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ABSTRACT 

Covert Botnet Implementation and Defense Against Covert Botnets 

 
by 

 
 

Lokesh Babu Ramesh Babu, Master of Science 
 

Utah State University, 2009 
 
 

Major Professor: Dr. Chad Mano 
Department: Computer Science 
 
 

The advent of the Internet and its benevolent use has benefited mankind in private 

and business use alike. However, like any other technology, the Internet is often used for 

malevolent purposes. One such malevolent purpose is to attack computers using botnets. 

Botnets are stealthy, and the victims are typically unaware of the malicious activities and 

the resultant havoc they can cause. Computer security experts seek to combat the botnet 

menace. However, attackers come up with new botnet designs that exploit the 

weaknesses in existing defense mechanisms and, thus, continue to evade detection. 

 Therefore, it is necessary to analyze the weaknesses of existing defense 

mechanisms to find the lacunae in them and design new models of bot infection before 

the attackers do so. It is also necessary to validate the analysis and the design of such a 

model by implementing the attack and fine-tuning the design. This thesis validates the 

weaknesses found in existing defense mechanisms against botnets by implementing a 

new model of botnet and carrying out experiments on it. 



 iv 

To merely analyze and present the weaknesses of a defense would open the door 

for attackers and make their job easier. Thus, creating a defense mechanism against the 

new attack is equally important. This thesis proposes a design against the new model of 

bot infection and also implements the design. Experiments were conducted to validate 

and fine-tune the design and eliminate flaws in the new defense mechanism.  

        (89 pages) 
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CHAPTER 1 
 

INTRODUCTION 

 
The Internet is a global system of computer networks that enable transfer of 

information in the form of web pages, email, and other messaging services between users 

in different parts of the world. Prior to 1990, it was the exclusive domain of tech savvy 

people, such as educators, and researchers; however, now it is being used both by tech 

savvy people as well as people with less technological expertise. Companies have set up 

websites on the Internet to provide services to their customers much more effectively. 

People from all walks of life commonly use the Internet for such activities as buying 

products, communicating with friends, and performing online banking within the comfort 

of their homes. Not only are billions of dollars transacted everyday online, but people 

also  give out personal information online when they use Internet. 

 E-commerce websites make huge money through online trading. When the 

Internet was restricted to only educational and research institutions, computer security 

was not a huge issue; however, with the current widespread use of the Internet, computer 

security has become very important. Easy access to the Internet has benefited people in a 

large way, but unfortunately, it has also given wider scope for attackers to target 

computers and cause huge damage. If businesses’ websites providing services for their 

customers were to go down, the business entities would suffer huge financial losses as a 

result of the denial-of-service to users. 

     The Internet has also led to new types of advertising models, such as pay-per-

click. In this type of model, websites display advertisements in their web pages. When a 
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user clicks on these advertisements, the advertiser pays the websites hosting these 

advertisements. Unfortunately, this innovation has led to a new model of fraud, known as 

the click fraud. In this type of fraud, an automated program clicks on the ad to generate a 

charge per click. The website displaying these ads can easily create the automated 

program to get greater revenue. 

 Communication has been revolutionized with the advent of Internet; there has 

been a huge increase in the use of email for both private and professional purposes alike 

over the years. Again, the widespread use of email has led to devious ways of exploiting 

such usage.  Unsolicited email, commonly referred to as spam, is also on the rise. Spam 

overloads email inboxes with worthless messages, causing annoyance. Even more 

damaging, Spam also harms Internet service providers by overloading mail servers, 

leading to nondelivery of legitimate email. Additionally, the Internet service provider 

may get blacklisted because of spammers who misuse their service to send spam. This 

leads to a loss of business as well as the loss of the reputation of an Internet service 

provider. 

     A botnet [1, 2, 3] is one of the techniques used for execution of malicious 

activities including denial-of-service, click fraud, identity theft, and spamming attacks. A 

botnet is a collection of compromised computers in a network. The compromised 

computer has a malicious application known as a bot. There can be tens of thousands of 

bots in a bot network. Typically, botnets consist of a remote command and control (C&C) 

server that controls the bots in a network and is referred to as the bot herder or bot 

master.   

A typical bot infection model consists of the following steps. 
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1. The remote C&C server scans computers in a network to find vulnerabilities. 

Vulnerability is a bug in software that allows applications to access protected 

resources and perform privileged actions. 

2. The vulnerability is exploited. 

3. The bot binary is downloaded and executed in the computer.  

4. The bot then establishes communication with the remote C&C server to receive 

and execute commands to perform malicious actions (denial-of-service, identity 

theft, spamming, etc.). 

5. The bot next seeks to infect computers in other networks. 

6. The first two steps are repeated with each computer in the network by the Remote 

C&C server. 

Since, botnets are stealthy; they cause huge damage to victims, whether they be 

private citizens or business entities. According to the FBI there are “over one million 

potential victims of botnet cyber crime” [4:1]. Unlike viruses, which act individually, 

bots receive commands from the remote C&C server and then execute coordinated 

attacks. A denial-of-service attack is carried out by having the entire set of bots request a 

page from a web server repeatedly within a short span of time, thereby overwhelming the 

server. This causes legitimate requests to time out, causing a disruption in service. Storm 

worm [5, 6] is a botnet that made massive parallel network calls to anti-spam websites, 

such as spameater.com and anti spam groups such as Spamhaus project, thus overloading 

the servers' capacities and preventing them from responding to requests [7]. 

Spamming is another malicious activity carried out by bots. First, the remote 

C&C server sends the spam email to all the bots along with the list of email addresses. 
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The bots then send the spam email to the email address present in the list. Identification 

of the actual source of the email spam becomes difficult as the email comes from various 

sources. Conficker [8] is one such botnet that has a spam capacity of 10 billion per day 

and has affected approximately three million computers worldwide [9]. 

Also, botnets have become effective tools for attackers to perpetrate click fraud; 

in this case, bots are usually plug-ins to popular browsers. The bot runs within the 

process space of the browser and has access to the document object model of a web 

page.  The bots make HTTP requests to get the page containing the advertisement and 

mimic a legitimate user by clicking on the advertisement. Again, it is difficult for 

advertisers to determine whether the click was from a legitimate user or a bot, given that 

IP addresses are diverse. Clickbot.A [10] is a click fraud botnet used to attack syndicated 

search engines, and it has infected more than 100, 000 computers. 

People give out confidential information, such as their passwords, social security 

numbers, and credit card data, while performing transactions online and this information 

is of special interest to attackers. The bot installed in a computer monitors the keystrokes 

to collect this confidential information and pass it on to the bot master. Since users do not 

realize that their computers have been compromised, they continue to perform online 

transactions, while the attacker uses the stolen information to make purchases without the 

consent of the victims. The FBI prosecuted a person in Los Angeles for using botnets to 

steal the identities of victims throughout the USA [11].  

The first part of this thesis discusses the implementation of a covert botnet model; 

the second discusses the design and implementation of a defense against such a model. 
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1.1 Implementation of a Covert Botnet Model 

A new model for a bot infection [12] has been theoretically proposed. Current 

detection mechanisms such as BotHunter [13] analyze existing communication patterns 

of botnets with the Internet to identify a bot infection.  The new model differs from 

existing models in its communication patterns with the Internet. Said communication 

patterns enable the new model to maintain stealth while at the same time maintain contact 

with the remote bot master to carry out malicious actions on its behalf. This thesis 

elaborates on the implementation of the new model and describes the experiments 

conducted to show that the new model is capable of carrying out malicious actions like 

those of existing bot infection models. The experiments also demonstrate the proposed 

model maintains stealth and evades detection from current detection mechanisms such as 

BotHunter. 

1.2 Design and Implementation of Defense Against Covert Botnet 
 

A defense mechanism against the new model of bot infection has been designed 

and implemented. This adds to the existing capability of BotHunter, enabling it to detect 

the new bot infection model proposed in [12]. The key components of this defense 

mechanism are: 

1. BotHunter. This monitors communication with the Internet by analyzing 

the network traffic entering and leaving the router.  

2. Local Traffic Monitoring System.  This analyzes the traffic entering and 

leaving network switches. The responsibility of this system is to detect the 

malicious actions in the local network and communicate them to 

BotHunter. BotHunter uses the information provided by the local traffic 
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monitoring system and correlates it with its own analysis to detect the bot 

infection. 
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CHAPTER 2 

 
RELATED WORK 

 
Initially, internet relay chat (IRC) servers were created for benevolent purposes to 

allow people having IRC clients to chat together, exchange files, etc.; however, this 

architecture has been put to malicious use, and IRC servers have been used as remote 

C&Cs server to control thousands of bots [14, 15]. Attackers use IRC channels to 

transmit a bot and infect vulnerable computers. The bots that contain IRC client code 

subsequently communicate with the IRC servers to download commands to carry out 

malicious actions [14, 16].  

