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ABSTRACT 
 
 

Studies of the Distinguishing Features of NADPH:2-Ketopropyl-Coenzyme M 

Oxidoreductase/Carboxylase, an Atypical Member of the Disulfide/ 

Oxidoreductase Family of Enzymes 

 
by 
 
 

Melissa A. Kofoed, Doctor of Philosophy 

Utah State University, 2011 
 
 

Major Professor: Dr. Scott Ensign 
Department: Chemistry and Biochemistry 
 

The metabolism of propylene in Xanthobacter autotrophicus occurs via 

epoxypropane formation and subsequent metabolism by a three-step, four-enzyme 

pathway, utilizing the atypical cofactor Coenzyme M (CoM) to form acetoacetate.  

The last step in the epoxide carboxylase pathway is catalyzed by a distinctive member 

of the disulfide oxidoreductase (DSOR) family of enzymes, NADPH:2-ketopropyl 

CoM oxidoreductase/carboxylase (2-KPCC).  2-KPCC catalyzes the unorthodox 

cleavage of a thioether bond and successive carboxylation of the substrate.  The focus 

of the research presented in this dissertation aims to elucidate the details of 2-KPCC 

that allow it to perform chemistry unconventional for typical DSOR members.  Site-

directed mutagenesis was used to mutate specific active site residues and to examine 

the catalytic properties of 2-KPCC upon these changes. Mutation of His137, the 

proximal histidine that directly coordinates the water molecule, eliminated essentially 
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all redox-dependent activity of the enzyme while mutation of His84, the distal 

histidine that coordinates the water molecule through His137, diminished redox-

dependent enzymatic activity to approximately 25% that of the wild type enzyme, 

confirming the respective roles of the histidine residues in stabilizing the enolate 

intermediate formed upon catalysis.  Neither mutation of either histidine residue, nor 

mutation of either redox active cysteine residue had any negative effect on the rate of 

the redox-independent reaction catalyzed by 2-KPCC, the decarboxylation of 

acetoacetate.  Mutation of Met140 resulted in an enzyme with drastically altered 

kinetic parameters and suggests Met140 plays a role in shielding the substrate from 

undesired electrostatic interactions with the surroundings. 

The inhibitory properties of the structural CoM analogs, 2-

bromoethanesulfonate (BES) and 3-bromopropanesulfonate (BPS), were examined 

and exploited to provide further detail on the active site microenvironment of 2-

KPCC.  Modification by BES results in a charge transfer complex between the 

thiolate of Cys87 and the oxidized flavin. The spectral features of this charge transfer 

complex have allowed the determination of the pKa of the Cys87 to be significantly 

higher than the flavin thiol in other DSOR enzymes.  BPS has been shown to be a 

competitive inhibitor of 2-KPCC with an inhibition constant over two orders of 

magnitude lower than for that of BES. 

(107 pages) 
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CHAPTER 1 

 
INTRODUCTION 

 
 

Background and Significance 
 
 

 The increased economic growth and development of our global community has 

created an increased dependency on industrial processes resulting in increased 

atmospheric concentrations of not only typical greenhouse gases like CO and CO2, but of 

a variety of environmentally detrimental gaseous hydrocarbons.   Of particular interest, 

are short chain alkenes and their halogenated equivalents.  The corresponding epoxides 

formed from them are especially toxic due to their highly electrophilic nature and 

propensity to react with cellular proteins and DNA to form covalent adducts (51).  The 

increased concentrations of these compounds not only impart a serious risk to human 

health but also threaten to destabilize our ecosystems through a wide variety of 

mechanisms.  Interestingly, several bacteria have been identified that are able not only to 

detoxify short chain aliphatic alkenes, but are able to convert them to non-reactive central 

metabolites while fixing a molecule of CO2 in the process (19). Xanthobacter 

autotrophicus strain Py2 is one such bacteria, isolated with propylene, and capable of 

growth on the corresponding epoxide, epoxypropane (2).  Additionally, X. autotrophicus 

