
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2008

A Novel Authentication And Validation Mechanism For Analyzing A Novel Authentication And Validation Mechanism For Analyzing

Syslogs Forensically Syslogs Forensically

Steena D.S. Monteiro
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Monteiro, Steena D.S., "A Novel Authentication And Validation Mechanism For Analyzing Syslogs
Forensically" (2008). All Graduate Theses and Dissertations. 198.
https://digitalcommons.usu.edu/etd/198

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/19682488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/198?utm_source=digitalcommons.usu.edu%2Fetd%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

i

A NOVEL AUTHENTICATION AND VALIDATION MECHANISM FOR ANALYZING
SYSLOGS FORENSICALLY

by

Steena D. S. Monteiro

A thesis submitted in partial fulfillment of the requirement for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Dr. Robert F. Erbacher

Major Professor

Dr. Dan Watson

Committee Member

Dr. Chad Mano

Committee Member

Dr. Byron Burnham

Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2008

ii

Copyright © Steena D. S. Monteiro 2008

All Rights Reserved

iii

ABSTRACT

A Novel Authentication and Validation Mechanism for

Analyzing Syslogs Forensically

by

Steena D. S. Monteiro, Master of Science

Utah State University, 2008

Major Professor: Dr. Robert F. Erbacher
Department: Computer Science

This research proposes a novel technique for authenticating and validating syslogs

for forensic analysis. This technique uses a modification of the Needham Schroeder

protocol, which uses nonces (numbers used only once) and public keys. Syslogs, which

were developed from an event-logging perspective and not from an evidence-sustaining

one, are system treasure maps that chart out and pinpoint attacks and attack attempts.

Over the past few years, research on securing syslogs has yielded enhanced syslog

protocols that focus on tamper prevention and detection. However, many of these

protocols, though efficient from a security perspective, are inadequate when forensics

comes into play. From a legal perspective, any kind of evidence found at a crime scene

needs to be validated. In addition, any digital forensic evidence when presented in court

needs to be admissible, authentic, believable, and reliable. Currently, a patchy log on the

server side and client side cannot be considered as formal authentication of a wrongdoer.

This work presents a method that ties together, authenticates, and validates all the entities

involved in the crime scene—the user using the application, the system that is being used,

iv

and the application being used on the system by the user. This means that instead of

merely transmitting the header and the message, which is the standard syslog protocol

format, the syslog entry along with the user fingerprint, application fingerprint, and

system fingerprint are transmitted to the logging server. The assignment of digital

fingerprints and the addition of a challenge response mechanism to the underlying

syslogging mechanism aim to validate generated syslogs forensically.

 (61 pages)

v

For my parents who have always supported and encouraged my love for science and
learning through the years.

vi

ACKNOWLEDGMENTS

A great deal of thanks goes out to Dr. Robert F. Erbacher for his immense support,

patience, knowledge, and guidance. My work is most certainly a reflection of these. His

unfailing confidence in me has always been an encouraging factor during certain

challenging phases of my research. I would like to thank Dr. Chad Mano for encouraging

me during my first semester to do a master’s thesis and for introducing me to the

wonderful world of wireless security through his class. Also, I would like to thank Dr.

Dan Watson for being on my committee.

A thank you to all my lab mates (and friends), and my special friends in the Computer

Science Department for their unwavering support, help, and jolly company without which

my work in the lab, at my research, and at school would have been mundane and dull. It

is always a pleasure to work with you and discuss the “finer aspects” of security, forensic

evidence, and random geek humor.

My family, though thousands of miles away, has been my emotional backbone

through my time here at Utah State University. I would like to acknowledge and thank

parents for their love, sacrifices, and support through the past years. They have made me

what I am today. Also, I’d like to express my gratitude to my small (I like this word!)

sister Simonah, who firmly maintains that her sister can excel at anything; wherever and

whenever.

Lastly, and not in any means a small measure, I would like to thank Infant Jesus for

guiding, guarding, and blessing me.

Steena D.S. Monteiro

vii

CONTENTS

Page

ABSTRACT... iii

ACKNOWLEDGMENTS ... vi

LIST OF TABLES...x

LIST OF FIGURES ... xi

CHAPTER

1. INTRODUCTION ...1

1.1 Background..1
1.2 Syslog BSD..1

1.2.1 Simplicity ..2
1.2.2 Flexibility ..2

1.3 Syslog Security Research...3
1.4 Syslog Tools...3
1.5 Importance of this Research...3

2. SYSLOGS..6

2.1 Syslogs Thus Far..6
2.2 Background of the Proposed Method ..7
2.3 Previous Syslog Research ...8
2.4 Weaknesses of the Syslog Protocol ...11

2.4.1. Compromising the Authenticity..11
2.4.2. Compromising the Confidentiality ..12
2.4.3. Compromising the Integrity ...12

2.5 Forensic Requirements...13

2.5.1 Preservation ..14
2.5.2 Identification ..14
2.5.3 Extraction ...14
2.5.4 Documentation ...15
2.5.5 Interpretation of Data ...15
2.5.6 Confidentiality..15

viii

2.5.7 Integrity ..16
2.5.8 Authenticity ..17

2.6 Syslog Variants ..17

2.6.1 Syslog-Sign ..17
2.6.2 Syslog-Auth..18

3. THE PROPOSED METHOD ..19

3.1 Overview of the Proposed Method ..19
3.2 The Proposed Method..21

3.2.1 Phase 1: User Authentication..21
3.2.2 Phase 2: System Connection Establishment22
3.2.3 Phase 3: System Connection Establishment Response.....................22
3.2.4 Phase 4: Application Event Entry Generation23
3.2.5 Phase 5: Application Termination ..23
3.2.6 Phase 6: System Connection Termination ..23

4. FINGERPRINTS AND AUTHENTICATION TRACES24

4.1 User Fingerprints ...24
4.2 Application Fingerprints ..25
4.3 System Fingerprints ...26
4.4 Fingerprint Generation...27

4.4.1 User Fingerprint Generation ...27
4.4.2 System Fingerprint Generation ...28
4.4.3 Application Fingerprint Generation..29

4.5 Authentication Traces ..30
4.6 Nonces ...30

5. ATTACK BACKTRACKING...32

5.1 Backtracking to an Attack ...32
5.2 Reconstructing Fingerprints ..34

6. FORENSIC VIABILITY ..36

6.1 Requirements of Forensic Evidence ...36
6.2 Evidence Certainty Levels ..36
6.3 Authentication Traces and Syslogs under Certain Scenarios38

 6.3.1 Scenario One: Syslog File Deletion..38

ix

 6.3.2 Scenario Two: Spurious Entry Injection into the Syslog File...........39
 6.3.3 Scenario Three: Application Updates ...39

7. PROTOCOL RESILENCE..41

7.1 Attacks Against the Challenge Response System......................................41

7.1.1 Phase 2: System Connection Establishment41
7.1.2 Phase 3: System Connection Establishment Response.....................41
7.1.3 Phase 4: Application Event Entry Generation42
7.1.4 Phase 5: Applications Termination...42
7.1.5 Phase 6: System Connection Termination ..42

7.2 Attacks Against the Syslog File...42
7.3 Denial of Service..43
7.4 Abusing Privileges ...43
7.5 Application Updates...43

8. CONCLUSION..45

8.1 Current Scenarios...45
8.2 Future Work ...46

REFERENCES ..48

x

LIST OF TABLES

Table Page

6.2 Mapping the certainty levels defined in [2] to syslog files....................................37

xi

LIST OF FIGURES

Figures Page

3-1 View one of overview of the proposed method...19

3-2 View two of overview of the proposed method...21

4-1 User fingerprint generation ..28

4-2 System fingerprint generation..30

4-3 Application fingerprint generation...31

1

CHAPTER 1

INTRODUCTION

1.1 Background

Computer evidence has become an indispensible factor in proving criminal and

civil cases in a court of law. Previously, the lack and/or misinterpretation of computer

evidence have been the primary causes for stalling the pursuit of computer crime

cases in court. Due to the lack of a formal forensic procedure, the interpretation of

computer evidence at a crime scene has been often best left to expert witness

testimonies. The federal rules of evidence now consider and treat computer evidence

as they would documentary evidence. This means that like documentary evidence,

computer evidence needs to be verified and authenticated. It is now mandatory for

forensic computer expert witnesses to be able to concretely verify and defend their

observations and inferences with regard to the processes followed and the tools used

at the crime scene. Therefore, it is extremely important that computer evidence

processing be done correctly in criminal cases. A crucial aspect of computer evidence

is the documentation associated with it [1].