Agobot [17] is an example of a bot that relies on a centralized remote C&C server 

and is capable of executing denial-of-service attacks, spamming, and sniffing passwords. 

The technique to track and investigate botnets is called botnet tracking [18].One way of 

detecting botnets that rely on a central C&C server is to analyze the traffic in known IRC 

ports for strings that match known commands [1].  Also, techniques to detect Botnet 

C&C channels in network traffic have also been proposed [19]. Another option is to 

create a honeypot [20] system consisting of vulnerable systems waiting to be infected by 

a bot. Once infected, they are used to locate the IRC servers. Bots are then created by 

system administrators to connect back to the IRC server to profile it.   

 Some botnets use peer-to-peer networks [21, 22] for communication. They differ 

from centralized command and control botnets in their network characteristics [17]. Peer-

to-peer bots can act as clients and as servers and communicate with other peer bots 

instead of a central C&C server [17]. Their design is complex, and detection is, 

consequently, difficult.  One of the key advantages of peer-to-peer botnets is resiliency, 
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as opposed to centralized botnets that fail when the centralized C&C server dies. 

Nugache  is one such peer-to-peer botnet. It opens a backdoor on TCP port 8 and is 

capable of running as a Web server or performs a denial-of-service attack [23]. It has 

been predicted that peer-to-peer botnets will become more widespread than centralized 

command and control botnets [17].  The most widespread peer-to-peer bot observed in 

the wild is storm worm.  Though detection of peer-to-peer botnets is difficult since there 

is no central command server, techniques to detect and mitigate peer-to-peer botnets have 

been proposed [24]. 

2.1   BotHunter  

The authors of [12] assume that BotHunter [13] is the best tool for detecting 

botnets in a local network. BotHunter uses an infection dialog correlation strategy. “In 

dialog correlation, bot infections are modeled as a set of loosely ordered communication 

flows that are exchanged between an internal host and one or more external entities” 

[13:2]. The infection dialog consists of the following five events. 

1. External to Internal Inbound Scan. The remote command and control server scans 

computers for vulnerabilities. This is classified as an E1 event by BotHunter. 

2. External to Internal Inbound Exploit. The bot binary is sent to the vulnerable 

computer by exploiting the vulnerability. This is classified as an E2 event by 

BotHunter. 

3. Internal to External Binary Acquisition. The Bot binary is downloaded by the 

computer from the remote command and control server by the bot. This is 

classified as an E3 event by BotHunter. 
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4. Internal to External Command and Control Communication. The Bot downloads 

commands from the remote command and control server. This is classified as an 

E4 event by BotHunter. 

5. Internal to External Outbound Infection Scanning. The Bot tries to infect 

computers in other networks.  This is classified as an E5 event by BotHunter. 

 BotHunter uses Snort [25, 26] an intrusion detection system to monitor the traffic 

entering and leaving a network and detect the above events. BotHunter maintains a 

history of events detected in a computer, and it detects a Bot infection exists in a 

computer, if either of the following two conditions is met. 

Condition 1. A computer performs an E2 event followed by an E3, E4, or E5 

event. 

Condition 2. A computer performs at least two of the events E3, E4, or E5. 

2.2   Covert Botnet Model of Communication  

As stated previously, a new model of bot infection dialog has been proposed in 

[12]. It proposes alternatives to the events mentioned in Section 2.1. 

1. A2 Event: Internal to Internal Exploits. The bots local to the network are 

responsible for infecting other computers in the network. 

2. A3 Event: Internal to Internal Binary Acquisition. The bot that downloads the 

binary from the remote command and control server is responsible for 

communicating the binary to other bots in the network. 

3. A4 Event: Internal to Internal Command and Control Communication. The 

bot which downloads the command from the remote command and control 
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server is responsible for communicating the command to other bots in the 

network. 

The model proposed in [12] makes the following assumptions about an initial infection. 
 

1. At least one computer will be infected and obtain the bot binary in some way. 

2. The "initial infection avoids detection by some means such as those proposed 

in [8]" [12:4]. 

Once the initial infection is completed, the botnet formation proceeds. With the 

above assumption, the proposed model seeks to evade detection by ensuring that the 

conditions specified for bot infection detection are not satisfied.  

2.2.1  Negating Detection Conditions 
 

Condition 1. The bot in the initially infected host tries to infect other computers in 

the local network.  This move is to reduce the number of E2 event from happening. If 

another computer had been compromised through an E2 event, it will not perform an E3 

or E5 event. Instead, it will seek to obtain the binary or commands from other bots within 

the local network. This prevents Condition 1 from being satisfied. 

Condition 2. BotHunter maintains the history of events that were detected in a 

computer and correlates these events to detect a bot infection. So, if BotHunter detects at 

least two of the E3-E5 events on the same computer, it signals a bot Infection. In the 

proposed model of bot infection, actions such as bot binary download and command 

acquisition (E3, E4 events), are not performed by the same bot.  

At any point in time, only one bot will communicate with the remote C&C server 

to perform bot binary download or command acquisition. This bot is the local bot leader, 

also known as the token bot. The token bot also propagates the binary download or 
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command acquisition to other bots in the network. This eliminates the need for other 

bots to contact the remote C&C server. BotHunter does not monitor the traffic that is 

local to the network and will not see this propagation. 

 After performing the action, this token bot relinquishes the post of token bot and 

passes the leadership to another bot in the network. If the previous token bot has done the 

binary acquisition, the new token bot performs the command acquisition, and if the 

previous token bot has done the command acquisition, the new bot performs the 

command binary acquisition. Since the same bot does not perform both the actions, 

condition two is not satisfied. This enables the botnet to evade detection by BotHunter 

and maintain its stealth. 

2.2.2 Peer List Update 
 

In addition to binary and command acquisition, the bot also requests a list of 

remote command and control servers. This enables bots to maintain contact with the 

external network even if one of the remote command and control servers fails. “The Peer 

list update and command update request would both fall under behavior indicative of 

internal to external Botnet communication (E4)” [12:7]. 

2.2.3 Information Stored in a Botnet 

Each bot in the network maintains information about its binary version, the 

actions (E3, E4 events) it has performed, and the timestamp for each action. In addition, 

bots maintain information about other bots in the network. Information about other bots 

includes the binary version of a given bot, the actions (E3, E4 events) it has performed, 

and the timestamp for each. This information is called a report list. 
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In addition to the above information, the token bot maintains information on 

the last two external actions performed (E3 or E4) in the botnet (the action history), the 

action the token bot has performed, and the timestamp of that action. This information is 

referred to as a token. When a new bot becomes the token bot, the token information is 

passed to it. 

2.2.4 Sub-Botnet Management 
For successful operation of the bot network, each of the bots in the network has to 

coordinate with each other to determine the needed actions, elect a token bot, etc. This is 

done by exchange of a predefined set of messages among the bots.  

2.2.5 Token Acquisition Broadcast (TAB)  

When a bot enters the token bot state, it broadcasts a message known as the token 

Acquisition message which contains the action to be done by this bot. This message also 

indicates to the other bots that this bot has become the new token bot.  

2.2.6 Token Report Request Broadcast  

The token bot then sends out a token report request broadcast (TRRB) so that it 

can get the list of active bots in the network. The token bot compiles a new report list 

based on the active bots present in the network. 

2.2.7 Token Report Request Response  

On receiving the TRRB, each bot in the network, replies to the token bot with 

information about itself. This is called a token report request response (TRRR). The 

information consists of the MAC address of the host in which the bot resides, the bot 
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binary version, the action it has performed (if the bot has previously been a token bot), 

and the timestamp of the action. 

2.2.8 Token Action Result Propagation  

A token action result propagation (TARP) message is sent after the token bot has 

performed an action. The TARP is sent to all the other bots in the network and it contains 

the status of the action performed and the report list compiled after the TRRB. If the bot 

has successfully downloaded a new bot binary, an “action success” status and the version 

of the new bot binary is sent in the TARP. If the bot has successfully obtained a new 

command, an “action success” status is sent in the TARP. On receipt of this message, 

other bots perform a binary download (A3 event) or command acquisition (A4 event) 

from the token bot. 

2.2.9 Token Pass  

After sending the TARP message, the token bot scans the action history to 

determine which action needs to be performed next and decides on the next token bot 

based on the following three rules.  

1. If there is a bot that has not performed any actions, it is selected as the 

next token bot; if more than one bot has not performed any actions, one of 

them is chosen arbitrarily. 

2. If there is no bot that has not performed any actions, the token is passed to 

the bot whose last action matches the next action to be done. If more than 

one bot matches the action, the one with the oldest timestamp is chosen as 

the next token bot. 



 14 
3. If there no such bots that satisfy the above two criterion, the bot with 

the oldest timestamp, irrespective of the action it performed is selected as 

the next token bot. 