strain Py2 can also grow using other short chain hydrocarbons such as ethylene, 1-

butylene, 2-butylene, 1-pentene and 1-hexene (49, 50).   While there is clearly an interest 

in these organisms with regards to bioremediation, it is also of importance to understand 

the fundamental mechanisms used by the bacteria rendering them capable of 

metabolizing and detoxifying xenobiotics. 
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The research presented in this dissertation aims to further the understanding of the 

method and mechanism used by X. autotrophicus to detoxify and metabolize epoxides, 

with particular focus on the details of the CoM regenerating, terminal enzyme in the 

pathway, a novel member of the disulfide oxidoreductase (DSOR) family of enzymes that 

is also a carboxylase. 

 
Sources of Propylene and Epoxides.   

Propylene is produced as a byproduct in the refining process of petroleum and 

natural gas.  Epoxypropane, also known as propylene oxide, generated from propylene, is 

used in its gaseous form as a sterilant in hospitals and in its liquid form as an additive to 

increase the effectiveness of disinfectant solutions (25).  Epoxypropane is also produced 

biogenically from alkenes in a variety of organisms as the first step in either the 

detoxification of alkenes, or the utilization of alkenes as a primary energy source by 

broad specificity monooxygenases, including cytochrome P-450 enzymes in plants and 

animals (23), and an alkene monooxygenase in the bacteria X. autotrophicus strain Py2 

and Rhodococcus rhodochrous (2, 3).  

 
Biological Strategies of Epoxide Detoxification.   

There are two basic strategies organisms utilize to undermine the potentially toxic 

effects of epoxides within the cell, 1) conversion to detoxification products or 2) 

productive metabolism allowing the epoxides formed to be utilized as a primary carbon 

and energy source.  The majority of organisms are not capable of using alkenes or the 

corresponding epoxides as primary energy sources and instead possess detoxification 

enzymes that allow the conversion of epoxides to less toxic products, most commonly  
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Figure 1-1.  Biological strategies of epoxide degredation/metabolism.  Examples of 
enzymes which utilize such strategies: A, glutathione transferase; B,  epoxide hydrolase; 
C, styrene oxide isomerase; D, vitamin K epoxide reductase; E, epoxyalkane:CoM 
transferase. 
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glutathione S-transferases (6, 43).  Glutathione S-transferases catalyze the opening of the 

epoxide ring with concomitant glutathione conjugation as shown in Figure 1-1. There is 

also an enzyme used in the vitamin K cycle, vitamin K epoxide reductase, which 

functions to regenerate the dihydroquinone form of vitamin K for use by vitamin K 

carboxylase (52, 53). Bacteria that can productively metabolize epoxides employ several 

different methods, including hydration of the epoxide by an epoxide hydrolase in bacteria 

capable of growth on epoxypropane or epichlorohydrin (7, 27) or isomerization of the 

epoxide to the corresponding aldehyde in the case of bacteria capable of growth on 

styrene (42).  The most unconventional of these methods involves carboxylation of the 

epoxide to a β-keto acid as described below. 

 
Propylene Metabolism via Epoxypropane  
Formation in X. autotrophicus strain Py2.  
 

Propylene metabolism in X. autotrophicus strain Py2 proceeds by insertion of 

oxygen across the olefin bond forming the corresponding epoxides in a stereospecific 

manner by an alkene monooxygenase (46) with R-epoxypropane being formed in 95% 

enantiomeric excess (1).  This alkene monooxygenase is a four component enzyme, 

consisting of a hexameric epoxygenase that contains four mol of nonheme iron, a 

reductase that contains FAD and a 2Fe-2S cluster, a homodimeric ferredoxin containing 

two Rieske-type 2Fe-2S clusters and an effector protein with an as yet to be determined 

function (46). 

