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ABSTRACT

Behavior of Prestressed Concrete Bridge Girders

by

Franklin Angomas, Master of Science

Utah State University, 2009

Major Professor: Dr. Paul J. Barr
Department: Civil and Environmental Engineering

For this research, prestress losses were monitored in six HPC bridge girders.
These measured losses were compared to predicted losses according to four sources.
Prestress loss predictive methods considered for this research were: 1- AASHTO LRFD
2004, 2- AASHTO LRFD 2004 Refined, 3- AASHTO LRFD 2007, and 4- AASHTO
LRFD Lump Sum method. On the other hand, the camber prediction methods used in the
present research were: 1- Time dependent method described in NCHRP Report 496, 2-
PCI multiplier method, and 3- Improved PCI Multiplier method. For the purpose of this
research, long-term prestress losses were monitored in select girders from Bridge 669
located near Farmington, Utah. Bridge 669 is a three-span prestress concrete girder
bridge. The three spans have lengths of 132.2, 108.5, and 82.2 feet long, respectively.
Eleven AASHTO Type VI precast prestressed girders were used to support the deck in
each span. The deflection of several girders from a three-span, prestressed, precast
concrete girder bridge was monitored for 3 years. Fifteen bridge girders were fabricated

for the three span-bridge. Ten girders from the exterior spans had span length of 80 feet,
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and five girders from the middle span had span length of 137 feet. From the results of this
research, in both the 82- and 132-foot-long, the AASHTO LRFD 2004 Refined Method
does a better job predicting the prestress loss and it can be concluded that all the
prediction methods do a better job predicting the loss for the larger girders. The Lump
Sum method predicted very accurately the long term prestress loss for the 132-foot-long

girders.

(109 pages)
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CHAPTER 1

INTRODUCTION

1.1 Context

The use of High Performance Concrete is common among the US DOTs for short
to medium span prestress concrete girder bridges. Therefore the designer should
understand thoroughly how prestressed HPC girders behave. Accurate prediction of
deflections and prestress losses are crucial in a cost-effective design. In order to
accurately predict the HPC prestressed girder behavior, a correct materials
characterization is imperative, since prestress loss and deflection calculations depend on
material properties.

For this research, prestress losses were monitored in six HPC bridge girders.
These measured losses were compared to predicted losses according to four sources.
Prestress loss predictive methods considered for this research were: 1- AASHTO LRFD
2004, 2- AASHTO LRFD 2004 Refined, 3- AASHTO LRFD 2007, and 4- AASHTO
LRFD Lump Sum method. Additionally, the camber prediction methods used in the
present research were: 1- Time dependent method described in NCHRP Report 496, 2-

PCI Multiplier Method, and 3- Improved PCI Multiplier method.

1.2 Prestress Loss

Accurate prediction of the long-term, prestress losses in concrete bridge girders is
an important part of the design process. An overprediction in the prestress loss could

mean a limitation of the span length of the girder, and a considerable increase in the



prestressing force required to overcome such losses. On the other hand, an under-
prediction of the prestress losses could translate into undesired deflections and cracking
under service conditions. Because in many concrete bridge girders, the cracking control
under service loads is the controlling parameter in the design process, a precise but safe
prestress loss prediction method is imperative.

Prestress losses can be defined as the decrease in the initial prestressing force.
There are two main types of prestress losses depending on the time and duration of their
occurrence; the first is the instantaneous elastic shortening loss. The second type is the
long-term losses, mostly due to relaxation of the prestressing strands and creep and
shrinkage of the concrete. Prestress losses are also influenced by other time-dependent

concrete properties, like its compressive strength and its modulus of elasticity.

1.3 Deflections

Prestressed concrete members are typically more slender than reinforced concrete
members. Because of this attribute, the prediction of deflections requires special
consideration. For prestressed concrete girders, designed to be fully prestressed, an
emphasis must be made to the upward deflection, or camber. Since shrinkage and creep
are inherent properties of concrete, this camber may increase with time due to these
properties. Excessive camber of bridge girders, may result in an invasion of the girder in
the road profile, or an irregular surface, in addition, the effects of the permanent dead
load and live load to the final midspan deflection must be investigated to guarantee the

members serviceability.



The application of a prestress force, in a simply supported beam, will cause
upward camber. Creep, shrinkage, and steel relaxation produce a reduction in the camber
due to the initial prestress. Conversely the creep has a dual effect, because creep strains in
the concrete tends to increase the negative curvature associated with prestress and,
therefore, increase the camber.

While prediction of camber may be difficult, due to the time-dependents factors
mentioned above, good models are available for calculating the effects of creep and
shrinkage on concrete, which permits the calculation of deflections within acceptable

ranges of accuracy.

1.4 Research Objectives

The objectives of this research are, first, to investigate the accuracy of the
prestress loss prediction methods presented in the AASHTO LRFD Specification and
compare them to the prestress loss data acquired by instrumenting six concrete girders on
Bridge 669 pertaining to the Legacy Highway, near Layton, Utah. Second, to investigate
the accuracy of the deflections predictions methods presented in both NCHRP Report 496
and PCI manual, and compare it to measured deflections on the SR18/SR516 Bridge

overpass in the state of Washington.

1.5 Organization of Thesis

The organization of the thesis is as follows: Chapter 2 presents a literature review.

A description of the tests performed to the concrete is presented in Chapter 3. Chapter 4



investigates the accuracies of the distinctive prediction methods for both prestress loss

and deflections. A summary and conclusions are presented in Chapter 5.



CHAPTER 2

LITERATURE REVIEW

2.1 Investigation of Long-Term Prestress Losses in Pre-tensioned

High Performance Concrete Girders

Waldron (2004) motivated his research based on the fact that the efficient
prediction of long-term prestress losses is imperative in the design of prestressed concrete
bridges. An over-prediction of prestress losses may result in an excessively conservative
design for service load stresses, and an under-prediction of the prestress losses, can result
in cracking when the service loads are applied. Shrinkage and creep generate the most
substantial time-dependent effect on the loss of prestress.

For this research HPC girders, with design compressive strengths ranging from
8,000 psi to 10,000 psi, and three 8,000 psi lightweight HPC (HPLWC) girders were
instrumented to determine the changes in strain and prestress losses. The author used
several creep and shrinkage models to evaluate the instrumented girders. The author of
this dissertation found that for the HPLWC, each model overpredicted the long-term
strains, and the Shams and Kahn model was the best predictor of the measured strains and
for the normal weight HPC, the models under-estimated the measured strains at early
ages and overestimated the measured strains at later ages, and the B3 model was the best-
predictor of the measured strains. The PCI-BDM model was the most consistent model
across all of the instrumented girders.

For this dissertation the shrinkage and creep properties of the HPC mixtures were

measured in the laboratory and compared to the creep and shrinkage models available.



The author found that the best predictor of creep strains in the Dismal Swamp Bridge was
the AASHTO LRFD model; meanwhile the best predictor for the shrinkage strain was the
GL2000 model. The best predictor of the overall shrinkage was the PCI-BDM model. All
the models correlated to high-strength concrete. The PCI-BDM, NCHRP 496, and Shams
and Kahn predicted the total strain better than the traditional models. In addition, the PCI-
BDM model was the only model to predict accurately enough in both normal an high
strength concrete.

Based on the results obtained from the studies performed at Pinner’s Point and
Dismal Swamp, the PCI-BDM model is the best predictor of the average, total, long-term
strains associated with these HPC mixtures, and in general, the more recent models
developed for high-strength concrete predicts the long-term strains better than the
traditional models.

The HPLWC shows different behavior when compared to the creep and shrinkage
models than does the normal weight HPC investigated. The models all overestimate the
measured strains of both the HPLWC test girders and the Chickahominy River Bridge
girders. The Shams and Kahn model is the best predictor of the strains measured in the
HPLWC bridge girders, predicting the average strain of the bridge girders reasonably
well. The PCI-1975 model predicts strains that produce a reasonable lower bound for the
measured strains for the HPLWC bridge girders, and is the best overall predictor of the
strains for the HPLWC test girders.

For the normal weight HPC girders investigated in the scope of this research, the
models have a propensity to under predict the measured strains at early ages and over-

predict the measured strains at later ages. The B3 and AFREM models are the best



predictors for both sets of the Pinner’s Point girders, and in general, the models that
account for compressive strength predict the strains of the 10,000 psi girders better than
the strains of the 8,000 psi girders. Also, since both sets of girders from the Pinner’s
Point Bridge exhibit similar strains, it is likely that the models accounting for
compressive strength would predict the strains of the 8,000 psi girders better by assuming
a 10,000 psi compressive strength. This indicates that compressive strength is not the best
property to use to adjust the long-term models for HPC; however, it is a simple parameter
to measure and is generally known at the design stage, which is why it is used by each of
the recently developed models. Finally, for the Dismal Swamp girders, the B3 model is
the best predictor of the measured strains.

In general, when probing the girders from all the bridges, the researchers
concluded that no model consistently predicts the strains of each set of girders. The PCI-
BDM model is the only model to be ranked in the top half of the 10 models for all of the
bridge girders, demonstrating that it is the most consistent predictor of the measured
strains over the whole observed period. Examining the strains at the end of the modeled
period as an approximation of the strains at the end of service life, the PCI-BDM and
NCHRP 496 models are the best predictors for the normal weight HPC girders and the
Shams and Kahn and PCI-1975 model are the best predictors for the HPLWC girders.
Finally the research concludes that is clear from this comparison that a single model is
not well suited to both lightweight and normal weight HPC without some modification
for lightweight concrete.

Recommendations given by the author for further investigation:



. The NCHRP 496 Refined and Approximate methods for estimating prestress
losses are recommended for estimating the prestress losses at the end of service
life for girders utilizing normal weight HPC similar to that used in this study.
Continued use of the AASHTO Standard and LFRD Specifications is overly
conservative but acceptable until the NCHRP 496 methods are adopted by
AASHTO.

. Further investigation of the HPLWC is needed. The measured strains in the
HPLWC girders varied by approximately 200 microstrain from girder to girder,
which is more than twice the variation between girders seen with the normal
weight HPC. This is likely due to variations in the concrete batches because of the
precaster’s unfamiliarity with the lightweight aggregates used in the concrete
mixture.

. In the interim, the NCHRP 496 Refined and Approximate methods can be used to
conservatively estimate the total losses for girders utilizing the HPLWC analyzed
in this study.

. Further investigation of the early age behavior of the normal weight HPC
analyzed in this study is needed. For the normal weight HPC considerably more
strain was measured prior to 30 days after transfer than predicted by the models.
The elastic shortening strains (determined from measurements taken two to four
hours after detensioning) were also larger than the elastic strains estimated from
the measured concrete properties.

. Further investigation of the behavior of the bridge girders after deck placement is

also needed. Each instrumented girder exhibited a nearly flat strain curve prior to



deck placement indicating that creep and shrinkage had nearly ceased. However,
after deck placement instead of exhibiting decreasing compressive strains, as
would be caused by creep recovery and differential shrinkage, the girders showed
increasing compressive strains for a period of approximately 100 days following

deck placement.

2.2 Prestress Losses in Pre-tensioned High-Strength

Concrete Bridee Girders (NCHRP Report 496)

The main purpose of the NCHRP Report 496 by Tadros et al. (2003) was to
provide the bridge designers with guidelines for the prediction of prestress losses in high
strength pretensioned concrete girders. These guidelines are intended to deal with the
limitations of the AASHTO LRFD Specifications currently in use. The researchers
focused their improvements in two main subjects: the first, the modulus of elasticity
prediction methods, with emphasis in high strength concrete and second, prestress losses
prediction models that take into consideration the time dependant effects of creep and
shrinkage, especially in high strength concretes, where creep and shrinkage tend to be
lower.

This research was composed of experimental and theoretical programs. The
experimental portion of the research consisted in lab tests in order to characterize the
materials and in the measurement of prestress loss in full scale bridge girders in four
states, representing with this a wide range of geographical areas and construction

practices. Also, the results of previous research in seven states were included in the



10

report. In addition the results of research carried by American Concrete Institute (ACI)
Committee 363 and FHWA were considered.

The girders were instrumented in order to collect strains and temperatures in the
concrete. The girders were instrumented at the centroid of the prestressing strands in
order to measure the change of strain of the prestressing strands and therefore calculate
the loss in the prestressing force. Vibrating wire strain gages were embedded directly in
the concrete for these measurements. The data was collected by an automated system
consisting of a laptop computer and a data logger.

As a conclusion the researchers proposed a detailed method that uses the aging
coefficient approach for computing prestress losses between transfer and casting of decks
described by Tadros et al. (2003) in the PCI-BDM for precast non-composite members.
The approach was also adopted by the European CEBFIP Recommendations 25. The
theory is expanded here to cover composite action between precast concrete girders and
cast-in-place deck slabs. The prestress losses of pretensioned members, Af,T, consist of

the following four components, each of which relates to a significant construction stage:

1. Instantaneous prestress loss due to elastic shortening at transfer, Afgs.

2. Long-term prestress losses due to shrinkage of concrete, (Af,sr)ig, and creep of
concrete, (Afpcr)ig, and relax-ation of prestressing strands, (Afyr2)id, between the
time of transfer and just before deck placement.

3. Instantaneous prestress gain due to the placement of deck weight and SIDL,
Afyep.

4. Long-term prestress losses, between the time of deck placement and the final

service life of the structure, due to shrinkage of the girder, (Af,sp)qr, creep of the
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girder, (Afpcpi + Afpepo)ar, relaxation of prestressing strands, (Afyr3)ar, and
shrinkage of the deck concrete, (Afpss)qr. Total prestress losses in pretensioned
bridge girders, Afpr, relative to the stress immediately before transfer is thus given

by the equation:

Apr: Aprs + (AfpSR + AprR + AprZ)id — AprD

+ (Afpsp + Afyepr + Afpepo + Afpr3 — Afpss)ar 2.1)

For the prestress loss proposed method the authors made the following

assumptions:

1. Prestress losses are calculated for conditions at the maximum positive moment
section.

2. No mild steel reinforcement exists at that section.

3. Elastic losses at transfer or elastic gains due to the application of external loads
are not considered.

4. Prestress is transferred to the concrete at 1 day in accelerated plant curing
conditions.

5. The cast-in-place deck weight (for composite construction) is applied to the
precast concrete section without any shoring after at least 28 days from the time
of prestress transfer.

6. V/S ratio for the girder cross section is 3 in. to 4 in.

The researchers found that the measured total prestress losses for Nebraska

girders G1 and G2 were 31.96 ksi and 35.65 ksi, which are 15.8% and 17.6% of the
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actual jacking stress, respectively. The measured total prestress losses for New
Hampshire girders G3 and G4 were 43.51 ksi and 42.33 ksi, 21.5% and 20.9% of the
actual jacking stress, respectively. The corresponding values for the Texas girder were
25.35 ksi (12.5%) and for the Washington girders were 42.06 ksi (20.8%) and 39.98 ksi
(19.7%). The ratios of the total estimated-to-measured prestress losses ranged from 0.84
to 1.27 with an average of 1.00 and a standard deviation of 15%.