1.2 Syslog BSD

Syslogs, as defined by the syslog Berkeley software distribution (BSD) protocol,

were developed as event reporting systems. This protocol aimed to serve as an

indication that events with certain priorities occurred over time on a network. The

protocol assumes every entity to be independent of each other and does not provide

for any kind of binding mechanism in place when events are associated with multiple

2

entities on the network. The syslog protocol was devised with the following

fundamental tenets in mind.

1.2.1 Simplicity

Syslogs rely on the integrity of the underlying system that implements it for its

security. The original BSD protocol does not have any security considerations in place

for securing or protecting the messages that are transferred to and from the systems on

the network and the central logging repository. Therefore, after the transmission of a

syslog message, no explicit notification is sent out to the system that generates it.

With protocol simplicity as the basic focus, UDP is the designated protocol used [2]

to transmit syslogs generated by the systems on the network to a centralized logging

system. The simple format of a syslog entry and the vulnerable protocol used to transmit

it makes syslogs very unsubstantial evidence and causes the integrity of the entries can be

challenged [3].

1.2.2 Flexibility

Syslogs are flexible in the sense that an administrator on a network can configure

logging settings and logging paths. This means that the .conf file can be modified in order

to change logging settings on the network. Additionally, the administrator can determine

the message logging procedure. For example, messages of higher priority get logged on a

different server, messages signaling the launch of applications to another, etc.

Thus, having been developed as electronic signaling systems for a network, syslogs

do not have any mechanism in place that meets the security goals of authenticity,

3

confidentiality, and integrity. With this as the prime focus, security research has focused

on cementing the existing syslog with various new techniques and methods.

1.3 Syslog Security Research

Security research has worked on enhancing syslogs in two ways: remodeling the

existing syslog protocol and suggesting various architectures, which add a level of

security to log files as a whole. This is discussed in Chapter 2, which looks at the

background of syslogs and their security.

1.4 Syslog Tools

In order for any kind of evidence to be used in a court of law, it has to be deemed as

admissible, authentic, believable, and reliable. Currently, there are several commercial

tools available in the market that can be used to analyze the humongous amount of

information that syslogs contain. These tools basically classify the information that a log

file contains. Another trait common to all these tools is that none of them assigns any

kind of forensic credibility to the entities involved in the generation of log entries.

Further, most tools concentrate all attention on the final and central log file, and the

collation and categorization of the information that it contains [4].

1.5 Importance of This Research

! Electronic evidence in a court of law is now treated in the same way as

documentary evidence. This means that similar to its real-world counterpart,

electronic evidence needs to satisfy similar phases of evidence authentication and

validation. Thus, electronic evidence has to be made admissible, authentic,

believable, and reliable.

4

! Forensic analysis can never be carried out on the actual artifact. The analysis is

required to be carried out on copies of the artifact. The method proposed in this

research satisfies this requirement, thereby satisfying a crucial forensic

requirement.

! The mechanism proposed in this research has successfully assigned an identity,

i.e., a fingerprint, to every entity involved in the generation of a syslog entry,

thereby overwriting the principle of the original syslog BSD that emphasizes the

independence of every entity.

! An attacker who attacks a network and causes havoc will firstly seek to eliminate

any kind of evidence that indicates the presence of the attack or the attacker. In

the event of either of these occurring, an alternate mechanism is needed whereby

the system can be brought back up again and recovered to a stable state. The

technique presented in this research accomplishes this.

! An important aspect to be noted is that the proposed method clearly satisfies the

following authentication requirements of electronic evidence documented by the

Computer Crime and Intellectual Property Section, Criminal Division, United

States Department of Justice [5]:

1. Verification of the authenticity and prevention of the alteration of computer

records. This is achieved through the use of the authentication traces and the

challenge response mechanism.

2. Establishment of the reliability of computer programs. This is achieved

through the use of application fingerprints.

5

3. Identification of the author of computer-stored records. This is achieved

through the use of user fingerprints.

6

CHAPTER 2

 SYSLOGS

2.1 Syslogs Thus Far

This research provides a mechanism that validates and authenticates syslogs for

computer forensic analysis. Syslogs are often smoking guns [6] in an organization

wherein a computer or network attack has occurred due to the immense amount of

information contained therein. Syslogs may also contain evidence of illegal or

inappropriate activity by the user of an individual system. Traditionally, when computer

evidence needs to be collected, the entire system is taken off-line, and the entire hard

drive treated as evidence. With a network attack, there could be evidence in syslog files

throughout the entire organization. This makes it unfeasible to take the systems with

potential evidence off-line, especially when considering the frequency at which network

based attacks actually occur. Since syslog entries are traditionally duplicated on a central

repository, the syslog facility provides a means by which the evidence can be collected

without taking systems off-line, assuming of course the syslog files can be made to be

legally admissible.

Computer forensics, a relatively new field of research, needs a method with

appropriate authentication mechanisms in place by which syslogs can be used as relevant

evidence in court. Syslogs, which have been designed more from an event logging

perspective than an evidence-oriented one, are system treasure maps that chart and

pinpoint attacks and attack attempts. More importantly, syslogs have primarily remained

what they originally were—insufficient and cryptic [7]. Over the past few years, research

on securing syslogs has yielded enhanced syslog protocols that focus primarily on tamper

7

prevention and detection. However, many of these protocols, though effective from a

security perspective, are inadequate when forensics needs comes into play.

Over the past years, system log research has focused on securing syslogs and has

advanced a great deal [8] [9] [10]. However, syslog security research cannot validate

syslog entries or vouch for their authenticity with regard to the time of their creation.

Therefore, what is needed is a mechanism that can validate every entity associated with a

syslog entry for the log entry to be forensically viable.

The BSD syslog protocol documents one of the fundamental tenets of the syslog to be

simplicity. With this as the basic focus, UDP is used [2] to transmit syslogs generated by

the systems on the network to a centralized logging system. The simple format of the

syslog entry and the vulnerable protocol used to transmit it makes syslogs very weak

evidence; this is mainly because the integrity of syslog entries can be challenged [3].

The goal of the research presented here is to create a forensically viable syslog

facility. There exists a fine difference between secure syslogs and forensically viable

ones. Security research on logs has focused on securing audit logs and protecting them

from intrusion and malicious manipulations. To the best of our knowledge, no research

has focused extensively on making syslogs forensically viable. This essentially entails the

validation of syslog entries as they are created as well as providing resistance and the

detection of modifications and deletions.

2.2 Background of the Proposed Method

Every computer-based activity on a system typically leaves an electronic trace [6].

The level of understandability provided by these traces and the credibility offered by

them depends on the level of security in place on the system. Electronic traces in

8

verifiable forms can be considered as digital evidence. In order to verify system log files,

we must ensure that the log files are resistant to deletions and modifications; i.e., it may

not be possible to prevent truncation of a log file, but such modifications must be

detectable. Additionally, further verification must be added to the syslog protocol to

validate where the syslog entries came from. Specifically, this is done using system

fingerprints, user fingerprints, and application fingerprints.

In this research, we propose a new electronic trace by using a modification of the

Needham Schroeder protocol [11]. The secure transmission of system fingerprints, user

fingerprints, and application fingerprints is ensured by using a modification of the

Needham Schroeder protocol. This protocol was developed to secure communication

between two hosts by the use of session keys, random numbers, and nonces. In this

method, the session keys are replaced by public keys for each system on the network. We

term the public keys assigned to every authentic system KSystem. Similar to the original

protocol, these keys are generated pseudo randomly at the authentication module and are

assigned to each of the systems. The weakness of the Needham Schroeder protocol lies in

the use of timestamps. In the originally suggested protocol, timestamps were used

explicitly. The use of timestamps explicitly enables the manipulation of messages by

changing the network clock and manipulating network latency. However, this is

eliminated in our proposed version due to the use of digital fingerprints, which are hashed

values of various system parameters and timestamps.