Epoxides are not only detoxified but also converted to the more easily assimilated 

metabolite acetoacetate by a three step, four enzyme pathway which catalyzes the 

carboxylation of epoxypropane according to the following overall equation (4): 
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epoxypropane + CO2 + NADPH + NAD+ → acetoacetate + H+ + NADP+ + NADH 

 

The novelty of this pathway includes the use of an atypical cofactor thought 

previously to function only in methanogenic archaea, the presence of a pair of short chain 

dehydrogenase enantiomers which catalyze the same reaction but with opposite 

stereospecificity, as well as an innovative strategy of substrate carboxylation (Figure 1-2) 

(1, 5, 14). 

 
History of Coenzyme M. 
 

Coenzyme M (2-mercaptoethanesulfonic acid) was first discovered in the 

laboratory of Ralph Wolfe in 1971, as a cofactor involved in methanogenic archaea as a 

methyl group carrier during key reactions involved in the production of methane (36, 47, 

56).  In addition to being the smallest organic cofactor known to date, it is also the only 

presently known cofactor containing a sulfonic acid functional group (Figure 1-3).  It is 

the unprecedented sulfonate group of CoM that plays a key role in substrate recognition 

of the enzymes in the epoxide carboxylase pathway. 

Methyl-Coenzyme M Reductase.  There are several pathways for methane 

production utilizing various substrates, but all converge with the common intermediate, 

methyl-CoM (48, 56).  The enzyme responsible for the final step in these pathways, 

methyl-CoM reductase (MCR), catalyzes a heterodisulfide bond formation between 

methyl-CoM and Coenzyme B (CoM-S-S-CoB), releasing methane in the process.  The 

active site of MCR facilitates this chemistry by using a nickel tetrapyrrole cofactor, F430 

(17, 18, 20, 55).  There are currently two mechanisms that have been proposed for MCR, 

the first, which proceeds by attack of Ni(I) on the methyl group of CoM forming a  
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Figure 1-2.  Pathway of propylene metabolism in X. autotrophicus strain Py2. 
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methyl-Ni(III) intermediate, and the second, which proceeds by attack of Ni(I) on the 

thioether sulfur of CoM resulting in a Ni(II)-S-CoM intermediate (33).  Although the 

details of the mechanistic intermediates remain to be elucidated, the products of the 

reaction are methane and CoM-S-S-CoB. The reduction of the disulfide bond formed 

between CoM and CoB is subsequently reduced by a heterodisulfide reductase, 

generating free CoM and CoB and allowing the coenzymes to be recycled for further use 

in metabolic pathways (26). 

 

 

                                           

 

Figure 1-3.  Structure of 2-mercaptoethanesulfonate (Coenzyme M). 

 

A Role for Coenzyme M Outside of Methanogens.  The use of CoM in bacterial 

hydrocarbon metabolism wasn’t discovered until close to thirty years later in the 

laboratory of Scott Ensign (1).  Upon investigating the metabolic pathway of epoxide 

metabolism in X. autotrophicus strain Py2, an unknown nucleophilic cofactor was found 

to co-purify with epoxyalkane:CoM transferase, then known as Component I.  Incubation 

of radiolabeled epoxypropane with purified Component I resulted in Component I, which 

when separated from small molecules by gel filtration, retained no catalytic activity.  A 

small radiolabeled compound was then isolated from the gel filtration eluent, which when 

analyzed by NMR, was found to have the structure of ring opened epoxypropane 
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covalently bound to CoM.  Additional studies found that the CoM molecule serves as a 

nucleophile involved in opening of the epoxide ring and subsequently as a carrier for the 

various intermediate products in the epoxide degradation pathway (14, 16, 32).  The 

sulfonate moiety of CoM serves to orient the substrates in the active sites of their 

respective enzymes by the presence of either two arginine residues, or an arginine and 

lysine residue present in the active site (15, 30, 38).  In the final step in the pathway, 

CoM is cleaved from 2-ketopropyl-CoM (2-KPC) by the action of NADPH:2-ketopropyl-

CoM oxidoreductase/carboxylase (2-KPCC), allowing the free CoM molecule to be 

recycled for further cycles in the pathway. 