The research results led to the conclusion that concrete compressive strength, V/S
ratio, curing methods, and time elapsed after the end of curing influence shrinkage. A
proposed shrinkage formula produced results that averaged 105% of the measured values,
compared to 174% when using the AASHTO-LRFD method and 155% when using the
ACI-209 method. Predictions of modulus of elasticity, shrinkage, and creep are
influenced by local materials and practices. Therefore, data for local materials and
mixture proportions should be used when available.

The proposed approximate method produces better estimates of long-term
prestress losses in comparison to those obtained by the AASHTO-LRFD Lump Sum
method because the Lump Sum method does not account for the level of prestressing or

ambient relative humidity.

2.3 Bridge Prestress Losses in Dry Climate

For this research (Saiidi, Hutchens, and Gardella, 1998) instrumented a box-girder
bridge during its construction in southern Nevada. The research was motivated by
concerns on the effects that low relative humidity would have on prestress losses. The

monitoring period for this bridge was carried over a twenty-four months period. These
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measured prestress losses were then compared to four prestress loss prediction models,
AASHTO Specifications, ACI, PCI committee report; and Naaman’s time step method.

The bridge object of this research was the Greenway Bridge. This bridge is a
simply supported, post-tensioned, multi-cell box girder structures with an 18° skew. A
200 mm thick diaphragm separates the cells at midspan. Each girder has two 100 mm
diameter ducts containing 19 post-tensioning strands, and one 113 mm duct containing
either 26 or 27 strands depending on the girder.

The researchers used the following instrumentation: Four extra tendons, two in
the south exterior girder and two in the southernmost interior girder, were placed in the
bridge. Three electrical strain gages were bonded to three different wires on each cable
for a total of 12 strain gages. On each data collection day, hourly measurements were
taken from the strain gages for a period of 24 hours to allow for averaging throughout the
day. The electrical strain gage data indicate the total losses due to creep and shrinkage,
but do not include effects of relaxation, because relaxation losses are the changes in stress
under constant strain.

All of the methods mentioned above account for relative humidity except the PCI
method. These methods assume a constant ambient relative humidity. Nonetheless the
variations in RH were taken into consideration in this study, in order to carry a regression
analysis of the measured strand prestress losses using a logarithmic fit. In order to
account for the offset between the instrumented tendons and the centroid of the other
tendons, stresses were increased by 14 MPa.

For the Greenway Bridge, the extrapolated measured creep and shrinkage

prestress losses were approximately 30% lower than that estimated by using the
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AASHTO method. In terms of total loss prediction (excluding elastic shortening),
AASHTO was conservative by approximately 20%. The low average ambient humidity
did not appear to lead to excessive losses beyond those predicted by the AASHTO code.
As a result of this study it was recommended to the NDOT to continue to design prestress
concrete bridges in southern Nevada using the AASHTO method. For bridges in northern
Nevada, however, losses in excess of AASHTO prediction have been noted due to
considerable daily and seasonal variation of RH.

The authors concluded that the comparison between the measured losses and the
time — step predictions using the Naaman and the ACI committee 209 showed very close
correlation. The PCI method led to considerably lower losses than those measured or
determined using the other analytical methods. The measured deflection history of the
bridge reflected the variations in prestress force that were affected by climatic changes.
The data from a logarithmic fit of the measured deflections showed good agreement with
the predicted values, which were based on a time-dependent equation presented by

Nilson (1987).

2.4 Comparative Study of Various Creep and Shrinkage

Prediction Models for Concrete

This paper by Goel, Kumar, and Paul (2007) summarizes and compares various
prediction models developed to predict the creep and shrinkage in concrete. A brief
description of the most recent models for prediction of creep and shrinkage is presented
in this paper. Among these models are: the ACI-209 R-82 model, the B3 model, the

CEB-FIP model code 1990 and the GL2000 model.
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The variations of creep and shrinkage in the concrete are time-dependant. These
properties (creep and shrinkage) have a considerable negative impact on the final
performance of concrete structures. Creep in concrete manifests as a change on the
material dimensions under the effect of sustained loads. Furthermore, regardless of a load
being applied or not, concrete undergoes a change of dimensions due to drying shrinkage.
The authors consider that since both occur simultaneously the treatment of the two
together is convenient from a practical point of view. Failure to include creep and
shrinkage effects in the analysis of the structures may lead to excessive deformation and
wide spread cracking.

The many concrete properties, i.e. compressive strength, age of concrete at
loading, type of curing conditions, ambient conditions, type of cement, type of
aggregates, water/cement ratio, etc. affects the creep and shrinkage of concrete. The
following are several of the predictions methods taken into consideration by the authors
of this paper:

* Effective modulus method (McMillan, 1916)

» Age-adjusted effective modulus method (Trost, 1967)

* Double power law for creep (Bazant and Osman, 1976)

* ACI 209 codal provisions (ACI, 1982)

* Double power logarithmic law for creep (Bazant and Chern, 1984)
* CEB-FIP model code 1990 (CEB-FIP, 1990)

* B3 model (RILEM, 1995)

e Muller model; and

¢ GL2000 model (Gardner and Lockman, 2001a,b).
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Early mathematical models were developed with a view to facilitate structural
analysis. But computers make it possible to use any kind of model, and thus the recent
modeling could focus on experimental data as closely as possible. Effective modulus
method, age adjusted effective method, double power law, double power logarithmic law
were used by the researchers when very limited experimental data were available, creep
and shrinkage was not properly understood and computers were not available for
computations. Hence, these models are generally not used for important structures like
bridges, nuclear structures, etc. The ACI-209-82 model, the CEB-FIP model code 1990,
the B3 model, the Muller model, and the GL2000 model are recent and are based on
extensive research as well as experimental studies.

Parameters required for the prediction of creep and shrinkage strains in concrete
by these five analytical models are tabulated in Table 2.1. From Table 2.1 it is observed
that the GLL2000 model, the CEB-FIP model code 1990, and the Muller model requires
minimum parameters for the prediction of creep and shrinkage strains in the concrete. To
compare the various prediction models, results obtained by these models are to be
compared with the experimental results. For this purpose, the experimental results of
Russell and Larson (Russell and Larson, 1989) and the RILEM data bank have been
selected.

Experimental study of Russell and Larson (Russell and Larson, 1989) was
conducted in the Water Tower place, Chicago, a 262-m-high RC building, was
instrumented to measure the time-dependent vertical deformations of the columns, walls,

and caissons.



Table 2.1 Parameters required by various analytical models for prediction of creep and
shrinkage in concrete (Goel, Kumar, and Paul, 2007)
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This structure was made using Type III cement, normal weight concrete and moist

cured for 7 days. The 28-day compressive strength of the concrete varied from 63.0 to

32.45 MPa. Test cylinders were cast and stored in an atmosphere of 23° C and 5%

relative humidity. Russell and Larson (1989) reported the long term deformations, creep

and shrinkage of this structure.

Based on the results from the study, the following conclusions were given by the

authors:

1. The ACI-209 codal provisions are applicable to concretes (using both moist

and steam curing; and Types I and III cement) under standard conditions. The

standard conditions do not include the concrete strength but its composition,

e.g., slump 70 mm, air-content up to 6%, fine aggregates 50%, cement between

279 and 446 kg/m3, curing humidity more than 95%, 40%, etc. Correction
factors are applied for the conditions other than standard conditions. The B3

model is applicable to the concretes, having an f.;,, between 17 and 70 MPa,

w/c ratio 0.30-0.85, a/c ratio 2.5-13.5, and cement content (c) 160-720 kg/m3.
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The CEB-FIP model code 1990 is applicable to concretes, having an fe,
varying from 12 to 80 MPa, h 40—-100%, and means temperature 5—-30°C. The
Muller model is applicable to normal weight plain structural concretes, having
an average compressive strength varying from 15 to 120 MPa; moist cured at
normal temperature not longer than 14 days, h 40-100%, mean temperature
10-30°C and age at loading at least one day. The GL2000 model is applicable
to concretes, having characteristics strength less than 70 MPa and w/c ratios
between 0.40 and 0.60.

2. Predictions of creep and shrinkage by the GL2000 model are closest to the
experimental results in comparison with other models namely the ACI-209
codal provisions, the B3 model, the CEB-FIP model code 1990, and the Muller
model.

3. In the GL2000 model, the number of parameters used to predict creep and
shrinkage are also minimal in comparison with the other prediction models and
these parameters are readily available. In view of the GL2000 model’s
simplicity and comparable accuracy with the experimental results, it is
concluded that the GL2000 model performs best for shrinkage and creep

predictions in the concrete.

2.5 Realistic Long Term Prediction of Prestress

Forces in PSC Box Girder Bridges

Creep and shrinkage in concrete are concrete properties very difficult to model,

because of the innumerous uncertainties with respect to the concrete materials behaviors
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as well as the model uncertainties. The study on the uncertainties in creep and shrinkage
effects has been continuously an area of significant efforts (Madsen and Bazant 1983;
Bazant and Liu 1985; Bazant 1988; Li and Melchers 1992; Tsubaki 1993; Bazant and
Bawaja 1995; Teply, Kersner, and Novak, 1996). Recently, the sensitivity analysis of
time-dependent behavior in prestressed concrete (PSC) box girder bridges has been
studied (Oh and Yang, 2000).

Creep and shrinkage time-dependant effects on PSC box-girder bridges have not
been controlled reasonably regardless of great advances in research in this matter. While
other structural behaviors of concrete have been successfully modeled, it is still very
cumbersome to fully model the creep and shrinkage.

The finite-element analysis method used in this study is based on the procedure
developed originally by Ketchum (1986) and Kang (1989) and improved by Oh and Lee
(1996) for the analysis of segmentally erected PSC bridges. This procedure involves an
estimation of time-dependent prestress losses in such members and the time-dependent
prediction of the accompanying variation in stresses and deformations. A box girder of
random plane geometry and variable cross section can be modeled as an assembly of
finite elements interconnected at nodal points.

The analytical model consists as described by the authors consists of: 20 nodes,
19 frame elements, and 22 prestressing tendons. The 20 nodes are located at segment
joints along the centroidal axis of the box girder. The 19 frame elements are used to
model the box girder. Each cantilever segment and each midspan closure segment (key
segment) are modeled with one frame element. Eighteen prestressing tendons are used to

model the cantilever tendons and four prestressing tendons to model the continuity
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prestressing tendons. A portion of the design dead load, equal to 29.4 kN/m, is assumed
to be applied permanently, contributing to creep.

In the present study for PSC box girder bridges, the Bayesian updating is applied
to the long-term prediction of prestress forces. This method can be applied to the
prediction of another long-term creep and shrinkage effect such as deflection or axial
shortening of box girders. The present method makes it possible not only to make
statistical predictions on the basis of the prior statistical information, but also to update
the predictions on the basis of in situ measurement made during construction stages. If
the predicted value is outside the specified limit, then a control action may be taken. By
the present method one can forecast the time of exceeding the specified limit value during
the lifetime of the bridge. Therefore, if a control action for maintenance management of
the bridge is to be taken when long-term effects such as prestress forces are outside the
control limit, the method developed in this study can be efficiently used. The setting of a
control limit and the selection of an optimum method of control alternatives, if needed,

are however beyond the scope of this study.

2.6 Cracking Tendency and Drying Shrinkage of Silica Fume

Concrete for Bridge Deck Applications

In this paper (Whiting, Detwiler, and Lagergren, 2000) are presented the results of
a study intended to evaluate the drying shrinkage of concretes used for full-depth and
overlay of highway bridge decks, containing silica fume. The different mixes in this
study were prepared with various contents of silica fume and over a range of water to

cementitious materials ratios. Concrete samples were tested in the lab using both
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restrained and unrestrained drying shrinkage scenarios. Regression analyses were
performed on data developed from the laboratory testing and response surface models
and analyses of variance were carried out.

Type I/II and type K cement was used in this research. In addition, dry densified
silica fume was used. The proportions of the materials used for the concrete mix are listed
in Table 2.2. In order to stay consistent with the AASHTO Specifications, the authors
maintained a cementitious material content of around 370 kg/m’. The w/cm ratio varied
from 0.35 to 0.45.

In this study the drying shrinkage was measured according to AASHTO T 160,
“Length Change of Hardened Hydraulic Cement Mortar and Concrete,” the testing
specimens were stored at 23 1.7 C, 50 £4% relative humidity. The curing periods were
selected to simulate typical good practice for these two types of construction. The lengths
were measured at 4, 7, 14, and 28 days, and 8, 16, 44, and 64 weeks. 75 x 75 x 285 mm
(gage length of 250 mm) specimens were prepared for every mixture.

For this research the methodology for assessing the cracking tendency, consisted
of a method utilized under NCHRP Project 12-37, in which early cracking of full-depth
concrete bridge decks was investigated. This methodology consisted in molding a 75 mm
thick, 150 mm high ring of concrete around the outside of a steel cylinder with an outside
diameter of 300 mm and 19 mm thick walls. This geometry provides restraint against
shrinkage while still producing measurable strains from 0 to —1 X 10+ mm/mm. The
inside of the steel ring was instrumented with four strain gages placed at the quarter

points around the ring, which were recorded every 30 min by a data acquisition system.
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Table 2.2 Mixture proportions of concretes for full-depth bridge decks

Material Quantities, kg/m>

% silica fume 0.0 1.8 6.0 10.2 12.0
w/cm 0.40 0.36 0.43 0.35 0.40 0.45 0.36 0.43 0.40
Cement 369 364 360 343 342 341 331 328 321
Silica fume 0 7 7 22 22 21 37 37 44

Fine aggregate 733 751 716 743 722 699 742 708 720
Coarse aggregate 1071 1097 1046 1085 1055 1020 1084 1034 1052
Water 148 133 158 128 146 163 132 157 146

Fresh concrete was placed into the annular space between the steel ring and an
outer sheet metal form in three equal layers, each of which was consolidated by a
combination of rodding and external vibration using a small hand-held vibrator.

The concrete was finished at a level approximately 6 mm below the top surface of
the mold using a specially designed trowel that conformed to the inside surface of the
form. This created a reservoir on top of the concrete into which a saturated limewater
solution was placed. The entire mold was then covered with polyethylene sheeting. After
the specified period of moist curing, the limewater was removed and the exterior form
stripped from the specimen. The top surface of the concrete was then covered with a
polyethylene sheet affixed to the concrete with silicone sealant. Drying then occurred
from the exposed sides of the concrete specimen. This technique allowed for easy
detection of cracking, as when a crack suddenly reduced the stress locally, and resulted in
a local decrease in strain, which was monitored by the strain gage.

