. Students made estimates during a variety 

of occasions, including setting angles for steering (camber, caster, rake), material size and 

weight tradeoffs regarding construction choices and costs of materials in their designs.  

 Students recognized variables pertinent to the success of their design such as 

aerodynamics, overall weight, and stability. Chandler states, “I think it [the car] should 

have a drop axle so that we can keep the battery and motor below the axle so I don’t flip.” 

Chandler was referring to the center of gravity and its impact on stability and used this 

insight to drive his team’s design. 

 
Experimentation 
 

Students conducted experiments based on analysis by conducting the rolling 

resistance, drive train and aerodynamic measurements. During the experimentation, 

students made changes they thought would increase performance, and retest. This 

iterative process helped students reduce the infinite number of variables which may 

increase performance to a more manageable set of choices.  During lectures, the 
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instructors reminded students that rolling resistance, drive train friction, and 

aerodynamics are key variables to be addressed. Students experimented with balance and 

weight distribution and its effect on handling. Students gathered empirical evidence 

during their testing and experimentation as described earlier under analysis.  

The students prototyped during the fall with their 1/10 scale model car and body 

represented an iteration of the car in the design process. The mini-frame prototype 

featured a layout method new to most students that would assist in fabricating a straight 

frame with bilateral symmetry. 

Teams used each race as an experiment in driver technique and car performance. 

Students discussed what changes they might make to increase performance of their car as 

measured by race results and amperage draw while driving. Changes were made each 

week in preparation for the weekend race. The racing season started in March and 

continued into the summer. This schedule facilitated an iterative process of design and 

redesign with weekly testing. Students were engaged eagerly in reflection and preparation 

for each weekend.  

 
Decision Making 
 

Students made decisions in a variety of ways including the use of a decision 

matrix. Students were coached, initially, with alterative designs and criteria. As the 

students became familiar with the decision making tools, gradually, they began to 

develop their own criteria and supply creative alternate solutions for evaluation. 

Examples of optimizing the design included determining tire pressure, electrical 

resistance, and gearing, as a few examples. Design teams drove their cars with various 
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tire pressures and discovered that, while a higher pressure reduced rolling resistance, it 

decreased cornering abilities. This tradeoff was managed by teams through experiential 

manipulation of the pressure while attentively driving the car.  

Electrical resistance was measured using an ohm meter. Reducing electrical cable 

length, increasing cable thickness and increasing connection surface area reduced 

resistance, but may lead to poor weight distribution or increased weight. This tradeoff 

was balanced and managed by the students as a design consideration.  

Race tracks varied in length, elevation gain, and cornering and, thus, speeds 

required to win each race varied. Students optimized gear ratios for their cars based on 

calculations for speeds and posted results for previous years’ races.  

 While the 6-3-5 brainstorming method was intended to generate alternatives, it 

doubled as an opportunity to make decisions. Team member comments led to developing 

a list of characteristics for each team’s design. One team lists, “Drop axle, rack and 

pinion, thumb throttle, 20” tires, disc brakes, driver lying down, weather stripping, hand 

brakes, 5 point harness seat belt.” These characteristics were developed in a team meeting 

and provided focus for the efforts of multiple team members often working 

independently.  

 
Teamwork 
 

Development of teamwork skills began in the fall and continued with increasing 

intensity during the spring. Effective communication was a heavily emphasized 

component of teamwork. Teams were allocated time at the beginning and end of each 

period for planning, documentation and decision making. Teams kept records of plans 



111 

and ideas in a team journal.  

To encourage individual participation in the team activities, instructors also 

evaluated student efforts in the form of skill grades, journaling, reports, time 

accountability sheets and job/task analysis. Students participated in the evaluation 

process through self and peer evaluation (refer to Table 24) and while journaling. Time 

sheets hold each member of the team accountable for making progress on the project. On 

each sheet, students documented what work was accomplished, how long it took, tools 

used, and total time on task for the day. 

Team leaders assisted the team in identifying tasks and who would be responsible 

for completing them. Jerome journals: 

In our team group we decided that Andre would make our C-brackets and drill 
them and Brayden would make the back plates and Jerome would make the stand 
for the back axle. Our problem of the day was Andre quenched our C-brackets. 

 
The journals also provided a daily log of work accomplished. Presented here is an 

example of the daily log: 

-  Plan to get sides of frame done. Cut and tack welded into place. 
-  Got all sides cut and most tack welded, trouble with two of the angles not 

matching up. 
 
 
Table 24 

Reflection on Team Member Performance During a Bi-Monthly Assessment 

Name of lab partner Grade Explain grade and contribution 
Ted A Good worker always 
Cori A Good leader, works well with others 
Collen B- Doesn’t really actively look for something to do. But works well 

when given a job. 
Joseph A Works well with group. Finishes what he starts. 
Cédrick C Isn’t always here, helps but isn’t very active 
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-  Get a start on the nose cone, finish first battery cage and start second, weld sides 
-  Got start on nose cone, angles cut wrong so battery cage not done and sides are 

welded. 
-  Plan to cut roll bar to length, angle [illegible] and weld it on, also get connection 

arms welded on. 
-  Big problems with bar but got the connection arms tacked into place after cut to 

the right angle. 
-  Finish welding connection arms, make tie rod and get roll bar on 
-  Made tie rod and welded the connection arms but still don’t have the roll bar on. 

 
Students began and ended each period with a team meeting. Journals were, typically, 

used at the conclusion of the period to document progress and, in some cases generate 

goals for next period. 

 
Spring Emergent Themes 

 
 
 Two themes emerged which contributed to the success of the learning 

environment during the spring. One of these was that team members worked 

simultaneously on different aspects of the project. The second theme was that the 

instructors balanced an open-ended problem with some constraints. 

 The spring design challenge was a large scale project requiring all team members 

to participate. Design officially began in January, and the race season started two month 

later in early March. In order to design and build a car, team members were forced to 

work in parallel, individually developing aspects of the car that would fit together as a 

larger system. In part, this was successful because teams communicated during their 

meetings and agreed upon their plans.  

 Team designs varied from team to team, but each group used some standard 

components. Constraining a few of the design aspects reduced an infinite solution set to a 
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more manageable level. All teams were issued identical twenty inch wheels and a motor. 

Therefore, designs held this constraint as a constant allowing creativity and individuality 

to develop regarding how and where to mount the wheels. The brackets for hinging the 

axles on the kingpins were similar across each team. This provided students the 

opportunity to learn to use specific shop equipment in the fall for producing the parts. 

The theme of standardizing (constraining) a few elements of the car facilitated fabrication 

of those elements in isolation of other interconnected components. The ability to create 

components (or sub-systems) that fit together during assembly was a key element in 

ensuring each student’s could actively participating in design and construction. 

 
Qualitative Data Summary 

 
 
 Qualitative data were gathered through teacher observation, student observation 

and documents. The purpose of this data was to provide a description of the context to: 

(a) demonstrate engineering design elements were present during this study, (b) provide 

an example approach to be replicated or adapted, and (c) extend generalizability by 

highlighting teaching pedagogy and student response. To these ends, data were not 

gathered on all students, nor were all students equally represented. Rather, data were 

gathered to provide evidence of the teaching and learning environment which showed 

students participating. 
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CHAPTER V 
 

DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS 
 
 

Kindergarten through twelfth grade education has been identified to facilitate 

fostering a technologically literate society (Gamire & Pearson, 2006; Gorham, 2002; 

ITEA, 1996, 2000; Pearson & Young, 2002). To be technologically literate includes 

developing an understanding of the engineering design process (ITEA, 2000). 

Engineering design challenges are a way to bridge the divide between technology 

education and engineering as they provide an opportunity to focus efforts on a design 

project while applying engineering principles. 

 Previous quasi-experimental research (Cantrell et al., 2006; Dally & Zhang, 1993; 

Dunlap, 2005; Dym et al., 2005; Griffith, 2005; Irwin, 2005; Lentz & Boe, 2004; Marra 

et al., 2000; Ricks, 2006; Romero et al., 2006; Roselli & Brophy, 2006; Weir, 2004; 

Yaeger, 2002) has established that engineering design challenges are successful in 

increasing student achievement and attitude toward learning. However, limited and 

conflicting evidence suggests the academic background of a student may impact their 

experience during the engineering design challenge. Cantrell and colleagues concluded 

engineering modules reduced achievement gaps of most ethnic minority groups. Weir 

also differentiated her data based on student groups, but she considered an academic top 

half and an academic lower half in a university engineering course. Her conclusion was 

that the upper half improved significantly (p < 0.05), while the lower half was not 

significantly (p > 0.10) different between the pre and posttest measures. 
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Discussion 
 
 

Achievement 
 
 
 In this research, student achievement was significantly correlated to science GPA, 

but not significantly to math or communication GPA. Therefore, a student participating in 

this study was likely to perform better on the achievement test if their science GPA was 

higher. The differences are not only statistically significant, but they are practically 

significant. To quantify the practical significance, consider an example: the mean scores 

in October were approximately 70% correct, and the average science GPA was nearly 

2.00. A typical student who failed previous science courses would tend to score 10% less, 

or about 60% in this example. Conversely, a student who earned a 4.0 GPA in science 

would tend to score about 10% higher, or about 80%. Knowledge of previous 

performance in science lends substantial prediction capabilities to a student’s 

performance in this achievement test.  

 Previous performance in math and communications courses did not provide 

significant prediction capabilities in the modeling. This indicated that students who 

performed poorly in math or communications were not disadvantaged significantly over 

their higher GPA peers. Though math and communications GPAs were not statistically 

significant predictors, a positively correlated trend was noted. Students with a higher 

math or communication GPA tended to perform better on the achievement test. Special 

education status provided significant prediction in the model. Special education students 

tended to score about 10% less than their regular education peers. While this number is 
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statistically significant, the practical difference was questionable. Special education study 

participants represented nearly one third of the study sample. This proportion was 

approximately 2.5 times greater than the high school demographic. Generally speaking, 

special education students received additional educational services to be successful in 

school. However, in this study, they performed only about 10% under their peers without 

support on the test.  

Achievement score changes over time were not significantly correlated with 

science, math or communication GPA. This indicated that slope modeling for higher and 

lower GPA students does not show statistically significant changes over time. Therefore, 

higher GPA students were not advantaged or disadvantaged over time in comparison to 

their lower GPA peers. This interpretation needs to be considered conservatively as class 

mean scores did not change significantly over time. The lack of significant mean change 

over time potentially indicated students did not learn (in a measurable sense) during this 

course. Alternatively, the achievement instrument may not have fully captured the 

essence of learning which did occur but was not measured. While speculation regarding 

why students did not show improvement over the seven month study was non-conclusive, 

the scores for lower GPA students did not drop significantly. This does indicated that 

lower GPA students remained active in their participation in course experiences which 

included the achievement test. Cantrell and colleagues (2006) and Irwin (2005) measured 

high school student achievement growth, and both indicated improvement, while only 

Irwin indicated significant improvement.  

Student status as a member of an underrepresented population group improved the 
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model fit statistically, but was not a statistically significant predictor. The mean 

difference between majority and underrepresented populations was of interest, but due to 

a large variance and relatively small mean difference, inclusion in the model could have 

been attributed to chance and chance alone. 

Cantrell and colleagues (2006) conducted a study wherein engineering design 

challenge activities supplemented the standard curriculum, and student performance was 

compared to statewide statistics on the standardized tests. Cantrell’s study concluded that 

engineering modules reduced achievement gaps of most ethnic minority groups. This 

study indicates ethnic minority groups underperformed their majority peers. This 

difference, noted in mean scores, was not statistically significant. Change over time does 

not support Cantrell’s finding that the achievement gap was reduced, but it does suggest 

that the achievement gap was not increased significantly.  

Weir (2004) differentiated data based on student groups by considering an 

academic top half and an academic lower half in a university engineering course. Her 

conclusion was that the upper half improved significantly (p < 0.05), while the lower half 

was not significantly (p > 0.10) different between the pre and posttest measures. Using 

science, math, and communication GPA as indicative of students’ academic nature, 

students improved slightly more over time if their GPA was higher. This lends some 

support to Weir’s conclusion, but differences based on GPA over time were very small 

and could be attributed to chance and chance alone. 

Two of the five CM3 subscales of mental motivation significantly improved 

model fit. Knowledge of a student’s creative problem solving score was a statistically 
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significant predictor of achievement outcome. This positive correlation indicated students 

with a higher score on creative problem solving are more likely to score higher on the 

achievement test. Cognitive integrity was included in the model but was not statistically 

significant as a predictor. The small correlation and high variance suggests this predictor 

may have been attributed to chance and chance alone. 

 
Mental Motivation 

 
 

Mental motivation was measured by five subscales: mental focus, learning 

orientation, creative problem solving, cognitive integrity, and scholarly rigor. Mental 

focus was correlated with math and science GPA. Students scoring higher in math GPA 

showed a positive correlation with an increased mental focus score of approximately 2.5 

points (scale 0-50) per GPA point. Correlation with science GPA was positive and of 

greater magnitude, approximately 3.5 points (scale 0-50) per GPA point. Interpretation of 

the CM3 scales used a categorization of 10 point blocks ranging from 0-50. Mean mental 

focus scores ranged from 27.27 in October to 27.54 in April. Scores ranging from 20-30 

were considered “ambivalent” while scores in the 31-40 category were “somewhat 

disposed” (Insight Assessment, 2006). Thus, the practical significance of this correlation 

with science and math GPA is that higher GPA students tended to be categorized as 

“somewhat disposed” to being diligent, focused, systematic, task-oriented, organized, and 

clear-headed. Their lower GPA peers tended to be “ambivalent.”  

Mental focus changes over time were negatively correlated with science GPA, 

meaning the initial score differential (between higher and lower science GPA students) 
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was decreased over time. This statistically significant reduction of the mental focus gap 

between higher and lower GPA students held a practical significance as mid and high 

GPA students showed a small decrease in mental focus, while low GPA students showed 

a more dramatic increase in focus over time. Math and communication GPA had a 

positive correlation with mental focus indicating that students with higher GPAs tended 

to score slightly higher on the mental focus scale. Math and communication GPA 

interactions with time were not significant but were slightly negatively correlated which 

indicated that the mental focus gap was slightly reduced over time. 