 
Epoxyalkane:CoM Transferase 
 
 The first step in the epoxide degradation pathway in X. autotrophicus is catalyzed 

by epoxyalkane:CoM transferase (EaCoMT), a hexameric protein containing 1 Zn per 

subunit (31).  EaCoMT catalyzes the addition of CoM to either R- or S-epoxypropane and 

concomitant opening of the epoxide ring, forming R- or S-hydroxypropyl-CoM 

respectively (R-HPC, S-HPC).  Primary sequence analysis of EaCoMT has shown that it 

belongs to a family of alkyl transferases that utilize zinc to activate a thiol for 

nucleophilic attack, such as methionine synthase (57).   However, EaCoMT differs from 

other members of this family in that it catalyzes a nucleophilic addition rather than a 

nucleophilic substitution (Figure 1-4). Evidence has been shown that the role of the zinc 

ion in the active site of EaCoMT is to bind CoM and to lower the pKa of the thiol from 

9.1 to 7.4, activating CoM for nucleophilic attack on epoxypropane (13, 31). In addition 

to lowering the pKa of the thiol, analysis using isothermal titration calorimetry concluded 

that the zinc-thiol interaction contributes to over half of the total binding energy (31). 
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R- and S-hydroxypropyl-CoM Dehydrogenases 
 
 Both R- and S-hydroxypropyl-CoM are converted to a common intermediate, 2-

ketopropyl-CoM (2-KPC), by the action of two stereospecific short chain 

dehydrogenases/reductases (SDR) (28).  Currently, among the SDR family, there is only 

one other known pair of enzymes, other than the bacterial HPC dehydrogenases, which 

catalyze the same reaction but with opposite stereospecificity, a pair of plant tropinone 

reductases (37).   

 

  

 

 

Figure 1-4.  Proposed mechanism for EaCoMT, utilizing zinc to activate the thiol of 
CoM for nucleophilic attack on epoxypropane. 
 
 
 
 As typical for SDR enzymes, R- and S-HPCDH, are NAD+ dependent enzymes 

with a conserved catalytic triad consisting typically of a serine, tyrosine and lysine 

residue (28).  A general mechanism has been proposed for SDR enzymes, where the 

deprotonated tyrosine residue serves as a general base for abstraction of a proton from the 
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substrate molecule.  The lysine residue serves to bind the sugar moiety of NAD+ and to 

stabilize the deprotonated tyrosine.  The serine residue in the conserved catalytic triad 

functions to increase the acidity of the substrate hydroxyl group through hydrogen 

bonding and to stabilize the developing charge on the alcohol oxygen in the transition 

state. 

Of significant interest is that while both enzymes are highly discriminating for 

their corresponding substrate, R-HPCDH and S-HPCDH have entirely different 

mechanisms of substrate specificity.  As previously stated, R-epoxypropane is formed in 

in greater than 95% enantiomeric excess.  Although S-epoxypropane is a minor metabolic 

product, it is still necessary for the organism to metabolize this otherwise toxic epoxide.  

If S-epoxypropane were converted only to S-HPC by the action of EaCoMT, CoM would 

be sequestered in the molecule and unable to be regenerated for reuse within the pathway.  

Thus, the specificity of these dehydrogenases have evolved in such as way as to deal with 

the efficient substrate flux through the pathway of R- and S-epoxypropane, and by 

extrapolation, R- and S-HPC formed.  Previous studies have shown that R-HPCDH 

exhibits selectivity by catalyzing oxidation of the opposite enantiomer (S-HPC) with a 

402 times lower kcat, while S-HPCDH exhibits selectivity by catalyzing R-HPC oxidation 

with a Km 209 times higher than that for S-HPC (45). 

 
NADPH:2-Ketopropyl-CoM Oxidoreductase/Carboxylase.   
 