2.3 Previous Syslog Research

Syslogs, developed as a UNIX protocol, are essentially a means of keeping track of

events that occur and processes that run on a system. Syslogs are essential, but vastly

9

insufficient and cryptic. This is because syslogs were not designed from the perspective

of being used as evidence or for backtracking an attack.

Waters et al. [10] present a searchable and secure audit log using asymmetric key

encryption. However, this paper merely tackles the problem of storing syslogs and

providing an efficient mechanism for searching through them. The paper does not have

any mechanism in place to verify that the entries are generated by validated systems and

have indeed been created by systems within the secure domain. An analysis after an

attack would not yield sufficient evidence if this method were used. Linear hash

mechanisms that detect log tampering attempts have been suggested [9]. Ayrapetov et al.

[8] provide techniques that secure a syslog database using passwords. Again, this

technique lacks a mechanism to control or prevent attacks that can be carried out to

manipulate the syslog database. Both these papers fail to present an analysis of attacks

against their proposed systems.

The approach in [12] presents the use of four entities—a generator server, a storage

server, an analyzer server, and a sign server. This approach describes a secure

infrastructure that signs the generated logs and stores them securely. However, this paper

does not go into probing the forensic aspect of the method and how the logs secured by

this technique can be proven to be generated by a valid and authenticated source.

The method presented in [13] makes use of syslogd [14] and uses the SSH package to

forward logs to the server with encryption and authentication. Since this method has been

mainly designed to ensure secure log transmission, validation and authentication in the

event of an attack and measures to prevent the same were not explored; i.e., there is no

security measure enforced that can detect log tampering. Another architecture discussed

10

in [15] proposes the use of IPTables to formulate rules that will limit UDP traffic to port

514, which is the port designated for syslog servers to run on. This method again does not

define any kind of resilience against attacks or tampering attempts. This method at best

simply defines a logging system that prevents any kind of attacks against the logging

server using SSH connections and permitting communication only with certain limited IP

addresses. There is no defense against modification of the log file should the system be

validly or invalidly accessed.

Other papers propose logging architectures specifically from the forensic point of

view for use in criminal investigations. In their research, Jiqiang et al. [16] present a

schema that describes a secure logging architecture from a forensic viewpoint. It

describes the entire architecture as a collection of interconnected modules, namely, host,

network, receiving, classifying, and secure. However, although the aim suggests securing

audit logs for use in forensic analysis, the method presented by the authors does not get

into the nitty-gritty of validating log entries and the manner in which they will actually be

scanned for their authenticity or tested for their genuineness. The authors’ suggestion for

the use of automated tools and data mining for analyzing the logs cannot really be

considered as an effective scheme for verifying a syslog entry for forensic evidence due

to the large number of false positives and false negatives data mining techniques are

typically known to generate.

The technique Snodgrass et al. [17] present for securing audit logs incorporates a

database management system to store logs, a cryptographically strong one-way hash

function to secure them, and a “validator” to judge if tampering has occurred. However,

this method does not focus on making logs viable forensically. Although this method

11

provides a means for securing audit logs, it does not provide for validating the

authenticity of the source, of the transaction, or of the user that generated a particular

audit log. The opportunistic hashing technique used in their research is primarily a

database centric technique applicable to securing transaction records [17]. A single attack

on the database storing these records will result in the loss of every audit log. Given that

syslogs contain the greatest amount of data relevant to an attack, it will be a primary

interest for manipulation by an attacker.

2.4 Weaknesses of the Syslog Protocol

The weakness of the syslog protocol [3] lies in the fact that it uses the user datagram

protocol (UDP), a connectionless and unreliable protocol, stores system event

information in plain text format, and transmits system event data across the network in

plain text format. With regard to the three components of security—authenticity,

confidentiality, and integrity—syslogs can be manipulated by a malicious insider or an

outside attacker by exploiting these inherent weaknesses. Thus, all three components

expected of security can be violated.

2.4.1 Compromising the Authenticity of Syslogs

Syslogs typically contain an immense amount of information about network and

system activities. The immense size of syslog files, which is a valuable repository of

evidential information, becomes a vulnerability. Syslog entries are stored independent of

each other; i.e., there is no systematic chaining of log entries in a syslog file. Log entries

are, in fact, independent of every other item in a particular log file.

Additionally, there is no relationship between the system and the facility that

generates a syslog entry. Further, no authentication mechanism exists by which syslog

12

entries can be validated and be claimed to have originated from one system and one

facility. By exploiting this, an attacker can send random and spurious entries to the syslog

file by spoofing source addresses, which could be either completely incorrect or spoofed

from a legal and authentic system. Tools such as netcat, crypt-cat, etc., can be used to

carry out this spoofing. In the event that several attackers carry out such planned flooding

in parallel, the impact would be sufficient to cause a denial of service attack against the

syslog server. Since syslogs seldom have a dedicated server, this kind of attack will also

bring down other applications that reside on the same server.

2.4.2 Compromising the Confidentiality of Syslogs

Syslogs are a lucrative source of evidence of electronic activities that happen in an

organization. In spite of this, as originally developed, syslog entries are still transmitted

in plain text and are even stored centrally in an unencrypted form. With the ease at which

open-source network tools are available off the Internet, a readily available tool such as

tcpdump can be used to sniff syslog entries being transmitted to a central logging

repository. By sniffing and analyzing these entries, an attacker, aside from attacking the

systems themselves, can determine precisely how to inject messages into the syslog file.

2.4.3 Compromising the Integrity of Syslogs

Syslogs that are stored on a central logging repository are accessible to only the root

user or the system administrator. An attack on the central repository and the procurement

of root access enables access to all the system logs. The logs are then open to one or more

of the following attacks—multiple entry deletion, malicious modification, abrupt

truncation, or complete deletion. Furthermore, UDP traffic can be sniffed, replayed, and

manipulated, thereby making syslog entries highly questionable. Attackers will often

13

delete entries related to their activity to avoid detection. Simultaneously, this prevents the

syslogs from being effective forensic tools for legal admissibility.

2.5 Forensic Requirements

Dixon [18] identified the primary characteristics that computer forensic evidence

entails. These include:

! Preservation

! Identification

! Extraction

! Documentation

! Data Interpretation

! Confidentiality

! Integrity

! Availability

These are discussed in detail below as well as how our proposed techniques more

fully fulfill the requirement. The goal of our research is to integrate more of these

requirements than has traditionally been done. For instance, while secure log files add a

level of identification, they are greatly lacking in terms of evidence identification,

preservation, and extraction. Our proposed technique attempts to fulfill these first three

requirements for forensic viability while maintaining the confidentiality and integrity

provided by recent research in secure log files.

 Bishop [19] specifies that any secure system needs to safeguard the following three

components: confidentiality, integrity, and availability. A compromise of any of these

14

components will render the system as insecure. A syslog is secure if it maintains its

confidentiality, integrity, and availability. In terms of forensics, data will generally not be

forensically viable if the system collecting and storing the data is not secure as a starting

point.

2.5.1 Preservation

In our technique, the use of user fingerprints, application fingerprints, and system

fingerprints validates all the entities involved in the generation of a single syslog

message. The authentication traces stored on each system provides sufficient information

to backtrack an event that might have occurred.

2.5.2 Identification

Authentication traces can be exemplified as local, simpler, copies of syslog files with

the difference that they contain fingerprints and timestamps. When an incident occurs and

syslogs have to be analyzed, the local copies of the authentication traces can serve as

additional evidence to back up the facts presented by the central system log entries.

2.5.3 Extraction

The authentication traces that belong to a particular system must be stored in an

encrypted format. Thus, only system administrators would have the privilege to decrypt

and read the locally stored authentication traces. This greatly limits attacks, as individuals

will not know what they are attempting to attack. For instance, attempting to inject events

is difficult without knowing the contents of the files. Similarly, access must be limited to

read-only to limit the potential for modification. In general, system log files should only

be appended to in order to limit their susceptibility to attack.

15

2.5.4 Documentation

The chain of custody after the acquisition of digital evidence ought to be documented

correctly.

2.5.5 Interpretation of the Data

Computer evidence is typically not in a human-understandable form. In order to elicit

appropriate responses from the jury, when digital evidence is very technical, an expert

witness is required to interpret these results in a court of law. The authentication traces in

our proposed method can be used as evidence to reinforce the prosecuted claims.