This research showed that the additional cracking tendency of concrete containing
silica fume is present only when poor curing conditions are used. Concrete cured properly
in a moist environment for 7 days, no relevant evidence of early-age cracking was present
in concretes with silica fume. When comparing the long term shrinkage of concretes with

silica fume no significant cracking pattern difference was found when compared to
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concretes without silica fume. The researchers recommend that concrete with silica fume,
should be carefully cured in a moist ambient for 7 days.

Finally the authors concluded that the cracking is highly influenced by the amount
of cement contained in the concrete mixture. Concrete mixes with high cementituos
materials content, tends to have greater shrinkage because of the higher paste content.
The modern practice consists of increasing the aggregates proportions in the concrete
mixes in order to reduce de cement paste proportion, therefore reducing the shrinkage

potential.
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CHAPTER 3

TEST DESCRIPTION AND RESULTS

Concrete tests are often specified with the purpose of having a strict quality
control and to assure compliance with the contract documents specifications. In other
cases, like ours, tests are prescribed in order to characterize the concrete subject to
research. Thus, it can be comparable to the results of future or past research. In addition,
if the results of different research projects are to be compared, the tests on what those
research are based should be performed following certain standards and procedures.

In order to characterize the mechanical and durability properties of the concrete
used for this research, five different tests were selected. The tests and the ASTM standard
to which they conform are summarized in Table 3.1.

A more detailed description of each test in Table 3.1 is presented below.

Table 3.1 Summary of performed tests

Test ASTM Standard(s)
3.1 Compressive Strength C31&C39

3.2 Modulus of Elasticity C 469

3.3 Shrinkage C 157

3.4 Freeze and Thaw Resistance C 666

3.5 Chloride Ion Penetration C 1202
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3.1 Compressive Strength

The compressive strength of concrete is the most specified property of concrete; it
is the most commonly used design criteria specified by engineers in the design process.
Various reasons make the compressive strength the most used property of concrete, one
of the primary reasons is, the testing of the compressive strength is fairly easy. In
addition research has been conducted to correlate compressive strength to all other major
properties of concrete, such as elastic modulus, tensile strength, permeability, and
resistance to weather agents.

The compressive strength of concrete is determined by loading the testing
specimen to failure. Failure being the state of deformation or cracking such as the
material is no longer able to sustain the applied load.

In order to attain a certain level of quality in the concrete mixing, three key
aspects must be taken into consideration: selection and proportioning of the materials,
curing conditions, and tests specifications.

3.1.1 Selection and proportioning
of the materials

Since concrete is the product of mixing different materials, the interaction of these
materials influence the compressive strength of concrete. Consequently the selection and
proportioning of the materials is critical. In the following paragraphs, the most common
materials and their importance in the compressive strength of concrete is presented.

3.1.1.1 Cement type. The material that has most influence on the concrete

properties, with respect to the other components, is the cement. As much as it is in

quality, as it is in quantity. Neville (1996) describes the Portland cement as a cement
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obtained by intimately mixing together calcareous and argillaceous, or other silica,
alumina, and iron oxide-bearing materials, burning them at a clinkering temperature, and
grinding the resulting clinker.

The ASTM standard specification for Portland cement (ASTM C150) classifies
the Portland cement into eight different types, manufactured to meet different chemical
and physical requirements for specific purposes. The classification of the Portland cement
given by the ASTM 150 is presented in Table 3.2.

The relationship between the cement type and the compressive strength of the

concrete is showed in Figure 3.1.
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Figure 3.1 Effects of type of cement on compressive strength of concrete (US Bureau of
Reclamation, 1966).
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Table 3.2 Classification of portland cement (ASTM 150)

Type |Use

I When the special properties specified for any other type are not required

1A Air-entraining cement for the same uses as Type |, where air-entrainment is desired

For general use, more specially where moderate sulfate resistance or moderate heat of
hydration is desired.

IIA Air-entraining cement for the same uses as Type Il, where air-entrainment is desired

[ For use when high early strength is desired
A ]Air-entraining cement for the same uses as Type Ill, where air-entrainment is desired
v For use when a low heat of hydration is desired

v For use when high sulfate resistance is desired

When selecting the type of cement one particular property that affects the
hydration of cement apart from its chemical composition, is the fineness of the cement
ground. The finer the cement is ground, a direct increase in the hydration heat will occur,
which results in early high strengths gains. A typical graph relating the cement fineness
and the concrete strength at different ages is depicted in Figure 3.2.

3.1.1.2 Water/cement ratio. The water cement ratio of any concrete mix should be

selected considering two main factors, strength and workability. It has been vastly shown
that the strength of concrete is conversely proportional to the water cement ratio.
Therefore a lower w/c ratio results in a higher concrete strength. On the other hand,
concrete mixes with too low of a w/c ratio lack of workability. Therefore, balance should
be met between strength and workability.

3.1.1.3 Aggregates. Since the aggregates occupy more than 60% of the concrete

volume and are the strongest individual component, its properties influence the final
compressive strength of the concrete. The fineness modulus and the maximum size of
aggregate affects the fine to coarse aggregate proportion, as well as the water and cement

quantities. Aggregate type also affects workability, economy and shrinkage tendencies.
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Figure 3.2 Relationship between fineness of cement and concrete strength at different
ages (Neville,1996).
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3.1.1.4 Admixtures. The concrete properties can be enhanced by the inclusion of

admixtures. There are several types of admixtures, among them: water reducers, air
entrainers, setting time retardants, etc. The most commonly used admixture to increase
the compressive strength is the water reducer or superplasticizer, because they allow, for
a given workability, less use of water, which traduces to a higher strength.

The proportions of materials for the concrete mixes used for the scope of this
research are listed in Table 3.3. For proprietary reasons, the mix design used in the Eagle

Precast sample cannot be published in this research.

3.1.2 Curing conditions

Since the concrete bleeds the excess water, and this water is evaporated due to the

climate conditions, a humid environment should be provided to enhance the curing

process.
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Figure 3.4 28-day compressive strength of concrete as influenced by maximum size of
aggregate and cement content (Higginson, 1966).
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The proper concrete curing should start once the initial setting of the concrete has
occurred, and common practice recommends that concrete should be cured for not less
than seven days.The time of curing is directly proportional to the final strength of

concrete; the longer the curing period, the higher the final strength of concrete.

3.1.3 Test specifications

All the compressive strength testing done for the scope of this research was made

according the provisions of the ASTM C39 Standard.

Table 3.3 Mix designs

Materials 669 Bridge Deck |668 Bridge Deck
Cement (Ibs/yd®) 556 489
Fly Ash (Ibs/yd®) 103 122
Fine Aggregate (Ibs/yd®) 1604 1204
Coarse Aggregate (Ibs/yd®) 1355 1718
water (Ibs/yd®) 270 243
w/cm 0.41 0.40
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Figure 3.5 Effects of moist curing on the strength of concrete (Portland Cement
Association).
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The sampling of the concrete used in these tests conforms to the ASTM C31
Standard.The most common specimen used for the compressive strength testing was the
4-by-8 in. (diameter by height) cylinder.

For this project, the test cylinders were cast at the time each of the decks were
poured. For the compressive strength test, 4-by-8 in. cylinders were cast. Proper curing
conditions were provided for the testing cylinders. The standard ages for testing the
compressive strength of concrete are: 1, 3, 7, 14, 28, and 56 days. Two cylinders were
tested on each of testing days. The two cylinders were average to obtain the measured
compressive strength. In order to calculate the compressive strength of the concrete Eq.

3.1 was used.

(3.1)

P
o=—
A

where
o = the compressive strength at the age of testing (psi).
P= Failure load (Ibs).
A= Cross-sectional area of the concrete specimen (inz). The cross-sectional area of a 4-
by-8 in. cylinder is calculated to be 12.57 in*.

The compressive strength tests results for the Eagle Precast Samples, the 669
Bridge Deck and the 668 Bridge Deck, are presented in Table 3.4, Table 3.5, and Table

3.6, respectively.



Table 3.4 Eagle precast compressive strength test results

Days after Casting| Cylinder Load (Ib.) o (psi) Avg.o (psi)

1 4x8(1) 77169 6141

1 4x8(2) 74825 5954 6048
3 4 x 8 (3) 105223 8373 9666
3 4 x8(4) 137702 10958

7 4 x 8 (5) 122474 9746 9945
7 4 x 8 (6) 127473 10144

14 4 x 8(9) 138246 11001 11043
14 4 x 8 (10) 139284 11084

28 4x8(11) 151423 12050 12280
28 4x8(12) 157200 12510

56 4x8(13) 161375 12842 12698
56 4x8(14) 157762 12554

Table 3.5 669 Bridge deck compressive strength test results

Dg’é’isst?rf];er Cylinder | Load (Ib.) o (os) | Avg.o (psi)
1 2x8 (1) 22712 1807 534
1 2x8(2) 23373 1860
3 2x8(3) 21576 3309 S160
3 2x8(4) 37883 3015
7 %8 (5) 29790 3962 2960
7 %8 (6) 49724 3957
1 2x8(9) 61922 2928 oo
12| 4x8(10) 59412 4728
28| 4x8(11) 70006 5571 —
28| 4x8(12) 75657 6021
56| 4x8(13) 80580 6412 -
56| 4x8(14) 79980 6365

Table 3.6 668 Bridge deck compressive strength test results

Dgfst?;;er Cylinder |Load (Ib.)| & (psi) |Avg.c (psi)
11 | 4x8() | 57564 | 4581
11| 4x8(2) | 62496 | 4973 | /77
19 [ 4x8(3) | 69032 | 5493 | .
19 | 4x8(4) | 66655 | 5304
28 | 4x8(5) | 75181 | 5983 | -
28 | 4x8(6) | 74948 | 5964
56 | 4x8(9) | 85648 | 6816 | .
56 |4x8(10)| 80158 | 6379
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It is shown in Tables 3.4 through 3.6, that the respective 28 compressive strengths
(f’.) for the Eagle Precast, 669 Bridge Deck, and 668 Bridge Deck were 12,280 psi, 5,796
psi, and 5,973 psi. It is important to mention that the Eagle Precast sample corresponds to
the Self Consolidated High Performance Concrete used in the casting of the precast
bridge decks. Each of the mix designs exceeded to required compressive stress of 4,000
psi according to the UDOT Bridge deck standards.

Figure 3.6 shows a plot of the compressive strength versus time for all three

concrete samples.
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Figure 3.6 Compressive strength vs. time for all three concrete samples.
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3.2 Modulus of Elasticity

When the concrete is loaded within its elastic region, it is assumed that the stress
is directly proportional to the strain. Taking advantage of this property, a concrete
specimen can be axially loaded, and the shortening of the cylinder in the direction of the
load is measured. Knowing the cross-sectional area of the cylinder and the length of the
gauge, measuring the deformation the stress and strain can be calculated and then plotted
on a curve. The slope of that curve in the elastic region is a measure of the modulus of
elasticity.

For this research the procedures followed to perform the modulus of elasticity test
were those contained in the ASTM C469 Standard. The concrete sample used for these
tests consisted in 6-by-12 in. cylinders.

When conducting a modulus of elasticity test, two aspects must be taken into
consideration: 1) the loading speed and 2) the maximum load applied.

For the first aspect, the ASTM standard states that the rate of loading is to be in
the range of 35 = 5 psi/s (in our case 59,000 lbs/min), and this loading rate must remain
constant throughout the duration of the test. The reason for having a loading range is
because at slower rates of loading additional creep can be developed in the specimen.
This creep effect can be reduced by a more rapid rate of loading. For the second aspect,
the ASTM procedure mandates that the maximum load applied to the specimen shall not
exceed 40 percent of the tested ultimate load. The justification for this limit is due to
micro cracks that develops at higher loads and propagates throughout the specimen

negatively affecting the curvature of the stress-strain curve.
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Two 6-by-12 in. specimens were tested at the ages of: 1, 3, 7, 14, 28, and 56 days.

For each day, an average modulus of elasticity was calculated for each set of samples.

The testing procedure was as follows: first a 4-by-8 in. cylinder was tested in order to

determine the ultimate compressive strength of the concrete sample. Second, the 6-by-12

in. cylinders were loaded to the equivalent load that produces 40 percent of the ultimate

strength. During the test the deflections were monitored with an electronic LVDT. The

loading was registered in the data acquisition system and use to calculate the modulus of

elasticity using the Eq. 3.2.

o, -0,
£, —0.000050
where

E= Chord or Secant Modulus of Elasticity (psi).

o,= Stress at 40 percent of the failure load (psi).

o= Stress at a longitudinal strain of 0.000050.

€,= Strain corresponding to stress G,.

(3.2)

The results of the modulus of elasticity tests performed to the Eagle Precast

concrete samples are shown in Table 3.7. The results of the modulus of elasticity tests

performed to the 669 Bridge Deck concrete are shown in Table 3.8. The results of the

modulus of elasticity tests performed to the 668 Bridge Deck concrete are shown in Table

3.9.



Table 3.7 Eagle precast sample modulus of elasticity

Test Age (d)| Average E (psi)
1 3.318E+06
3 4.017E+06
7 4.460E+06
14 4.991E+06
28 4.815E+06
56 5.074E+06

Table 3.8 669 Bridge deck sample modulus of elasticity

Test Age (d) | Average E (psi)
1 2.580E+06
3 3.191E+06
7 3.751E+06
14 3.872E+06
28 4.389E+06

Table 3.9 668 Bridge deck sample modulus of elasticity

Test Age (d) | Average E (psi)
11 4.210E+06
18 4.117E+06
28 4.407E+06
60 4.447E+06

36

A plot of modulus of elasticity vs. time is depicted in Figure 3.7. As expected the
modulus of elasticity reduces its rate of increasing after 28 days. The higher modulus of
elasticity was observed in the concrete of the Eagle Precast sample, with a modulus of
elasticity of 4,815 ksi, this was expected, since the modulus of elasticity is dependent on
the concrete strength, and this is the concrete with the highest specified strength.

Figure 3.8 shows a plot of the modulus of elasticity calculated using the Eq. 3.3
given by the ACI 318 §8.5.1 and the measured values of average ¢ (psi) on Tables 3.3,

3.4, and 3.5 for the different concrete samples.

E = 57,000~/f ¢ (3.3)
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Figure 3.7 Summary of the modulus of elasticity vs. time for all three samples.
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Figure 3.8 Modulus of elasticity vs. time using the Eq. 3.3.
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It can be observed that the Eq. 3.3 overestimates the values of modulus of
elasticity for the higher strength concrete (Eagle Precast) with a ratio of the calculated
over the measured of 1.31 at 28 days of age. For the samples pertaining to the 669 Bridge
Deck and 668 Bridge Deck, the Eq. 3.3 gives a very accurate results with a ratio of the

calculated over the measured of 0.98, and 0.99, respectively at 28 days of age.