2.2.10 Token Election  

When a bot initially starts, it sends out a message to check whether a token bot 

already exists. If there is no response from the token bot, it sends a token election (TE) 

message. The bot waits for a predefined time interval to receive the report list from other 

bots. On receipt of this message, the other bots in the network send their report lists. The 

bot that initiated the token election scans through the report list sent by the other bots and 

updates its own report list if it is older than the ones received. The bot scans the report list 

to determine the last two actions performed and then determines the action needing to be 

performed next. The bot scans the report list again to find the bot whose last action 

matches the action to be performed next and passes the token to this bot. 

2.2.11 Covert Bot States 

A Bot can be one of in three states: 

1. Token Bot. Communicates with external peer, and perform actions (E3, E4 

events).  

2. Nontoken Bot. Communicates with token bot to get the results of the latest 

actions performed by the token bot. 

3. Token Election. Enters this state when no token bot is present. The 

purpose is to determine which bot in the network will become the token 

bot. 
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Figure 1 illustrates the various states a bot can be at any given time. Table 1 

shows the events on which transitions takes place. On startup, the bot checks to see 

whether a token bot is present. If a token bot is present in the network, the bot transitions 

to a nontoken bot state. If a token bot is not present, the bot initiates a token election. 

There are two possible outcomes to a token election for the initiating bot. It can either 

win the election in which case it moves to a token bot state, it can lose the election to 

another bot, in which case it move to a nontoken bot state. 

A bot in a nontoken bot state can move into the token election state, if a token bot 

is unresponsive after it sends out a token acquisition broadcast or if it does not send a 

TARP message. A bot in a token bot state proceeds to a nontoken bot state after a 

successful Token Pass. A Bot in a nontoken bot state proceeds to a token bot state after 

receiving a token pass. 

2.3 Signature-Aware Traffic Monitoring with IPFIX  

The authors of [27] propose a signature-aware traffic monitoring system that uses 

the IPFIX [28] standard. Internet protocol flow information export (IPFIX) is the 

universal standard for export of flow information to enable network measurement, 

accounting, and billing [29].  

A flow is a set of packets having the same properties, such IP source, destination, 

protocol, etc., observed in a specific period of time. A metering process located at a 

router or switch analyzes network traffic and aggregates information into flow records. 

The exporter process then transmits the flow information from the metering process to 

the collectors. The data collected from the various exporters is subsequently used for 

network measurement. 
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Figure 1.  Covert bot states. 
 
 

Table 1. Events. 
 

Events Description 
b1 Token Bot present in Botnet 
b2 Token Bot absent in Botnet 
b3 Bot loses Token Election 
b4 Bot wins Token Election 
b5 Token Bot is unresponsive 
b6 Token Pass received 
b7 Token Pass sent 

 
The monitoring system proposed in [27] consists of signature inspectors that 

inspect payloads in traffic for signatures and record the signature id of the signature 

found in the IPFIX compliant flow record. The authors use Snort [25, 26] as their 

example for signature inspector. The flow record is exported to the IPFIX compliant flow 

collector, which in turn forwards it to the flow analyzer. The flow analyzer classifies 

flows with the signature id given in the flow records, to reveal hidden anomaly traffic 

patterns. 
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The key differences between the defense outlined in [27] and the design of the 

defense mechanism for detecting a covert botnet model of bot infection proposed and 

implemented in this thesis are:  

1. The example cited for signature inspector by the authors [27] is Snort which 

contains a huge database of signatures. Having a signature inspector such as Snort 

at each monitoring point including switches means replicating the enormous 

database. Such replication is not necessary for detecting the covert botnet model 

of bot infection. One centrally located database of signatures and replicating only 

the detection engine in the monitoring points will suffice. For more details, see 

Section 4.4.1. 

The disadvantages of having a huge database of signatures at each monitoring 

points are; 

• Redundancy of the signature database, as the database needs to be 

replicated at each monitoring point. 

• Increased computational requirements to analyze the traffic with a huge 

database of signatures.  

• Increased memory to store the database of signatures. 

• Increased time to analyze the traffic. 

2. The authors of [27] send the signature id as part of the user data in the flow 

information. This information is used for flow classification to detect anomaly 

traffic; however, this classification alone is not useful for detecting the covert 

botnet model of bot infection. In the proposed model, the dialog correlation 

strategy proposed by the authors of [13] is extended to include the communication 



 18 
flows between the internal hosts, in addition to the communication flows that 

are exchanged between the internal host and external entities. This enables 

detection of the covert botnet model of bot infection. 
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CHAPTER 3 

 
IMPLEMENTATION OF COVERT BOTNET 

 
This chapter describes the implementation details of the covert bot. In addition, it 

describes the implementation of other components needed to validate the new covert 

botnet model. This chapter also outlines the flaw in the new model and presents solutions 

to solve the flaws. The experimental setup to validate the model is explained.  The 

various experiments performed and the results obtained are discussed in this chapter. 

3.1 Covert Botnet Framework 

The construction of the botnet framework consisted of a programmatic design and 

implementation of the following components. Table 2 lists the components in the 

framework. 

• Covert Bot. This application simulates a bot and is responsible for maintaining 

contact with external peers to perform binary updates or command updates (E3, 

E4 events). This communication is illustrated by “Covert Bot 1” downloading a 

new binary from the External Peer in Figure 2. The bot also propagates the new 

binary (A3 event) or commands (A4 event) obtained from the external peer to 

other bots in the botnet. 

• External Peer Application. This application simulates a remote command and 

control server and is responsible for sending new versions of the bot binary (E3 

event), commands (E4 event) for carrying out malicious actions, and external peer 

lists (E4 event) to the covert bot. 
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• Vulnerable Application. In the real world, the remote C&C server exploits 

vulnerability in a computer to perform the infection. Vulnerability in a computer 

may be software bugs that allow software applications to access protected 

resources, which can result in an application performing privileged actions like 

downloading malicious binaries from the Internet and executing them. The 

vulnerable application implemented for the covert bot framework is a component 

that simulates vulnerability in the computer. The covert bot exploits this 

vulnerability to perform the initial infection in the computer (A2 event) as 

illustrated by “Covert Bot 2” infecting uninfected computer 3 in Figure 2.  

3.2 External Peer Application 

  This application is written in C++. It is a TCP socket-based server program and is 

used to simulate the remote command and control server. It runs on a Linux desktop that 

is connected to the router, as illustrated in Figure 2. The application listens on a 

predefined port and depending on the type of request from the Bot, sends the new bot 

binary, command, or peer list to the requesting bot. 

3.3 Vulnerable Application 

This application is written in C++ and is used to simulate the vulnerability in a 

computer. It is a TCP socket-based server program and is hosted on all the computers in 

the local network, as illustrated in Figure 2. The application listens on a predefined port 

and receives the binary from other bots to create the initial infection (A2 event) in the 

computer. This application saves the received binary, changes its permission mode to  
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Table 2. Covert Botnet Components and Actions. 

 

 

execute, and assigns it root privileges. The bot binary is then executed by the vulnerable 

application. 

3.4 Covert Bot 

This application is written in C++. This is the main application that implements 

the functionality for covert botnet communication in a private subnet. It is a multi-

threaded program.   

3.4.1 Functions 

The bot performs three important functions. These operations are essential to the 

working of the botnet. 

1. Communicate with external peers (E3, E4 events) 

2. Infect other computers in the network (A2 event) 

3. Communicate with internal peers (A3,A4 events) 

3.4.2 Modules 

 The Bot consists of four modules. 
 

1. Network attack module. 

2. Message listener module. 

Components Actions 
Covert Bot  Perform A2, A3, A4 events. 

External Peer Application Perform E2, E3, E4 events. 
Vulnerable Application This Application simulates vulnerability in 

a computer. Covert Bot exploits this 
vulnerability to perform the initial 

infection. 



 22 
 
 
 
 
 
 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Covert botnet framework. 
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3. Process module, which is further subdivided into two categories: 

• Token bot module 

• Nontoken bot module. 

4. Internal binary update module. 
 

3.4.3 Network Attack Module  

The network attack module (NAM) runs on a separate thread. Its main purpose is 

to perform the initial infection of the other computers in the local network. It sends a 

special message to check whether a computer is infected. If a bot is present in a 

computer, the bot indicates that the computer is infected in its response. If there is no 

response from the computer, the NAM establishes contact with the vulnerable application 

and sends the bot binary to it (A2 event) to create the initial infection in the computer, as 

illustrated in the Figure 3.  

3.4.4 Message Listener Module 

The message listener module runs on a separate thread. This is a raw socket-based 

server module that listens on a predefined port for messages from other bots in the 

network. On receipt of any message, it is dispatched to the process module which is 

responsible for processing the message. The primary idea behind the separation of 

listening and processing of messages is to ensure that no messages are lost during the 

processing of messages. 
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Figure 3. Network attack module. 

 

3.4.5 Process Module 

The process module runs on a separate thread.  It receives messages from the 

message listener module, and if the bot is running as a token bot, the process module 

dispatches messages, such as token acquisition broadcast, token report request broadcast 

(TRRB), token acquisition report, and the Token Pass, to the nontoken bot module. 