Learning orientation and cognitive integrity were not significantly correlated with 

cumulative GPA or individual GPAs for math, science, or communications. Slightly 

positive correlations were noticed with science GPA. Learning orientation was slightly 

positively correlated with math and communication GPA while cognitive integrity was 

slightly negatively correlated. Students began the semester with a score of approximately 

32 and 33 (scale 0-50) in learning orientation and cognitive integrity, respectively. This 

indicates students were “somewhat disposed” to desire an increase in their knowledge, 

skill base, truth seeking and open-mindedness (Insight Assessment, 2006). Small, but not 

statistically significant, increases over time were observed. No significant correlations 

were discovered with GPA or GPA interacting with time. This indicates that regardless of 

GPA, students were equally likely to be interested in increasing knowledge and skill with 

a fair-minded perspective. A lack of correlation with GPA and time as an interaction 

factor indicates students did not change over time related to their GPA.  

Creative problem solving was positively correlated with science GPA. Students 



120 

with higher GPA in science tended to have a higher creative problem solving score, 

approximately 2.25 points (scale 0-50) higher per point on the GPA scale. Mean creative 

problem solving scores in October were 29.27, and statistically significant gains by April 

yielded a mean of 31.39. While 2 point gains held questionable practical significance, the 

average student did transition from “ambivalent” to “somewhat disposed” to having an 

increased tendency to approach problem solving with innovative or original ideas and 

solutions (Insight Assessment, 2006). A slight negative correlation was observed with 

math while a slight positive correlation was noted with communication GPA. Gains over 

time were not correlated to any of the GPA data, which, indicated that students, 

regardless of GPA, tended to increase over time on a similar slope. 

Scholarly rigor was positively correlated with science GPA. Students with higher 

GPA in science tended to score higher in scholarly rigor, approximately 1.75 points 

(scale 0-50) higher per point of GPA in science. Slight positive correlations with math 

and communication were observed. Change over time was not statistically significant, 

nor was it correlated with GPA. Thus, student growth over time was unrelated to GPA in 

science, math, or communications. Student mean scholarly rigor scores in October were 

26.27 which increased, but not significantly, to 27.76 in April. This indicated students 

were “ambivalent” in their disposition to work hard to interpret and achieve a deeper 

understanding of complex or abstract material (Insight Assessment, 2006). 

 Knowledge of a student’s status as an underrepresented population in engineering 

and technology education improved model fit statistically for each outcome considered. 

While this predictor significantly improved the model, it was not a statistically significant 
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predictor. For each outcome considered, the inclusion of this predictor could be based on 

a mean difference and variance resulting from chance and chance alone. 

 Supporting the existing literature base (Dally & Zhang, 1993; Dunlap, 2005; 

Griffith, 2005; Lentz & Boe, 2004; Ricks, 2006; Rogers, 2005; Romero et al., 2006; 

Roselli & Brophy, 2006; Weir, 2004), attitude related scales measured pre and post did 

show improvement. In each of the five subscales of mental motivation, mean scores 

increased. Mental focus and creative problem solving mean scores improved significantly 

over time.  

 
Validity 

 
 
 Internal and external validity were of critical importance to research. Internal 

validity referred to the “…level of certainty that the experimental treatment has a causal 

influence on the dependent variable” (Gall et al., 1999, p. 235). While this research study 

was of a correlational design rather than experimental, internal validity concerns were 

still addressed where appropriate. External validity, according to Gall et al., was “…the 

extent to which the experimental findings can be generalized beyond the research sample 

to other groups” (1999, p. 235).  

 
Internal 

 
 
 Internal threats of history, maturation, testing, instrumentation, statistical 

regression, differential selection of participants, mortality and selection-maturation are 

typical experimental study concerns (Gay & Airasian, 2000). Correlation studies focus on 
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predictors and outcomes without attempting to infer causality, yet, a few of the internal 

validity issues remain appropriate to address. Pertinent interval validity concerns include 

testing, instrumentation and mortality. 

 Testing was conducted in early October, mid-December, and late April. By 

spanning a few months between each test administration, the impact of test sensitization 

was less likely to affect student scores. The CM3 representatives stated in a phone 

conversation that the instrument may be administered in this study’s schedule with 

minimal concerns of test sensitization. 

 Instrumentation was addressed as a concern in achievement and mental 

motivation instruments differently. The achievement test was piloted a year prior to the 

study, and three versions were developed from the pilot. To minimize the effect of 

differences between each version, all three test versions were administered during each 

testing visit. At the conclusion of the study, each student had taken each version, but not 

in the same order. Initial distribution of the tests was at random, and which version the 

student received at the next administration was also random. The CM3 was administered 

three times to the students without instrument change, as confirmed appropriate with 

Insight Assessment. 

 Participant mortality was a notable phenomenon that occurred in this study. Fifty-

three students began this study, and 12 (22%) dropped before the study was complete. 

Study participants were limited to students who maintained enrollment in the selected 

course, and, therefore, when students withdrew from the course, they, by default, 

withdrew from the study. According to conversations with district administration, the 
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school was noted as being a “transient” district where students often moved during the 

school year. This course was an elective, and if students required another course to 

graduate, they were removed at semester break and placed in the required course. Due to 

the safety concerns, few students enrolled as the year progressed, and, therefore, 

enrollment tended to drop rather than remain consistent. Table 9 (shown earlier) 

compares the demographic data on student enrollment over time. Mortality of students 

enrolled in each of the two sections of this course was comparable with section one 

losing seven students and section two losing five students. Female participants did not 

withdraw from the study while male mortality accounted for the entire change in sample 

size. Ethnic status data were not collected until April, and, therefore, students who 

withdrew were not identified. This lack of data limited conclusions drawn on a 

relationship between morality and ethnicity. Mean cumulative GPA was computed for 

student participants at each time point (see Table 9). A statistically insignificant 

(p = 0.808, refer to Table 10) difference in GPA per time point resulted from a 

disproportionately higher dropout rate from students with low GPA. 

 
External 

 
 
 External threats of pretest-treatment interaction, selection-treatment interaction, 

multiple treatment interface, specificity of variables, treatment diffusion, experimenter 

effects, and reactive effects are typical experimental study concerns (Gay & Airasian, 

2000). Correlation studies focus on predictors and outcomes without attempting to infer 

causality, yet, a few of the external validity issues remain appropriate to address in this 
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study. Pertinent interval validity concerns include selection-treatment, specificity of 

variables and reactive arrangements. 

 Selection-treatment interaction was considered purposefully in this study. While a 

treatment was not administered as it would be in an experimental study, the effects of 

participating in this course did potentially interact with the selection of students. 

Technology education students represent an academically diverse group of students. This 

study purposefully was set in a classroom wherein participants ranged in academic 

background in order to represent the diverse national population. 

 Specificity of variables was a serious concern in this study. Operationalized 

definitions of engineering design are provided as a contextual description of the research 

setting with qualitative methodologies employed early in the findings section. Definitions 

of engineering design, its iterative processes and their application in the technology 

education classroom are far from a standardized practice. Thus, documentation of 

observations and student data were critical in providing opportunities for generalizing the 

research findings to a larger audience given specific definitions of operationally 

ambiguous practices. The achievement test development was outlined in the methodology 

section, and the pilot, as well as the three test versions, are presented in the appendix. The 

CM3 validity and reliability data were presented briefly in the methodology section, and 

further details are available in the appendix. 

 Reactive arrangements may have influenced achievement and mental motivation 

data gathered. When the researcher was introduced to the student participants, an 

overview of this study was delivered. During this overview, the researcher communicated 
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the importance of this study and attempted to establish a rational for students, motivation 

to participate in this research effort. Inadvertently, the researcher may have contributed to 

a reactive arrangement where students felt special because they were in an important 

study. The Hawthorne effect may have some level of impact on data gathered as students 

may have made a greater effort during data collection based solely on their knowledge of 

being studied. This effect may have changed over time as the researcher only established 

the importance of this study with the students during the first meeting (and testing), not in 

subsequent test administrations. Achievement test scores may have been overly inflated 

in October, as a drop was noted to December before a score gain in April. Generally, 

similar trends existed for the CM3 scores. 

 
Implications 

 
 

Implications for Technology Education 
 
 

The field of technology education embraces the importance of technological 

literacy and caters to an academically diverse audience of student learners. Integrating 

engineering design into the curriculum addresses the Standards (STL) and broadens 

student understanding of our designed world. This study provided an approach to 

operalizationalizing the definition of engineering infused into technology education. In 

this example, students participated in two corequisite courses. Each course was 

essentially a standalone course in the fall, one focused on engineering as applied physics 

and the other material (typically metal) fabrication techniques. The set of learning 

experiences implemented in the fall in both classes prepared students with foundational 
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knowledge from which they could begin to design, fabricate, test, and redesign during the 

spring term. The use of electric cars as a design challenge provided a problem on which 

engineering design was applied. 

Results from this study indicate that while achievement gaps exist, these gaps are 

not widened while introducing engineering design concepts into a technology education 

classroom. Special education students performed poorly on the achievement test as did 

lower science GPA students, however, growth among these groups was not statistically 

different than their peers. Thus, engineering design infused into technology education 

does not disadvantage student growth as measured by an achievement test over time. 

Mental motivation was measured in five subcategories. In one case (mental 

focus), an interaction was discovered between time and a GPA (science). This interaction 

was negative, indicating that initial differences among higher and lower GPA students 

was reduced over time, effectively reducing the gap between higher and lower GPA 

students. While the trend of reducing the gap for lower achieving students was 

encouraging, this indicated that high achieving students demonstrated a drop in mental 

focus over time. According to the instructors of the course, students who were lower 

achieving may discover the relevance of the academic material when presented with an 

application opportunity. This discovery of relevance may motivate them to engage in 

higher levels of mental focus. On the other side of the academic spectrum, higher 

achieving students may exhibit characteristics of boredom as the pace of the course is 

perceived to be less challenging than is appropriate for their level. The other four 

subscales, neither GPA in math, science, or communication impacted growth over time. 
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This indicated to the field that higher and lower achieving students (as measured by 

GPA) did not have statistically different growth patterns over time. Therefore, lower 

GPA students are likely to improve in learning orientation, creative problem solving, 

cognitive integrity and scholarly rigor as their higher achieving peers.  

The teaching methodologies described herein have been determined to be 

successful by the teachers and their administration. Teaching methods were observed and 

documented for replication and generalizability, but were not measured or tested. This 

research site provided an environment where two teachers collaborated, each responsible 

for his content. In this setting, the teachers shared a common goal, but each took 

responsibility for a separate portion of the curriculum. Mr. Brewer taught engineering as 

applied physics focusing on small projects in the fall to provide a foundation for the 

larger design challenge in the spring. Mr. Rivet taught fabrication techniques, including 

welding, cutting, fasteners, drilling, and bending. His primary focus was metal working, 

but he included other materials as well. Mr. Rivet’s fall semester was typical of many 

technology education (and industrial technology education) laboratories focused on skill 

development. The spring term provided students with the engineering design challenge 

and a foundation of fabrication and design skills from which they could develop a 

solution.  

While two teachers combined foci and efforts, the researcher believed the 

pedagogical skill set and educational methodologies employed during this study are not 

based on an interaction between two teachers, but rather a simple sum of two parts. In 

conversations with the instructors, they concurred that one teacher could comfortably 
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handle the responsibilities of teaching metal fabrication and engineering as applied 

physics. This conversation naturally stemmed from the impending retirement of Mr. 

Rivet and, consequently, Mr. Brewer’s pursuit of certification of a career and technical 

endorsement. Observations of classroom teaching support the premise that one teacher 

would be capable of managing the responsibilities which were, in this study, split 

between two. This teacher would need to be certified and competent in teaching material 

processing, as well as engineering design concepts. Thus, conclusions and findings from 

this study are not hinged in the synergistic efforts of two teachers. Rather, they were 

based on two content areas focused on teaching students to develop a solution to a 

common problem. Each content area provided skills and abilities which facilitated a 

synergistic effect within the student to utilize an engineering based approach in a 

technology education environment. 

Transitioning from the two teacher classroom in this study to the more typical one 

teacher technology education environment will hinge, in part, on teacher knowledge. 

Skills required are related to the design problem presented to the students. In this 

particular case, welding, and material fabrication skills were appropriate to develop a 

solution, as well as the ability to apply physics concepts to real world problems. The 

skills used by the students in solving the problem were a subset of the teacher’s skills, 

and, therefore a different engineering design challenge would require different teacher 

knowledge. Thus, the teacher’s skills and knowledge should align with potential avenues 

for solving a design challenge prior to its selection for classroom use. Content for teacher 

professional development may be driven by a specific domain of design challenges or, 
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conversely, the teacher’s skill set may drive their choice of design challenges in their 

classroom. Thus, a level of teacher experience is requisite in the areas relevant to 

designing and building solutions to problems.  

In taking full advantage of the engineering design process, an understanding of 

math and science (physics in this study) was necessary. Technology education teachers 

should pursue a strong background in mathematics and science. Physics was the most 

overt science content exploited in this study, however, other science principles may be 

appropriate. As an example for this design challenge, a teacher of fluid dynamics may 

have lead to developing lessons specific to aerodynamics. This may have resulted in 

students’ designing their bodies and frames differently to optimize speed. Therefore, a 

broad teacher understanding of math and science will provide opportunities for deepening 

student understanding of the system behaviors through explanation and relevant hands-on 

application. While naive understandings of math and science will limit technology 

teacher potential, a lack of understanding does forecast impending failure. Teachers may 

choose a few aspects of a particular engineering design challenge with which they are (or 

will become) familiar, and other aspects may be left to trial and error approaches. Where 

areas of teacher weakness exist, opportunities for professional development abound. 

However, in the busy teacher work day, other support may be found through 

collaboration with science and math teachers, industry professionals, higher education 

partnerships and knowledgeable parents. 
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Implications for Engineering Education 
 
 

The engineering community has a dynamic and critical relationship with society. 

As technology education, with its foothold in the American school system, entertains the 

notion of making cross-curriculum connections with engineering, the potential develops 

for defining relationships between engineering and technology education. Gorham and 

colleagues (2003) described a synergistic relationship between engineering and 

technology education toward a common goal of technological literacy. The engineering 

community is concerned with the technological literacy of society, as well as maintaining 

(and improving) the pipeline from high school graduation to engineering school entrance. 

“An engineering-led effort to increase technological literacy could have significant, long-

term pay-offs, not only for decision makers in government but also for the public at 

large” (Pearson & Young, 2002, p. 112). Including engineering in high school will 

certainly increase the number of students to the field of engineering. All current students 

and future community members are directly or indirectly impacted by decisions of 

engineers. As high school students begin to understand the critical lens used by engineers 

to make decisions, they, too, will deepen their understanding of the world shaped by 

engineers.  