3.3 Shrinkage

Since the concrete is a porous solid, it shares a property common to most porous
solids in that it shrinks as a result of a reduction of its water content. Since the most
common use of concrete is in the making of reinforced concrete structures, the restraint
imposed to the concrete by the inclusion of reinforcing steel causes induced stresses to
develop in the structure. If these stresses are higher than the tensile strength of concrete,
cracks will form, compromising the structural integrity of the structure.

The shrinkage of the concrete is influenced by the elastic properties of the cement
paste and aggregates and their shrinkage. In addition to the influence of the restrain
imposed by the aggregates and the unhydrated cement, the relative humidity of the
environment, drying time and water cement ratio also influence the magnitude of the
shrinkage. Because shrinkage is affected by so many different factors, accurate
predictions are difficult to determine.

The shrinkage tests performed on the concrete deck samples for this research were
made following the provisions in the ASTM C157 standard. The test specimens consisted
of concrete prisms with dimensions equal to 3-by-3-by-16 in. Metal studs where

embedded at both ends of the specimen, in order to fit the reading apparatus. The



specimens where kept out of the moisture room, in order to simulate field curing

conditions.
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An electronic gage comparator system was used to take readings at the ages of: 3,

7, 14, 28, and 56 days.

Shrinkage strain at each test day was calculated using the Eq. 3.4.

CR-1IR
E=——

G

where

€= strain of the specimen at test age.

CR= Comparator reading at the test age.

IR= Initial reading.

G= Gage length.

(3.4)

Table 3.10 shows the raw tests measurements for all three concrete deck samples.

Using Eq. 3.3 and the raw data in Table 3.10 the strain was calculated. The results are

shown in Table 3.11, Table 3.12, and Table 3.13. A plot of the strain of all three samples

vs. time is shown in Figure 3.9.

Table 3.10 Shrinkage test recordings

age (days) :Eagle Precgst Sampleg age (days) 6?9 Bridge I32eck Samplgs age (days) 668 E;ridge Deck Sa;nples
original 0.3880 0.3735 0.2594 original 0.3176 0.2824 0.2555 original 0.2017 0.1314
3 0.3872 0.3727 0.2583 3 0.3159 0.2806 0.2537 11 0.1974 0.1271
7 0.3866 0.3712 0.2552 7 0.3123 0.2780 0.2513 18 0.1974 0.1270
14 0.3822 0.3686 0.2537 14 0.3101 0.2764 0.2473 28 0.1963 0.1262
28 0.3804 0.3667 0.2511 28 0.3091 0.2754 0.2458 60 0.1950 0.1246
56 0.3798 0.3658 0.2502 56 N/A N/A N/A N/A N/A




Table 3.11 Strain of eagle precast samples in [LE

age (days) 1Eagle Precgst Sampleg Average
1 0.0 0.0 0.0 0.0
7 162.3 214.5 324.6 233.8
14 220.3 268.1 314.5 267.6
28 353.6 307.2 394.2 351.7
56 394.2 365.2 4522 403.9
Table 3.12 Strain of 669 Bridge deck samples in pe
age (days) 6?9 Bridge I32eck Samplgs Average
1 0.0 0.0 0.0 0.0
7 272.5 220.3 208.7 233.8
14 440.6 353.6 481.2 425.1
28 539.1 452.2 608.7 533.3
Table 3.13 Strain of 668 Bridge deck samples in Le
age (days) 668 B1r|dge Deck Sazmples Average
1 0.0 0.0 0.0
19 249.3 255.1 252.2
28 313.0 301.4 307.2
60 388.4 394.2 391.3
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Figure 3.9 Strain vs. time.

3.4 Freeze and Thaw

Most concrete decks are exposed to climate changes. When the structure is
subjected to some degree of saturation, a problem arises; this problem is the freezing of
the water entrained in the concrete. Since water increases in volume by approximately
9%, this expansion translates in pressurizing the water in the concrete pores, and if this
pressure exceeds the concrete capacity in tension, a crack will form. In addition, concrete
subjected to repeated cycles of freezing and thawing deteriorates over time.

This problem is aggravated when thawing occurs. Thawed water migrates to other

parts of the structure, resulting in different cracks. When the structure is subjected to
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various cycles of freezing and thawing different parts of the structure begin to crack. In
the beginning this could express as surface scaling, but in advanced stages this could
become in permanent damage to the concrete deck.

The resistance of the concrete to these freeze-thaw cycles is dependant of many
factors, such as the strength of the hardened cement paste, air entrained in the concrete
and its porosity. A concrete with a low water to cement ratio will be less likely to be
affected by the freeze and thaw cycles, due to its relatively low porosity.

In order to simulate this freeze-thaw condition in the lab, 3-by-3-by-16 in.
samples of concrete were made (Figure 3.11) from each of the deck concretes. The
procedure followed to perform this test was the one described in the ASTM C666
Standard, Procedure A. The test specimens were placed in a freeze/thaw chamber
submerged in water (Figure 3.10), the water above the surface of the test specimens could
not be lower than 1/32” and could not surpass 1/8”. The test specimens remained in the
freeze-thaw chamber for approximately 300 cycles. Every 30 cycles the test was stopped,
and then the fundamental transverse natural frequency of the test specimen was measured
using a dynamic signal analyzer (Figure 3.12).

With these values of fundamental natural frequency, the Relative Dynamic

Modulus of Elasticity can be calculated using Eq.3.5.

_nj
Pc= = x 100 3.5
where

P. = Relative dynamic modulus of elasticity.

n;= Fundamental transverse natural frequency of the sample at time of testing.



Figure 3.10 Freeze thaw chamber.

Figure 3.11 Concrete samples for the freeze-thaw test.

43



Figure 3.12 Dynamic signal analyzer.

n= Fundamental transverse natural frequency of the sample at the initial time.
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The values of the fundamental transverse natural frequency collected from each of

the deck samples are listed in the Table 3.14, it can be seen that no data could be acquired

from the Eagle Precast sample 3 due to excessive deterioration of the sample as can be

seen in Figure 3.13.

Table 3.14 Fundamental transverse natural frequencies

Frecuency (KHz)
No. Cycles Eagle Precast 2 669 Bridge Deck 668 Bridge Deck
Sample 1 |Sample 2 |Sample 3 [Sample 1 [Sample 2 |Sample 3 |Sample 1 |Sample 3
0 4.82 4.90 4.64 4.82 4.79 4.78 4.78 4.75
68 4.63 4.74 4.12 4.75 4.83 4.84 4.72 4.76
108 4.67 4.74 N/A N/A 4.84 N/A 4.92 4.91
138 4.98 5.06 N/A 4.95 5.07 5.07 5.06 5.02
168 4.90 5.05 N/A 4.70 4.85 4.92 5.02 5.01
198 4.89 5.01 N/A 4.85 4.86 4.90 5.05 5.04
228 4.78 5.04 N/A 4.81 4.81 4.98 5.09 5.07
258 4.90 5.05 N/A 4.72 4.87 4.93 5.10 5.06
288 4.88 5.00 N/A 4.88 4.92 4.95 5.13 5.01
318 4.92 5.02 N/A 4.89 4.96 5.01 5.10 5.10
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Figure 3.13 Eagle precast sample 3.

Using Eq. 3.5, and the fundamental natural frequencies data contained in Table
3.14, the relative dynamic modulus of elasticity was calculated, the results are in Table
3.15.

Table 3.16 shows the durability factors calculated for every sample. From the
results it can be seen that the lowest durability factor for either sample was no lower than

0.96.

3.5Chloride Ion Penetration

The chlorides do not attack the concrete directly; they attack the reinforcing steel,
being a major cause of corrosion of the rebar. Once corrosion commences, the rebar

expands, subsequently cracking the concrete.



Table 3.15 Relative dynamic modulus of elasticity
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Frecuency (KHz)
No. Cycles Eagle Precast 2 669 Bridge Deck 668 Bridge Deck
Sample 1 |Sample 2 [Sample 3 |Sample 1 |Sample 2 [Sample 3 |Sample 1 |Sample 3
0 100.00 [ 100.00 | 100.00 [ 100.00 | 100.00 | 100.00 | 100.00 | 100.00
68 96.16 96.73 88.79 98.55 100.84 | 101.26 | 98.64 100.11
108 96.99 96.73 N/A N/A 4.84 N/A 102.76 | 103.22
138 103.39 103.31 N/A 102.61 105.76 106.11 105.73 105.58
168 101.77 | 103.06 N/A 97.51 101.25 | 102.93 | 104.96 | 105.43
198 101.56 | 102.24 N/A 100.62 [ 101.46 | 102.51 | 105.58 | 105.96
228 99.27 102.86 N/A 99.79 100.42 104.18 106.42 106.59
258 101.77 103.06 N/A 97.93 101.67 103.14 106.61 106.44
288 101.35 | 102.04 N/A 101.24 | 102.71 [ 103.56 | 107.25 | 105.43
318 102.18 | 102.45 N/A 101.45 | 103.55 [ 104.81 | 106.52 | 107.32
Table 3.16 Durability factors
Frecuency (KHz)
No. Cycles Eagle Precast 2 669 Bridge Deck 668 Bridge Deck
Sample 1 |Sample 2 |Sample 3 [Sample 1 [Sample 2 [Sample 3 |Sample 1 |Sample 3
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
68 0.96 0.97 0.89 0.99 1.01 1.01 0.99 1.00
108 0.97 0.97 N/A N/A 1.01 N/A 1.03 1.03
138 1.03 1.03 N/A 1.03 1.06 1.06 1.06 1.06
168 1.02 1.03 N/A 0.98 1.01 1.03 1.05 1.05
198 1.02 1.02 N/A 1.01 1.01 1.03 1.06 1.06
228 0.99 1.03 N/A 1.00 1.00 1.04 1.06 1.07
258 1.02 1.03 N/A 0.98 1.02 1.03 1.07 1.06
288 1.01 1.02 N/A 1.01 1.03 1.04 1.07 1.05
318 1.02 1.02 N/A 1.01 1.04 1.05 1.07 1.07

This is why the study of the chloride ion penetration through the deck concrete

cover is important.

The chlorides ions can be present in the concrete from different sources; one of

the major causes of the presence of chloride ions in bridge decks is the deicing salt. Other

important source of chloride ions is the sea water in contact with concrete structures,

airborne sea water drops that travels from the sea shore into the main land. Submerged




47

structures are subject to a deeper penetration of the chloride ions, but since oxygen is not
present in the cathode corrosion of the steel is not a problem.

The procedure followed in this research for investigating the ability of the
concrete deck samples to resist the chloride ion penetration is the one described in the
ASTM C1202 standard. For this test, two samples of each concrete deck were prepared.
The preparation of the samples was as follows: first two slices of two inches in thickness
were cut from a 4-by-8 in. concrete cylinder; the concrete was then covered in the side
surface by a concrete water sealant, in order to prevent water migrating from the inside.

After that the samples were placed in a vacuum desiccator (Figure 3.15) and the
air was removed over a 3-hour period. After which, the specimen was left to soak in
distilled water for 18 hours. Subsequently, the specimen was removed from the water, the
excess water was blotted off, and the specimen was transferred to the testing apparatus.
The contact surface between the specimen and the testing apparatus was sealed with a

special silicone sealer.

Figure 3.14 Chloride ion penetration apparaus.
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Figure 3.15 Vacuum desiccator apparatus.

Then the cell that is connected to the negative terminal of the power supply was
filled with a 3.0% NaCl solution, the other cell (the one that is connected to the positive
terminal of the power supply) with a 0.3 N NaOH solution. Connections were made
through a voltage power supply. The power was turned on then the voltage was set to
60.0 V £ 0.1 V and the initial current was then registered. For a period of 6 hours, the
current was read and recorded every 30 min.

According to the ASTM C1202, the total charge passed through the 2-in.
specimen is a measure of the conductance of the concrete during the period of the test.
Since the current was recorded every 30 min, the standard recommends the following

equation for calculating the charge passed by the specimen:

Q = 900(Iy + 2Isg + 2Igg ... + 2500 + 21330 + I360) (3.6)

where
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Q = Charge passed (coulombs).
I, = Current (amperes) immediately after voltage is applied.
I; = Current (amperes) at t min after voltage is applied.
This test is standardized for specimens with a diameter of 3.75 in. Since our
specimens were 4 inches in diameter a correction shall be made according to the ASTM,

using the following equation:

Qs =0 (ﬁ)2 (3.7

where

Qs - Charge passed (coulombs) through a 3.75-in. (95-mm) diameter specimen,
Q = Charge passed (coulombs) through x in. diameter specimen.

x = Diameter (in.) of the nonstandard specimen.

Table 3.17 shows the recorded current readings for all of the three samples. Using
these recorded readings and with the aid of Eq. 3.6 the charge passed was calculated and
the results are given in the Table 3.18.

The ASTM C1202 gives some guidelines for comparing the results obtained in
this test. These guidelines are presented in Table 3.19 excerpted for the standard. Judging
by the results presented in Table 3.18, and comparing with the guidelines in Table 3.19,

all three concretes have very low chloride ion permeability.



Table 3.17 Recorded current readings

Minutes Current (miliamp)
Eagle Precast 669 Bridge Deck 668 Bridge Deck
elapsed
1 2 1 2 1 2
0 13.6 16.5 37.4 40.0 42 1 38.2
30 11.5 16.3 35.4 40.0 44.3 38.1
60 10.8 15.2 35.1 38.2 46.8 38.0
90 10.3 15.0 34.8 38.1 49.0 37.5
120 10.0 15.0 34.5 37.8 50.3 37.3
150 9.4 14.8 34.5 37.6 51.0 37.2
180 9.1 14.7 33.8 37.5 51.9 37.3
210 8.9 14.5 33.7 37.1 52.3 36.9
240 8.7 141 33.6 37.1 53.0 36.8
270 8.6 14.0 33.3 36.5 53.1 36.7
300 8.5 14.0 33.0 36.4 53.3 36.8
330 8.4 13.9 33.0 36.7 53.5 36.3
360 8.2 13.9 33.1 36.4 54.0 36.1

Table 3.18 Charge passed through the specimens (coulombs)

Eagle Precast 669 Bridge Deck 668 Bridge Deck
Q(coulombs) 262.6 775.0 947.3
Q(coulombs) 230.8 681.2 832.6

Table 3.19 Chloride ion permeability based on charged passed

Charge Passed Chloride lon
(coulombs) Penetrability
>4,000 High
2,000—-4,000 Moderate
1,000-2,000 Low
100-1,000 Very Low
<100 Negligible
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CHAPTER 4
PREDICTED VS. MEASURED PRESTRESS LOSS AND DEFLECTIONS IN HIGH

PERFORMANCE CONCRETE GIRDERS

In this chapter a comparison between measured prestress loss and predicted
prestress loss methods is presented and discussed. Prestress losses were monitored in six
HPC bridge girders. The bridge instrumented was the 669 State Bridge near Farmington,
Utah. These measured losses were compared to predicted losses according to four
sources. Prestress loss predictive methods considered for this research were: 1- AASHTO
LRFD 2004, 2- AASHTO LRFD 2004 Refined, 3- AASHTO LRFD 2007, and 4-
AASHTO LRFD Lump Sum method.