Computer forensics is a two-stage process that typically comprises:

The method presented in this paper tackles the first stage of this process.

2.5.6 Confidentiality

Confidentiality refers to the concealing of a resource or a system from entities that

“do not have the need to know” [19: 4]. The read access right for syslog files essentially

belongs to the system administrator who has root privileges. The administrator should not

be granted privileges to “write” to the syslog, regardless of whether it is stored locally or

centrally, because this would defeat the very concept of a syslog being a log of events as

they happen. This can be enforced through:

! Well-defined access control rights for system users

! Password files encrypted and not stored locally

! Encrypting syslogs

! Remote logging

! Modifying the location of the logging host in the syslog.conf file

16

2.5.7 Integrity

 With respect to a secure syslog, integrity refers to the trustworthiness of the data it

contains. It also refers to the integrity of the entities that generate the log entry, the

integrity of the medium that transmitted the entry, and the integrity of the system that

actually stores the data. The information presented by the syslog files should be accurate

and should be trustworthy enough to be used as evidence by a forensic expert or an

administrator. A syslog file that contains spoofed or tampered entries is not forensically

viable. Integrity mechanisms fall into two categories: prevention and detection.

Prevention mechanisms seek to maintain the integrity of the data by jamming any

unauthorized attempts to access data and modify it in unauthorized ways. A more

challenging task would be to prevent an authorized user from modifying the data in

unauthorized ways. Strict authentication mechanisms on the host and the server can help

enforce this kind of integrity check. More importantly, if remote logging is indeed being

used, ports on the logging server should be filtered appropriately.

Detection mechanisms on the other hand do not try in any way to prevent intrusions

into the system or in any way to safeguard the integrity of information stored on it.

Instead, detection mechanisms simply identify and log all accesses. Particular attention is

paid to identifying who made specific access, when the accesses occurred, and what was

done during the access.

Most contemporary systems today incorporate characteristics from both prevention

and detection. Essentially, the system uses access authentication to limit access but goes

under the assumption that no prevention technique is 100% accurate and thus also records

all accesses as per strict detection mechanisms.

17

2.5.8 Availability

Availability refers to the availability of syslog data when needed. If they have

adequate information on log transmission, attackers can launch a denial of service attack

with the goal of preventing the central repository from receiving event entries.

2.6 Syslog Variants

In our goal to develop new techniques for creating forensically viable syslog

facilities, we examined existing capabilities to identify what existing work we could draw

from and build upon, rather than doing the entire research from scratch. The two existing

systems dealing with secure syslog facilities that offer the greatest capability on which to

build are syslog-sign and syslog-auth. Other variants such as syslog_reliable [20] and

syslog_ng [21] do not provide any form of forensic credibility.

While many of the below mentioned capabilities provide improved validation and

authentication from a security perspective, these improvements are insufficient for

forensic validity, i.e., for legal admissibility. These existing capabilities are not sound

enough to prove beyond a reasonable doubt that an attack occurred and the characteristics

of that attack. Extending current capabilities to this level is the goal of our research.

2.6.1 Syslog-Sign

This protocol defines three types of messages: normal messages, signature blocks,

and certificate blocks. It typically transmits to the central repository a signature block

after a certain number of syslog message packets have been transmitted [22].

The limitations of this system include the ability for an attacker to flood the syslog

server with plausible-looking messages, signature blocks, and certificate blocks [23].

Since the number of messages after which a signature block is generated is fixed, a wily

18

attacker can eliminate the very presence of these signature blocks. This protocol warrants

the online construction of hash tables, which increases overhead costs.

2.6.2 Syslog-Auth

This version of syslog uses a shared-key principle. It works on the basis that the

syslog packets are encrypted at every hop using the keys of the previous sender and the

current recipient. The auth block comprises several blocks. Each syslog packet is parsed

from the beginning to the end of a block. This protocol is more suited for an online

analysis and, hence, is better than Syslog-sign [23].

The limitation of syslog-auth is a result of the fact that the key management is a

challenge since every device and relay has its own key. Further, the routing of messages

through different relays further complicates key management. Since an attacker knows

that the auth block is appended to a syslog message, the attacker can rip off the block

entirely, thereby destroying the authentication mechanism that the syslog-auth actually

provides. Finally, this protocol does not provide for origin authentication or validation.

19

CHAPTER 3

THE PROPOSED METHOD

3.1 Overview of the Proposed Method

Figure 3.1 shows an overview of the system proposed in this paper. Currently, in

order for syslogs to be worthy of being considered as evidence in forensics, what is

needed is an authentication mechanism that reinforces and authenticates what the system

log file presents. The entities involved are the user, the application, the system, the client

syslog daemon, the authentication module, and the syslog server. The client syslog

daemon and the syslog server are not shown explicitly in this overview diagram.

In our proposed protocol, there are two servers, an authentication server and a logging

server. The authentication server records every authentication that occurs and maintains

their timestamps. Since this server needs to act as a form of backup in the event that

Figure 3-1. View 1 of overview of the proposed method.

Stores authentication traces for eac h
authentication communication that User System happens between itself and the Authentication ModuleUser Application authentication module

User Authentication

Challenge-response authentication before
user, system, and application activity

Messages to alert termination of the

Syslogging activity from the
system to the server.

applicationor logging off the user or
system shut down

20

system logs on the logging server are tampered with or additional evidence is needed to

verify a claim, it will have a minimum number of processes running, limited accessibility,

and constrained resource availability. Further, this server can decipher the entries in the

individual prints and verify the authenticity of a fingerprint. The logging server stores

actual log entries and is the main storage system for these log entries.

In addition to the background processes of syslog generation and authentication trace

generation, which are umbrella processes that exist throughout a session, the proposed

approach comprises three main active steps.

User authentication: This is based on desired login authentication procedures and is

geared toward ensuring that only authorized users access the system. The user is

authenticated by the server.

Challenge response before the user, system, and application become active: This

step encapsulates and comprises the generation of user fingerprints, application

fingerprints, and system fingerprints. Furthermore, in order to cement and secure the

transmission of these fingerprints and the authentication traces, which are generated by

individual systems, several challenge response steps have been incorporated.

Messages log the termination of the application, logging off of the user, and the

shutting off the system: This is an authentication mechanism primarily focused on

ensuring that the same entity that has been granted login privileges has logged in and is

the entity sending event messages. However, with regard to computer forensics, a

mechanism to verify the termination of an authorized entity is also needed. This step

details a secure and logged termination of the entities involved in the generation of a

syslog entry.

21

3.2 The Proposed Method

Our proposed protocol, exemplified in Figure 3.2, proceeds through the following six

phases:

1. User authentication

2. System connection establishment

3. System connection establishment response

4. Application event entry generation

5. Applications termination

6. System connection termination

3.2.1 Phase 1: User Authentication

This step uses the basic credentials that a user needs to log onto the system—their

user name and password. The authentication module verifies the authentication pair and

sends back an acknowledgment.

System Log Challenge-Response Authentication

System User
User's
System

Server
Authentication

Module

Server
Syslog
Server

Syslog Activity on the Server

Client
Syslog

Daemon

Application

1.A Username and Password

4.A Launch Application

1.B Syslog()

1.C OK

2. {Systemprint, Userprint,RandomNumber}

3. {Systemprint, Userprint, RandomNumber-1, NONCE}KSystem

4.B {Userprint, App_print}NONCE

5. {TerminateMessage, App_print, Systemprint}NONCE .

6. {TerminateMEsage, Userprint, Systemprint}

Authentication Trace Generated and Stored
After Each Message

Authentication Traces on
the Server

Figure 3-2. View two of overview of the proposed method.

22

3.2.2 Phase 2: System Connection Establishment

{systemprint, userprint, randomNumber}KSystem

The systemprints and userprints are used to establish the fact that a particular system

has logged onto the network and is being used by a specified user. The randomNumber is

used to emphasize the one-time nature of the communication. A validation mechanism is

in place on the server to verify randomNumbers and catch suspicious duplications of the

random numbers, if any, i.e., the random numbers should not be reused. The

authentication server would notice that that the particular random number has been used

already and more importantly, it has replied to the message.