 
Implications for Engineering Design Challenges 

 
 

Engineering design challenges are one avenue for facilitating the understanding of 

engineering through hands-on application. Technology education historically has been 

the window through which students apply what they have learned in a relevant hands-on 
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fashion. Utilizing the tools specific to engineering in combination with technology 

education’s typical hands-on approach will facilitate expanding students’ technological 

literacy thereby addressing the STL standard nine. Students in technology education 

typically use many tools such as material processing equipment, computer aided design 

software and teamwork to solve problems. Engineering may add additional tools to the 

experience in the classroom. The extent to which engineering design is applied in the 

classroom is related to the developmentally appropriate nature of student learning just as 

the decision to use power tools (and which ones) in material processing problems. These 

engineering tools and processes may be developed into the technology education 

curricula for research and testing. 

This study suggested six critical elements of engineering design: problem 

definition, development of solutions, analysis/modeling, experimentation, decision 

making and teamwork. These six iterative elements were derived from a review of 

literature and became a lens through which the design challenge was viewed. Students 

participated in various activities which focused their efforts in developing skills in each 

of these six areas. Evident in the observations was the theme of student transition from 

teacher driven problems with narrow boundaries to student driven problem definition 

with wider boundaries. In this research, projects started as small individual activities 

early in the fall term. As the semester progressed, projects became more complex, and a 

necessity for teamwork developed. Each activity in the fall provided students with 

experience and skills in areas of engineering design and material fabrication. This 

preparation provided a solid foundation for the spring challenge.  
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The magnitude of designing and building an electric race car was a large scale 

project in this study. The methodologies utilized in this classroom spanned two periods 

over one year. The fall was devoted to learning fabrication skills and engineering design 

applicable to the spring challenge. Teaching pedagogy of preparing students with a series 

of small learning experiences which increase in intensity and complexity may be scaled 

to fit a different context. Classrooms where smaller engineering design challenges are 

implemented may still adopt the same teaching methodology. This means identifying a 

series of learning experiences which will promote successful completion of the 

engineering design challenge. These small activities will be specific to the coming 

challenge and, therefore, may be adapted to fit a variety of different schedules. Smaller 

activities must provide relevant practice in engineering design and requisite material 

processing skill development. As noted in this study, smaller activities should begin as 

primarily teacher directed (and defined) and transition to student directed and defined 

learning experiences. Teamwork was developed in this study as a transition from 

individual projects to smaller, and then larger, group experiences, thus, allowing students 

to practice interacting with smaller teams first. 

 
Recommendations 

 
 

Recommendations for Teachers 
 
 
 Secondary technology education teachers should infuse engineering into their 

curriculum as suggested by the STL. The development and implementation of 

engineering design related curricula into a technology education environment can be 
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done in such a way that all students, ranging from academically struggling to 

academically successful, can grasp the concepts presented. In this study, a comprehension 

of science (measured by GPA in previous courses) was a statistically significant trend 

that influenced achievement success and mental motivation. Math and communication 

skills also tended to exhibit a slightly positive correlation with achievement and mental 

motivation. 

 Technology teachers need to be prepared to reinforce absent science concepts 

when delivering an engineering design challenge which are relevant to the task at hand. 

The introduction (or review) of relevant math and science concepts may be in a series of 

small activities that build up to the challenge or in a “just-in-time” format to meet the 

needs of the learners. Math and communications are important academic areas, and, 

generally, showed positive correlations with outcomes measured in this study. The 

correlations with math and communications were not statistically significant which may 

be related to the focus of this particular design challenge, not necessarily representative 

of all design challenges. 

 Teachers and their supportive administrations should recognize that using 

technology education as a venue for teaching engineering design does not serve to extend 

the achievement or mental motivation gaps present as students transition through a design 

challenge. Student motivation was critical to maintaining and managing a successful 

learning environment. Motivated students tend to make a more diligent effort to acquire 

new material and apply their conceptual understanding to problems at hand. In this study, 

students formally began designing their solutions to the engineering design challenge in 
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January. As early as March, student teams were beginning to race their cars. Races were 

typically hosted by local schools and were held nearly every weekend. This schedule 

impacted learning in the classroom by facilitating an iterative design process. Students 

would typically race their cars on Saturday, make improvements or modifications during 

the week and race again the following week. This constant form of testing allowed teams 

to make changes to their car and discover firsthand the results of those modifications. By 

virtue of the tight timeframe, teams generally raced the first few races without a car body. 

But, when the car was functional, they focused efforts of developing an aerodynamic 

body. Thus, inadvertently, students experienced the impacts of each improvement to their 

cars as the designs evolved over time. This iterative process provided learning 

opportunities, but also motivated students through the excitement of testing their 

renewable energy vehicle. Therefore, as teachers incorporate design challenges, students 

need the opportunities to engage in the iterative process of design, test, redesign, and test 

again for the purpose of discovering the impact of their modifications, as well as being 

motivated by successful experimentation. 

 
Recommendations for Teacher Education 

 
 

Teacher educators should develop an understanding of engineering design in 

order to develop a level of efficacy in creating and delivering curricula to high school 

students. This understanding may be fostered through professional development 

experiences and preservice education focused on addressing the STL. Research is 

necessary to determine what engineering design content is relevant for high school 
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teachers to be able to perform as curriculum developers, implementers and evaluators. 

This study proposes six elements of engineering design in an iterative process, but other 

competing approaches exist. Experimental determination of the most appropriate 

approach to engineering design can serve as the foundation for developing a teaching 

workforce with capacity for implementation. Using a tested approach to engineering 

design will naturally lead to inquiry on best practices for implantation at the high school 

level. Studies identifying best practices will inform professional development of current 

and preservice teachers. 

Research should determine the level of pedagogical content knowledge requisite 

to teaching engineering design. Engineering design is a process for addressing 

challenging problems and may be thought of as a lens through which the world (and its 

problems) is viewed. In considering implications for teacher education, we must address 

the following question: How do we best prepare teachers to utilize this approach as a 

methodology in their classrooms? 

Measurement of student learning is of critical importance. Research measuring 

student learning should be linked to professional development efforts. Teachers pass 

through three stages of professional development proposed by Glickman and colleagues 

(2004): orientation, integration, and refinement. As professional development efforts 

facilitate infusing engineering design into technology education, it should be recognized 

that teachers need support beyond a brief workshop. Teachers in the field will need a 

support network to reinforce integration of new concepts and hone their teaching and 

curriculum development skills in an ongoing refinement effort.  
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Recommendations for Researchers 

 
 Further research should be conducted to better assess student achievement change 

over time. This study showed no significant gains in achievement, and, therefore, 

conclusions and implications on achievement change should be conservatively 

considered.  

 Additional research should investigate potential correlations between GPA as an 

indicator of academic success and achievement and mental motivation for 

underrepresented populations. In each outcome, this status was important to control for, 

but differences were not statistically significant. This recurrent theme necessitates further 

investigation. 

 Clarity of operationalizing engineering design appropriate for technology 

education is an area for future research. Engineering design was defined for this study 

through a synthesis of relevant literature and research site practice, influenced during 

professional development by the researcher. Presented in the findings section are data 

describing the context of this research. The developmentally appropriate nature of 

determining the extent to which engineering design related activities and lessons are 

utilized in this eleventh grade classroom was based solely on the participating teachers’ 

discretion. Therefore, future study may enhance the field’s understanding of what 

constitutes developmentally appropriate engineering design curricula in a technology 

education environment. 

 This study established correlations between predictors and outcome variables but 

must stop short of inferring causality. Additional research should pursue casual effects 
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based on this research foundation. Experimental designs with control and treatment group 

should be conducted in a variety of classrooms. Engineering design presented here was 

applied to the Electrathon America challenge and could be extended to various other 

engineering problem solving opportunities. These experimental designs should vary in 

duration, from unit sized formats lasting a few weeks to semester long challenges such as 

this one. This study was potentially unique in that two teachers were participating under 

one syllabus, teaming their efforts focused on a common goal. While some school 

districts offer incentives for teachers to develop their cross-curriculum connections in a 

team approach, many do not. Experimental studies should be conducted to demonstrate 

differences between team teaching environments and more typical one-teacher 

classrooms. Longitudinal data may be gathered following students who participated in a 

design challenge study. Students in the control and treatment groups may be followed 

over a number of years to assess the impact in post secondary education and career 

choices.  
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COURSE SYLLABUS 
 

COURSE TITLE INDUSTRY & ENGINEERING SYSTEMS  COURSE NUMBER      XXXX                
DEPARTMENTS  SCIENCE ELECTIVE AND INDUSTRIAL TECHNOLOGY ELECTIVE                                
AREA OF STUDY   SCIENTIFIC, TECHNICAL AND LOGICAL PROCESSES                              
LENGTH OF COURSE   1 YEAR      NO. OF CREDITS   2.0       GRADE LEVEL    11-12    
PREREQUISITE  JUNIOR STANDING OR CIM CERTIFICATE    CREDIT BY EXAM   NO  
 
COURSE DESCRIPTION:  
 
GENERAL:  With the knowledge gained throughout this course the students will do a 
large number of projects to develop and enhance their engineering, designing, industrial 
technology, fabrication, and construction skills.  Much of the emphasis of this course 
will be related to transportation and metals technology.  In the course students will 
design and construct hands on projects such as model: magnetic levitation vehicles, 
solar vehicles, and bridges.  Students will also learn the skills of welding, machining 
and other metals technology skills. Students will build electric motors along with other 
projects that teach practical engineering.  Students can also construct school related 
items and other items for their personal use.  A major project will be to construct and 
race ultra efficient and ultra light one-person vehicles.  We will take these Electrathon 
vehicles around the Northwest and enter races against other high school students and 
adults.  In their last semester of this 2-year program students will do a major individual 
application of what they have learned or what is called a "senior project". 
 
SCIENCE:  Physics itself is the study of how things around us in the real world work 
and why they do the things that they do.  Engineering is largely the application of 
physics.  The course will use mostly hands on activities to explore and discover the 
major concept of physics dealing with motion, forces (such as gravity), and simple 
machines.  We will also study areas of electricity, heat, magnetism, aerodynamics, and 
air pressure.  This course will introduce many concepts of engineering and the 
designing of systems.  The student will learn mostly by doing small group projects or 
labs.  We will then apply this knowledge to real life activities.  
 
INDUSTRIAL TECHNOLOGY:  In this part of the course, we will be using mostly metals 
but to some degree all of the technology lab facilities here at Porter Valley, including 
mechanics, electronics, drafting and woods.  We will learn to use these facilities to 
design, construct, and test some of our major projects. Emphasis will be placed upon 
machine and tool safety, individual skill building, proper tool selection and setup, and 
operation.  The labs will provide a bridge between what we learn in the classroom to 
practical applications in a real world setting.  We will apply technology, and the skills 
we have learned in math, science and communication to several major projects. 
 
TEXT: 

(1)  Teacher developed projects and lab activities. 
(2) Teacher developed description of physic and engineering concepts utilized in 

projects. 
(3)  Supplemented with material from many other sources. 
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PAT TIME 
Brewer--Second half of period 5 in upstairs office in metals 
Rivet--First half of period 8 in downstairs metals office 
 
NEW GRADUATION REQUIREMENTS 
During this course students will be given the opportunity to meet all of the new state 
graduation requirements of: 1) Education Plan and Profile 2) Career Related Learning 
Standards 3) Career Related learning Experiences and 4) Extended Applications. 
 
COURSE CALENDAR 
Students work on projects through out the year.  They will be learning skills by doing 
small projects until winter break and then on to the Electrathon vehicles in January 
with races starting in March and running through September.  During the spring there 
will be other small projects. 
 

Starting with student’s graduating in 2007, to earn CAM students must meet five 
state-level criteria.  These criteria are described below.  This is in addition to 

MEETING ALL REQUIREMENTS FOR THE SPECIFIC CAM YOU ARE PARTICIPATING 
IN. 

 
1) EDUCATION PLAN AND EDUCATION PROFILE: 
All students must develop both and Education Plan and an Education Profile.  These 
guide students' learning, provide ownership and relevancy for learning, reinforce 
academic achievement, provide direction toward post-high school goals, and allow 
students to monitor their progress toward meeting: CIM standards, diploma and CAM 
requirements, college/vocational entrance requirements, and other accomplishments.  
The next four criteria are all linked to the education plan and profile, making them the 
"cornerstone" of all requirements. 
 
2) EXTENDED APPLICATIONS: 
Students must meet the performance through a collection of work. They do this by 
"applying academic and career-related knowledge and skills in new an complex 
situations appropriate to the student's personal, academic and evolving career interest 
and post-high school goals." 
 
3) CAREER-RELATED LEARNING STANDARDS: 
Students must demonstrate that they achieved the performance standard in all of the 
following  
six areas (6): 
 -Personal Management 
 -Problem Solving 
 -Communication 
 -Teamwork 
 -Employment Foundations, and  
 -Career Development 
 
4) CAREER-RELATED LEARNING EXPERIENCES: 
All students must participate in two (2) career-related learning experiences as outlined 
in their education plan; identify learning outcomes; and reflect on their learning.  These 
experiences should connect classroom learning with real-life experiences in the 
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workplace, community, or school relevant to their personal, academic and evolving 
career interests and post-high school goals 
 
5) CIM STANDARDS: 
Students must complete five of the CIM components to earn a CAM. Requirements are: 
 a. pass the CIM reading test 
 b. pass 3 CIM speaking work samples 
 c. pass 3 CIM writing work samples 
 d. pass the CIM math test--OR--pass 2 CIM math work samples, and  
 e. pass the DIM science test--OR--or pass 1 CIM science work sample in all 4 
areas. 
 
SPECIFIC REQUIREMENTS FOR THE INDUSTRY AND ENGINEERING 
CAM ARE: 
 

a) "B" average GPA in both years of the actual CAM class. 
b) A research or senior project that includes at least four (4) pages of text. This 

written portion must earn at least a 4 on all writing standards. (due MAY 18) 
c) An oral presentation of at least 5 minutes if done individually (12 if a team of 2). 