On the second part of this chapter a comparison of measured deflections and
predicted deflections of concrete bridge girders are presented. The camber in the
SR18/SR516 Bridge in the state of Washington was monitored and the measured camber
compared to the following predictive methods: 1- Time dependent method described in

NCHRP Report 496, 2- PCI Multiplier Method, and 3- Improved PCI Multiplier method.

4.1 Predicted vs. Measured Prestress Loss

Accurate prediction of the long term prestress losses in concrete-bridge girders is
an important part of the design process. An overprediction in the prestress loss could
mean a limitation of the span length of the girder, and a considerable increase in the
prestressing force required to overcome such losses. On the other hand, an under-
prediction of the prestress losses could translate into undesired deflections and cracking

under service conditions. Since in many concrete-bridge girders the cracking control
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under service loads is the controlling part in the design process, a precise but safe
prestress loss prediction method is imperative.

Prestress losses can be defined as a decrease in the initial prestressing force. There
are two main types of prestress losses depending on the time of their occurrence. The first
is the instantaneous elastic shortening loss and the second type is the long-term losses,
mostly due to relaxation of the prestressing strands and creep and shrinkage of the girder
concrete and the shrinkage of the deck concrete. Prestress losses are also influenced by
other time dependant concrete properties, like its compressive strength and its modulus of
elasticity.

Throughout the service life of a prestressed concrete girder, a number of changes
occur in the prestressing strands; those changes are presented graphically in Figure 4.1
taken from the NHCRP Report 496 (Tadros et al., 2003). Figure 4.1 also shows that there
are some stress gain in the strand due to additional loads applied to the structure, such as,
the casting of the concrete deck, and the superimposed dead load (SIDL). The latter
consists mainly of the collocation of the concrete barriers that serve as the bridge

boundaries.

4.1.1Girder and instrumentation
description

For the purpose of this research, long-term prestress losses were monitored in
select girders from Bridge 669 located near Farmington, Utah. Bridge 669 is a three span
prestress concrete girder bridge. The three spans have lengths of 132.2, 108.5, and 82.2
feet long, respectively. Eleven AASHTO Type VI precast prestressed girders were used

to support the deck in each span.
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Figure 4.1 Stress in the strands of a prestress concrete girder vs. time (Tadros et al.,
2003).

The girders were spaced at 6.9 feet on center, which resulted in a total bridge
width of 76.3 feet. The bridge was built on a skew angle of 25°. The reinforced-concrete
deck was constructed as an 8-in. thick cast-in-place slab. The strands used in the girders
were (0.5-in. diameter low relaxation strands. An elevation view, as well as, a plan view
of the bridge can be seen in Figure 4.2 and Figure 4.3, respectively.

For the scope of this research, select girders were instrumented in the first and
third spans. Due to the ease of access of the data collection units attached at the
abutments of the bridge located at the beginning of Span 1 and at the end of Span 3. The
girders located on the first span (132.2 ft.) required 66 prestressing strands; the girders
located in span three (82.2 ft.) required 26 strands. Figure 4.5 shows a cross-sectional
view of the prestressing strands for the girders located in the first and third span. In all,

three girders from the first and third span, respectively, where instrumented.
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Figure 4.4 669 Bridge looking north.

Twenty-four vibrating wire strain gages (VWSG) were used. The VWSG were
installed at midspan of each girder. The location of the VWSGs in each cross section of
the girders was as follows: two VWSG were placed at the centroid of the prestressing
strands of the girder and two VWSG located at different locations up through the web of

the girders. The latter two were placed at 29 and 59 inches from the bottom of the girder.

4.1.2 Prestress loss

With the aid of the VWSG in the centroid of the prestressing strands (Figure 4.7

and Figure 4.8) the strain in the girders was measured. The average of the two VWSG in
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each girder was taken. A plot of the average strain in the girders is shown in Figures 4.7
and 4.8 for the 82- and 132-foot-long girders, respectively. As expected the strains are
higher on the 132-foot-long girder. The average strain recorded on the last day of
readings for the 82-foot-long girder was around 770 pe. The average strain recorded for
the 132-foot-long girder was in the order of 1100 €.

With the measured strain and the use of Eq. 4.1 the loss in prestress can be

calculated. Figures 4.9 and 4.11 show the prestress losses calculated with the use of the

Eq. 4.1.
Af,r = E A€, 4.1)
where
Af,r= the change in steel stress due to total prestress loss.
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Figure 4.5 Design of the prestressing strands for first and third span girders.
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Figure 4.6 Typical strain data from an instrumented girder.

E, = modulus of elasticity of the prestressing steel (28,500 ksi).

A& = measured change in strand strain.

On the last day of readings, the average prestress loss for the 82- and 132-foot
girders were 21 and 32 ksi, respectively. These prestress losses represent a 10.4 and a
15.8 percent loss of the initial prestressing stress (jacking stress 202.5 ksi), for the 82-
and 132-foot-long girders, respectively.

Figures 4.9 and 4.11 present a comparison of the measured prestress losses with
the AASHTO LRFD 2004 and 2007 Specifications methods for predicting loss, as well as
the refined method in the AASHTO LRFD 2004 Specification.

For the calculations used in the ASSHTO specifications prediction methods, the

specified values of the concrete properties were used.
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Figure 4.10 Average strain measured in the 132-foot girders.

59



40
A
Z 30
=
1)
17
o
3
%)
1)
o
@ 20
o
—O0— Girder A
—a——  Girder B
4 —0— Girder C
10 AASHTO LRFD 2004
——— AASHTO LRFD 2004 Refined
—=&— AASHTO LRFD 2007
A AASHTO Lump Sum Method
0= T T T T T T
0 100 200 300 400
Age (days)

60

Figure 4.11 Measured vs. predicted prestress loss (using calculated values) for the 82-foot

girders.
40 7
a
';3\ 30 7
= - -9 v
[} _ .
7] .
) o
4 -
0
7]
o
b
o
o
—O0— Girder A
——  Girder B
—O— Girder C
10 AASHTO LRFD 2004
—— AASHTO LRFD 2004 Refined
—=&— AASHTO LRFD 2007
- AASHTO Lump Sum Method
0 T T T T T T
0 100 200 300 400
Age (days)

Figure 4.12 Measured vs. predicted prestress loss (using measured values) for the 82-foot

girders.



60

50

Prestress Loss (ksi)

Girder A

Girder B

Girder C

AASHTO LRFD 2004
AASHTO LRFD 2004 Refined
AASHTO LRFD 2007
AASHTO Lump Sum Method

Figure 4.13 Measured vs. predicted prestress loss (using calculated values) for the 132-

foot girders.

100

200

T
300
Age (days)

400

500

60
50
=
=
n
(%]
o]
4
(2]
7]
o
0
<
o
20 —o—  Girder A
—-——  Girder B
——— Girder C
7 AASHTO.LRFD.2004
———  AASHTO.LRFD.2004.Refined
10 —&— AASHTO.LRFD.2007
A AASHTO Lump Sum Method
0 —\:!{ T T T T T
0 100 200 300 400 500
Age (days)

Figure 4.14 Measured vs. predicted prestress loss (using measured values) for the 132-

foot girders.

61



62

For the 82-foot-long girders, the AASHTO LRFD 2004 specification and the
modified 2004 specification overpredicted the prestress loss on the girders (Figure 4.11).
The AASHTO LRFD 2007 specification gives a more accurate prediction of the prestress
loss for these girders, even though it slightly under predicts the losses. For the 132-foot
girders (Figure 4.13) the AASTHO LRFD 2004 also overpredicts the prestress loss. On
the other hand, for these girders the AASHTO LRFD 2004 modified and 2007
specifications gives a fairly accurate prediction for the prestress loss. Being the AASHTO
LRFD 2004 refined specification the most accurate of the two.

A similar approach is presented in Figures 4.12 and 4.14, but instead of using
specified values for the calculations of the predicted prestress losses according to
AASHTO LRFD 2004, 2007 and 2004 modified specifications, the measured values
presented in Chapter 3 of this research were used. No significant difference was
observed, in the 82-foot girder, when the measured values were used for the calculations
(Figure 4.13), when compared to the specified values based calculations (Figure 4.14).
These comments are also valid for the 132-foot girders, when a comparison between
Figures 4.11 and 4.12 is made.

Table 4.1 compares the total prestress loss for the different prediction methods
using specified values with the average measured prestress loss for the 132-foot girder.
The most accurate method, within 1percent difference with respect to the measured
prestress loss, for these girders was the AASHTO Lumped Sum method. AASHTO
LRFD 2004 and 2007 gives fairly accurate predictions for the prestress loss.

Similarly, Table 4.2 compares the values of the prediction methods calculated

using specified values with the average measured prestress loss for the 82-foot girders.



63

Once again the AASHTO LRFD 2004 refined and AASHTO LRFD 2007 were within an

acceptable range.

Table 4.1 Total calculated (using specified values) and measured prestress loss for the

132-foot girder

Prediction Method Prestress Loss (ksi) Percent Difference
AASHTO LRFD 2004 57.8 80%
AASHTO LRFD 2004 Refined 334 4%
AASHTO 2007 27.5 -14%
AASHTO Lump Sum 31.7 -1%
Average Measured Data 32.0

foot girder

Table 4.2 Total calculated (using specified values) and measured prestress loss for the 82-

Prediction Method Prestress Loss (ksi) Percent Difference
AASHTO LRFD 2004 43.0 105%
AASHTO LRFD 2004 Refined 28.2 34%
AASHTO 2007 16.9 -20%
AASHTO Lump Sum 31.7 51%
Average Measured Data 21.0

4.2 Measured vs. Predicted Deflections in Prestressed Concrete Bridee Girders

4.2.1 Introduction

Prestressed concrete members are typically more slender than reinforced concrete
members. Because of this attribute, the prediction of deflections requires special
consideration. For prestressed concrete girders, designed to be fully prestressed, the
emphasis must be made in the upward deflection, or camber. Since shrinkage and creep
are inherent properties of concrete, this camber may increase with time due to these
properties. Camber of bridge girders, may result in invasion of the girder in the road

profile, or an irregular surface, in addition, the effects of the permanent dead load and
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live load to the final midspan deflection must be investigated to guarantee the members
serviceability.

The application of a prestress force, in a simply supported beam, will cause
upward camber. Creep, shrinkage and steel relaxation produce a reduction in the camber
due to the initial prestress. While prediction of camber may be difficult, due to the time-
dependents factors mentioned above, good models are available for calculating the effects
of creep and shrinkage on concrete, which permits the calculation of deflections within
acceptable ranges of accuracy.

In this chapter, the theoretical basis that served for the development of a MatLab
script using the time dependent effects listed in the NCHRP Report 496 and an
explanation of the PCI multiplier method is presented. Finally, the calculated results
obtained using both these methods are compared to measured values recorded over three

years on a typical three-span, prestressed concrete girder bridge.

4.2.2 Prediction methods

4.2.2.1 Detailed time dependent formulation. The camber in a prestressed

concrete girder is dependent on many factors: strands properties and configuration, initial
prestress losses due to the relaxation of the strands while the girder is still in the casting
yard, time dependent effects due to creep and shrinkage, and the sustained loading due to
service and self weight of the structure (Hinkle, 2006).

Several methodologies have been developed by researchers to calculate the girder
camber over time. The formulas for calculating the girder camber presented in this
section were taken based in the provisions of the NCHRP Report 496. The curvature of

the girder was calculated by breaking the girder into 10 equal segments along the total
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length of the girder and calculating the curvature at each nodal location. Each of these
nodal curvatures were calculated for every time step, taking into account the conditions
inherent to each step (i.e. loading conditions, section properties, etc.).

The formula for calculation the total nodal curvature is presented in Eq. 4.2. The
total curvature is obtained by subtracting, all the curvatures produced by the loading
conditions and time dependent factors, such as creep, shrinkage and relaxation of the

prestressing strands from the initial curvature due to the prestress force.

P = ¢fpi - ¢g7selfw. - ¢fp - ¢d7selfw. - ¢fplongterm 4.2)
where

0= Total curvature at time step i.

0pi= Curvature of the girder due to the initial prestress force.

0, seiw= Curvature of the girder due to its self weight.

0= Curvature of the girder due to the prestress loss at transfer.

04 seipwv= Curvature of the girder due to the self weight of the deck.

Opiongrerm= Curvature of the girder due to prestress loss from deck placement to end of
time step.

From elementary mechanics we know that the curvature of any particular cross
section is a function of the external moment, modulus of elasticity and moment of inertia,
¢ = M/EL Thus all the curvatures calculated using Eq. 4.2 were calculated based on this
principle. For any given time and location along the girder, the stress was calculated for
the prestressing strands (procedures for calculating stresses are described later on this

chapter), then this stress (or sum of stresses) was multiplied by the total strand area, as a



66

result of this product, a force is obtained. Finally, the prestressing force multiplied by the
eccentricity provides an equivalent moment. With this value of moment (M) and the
mechanical properties of the girder (EI), a curvature can be calculated. For each load and
time — dependent effects, a series of specific calculations must be done. These
calculations can be summarized into the following five steps:

1. Calculate the curvature of the girder due to the initial prestress force.

e
¢_fpi = fpi XAP5 Xﬁ (43)

ci tr_i

where

04i= Curvature due to initial prestress force.

fpi= Initial jacking stress applied to the strands.

A,,=Total cross sectional area of the prestressing strands.

e,= Distance from centroid of the girder to centroid of prestressing strands based on
transformed girder properties.

E .= Concrete modulus of elasticity at transfer.

I;, /= Moment of inertia of the transformed section at transfer.

2. Calculate the curvature due to the self weight of the girder.

M
- 4.4)

¢g_xelfw =
Eci XItr_i

where
0s_sefiw= Curvature due to self weight of the girder.

M= Moment of the girder due to its self weight.
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3. Calculate the curvature due to the prestress loss at time of transfer time:

(AfpSR +Afper + AP, )X ApsXe, final
I  XE,

¢fp = 4.5)

bm _tr _ |

where
0p,= Curvature of the girder due to the prestress loss after transfer.
Afpsg= Prestress loss due to shrinkage at time t;.
Afpcr= Prestress loss due to creep at time t;.
Afpro= Prestress loss due to relaxation of the prestressing strands at time t;.
eu_finai= Distance from centroid of girder to centroid of prestressing strands based on 28
day section properties.
Ibm_t = Moment of inertia of the transformed section at 28 days strength concrete
properties.
The prestress loss (in ksi) due to concrete shrinkage between transfer and deck

placement is obtained by the Eq. 4-5:

Afpse = €,y XE, XK, 4.6)
where

€pig= Girder shrinkage strain from strand transfer to deck placement.