Figure 4 illustrates the dispatch of messages to the different modules depending 

on the type of message. The process module is also responsible for conducting the token 

election. This is performed when the token bot is unresponsive. The TE message is 

broadcast in the network, and on receipt of this message, other bots in the network 

respond with their report list. 
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 If the report list of the bot that initiated the TE is older than the report list 

received from other bots, it updates its report list. The bot waits a predefined time period 

to receive the report list sent by other bots. After the expiration of the time period, it 

scans through the report list, to determine the next token bot and passes the token to it. 

3.4.6 Token Bot Module 

This module is responsible for performing actions, such as downloading the new 

binary, command, or peer list (E3, E4 events), from the external peer application and 

propagating the result of the action to rest of the bots in the network. As illustrated in 

Figure 5, the Token Bot module first sends the TAB message to all the bots in the 

network indicating that it is the new token bot. This action is followed by the TRRB 

message. On receiving the TRRB, each bot in the network, replies to the token bot with  

the information about itself. The information consists of the MAC address of the host in 

which the bot resides, the bot binary version, the actions it performed (if the bot has been 

a token bot previously), and the timestamp at which the action was performed. 

After waiting a fixed period of time and there are no more TRRR responses, this 

module compiles the new report list. It subsequently performs the action (E3, E4 events) 

and sends out the status of the action and the new report list as part of the TARP 

message. After receiving the TARP acknowledgement, it determines the next token bot 

and performs a token pass to that bot and transfers control to the nontoken bot module.  
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Figure 4. Process module. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Token bot module flow chart. 
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3.4.7 Nontoken Bot Module 

This module is responsible for responding to the TRRB message from the token 

bot. This module creates the TRRR message which consists of the last action performed 

by the bot when it was the token bot, the time at which it was performed, and the MAC 

address of the computer in which the bot resides.  

If a new binary has been downloaded by the token bot, this module requests the 

latest binary from the token bot. It is also responsible for sending the TARP 

acknowledgement on receipt of the TARP message from the token bot. If the token bot 

does not send a TRRB or does not respond to the TARP acknowledgement, the nontoken 

bot module transfers control to the process module which performs the token election. 

Figure 6 illustrates the program flow in the module. 

3.4.8 Internal Binary Update Module 

This module is responsible for propagating the binary downloaded by the token 

bot to other bots in the network.  If a new binary has been downloaded by the token bot, 

this is specified in the TARP message that is sent to other bots. On receipt of this 

information, the bots request the binary from the token bot.  The internal binary update 

module in the token bot sends the new binary to the requesting bot (A3 event). As shown 

in Figure 7, it can be seen that the Covert Bot 2 requests the latest binary from the token 

bot, and the internal binary update module sends the new binary to Covert Bot 2. 
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Figure 6. Nontoken bot module flow chart 
 

Send Information 
 
 
 
 
 

Send request for 
Binary/Command Update 

 
 
 
 

Send 
acknowledgement to 

Token Bot 
 
 
 
 

Transfer  
control to  

Process Module 
 
 
 
 
 

No 
TARP 

TRRB 

TARP 

Wait for TRRB 
 
 
 
 
 

Wait for TARP 
 
 
 
 
 

TA Broadcast No TRRB 

Is Last 
Bot 

Pass TARP  
to next 

 Bot in Report List 
 
 
 
 
 

Yes 

No 



 29 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. Internal binary update module. 

3.4.9 Messages 

For the successful operation of the bot network, each of the bots in the network 

has to coordinate with the other bots to determine what action needs to be done, which 

bot becomes the next token bot, etc. This is done by exchange of a predefined set of 

messages amongst the bots. The important component of all the messages is the code that 

indicates the type of message.  The code and the message type it identifies are show in 

Table 3. 

3.4.10 Data Sharing and Synchronization 

This project utilized a thread safe queue to share the data among the various 

threads.  The messages that are received from other bots are put into the thread safe 

queue. The modules in the bot that are running on various threads wait in the queue, and  
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Table 3.  Message Types. 

Code Message Type 

A 
Token Acquisition Broadcast (TAB) 

B 
Token Report Request Broadcast (TRRB) 

C 
Token Report Request Response (TRRR) 

D 
Token Action Result Propagation (TARP) 

E 
Token Pass (TP) 

 
 

once a message is received, they are popped out and processed. The covert bot uses the 

Posix [30] thread libraries for thread creation and synchronization. 

Example:  A queue is shared between the message listener module and the 

process module. The message received   by the message listener module is pushed into 

the queue, and a signal is sent to the process module indicating receipt of the new 

message. On receipt of the signal, the process module pops the message from the queue 

and processes it.  

3.4.11 Stealth 

 The covert bot sniffs on the local traffic to obtain the IP Address and the MAC 

address from DHCP requests and ARP responses. This helps the covert bot to find new 

computers to attack in the local network. When the covert bot communicates with other 
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bots in the network, ARP requests are generated by the switch, if the MAC addresses 

are not present in the ARP cache in the host and sent to the router. This information can 

be picked up by an intrusion detection system that monitors the router. In order to prevent 

the generation of ARP requests, the IP address and the MAC address obtained from 

sniffing the network traffic are stored in the ARP cache in the host, thus increasing the 

stealth. 

3.4.12 TCP  

Communication between the external peer and the internal bots like a binary 

download and command acquisition (E3, E4 events) is done using TCP. The binary that 

is propagated (A3 event) to other bots in the local network is also through TCP. This is 

because the maximum size of data that can be sent thru the MAC layer is 1500 bytes, 

whereas the typical covert bot binary size is in the region 100 - 500 kb.  

3.4.13 Persistent Storage 

The bots run in the background on the computer as a Linux service and, hence, do 

not require manual intervention for startup.  Information, such as the last action 

performed by the bot, the timestamp, binary version of the bot, and the report list, is 

stored in a file upon bot shutdown as this information is critical in determining the next 

token bot during a token pass.  

 If the bot does not store in persistent storage the last action it performed, the bot 

might perform an action that would satisfy either of the two conditions needed for 

detection by BotHunter. This is illustrated by the following scenario. Let ‘T’ be the 

threshold of BotHunter, let four be the size of the Botnet, and assume that none of the 
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bots have performed any action initially. A recap of the rules for selecting the next 

token bot is as follows. 

1.   If there is a bot that has not done any action, it is selected as the next token 

bot. If there are more than one bot that have not done any action, one of them 

is chosen arbitrarily. 

2. If the first rule is not satisfied, the token is passed to the bot whose last action 

matches the next action to be done in the botnet. 

3. If there are no such bots that satisfy the above two rules, the bot that has the 

oldest timestamp is selected as the next token bot. 

As shown in Table 4, at time t1, Bot 1 performs the binary update. It then selects 

Bot 2 as the next token bot based on rule 1. On becoming the new token bot, Bot 2 

performs the command update, during which time the computer hosting Bot 1 is 

shutdown. Bot 2 then passes the token to Bot 3 based on rule 1, and after Bot 3 performs 

its action, it transfers the token to Bot 4.  

When Bot 4 performs the TRRB, Bot 1 starts up again. Since Bot 4 does not have 

persistent storage, it has no way of knowing the last action performed. Hence, it indicates 

that it has not performed any action in the token report request response message sent to 

Bot 4. During the token pass, Bot 4 selects a bot based on rule 1. Bot 1 then downloads 

the new command at t6. Since two events (binary download at t1 and command 

download at t6) are performed before T, the threshold time of BotHunter, the bot 

infection is signaled by BotHunter. 



 33 
However if all Bots maintained persistent storage, then it can be seen from 

Table 5 that Bot 1 sends the last action performed by it on receipt of the TRRB message 

from Bot 4. Bot 4 subsequently selects Bot 2 as the next Token Bot as it satisfies rule 2. 

 

Table 4. Scenario 1 – No Persistent Storage. 

 Time Action 
 t1 Bot 1 performs Binary Update (E3) and passes token to Bot 2. 

t2 Bot 2 performs Command update  and passes token to Bot 3 

t3 Computer hosting Bot 1 is shutdown. 

t4 Bot 3 performs Peer List Update and passes token to Bot 4. 

t5 Bot 4 performs Binary update. Bot 1 starts up and Bot 4 passes token 

to Bot 1 

t6 Bot 1 performs Command update (E4).  Since E3 and E4 are under 

pruning threshold time T of BotHunter, the Bot infection is identified 

by BotHunter. 

 

 

Table 5. Scenario 2 –Persistent Storage. 