Since, by definition, we cannot guarantee the uniqueness of random numbers, they

are not used in isolation. Even if the random numbers are repeated, the authentication

streams (here, digital fingerprints) that they are used to create will still be unique. This is

because the fingerprints, as previously stated, are a function of several parameters and a

random number is just one of them. More importantly, even if random numbers happen to

be repeated, the streams that they are a part of, namely, the fingerprints and the challenge

response, will be unique.

3.2.3 Phase 3: System Connection Establishment Response

{systemprint, userprint, randomNumber-1, NONCE}KSystem

This message is sent in reply to the connection establishment message sent by the

client. The use of the nonce here signifies the one-time nature of the communication. If

an intruder sniffed this message and tried to replay it, the replayed message would have

no consequence on the network, and would in fact identify the presence of the intruder.

23

The randomNumber is the same as the one sent initially by the client. The nonce

functions as a kind of a one-time key to be used by the users.

3.2.4 Phase 4: Application Event Entry Generation

{userprint, app_print} NONCE

The nonce is used to prevent any form of man-in-the-middle attack. The key used is

the nonce transmitted by the server in the previous communication. The one time nature

of the nonce prevents an attacker from launching a man-in-the-middle attack since the

key is generated for each system uniquely and is meant to be of a one-time nature.

3.2.5 Phase 5: Applications Termination

{terminatemessage, app_print, system_print}NONCE

This message logs the actual termination of an application. In order to be able to

validate information forensically that can be used as evidence, it is necessary to be able to

validate the time at which an application has been terminated. Events received after

application termination would be indicative of an intruder or compromise.

3.2.6 Phase 6: System Connection Termination

{terminatemessage, user_print, system_print}NONCE

This message is sent by the client system when either the system shuts down or the

user logs off. This again aids in validating event entries and limits the ability of an

intruder to compromise the log reporting facility.

24

CHAPTER 4

FIINGERPRINTS AND AUTHENTICATION TRACES

In physical forensics, fingerprints are one of the key factors that reveal evidence

about the perpetrator or identify key entities (people or objects) involved in a crime.

Creating digital versions of fingerprints of every entity involved in the generation of a

syslog entry promotes and emphasizes the need to make every entity responsible for

ensuring its forensic viability.

4.1 User Fingerprints

User fingerprints tightly bind the user and the system used. The user print can be

considered as simulating a real life fingerprint. When a fingerprint is considered in the

real world, factors such as location and time are also taken into account before arriving at

conclusions. Thus, for the cyber version of user fingerprints, similar types of information

must be included, i.e., user identifying characteristics, time, and system identifying

characteristics. This ties a specific user to a particular system at a specific time. More

specifically, we propose using the following to create a user fingerprint:

! Username and password

! System MAC address

! Login time

Clearly, much of this information could be individually compromised or improved

upon. However, the compromise of these individual components should be identifiable.

Additionally, should the resources be available, more secure paradigms can be used. For

25

instance, the Air Force requires use of physical access cards to log into any computer

system that would provide greater integrity than usernames and passwords alone.

Attempts to compromise the individual components would fall back onto typical

computer security paradigms. For instance, the server should identify the fact that the

time used by the client system is unacceptably out of scope with the server’s time. A

compromise of the system MAC address would be identifiable through duplicate MAC

addresses, the change in router paths to the MAC address, or detection of an invalid mac

address.

4.2 Application Fingerprints

 Application fingerprints are similar to user fingerprints. The application

fingerprint will be generated for every application that is launched on a system. Their

primary role is to identify and distinguish between legal applications and illegal ones

launched by specific users on a system. As with user fingerprints, the goal is to provide as

much identifying information as possible. In this case, we are attempting to validate what

application is being run, by whom, when, and from where. Thus, application fingerprints

would use the following pieces of information:

! Launch time

! Username

! System mac address

! Application identifier

In a large system, every application on the system would have a different application

identifier. In our current view of the model, application identifiers are generated on the

fly, and the identifiers that are generated for each application are documented. As with

26

system connection establishment, the randomly generated application identifiers are not

used in isolation due to the lack of guaranteed uniqueness of the identifiers. Further,

when application IDs are logged in authentication traces, they have the application name

logged with them as well to aid in differentiation.

4.3 System Fingerprints

System fingerprints are often used by operating systems manufacturers to register the

system on which the operating system was installed and ensure it is not transferred to a

new system in violation of the operating system license. The concept of system

fingerprints essentially relies on the fact that once deployed most systems rarely have

their configuration change, especially in business environments. For home users, while

some sophisticated users upgrade individual components of their system, the majority of

home users will not. Many different characteristics can be used to identify a system

uniquely. Some possibilities include:

! The number of processors

! Disk space

! System mac address

! CPU ID

! Installed applications

! Disk drive identifier, serial number

We have actually found that each individual hard drive has a unique serial number

that is installed in the hard drive bios that is generally read only and is accessible using

free programs available on the net [24]. This identifier should prove to be particularly

effective as a system fingerprint.

27

4.4 Fingerprint Generation

User fingerprints, application fingerprints, and system fingerprints are generated

using the RS hashing algorithm, which is known to have low collision rate. The RS

algorithm, which is a general-purpose hashing algorithm developed by Robert Sedgwick

[25] is used to generate hashes, i.e., fingerprints.

Sedgwick’s hashing algorithm is a rotative hashing algorithm that uses rotative

hashing. In rotative hash functions, unlike its counterpart, the values are bit-shifted.

Sometimes combinations of both right and left bit shifts are used. For increased security,

bit shifts are sometimes prime numbers. The intermediate value that is yielded at each

step is added to an aggregative value. The result that is yielded is the value of the final

aggregation. An example:

)()(1 qtpthashhash ""#$$%& '

4.4.1 User Fingerprint Generation

For the user fingerprint, the key is a concatenation of the username, the time of user

log in, and the user ID that was generated when s/he logged in. Keys in a hash function

are required to be unique so as to avoid collisions and enable faster look up. The keys

here are concatenation of three parameters that will most certainly be unique across

logins in an organization.

The algorithm is coded as shown in Figure 4-1. However, different keys are used for

the user, application, and the system fingerprints.

28

4.4.2 System Fingerprint

The system fingerprint is generated in the same way. We have found that the hard

disk serial ID that is hardcoded by a manufacturer is the only unique parameter than can

actually distinguish one system from another. The hard drive serial IDs, which are

assigned to every partition on the hard drive, were another parameter that was considered.

However, these IDs can be changed when the disk is reformatted. Another parameter that

was considered was the CPU ID. A run of an application on laboratory systems revealed

that all CPU IDs that belong to computers ordered in bulk are the same. The MAC

address was not considered as a potential parameter due to the ease by which a person

with reasonable computer knowledge can change and even spoof a MAC address. The

key used in this case is the hard disk serial ID. This was identified and verified to be

for(int keyLength=0;keyLength<fingerPrintKey.length();keyLength++){

 long intermediateUserChar = (long) fingerPrintKey.charAt(keyLength);

 fingerPrintH = (fingerPrintH << 4) + intermediateUserChar;

 fingerPrintG = fingerPrintH & 0xF0000000L;

 if (fingerPrintG != 0)

 fingerPrintH ^= fingerPrintG >>> 24;

 fingerPrintH &= ~fingerPrintG;

}

return (long)(fingerPrintH);

This user print yields! 155990563

Figure 4-1. User fingerprint generation.

29

unique. Therefore, the hard disk serial ID and the system bootup time are together used as

a key for generating the system fingerprint. The system print is generated as shown in

Figure 4-2.

4.4.3 Application Fingerprint

The application fingerprint is necessary in order to validate applications. Here, a

concatenation of the username, application ID, and the applicationTimeStamp is used as

the key in the fingerprint generation (see Figure 4-3).