E,= Modulus of elasticity of the prestressing strands.

Kj4= Transformed section age — adjusted effective modulus of elasticity factor, for
adjustment between transfer and deck placement.

The girder shrinkage strain is then obtained by:



5
1+ fci

£, = 0.00048( JKSK,”K“,

_145-0.13V
Ky =145-013V/C

K, =2.0-0.0143H
B t

S 6l-4f, +t
where

td

Ks= size factor.

V/S= volume to surface ratio of the concrete girder.

Kps= Humidity modification factor.
H= Ambient relative humidity.
K¢= Time development factor.
f.i= Concrete’s strength at transfer.

1= Age of concrete after loading, in days.
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“4.7)

(4.8)
4.9)

(4.10)

The transformed section age — adjusted effective modulus of elasticity factor is

given by

1
K, =
! Aps
l+na, ——A+0.7y,.
i " net Anel‘ ( l//htf)
Aner Xeiner
aner = 1 t—
1

net

1//=1.9><K‘Y><th>{ JxK,dxti‘o‘118

ci

K, =1.56-0.008H

where

Ohe= Initial net section property factor.

4.11)

(4.12)

(4.13)

(4.14)
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Anet= Net section area of the girder.
I,e= Net moment of inertia of the girder.

epner= Distance from the centroid of the girder to the centroid of the strands based on net

section properties.
y= Girder creep coefficient.
K= Humidity factor for creep coefficient.

Then the prestress loss due to the concrete creep is equal to:

AprR = ni X f('gp X l//bid XKid (4‘ 15)
2
1 ep tramsfer Mg X ep transfer
Fop = f i X ApS X + - (4.16)
tr _transfer tr _transfer tr _transfer
where

n;= Modular ratio at transfer (Ey/E).

feep= Concrete stress at steel centroid.

fpi=Initial prestress prior to transfer.

Lir_transfer= Moment of inertia of the transformed section at transfer.

e, ransfer= Eccentricity of the prestressing strands relative to the transformed section at

transfer.
M= Moment due to the self weight of the girder.

In general, the prestress loss due to relaxation of the strands, according to Tadros
et al. (2003), is very small, ranging from 1.5 ksi to 4.0 ksi. The researchers recommend
that it may be convenient to assume a constant value of 2.4 ksi, equally split between the

two time periods: initial to deck placement and deck placement to time infinity. Therefore
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for the first part of these calculations, the relaxation losses will be assumed to be constant

and can be taken as:

Afpp, =12 4.17)

4. Calculate the curvature due to the weight of the deck:

[ M (4.18)

S 55)

where

bm_tr_f

M 4...= Moment of the girder due to the deck weight.
E.= Concrete modulus of elasticity at 28 days.
Ibm_t = Moment of inertia of the girder based on 28 day concrete properties.

5. Calculate the long-term curvature:

¢ _ zAfplongrerm X Apsx ecomp?ner (4 19)
longterm ~— .

« Ec X Icomp?net
AP tongierm = DPsrp + AP crp + AP rap + AIP crop + AIP svon (4.20)

where

Afpsrp= Prestress loss due to the shrinkage of the girder from deck placement to time
infinity.

Afpcrp= Prestress loss due to the creep of the girder from deck placement to time infinity.
Afprop= Prestress loss due to the relaxation of the strands from deck placement to time
infinity.

Afpsrpp= Prestress loss due to the shrinkage of the deck from its placement to time
infinity.

Afpcrpp= Prestress loss due to the creep of the deck from its placement to time infinity.



71

ecomp_ner= Eccentricity of the prestressing strands relative to the centroid of the composite
net section.

Icomp_ne= Moment of inertia of the composite net section.

AP spp = Epy X E Xk (4.21)
Afp crp =1, X ngp X (l//hif Vi )X kdf (4.22)
Afppop =12 (4.23)
e, wXE Xk, xA xXa,, M, Xxe,
AprRDD =nx _ b_id S id ps ne. +| = deck _f % l/fbdf % kdf (424)
Ab?net Ifr,f
gddf X Ad X Ecd 1 ep comp _ net X ed net
A =nx X +—— — Xk \1+0.7 4.25)
']?SRDD 1 + 0‘7Wdf Acomp _net I comp _ net o ( l//bdf ) (

The procedure described above can be easily implemented into a spreadsheet or a
MatLab script. For this research, the procedure was coded into a MatLab script so that it
can be easily applied to different girder configurations. This script is listed in Appendix

A. Once all the nodal curvatures are known, the nodal deflections can be calculated using

the Eq. 4.26.

@,
(A, (15 733 8 7 6 5 4 2 1 0.167] @,
A, 133 8 1433 14 12 10 4 2 0333]|®,
A, 1.167 7 14 1933 18 15 12 6 3 05 ||®,| (4.26)
A, 1 6 12 18 2233 20 16 12 8 4 0667|| P,
A, =(L1>8(1)§) 0833 5 10 15 20 2333 20 15 10 5 08331,
A, 0.667 4 8 12 16 20 2233 18 12 6 1 ||,
A, 05 3 6 9 12 15 18 1933 14 7 1167 || @,
Ay 0333 2 4 8 10 12 14 1433 8 1333 @,
A, | 10167 1 2 3 4 5 6 7 8§ 133 15 ||@,

@,
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4.2.2.2 PCI multiplier method. This section discusses two simplified methods for

calculating camber according the PCI Bridge Design Manual (1997), Chapter 8:

1. Multiplier methods.

2. Improved multiplier methods.

According the multiplier method, first the elastic deflections caused by the effects of
prestressing, girder self weight, and other dead loads are calculated using conventional
techniques. These changes in camber are multiplied by the appropriate factors selected
from Table 4.3 to determine the long term deflections that will occur as a result of time —

dependent behavior.

Table 4.3 Suggested PCI multipliers for the multiplier method.

Without Composite | With Composite
topping topping

At erection:
1. Deflection () component - apply to the elastic deflection due 1.85 1.85
to the member weight at the time of release of prestress
2. Camber (') component - apply to the elastic camber due to 1.80 1.80
prestress at the time of release of prestress
Final
3. Deflection () component - apply to the elastic deflection due 2.70 2.40
to the member weight at release of prestress
4, Camber () component - apply to the elastic camber due to 2.45 2.20
prestress at the time of release of prestress
5. Deflection () component - apply to elastic deflection due to 3.00 3.00
superimposed dead load only
6. Deflection () component - apply to elastic deflection caused 2.30
by the composite topping

An improved multiplier method (Tadros et al., 1985) is similar to the original

method described above. However, this method provides improvements, if reliable



73

estimates are available for the creep coefficient of the actual concrete mix, or if high—
performance concrete with a significantly lower creep coefficient is used, these more
accurate coefficients may be used. The multipliers for this method are given in Table 4.4.
Where
C.: Ultimate creep coefficient for loads applied immediately after transfer. Average value
is 1.88.
C’,: Ultimate creep coefficient for loads applied at time of erection. Average value is
1.50.
C.: Creep coefficient for loads applied immediately after transfer and strains measured at
time of erection. Average value is 0.96.
o: Time dependent prestress loss at erection divided by total time dependent prestress
loss. Average value is 0.60.
x: Bazant’s aging coefficient. Average value is 0.70.

For the purpose of this research, the average values were used in the calculations

of the camber using the PCI multipliers methods.

4.2.3 Bridge description

The deflection of several girders from a three span, prestressed, precast concrete
girder bridge was monitored for three years. The bridge monitored was the SR18/SR516
in the state of Washington. Fifteen bridge girders were fabricated for the three span
bridge. Ten girders from the exterior spans had spans length of 80 ft, and five girders

from the middle span had spans length of 137 feet.
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Table 4.4 Improved multiplier method coefficients

Erection Time Final Time
Load Condition Formula Average | Formula | Average
Initial prestress 1+C, 1.96 1+C, 1.96
Prestress loss o (1 +%C,) 1.00 (1 +%Cy) 1.00
Self weight 1+C, 1.96 1+C, 1.96
Dead load on plain beam 1.00 1.00 1+CY 2.50
Dead load on plain composite beam 1.00 1.00 1+C\, 2.50
N—
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Figure 4.15 Bridge layout.
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Figure 4.16 Bridge cross section at pier 2 looking north.
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The W74MG section was used for each of the girders regardless of the span. The
girders were designed as simply supported for girder self weight and three-span
continuous for live load. In the field the girders were made composite with a 7.5-in. thick
deck. The cross sectional properties for the girder and the composite section are listed in
Table 4.5.

Each bridge girder was fabricated with both harped web strands and straight
bottom flange strands. The web strands were harped at a distance of 0.4 times the length
from each end. Figure 4.17 shows an elevation of one half of one of the girders with the
typical tendon strand profile.

Figure 4.18 shows the measured camber for the 137-foot-long girder, whereas
Figure 4.19 shows the measured camber for the 80-foot-long girder.

Table 4.5 lists the design details for the bridge girders. The distances from the
bottom of the girder to the center of gravity of the harped web strands at the end and at
midspan are labeled W.c gand Wy,c g, respectively. The location of the center of gravity
of the bottom of the strands is labeled B¢ .. For the long girders 14 harped and 26

straight strands were used.

4.2.4 Measured deflection

The girder camber was monitored using two systems. For concentrated
measurements over short time periods a stretched-wire system was used. This system
used pulleys, weights and a trolley system to provide a reference frame from which to
make readings. An LVDT was used to record changes in camber. This LVDT connected

to a multiplexer, and the displacements recorded using a data logger.
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Table 4.5 Cross section properties

W74MG Girder | Composite Section

Depth (in) 73.4 80.9

Area (in°) 752.2 1185.9

| (in%) 546570.9 961964.8

yb (in) 38.2 52.4

Sb (in®) 14304.0 18368.0

yt girder (in) 35.2 21.1

St girder (in%) 15518.0 45694.6

yt slab (in) - 28.2

St slab (in%) - 34185.5
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Figure 4.17 Elevation of bridge girders.

The second camber monitoring system consisted in the use of a surveyor’s level.
Using this system, camber for girders A and C in Span 1 and girders A, B, and C in Span
2 were monitored for three years since casting (Figure 4.15). In addition, Girder B from
Span 1 and Girders D and E from Span 2 were monitored starting at erection.

Figure 4.18 shows the measured camber for the 137-foot-long girder, whereas
Figure 4.19 shows the measured camber for the 80-foot-long girder.

For the 137-foot-long girders the average measured camber at the time of release
was 3.99 in., the largest value of camber was measured in girder 2D with a value of 6.0
in. and the lowest value measured for these long span girders was measured in girder 2A
with a camber of 2.5 in.; this difference in the camber at the time of release is most likely

to be due to a difference in the curing conditions of the girders while in the casting yard.
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Before the deck was placed, the average camber observed on these girders was 5.47 in.,

after the deck placement, the camber measured was 4.32 in.

The average camber measured in the 80-foot-long girders was 0.51 in., the largest

value of camber was observed in girder 1A with a camber of 0.56 in., being the lowest

value observed in girder 1B with a camber of 0.49 in. at the time of release. The average

camber before the placing of the deck for these girders was 0.78 in. and after the deck

placement the average value went to 0.63 in.

Table 4.6 HPC bridge girders design details

Figure 4.18. Measured camber for the 137-foot-long girder.

, # of # of Jacking
Girder (Sdk:\’;/ Length 56 (d?)fc ?il'(aa;;e Harpened | Straight Stress Wrgr?).G. W?i(;).G. BC.G. (in)
9 P P Strands | Strands (psi)
Span 1 40 80 10200 5100 6 8 202.5 3.00 53.54 1.87
Span 2 40 137 10200 7500 14 26 202.5 3.37 44.50 3.37
Span 3 40 80 10200 5100 6 8 202.5 3.00 53.54 1.87
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Figure 4.19 Measured camber for the 80-foot-long girders.

4.2.5 Comparison of measured and
calculated deflection

In this section, observed and estimated values of camber are compared. The
estimated values of camber were calculated following the time-step method, the
multiplier method and the improved multiplier method presented in sections 4.2.2.1 and
4.2.2.2, respectively. For all the calculated values of camber, the modulus of elasticity
used in the calculations is described by Eq. 4.27. Table 4.7 lists the average girder
camber measured for the 80-foot girder with the values calculated using both PCI

multipliers methods and the NCHRP Report 496 method.
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Table 4.8 compares the average girder camber measured for the 137-foot-long

girder with the values calculated using both PCI multipliers methods and the NCHRP

Report 496 method.

1.5
E = (40000 /F_ {%}

4.27)

In general the PCI simple multiplier method for the Span 1 and Span 2 girders

slightly under predicted the camber at release with an average ratio of predicted over

measured of 0.96. This method over predicted the camber from transfer until the casting

of the deck with a predicted over measured average ratio of 1.33. Finally for the long

term camber this method barely over predicted the camber for the long span girder with a

ratio of 1.08 of the predicted over the measured. On the other hand this same method

under predicted the camber for the short span girder with a ratio of predicted over

measured of 0.78.

Table 4.7 Comparison of measured and predicted camber for the 80-foot-long girder

. Camber (in)
short Span Girders Release Before Deck| After Deck Final
Method Casting Casting
Average Measured 0.51 0.78 0.63 0.67
Multiplier Method 0.50 1.08 0.84 0.72
Improved Multiplier Method 0.50 1.08 0.85 0.90
NCHRP Report 496 Method 0.60 1.24 0.96 0.83




Table 4.8 Comparison of measured and predicted camber for the 137-foot-long girder

Long Span Girders Camber (in)
Before Deck| After Deck .

Release . ) Final
Method Casting Casting
Average Measured 3.99 5.47 4.32 4.55
Multiplier Method 3.73 7.04 4.99 3.55
Improved Multiplier Method 3.73 7.55 5.50 5.76
NCHRP Report 496 Method 3.98 6.88 4.95 4.10

8.00
7.00
6.00
5.00
==®-- Average Measured
4.00
—fli— Multiplier Method
Improved Multiplier Method
3.00
+++%-+« NCHRP Report 496 Method
2.00
1.00
0.00
Release Before Deck  After Deck Casting Final
Casting

Figure 4.20 Long span girders measured and calculated deflections.
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Figure 4.21 Short span girders measured and calculated camber.

The PCI improved multiplier method under predicted the camber at release for

both span girders, with a ratio of predicted over measured of 0.96 in average. For the rest

of the stages this method over predicted the camber of both span girders.