The final step in this pathway, and the main focus of the research in this 

dissertation, is catalyzed by NADPH:2-ketopropyl-CoM oxidoreductase/carboxylase (2-

KPCC).  2-KPCC, formerly known as Component II, is a member of the disulfide 

oxidoreductase (DSOR) family of enzymes, whose members include glutathione 
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reductase, thioredoxin reductase and lipoamide dehydrogenase (8, 35, 41).  2-KPCC 

reductively cleaves and carboxylates 2-KPC, yielding acetoacetate and regenerating the 

CoM cofactor.  As typical of DSOR enzymes, 2-KPCC utilizes the non-covalently bound 

cofactor FAD.  Electrons are transferred from NADPH to FAD+, which then reduces the 

internal disulfide bond between two conserved cysteine residues, referred to, with respect 

to the flavin, as the proximal and interchange thiols (21).  Reduction of the disulfide  

 

 

 

 

Figure 1-5.  Proposed mechanism of reductive cleavage and subsequent carboxylation or 
protonation of the enolacetone intermediate formed as catalyzed by 2-KPCC.  This figure 
was adapted from Clark and Ensign (14). 
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allows for nucleophilic attack by the interchange thiol on the sulfur atom of CoM, 

forming a mixed disulfide between the interchange thiol and CoM and generating the  

enolate of acetone as seen in Figure 1-5.  The enolate of acetone can then be either 

protonated or carboxylated, allowing reformation of the internal disulfide bond and 

releasing free CoM.  

 
DSOR Family of Enzymes.   
 

Typical features of DSOR enzymes include the transfer of a hydride from 

NAD(P)H to FAD and subsequent transfer of electrons from FADH to reduce a redox 

active disulfide in the active site of the enzyme.  The free thiols are designated the 

proximal, or flavin, thiol and the distal, or interchange thiol.  Canonical members of the 

DSOR family such as glutathione reductase, thioredoxin reductase and lipoamide 

dehydrogenase catalyze disulfide bond cleavage resulting initially in a mixed disulfide 

formed between the interchange thiol and the substrate molecule (9, 29, 35, 54).  This is 

followed by reduction and subsequent release of the bound substrate with reformation of 

the active site cysteine disulfide. 

 As flavin containing enzymes, DSOR enzymes exhibit a variety of spectral 

features and studies of the changes of these features have often provided considerable 

insight into the attributes and mechanisms of these enzymes. 

 In the fully oxidized form, with respect to both the flavin and disulfide, DSOR 

enzymes exhibit absorption maxima at approximately 365 nm and 450 nm, which are 

both bleached upon four-electron reduction.  Although a variety of techniques have been 

utilized to examine spectral changes in DSOR enzymes, including stopped flow 
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spectroscopy, site directed mutagenesis of the interchange cysteine with a non-thiol 

containing residue has proven to be considerably advantageous. 

 Upon mutation of the interchange thiol to alanine, a flavin-thiolate charge transfer 

absorbance can be observed.  Because this charge transfer is only observed when the 

proximal thiol is in the unprotonated thiolate form, base titration of the oxidized enzyme 

can provide considerable insight into the pKa of the flavin thiol and hence the 

microenvironment of the enzyme active site.  The pKa values for the proximal cysteine in 

glutathione reductase and mercuric ion reductase have been determined to be 4.8 and 5.2 

(9, 44), respectively which differs significantly from the pKa value of 8 for free cysteine 

and is thought to be predominantly the result of the presence of a catalytically essential 

conserved histidine residue within the active site of the enzyme. 

 
Novel Features of 2-KPCC. 
 
 Although the general mechanism is the same, 2-KPCC is unique to the DSOR 

family of enzymes in many ways, with the most significant difference being the catalysis 

of thioether bond cleavage (as opposed to disulfide bond cleavage) and subsequent 

carboxylation of the substrate. 