The extent of this implementation is the generation of the authentication traces,

digital fingerprints, and the simulated syslog entries. The implementation was carried out

with the aim of deriving a prototype of the proposed method. The challenge response

mechanism was incorporated as part of the remaining implementation.

systemFingerPrint(){
 String HDDSerialNumber= "97LET9BET";
 String systemFingerPrintKey=
HDDSerialNumber.concat(systemBootupTime);

 for(int keyLength=0;
keyLength<systemFingerPrintKey.length();keyLength++){
 long systemIntermediateChar=(long)
systemFingerPrintKey.charAt(keyLength);
 systemPrintH = (systemPrintH << 4) + systemIntermediateChar;

 systemPrintG = systemPrintH & 0xF0000000L;
 if (systemPrintG != 0)
 systemPrintH ^= systemPrintG >>> 24;
 systemPrintH &= ~systemPrintG;
 }
return (long)(systemPrintH);
}

An example of a system fingerprint yielded by this method ! 161044579

30

Figure 4-2. System fingerprint generation.

applicationFingerPrint(String applicationName, long applicationID, String
appLaunchTimestamp) {

 for(int
keyLength=0;keyLength<applicationFingerPrintKey.length();keyLength++){
 long appIntermediateChar = (long)
applicationFingerPrintKey.charAt(keyLength);
 appPrintH = (appPrintH << 4) + appIntermediateChar;
 appPrintG = appPrintH & 0xF0000000L;
 if (appPrintG != 0)
 appPrintH ^= appPrintG >>> 24;
 appPrintH &= ~appPrintG;
 }
 return (long)(appPrintH);}

An example of an application print yielded by this method!76274804

Figure 4-3. Application fingerprint generation.

4.5 Authentication Traces

An authentication trace is an entry that is generated on every system on the network

and records the generation of system, user, and application fingerprints along with the

associated timestamps. Authentication traces on each system can be viewed only by

administrators. The traces are typically a message along with the prints and the timestamp

of the event.

The RS algorithm, which is a general-purpose hashing algorithm developed by Robert

Sedgwick [25] is used to generate hashes, i.e., fingerprints. A test carried out [26] shows

that the RS algorithm had very few collisions when tested on a huge string data set.

Examples of valid and invalid authentication traces are shown in Figure 4.4.

4.6 NONCES

31

A nonce is a number that is used only once. It is typically used in protocols that aim

to ensure secure communication and prevent any form of man-in-the middle attacks. The

transmission of the userprint and the app_print needs to be secure. For this reason, the

server generates a nonce that is meant to be used only for one transmission of the

systemprint and userprint. This prevents a replay attack. Moreover, even if an intruder

sniffed it, it would be of no consequence to the network.

For every event that occurs on the system on the network, the syslog daemon creates

syslog entries. The result acquisition in this research aims to be able to map back to the

true user, system, and application that caused the corresponding syslog entry by using

the associated authentication traces and fingerprints.

steena logged in at 2007-12-30 06:46:14 with user ID 3488469706175790508 with
user finger print 88726020 The system print is 94173252

C:\Program Files\Internet Explorer\IEXPLORE.exe launched at 2007-12-30

32

06:47:26 with ID 4384844220178160764 with fingerprint 223266966

C:\Program Files\Internet Explorer\IEXPLORE.exe terminated at2007-12-30
06:51:13 with ID 4384844220178160764 with fingerprint 223266966

(a)

Incorrect login with username: ghost occurred at2007-12-28 23:01:16 with
userID 2221344687639655740with userprint 238806054

(b)

Figure 4-4. Example authentication traces. (a) A valid authentication trace. More
specifically, the authentication trace of a user named “steena” logging in and launching
Internet Explorer. (b) The authentication trace of an invalid login.

33

CHAPTER 5

ATTACK BACKTRACKING

5.1 Backtracking to an Attack

Syslog entries typically comprise the following parameters—hostname, facility,

priority, message, and timestamp. This implementation simulated a syslog logging

facility. The purpose of this was to compare an authentication trace and be able to get to

the fingerprint from the syslog. After an attack occurs, parameters from the syslog can be

used to obtain the corresponding entry contained in the authentication trace. An important

point to be noted is that time is a crucial factor in the generation of an authentication trace

and the corresponding syslog entry. The user, application, and system are the facilities

considered in this implementation of syslogs. Their priorities are hardcoded here since

this implementation mainly serves as an example and validation of how authentication

traces, and syslog entries can be used in tandem to trace back and form evidence. The

research in [27] suggests that authentication traces can be used to backtrack to an attack.

The authors of [28] show this can be actually carried out. This is because every parameter

that is considered in the generation of a fingerprint can be essentially obtained from the

corresponding syslog entry in the log file. Therefore, the authors demonstrate the way in

which attacks detected in the syslog entry can be backtracked using a combination of the

authentication traces, the syslog file, and the hash function (here, the RS algorithm).

The following authentication trace shows a login by user “steena” and the

corresponding syslog entry.

34

\

steena logged in at 2008-02-06 12:49:33 with user

ID 7524389880967786033 with user finger print

 155990563 the system print is161044579

C:\Program Files\Internet Explorer\IEXPLORE.exe

launched at 2008-02-06 12:49:41 with ID

 1524843500148472672 with fingerprint 88504721

The corresponding syslog entries with format host name, facility, priority, message, and

timestamp.

localhost 4 10 steena has logged in at 2008-02-

06 12:49:33

localhost 6 12 C:\Program Files\Internet

Explorer\IEXPLORE.exe launched at 2008-02-06

12:49:41

Repeated bad logins at a particular system will yield corresponding authentication

traces and syslog entries. However, the occurrence of repeated bad logins will be logged

by the authentication traces and not by the system logs, unless they are configured to do

so.

35

Incorrect login with username: steena occurred

at2008-02-07 04:50:02 with userID

 56032638045929763with userprint 188996098

 Incorrect login with username: steena occurred

at2008-02-07 04:50:28 with userID

 8936243886107892818with userprint 188996200

 Incorrect login with username: steena occurred

at2008-02-07 04:50:43 with userID

2404564924573438423 with userprint 188996163

An attack by a malicious insider causes the username, which is already known, to be

exploited. In this simple emulation of system logs, we have explicitly logged a bad login

instead of a series of repeated logins by a valid user.

5.2 Reconstructing Fingerprints

The user fingerprint comprises the username, the user ID, and the time of login.

These values can be obtained from the syslog entry. A hash of these parameters using the

RS function yields the corresponding fingerprint. The absence of authentication traces

only reveals the persistent login by user “steena.” A closer examination of the system

logs and its corresponding authentication trace can even possibly reveal the identity of

the person behind the attack. A small script to check and match users who have already

36

logged in and their log in times can possibly reveal this. A more complex implementation

aims to assign appropriate priorities and facility numbers to every entity involved in the

system.

An important point to be noted while logging events to a central repository is that the

local system time for each individual system should be used instead of the server time.

This is because authentication traces are generated and are representative of activity by

entities on those individual systems. The use of server time would lead to

misinterpretation of events on those systems. This was noted during the current

implementation when entries were being logged successfully but had a clear disparity

with regard to timestamps in their corresponding authentication trace entries.

37

CHAPTER 6

FORENSIC VIABILITY

6.1 Requirements of Forensic Evidence

Previous research has dealt with using digital evidence in a court of law as

documented in [29]. Forensically viable log files as defined in [30] requires that log files

be created and stored by keeping legal investigation procedures in mind. The three factors

to be considered when dealing with log files as evidence as suggested in [30] are:

1. Logs must be protected against losses. In the proposed method, the use of

fingerprints as well as the generation and secure storage of syslogs ensures the

integrity of the syslogs. This is done through a second source of evidence—

the authentication traces.

2. Evidence must be found within log files. The authentication traces document

the authenticity and validity of every entity and activity involved in the

generation of a syslog entry through explicit messages and fingerprints.

3. Log file information should be documented for additional judicial scrutiny

[30]. The explicit authentication traces serve as backup/reinforcing evidence

for syslog entries. These traces contain copious amounts of validating and

authenticating information in a succinct form.

6.2 Evidence Certainty Levels

The research in [29] assigns predefined levels of certainty to digital evidence

collected from affected systems with C0 having the least certainty and C6 the highest

certainty.

38

 Digital evidence needs to have a degree of certainty attached to it in order to make it

credible, and thus for it to be legally admissible or accepted by a jury. A mapping of

these levels of certainty to syslog files is presented in Table 6-1.

Table 6-1. Mapping the Certainty Levels Defined in [2] to Syslog Files.

Level
Level
Confidence Relationship to Syslogs

C0
Erroneous/
Incorrect

Programmatic errors while coding the
syslog/sylslogd protocol [3]. An attack occurs by
exploiting this vulnerability.

C1
Highly
Uncertain

A patchy syslog file with manipulated entries.

