4-2009

Rayleigh-Lidar Determinations of the Vertical Wavelength of Mesospheric Gravity Wave

Joe R. Slansky
Durga N. Kafle
Vincent B. Wickwar
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/atmlidar_post
Part of the Physics Commons

Recommended Citation

Slansky, J., Kafle, D., \& Wickwar, V. (2009, April). Rayleigh-Lidar Determinations of the Vertical Wavelength of Mesospheric Gravity Waves,. Presented at the SPS Meeting, Salt Lake City, UT.

This Poster is brought to you for free and open access by the Green Beam (Rayleigh-Scatter LIDAR) at DigitalCommons@USU. It has been accepted for inclusion in Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Rayleigh-Lidar Determinations of the Vertical Wavelength of Mesospheric Gravity Waves

Joe R. Slansky, Durga N. Kafle and Vincent B. Wickwar Utah State University Physics Department and Center for Atmospheric and Space Sciences

Abstract

Atmospheric structures have been observed in the Rayleigh lidar data acquired between 1993 and 2004 at Utah State University (USU). The observations pertain to the density and temperature in the mesosphere between 45 and 90 km altitude. The structures referred to arise from monochromatic Atmospheric Gravity Waves (AGWs). Previous analysis of these data have searched for and found a spectrum with a peak in the vertical wavelength 12-16 km . It has been suggested by other researchers using other types of data that there may be
another peak in the spectrum at shorter wavelengths. For this study the lidar data were reanalyzed to search for such waves. To do this, the altitude resolution was reduced from 3 km to 600 m . This enabled the shortest wavelength AGW that can be examined to be reduced from 6 km to $\sim 1.2 \mathrm{~km}$, thereby significantly extending the spectrum investigated. Two additional peaks in the spectrum were found at 1.25-1.75 and 3.0-4.0 km

Introduction

Rayleigh-scatter lidar data from the Atmospheric Lidar Observatory (ALO) at USU's Center for Atmospheric and Space Sciences at $41.74^{\circ} \mathrm{N}$ $111.81^{\circ} \mathrm{W}, 1.47 \mathrm{~km}$ above sea level are used to study dynamic properties of the mesosphere (45 to 90 km). This region is a difficult part of earth's atmosphere to observe as it is above the aircraft accessible stratosphere and below airglow emissions and radar backscatter. In situ rocket observations are occasionally made, but they are expensive. ALO's lidar is a $532-\mathrm{nm}$ laser that scatters light off particles at a vertical resolution of 37.5 meters and a temporal resolution of 2 Photons returned through a 44-cm Newtonian
 filtered detected with a gated PMT and converted to a digital signal Background light levels and to a digital signal. Background light levels and and subtracted from the signal. The remaining component of the signal is the signal of interest.

Fuctuations of wavelength are plotted with altitude on the
vertical axis and percent relative density fluctuation on the
norizal verizontal axis.

Relative density fluctuations are described in terms of vertical wavelength, period, mplitude, and vertical phase speed. Onehour and all-night integrations of density fluctuations display wave behavior measured and characterized by theoretical models of perturbation theory and thermodynamics. The methods of data reduction smooth noise and render monochromatic wave structures more clearly. The AGWs have vertical wavelengths previously measured with lidars in the $6-19 \mathrm{~km}$ range with a dominant peak at $12-16 \mathrm{~km}$, and shorter wavelengths suggested by other research to have peak in the distribution at specific wavelengths.

LIDAR
Light Detection and Ranging of Atmospheric Gravity Waves

Theory \& Methods

The individual density profiles containing observed mesospheric data are processed into profiles of Telative density, showing density perturbations versus altitude. Periodic structures were identified and measured. Three general categories of wavelengths are demarcated, namely longer, medium, m ranges to determine if there was an apparent altitude dependence on the wavelength of small cale waves. The measured wavelangh frequency counts were binned versus wavelength to determine if a dominant wavelength existed within each subspectrum. The distribution of the long weleng is compared to previous studies of the same data as a check of data processing methods. The results of the binning process showed a small dominant range of wavelengths in each of the three ranges.

Data Analysis \& Preliminary Results

Small-scale structure

Small scale AGWs observed suggest that a preferred wavelength i the the 1.25 to to 1.75
$k m$ range may exist
Integtions data reduction techniques theoretically allow wavelength sabove 1.2 km , and
there are many structures of such there are emany structur
magnitude observed.

No Altitude-Wavelength Relation
 With regard to small scale AGWs, there appears to be
strong altitdo-wavelength realtion The prevalent
wavelengths observed were very siminiar in counts and count percentages throughout large regions of the

Continued Research

To confirm that the measurement methods used in this study adequately correspond to the heoretical construct, a wider variety of tegrations on specific observing dates should e employed. Wave mechanics may confirm will be used (on the order of 800 nights as pposed to this sample of 100). Hourly integrations will show phase shifts to properly determine wave speed and energy Ultimately we seek to understand the mechanisms behind we seek to understand the mechanisms behind ominant wavelengths within the atmospheric gravity wave spectrum