 Time Action 
 t1 Bot 1 performs Binary Update and passes token to Bot 2. 

t2 Bot 2 performs Command & Control and passes token to Bot 3. 

t3  Bot 1 goes down  

t4 Bot 3 performs Peer List Update and passes token to Bot 4. 

t5 Bot 4 performs Binary update. Bot 1 starts up reads the last action 

and passes the last action to Bot 4. Bot 4 selects Bot 2 as next Token 

Bot based on rule 2. 

t6 Bot 2 performs Command update. 
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3.5 Analysis of Existing Botnet Model 

3.5.1 Experiment Setup 

• Bot Application. This application simulated a bot that relies on the existing bot 

infection model. It was written in C++.  It performs binary downloads and 

external port scan. 

• External Command and Control(C&C) Server. This application simulated the 

remote command and control server. When a bot requests a bot binary, the bot 

binary is sent to it through TCP. 

• Local Network. The local network was simulated on VMware [31], and the 

network size was ten.  It also consisted of a Linux desktop that hosted BotHunter. 

• External Network. The external network consisted of two computers. One of them 

hosted the remote command and control (C&C) server. The other one simulated a 

computer on which the port scan was performed by the bots. 

• Operating System. Ubuntu Linux. 

Figure 8 illustrates the experimental setup for the experiments. The computer 

hosting BotHunter was directly connected to the router to analyze the traffic for detecting 

E3, E4, and E5 events. The Bot in infected computers performed a binary download 

followed up by a command download or port scan.  

3.5.2 Experiment 1 

The objective of Experiment 1 was to show that the experimental setup simulates 

an actual network containing BotHunter and the bots. The binary download and the 

command download (E3 and E4 events) were performed by the bots within the  
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Figure 8.  Botnet framework. 
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threshold time. The BotHunter threshold was set at 5 minutes. The sequence of actions 

performed by the Bot is shown in Table 6. 

The bots were programmed to perform E3 and E4 events every 30 seconds. As 

seen in Table 6, Bot 1 performed the binary download, followed by the command update 

within 30 seconds of the binary update. Since the events were conducted within the 

threshold time period, the botnet was detected by BotHunter. 

3.5.3 Experiment 2 

The objective of Experiment 2 was to show that BotHunter will not flag a bot 

infection when E3 and E4 events are not done within the threshold time period. The 

BotHunter threshold time period was set at 5 minutes. The sequence of actions performed 

by the Bot is shown in Table 7. 

The Bots were programmed to perform E3 andE4 events every 5 minutes and 30 

seconds. As shown in Table 7, Bot 1 performed the binary download, followed by the  

Table 6. BotHunter Detection. 

Time(MM:SS) Action BotHunter Result 
00:00 Bot 1 performed 

Binary Download(E3) 
 

00:30 Bot 1 performed 
Command update(E4) 

Detection – Profile generated 

01:00 Bot 2 performed 
Binary Download(E3) 

 

 01:30 Bot 2 performed 
Command update(E4) 

Detection – Profile generated 

02:00 Bot 3 performed 
Binary Download(E3) 

 

02:30 Bot 3 performed 
Command update(E4) 

Detection – Profile generated 
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Table 7. BotHunter Evasion. 

Time(MM:SS) Action BotHunter Result 
0:05 Bot  1 performs Binary 

Download(E3) 
 

5:35 Bot 1  performs External 
Port Scan(E5) 

No Detection since E3, E5  do not occur 
within the threshold time 

11:05 Bot 2 performs Binary 
Download(E3) 

 

16:35 Bot  2 performs External 
Port Scan(E5) 

No Detection since E3, E5  do not occur 
within the threshold time 

22:05 Bot  3 performs Binary 
Download(E3) 

 

27:35 Bot  3 performs External 
Port Scan(E5) 

No Detection since E3, E5  do not occur 
within the threshold time 

 

command download after 5 minutes and 30 seconds of the binary download. Since the 

events were not conducted in the same threshold time period, the Botnet was not detected 

by BotHunter. 

3.5.4 Experiment 3 

The experiments were conducted for 50 minutes; BotHunter threshold was set at 5 

minutes. Figure 9 shows the results of the three experiments, each with a different 

number of actions per BotHunter threshold time period. The first experiment was 

conducted with two actions (E3, E4 events) being conducted within the threshold time 

period, as illustrated in Figure 9. This resulted in detection of bot by BotHunter.  

The second experiment was conducted with the bot performing only one action 

per threshold time. Ten actions were performed by the bot within the 50 minutes.  The 

third experiment was conducted with one action per twice the threshold time period.  This  



 38 

 

Figure 9. Number of actions over time graph. 

resulted in no detection by BotHunter, but the number of actions was reduced to five 

during the same 50-minute time period. 

3.6 Analysis of Covert Botnet  

3.6.1 Experiment Setup 
 

• Covert Bot Application. This application simulated the covert bot. It was 

written in C++.  It was responsible for performing the binary, command, and 

peer list download (E3, E4 events) from the external peer and propagating   
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these actions (A3, A4 events)  to other covert bots in the local network. It was 

also responsible for performing the initial infection (A2 event) in other computers 

in the local network. 

• External Peer Application. This application simulated the remote command and 

control server. When a bot requests a bot binary, the bot binary is sent through 

TCP. 

• Local Network. The local network was simulated on VMware, and the network 

size was ten.  It also consisted of a desktop computer that hosted BotHunter. 

• External Network. The external network consisted of one desktop computer, 

which hosted the external peer application.  

• Operating System. Ubuntu Linux. 

Figure 10 illustrates the experimental setup; all the infected computers hosted the 

covert bot. The token bot downloaded the binary or command (E3, E4 events) from the 

external peer application and propagated (A3, A4 events) it to the rest of the bots in the 

local network. The BotHunter running a Linux desktop could trap the E3, E4 events as it 

analyzed communication with the external network; however it could not identify the A3, 

A4 events as it did not monitor the traffic within the local network. 

3.6.2 Experiment  

The objective of this experiment was to show that under the covert bot model, 

BotHunter will not flag a bot infection even when E3 and E4 events are done within the 

threshold time. The BotHunter threshold was set at 5 minutes. The covert bot  
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 Figure 10. Covert botnet framework.  
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was programmed to perform its action (E3, E4 event), followed by internal propagation 

(A3, A4 event) ,and a token pass event every 1 minute and 30 seconds. The sequence of 

actions performed by the bots is shown in Table 8. 

As illustrated in Table 8, Bot 1 performed the binary download (E3 event) at 1 

minute and 30 seconds. This latest binary was immediately propagated (A3 event) to the 

other bots in the local network.  Bot 1 next performed a token pass to Bot 2. Similarly, 

Bot 2 performed the command download (E4 event) at 3 minutes, which was 

immediately propagated (A4 event) to the other bots in the local network. It then did a 

token pass to Bot 3. Even though the E3, E4 event was performed within the BotHunter’s 

 

Table 8. Covert Botnet.  

Time 
(MM:SS) 

Token 
Bot 

Action Other Bots Token Pass 

01:30 Bot 1 Binary Download A3 event Bot 2 
03:00 Bot 2 Command 

Download 
A4 event Bot 3 

04:30 Bot 3 Peer List 
Download 

A4 event Bot 4 

06:00 Bot 4 Binary Download A3 event Bot 5 
07:30 Bot 5 Command 

Download 
A4 event Bot 6 

09:00 Bot 6 Peer List 
Download 

A4 event Bot 7 

10:30 Bot 7 Binary Download A3 event Bot 8 
12:00 Bot 8 Command 

Download 
A4 event Bot 9 

13:30 Bot 9 Peer List 
Download 

A4 event Bot 10 

15:00 Bot 10 Binary Download A3 event Bot 2 
16:30 Bot 2 Command 

Download 
A4 event Bot 3 

18:00 Bot 3 Peer List 
Download 

A4 event  
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 threshold time, they were performed by different bots. Further, since infection dialog 

in BotHunter is tied to a single computer, this model evades detection by BotHunter.  

3.6.3 Number of Actions Graph 

Figure 11 shows the results of the two experiments, each with a different number 

of actions per BotHunter threshold time period. The BotHunter threshold time period was 

set at 5 minutes. In the first experiment, the bots were programmed to perform three 

actions (binary download, command download, peer list download) at one-and-a-half 

minute intervals. The three actions are shown in Figure 11 during the time interval 

between 5 and 10 minutes.  Within 18 minutes, 12 total actions were performed by the 

bots. In the second experiment, the bots were programmed to perform actions (E3, E4 

events) at intervals lower than one-and-a-half minutes, which resulted in 12 actions being 

performed in less time.  

The experiments show that in the covert botnet model, the bots could be 

programmed to do any number of actions within the threshold time period as the model 

negates the two conditions required for detection as discussed in Section 2.2.1. The only 

drawback is the increase in network bandwidth because the increase in actions generates 

increased traffic.  

3.7 Comparison of Number of Bot Actions over Time  

3.7.1 Existing Botnet Model 
 

In order to evade detection, bot actions have to be spaced out by BotHunter 

pruning threshold Time ‘T’. The BotHunter threshold time period was set at five minutes. 
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Figure 11. Covert botnet - Number of actions over time. 