C2
Somewhat
Uncertain

In the event of an attack, the only evidence that is
available is the organizational syslog file.
Distributed evidence preservation—proposed in this
paper—has not been attempted.

C3 Possible
Syslog variants, namely, Syslog-sign and Syslog-
Auth, have this level of certainty.

C4 Probable
Syslogs and authentication traces that are stored and
transmitted in plain text can be classified to have this
level of certainty.

C5
Almost
Certain

This level of certainty specifies evidence to be
tamperproof and asserts a match between
independent sources of evidence, which in this case
are the authentication traces and syslogs. The
evidence at this level, however, can be erroneous due
to temporal loss or data loss. The currently proposed
method belongs to this level of certainty.

C6 Certain

If authentication traces were validated at every
system that they were generated on and more
importantly, at intermediate stages in the routing to
the syslog server, syslog evidence would then have
this level of certainty.

39

According to Table 6-1, the evidence presented by the syslogs, which was collected

and generated by our approach, falls into the C5 level, given the authentication and

validation capabilities integrated into the model. On the other hand, typical syslog

capabilities and even secure syslog facilities achieve a much lower ranking. The log files

generated by this method can be termed as forensically viable as defined by research in

[30].

6.3 Use of Authentication Traces and

Syslogs Under Certain Scenarios

Authentication traces and syslogs can be used in other circumstances other than

backtracking an attack, which of course, is its primary aim. The three scenarios below

exemplify some of these characteristics. For these scenarios, consider the fictitious entity

SecurityVille. SecurityVille is an organization in which every user has a dedicated

system and a login username and password. Andy is the administrator; Fred is the

forensic analyst; Steve is the malicious insider, who is also an employee; William is a

wily external attacker; and Arby is another employee. Authentication traces are

maintained on every system and on the server. Syslogs are maintained only on the server.

6.3.1 Scenario One: Syslog File Deletion

The SecurityVille network has been taken offline due to an attack by William.

Knowing the immense repository of information that syslogs contain, Fred begins

searching for the syslog file on the server. However, William, knowing this too, has

deleted it.

 The authentication traces serve as complimentary evidence. Although the

fingerprints are indecipherable at a glance, a further inspection of the authentication

40

traces can yield an almost complete reconstruction of the syslog file, thereby showing the

origin of the attack, its modus operandi, and to a limited extent the severity of the attack.

6.3.2 Scenario Two: Spurious Entry Injection into the Syslog File

During a fortnightly inspection of the syslog file, Andy notices that certain entries

appear to be invalid, i.e., not matching the authentication traces. Clearly, someone has

managed to alter the syslog file on the server. The corporate network logs, router logs,

and switch logs do not reveal any suspicious activity. As it happens, the attack originated

from an internal source: Steve has managed to gain access to the server and injected

spurious entries into the syslog.

An inspection of his authentication trace reveals that he has managed to install a

rogue application on his system. His traces reveal the name of an unknown application.

6.3.3 Scenario Three: Application Updates

FortyTwo, which is an accounting software used by the employees, is scheduled to

undergo updates every two weeks.

In the method proposed here, before an application launches, it needs to go through

the challenge response mechanism. The application fingerprint is then calculated on the

fly. When the application has been updated and has to restart, its print is recalculated and

the restart is treated as the launch of a new application. Since application IDs are assigned

on the fly and are documented, the automatic updates would not affect the generation of

the application prints and their transmission. Currently, the authentication trace

generation has no mechanism to determine if an update has occurred or if the user has

merely chosen to close and launch the application again. However, a close examination

of the traces across systems and the system logs would reveal this update if a pattern of

41

restarting an application is seen across multiple systems. Further, since the application

name is listed in the authentication trace, this pattern will be readily found. An

application update occurring while the application is not running would not lead to any

suspicious traces, the desired result.

42

CHAPTER 7

PROTOCOL RESILIENCE

7.1 Attacks Against the Challenge Response System

We have previously discussed some of the weaknesses of the syslog protocol and

the ineffectiveness of secure syslog facilities for use when forensic viability is required.

Here, we discuss the specific capabilities of our proposed model and the resilience

these capabilities provide against typical attacks that are not handled by typical syslog

facilities.

7.1.1. Phase 2: System Connection Establishment

An intruder can easily sniff this phase’s message. However, the intruder cannot replay

it because the intruder would need to authenticate to the particular system from which the

intruder wishes to launch the attack. It is only after a user is authenticated and a user

fingerprint generated that this communication can be initiated. The user fingerprint

contains parameters known only to that user which limits the potential for compromise.

7.1.2 Phase 3: System Connection Establishment Response

Even if the message associated with this phase is sniffed, it is unreadable since it is

encrypted and can only be decrypted by obtaining the private key from the system.

Moreover, this is a response message, replaying it would not cause a successful attack

since it would require the previous authentication and connection establishment steps to

be completed successfully.

43

7.1.3 Phase 4: Application Event Entry Generation

The nonce used to encrypt this message is generated by the server and is sent to the

system via an encrypted transmission. Even if the intruder replays this message, it will be

detected as a replay attempt due to the presence of the already-used nonce.

7.1.4 Phase 5: Applications Termination

At this stage, a sniffing attack will fail because of the encryption using the KSystem.

More importantly, Nonce2 is generated only when the previous challenge communication

is met.

7.1.5 Phase 6: System Connection Termination

Man-in-the-middle attacks fail since all the entries will be encrypted using Nonce2. If

an intruder needs to determine the entries and the prints, the intruder will need to sniff out

Nonce2, which is sent via an encrypted communication.

7.2 Attacks Against the Syslog File

The truncation of syslogs is currently a major issue. However, here the authentication

server maintains logs of every authentication and challenge response that has occurred.

Truncation in this case succeeds only in deleting the explicit entries generated by the

systems on the network. The attacker would not be able to delete the trace in the form of

authentication server logs that point to the entities and the authentication mechanisms

involved in the generation of those entries. For example, deleting a chunk of successive

entries from the logging server does not eliminate the fact that a certain event had

occurred since the logs on the authentication server still have evidence of every

communication that has occurred.

44

7.3 Denial of Service

This type of attack floods the server and consumes available resources in an attempt

to disrupt logging activity. More importantly, if authentication and logging are not

separated, this attack has a better chance of being successful. In our proposed model,

proper syslog entries (those that report actual events on a system) are not generated until

a proper authentication is accomplished. Therefore, neither the syslog server nor the

authentication server allocate resources or even log any entries before a proper challenge-

response authentication can succeed. This protocol is therefore resilient against the denial

of service and flooding attacks—two very frequent attacks.

7.4 Abusing Privileges

A trusted user can abuse existing privileges and bypass protection mechanisms to

gain unauthorized access to the logging server and to the log entries themselves. In our

approach, every user on the network is required to authenticate to the server using an

authentication mechanism followed by a series of challenge response authentication. This

authentication mechanism does not permit any kind of unauthorized write attacks. The

write attack is eliminated on account of the user prints, application prints, and system

prints associated with every entry. Additionally, the server is designed to be appended to

only; any other modifications to the log file, insertions, deletions, etc. are considered

attacks.

7.5 Application Updates

In the method proposed here, before the application launches, it needs to go through

the challenge response mechanism. The application fingerprint is then calculated on the

fly. When the application has been updated and has to restart, its print is recalculated, and

45

the restart is treated as the launch of a new application. Since application IDs are assigned

on the fly and are documented, the automatic updates do not affect the generation of the

application prints and their transmission. Currently, the authentication trace generation

has no mechanism to determine if an update has occurred or if the user has merely chosen

to close and launch the application again. However, a close examination of the traces

across systems and the system logs would reveal this update if a pattern of restarting an

application is seen across multiple systems. Further, since the application name is listed

in the authentication trace, this pattern is readily found. An application update occurring

while the application is not running would not lead to any suspicious traces, the desired

result.

46

CHAPTER 8

 CONCLUSION

8.1 Current Scenario

The proposed method provides a mechanism to authenticate and validate syslogs.

Although syslogs have been researched extensively from the security perspective, they

have not received sufficient attention from the forensics point of view particularly for

ensuring legal admissibility. The fingerprints assigned to every entity involved in system

log generation enables the validation of these entities. More importantly, since digital

evidence is treated in the same way as documentary evidence [31], a means to

authenticate and verify its authenticity is needed. The proposed method provides

resilience against common attacks launched against syslogs—system log truncation and

man-in-the-middle attacks, which are currently of the most significant problems,

associated with using system logs as evidence in court. For instance, the credibility of

system log files as evidence can easily be attacked in court and invalidated.