Whereas reductive cleavage and carboxylation of the substrate is the primary 

physiologically relevant reaction catalyzed, 2-KPCC is also capable of protonating the 

enolacetone formed during catalysis in the absence of CO2/HCO3
- as well as catalyzing 

the reverse reaction, the formation of 2-KPC from acetoacetate and CoM (14) as seen in 

Figure 1-6abc.  In addition to the redox dependent reactions, 2-KPCC is also capable of 

two redox independent reactions, acetoacetate decarboxylation to form acetone and CO2 
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and acetoacetate/14CO2 exchange to form 14C1-acetoacetate and CO2 (14) as seen in 

Figure1-6de. 

Although enzyme catalysis of thioether bond cleavage may seem unlikely, 

previous studies have been done where the flavin thiol was mutated to an alanine residue. 

Unable to reform a disulfide bond, the interchange thiol remained in reduced state.  

Incubation of this variant 2-KPCC with the physiological substrate produced 0.76 moles 

of product per mol of enzyme active site (Wampler, unpublished).  Incapable of 

regenerating a disulfide bond, CoM most likely remained bound to the interchange thiol 

and rendered the enzyme incapable of catalyzing more than a single turnover.  Structural 

studies have also provided evidence for a mixed-disulfide intermediate (40). 

Also setting 2-KPCC apart from typical DSOR members are differences in active 

site location and composition.  In glutathione reductase, as well as most DSOR members, 

the active site and redox active disulfide are located at the base of a large open cleft (6).  

In addition to providing for easy substrate access and product release, an open access site 

provides access to protons from the bulk solvent, which is favorable as most DSOR 

enzymes catalyze the reductive cleavage and protonation of their respective substrates.  

As 2-KPCC preferentially catalyzes carboxylation versus protonation of the substrate, 

unlimited access of the active site to solvent would facilitate the formation of an 

unwanted side reaction.  As such, 2-KPCC has marked differences in both the C- and N-

termini of the protein as well as a thirteen amino acid loop insertion, which essentially 

block the open binding cleft.  Instead, substrate access to the active site is limited to a 

well-defined channel, which collapses upon substrate binding (38).  This collapse limits  
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Figure 1-6.  Reactions catalyzed by 2-KPCC.  (a) reductive cleavage and carboxylation 
of 2-KPC forming acetoacetate and CoM; (b) reductive cleavage and protonation of 2-
KPC forming acetone and CoM; (c) formation of 2-KPC from acetoacetate and CoM; (d) 
decarboxylation of acetoacetate; (e) CO2 exchange. 
 

access to the active site to a narrow hydrophobic channel, which allows access to CO2 

while discriminating against proton access.   

 Along with a buried active site, 2-KPCC also differs in that the active site is 

highly hydrophobic with the exception of a lone, ordered water molecule as evidenced by 
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a crystal structure solved with substrate bound (38).  Unique to 2-KPCC, this water 

molecule is ordered by the presence of two histidine residues, one which coordinates the 

water molecule directly (His137) and one, which coordinates the water molecule 

indirectly through His137 (His 84).  The presence of this “catalytic triad” serves to 

stabilize the enolate intermediate formed during catalysis and is supported by both 

biochemical and structural studies (39).   

Structural studies have indicated that upon catalysis and product release, the 

imidazole ring of His137 is rotated 180° away from the active site cavity and that the 

water molecule previously bound to His137 migrates to within hydrogen-bonding 

distance of the thiol of CoM (40).  Because there are no charged residues in the active site  

 

                        

 

Figure 1-7.  Catalytic triad in the active site of 2-KPCC formed by His84, His137 and an 
ordered water molecule that serves to stabilize the enolate intermediate formed upon 
catalysis. 
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of 2-KPCC that are in close enough proximity of the enzyme-CoM mixed disulfide to 

facilitate an attack and release CoM, it is hypothesized that the water molecule might be 

fulfilling this role.  It is important to note that this water molecule is ordered by His137 

until after carboxylation of the substrate and dissociation of the acetoacetate formed, 

helping to further promote carboxylation over protonation of the substrate. 