This again must earn at least a four (4) on all speaking standards. (evening MAY 
17) 

d) Student must earn a standard diploma. 
e) Student has earned at least a 2.0 GPA overall in their high school years. 
f) The student has taken a drafting course and earned at least a "C" 
g) Students must do a successful job shadow their first year (at least 4 hours) 
h) One to four additional job shadows of at least 30 hours total duration 

--or-- 
a CAM related service-learning project approved by the instructors 

i) Satisfy the "Skills Sheet" by having at least 5 skills at the "advanced" level, 
another 5 at "intermediate" level, and another 15 at the "introduced" level. 

j) Use of Technology:  If a specific teacher feels that their specific project met this 
requirement then that teacher can sign off this checklist requirement 
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Technological Literacy Literature



154 

Table B-1 
 
Summary of Technological Literacy Literature  
 

Reference Need for Lack of 

Inclusion of 
engineering 

by name 
Support of 
standards 

Weber, 2005 X X  X 
Meade & Dugger, 2005 X X  X 
Russell, 2005 X X X X 
Spoerk, 2005 X X X X 
Engstrom, 2005 X  X X 
Frank, 2005   X  
Rogers & Rogers, 2005 X  X X 
McKenna & Agogino, 2004 X  X X 
Shumway & Berrett, 2004 X   X 
Meade, 2004b X X  X 
Meade & Dugger, 2004 X X  X 
Lentz & Boe, 2004 X   X 
Rose et al., 2004 X X X X 
Meade, 2004a X X  X 
Britton, De Long-Cotty, & Levenson, 
2004 

X X  X 

Post, 2004 X  X X 
Bengston, 2004 X  X X 
Pearson, 2004 X X X X 
Meade, Delany, & Dugger, 2004b X   X 
Meade, Delany, & Dugger, 2004a X   X 
Morrow, Robinson, & Stephenson, 2004 X X X X 
Shackelford, Brown, & Warner, 2004 X   X 
Harpine, Hickey, & Whiting, 2004 X  X X 
Berry & Detamore, 2003 X   X 
Daugherty, 2003 X   X 
Russell, 2003a X   X 
Dugger, Meade, Delany, & Nichols,2003 X X  X 
Reeve, Nielson, & Meade, 2003 X   X 
Bybee, 2003b X X  X 
Barnette, 2003 X  X X 
Bybee, 2003a X X X X 

(table continues) 
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Reference Need for Lack of 

Inclusion of 
engineering 

by name 
Support of 
standards 

Dugger, Meade, Nichols, & Delany, 2003 X  X X 
Russell, 2003b X   X 
Gorham et al., 2003 X  X X 
Grimsley, 2002 X  X X 
Bell & Rabkin, 2002 X X X X 
Reeve, 2002 X X X X 
Poertner, Summer, Tsosie, & Zak, 2002    X 
Starkweather, 2002 X X X X 
Gorham, 2002 X X X X 
Rose & Dugger, 2002 X X X X 
Martin, 2002 X X  X 
Whiting, 2002 X  X X 
Custer, 2001 X   X 
Dugger & Naik, 2001 X   X 
Newberry, 2001 X  X X 
Hook, 2001 X   X 
Kanne, Mino, & Novak, 2001 X X X X 
Reeve, 2001 X   X 
Sumner, 2001 X   X 
Dugger, 2001 X   X 
Dugger, 2000a X X  X 
Bybee & Loucks-Horsley, 2000a X  X X 
Bybee, 2000 X X X X 
Colaianne, 2000 X  X X 
Wulf, 2000 X X X X 
Bybee & Loucks-Horsley, 2000b X   X 
Dugger, 2000b X   X 
Smith, 1998 X   X 
Byars, 1998 X X X X 
Altice & Dugger, 1998 X   X 
Laurent, 1997 X X X X 
Kinser, Dugger, Newberry, & Singletary 
1997 

X   X 

Dugger, 1997 X X  X 
Singletary & Altice, 1997 X X X X 

Totals (n=66) 64 28 33 65 
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EC2000 and STL Compared
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Gorham et al. (2003, p. 98)



158 

Appendix D 
 

Comparison of Design Processes
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Electrathon America Overview
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Electrathon America Mission Statement: To create and develop a sport that 
improves public awareness and understanding of electric vehicles through 
continuously improved vehicle and event rules. 
 
OBJECTIVES OF ELECTRATHON AMERICA COMPETITION: 
ELECTRATHON is a type of ELECTRIC MARATHON in which the winner is 
determined by how far you go in a certain time with a given amount of battery 
power. ELECTRATHON AMERICA class competition uses specific design rules 
to ensure safe and fair competition. ELECTRATHON AMERICA events are held 
around the country and is an exciting new environmentally progressive sport. 

To drive electrically powered vehicles as far as possible for one hour on a 
closed loop course using limited electrical energy.  
To provide a forum where skill and ingenuity may be displayed, compared 
and tested.  
To improve public awareness and understanding of efficient alternative 
electric vehicles.  
To create an affordable sport defined by established rules in which groups and 
Individuals can participate competitively and safely.  
For more information:  http://electrathonamerica.org 
(Electrathon America, 2007) 

 
 

http://electrathonamerica.org/forms/Design2004.pdf
http://electrathonamerica.org/
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Porter Valley High School Participation Agreement



165 

Porter Valley High School Participation Agreement 
 
Students and Teachers attending Porter Valley High School have permission to 
participate in the research study to understand the extent to which a student’s general 
academic success correlates with student achievement and mental motivation during an 
engineering design challenge. 
 
I understand participation in this research study is entirely voluntary and my decision 
whether or not to provide permission for Porter Valley High School to participate will 
involve no penalty or loss of benefits to which students and teachers are otherwise 
entitled. 
 
I furthermore understand that my decision to provide permission for Porter Valley High 
School students and teachers to participate does not obligate students or teachers to 
participate and that they are free to discontinue participation at any time without penalty 
or loss of benefits to which they are otherwise entitled.  
 
I understand the Principle Investigator on this graduate student dissertation research study 
is Dr. Kurt Becker, and that he may be contacted at 435-797-2758 for more information 
regarding this study. If I have questions regarding the rights of research participants, I 
may contact the Utah State University Institutional Review Board at 435-797-1821. 
 
My signature below indicates that: 
 

• I have read and understand the information provided above, and that I am willing 
to provide permission for students and teachers at Porter Valley High School to 
participate in this research study. 

 

• I may withdraw my consent at any time and discontinue participation at any time 
without penalty or loss of benefits to which students or teachers may otherwise be 
entitled. 

 

• I will receive a copy of this form and the research proposal. 
 

• I am not waiving any legal claims, rights or remedies. 
 
 
____________________________________            _______________________ 
Print Name      Position 
 
____________________________________            _______________________ 
Signature      Date 
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Date Created: May 30, 2007 

USU IRB Approved 05/30/2007 
Approval terminates 05/29/2008  

Protocol Number 1838 
IRB Password Protected per IRB Administrator 

 Letter of Information:  Achievement and Attitudinal Effects of an 
Engineering Design Challenge in Technology Education. 
 
Introduction/ Purpose  Professor Kurt Becker in the Department of Engineering and Technology 
Education at Utah State University (USU) and Nathan Mentzer, Research Assistant,  are conducting 
research to find out more about impacts of an engineering design challenge. You have been asked to 
take part because you are currently teaching an elective course which embodies the general 
characteristics of an engineering design challenge with 11th grade students.  
 
The field of Engineering and Technology Education is currently in a state of transition such that 
engineering concepts are being infused into the technology education paradigm This transition 
necessitates redefinition of educational methodology appropriate for the future public school 
educators. This research will highlight one aspect of education; the engineering design challenge. 
 
Procedures   If you agree to be in this research study, you will be expected to assist in developing an 
achievement test which aligns with your classroom objectives. You will also be expected to 
administer this test on three occasions during the school year to the participating students. In addition 
to the measurement on achievement, you will be expected to administer a measurement of attitude, 
specifically motivation toward learning.  
 
Risks/Benefits   There is minimal risk in participating in this study.  This research may benefit both 
the field of engineering and technology education and Porter Valley School District. The field may 
benefit by shedding additional light on the relationship between academic success and experience 
during an engineering design challenge. The school district will benefit through receiving 
quantitative knowledge of the impact of this course on students. 
 
Explanation & offer to answer questions   Nathan Mentzer has explained this research study to you 
and answered your questions. If you have other questions or research-related problems, you may 
reach Professor Kurt Becker at (435) 797-2758 or Nathan Mentzer at (435) 797-1796. 
 
Voluntary nature of participation and right to withdraw without consequence   Participation in 
research is entirely voluntary. You may refuse to participate or withdraw at any time without 
consequence or loss of benefits.  
 
Confidentiality   Research records will be kept confidential, consistent with federal and state 
regulations. Only Dr. Becker and Nathan Mentzer will have access to the data which will be kept in a 
locked file cabinet in a locked room.  A random code number will be assigned to each student 
replacing his/her name to match pre- and posttest scores, then code will be destroyed.  
 
USU IRB Approval Statement  The Institutional Review Board for the protection of human 
participants has approved this research study.  If you have any questions or concerns about your 
rights, you may contact the IRB at (435) 797-1821 
______________________________  ______________________________ 
Kurt Becker, Ph.D., Principle Investigator Nathan Mentzer, Research Assistant 
 (435) 797-2758     (435) 797-1796 

Principal Investigator 
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169 

Date Created: May 29, 2007 
USU IRB Approved 05/29/2007 
Approval terminates 05/28/2008  

Protocol Number 1838 
IRB Password Protected per IRB Administrator 

 
 

 
 
 
 
Letter of Information:  Achievement and Attitudinal Effects of an 
Engineering Design Challenge in Technology Education. 
 
Introduction Professor Kurt Becker and Research Assistant, Nathan Mentzer of Utah State 
University (USU) would like your student to participate in a research study of engineering design 
challenges. In Mr. Brewer’s class, “INDUSTRY & ENGINEERING SYSTEMS”, your student 
has the opportunity to design and race electrathon cars. Porter Valley High School and USU have 
partnered to research your student’s experiences and changes throughout the school year. 
 
Procedures   Your student will be expected to complete a 30 minute paper and pencil test. 
Questions on this test are multiple choice and ask about the physics being learned in this course. 
This is a pilot test and your student’s participation will help further develop this physics test. 
 
Risks   There is minimal risk in participating in this study. Your student’s performance on this 
test will not impact his/her class grade. 
 
Benefits   This research may benefit both the field of engineering and technology education and 
Porter Valley School District. The field will benefit by shedding addition light on the 
relationship between academic success and experience during an engineering design challenge. 
The school district may benefit through receiving quantitative knowledge of the impact of this 
course on students. 
 
Voluntary nature of participation and right to withdraw without consequence   Participation 
in research is entirely voluntary. You may refuse to participate or withdraw at any time without 
consequence or loss of benefits.  
 
Confidentiality   Research records will be kept confidential, consistent with federal and state 
regulations. Only the investigator and Nathan Mentzer will have access to the data which will be 
kept in a locked file cabinet in a locked room.  Students will remain anonymous. 
 
Statement of Study Director This research has been reviewed and approved by the Institutional 
Review Board for the protection of human subjects at Utah State University. I certify that the 
information contained in this form is correct and that we have provided trained staff to explain 
the nature and purpose, possible risks and benefits associated with taking part in this study and to 
answer any questions that may arise.  
 
_______________________________  ______________________________ 
Kurt Becker, Ph.D.     Nathan Mentzer 
Principle Investigator     Co-Principle Investigator 
(435) 797-2758     (435) 797-1796 
Principal Investigator Co-Principal Investigator 
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Letter of Information:  Achievement and Attitudinal Effects of an 
Engineering Design Challenge in Technology Education. 

 
 

Introduction Professor Kurt Becker and Research Assistant, Nathan Mentzer of Utah State 
University (USU) would like your student to participate in a research study of engineering design 
challenges. In Mr. Brewer’s and Mr. Rivet’s class, “INDUSTRY & ENGINEERING 
SYSTEMS”, your student has the opportunity to design and race electrathon cars. Porter Valley 
High School and USU have partnered to research your student’s experiences and changes 
throughout the school year. 
 
Procedures Your student will be expected to complete a 30 minute paper and pencil test three 
times this year. Questions on this test are multiple choice and ask about the physics concepts your 
student is learning in this course. Your student will also complete a short questionnaire asking 
about his/her interest in learning three times this year. The researcher will have access to your 
student’s transcript.  
 
Risks   There is minimal risk in participating in this study. Your student’s performance on this 
test will not impact his/her class grade. 
 
Benefits   This research may benefit both the field of engineering and technology education and 
Porter Valley School District. The field may benefit by shedding addition light on the relationship 
between academic success and experience during an engineering design challenge. The school 
district may benefit through receiving quantitative knowledge of the impact of this course on 
students. 
 
Voluntary nature of participation and right to withdraw without consequence   Participation 
in research is entirely voluntary. Your student may refuse to participate or withdraw at any time 
without consequence or loss of benefits. To withdraw from participation, please contact Seymour 
Skinner, assistant principle; (877) 337-7247 or sskinner@portervalley.k12.nw.us.  
 
Confidentiality   Research records will be kept confidential, consistent with federal and state 
regulations. Only the Dr. Becker and Nathan Mentzer will have access to the data which will be 
kept in a locked file cabinet in a locked room.  To maintain confidentiality, a random code 
number will replace the student’s name to match the pre and posttest scores.  After the test scores 
have been appropriately matched, the coding sheet linking the students to this study will be 
destroyed. 
 
Statement of Study Director This research has been approved by the Institutional Review Board 
for the protection of human subjects at USU.  I certify that the information contained in this form 
is correct and that we have provided trained staff to explain the nature and purpose, possible risks 
and benefits associated with taking part in this study and to answer any questions that may arise.  
 
______________________________  ______________________________ 
Michael Scott      Nathan Mentzer 
School Principal     Co-Principal Investigator 
(877) 337-7247     (435) 797-1796
Date Created: September 17, 2007; USU IRB Approved  05/29/2007 
Approval terminates 05/28/2008; Protocol Number 1838 
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The CM3 measures the degree to which an individual is  
motivated toward thinking.  
 
All levels of the CM3 include the first four scales described below. 
The CM3 Level II adds a fifth scale. 
 