With the proposed method, suspicious activity by a malicious insider can be traced

back to him/her. His/her system identity can then be forensically verified by hashing the

values available in the syslog file and the authentication traces, using the RS algorithm,

and matching them with the prints in the authentication traces. This mechanism is limited

to tracing back to insiders only. The ability to trace back to an outside attacker is beyond

the scope of our proposed method, though the internal compromised identity would be

identified.

An important aspect to be noted is that the proposed method clearly satisfies the

following authentication requirements of electronic evidence documented by the

47

Computer Crime and Intellectual Property Section, Criminal Division, United States

Department of Justice [5]:

1. Verification of the authenticity and prevention of the alteration of computer

records

This is achieved through the use of the authentication traces and the

challenge response mechanism.

2. Establishment of the reliability of computer programs.

This is achieved through the use of application fingerprints.

3. Identification of the author of computer-stored records

This is achieved through the use of user fingerprints.

8.2 Future Work

An extended implementation of this method should enlarge the prototype developed

in this research to for a wider implementation that uses the actual syslog daemon and a

central logging repository. In addition, the development of a sophisticated authentication

module would help realize several security features and satisfy several requirements,

which has been proposed in the above sections.

With forensic trace back as the prime focus of this method, the important feature that

should be focused on is that of successful attack backtracks. The accuracy of each attack

backtrack needs to be measured and tracked. This metric is of paramount importance due

to the sensitive nature of forensic evidence and the fact that this evidence can be used as

crucial evidence to incriminate the culprit.

In addition, the resilience of this method against the various attacks listed in Chapter

7 should be tested. The strength of the communication between the individual systems on

48

the network and the servers lies in the security of the challenge response mechanism

proposed. The list of attacks mentioned in Chapter 7 is not exhaustive and should be built

upon as work on this method progresses.

49

REFERENCES

[1] Forensics International. Computer evidence processing good documentation is
essential. 2008. http://www.forensics-intl.com/art10.html April 2008.

[2] Lonvick, C. RFC 3164-The BSD syslog protocol. Cisco Systems, August 2001.

[3] Nawyn, K. E. A security analysis of system event logging with syslog. SANS

Institute, 2003.

[4] LogAnalysis.org. 2006. http://www.loganalysis.org/sections/parsing/generic-log-

parsers/. April 2008.

[5] Cybercrime.gov. Searching and Seizing Computers and Obtaining Electronic

Evidence in Criminal Investigations. 2002.

[6] http://www.cybercrime.gov/s&smanual2002.htm April 2008.

[7] Volovino, L. Electronic evidence and computer forensics. Commun. Assoc. for

Information Systems 12 (2003), 457-468.

[8] Peisert, S. Forensics for network administrators. USENIX (2005), 34–42.

[9] Aryapetov, D., Ganapathi, A., and Leung, L. Improving the protection of logging

systems. Technical Report, UC Berkeley, 2002.

[10] Schneier, B. and Kelsey, J. Secure audit logs to support computer forensics. ACM

Trans. on Information and System Security 2, 2 (1999), 159 - 176.

[11] B. Waters, Balfanz, D., Durfee, G., and Smetters, D.K. Building an encrypted and

searchable audit log. In 11th Annual Symposium on Network and Distributed
System Security, 2004.

[12] Needham, R. and Schroeder, M. Using encryption for authentication in large

networks of Computers, Commun. of the ACM 21, 12 (1978), 993-999.

[13] Kawaguchi, N., Ueda, S., Obata, N., Miyaji, R., Kaneko, S., Shigeno, H., and

Okada, K. A secure logging scheme for forensic computing. In Proceedings of the
IEEE Workshop on Information Assurance, 2004.

[14] Pellegrin, F. and Pellegrin C. Secure logging over a network. Linux Journal 74es,

10 (2000).

http://www.loganalysis.org/sections/parsing/generic-log-parsers/
http://www.loganalysis.org/sections/parsing/generic-log-parsers/

50

[15] NCSA, University of Illinois Urbana Champaign. Commands Reference, Volume 5.
SyslogdDaemon. http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/
IBMp690/IBM/usr/share/man/info/en_US/a_doc_lib/cmds/aixcmds5/syslogd.htm
November 2008.

[16] Hall, N. Creating a secure linux logging system. SANS Institute, 2004.

[17] Jiqiang, L., Zhen, H., and Zengwei, L. Secure audit logs server to secure logs to

support computer forensics in criminal investigations. In Proceedings of the 2002
IEEE Region 10 Conference on Computers, Communications, Control and Power
Engineering, October 2002.

[18] Snodgrass, R.T., Yao, S.S., and Collberg, C. Tamper detection in audit logs. In

Proceedings of the International Conference on Very Large Databases, 2004, pp.
504 - 515.

[19] Dixon, P.D. An overview of computer forensics. IEEE Potentials 24, 5 (Dec. 2005),

7-10.

[20] Bishop, M. Introduction to Computer Security. Pearson Education, 2004.

[21] IETF Tools. Reliable Delivery for syslog draft-ietf-syslog-reliable-12.txt. 2001.

http://tools.ietf.org/html/draft-ietf-syslog-reliable-12l. November 2008.

[22] Balabit.com. Syslog-ng logging system. 2008. www.balabit.com/network-

security/syslog-ng/. November 2008.

[23] Kelsey, J. M. Syslog-sign and syslog-auth. In Proceedings of the 49th Internet

Engineering Task Force, 2000.

[24] Employees.org. Syslog-Sign Protocol draft-ietf-syslog-sign-12.txt. 2003.

http://www.employees.org/~lonvick/draft-ietf-syslog-sign-12.html. November
2008.

[25] Download Junction. Get/read Hard Disk Serial Number. 2008

http://www.downloadjunction.com/product/software/116855/index.html. November
2008.

[26] Sedgwick, R. ALGORITHMS, 2nd ed. Addison-Wesley, 1988.

[27] Serge Vakulenko. Hash function efficiency. 2008.

http://www.vak.ru/doku.php/proj/hash/efficiency-en#test_1 November 2008.

[28] Monteiro, S. D.S. and Erbacher, R.F. An authentication and validation mechanism

for analyzing syslogs forensically. ACM SIGOPS Operating Systems Review 42, 3
(2008), 41-50.

file://localhost/Users/Digisttu/Downloads/test_1
http://www.employees.org/~lonvick/draft-ietf-syslog-sign-12.html
http://www.employees.org/~lonvick/draft-ietf-syslog-sign-12.html
http://www.balabit.com/network-security/syslog-ng/
http://www.balabit.com/network-security/syslog-ng/
http://www.employees.org/~lonvick/draft-ietf-syslog-sign-12.html
http://www.downloadjunction.com/product/software/116855/index.html

51

[29] Monteiro, S.D.S. and Erbacher, R.F. Exemplifying attack identification and analysis

in a novel forensically viable syslog model. In Proceedings of the 3rd IEEE
International Workshop on Systematic Approaches to Digital Forensic
Engineering, 2008, 57-68.

[30] Casey, E. Error, uncertainty, and loss in digital evidence. Int’l J. Digital Evidence 1,

2 (2002), 1-45.

[31] Kurzban, S. Authentication of computer generated evidence in United States federal

courts. The J. of Law and Technology (1995), http://www.ipmall.org/hosted_
resources/IDEA/35_IDEA/35-4_IDEA_437_Kurzban.pdf.

http://www.ipmall.org/hosted_

	A Novel Authentication And Validation Mechanism For Analyzing Syslogs Forensically
	Recommended Citation

	Compromising the Authenticity of Syslogs
	Compromising the Confidentiality of Syslogs
	Compromising the Integrity of Syslogs
	Preservation
	Identification
	Extraction
	Documentation
	Interpretation of the Data
	Integrity
	Availability
	Syslog-Sign
	Syslog-Auth
	Phase 1: User Authentication
	Phase 2: System Connection Establishment
	Phase 3: System Connection Establishment Response
	Phase 4: Application Event Entry Generation
	Phase 5: Applications Termination
	Phase 6: System Connection Termination