The NCHRP Report 496 method matched the camber for the short span girder at

release, and over predicted it by 18 percent for the long span girder. Thereafter this

method over predicted the camber from release to the casting of the deck, and the long

term camber too.
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CHAPTER 5

CONCLUSIONS

Five laboratory tests were performed on the concrete samples subject of this
research in order to characterize the mechanical and physical properties of the concrete.
In order to measure the prestress loss of the concrete bridge girders, 6 HPC girders were
instrumented with VWSG at the level of the centroid of the prestressing strands. The
measured deflections were compared to four prediction methods: AASHTO LRFD 2004
Specifications, AASHTO LRFD 2004 Refined Specifications, AASHTO LRFD 2007
Specifications, and AASHTO Lump Sum method.

The girder camber was monitored using two systems. For concentrated
measurements over short time periods a stretched-wire system was used. This system
used pulleys, weights and a trolley system to provide a reference frame from which to
make readings. An LVDT was used to record changes in camber. The second camber
monitoring system consisted in the use of a surveyor’s level. The measured camber was
compared to predicted camber calculated using the following predictions methods: 1-
Time-dependent method described in NCHRP Report 496, 2- PCI Multiplier Method and
3- Improved PCI Multiplier method.

From the results of this research, in both the 82- and 132-foot-long, the AASHTO
LRFD 2004 Refined Method does a better job predicting the prestress loss and it can be
concluded that all the prediction methods do a better job predicting the loss for the larger
girders. The Lump Sum method predicted very accurately the long-term prestress loss for

the 132-foot-long girders.
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The PCI simple multiplier method for the Span 1 and Span 2 girders slightly
under predicted the camber at release with an average ratio of predicted over measured of
0.96. The PCI improved multiplier method under predicted the camber at release for both
span girders, with a ratio of predicted over measured of 0.96 in. average. For the rest of
the stages this method over predicted the camber of both span girders.

The NCHRP Report 496 method matched the camber for the short span girder at
release, and over predicted it by 18 % for the long span girder. Thereafter this method
over predicted the camber from release to the casting of the deck, and the long-term
camber too.

Further research in short span girders is recommended in order to improve the
prediction methods for this type of girders for both prestress loss and deflections
prediction models.

The following can be concluded from this research:

1. The 28-day compressive strength for the Eagle precast sample was 12,280
psi, for the 669 Bridge deck sample was 5,796 psi and for the 668 Bridge
Deck sample was 5,973 psi.

2. The Secant modulus of elasticity for the Eagle Precast sample at the age of
28 days was 4.85x10° psi, for the 669 Bridge deck was 4.389x10° psi at
the same age and for the 668 Bridge deck was 4.407x10° psi.

3. The shrinkage tests performed showed that the strain at 28 days for the
Eagle precast concrete reached a value of 351.7x10°° ue, for the 669

Bridge deck concrete the strain at 28 days was 533.3x10° pe and for the

668 Bridge deck concrete, at the same age, was 307.2x10° LLE.
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. Freeze and thaw test showed very consistent results for all three samples,
consisting of Durability Factors around 1 for all three concrete samples.

. Chloride Ion penetration test showed that the total charge passed through
the Eagle precast concrete specimens was 230.8 coulombs, for the 669
Bridge deck concrete specimens was 681.2 coulombs and for the 668
Bridge deck concrete was 832.6 coulombs. All three concrete samples
have very low chloride ion permeability.

On the last day of readings, the average prestress loss for the 82- and 132-
foot-long girders was 21 and 32 ksi, respectively. These prestress losses
represent a 10.4 and a 15.8 percent loss of the initial prestressing stress
(jacking stress 202.5 ksi), for the 82- and 132-foot-long girders,
respectively.

. For the 132-foot-long girder when comparing the average measured
prestress loss with the prediction methods the percent difference for the
various methods was as follows: for the AASHTO LRFD 2004 80%, for
the AASTHO LRFD 2004 Refined 4%, for the AASHTO LRFD 2007
14%, and for the AASHTO Lump Sum 1%.

. For the 82-foot-long girder when comparing the average measured
prestress loss with the prediction methods the percent difference for the
various methods was as follows: for the AASHTO LRFD 2004 105%, for
the AASTHO LRFD 2004 Refined 34%, for the AASHTO LRFD 2007

20% and the AASHTO Lump Sum 51%.
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APPENDIX A. Matlab script for camber calculations.

A.1 Script for the long span girder.

%Beam Properties
A=752.22; %(inA2)
I=546570.9; %(inA4)
ybbeam=38.19; %(in)
VvS=2.89; %(in)
fpi=202.5; %(ksi)
L=137; %(ft)

%Material Properties

H=70; % Humidity (%)

fci=7.5; %(ksi)

fc=10.2; %(ksi)

fcd=5; %(ksi)

w=.14+fc/1000; % (kcf)

w_deck=.14+fcd/1000;%(kcf)

Es=28500; %(ksi)

Eci=((40000%* (fci*1000)A.5+10A6)*(w/.14)A1.5)/1000; % (ksi)

Ec=((40000* (fci*1000)A.5+10A6)*(w/.14)A1.5)/1000; %(ksi)

Ecd=33000*w_deckAl.5*fcdA.5;%(ksi)

ni=Es/Eci;

n=Es/Ec;

n_deck=Ecd/Ec;

Aps=40%*.217;

%Area of prestressing strands (inA2)

ypb=[17.77 ]14.17 10.57 6.97 3.37 3.37 3.37 6.97 10.57 14.17
17.777;

%centroid of prestressing strands (in)

%Composite & deck Properties

t=7.5; % (in) Thickness

width=96; %(in) slab width

ybdeck=77.18; %(in)

ha_t=0; % haunch thickness (in)

ha_w=48.2; % haunch width (in)
vsd=((t*width)+Cha_t*ha_w))/(2*(t+width+ha_t)); %volume/surface (in)

%Time data input.

ti=1;%time to release (d)

td=56; % Time to deck placement (d)
tf=2000; % Time at final (d)

x=0:.1*L

Atr= A+((n1 1) Aps),

Atr_final=A+((n-1)*Aps);

Anet=A-Aps;

yb_net=((A*ybbeam) - (Aps*ypb)) /Anet;
yb=((A*ybbeam)+((ni-1)*Aps*ypb)) /Atr;
yb_tr_final=((A*ybbeam)+((n-1)*Aps*ypb)) /Atr_final;
ep=yb-ypb;

ep_net=yb_net-ypb;

ep_tr_final=yb_tr_final-ypb;

Itr=I+A*(yb-ybbeam). A2+(n1 1) *Aps* (yb-ypb) .A2;%Transformed moment
%of inertia.
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Inet=I+A*(yb_net-ybbeam) .A2-Aps*(yb_net-ypb).A2;%Net moment of inertia

Itr_final=I+A*(yb-ybbeam) .A2+(n-1)*Aps*(yb_tr_final-ypb) .A2;



A_deck=((t*width)+Cha_t*ha_w))*n_deck;
ybd=((t*width*ybdeck)+(ha_t*ha_w* (ybdeck-ha_t/2-t/2)))*n_deck/A_deck;
I_deck=(((width*tA3/12)+(t*width*(ybdeck-
ybd)A2))+((ha_w*ha_tA3/12)+ha_t*ha_w*(ybdeck-ha_t/2-t/2-ybd)))*n_deck;
A_comp_g=A+A_deck;

yb_comp_g=(A*ybbeam+A_deck*ybd) /A_comp_g;

I_comp_g=I+I_deck+A* (ybbeam-yb_comp_g)A2+(ybd-yb_comp_g)A2;
ep_comp_g=yb_comp_g-ypb;

ed_comp_g=yb_comp_g-ybd;
alpha_comp_g=1+A_comp_g*ep_comp_g.A2./I_comp_g;
A_comp_net=Anet+A_deck;
yb_comp_net=((Anet*yb_net)+(A_deck*ybd))/A_comp_net;
I_comp_net=Inet+I_deck+Anet*(yb_net-yb_comp_net) .A2+A_deck* (ybd-
yb_comp_net) .A2;

ep_comp_net=yb_comp_net-ypb;

ed_comp_net=yb_comp_net-ybd;
alpha_comp_net=1+A_comp_het*ep_comp_net.A2./I_comp_net;
A_comp_tr=Atr_final+A_deck;
yb_comp_tr=(Atr_final*yb_tr_final+A_deck*ybd)/A_comp_tr;
I_comp_tr=Itr_final+I_deck+Atr_final*(yb_tr_final-

yb_comp_tr) .A2+A_deck* (ybd-yb_comp_tr) .A2;
ep_comp_tr=yb_comp_tr-ypb;
alpha_comp_tr=1+A_comp_tr*ep_comp_tr.A2./I_comp_tr;

curv_ip=(fpi/Eci)*Aps.*ep./Itr;%curvature due to initial prestress.

w=A/144*w; %Unit load due to selfweight.
M=(W/2*(L*X-X.A2))*12;

curv_w=-M./Itr/Eci;%curvature due to selfweight;

def1=(L*12)A2/1000*[1.5 7.33333 8 7 6 54 3 2 1 0.16667;
1.33333 8 14.33333 14 12 10 8 6 4 2 0.33333;

.16667 7 14 19.33333 18 15 12 9 6 3 0.5;

6 12 18 22.33333 20 16 12 8 4 0.66667;

.83333 5 10 15 20 23.33333 20 15 10 5 0.83333;

.66667 4 8 12 16 20 22.33333 18 12 6 1;

.5 369 12 15 18 19.33333 14 7 1.16667;

.33333 2 4 6 8 10 12 14 14.33333 8 1.33333;

.16667 1 2 3 456 7 8 7.33333 1.5];

OQOOOORKrK

drel=defl*curv_ip' + defl*curv_w';%deflection at release (in)
camber_rel=[0 drel' 0];

figure(1)

p1ot(x,camber_re1);grid on

xlabel('Length (ft)")

ylabel('camber (in)")

title('Camber at release')

K_s=(1064-94*Vvs) /735;%volume surface ratio factor
K_sd=(1064-94*vsd) /735;
K_hs=2.0-0.0143*H;% Humidity correction factor
K_hc=1.56-.008%*H;
for i=0:1:td-ti

J K_tdid(1,i+1)=1/(61-4*fci+i); %#ok<AGROwW>
en
for i=td+1:1:tf

g K_tddf (1, (i-td))=Ci-td) /(61-4*Fci+(i-td)); %#ok<AGROwW>
en
for i=td+1:1:tf

g K_tdddf (1, (i-td))=Ci-td) /(61-4*fcd+(i-td)); %#ok<AGROW>
en
for i=td:1:tf-1
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K_tdifl(l, (Gi-td)+1))=i/(61-4*fci+i); %#ok<AGROW>

end
K_tdif=(tf-ti)/(61-4*fci+(tf-ti));
alpha_net=1+((Anet*ep_net.A2)./Inet);
y=1.9*K_s*K_hc*(5/(1+fci)) *tiA-0.118;
ybid=y*K_tdid;
ybif=y*K_tdif;
ybifl=y*K_tdifl;
ybdf=1.9*%K_s*K_hc*(5/(1+fci))*tdA-0.118*K_tddf;
ydf=1.9*K_sd*K_hc*(5/(1+fcd))*tiA-0.118*K_tdddf;
Kid=1./(1+ni*alpha_net*Aps/Anet*(1+.7*ybif));
Kdf=1./(1+ni*alpha_comp_net*Aps/A_comp_net*(1+.7*ybif));
e_bid=.00048*(5/(1+fci))*K_s*K_hs*K_tdid;
e_ddf=.00048*(5/(1+fcd)) *K_sd*K_hs*K_tdddf;
e_bif=.00048*(5/(1+fci))*K_s*K_hs*K_tddf;
e_bdf=e_bif-e_bid(1,length(e_bid));
fcgp=fpi*Aps*(1/Atr+(ep.A2./1tr))-(M.*ep./Itr);
for i=1:1:1ength(ybid)

for m=1:1:11;
de]ta_gp_cr(i,m)=n1*fcgp(1,m)*ybid(l,i)*Kid(l,m); %#0k <AGROW>

en
end
for i=1:1:1ength(e_bid)

for m=1:1:11

J delta_fp_sr(i,m)=e_bid(1,i)*Es*Kid(1,m); %#ok<AGROW>

en
end
for i=1:1:td-ti+1

for m=1:1:11
delta_fp_r(i,m)=1.2; %#ok<AGROW>

end
end
loss_id=delta_fp_r+delta_fp_cr+delta_fp_sr;
for i=1:1:td

for m=1:1:11

curv_id@(i,m)=-

1oss_ig(i,m)*Aps*ep_tr_fina1(1,m)/Itr_fina1(1,m)/Ec1; %#0k <AGROW>

en

end
wdeck=C(t*width)+(ha_t*ha_w))/144*.15;
Mdeck=wdeck/2* (L*x-x.A2)*12;
Mad1=[8.88] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
curv_deck=-Mdeck/Ec./Itr_final;
for i=1:1:1ength(curv_id)

g did(:,i)=defT*curv_id(i,:)"; %#ok<AGROW>
en
z=zeros(length(curv_id),1);
camber_id=[z did' z];
for i=1:1:Tength(camber_id)

for m=1:1:11

camber_at_deck(i,m)=camber_re1(1,m)*(1+ybid(1,1))+camber_id(i,m)*(1+0.7
*ybid(é,i)); %#0k <AGROW>
en

end
def1_due_deck=def1*curv_deck"';
camber_deck=[0 defl_due_deck' 0];
camber_net_deck=camber_at_deck(Tength(camber_at_deck), :)+camber_deck;
time=0:1:td-1;
camber_at_deck(length(camber_at_deck), :)=camber_net_deck;
for i=1:1:1ength(k_tdddf)
for m=1:1:11



92

SR_deck(i,m)=-
n*e_ddf(1,i)*t*width*Ecd/(1+0.7*ydf(1,i))*((1/A_comp_net)+(ep_comp_net(
1,m)*ed_comp_net(1,m))/I_comp_net(l,m)); %#ok<AGROW>

end
end
for i=1:1:1ength(e_bdf)
for m=1:1:11
g SR_bdf(i,m)=-e_bdf(1,i)*Es*Kdf(1l,m); %#ok<AGROw>
en
end
for i=1:1: 1ength(yb1f1)
for m=1:1:1

CR_df (i, m)=—n1 “Fcgp (1, m)*(ybifl(l,1)-
ybid(la1ength(ybid)))*de(l,m); %#0k <AGROW>
en

end
longterm_id=-Toss_id(length(loss_id), :)*Aps.*alpha_net/Anet;
k57=-Mdeck.*ep_tr_final./Itr_final-Madl.*ep_comp_tr./I_comp_tr;
sum=longterm_id+k57;
for i=1:1:1ength(ybdf)
for m=1:1:11
g CR_b(i,m)=-n*sum(1,m)*ybdf(1,i)*Kdf(1,m); %#ok<AGROW>
en
end
1ongterm_df=CR_b+CR_df+SR_bdf+SR_deck—1.2;

for i=1:1:1ength(longterm_df)
for j=1:1:11

curv_Tlongterm(i,j)=Tongterm_df(i,j)*Aps*ep_comp_net(l,j)/I_comp_net(l,j
)/Ec; %#ok<AGROW>
end
end
for i=1:1:1ength(curv_1on?term)
J def_Tongterm(:,i)=defl*curv_longterm(i,:)"'; %#ok<AGROw>
en
zl=zeros(length(def_longterm),1);
camber_longterm=[z1 def_longterm' z1];
curv_dl_comp=-Madl./I_comp_tr/Ec;
df1_due_d1_comp=defl*curv_dl_comp"';
camber_d1_comp=[0 df1_due_dl_comp' 0];
for i=1:1:1ength(camber_Tlongterm)
for j=1:1:11

camber_final(i,j)=Ccamber_rel(1,j)*(1+ybif1l(1,i)))+(camber_id(length(ca

mber_id),j)*(1+0.7*ybif1(1,1)))+(camber_deck(1, j)*(1+ybdf(1,1i)))+(cambe

r_d]_cgmp(l,j)*(l+ybdf(l,1)))+(camber_1ongterm(i,j)*(1+.7*ybdf(1,i)));
en

end

camber_if=[camber_at_deck; camber_final];
time_final=[time td:1:tf-1];

figure(2)

plot(time,camber_at_deck(:,6)');grid on
xlabel('Beam Age (d)')

ylabel('Camber (in)")

title('Midspan Camber, initial to deck placement')
figure(3)

plot(x,camber_net_deck) ;grid on

xlabel('Length (ft)')

ylabel('camber (in)')

title('Net Camber after deck placement')
total_camber=[camber_at_deck; camber_net_deck];
figure(4)



plot(time,camber_at_deck(:,6));grid on
xlabel('Beam Age (d)')

ylabel('Camber (in)")

title('Midspan Camber, initial to deck placement')
figure(5)

plot(time_final,camber_if(:,6)');grid on
xlabel('Beam Age (d)')

ylabel('camber (in)")

title('Midspan Camber, initial to final*')
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A.2 Script for the short span girder.