1. Mental Focus / Self-Regulation,  
2. Learning Orientation,  
3. Creative Problem Solving, and  
4. Cognitive Integrity 
1. Mental Focus / Self-Regulation 
The person scoring high in mental focus is diligent, focused, systematic, task-
oriented, organized and clear-headed. When engaged in a mental activity they 
tend to be focused in their attention and persistent. This person tends to agree 
with the statement, "It is easy for me to organize my thoughts." Those persons 
scoring low on this scale show a compromised ability to regulate their attention 
and a tendency toward disorganization and procrastination. This person tends to 
agree with the statement, "My trouble is I stop paying attention too soon." 
2. Learning Orientation 
A person scoring high in learning orientation strives to learn for learning's sake; 
they value the learning process as a means to accomplish mastery over a task. 
These individuals are eager to engage in challenging activities, they value 
information and evidence gathering, they recognize the importance of giving 
reasons to support a position, and they take an active interest and are engaged 
in school. A general inquisitiveness guides their interests and activities. These 
individuals tend to agree with the statement, "I can learn a whole lot more than I 
already know." Those individuals scoring low on learning orientation tend to have 
a narrow set of interests they are willing to explore. They may even avoid 
opportunities to learn and understand. These individuals will attempt to answer 
questions with the information they have at hand rather than seeking out new 
information. These individuals tend to agree with the statement, "Most academic 
subjects are boring." 
3. Creative Problem Solving 
The person scoring high in creative problem solving is intellectually curious, 
creative, has a preference for challenging and complicated activities, is 
imaginative, ingenious, and artistic. These individuals tend to agree with the 
statement, "If given a choice, I would pick a challenging activity over an easy 
one." Those individuals scoring low on creative problem solving tend to be less 
curious. They will choose easier activities over challenging ones. These 
individuals tend to disagree with the statement, "Complicated problems are fun to 
try to figure out." 
4. Cognitive Integrity 
Individuals scoring high in cognitive integrity are motivated to use their thinking 
skills. They are positively disposed toward truthseeking and open-mindedness. 
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These individuals are comfortable with challenge and complexity, they enjoy 
thinking about and interacting with others with potentially varying viewpoints in 
the search for truth or the best decision. These individuals tend to disagree with 
the statement, "Others have a right to their ideas, but I do not need to hear 
them." Those individuals scoring low on this scale express a viewpoint that is 
best characterized as cognitive resistance. They are hasty, indecisive, 
uncomfortable with challenge and change, and are likely to be anxious and 
close-minded. These individuals tend to agree with the statement, "I know what I 
think, so why should I pretend to consider choices." 
5. Scholarly Rigor (A new scale added to Level II of the CM3 in October 2006). 
Scholarly Rigor is the disposition to work hard to interpret and achieve an deeper 
understanding of complex or abstract material. A person with a high score on this 
scale exhibits a strong positive disposition toward scholarly rigor would not to put 
off by the need to read a difficult text or to analyze complicated situations or 
problems. This person would tend to agree with a statement like, "I like getting 
the details straight." By contrast low scores on this scale point toward a 
significant failure to express the disposition to comprehensively seek new 
knowledge and examine new content in depth. These individuals tend to agree 
with statements like, "It takes too much time to solve some problems." 
 
Different levels of the CM3 include different numbers of questions, with both 
LEVEL III and LEVEL II having 72 agree-disagree style questions and taking 
about 15-20 minutes to administer. Level I has 25 items and takes about the 
same amount of time for children to complete.  
 
The CM3 is available on our safe, secure E-testing System. And it is supported in 
paper-and-pencil form by CapScore. 
The CM3 is measure of mental motivation, it is not a skills test. To explore the 
differences between reasoning skills tests and reasoning dispositions inventories, 
click here or on the image of the research paper to the left.  
 
For more information: http://www.insightassessment.com/ 

 
 

http://www.insightassessment.com/online.html
http://www.insightassessment.com/capscore.html
http://www.insightassessment.com/articles2.html#informal
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Directions:  
 

- Circle the most appropriate response for each question. 
- Calculators may be used. 
- Work individually. 
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1.  

The speed of an electric motor is controlled by varying the __________ through 
the motor. 

    
  A) resistance 
  B) voltage 
  C) current 
  D) direction of the north pole 
     
 
2.  

The two magnets were placed near each other on a table top. Which statement 
about the magnetic force of these two magnets is true? 

   

 
  A) The two magnets will be attracted to each other. 
  B) The two magnets will repel each other. 
  C) There will be no force between the magnets. 
  D) The magnetic force will change the magnets. 
     
 
3.  

A maglev train operates on the scientific principle that 
    
  A) like poles of a magnet attract. 
  B) unlike poles of a magnet attract. 
  C) a magnet can be demagnetized by electricity. 
  D) like poles of a magnet repel each other. 
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4.  
Rachel made four electromagnets by winding coils of copper wire around a nail. 
She connected each end of the wire to a battery to form an electromagnet which 
she used to pick up paper clips. 

   

 
 In this experiment, what kind of energy is changed directly into magnetic 

energy? 
  A) Heat energy. 
  B) Electrical energy. 
  C) Chemical energy. 
  D) Light energy. 
     
 
5.  

Moving a magnet back and forth through a coil of wire will cause 
    
  A) a large electric current to flow in the magnet. 
  B) the magnet to become instantly too hot to hold. 
  C) electrons to flow in the wire coil. 
  D) a continuous dc voltage to be generated across the ends of the wire 

coil. 
     
 
6.  

What kind of force opposes motion and eventually brings most moving bodies to 
rest? 

    
  A) Strong attraction. 
  B) Friction. 
  C) Mass. 
  D) Inertia. 
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7.  

Which two conditions make an object the most stable? 
    
  A) A high center of mass and a narrow base. 
  B) A low center of mass and a large base. 
  C) A low center of mass and a narrow base. 
  D) A high center of mass and a large base. 
     
 
8.  

Sudie took an auto trip from Columbus, Ohio, to Washington, D.C. If she spent 
10 hours driving at an average speed of 40 mi/hour, the distance she traveled 
was: 

    
  A) 1600 mi. 
  B) 400 mi. 
  C) 6.3 mi. 
  D) 440 mi. 
     
 
9.  

The change in the velocity of an object divided by the change in time is the 
defining equation for 

    
  A) distance. 
  B) speed. 
  C) acceleration. 
  D) displacement. 
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10.  
Which configuration of pulleys and belts shown below will result in the fastest 
rotation of Spindle 2? 

    
A)  

 

B)  

 
 
C) 

 

 

 
D) 

 

 
  
 
11.  

The total distance around the outside perimeter of a circle is properly called the 
    
  A) circumference. 
  B) diameter. 
  C) radius. 
  D) degree. 
     
 
12.  

Motion combines the concepts of position change (length) and time. Which of 
the following combinations of units is used to describe the velocity of a moving 
object? 

    
  A) length x time 
  B) length/time 
  C) length/time2 
  D) time/length 



187 

 
13.  

The force exerted on a cart is constant. On a frictionless surface, if the cart’s 
mass is increased, the acceleration will 

    
  A) increase only. 
  B) decrease only. 
  C) increase, then decrease. 
  D) decrease, then increase. 
     
 
14.  

The product of mass and velocity of a moving object is defined as its 
    
  A) linear momentum. 
  B) normal force. 
  C) net force. 
  D) impulse. 
     
 
15.  

If it starts motion, stops motion, or changes motion, it must be 
    
  A) drag. 
  B) inertia. 
  C) friction. 
  D) force. 
     
 
 
16.  

Torque is 
    
  A) just another word for weight. 
  B) a twisting effect caused by forces that can produce a rotational 

motion. 
  C) the force that makes a car follow a curved path. 
  D) the force that keeps satellites in orbit. 
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17.  
Torque is defined as: 

    
  A) The product of the length, measured in pounds, and the force, 

measured in feet. 
  B) The product of the force applied and the length of the lever arm. 
  C) The product of the force, measured in pounds, and the length, 

measured in newtons. 
  D) The speed at which a body rotates. 
     
 
18.  

A torque wrench has a lever arm that’s 18 inches long. A force of 20 pounds is 
applied to the end of the wrench to tighten a bolt. The torque applied is 

    
  A) 40 lb*ft 
  B) 30 lb*ft 
  C) 360 lb*ft 
  D) 100 lb*ft 
     
 
19.  

Drag forces on a car moving through air can be reduced by: 
    
  A) Increasing the speed of the car. 
  B) Making the front end of the car more blunt. 
  C) Streamlining. 
  D) Letting air out of the tires. 
     
 
 
 
 
 
 
 
 
 
 
 
 
20.  

Which lever requires the least effort to lift the load? 
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A)  

 

B)  

 
 
C) 

 

 

 
D) 

 

 
   
 
21.  

When the air is released from a balloon, the air moves in one direction, and the 
balloon moves in another direction. Which statement does this situation best 
illustrate? 

    
  A) What goes up must come down. 
  B) For every action there is an equal and opposite reaction. 
  C) The shape and size of an object affect air resistance. 
  D) The acceleration due to Earth’s gravity is 9.8 m/s 2. 
     
 
22.  

Although a battery outputs electricity, it starts with 
    
  A) electromagnetic energy. 
  B) thermal energy. 
  C) mechanical energy. 
  D) chemical energy. 
     
 
23.  

Unlike an insulator, a conductor 
    
  A) changes direct current into alternating current. 
  B) allows electron flow in one direction only. 
  C) blocks or partially blocks the flow of electrons. 
  D) allows electrons to flow easily. 
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24.  

Which material is not a good conductor? 
    
  A) Gold. 
  B) Silver. 
  C) Plastic. 
  D) Copper. 
     
25.  

A generator converts mechanical energy, such as that of a spinning turbine, into 
    
  A) nuclear energy. 
  B) chemical energy. 
  C) electrical energy. 
  D) heat energy. 
     
 
26.  

Resistance 
    
  A) is measured in amperes. 
  B) is the opposition to the flow of electric current. 
  C) is the driving force that moves electrons in conductors. 
  D) is not affected by temperature changes. 
     
 
27.  

A photovoltaic cell is a device that 
    
  A) captures and stores the sun's heat. 
  B) outputs mechanical energy. 
  C) transforms sun rays into electrical current. 
  D) depends on fossil fuels to do its work. 
     
 
28.  

A complete pathway through which electrons can flow is a(n) 
    
  A) static charge. 
  B) circuit. 
  C) insulator. 
  D) magnet. 
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29.  
What devices will protect a circuit from excessive current flow? 

    
  A) Switches and diodes. 
  B) Resistors. 
  C) Circuit breakers and fuses. 
  D) Surge suppressors. 
     
 
30.  

What happens to lights in series if one goes out? 
    
  A) They all go out. 
  B) They flicker. 
  C) Every other one goes out. 
  D) They stay lit. 
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31.  

This picture shows a small section of a solar power plant. Which of these 
decreases the energy production at such power plants? 

  

 
 

  A) Cloudy skies. 
  B) Ozone in the air. 
  C) Hot weather. 
  D) Low humidity. 
     
 
32.  

When the temperature of an automobile tire increases as you drive on a long 
trip, the pressure in the tire should 

    
  A) remain the same, as long as the volume doesn't change. 
  B) increase, as long as the volume doesn't change. 
  C) decrease, as long as the volume doesn't change. 
  D) There is no way to predict how temperature affects tire pressure. 
     
 
 



193 

33.  
Energy is defined as 

    
  A) power. 
  B) motion. 
  C) the effort required to perform work. 
  D) the ability of an object to produce change in the environment or itself. 
     
 
34.  

The __________ of a machine is defined as the ratio of output work to input 
work. 

    
  A) reliability 
  B) IMA 
  C) mechanical advantage 
  D) efficiency 
     
 
35.  

How can power be calculated? 
    
  A) Multiply the force times the parallel distance. 
  B) Multiply the mass times g times the height. 
  C) Calculate the change in total energy of the system. 
  D) Divide the work done by the time it takes. 
     
 
36.  

An object that is at rest will have zero velocity. This means that it will also have 
zero 

    
  A) mass. 
  B) kinetic energy. 
  C) potential energy. 
  D) horsepower. 
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37.  
__________ is energy stored for later use. 

    
  A) Potential energy 
  B) Kinetic energy 
  C) Conservation of energy 
     
 
38.  

__________ is energy of motion. 
    
  A) Potential energy 
  B) Kinetic energy 
  C) Conservation of energy 
     
 
39.  

 __________ often changes when a body’s shape changes. 
    
  A) Potential energy 
  B) Kinetic energy 
  C) Conservation of energy 
     
 
40.  

 __________ is present in a stretched spring that’s not moving. 
    
  A) Potential energy 
  B) Kinetic energy 
  C) Conservation of energy 
     
 
41.  

 __________ implies that the total energy of a system is constant, if all forms of 
energy are considered. 

    
  A) Potential energy 
  B) Kinetic energy 
  C) Conservation of energy 
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42.  
 __________ increases when a body’s speed increases. 

    
  A) Potential energy 
  B) Kinetic energy 
  C) Conservation of energy 
     
 
43.  

The magnitude of an object's gravitational potential energy can be calculated by 
multiplying 

    
  A) mass times height. 
  B) weight times height. 
  C) 1/2 the mass times the velocity squared. 
  D) mass times velocity. 
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Directions:  
 

- Circle the most appropriate response for each question. 
- Calculators may be used. 
- Work individually. 
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1. The two magnets were placed near each other on a table top. Which statement 
about the magnetic force of these two magnets is true? 

   

 

  A) The two magnets will be attracted to each other. 

  B) The two magnets will repel each other. 

  C) There will be no force between the magnets. 

  D) The magnetic force will change the magnets. 

     

 
 

2. Which two conditions make an object the most stable? 
    

  A) A high center of mass and a narrow base. 

  B) A low center of mass and a large base. 

  C) A low center of mass and a narrow base. 

  D) A high center of mass and a large base. 

     

 
 

3. If it starts motion, stops motion, or changes motion, it must be 
    

  A) drag. 
  B) inertia. 
  C) friction. 
  D) force. 
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4. Unlike an insulator, a conductor 
    

  A) changes direct current into alternating current. 

  B) allows electron flow in one direction only. 

  C) blocks or partially blocks the flow of electrons. 

  D) allows electrons to flow easily. 

     

 
 

5. When the temperature of an automobile tire increases as you drive on a long 
trip, the pressure in the tire should 

    

  A) remain the same, as long as the volume doesn't change. 

  B) increase, as long as the volume doesn't change. 

  C) decrease, as long as the volume doesn't change. 

  D) There is no way to predict how temperature affects tire pressure. 

     

 
 

6. How can power be calculated? 
    

  A) Multiply the force times the parallel distance. 

  B) Multiply the mass times gravity times the height. 

  C) Calculate the change in total energy of the system. 

  D) Divide the work done by the time it takes. 

     

 
 

7. A maglev train operates on the scientific principle that 

    

  A) like poles of a magnet attract. 

  B) unlike poles of a magnet attract. 

  C) a magnet can be demagnetized by electricity. 

  D) like poles of a magnet repel each other. 
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8. Sudie took an auto trip from Eugene to Sacramento, California. If she spent 10 
hours driving at an average speed of 40 mi/hour, the distance she traveled was: 

    

  A) 1600 mi. 

  B) 400 mi. 

  C) 6.3 mi. 

  D) 440 mi. 

     

 
 

9. Torque is 
    

  A) just another word for weight. 
  B) a twisting effect caused by forces that can produce a rotational 

motion. 
  C) the force that makes a car follow a curved path. 
  D) the force that keeps satellites in orbit. 
     

 
 

10. Which material is not a good conductor? 
    

  A) Copper. 

  B) Gold. 

  C) Silver. 

  D) Plastic. 

     

 
 

11. Which of the following describes the mechanical energy of a cart at rest at the 
top of a steep hill? 

    
  A) The cart has no mechanical energy. 

  B) The cart's mechanical energy is all kinetic. 