It takes about an hour to perform 12 actions, as shown in Figure 12. 

3.7.2 Covert Botnet Model 

The bots were programmed to do three actions per threshold time period, and it 

took 18 minutes to complete the 12 actions, as illustrated in Figure 12. Unlike the 

existing botnet model wherein only one action can be done within the BotHunter 

threshold time period in order to evade detection, the covert botnet model can do any 

number of actions within the threshold time. Consequently, the bots could be  
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Figure 12. Comparison of number of bot actions over time. 

 
programmed to perform more actions within the threshold time period, in which case the 

time taken to complete 12 actions would be much less. 

3.8 Comparison of External Network Traffic  

3.8.1 Existing Botnet Model 
 

If the size of the binary downloaded is S KBs, and the number of bots in the 

network is N, the amount of traffic generated between the internal host and the external 

peer is N*S KBs. This is because each bot has to download the bot binary from the 
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external peer. As can be seen in Figure 13, when the botnet size is 10 and the size of 

the binary download is 165 KB, the total data downloaded from the external peer is 1650  

KB. An increase in traffic could lead to possible detection by intrusion detection systems 

that monitor the traffic entering a local network. 

3.8.2 Covert Botnet  

In the case of the covert botnet model, the amount of traffic generated between 

the internal host and the external peer is a constant S. Since only one bot is going to 

download the bot binary and distribute it to the other bots within the network.  As can be 

seen in Figure 13, irrespective of the size of the botnet, the traffic between the internal 

host and the external peer is 165 KB which is the size of the bot binary. 

3.9 Covert Botnet Connectivity 

In a network, computers are shutdown either because of human intervention or 

because of extraneous circumstances like a power failure. A computer that is shutdown 

could contain a covert bot which is either in a token bot state or a nontoken bot state.  

When the token bot is not alive, the connectivity with the external peer is lost, leading to 

a breakdown in external communication. A loss of external communication means that 

the bots do not have access to the latest binary and are not be able to perform malicious 

activities, leading to a collapse of the bot network.  To deal with this, the token election 

process had been proposed in the covert botnet model. 

Experiments were conducted to determine how effectively the token election 

process restores the connectivity of the botnet when computers are shutdown and 

restarted. The experiment was simulated on a VMware virtual network consisting of 30  



 46 

 
 

Figure 13. Comparison of external network traffic. 

 

computers. The token pass was programmed to occur every 2 minutes. Actions such as 

binary and command downloads were performed every 2 minutes. 

In order to simulate computers containing a token bot shutting down, the bot in a 

token bot state was programmed to generate a random number before performing a token 

pass. If the number was within a threshold value, the bot did not respond to any message 

from other bots in order to simulate an unresponsive bot. Upon not receiving any 

responses from the token bot, the other bots would initiate a token election.  Figure 14 

illustrates the experimental setup. Each of the 30 computers in the setup contained a 

covert bot.  
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Figure 14. Experiment setup. 
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3.9.1 Covert Botnet Connectivity – Token Bot   

The graph in Figure 15 below shows the connectivity of the bot network with the 

external peer over time. The botnet is disconnected from the external peer when the 

covert bot that is in token bot state becomes unresponsive.  It is during said time that the 

token election is conducted. On an average, it took about 5 minutes for a token election to 

elect the new token bot and restore connectivity with the external peer.  

 

 

 

Figure 15. Covert botnet connectivity – Token bot. 
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The graph in Figure 16 below shows the number of actions performed over 

time when bots randomly become unresponsive. The number of actions over time 

increased linearly.  Further, when a covert bot that was in a token bot state was 

unresponsive, there was a temporary plateau due to a token election. The number of 

actions again increased when a bot was elected as a token bot. 

 

 

 
 
 
 

Figure 16. Covert bot actions over time with token election. 
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3.9.2 Covert Botnet Connectivity - Nontoken Bot  

The graph in Figure 17 below shows the connectivity a nontoken bot has with the 

botnet. When a bot in nontoken bot state is unresponsive, its connectivity with the bot 

network is lost. When the bot resumes, it sends out a special message to determine if a 

token bot is present in the botnet. If a token bot is present, it responds to the message, and 

the connectivity of the bot is instantly established. 

If the bot resumes during a token election, the bot has to participate in the token 

election process, and the connectivity of the bot is established when the token election is 

complete. 

 
 

Figure 17. Nontoken bot network connectivity with token election. 
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3.10 Covert Botnet Flaws 
 
3.10.1 Token Pass Flaw 
 

The design for BotHunter evasion had a flaw that needed to be rectified. A recap 

of the rules for selecting the next token bot follows. 

1. If there is a bot that has not done any action, it is selected as the next token 

bot. If more than one bots exist that has not done any action, one of them is 

chosen arbitrarily. 

2. If the first rule is not satisfied, the token is passed to the bot whose last action 

matches the next action to be done in the botnet. 

3. If there are no such bots that satisfy the above two rules, the bot that has the 

oldest timestamp is selected as the next token bot. 

The flaw is in rule 3.The following scenario illustrates the flaw. Let the botnet 

size be four and the BotHunter threshold be T. As shown in Table 9, initially Bot 1  

Table 9. Token Pass Flaw. 

Tim
e 

Token Bot Action Bot Status Bot Hunter 
Result 

Bot 1 Bot 2 Bot 3 t1 Bot 1  Binary update 
Alive Alive Alive 

 

Bot 1 Bot 3 Bot 4 t2 Bot 2 Command 
update Alive Alive Alive 

 

Bot 1 Bot 2 Bot 4 t3 Bot 3 Peer List 
Update Alive Alive Alive 

 

Bot 1 Bot 2 Bot 3 t4 Bot 4 Binary Update 
Alive Dead Alive 

 

t5 Bot 1 Command 
Update 

Bot 2 Bot 1 Bot 3 Detection/Profile 
generated 
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becomes the token bot and performs binary update; next Bot 2 becomes the token bot 

and performs command update. 

When Bot 4 becomes the token bot, the computer hosting Bot 2 is shutdown.  

After completing the binary download, Bot 4 selects Bot 2 as the next token bot, since its 

last action matches the next action to be performed, e.g., command update. However, Bot 

2 is unresponsive. Subsequently, Bot 4 selects Bot 1 as the next Token Bot as it satisfies 

rule 3 of token bot selection. Bot 1 completes its action at t5; however, Bot 1 has 

performed two actions triggering an E4 and E5 event within the BotHunter threshold ‘T’ 

time period leading to detection by BotHunter. 

3.10.2 Solution to Token Pass Flaw 
 

The flaw could be rectified by excluding rule 3 for selection of the next token bot. 

During a token pass, if there are no bots which satisfies rule 1 and rule 2, the token bot 

will wait until such time a bot that satisfies rule 1 or rule 2 comes into existence. 

3.10.3 Timestamp Flaw 

In the current design, each bot stores the time at which it performed an action (E3, 

E4 event). This time is based on the time in the local computer.  It could be possible that 

the times in some computers in a network might differ. If such be the case, a problem 

during the token acquisition response propagation (TARP) could result. When the TARP 

message is being passed around, each bot checks to see if the timestamp in the report list 

in the TARP message is greater than the timestamp of the report list it is currently 

storing. If it is greater, it is accepted; otherwise, it is rejected. 
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The problem with using timestamps for report lists is illustrated by the 

following scenario, in which three computers have the same time, while the fourth one is 

behind the other three by t minutes. As shown in Table 10, Bot 1 completes its action at 

t1, Bot 2 completes its action at t2, Bot 3 completes its action at t3, and Bot 4 completes 

its action at t4. 

After completing its action, Bot 1 passes the report list as part of the TARP 

message, and the other bots accept the message as the timestamp (t1) that is greater than 

the initial timestamp (0) stored in them. Similarly, Bot 3 passes the report list as part of 

the TARP message, and the other bots accept the message as the timestamp (t3) is greater 

than the timestamp (t2) stored in them.  

 

Table 10 Timestamp Flaw. 

Tim
e 

Tok
en 
Bot 

Action          TARP Report List 
Timestamp 

Token Pass 

Bot 2  Bot 3 Bot 4 t1 Bot 
1 

Binary 
Download  t1 t1 t1 

Bot 1 passes 
token to Bot 2 

Bot 1  Bot 3 Bot 4 t2 Bot 
2 

Command 
Update t2 t2 t2 

Bot 2 passes 
token to Bot 3 

Bot 1 Bot 2 Bot 4 t3 Bot 
3 

Peer List 
Update  t3 t3 t3 

Bot 3 passes 
token to Bot 4 

t4 Bot 
4 

Binary 
Download  

Bot 1  rejects 
the Report 
List since 
t4<t3 

Bot 2 
rejects 
the 
Report 
List 
since 
t4<t3 

Bot 3 
rejects 
the 
Report 
List 
since 
t4<t3 

No Token Pass 
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 However, since the computer hosting Bot 4 is running behind the other 

infected computers, the timestamp (t4) of Bot 4 is lesser than the timestamp (t3) of the 

report list in the other bots. Hence, the TARP message is rejected by the other bots. Since 

all the bots have rejected the TARP message, the token bot will not receive the TARP 

acknowledgement from other bots and hence will not perform a token pass, leading to a 

collapse of the botnet. 