%Beam Properties
A=752.22; %(inA2)
I=546570.9; %(inA4)
ybbeam=38.19; %(in)
VvS=2.89; %(in)
fpi=202.5; %(ksi)
L=137; %(ft)

%Material Properties

H=70; % Humidity (%)

fci=7.5; %(ksi)

fc=10.2; %(ksi)

fcd=5; %(ksi)

w=.14+fc/1000; % (kcf)

w_deck=.14+fcd/1000;%(kcf)

Es=28500; %(ksi)

Eci=((40000%* (fci*1000)A.5+10A6)*(w/.14)A1.5)/1000; % (ksi)

Ec=((40000* (fci*1000)A.5+10A6)*(w/.14)A1.5)/1000; %(ksi)

Ecd=33000*w_deckAl.5*fcdA.5;%(ksi)

ni=Es/Eci;

n=Es/Ec;

n_deck=Ecd/Ec;

Aps=40%*.217;

%Area of prestressing strands (inA2)

ypb=[17.77 ]14.17 10.57 6.97 3.37 3.37 3.37 6.97 10.57 14.17
17.77];

%centroid of prestressing strands (in)

%Composite & deck Properties

t=7.5; % (in) Thickness

width=96; %(in) slab width

ybdeck=77.18; %(in)

ha_t=0; % haunch thickness (in)

ha_w=48.2; % haunch width (in)
vsd=((t*width)+Cha_t*ha_w))/(2*(t+width+ha_t)); %volume/surface (in)

%Time data input.

ti=1;%time to release (d)

td=56; % Time to deck placement (d)
tf=2000; % Time at final (d)

x=0:.1%L:L;

Atr=A+((ni-1)*Aps);

Atr_final=A+((n-1)*Aps);

Anet=A-Aps;

yb_net=((A*ybbeam) - (Aps*ypb)) /Anet;
yb=((A*ybbeam)+((ni-1)*Aps*ypb)) /Atr;
yb_tr_final=((A*ybbeam)+((n-1)*Aps*ypb)) /Atr_final;

ep=yb-ypb;

ep_net=yb_net-ypb;

ep_tr_final=yb_tr_final-ypb;

Itr=I+A*(yb-ybbeam) .A2+(ni-1)*Aps*(yb-ypb) .A2;%Transformed moment

%of inertia.

Inet=I+A*(yb_net-ybbeam) .A2-Aps*(yb_net-ypb).A2;%Net moment of inertia
Itr_final=I+A*(yb-ybbeam) .A2+(n-1)*Aps*(yb_tr_final-ypb) .A2;
A_deck=((t*width)+(ha_t*ha_w))*n_deck;
ybd=((t*width*ybdeck)+(ha_t*ha_w* (ybdeck-ha_t/2-t/2)))*n_deck/A_deck;
I_deck=(((width*tA3/12)+(t*width*(ybdeck-
ybd)A2))+(Cha_w*ha_tA3/12)+ha_t*ha_w*(ybdeck-ha_t/2-t/2-ybd)))*n_deck;
A_comp_g=A+A_deck;

yb_comp_g=(A*ybbeam+A_deck*ybd) /A_comp_g;



I_comp_g=I+I_deck+A* (ybbeam-yb_comp_g)A2+(ybd-yb_comp_g)A2;
ep_comp_g=yb_comp_g-ypb;

ed_comp_g=yb_comp_g-ybd;
alpha_comp_g=1+A_comp_g*ep_comp_g.A2./I_comp_g;
A_comp_net=Anet+A_deck;
yb_comp_net=((Anet*yb_net)+(A_deck*ybd))/A_comp_net;
I_comp_net=Inet+I_deck+Anet*(yb_net-yb_comp_net) .A2+A_deck* (ybd-
yb_comp_net) .A2;

ep_comp_net=yb_comp_net-ypb;

ed_comp_net=yb_comp_net-ybd;
alpha_comp_net=1+A_comp_het*ep_comp_net.A2./I_comp_net;
A_comp_tr=Atr_final+A_deck;
yb_comp_tr=(Atr_final*yb_tr_final+A_deck*ybd)/A_comp_tr;
I_comp_tr=Itr_final+I_deck+Atr_final*(yb_tr_final-
yb_comp_tr) .A2+A_deck* (ybd-yb_comp_tr) .A2;
ep_comp_tr=yb_comp_tr-ypb;
alpha_comp_tr=1+A_comp_tr¥*ep_comp_tr.A2./I_comp_tr;

curv_ip=(fpi/Eci)*Aps.*ep./Itr;%curvature due to initial prestress.

w=A/144*w; %Unit load due to selfweight.
M=(W/2*(L*X-X.A2))*12;

curv_w=-M./Itr/Eci;%curvature due to selfweight;

defl= (L *12)A2/1000*[1.5 7.33333 8 7 6 5 4 3 2 1 0.16667;
1.33333 8 14.33333 14 12 10 8 6 4 2 0.33333;

.16667 7 14 19.33333 18 15 12 9 6 3 0. 5;

6 12 18 22.33333 20 16 12 8 4 0.66667;

.83333 5 10 15 20 23.33333 20 15 10 5 0.83333;
.66667 4 8 12 16 20 22.33333 18 12 6 1;

.5 369 12 15 18 19.33333 14 7 1.16667;

.33333 2 4 6 8 10 12 14 14.33333 8 1.33333;

.16667 1 2 3 456 7 8 7.33333 1.5];

OOOOOI—‘I—‘

drel=defl*curv_ip' + defl*curv_w';%deflection at release (in)
camber_rel=[0 drel' 0];

figure(1)

plot(x,camber_rel); gr1d on

x1abe1( Length (ft)

ylabel('camber (in)' )

title('Camber at release')

K_s=(1064-94*Vvs) /735;%volume surface ratio factor
K_sd=(1064-94*vsd) /735;
K_hs=2.0-0.0143*H;% Humidity correction factor
K_hc=1.56-.008%*H;
for i=0:1:td-ti

J K_tdid(1,i+1)=1/(61-4*fci+i); %#ok<AGROW>
en

for i=td+1:1:tf
g K_tddf (1, (i-td))=i-td) /(61-4*Ffci+(i-td)); %#ok<AGROW>
en

for i=td+1:1:tf
g K_tdddf (1, (i-td))=-td)/(61-4*fcd+(i-td)); %#ok<AGROW>
en

for i=td:1:tf-1
g K_tdifl(l, (G-td)+1))=i/(61-4*fci+i); %#ok<AGROW>
en

K_tdif=(tf-ti)/(61-4*fci+(tf-ti));
alpha_net=1+((Anet*ep_net.A2)./Inet);
y=1.9%K_s*K_hc*(5/(1+fci)) *tiA-0.118;
ybid=y*K_tdid;
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ybif=y*K_tdif;
ybifl=y*K_tdifl;
ybdf=1.9*%K_s*K_hc*(5/(1+fci))*tdA-0.118*K_tddf;
ydf=1.9*K_sd*K_hc*(5/(1+fcd))*tiA-0.118*K_tdddf;
Kid=1./(1+ni*alpha_net*Aps/Anet*(1+.7*ybif));
Kdf=1./(1+ni*alpha_comp_net*Aps/A_comp_net*(1+.7*ybif));
e_bid=.00048*(5/(1+fci))*K_s*K_hs*K_tdid;
e_ddf=.00048*(5/(1+fcd)) *K_sd*K_hs*K_tdddf;
e_bif=.00048*(5/(1+fci))*K_s*K_hs*K_tddf;
e_bdf=e_bif-e_bid(1,length(e_bid));
fcgp=fpi*Aps*(1/Atr+(ep.A2./1tr))-(M.*ep./Itr);
for i=1:1:1ength(ybid)
for m=1:1:11;
de]ta_gp_cr(i,m)=n1*fcgp(1,m)*ybid(l,i)*Kid(l,m); %#0k <AGROW>
en
end
for i=1:1:1ength(e_bid)
for m=1:1:11
J delta_fp_sr(i,m)=e_bid(1,i)*Es*Kid(1,m); %#ok<AGROW>
en
end
for i=1:1:td-ti+l
for m=1:1:11
delta_fp_r(i,m)=1.2; %#ok<AGROW>
end
end
loss_id=delta_fp_r+delta_fp_cr+delta_fp_sr;
for i=1:1:td
for m=1:1:11
curv_id@(i,m)=-
1oss_ig(i,m)*Aps*ep_tr_fina1(1,m)/Itr_fina1(1,m)/Ec1; %#0k <AGROW>
en
end
wdeck=C(t*width)+(ha_t*ha_w))/144*.15;
Mdeck=wdeck/2* (L*x-x.A2)*12;
Madl= [8 88] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
curv_deck=- Mdeck/Ec /Itr_final;
for i=1:1:1ength(curv_id)
g did(:,i)=defT*curv_id(i,:)"; %#ok<AGROW>
en
zZ= zeros(1ength(curv id),1D);
camber_id=[z did' z];
for i=1:1: 1ength(camber id)
for m=1:1:11

camber_at_deck(i,m)=camber_rel (1,m)*(1+ybid(1,i))+camber_id(i,m)*(1+0.7
*ybid(1,1)); %#ok<AGROW>

end
end
def1_due_deck=defl1*curv_deck"';
camber_deck=[0 defl_due_deck' 0];
camber_net_deck=camber_at_deck(Tength(camber_at_deck), :)+camber_deck;
time=0:1:td-1;
camber_at_deck(1ength(camber_at_deck),:)=camber_net_deck;
for i=1:1:1ength(k_tdddf)

for m=1:1:11

SR_deck(i,m)=-

n*e_ddf(1,i)*t*width*Ecd/(1+0.7*ydf(1,i))*((1/A_comp_net)+(ep_comp_net(
1,m)*eg_comp_net(1,m))/I_comp_net(l,m)); %#0k <AGROW>

en
end
for i=1 ength(e_bdf)

for 1 11



97

g SR_bdf(i,m)=-e_bdf(1,i)*Es*Kdf(1,m); %#ok<AGROW>
en
end
for i=1:1:1ength(ybifl)
for m 1:1:11
df(i,m)=-ni*fcgp(1,m)*(ybifl(l,i)-
yb1d(1d1ength(yb1d))) de(l m) %#ok <AGROW>

end
longterm_id=-Toss_id(length(loss_id), :)*Aps.*alpha_net/Anet;
k57=-Mdeck.*ep_tr_final./Itr_final-Madl.*ep_comp_tr./I_comp_tr;
sum=longterm_id+k57;
for i=1:1:1ength(ybdf)
for m=1:1:11
g CR_b(i,m)=-n*sum(1l,m)*ybdf(1,i)*Kdf(1,m); %#ok<AGROwW>
en
end
longterm_df=CR_b+CR_df+SR_bdf+SR_deck-1.2;

for i=1:1:length(longterm_df)

for j=1:1:11
curv_longterm(i,j)=longterm_df(i,j)*Aps*ep_comp_net(1l,j)/I_comp_net(l,j
)/Ec; %#ok<AGROW>

end
end
for i=1:1:1ength(curv_longterm)

g def_Tongterm(:,i)=defl*curv_longterm(i,:)"'; %#ok<AGROw>

en
zl=zeros(length(def_longterm),1);
camber_longterm=[z1 def_longterm' z1];
curv_dT_comp=-Madl./I_comp_tr/Ec;
df1_due_d1_comp=defl*curv_dl_comp"';
camber_d1_comp=[0 df1_due_dl_comp' 0];
for i=1:1:1ength(camber_longterm)

for j=1:1:11

camber_final(i,j)=C(camber_rel(1l,j)*(1+ybif1l(1,1i)))+(camber_id(length(ca

mber_id),j)*(1+0.7*ybif1(1,i)))+(camber_deck(l,j)*(1+ybdf(1,i)))+(cambe

r_d]_cgmp(l,j)*(l+ybdf(l,1)))+(camber_1ongterm(i,j)*(1+.7*ybdf(1,i)));
en

end

camber_if=[camber_at_deck; camber_final];

time_final=[time td:1:tf-1];

figure(2)

plot(time,camber_at_deck(:,6)');grid on

xlabel('Beam Age (d)')

ylabel('Camber (in)")

title('Midspan Camber, initial to deck placement')

figure(3)

plot(x,camber_net_deck) ;grid on

xlabel('Length (ft)')

ylabel('camber (in)')

title('Net Camber after deck placement')

total_camber=[camber_at_deck; camber_net_deck];

figure(4)

plot(time,camber_at_deck(:,6));grid on

xlabel ('Beam Age (d)')

ylabel('camber (in)')

title('Midspan Camber, initial to deck placement')

figure(5)

plot(time_final,camber_if(:,6)');grid on

xlabel('Beam Age (d)')

ylabel('Camber (in)")

title('Midspan Camber, initial to final*'")
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