  C) The cart's mechanical energy is all potential. 

  D) The cart's mechanical energy is half potential and half kinetic. 
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12. Rachel made four electromagnets by winding coils of copper wire around a nail. 
She connected each end of the wire to a battery to form an electromagnet which 
she used to pick up paper clips. 

   

 

 In this experiment, what kind of energy is changed directly into magnetic 
energy? 

  A) Heat energy. 

  B) Electrical energy. 

  C) Chemical energy. 

  D) Light energy. 
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13. Which configuration of pulleys and belts shown below will result in the fastest 
rotation of Spindle 2? 

    

A)  

 

B)  

 

 

C) 

 

 

 

D) 

 

 

  

 
 

14. A torque wrench has a lever arm that’s 18 inches long. A force of 20 pounds is 
applied to the end of the wrench to tighten a bolt. The torque applied is 

    

  A) 40 ft*lb 

  B) 30 ft*lb 

  C) 360 ft*lb 

  D) 100 ft*lb 
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15. A generator converts mechanical energy, such as that of a spinning turbine, into 
    

  A) nuclear energy. 

  B) chemical energy. 

  C) electrical energy. 

  D) heat energy. 

     

 
 

16. Which type of energy is defined as the energy of motion? 
    

  A) Kinetic energy. 

  B) Total energy. 

  C) Energy that can do work. 

  D) Potential energy. 

     

 
 

17. Moving a magnet back and forth through a coil of wire will cause 

    

  A) a large electric current to flow in the magnet. 

  B) the magnet to become instantly too hot to hold. 

  C) electrons to flow in the wire coil. 

  D) a continuous dc voltage to be generated across the ends of the wire 
coil. 

     

 
 

18. The total distance around the outside perimeter of a circle is properly called the 
    

  A) circumference. 

  B) diameter. 

  C) radius. 

  D) degree. 
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19. Drag forces on a car moving through air can be reduced by: 
    

  A) Increasing the speed of the car. 

  B) Making the front end of the car more blunt. 

  C) Streamlining. 

  D) Letting air out of the tires. 

     

 
 

20. Resistance 
    

  A) is measured in amperes. 

  B) is the opposition to the flow of electric current. 

  C) is the driving force that moves electrons in conductors. 

  D) is not affected by temperature changes. 

     

 
 

21.  __________ is present in a stretched spring that’s not moving. 
    

  A) Potential energy 

  B) Kinetic energy 

  C) Conservation of energy 

     

 
 

22. Motion combines the concepts of position change (length) and time. Which of 
the following combinations of units is used to describe the velocity of a moving 
object? 

    

  A) length x time 

  B) length/time 

  C) length/time2 

  D) time/length 
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23. Which lever requires the least effort to lift the load? 
    

A)  

 

B)  

 

 

C) 

 

 

 

D) 

 

 
   

 
 

24. A photovoltaic cell is a device that 
    

  A) captures and stores the sun's heat. 

  B) outputs mechanical energy. 

  C) transforms sun rays into electrical current. 

  D) depends on fossil fuels to do its work. 

     

 
 

25.  __________ implies that the total energy of a system is constant, if all forms of 
energy are considered. 

    

  A) Potential energy 

  B) Kinetic energy 

  C) Conservation of energy 
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26. Multiplying mass and velocity of a moving object is defined as its 
    

  A) momentum. 

  B) normal force. 

  C) net force. 

  D) impulse. 

     

 
 

27. A string is placed through a straw and attached to the floor and ceiling. Two 
balloons are used to make a balloon rocket. Which picture shows the best way 
to attach the balloons to make the rocket go as high as possible? 

    

A) 

 

B)  

 
 

C) 

 
 

 

D) 
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28. What happens to lights in series if one goes out? 
    

  A) They all go out. 

  B) They flicker. 

  C) Every other one goes out. 

  D) They stay lit. 

     

 
 

29.  __________ increases when a body’s speed increases. 
    

  A) Potential energy 

  B) Kinetic energy 

  C) Conservation of energy 
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30. This picture shows a small section of a solar power plant. Which of these 
decreases the energy production at such power plants? 

  

 
 

  A) Cloudy skies. 

  B) Ozone in the air. 

  C) Hot weather. 

  D) Low humidity. 
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- Circle the most appropriate response for each question. 
- Calculators may be used. 
- Work individually. 
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1. This picture shows a small section of a solar power plant. Which of these 
decreases the energy production at such power plants? 

  

 
 

  A) Low humidity. 

  B) Cloudy skies. 

  C) Ozone in the air. 

  D) Hot weather. 
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2.  A skateboarder travels from location 1 to location 4 as shown below. 
   

 
At which location does the skateboarder have the most kinetic energy 

and the least potential energy? 

  A) 1 

  B) 2 

  C) 3 

  D) 4 

     

 
 

3. When the air is released from a balloon, the air moves in one direction, and the 
balloon moves in another direction. Which statement does this situation best 
illustrate? 

    

  A) What goes up must come down. 

  B) For every action there is an equal and opposite reaction. 

  C) The shape and size of an object affect air resistance. 

  D) The acceleration due to Earth’s gravity is 9.8 m/s 2. 

     

 
 

4. The momentum of a body can be calculated by multiplying its mass by the 
    

  A) time during which the mass moves. 

  B) acceleration of the mass. 

  C) distance the mass moves. 

  D) velocity of the mass. 
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5. Which of the following situations violates the law of conservation of energy? 
    

  A) A ball dropped from the top of a building increase in speed until it 
hits the ground. 

  B) A block sliding freely on level ice increases in speed until it hits a 
wall.  

  C) A child playing on a swing moves fastest at the bottom of the swing’s 
path. 

  D) The height a ball bounces decreases with each bounce. 
     

 
 

6. Which of the following could be used to convert light energy to electrical 
energy? 

    

  A) a windmill. 

  B) a chemical storage battery. 

  C) a solar cell. 

  D) rotating coils in a magnetic field. 

     

 
 

7. Which lever arrangement required the least effort force to raise a 50 pound 
resistance? 

    

A)  

 

B)  

 

 

C) 

 

 

 

D) 
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8. How is velocity calculated? 
    

  A) By dividing revolutions by time 

  B) By dividing torque by time 

  C) By dividing distance by time 

  D) By dividing revolutions by torque 

     

 
 

9. A stretched, stationary auto brake spring is an example of 
    

  A) Potential energy. 

  B) Kinetic energy. 

  C) Conservation of energy. 

     

 
 

10. A student designs a circuit that has a battery, a resistor, and a light bulb 
connected in series. Which changes could be made to the circuit so that each 
would contribute to a brighter glow from the light bulb.  

    

  A) decrease the voltage and decrease the resistance. 

  B) decrease the voltage and increase the resistance. 

  C) increase the voltage and decrease the resistance. 

  D) increase the voltage and increase the resistance. 

     

 
 

11. A force that slows down or stops the motion of a bicycle is 
    

  A) sound. 
  B) heat. 
  C) friction. 
  D) electricity. 
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12. The total distance around the outside perimeter of a circle is properly called the 
    

  A) diameter. 

  B) degree. 

  C) radius. 

  D) circumference. 

     

 
 

13. Which of the following actions would decrease the strength of an 
electromagnet? 

    

  A) Removing turns from the wire coil. 

  B) Increasing the amount of current used. 

  C) Inserting a core of iron within the coil. 

  D) Adding more turns to the wire coil. 

     

 
 

14. __________ is energy of motion. 
    

  A) Potential energy 

  B) Kinetic energy 

  C) Conservation of energy 

     

 
 

15. What converts chemical energy into electrical energy? 
    

  A) Battery. 

  B) Transformer. 

  C) Alternator. 

  D) DC generator. 
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16. If a bolt must be tightened to a specification in inch-pounds (in.-lbs.) or foot-
pounds (ft.-lbs.), what should you use? 

    

  A) A strap wrench. 

  B) A feeler gauge. 

  C) A micrometer. 

  D) A torque wrench. 

     

 
 

17. Which configuration of pulleys and belts shown below will result in the slowest 
rotation of Spindle 2? 

    

A)  

 

B)  

 

 

C) 

 

 

 

D) 
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18. Conrad made four electromagnets by winding coils of copper wire around a nail. 
He connected each end of the wire to a battery to form an electromagnet which 
he used to pick up paper clips. 

   

 

 In this experiment, what kind of energy is changed directly into magnetic 
energy? 

  A) Light energy. 

  B) Heat energy. 

  C) Electrical energy. 

  D) Chemical energy. 

     

 
 

19. Water stored behind a dam is an example of: 
    

  A) Potential energy. 

  B) Kinetic energy. 

  C) Conservation of energy. 

     

 
 

20. Which material is not a good conductor? 
    

  A) Gold. 

  B) Silver. 

  C) Plastic. 

  D) Copper. 
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21. A force that applies twisting pressure is 
    

  A) conductivity. 
  B) torsion. 
  C) shear. 
  D) resistance. 
     

 
 

22. Sarah traveled by automobile from Eugene to Portland, a distance of 120 miles, 
at an average speed of 60 mi/h. The time required was 

    

  A) 0.50 hours. 

  B) 5000 hours. 

  C) 2.5 hours. 

  D) 2.0 hours. 

     

 
 

23. A vehicle that gets power from the repelling and attracting forces in magnetism 
is the 

    

  A) fighter jet. 

  B) diesel truck. 

  C) maglev train. 

  D) oil tanker. 

     

 
 

24. Power 
    

  A) is force divided by time. 

  B) is work divided by time. 

  C) is work times time. 

  D) has the same units as energy. 
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25. You need to put a metal rod into a hole in a metal cylinder. It is too tight. Which 
would be the best strategy to make the rod fit? 

    

 
 

  A) Heat the rod and cylinder. 

  B) Cool the rod and cylinder. 

  C) Heat the rod and cool the cylinder 

  D) Cool the rod and heat the cylinder 
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26. The following diagrams show a battery and a bulb connect by wires to various 
materials. Which of the bulbs will light? 

 

Bulb 1 

 
Aluminum foil 

 

 

Bulb 2 

 
Plastic spoon 

   

 

Bulb 3 

 
Brass key 

 

 

Bulb 4 
 

 
Air 

  A) Bulb 1 only. 

  B) Bulb 2 and 3 only. 

  C) Bulb 1 and 3 only.  

  D) Bulb 1, 3, and 4 only 

     

 
 

27. If it starts motion, stops motion, or changes motion, it must be 
    

  A) inertia. 
  B) drag. 
  C) force. 
  D) friction. 
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28. Which two conditions make an object the least stable? 
    

  A) A low center of mass and a large base. 

  B) A high center of mass and a narrow base. 

  C) A high center of mass and a large base. 

  D) A low center of mass and a narrow base. 

     

 
 

29. Electrical elements that are connected in a circuit so that the same current must 
pass through each one in turn are said to be connected in 

    

  A) resonance. 

  B) dc. 

  C) parallel. 

  D) series. 

     

 
 

30. The north pole of a stationary magnet will be attracted to 

    

  A) another north magnetic pole. 

  B) a south magnetic pole. 

  C) a negative electrostatic charge. 

  D) a positive electrostatic charge. 
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1. Which two conditions make a car the most stable? 
    

  A) A low center of mass and a narrow wheelbase. 

  B) A high center of mass and a wide wheelbase. 

  C) A high center of mass and a narrow wheelbase. 

  D) A low center of mass and a wide wheelbase. 

     

 
 

2. Copper wire and solder are each classified as: 
    

  A) Resistors. 

  B) Semiconductors. 

  C) Insulators. 

  D) Conductors. 

     

 
 

3.  Any massive object that is moving will always have 
    

  A) potential energy. 

  B) kinetic energy. 

  C) an unbalanced force acting on it. 

  D) angular momentum. 

     

 
 

4. An airplane takes off from Eugene for the 608 mile trip to Los Angeles. The 
plane lands two hours later. Which of the following best describes the average 
speed of the airplane’s flight? 

    

  A) 201 mph 

  B) 304 mph 

  C) 608 mph 

  D) 1216 mph 
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5. The following diagrams show a flashlight battery and a bulb connected by wires 
to various substances. Which of the bulbs will light?  

 

Bulb 1 

 
Air 

 

 

Bulb 2 

 
 

Steel Nail 

   

 

Bulb 3 

 
Copper Coin 

 

 

Bulb 4 
 

 
 

Rubber Block 

  A) Bulb 1 and 2 only 

  B) Bulb 2 and 3 only 

  C) Bulb 3 and 4 only 

  D) Bulb 1, 2, and 3 only 
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6. When dropped from the same height, why does a flat sheet of paper fall more 
slowly than the same sheet when it is tightly crumpled into a ball? 

    

  A) The sheet of paper has less mass when it is flat than it does when it is 
crumpled. 

  B) The sheet of paper weighs less when it is flat than it does when it is 
crumpled. 

  C) The force of gravity has a greater effect on the crumpled paper than it 
does on the flat paper. 

  D) The flat sheet of paper has greater surface area and encounters more 
air resistance than when it is crumpled. 

     

 
 

7. A torque wrench has a lever arm that’s 12 inches long. A force of 20 pounds is 
applied to the end of the wrench to tighten a bolt. The torque applied is 

    

  A) 12 ft*lb 

  B) 30 ft*lb 

  C) 240 ft*lb 

  D) 20 ft*lb 
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8. Which configuration of pulleys and belts shown below will result in the greatest 
torque at Spindle 2? 

    

A)  

 

B)  

 

 

C) 

 

 

 

D) 

 

 

  

 
 

9. An object is placed on a table. A magnet is slowly moved toward it. 
The object moves away from the magnet. The object is most likely  
 

    

  A) another magnet. 
  B) a piece of glass. 
  C) a copper coin. 
  D) an iron nail. 
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10. Household appliances convert electricity into one or more different forms of 
energy. An electric fan can best be described as converting electricity into 

    

  A) heat energy only 

  B) heat energy and sound energy only 

  C) heat energy, sound energy, and mechanical energy only 

  D) heat energy, sound energy, mechanical energy, and chemical  

energy only 

     

 
 

11. A student designs a circuit that has a battery, a resistor, and a light bulb 
connected in series. Which changes could be made to the circuit so that each 
would contribute to a less bright glow from the light bulb? 

    

  A) decrease the voltage and increase the resistance. 

  B) decrease the voltage and decrease the resistance. 

  C) increase the voltage and increase the resistance. 

  D) increase the voltage and decrease the resistance. 

     

 
 

12. If it starts motion, stops motion, or changes motion, it must be 
    

  A) force. 
  B) friction. 
  C) inertia. 
  D) drag. 
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13. 
 

The illustration below shows a hot-air balloon. The pilot can change the altitude 
of the hot-air balloon by changing the temperature of the gas inside the balloon. 
When the gas is heated, the balloon rises. 