 
3.10.4 Solution to Timestamp Flaw 
 

The above problem could be avoided by eliminating use of the timestamp to 

determine the latest report list. The alternative is to use an action counter to determine the 

latest report list. The action counter indicates the total number of actions performed by 

the botnet. The solution is illustrated by the following scenario, in which three computers 

have the same time, while the fourth one is behind the other three by t minutes. As shown 

in Table 11, initially Bot 1, which is in the token bot state, performs the binary download 

and increments the action counter to 1. 

Table 11. Action Counter Solution. 

Time Token 

Bot 

Action 

Counter 

Action  Bot Number - action counter  Token Pass 

t1 Bot 1 1 Binary  Bot 2 - 1 Bot 3 – 
1 

Bot 4 -
1 

Bot 2 

t2 Bot 2  2 Command Bot 1 -   
2 

Bot 3 -2 Bot 4 - 
2 

Bot 3 

t3 Bot 3 3 Peer list Bot 1 - 3 Bot 2 - 
3 

Bot 4 - 
3 

Bot 4 

t4 Bot 4 4 Binary Bot 1 - 4 Bot 2 - 
4 

Bot 3 -
4 

Bot 2 
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It then propagates the action counter as part of the TARP to the other bots. 

Similarly, Bot 2 performs its action and increments the action counter. When Bot 4 

finally becomes the token bot, it performs its action, increments the action counter, and 

passes it on to rest of the botnet. The TARP is accepted by the other bots even though Bot 

4 is behind in time.  The Botnet operation continues unhindered. 
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   CHAPTER 4 

 
IMPLEMENTATION OF DEFENSE  

 
AGAINST COVERT BOTNET 

 
This chapter presents the concept for the defense against the covert botnet 

proposed in [12]. It explains the implementation details of the key components in the 

defense system, the experimental set up, the experiments conducted, and the results 

obtained to validate the concept. 

4.1 Overview of Defense System 

BotHunter monitors the traffic entering or leaving a network and detects all E3 

through E5 events; however, it does not monitor the traffic within the local network and, 

hence, does not detect an internal to internal exploit (A2 event), internal to internal binary 

acquisition (A3 event), to internal command and control communication (A4 event).  In 

order to detect these events, this thesis proposes a local traffic monitoring system 

(LTMS).  

4.2 Rules for Detection 

In order to declare the existence of a Bot infection either one the following 

conditions has to be satisfied. 

• An internal to external binary acquisition (E3) event that is followed by an 

A2 event within the BotHunter threshold time period.  

• An internal to external binary acquisition (E3) event that is followed by an 

A3 event within the BotHunter threshold time period.  
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• An internal to external C&C communication (E4) event that is followed 

by an A4 event within the BotHunter threshold time period. 

4.3 Components of Defense System 

The key components of the Defense are the 1) Local Traffic Monitoring System 

and  2) the BotHunter. 

4.4 Local Traffic Monitoring System  
 

  The local traffic monitoring system (LTMS) analyzes the traffic flowing through 

the network switch to detect and report A2, A3, and A4 events. The three main 

components of LTMS are the internal event detector, internal event dispatcher, and 

central event aggregator. There may be one or more internal event detectors and internal 

event dispatchers in the system. They exchange information with the centrally located 

event aggregator, which in turn liaisons with BotHunter. 

4.4.1 Internal Event Detectors 
 
 The internal event detectors analyze the traffic local within the network for 

signatures. A signature is a raw sequence of bytes or strings. These raw sequences of 

bytes or strings are present in the bot binary or commands. As shown in Figure 18, this 

component may be an application running on a computer that gains access to local traffic 

by connecting to a network switch configured for port mirroring or it may be an 

application that is resident in the network switch itself.  
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Figure 18. Defense setup. 
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This component does not maintain a database of signatures but instead relies on 

the signature database that is available in BotHunter. BotHunter internally uses Snort, 

which has an extensive database of signatures. Snort produces an alert message when an 

E3 through E4 event is detected. This alert message consists of the signature that was 

found in the network traffic from the remote command and control center. 

 Since, the same binary or command that was downloaded during an E3 through 

E4 event is propagated across the local network by the covert bot, the internal event 

detector utilizes the signature contained in the alert message generated by Snort in 

BotHunter for analyzing the local traffic. Unlike the signature inspector proposed in [27] 

in the signature-aware traffic monitoring with IPFIX, this component does not need a 

database of signatures.  This results in four benefits. 

• Memory. Since it stores only the recent signature sent by BotHunter it 

requires far less memory than it would if has to have the entire database of 

signatures.  

• Computational Load. The computational requirements are greatly reduced 

since we need to search for only one signature. 

• Time. The time needed to analyze the network traffic is reduced. 

• Speed. The speed at which network traffic can be analyzed is increased. 

Once the A3 through A4 event is detected by this component, the time of 

detection, the type of event (A3, A4), the internet protocol address of the computers 

participating in the events, and the signature id are sent to the internal event dispatcher. 
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4.4.2 Internal Event Dispatcher 

This component formats the information related to an A3 through A4 event 

provided by the internal event detector in the form of a Snort alert message. This alert 

message is then passed on to the central event aggregator. This component is also 

responsible for receiving the signature from the central event aggregator and passing it on 

to the internal event detector. 

4.4.3 Central Event Aggregator 

This component receives the signature from BotHunter that was used in detecting 

the E3 through E4 event. It passes the signature on to one or more Internal Event 

Dispatchers. It also forwards alerts from one or more internal event dispatchers to 

BotHunter. 

4.5 BotHunter 

BotHunter sends the signature that was used in identifying the E3 through E4 

events to the central event aggregator. It correlates the external events with the internal 

events provided by the central event aggregator and signals a bot infection if it matches 

one of the rules for detection as outlined in Section 4.2. 

4.6 Implementation of Local Traffic Monitoring System 

 Instead of building a proprietary protocol for the exchange of information 

between the components in the LTMS, this paper proposes using the Internet protocol 

flow information export (IPFIX) protocol.  IPFIX is the universal standard for export of 

flow information to enable network measurement, accounting, and billing. A metering 

process called exporter located at a router or switch analyzes network traffic and 
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aggregates information about the network traffic. The exporter then transmits the flow 

of information to the collectors. The data collected from the various exporters is 

subsequently used for network measurement. 

 The internal event detector needs to analyze the data packets in the network, and 

since the exporter in IPFIX collects data packets and has access to the data packets in the 

network, the internal event detector is built as an internal module in exporter in order to 

access the data packets and analyze them.    

The exporter in IPFIX also sends the flow information to the collector. In 

addition, it can send user data. The exporter is used for building the internal event 

dispatcher, and the alert message is sent as part of the user data along with the flow 

information. 

The collector is used for building the central event aggregator. This will aggregate 

the alert messages sent as part of the user-defined data by the exporters and pass them on 

to BotHunter and also send the signature to one or more internal event dispatchers.  

4.7 Modifications to IPFIX-compliant Flow Generator 
 

Libipfix [32] is a c-library that implements the IPFIX protocol was used for 

building the LTMS. The following changes were made in the exporter and collector.  

• Exporter. This component was modified to implement the internal event 

detector. The internal event detector uses the Boyer–Moore [33] string 

search algorithm to analyze the traffic for signatures. A TCP socket server 

module was added to the exporter to receive signatures from the central 

event aggregator. 
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• Collector. This component was modified to implement the central event 

aggregator. It sends the signature received from BotHunter to one or many 

internal event dispatchers. Additionally, it sends the alert message 

received as part of an IPFIX message from the one or more exporters to 

BotHunter. 

• IPFIX Message. A new flow template was created to include the alert 

message. The alert message consists of the time of detection of the event, 

which was necessary for BotHunter to correlate external and internal 

events, the type of event, and the signature id. 

4.8 Modifications to BotHunter 

BotHunter was modified to send the signature id along with the signature 

identified in the E3 or E4 event and the type of event, i.e., E3 or E4, to the central event 

aggregator. It was also programmed to receive alerts from the central event aggregator. 

4.9 Detection Steps 

• As shown in Figure 19, BotHunter detects an E3 through E4 event when the 

covert bot downloads the binary or command from the external peer. 

• The signature used in indentifying the E3 through E4 event is propagated to 

the central event aggregator. The central event aggregator may be in the same 

computer as BotHunter or in a different computer, as shown in Figure 19. 