The contrasting active site of 2-KPCC is further distinguished by the significantly 

higher pKa of the flavin cysteine residue.  Two different methods, site directed 

mutagenesis of the interchange cysteine and modification of the interchange cysteine by 

alkylation both gave the same pKa value for the flavin cysteine residue of approximately 

8.75, which is considerably higher than the pKa values determined for those typical 

DSOR members such as glutathione reductase. In typical DSOR enzymes, there is also a 

conserved histidine residue which in 2-KPCC is replaced by a phenylalanine residue, 

most likely to preserve the hydrophobicity of the active site and which is believed to be at 

least partly responsible for the increase in the pKa of the flavin thiol. 

 
Bromoethanesulfonate and Bromopropanesulfonate 
as Inhibitors of CoM-dependent pathways. 
 
 2-bromoethanesulfonate (BES) was first identified as a potent inhibitor of 

methanogenesis when certain preparations of methyl-CoM, which utilized BES as a 

starting compound for synthesis, would not serve as a substrate for the methylreductase 

reaction (10).  BES inhibits methanogenesis by specifically inactivating methyl-CoM 

reductase by oxidation of the Ni(I) in the nickel tetrapyrrole cofactor F430 to Ni(II) (22). 
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 3-bromopropanesulfonate (BPS) is an even more potent inhibitor of 

methanogenesis than BES, however, although it also oxidizes the Ni(I), it does so by a 

different mechanism, forming an alkyl-Ni(III) intermediate (34). 

 As expected, both of the structural CoM analogs, BES and BPS, have been shown 

to be inhibitors of the epoxide carboxlyase pathway and inhibit growth of X. 

autotrophicus strain Py2 on propylene, but not with carbon sources that do not utilize the 

CoM-dependent pathway (11).  Concentrations of lower than 1 mM BES had no effect on 

bacteria growth, while BES completely inhibits growth of the bacteria at a concentration 

of 3 mM.  It is interesting to note that the threshold concentration of BES required for 

complete growth inhibition of X. autotrophicus is significantly lower than the 0.44 to 10 

µM BES concentration required for complete growth inhibition in methanogens (11, 24). 

BES has been shown to be a reversible rapid equilibrium inhibitor of enzymes 

involved in the last two steps in the epoxide degradation pathway, R-HPCDH and 2-

KPCC, as well as a time dependent irreversible inactivator of 2-KPCC (12).  The 

mechanism of 2-KPCC inactivation by BES is unprecedented for a CoM-dependent 

enzyme and occurs by the specific irreversible alkylation of the interchange thiol.  Like 

CoM and CoM containing substrates, BES is oriented in the active sites of the previously 

mentioned enzymes by interaction of the sulfonate group of the molecule with two 

positively charged arginine residues conserved between the enzymes.  Alkylation of 2-

KPCC likely occurs by attack of the interchange thiol on BES according to the 

mechanism in Figure 1-8.  

Intriguingly, BES is not an inhibitor of EaCoMT, which is the only enzyme in the 

epoxide carboxylase pathway for which CoM is a substrate.  As previously mentioned, 
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and in contrast to the other enzymes in the pathway, binding of CoM to EaCoMT is 

dictated largely by the zinc-thiol interaction and not the interaction of the protein with the  

 

 

 

 

Figure 1-8.  Comparison of the mixed disulfide state of 2-KPCC, with 2-KPCC modified 
by BES and BPS.  A, Mixed disulfide formed between the interchange thiol of 2-KPCC 
and the thiol of CoM during catalysis; B, alkylation of the interchange thiol of 2-KPCC 
by BES; C, alkylation of the interchange thiol of 2-KPCC by BPS. 
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sulfonate group (31).  Therefore, the absence of a thiol in BES results in the loss of a key 

interaction between this molecule and the protein making it a poor CoM analog and 

inhibitor for EaCoMT.  From this reasoning, it is rational to assume that BPS would also 

be an unlikely inhibitor of EaCoMT. 