    

 
Which of the following best explains this phenomenon? 
 

  A) Heating the gas reduces its pressure. 

  B) Heating the gas decreases its density. 

  C) Heating the gas decreases its molecular motion. 

  D) Heating the gas reduces the frequency of the gas molecules' 
collisions. 

     

 

14. 
 

A maglev train operates on the scientific principle that 

    

  A) a magnet can be demagnetized by electricity. 

  B) like poles of a magnet repel each other. 

  C) like poles of a magnet attract. 

  D) unlike poles of a magnet attract. 

     

 



230 

 
 

 

15. A flywheel that’s spinning is an example of 
    

  A) Potential energy. 

  B) Kinetic energy. 

  C) Conservation of energy. 

     

 
 

16. Which of the following actions would decrease the strength of an 
electromagnet? 

    

  A) Increasing the amount of current used. 

  B) Inserting a core of iron within the coil. 

  C) Adding more turns to the wire coil. 

  D) Removing turns from the wire coil. 

     

 
 

17. A photovoltaic cell is a device that 
    

  A) outputs mechanical energy. 

  B) transforms sun rays into electrical current. 

  C) depends on fossil fuels to do its work. 

  D) captures and stores the sun's heat. 

     

 
 

18. In order to determine the speed of an object, what measurements must be made? 
    

  A) Distance and direction. 

  B) Distance and mass. 

  C) Time, distance, and volume. 

  D) Distance and time. 
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19. Which lever requires the least effort to lift the load? 
    

A)  

 

B)  

 

 

C) 

 

 

 

D) 

 

 

   

 
 

20. Spring 1 and Spring 2 were the same. Then, Spring 1 was pushed together a 
little and clamped in place. Spring 2 was pushed together a lot and clamped. 

    

 

Which spring has more stored energy? 

  A) Spring 1. 

  B) Spring 2. 

  C) Both springs have the same energy. 

  D) You cannot tell unless you know what the springs are made of. 
     

 
 



232 

 
 

21. What is the definition of power? 
    

  A) The rate at which work is done 

  B) The ability to do work 

  C) Work 

  D) Effort 

     

 
 

22. When the air is released from a balloon, the air moves in one direction, and the 
balloon moves in another direction. Which statement does this situation best 
illustrate? 

    

  A) For every action there is an equal and opposite reaction. 

  B) What goes up must come down. 

  C) The acceleration due to Earth’s gravity is 9.8 m/s 2. 

  D) The shape and size of an object affect air resistance. 

     

 
 

23. A change in momentum of an object means that 
    

  A) the weight of the object is also changing. 

  B) the inertia of the object is changing. 

  C) the velocity of the object must also be changing. 

  D) the object must immediately come to a complete stop and remain at 
rest. 

     

 
 

24. _________ is energy stored for later use. 
    

  A) Potential energy 

  B) Kinetic energy 

  C) Conservation of energy 
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25. A student connects three identical light bulbs in parallel to a dry cell as shown 
below. What happens when the student removes one of the light bulbs from its 
socket? 

    

 
 

  A) All the light bulbs go out. 

  B) The other light bulbs remain on and will be equally bright. 

  C) The other light bulbs remain on, one less bright and the other the 
same brightness as before. 

  D) The other light bulbs remain on, one brighter and the other less bright 
than before. 

     

 
 

26. A solar heater uses energy from the sun to heat water. The heater’s panel is 
painted black to -  

    

  A) improve emission of infrared radiation. 

  B) reduce the heat loss by convection currents. 

  C) improve absorption of infrared radiation. 

  D) reduce the heater’s conducting properties. 

     

 
 

27. Torque is a term for which of the following? 
    

  A) Effort in linear mechanical power. 
 

  B) Rate in rotary mechanical power. 
 

  C) Effort in rotary mechanical power. 
 

  D) Rate in linear mechanical power. 
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28. 
 

What produces electrical energy using mechanical energy? 
    

  A) Battery. 

  B) Transformer. 

  C) Alternator. 

  D) Electrolyte. 

     

29. 
 

The figure below shows a wagon that moves from point X to point Y. 
    

 
Which of the following best describes the wagon's change in energy 

as it coasts from point X to point Y? 

  A) The wagon has the same kinetic energy at point Y and at point X. 

  B) The wagon has more kinetic energy at point Y than at point X. 

  C) The wagon has the same gravitational potential energy at point Y and 
at point X. 

  D) The wagon has more gravitational potential energy at point Y than at 
point X. 

     

30. 
 

The total distance around the outside perimeter of a circle is properly called the 
    

  A) radius. 

  B) diameter. 

  C) circumference. 

  D) degree. 
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Achievement Test Skill Specification



236 

Table Q-1 
 
Achievement Instrument Specifications 

 

Skill area 

Test version 
─────────────────── 

A B C 
Magnetism and electric motors 1 o 30 o 9 o 

7 o 23 m 14 r 
12 o 18 r 10 m 
17 o 13 o 16 r 

Motion 2 o 28 m 1 m 
8 m 22 m 4 m 
13 o 17 m 8 m 
18 o 12 r 30 r 
22 o 8 o 18 o 
26 m 4 o 23 o 

Force 3 o 27 r 12 r 
9 o 21 o 27 o 
14 o 16 o 7 m 
19 o 11 o 6 o 
23 o 7 o 19 m 
27 o 3 o 22 r 

Electricity 4 o 26 o 5 o 
10 o 20 r 2 o 
15 o 15 o 28 o 
20 o 10 o 11 m 
24 o 6 o 17 r 
28 o 29 o 25 o 
30 o 1 r 26 o 

Air pressure 5 o 25 o 13 o 

Energy 6 o 24 o 21 o 
11 o 19 o 24 o 
16 o 14 o 15 o 
21 o 9 o 20 o 
25 o 5 o 29 o 
29 o 2 o 3 o 

o Original question 
m Modified question 
r Repeated Question
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Appendix R 
 

CM3 Sample Reasoning Motivation and Disposition Items
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CM3 Sample Reasoning Motivation and Disposition Items 
 

 
Consider the following 25 statements about beliefs, opinions, values, and preferences.  
Decide whether you agree or disagree with each one. Remember that since you are 
being asked about your own beliefs, opinions, values, and preferences, there really is no 
"right" or "wrong" response. The answer is whatever you say it is for you. 
 
You can indicate the extent of your affirmation or rejection of each statement by giving 
each one a point value where as follows.  
 
6 = Agree Strongly 
5 = Agree 
4 = Agree Marginally 
3 = Disagree Marginally  
2 = Disagree  
1 = Disagree Strongly  
 
1. I hate talk-radio hosts because they shout out their views without really listening to 

the other side. 
 
2.  I won't let what scientists might say weaken my core beliefs. 
 
3.  I prefer jobs where the supervisor says exactly what to do, and exactly when and 

how to do it. 
 
4.  It's important to me to figure out what people really mean by what they say. 
 
5.  Don't kid yourself, changing your mind is a sign of weakness. 
 
6. I always do better in jobs where I'm expected to think things out for myself.   
 
7. If I wanted to persuade someone of something, I wouldn't stop talking until the 

person gave up. 
 
8.  My friends expect me to be able to figure out a smart way to deal with all kinds of 

problems. 
 
9.  For me the best way to make decisions is to go with my gut feelings. 
 
10.  I hold off making decisions until I've thought through my options. 
 
11. No matter how complex the problem, you can bet there's a really simple solution. 
 
12. Rather than relying on someone else's notes, I prefer to read the material myself. 
 
13. I enjoy challenging myself mentally.  
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14.  I try to see the merit in another's opinion, even if I reject it later. 
 
15. I don't want to be on a jury because it means deciding something beyond a 

reasonable doubt. 
 
16. People say I change my mind too easily. 
17. If my belief is truly sincere, evidence to the contrary is irrelevant. 
 
18. I'd love to learn all kinds of new things just for the fun of it. 
 
19. Even if a problem is tougher than I expected, I'll keep working on it. 
 
20. I hate it when teachers want to discuss test questions instead of just giving the 

answers. 
 
21.  I can spend days and days thinking about my problems. 

 
22.  Making intelligent decisions is more important than winning arguments. 

 
23.  When it comes to decision-making I don't waste time speculating about options. 

 
24. There are lots of things I'm too frightened to think seriously about.  

 
25.  Reasons are like cheap rental cars, there are plenty of them around and none are 

any good. 
 
 
©2006 The California Academic Press LLC, Millbrae CA. 
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Appendix S 
 

Engineering Design Observation Form



 

 
Engineering Design 

Elements 
Period:             Lesson / Activity:  
Date:                                  

Problem Definition Rating 0-5 Notes:  
     Questioning  
     Constraints  
     Evaluation Criteria  
Solutions Rating 0-5 Notes:  
     Research Existing  
     Brainstorm Alternative  
Analysis / Modeling Rating 0-5 Notes:  
     Prediction  
     Uncertainty  
     Estimation  
Experimentation Rating 0-5 Notes:  
     Based on Analysis  
     Empirical Data Gathering  
     Prototyping  
Decision Making Rating 0-5 Notes:  
     Evaluation of Solutions  
     Optimizing  
Teamwork Rating 0-5 Notes:  
     Working effectively  
     Communication  
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Appendix T 
 

Rubric for Observation Form



 

Engineering Design Elements Quantitative Rubric 
Problem Definition Rating 0-5 
     Questioning 0) None; 1) minimal, taken at face value; 3) multiple, quality judgment; 5) many, variety of sources, quality judged 

and documented 
     Constraints 0) None; 1) minimal awareness; 3) understood, considered broadly; 5) prioritized technical and non-technical 
     Evaluation Criteria 0) None; 1) subjective, narrow focus; 3) multiple, clearly established; 5) many, component and systems level 
Solutions Rating 0-5 
     Research Existing 0) None; 1) few, unrelated; 3) multiple, demonstrates transfer; 5) many, consider technical and non-technical 

components 
     Brainstorm Alternative 0) None; 1) few; 3) multiple, demonstrates transfer; 5) many, consider technical and non-technical components, 

creative 
Analysis / Modeling Rating 0-5 
     Prediction 0) None; 1) single issue; 3) multiple; 5) many, consider technical and non-technical components 
     Uncertainty 0) None; 1) considered and dismissed; 3) discussed; 5) tested (empirical evidence) and researched 
     Estimation 0) None; 1) not based in a conceptual understanding; 3) triangulated by research; 5) estimated based on a 

conceptual understanding of the system behavior 
Experimentation Rating 0-5 
     Based on Analysis 0) None; 1) manipulating variables in analysis; 3) comparing prediction to experimental results; 5) using data to 

refine design and model 
     Empirical Data Gathering 0) None; 1) no logical approach; 3) trial and error, data not recorded; 5) methodic approach and data recording 
     Prototyping 0) None; 1) not based in a conceptual understanding; 3) triangulated by research; 5) based on understanding system, 

balanced by tradeoffs and attempts to optimize and return to iterative nature of design 
Decision Making Rating 0-5 
     Evaluation of Solutions 0) None; 1) face value; 3) data used; 5) based on a clear matrix of alternatives and advantages/disadvantages 
     Optimizing 0) None; 1) face value; 3) based on matrix; 5) return to and evaluation of criteria, problem, constraints. Effort to 

establish best solution for problem. 
 

Teamwork Rating 0-5 
     Working effectively 0) None; 1) few students working; 3) leader, followers; 5) clearly established roles, but each students understands 

the big picture.  
     Communication 0) None; 1) poor and confusing; 3) between a few team members only; 5) multiple forms (sketch, verbal, etc) all 

students have access to the information 
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Appendix U 
 

Professional Development Agenda
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Day 1 Agenda: 9am – 6pm 
 
1. Overview 
 Center 
 Objectives 
2. Current research agenda 
 Goals / Means / Data / Timeline 
3. Compare and contrast STL design process with Engineering Design process 
4. Detailed Description of each step in the Engineering Design Process (Poster) 
5. Case Study (1)  –Tufunk project: Sand Deposition 
 Educated guessing vs. identifying variables and manipulating (speed of fall 
f(height), volume dropped) 
6. Apply Engineering Design Model to Fall lessons 
 Brainstorm connections between Fall activities and Engineering Design Steps 
 Document connections in Lesson Plan Application matrix 
 Verify appropriate mix of lessons and targets in Summary matrix 
7. Discuss Achievement test and CM3 test 
 Content and timeline for administration 
8. Observation schedule qualitative and quantitative 
 Purpose: Documentation / evaluation / feedback 
 Adjustment to this classroom 
9. Meet administration / secure written permission 
 Deliver research proposal 
 Data to be collected: 
  Student transcripts (not end of level test results), Achievement, CM3, 
Teacher observations, teacher handouts, student generated documents and products 
 Data not collected: 
  Student photographs/video/audio, student personal information 
10. Reflection / Evaluation 
 Will the engineering design steps be implemented in the Fall? 
  What further support can I provide? 
  What areas of concern exist? 
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Day 2 Agenda: 9am – 4pm 
 
1. Case Study (2) –  compare core 3 and core 4 
2. Review Lesson Plan Application form to verify accuracy 
3. Develop model for understanding and analysis 
 Identify pertinent variables and relate to Engineering Design 
 Expand variables 
 Establish tests for variables 
4. Engineering tools 
 Decision Matrix: Engineering Your Future, Gomez, page 361; Engineering 
Design, Dym, page 44; ZEUS page 7 
 Modeling Example: Energy Model, Motion Model; ZEUS page 11-12 
 Functions/Means Chart: Engineering Design, Dym, page120 
 Functions/Means Tree: Engineering Design, Dym, page 85 
 Constraints / Objectives Chart D.110 
 Responsibilities Chart: Engineering Design, Dym page164 
 Time Line Chart: Engineering Design, Dym page172 
 Objective Tree: Engineering Design, Dym page 58 
 Team Calendar: Engineering Design, Dym page167 
5. Apply Engineering Design Model to Spring lessons 
 Brainstorm connections between Spring activities and Engineering Design Steps 
 Document connections in Lesson Plan Application matrix 
 Verify appropriate mix of lessons and targets in Summary matrix 
6. Reflection / Evaluation 
 Will the engineering design steps be implemented in the Spring? 
  What further support can I provide? 
  What areas of concern exist? 
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Appendix V 
 

Professional Development Objectives
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Day 1 
 
1. Communicate fundamental purpose and objectives of research study 
 
2. Differentiate Technology Education Design from Engineering Design 
 
3. Clearly articulate a relationship between Engineering Design and Fall activities 
 
4. Provide opportunity for further clarification on Engineering Design 
 
 
 
 
Day 2 
 
1. Clearly articulate a relationship between Engineering Design and Spring activities 
 
2. Establish appropriate model for Engineering Design Challenge 
 
3. Clarify pertinent variables for model and expand variables 
 
4. Provide opportunity for further clarification on Engineering Design 
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Appendix W 
 

Fall Engineering Design Lesson Application Matrix



 

Engineering Design Elements Lesson / Activity:  Magnetic Levitation 
Problem Definition  
     Questioning Students are not provided with a clear understanding of how the systems works and therefore they discover the need 

to ask questions to define how things work – this point is driven home in a reflective discussion facilitated by the 
teacher. 