• The central event aggregator propagates the signature to one or more internal 

event detectors. 
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 Figure 19. Detection steps. 
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• The internal event detector detects the A2-A4 events using the signature, and 

the internal event dispatcher propagates the alert message to the central event 

aggregator. 

• The central event aggregator then forwards the alert message to BotHunter. 

• If the E3 through E4 events and the A2 through A4 events are within the 

threshold time, a bot infection is declared. 

4.10 Analysis of Defense Mechanism 

4.10.1 Experiment Setup 

• Covert Bot Application. This application implemented the functionality of 

the covert bot. It was written in C++.  It performs binary download, and 

command download from the remote command and control server. 

External Peer Application. This application simulated the remote 

command and control server. When a bot requests a bot binary, the bot 

binary it is sent through TCP. 

• Local Network. As shown in Figure 20, the local network was simulated 

on VMware consisting of 40 computers.  Thirty virtual computers running 

on the Ubuntu Linux Operating system were hosted on a VMware ESX 

server. These computers were connected to a virtual switch on the 

VMware ESX server. The other 10 computers running Ubuntu Linux 

Operating system were hosted on a VMware workstation that was running 

on top of a Linux server. The computers were connected to a physical 

switch. 
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• Central Event Aggregator. This application was run on a Linux desktop 

computer, as show in Figure 20.  

• Internal Event Detector and Dispatcher. Two internal event detectors and 

dispatchers were used for the experiments. One of them was run on a 

virtual computer hosted on the VMware ESX server and monitored the 

traffic in the virtual switch, while the other was hosted on an Ubuntu 

Linux desktop and monitored the physical switch. 

I implemented and ran the Internal Event Detector, Dispatcher and 

the Centralized Event Aggregator on a desktop computer. These 

components utilized the signature database present in Snort. Using the 

single signature database enables them to analyze the network traffic with 

lesser CPU and memory utilization, which would be necessary if 

implemented on a network switch, since switches have limited memory 

and processing power. 

• External Network. The external network consisted of a single Linux 

desktop computer that hosted the external peer application. 

• BotHunter. This application was hosted on the same Linux desktop 

computer as the central event aggregator. 
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Figure 20. Defense experiment setup. 
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4.10.2  CPU Utilization 

The CPU utilization of the internal signature detector application was dependent 

on the network bandwidth and on the signature database size. The internal signature 

detector analyzed the traffic for occurrences of signatures. If the signature database size 

was large and the volume of the traffic was high, the application spent more time in 

analyzing the traffic thereby increasing CPU utilization of the application. 

This can be seen in Figure 21, wherein CPU utilization reached 100% when the 

network bandwidth was more than 15000 KBs per second and the signature database size 

was 350. However, if the size of signature database was 5, CPU utilization did not go 

beyond 45% even with a network bandwidth of 21000 KBs per second.  

  The internal signature detector had to be present at vantage points in the local 

network to analyze the traffic and detect the A2 through A4 events. Having a huge 

database of signatures at each and every location would not only increase redundancy but 

also increase CPU utilization when analyzing traffic. Hence, it made it advantageous to 

have only one centralized database of signatures available in BotHunter and propagate 

the signature detected during an E3 through E4 event to one or more internal signature 

detectors, which in turn use them to analyze the local traffic and detect the A2 through 

A4 events.  

4.10.2 Network Data Processed versus  
            Signature Database Size  
 
             This experiment was conducted with 4140.4 KB (size of the covert bot binary) of 

data being transferred in the network. As the network data was being transferred, the  
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Figure 21. CPU utilization. 
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internal signature detector copied it in to its internal buffer to compare the received 

data  with the signatures in the database.  As the signature database size increased, the 

amount of network data analyzed by the internal signature detector decreased, since the 

internal buffer could not be analyzed quickly because of the increased signature database.  

 As illustrated in, Figure 22 the internal signature detector was able to analyze all 

the traffic in network when the database size was less than 6; however, when the database 

size increased, the size of data being analyzed by it decreased. This could potentially lead 

to missing the internal binary or commands being propagated in the network. The 

experiment was conducted three times. 

4.10.4 Time Delay 

The LTMS had to receive the signature identified by BotHunter without much 

time delay. As illustrated in Figure 23, when there was a time delay of 0.3 seconds, some 

of the 30 bots participating in the A3 events were not detected. This is because the covert 

bot propagated the binary (A3) to the rest of the botnet before the signature was received 

by the LTMS. A further increase in the time delay decreased the number of bots detected. 

The experiment was conducted three times. When the time delay was 0.8 seconds the 

average number of bots detected was 22 bots. Thus, it is critical to transfer the signature 

identified by BotHunter to the LTMS as soon as possible. 
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 Figure 22. Network data processing. 
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Figure 23. Bots detected vs time delay. 
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CHAPTER 5 

CONCLUSION 

5.1 Contribution 

      Security analysts create new defense mechanisms against attacks, and 

attackers find new ways of defeating existing defense mechanisms to create havoc for 

private computer users and businesses alike. This cat and mouse game will continue in 

the future. Technologies that benefit the people are hijacked by attackers for malevolent 

purposes. IRC channels have been developed for people to communicate, exchange files, 

etc. However, this technology has been misused by attackers to create botnets to carry out 

malicious activities. Initially, botnets created by attackers were based on a centralized 

command and control, and techniques were devised accordingly to detect these botnets. 

 However, attackers have come up with botnets that utilize the peer-to-peer 

networks which are harder to detect. Hence, it is necessary for researchers to detect 

vulnerabilities in current defense mechanisms before the attackers can find them. The 

authors of [12] have proposed a new model of bot infection that is different from existing 

models. It is not only necessary to propose a new model but also demonstrate that the 

new model is viable by implementing and fine-tuning it by conducting experiments.  

This thesis presents implementation of the framework for a covert botnet 

communication in a private subnet. The purpose of said implementation is to show that 

the new model of bot infection is as potent as the existing botnet models while doing a 

better job of maintaining stealth and evading detection from current detection 

mechanisms such as BotHunter. I carried out experiments by simulating an infection in a 

computer network using the new model and showed that the attack is successfully able to 
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maintain stealth and evade detection. I have also suggested some improvements to the 

new model of bot infection to make it more robust. 

            Research in computer security should not stop at finding vulnerabilities. Rather, it 

should leave no stone unturned to finding ways to prevent detection and exploitation of 

vulnerabilities by attackers. Consequently, in this thesis, I have also designed a defense 

mechanism against the new model of bot infection.  

This design involves monitoring the local traffic within a network using the 

signature identified by BotHunter during an external event (E3, E4) and sending alert 

messages using the IPFIX protocol to BotHunter when an internal event (A2-A4) is 

detected. This enables BotHunter to correlate external events with internal events to 

detect bot infection. I have implemented the new design and carried out experiments, 

wherein I simulated a bot infection in a computer network and successfully detected the 

bot infection. 

5.2 Future Work 

There is no defense mechanism that is absolutely foolproof, so there is scope for 

improving the defense mechanism proposed and implemented in this paper. Firstly, the 

implementation used in this paper uses only substring matching for signature 

identification which is sufficient for an A2, A3, or A4 internal events. This could be 

improved by adding more complex rule matching techniques like regular expressions. 

Secondly, when there is a hierarchical structure of switches in a network, 

redundancy in the alert messages being sent to BotHunter occurs. For instance, if a bot in 

a computer connected to switch 1 propagates a binary to another bot hosted in another 

computer connected to switch 2, the internal signature detectors monitoring switch 1 and 
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switch 2 both send alert messages to the central event aggregator.  Techniques to 

eliminate this redundant information being propagated could be another source of future 

work. 

Thirdly, the defense mechanism works fine when the computer that performs the 

Binary, Command, Peer List download (E3, E4 external events), resides in the same 

subnet while performing the internal propagation (A2-A4 internal events).  This allows 

my defense mechanism to detect both the external event and the internal events. This may 

not be true in all scenarios as illustrated by the following case. People carry their laptops 

from home to the workplace or college and the subnets they are part of changes as they 

do it. A bot in a Laptop may perform the E3, E4 external events when the host is 

connected to the home subnet and then when the victim carries the laptop to the 

workplace the bot subsequently perform the binary propagation to the other computers in 

the workplace.   

The Local Traffic Monitoring System would not be able to detect the internal 

propagation as the BotHunter in the workplace is unaware of the external events. 

Detection of such infections would be another improvement to the existing Defense 

mechanism.  

Finally, the concept of using a centralized signature database and using the 

signature detected at the router and propagating to monitors present within network 

switches can be extended to  other devices such as PDA’s, Mobile Phones, etc., which 

like the Network Switch have less memory and processing capabilities and replicating the  

signature database in them will be redundant. In the future Ubiquitous computing will 

become popular and households will contain ambient devices with networking 
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capabilities. These devices can be potentially be exploited by attackers. Hence 

Monitors can be built into the ambient devices which utilize a centralized database of 

signatures, this would reduce the processing and memory needed to analyze the network 

traffic. 
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