     Constraints Students recognize that they are limited in design/construction/testing time. They identify constraints as shown in 
handout – design and materials. Students discover additional constraints such as limited power, width, fan blades, 
run time of motor. 

     Evaluation Criteria Traverse 14 foot track in shortest time. 
Solutions  
     Research Existing Students find display case with previous winners and are encouraged to spend some time online searching for other 

solutions. 
     Brainstorm Alternative Students individually brainstorm, sketch and write down ideas in design journal 
Analysis / Modeling  
     Prediction Class discussion of pertinent variables included: such as F=MA, Drag (aerodynamic), Friction from moving 

components, Electrical connections and what impacts their efficiencies. 
     Uncertainty Students “randomly” experiment with variables such as car width, wider = more stable, but more friction against 

track. Use 3 runs to establish an average. This random experimentation is followed up during the reflective 
discussion to establish a need for understanding the governing principles behind the system behavior. 

     Estimation Students may not have equipment or time to measure air resistance, but are encouraged by discussion / lecture how 
to estimate qualitatively how to reduce air drag.  

Experimentation  
     Based on Analysis Student journals connect design decisions to variables discussed in class. The reflective component entitled, 

“modifications and things learned” includes talk of manipulating variables such as drag, friction, mass, balance, 
width, number of magnets/weight, center of gravity, position of motor for balance, etc. and the impact on 
performance. 

     Empirical Data Gathering Students make multiple speed runs of car and make modifications. The results translate into improvements in 
design. 

     Prototyping Students build car and make 3 runs during the race; compute average speed. 
Decision Making  



 

     Evaluation of Solutions Student journal shows variables, designs and justifies why one was chosen over others. 
     Optimizing Students reflect on their design choices and discuss how they weigh advantages and disadvantages to make 

decisions. 
Teamwork  
     Working effectively Students share track but work individually on this project. 
     Communication Sketches and written documentation included in design journal. The sketches and ideas are documented in the 

design notebook. This includes brainstorming and justification of design choices. Includes details on deviation from 
original plan.   

General Comments This project is designed for students to understand the need for design, planning, precision and general governing 
physics principles. This is a challenging project that makes random trial and error difficult and relatively 
unsuccessful. Discussion follows this challenge regarding the need for understanding the applied physics, problem 
definition, and analysis of variables involved to reduce random guessing. 

 



 

 
Engineering Design Elements Lesson / Activity:  Electric Motors 

Problem Definition  
     Questioning  
     Constraints Materials and time line are clearly specified. 
     Evaluation Criteria Maximize horsepower with power provided; minimize power required to operate motor (overcome frictional loses) 
Solutions  
     Research Existing Students can observe previous solutions and through handouts and other sources explore how an electric motor 

works.  
     Brainstorm Alternative Students are encouraged to make sketches of modifications in their design journal.  
Analysis / Modeling  
     Prediction Students calculate horsepower as a function of their motor lifting a mass by a distance. Equations assist in 

converting grams to pounds, and then foot * pounds to horsepower. Motors are run at minimum power to establish a 
numerical baseline for drag. Motors are run 5 minutes to establish a baseline for heat generation and dissipation.  

     Uncertainty Students add weight to their horsepower calculations until a reduction in power occurs. A graph is generated and a 
plot of weight – horsepower shows a curve with a peak. The peak is the max horse power and therefore the “power 
band” of their motor design.  

     Estimation  
Experimentation  
     Based on Analysis Student manipulate variables such as brush type, pressure, coil balance, feet of wire, gaps of field windings and 

armatures in order to experiment with performance. 
     Empirical Data Gathering Data for horsepower calculations are gathered by lifting weights and timing  
     Prototyping Motors are built, tested and modified 
Decision Making  
     Evaluation of Solutions Students manipulate variables such as brush type, pressure, coil balance, feet of wire, gaps of field windings and 

armatures in order to calculate hp and therefore develop the optimal design 
     Optimizing Done initially by minimizing run power, then by HP calculations. Testing includes both series and parallel wound 

motors. 



 

Teamwork  
     Working effectively Students participate in teams of two. Teacher encourages team work by explaining the importance of each student 

working toward the goal in order to finish the project on time. Teacher encourages students to divide the 
responsibilities and roles.  

     Communication Students use verbal and graphic (sketches) during the project and written during the journal and reporting. 
General Comments Students report how they changed the plans to increase their motor’s horsepower. Students use sketches to explain 

their changes.  
 



 

 
Engineering Design Elements Lesson / Activity:  Solar and Gearing 

Problem Definition  
     Questioning  
     Constraints Use materials provided in the specified time limits 
     Evaluation Criteria Convert light energy to electrical energy, maximize horsepower calculations using optimal power source. 
Solutions  
     Research Existing  
     Brainstorm Alternative  
Analysis / Modeling  
     Prediction Gear ratios are calculated and a related worksheet connects this power and gear ratio activity to the MPH 

calculations as they relate to wheel circumference and motor RPM. Predictions are made regarding the best (most 
powerful) setup for calculating horsepower of a winch powered by solar cells – parallel, series/parallel, or series. In 
theory all are equal watts, but due to motor specifications, different voltage/amperage combinations yield different 
horsepower results. A plot is generated comparing voltage against horsepower. Students are introduced to an energy 
model representing energy in=energy out. Thus relating power from panels to losses due to friction and specifically 
various points where friction exists. 

     Uncertainty Students generate a curve representing the relationship between power and distance between cell and light source. 
This will be plotted on graph paper. 

     Estimation Students use a heuristic of 1200 watts / meter sq and estimate the power of their cells to compare their results to the 
known values of typical solar arrays….Thus calculating efficiency. Students also build a hand powered winch 
which they operate to feel gear ratios and estimate problems related to gearing too high or too low for their cars – 
thus introducing mechanical advantage. 

Experimentation  
     Based on Analysis Students apply their understanding of P=IV to estimate that power will be equal regardless of the series or parallel 

wiring.  
     Empirical Data Gathering Measure volts and amps and distance to light for plotting  
     Prototyping Students setup multiple cells in series and parallel to record volts and amps and calculate power. 



 

 
Decision Making  
     Evaluation of Solutions Students attempt to maximize horsepower by evaluating different wiring configurations. 
     Optimizing Students will conclude that distance (proximity) is a critical variable in increasing power output of solar panels. 
Teamwork  
     Working effectively Students work in teams of four. Each student in the team is assigned responsibilities and a team leader is 

established. 
     Communication Students log data and experiments in their notebook as they work through the problem.  
General Comments This activity provides a connection to the electrathon challenge as it high lights relationships between efficiency 

and power (varying voltage/amperage). It also introduces rolling resistance and the need to minimize its effect. 
 



 

 
Engineering Design Elements Lesson / Activity:  Solar Lego Car 

Problem Definition  
     Questioning Students are encouraged to document their questions regarding how to reduce the cost of friction, rolling resistance, 

weight and other pertinent variables.  
     Constraints Materials, time 
     Evaluation Criteria Speed calculated by a preset distance 
Solutions  
     Research Existing Students see previous year’s cars and discuss pros/cons of design. Gearing system based on results from solar 

project just completed 
     Brainstorm Alternative Students brainstorm with sketches and conversations. 
Analysis / Modeling  
     Prediction Variables include reducing friction, weight of system (including wheels), size of tires. Based on HP calculations 

from solar experiment for best voltage/amperage combination for car. 
     Uncertainty Class discussion why results from previous solar experiments may or may not be accurate, possible errors are 

discussed. This leads to conclusions based on triangulation of team results and an accumulated body of knowledge 
from previous years. 

     Estimation  
Experimentation  
     Based on Analysis Equation is developed which starts with F=MA, then force is explored by discussion to be reduced by rolling 

resistance and increased by proximity of light source to solar cells. Rolling resistance is a factor of tire material, tire 
width, size (relating to gear ratio). Student teams develop an equation to represent their car’s performance. Students 
measure rolling resistance by running car down an incline and measuring angle required to initiate movement. The 
tangent of this angle provides a value for frictional coefficient which is mathematically converted into friction force. 

     Empirical Data Gathering Student time car runs 
     Prototyping Students develop fast car 
Decision Making  
     Evaluation of Solutions Changes are evaluated in terms of car speed 
     Optimizing Each change effects speed leads to understanding of optimizing variables 



 

Teamwork  
     Working effectively Teacher encourages participation, team roles are established, definition of leadership and follower ship is explained. 

Team members delegate responsibilities. Students become experts in different areas of the car and rely on each 
other’s expertise. 

     Communication Journal includes student reflection and variables involved with making their car go it’s fastest. Written, sketches, 
brainstorming, evaluation, personal reflection. 

General Comments The equation representing performance serves as a model for the electric car in the spring challenge. 
 



 

 
Engineering Design Elements Lesson / Activity:  1/10 Scale Model 

Problem Definition  
     Questioning Students work in teams to establish a problem definition based on their goals and “need”. Students determine what 

function the car will serve, how the components will be organized, and question the rules and parameters set by the 
instructors. Students must answer questions about driver position, balance between height = comfort and frontal 
surface area. How to steer using levers or rack/pinion or other solutions. Questions must be answered to balance 
between the 1/10 model and the full size car. 

     Constraints Students are constrained to build a model that they could use for their full size design, limited materials, skills and 
time must be considered. Accuracy of the model will limit potential future construction difficulties as they are 
forced to be able to physically produce the idea. Each part must be scaled by 1/10 in order to receive full credit. 

     Evaluation Criteria Steering must be functional. All required components must be accurately scaled, presentations must be complete 
and organized, and teams must be functional. 

Solutions  
     Research Existing Students investigate previous designs, use the internet and various handouts to explore existing solutions to the 

design in the form of both the model and full size design. Students drive previous year’s cars and discuss their 
functionality and comfort including how and why. Discussion uses analogies to compare possible component 
designs to familiar solutions such as lawn mowers, golf carts, fork lifts, etc.  

     Brainstorm Alternative Students verbally brainstorm and sketch ideas. They explore potential solutions and discuss limits and methods of 
dealing with issues/solutions. Brainstorming methods are discussed with the students and teacher encourages good 
brainstorming habits.  

Analysis / Modeling  
     Prediction Students use wind tunnel testing to evaluate drag on their foam model plug prior to creating a body shell. This 

prediction is based on a discussion and demonstration of the wind tunnel using various shapes with similar cross 
sectional areas.  

     Uncertainty  
     Estimation Teams draw a scale version of the driver(s) and have this photocopied. With the agreed upon driver and driver 

position, a frame and body are drawn by each team member on the photocopies. The frame design and body design 
are estimated and discussed by team members. Finally a physical model of the frame confirms team decisions 
regarding placement of parts and fit of driver.  



 

 
Experimentation  
     Based on Analysis Rider position and mechanical function are documented in the form of pros and cons when students observe 

previous solutions. This serves as a basis for initial designing of the frame. Body shapes, tested in the wind tunnel 
for drag coefficients serve as a starting point for body designs, balancing air resistance against practicality. 

     Empirical Data Gathering Drag is measured on their car body and different shapes are created for minimal resistance. Dimensions are 
gathered from the “driver” and scaled to create specifications for the model driver. 

     Prototyping Multiple revisions are made to the scale model as students debate and work toward an optimal design for their 
problem definition and team constraints. All scale components are created, ie: battery, motor, wheels, steering, 
frame, body. These components are arranged and rearranged until team agrees upon design, initially starting with 
sketches. 

Decision Making  
     Evaluation of Solutions Solutions are evaluated using a decisions matrix based on team established criteria and design alternatives. 
     Optimizing Tradeoffs between low frontal surface area and driver comfort are addressed. Air resistance and body size are 

estimated using the tunnel and modeling placement of each component.  
Teamwork  
     Working effectively Students work in groups of 2-3 and utilize a responsibilities chart to assign (manage) roles and tasks. Systems are 

broken down into subsystems for ease of construction and analysis. Students use a time management calendar. 
     Communication Students communicate verbally, by sketching, and using responsibilities charts and decision matrix when 

appropriate. Teams make design presentation and explain and justify their choices.  
General Comments This project serves as a model for the full size car, showing special relationships and functional steering 

mechanisms. 
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Appendix X 
 

Professional Development Evaluation
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Day 1 
 
How well were the following objectives addressed? 
Please rate the following objectives from 1 to 5 by circling your response. 
(1: Very poorly, 3: Limited extent, 5: Very well) 
 
1. Communicate fundamental purpose and objectives of research study. 
1 (Very Poorly) 2 3 4 5 (Very Well) 
 
Comment: 
 
 
 
2. Differentiate Technology Education Design from Engineering Design. 
1 (Very Poorly) 2 3 4 5 (Very Well) 
 
Comment: 
 
 
 
 
3. Clearly articulate a relationship between Engineering Design and Fall activities. 
1 (Very Poorly) 2 3 4 5 (Very Well) 
 
Comment: 
 
 
 
 
4. Provide opportunity for further clarification on Engineering Design. 
1 (Very Poorly) 2 3 4 5 (Very Well) 
 
Comment: 
 
 
 
 
 
 
General Comments: 
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Day 2:  
 
PD Evaluation: Fall 2007 (used 2nd day Summer and fall) 
 
How well were the following objectives addressed? 
Please rate the following objectives from 1 to 5 by circling your response. 
(1: Very poorly, 3: Limited extent, 5: Very well) 
 
1. Clearly articulate a relationship between Engineering Design and Spring activities. 

1 (Very Poorly) 2 3 4 5 (Very Well) 
 
Comment: 
 
 
 
2. Establish appropriate model for Engineering Design Challenge. 

1 (Very Poorly) 2 3 4 5 (Very Well) 
 
Comment: 
 
 
 
 
3. Clarify pertinent variables for model and expand variables. 

1 (Very Poorly) 2 3 4 5 (Very Well) 
 
Comment: 
 
 
 
 
4. Provide opportunity for further clarification on Engineering Design. 

1 (Very Poorly) 2 3 4 5 (Very Well) 
 
Comment: 
 
 
 
 
 
 
General Comments: 
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Appendix Y 
 

California Measure of Mental Motivation Score Interpretation
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