In contrast to the concentration of BES required for growth inhibition in X. 

autotrophicus, BPS inhibits growth at concentrations over two orders of magnitude 

lower.  The increased toxicity of BPS as compared to BES is likely due to the increased 

length of the BPS molecule making it a better CoM mimic after alkylation to the 

interchange thiol (Figure 1-8), placing it in a better orientation in the active site for attack 

from the interchange thiol. 

 
Concluding Remarks.   
 
 The research presented in this dissertation attempts to further the understanding of 

an unprecedented member of the DSOR family and the novel features that make it ideal 

for the role it plays as the terminal enzyme in aliphatic epoxide carboxylation.  The 

details of epoxide carboxylation as well as highlights of methanogenesis were discussed 

in order to provide context and background as well as to accentuate the importance and 

novelty of the method of epoxide detoxification by X. autotrophicus strain Py2, including 

the use of the atypical cofactor, coenzyme M. 
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CHAPTER 2 
 

MECHANISTIC CHARACTERIZATION OF 2-KPCC BY CHARACTERIZATION OF 

H137A, H84A AND M140A SITE DIRECTED MUTANTS 

 
ABSTRACT 

 

In Xanthobacter autotrophicus strain Py2, epoxides are metabolized and 

converted to acetoacetate by a three step, four enzyme system.  The final step in this 

pathway is catalyzed by NADPH:2-ketopropyl-CoM oxidoreductase/carboxylase (2-

KPCC) and involves the reductive cleavage and carboxylation of 2-ketopropyl-CoM, 

yielding free CoM and acetoacetate.  2-KPCC is a member of the NAD(P)H:disulfide 

oxidoreductase (DSOR) family of enzymes, however 2-KPCC possesses several unique 

features that distinguish it from other members of this family, most notably the ability to 

cleave a thioether bond.  As typical for DSOR enzymes, 2-KPCC contains two cysteine 

residues that are crucial for reductive catalysis.  Atypical for DSOR enzymes, 2-KPCC 

contains a catalytic triad consisting of His84, His137 and a lone water molecule within 

the active site that is proposed to stabilize the enolacetone formed upon catalysis.  Unique 

to DSOR members, but conserved in enzymes in the epoxide degradation pathway in X. 

autotrophicus, is the presence of a pair of methionine residues proposed to function in 

shielding the substrate molecule from electrostatic interactions.  An expression vector 

was utilized to facilitate the expression, purification and characterization of H137A and 

H84A mutants, as well as M140A 2-KPCC. As expected, mutation of the distal histidine 

reduced redox dependent activity to 13-25% of the wild type enzyme, while mutation of 

the proximal histidine completely diminished enzymatic activity.  2-KPCC is also 
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capable of redox-independent activity, which was intriguingly not affected by mutation of 

either histidine residue.  The M140A mutation in 2-KPCC resulted in an enzyme with a 

kcat value 4 times lower than that of the wild type enzyme but with a Km value 45 times 

higher, indicating a structural rather than catalytic role of the methionine residue. 

 
INTRODUCTION 

 

Xanthobacter autotrophicus strain Py2 is one of several bacteria that are capable 

of converting propylene to the more easily assimilated metabolite acetoacetate (12).  

Propylene is converted to R- and S-epoxypropane by insertion of oxygen across the olefin 

bond in a stereoselective manner (20).  The metabolism of the epoxides to form 

acetoacetate is catalyzed by an inducible, three step, four enzyme system employing the 

unique cofactor Coenzyme M (CoM), which was originally believed to be restricted to 

methanogenic archea (7, 15, 19, 23).  The final step in this pathway is catalyzed by 2-

ketopropyl-Coenzyme M [2-(2-Ketopropylthio)ethanesulfonate] oxidoreductase/ 

carboxylase (2-KPCC), a member of the FAD-dependent NADPH:disulfide 

oxidoreductase (DSOR) family of enzymes and involves the reductive cleavage of 2-

ketopropyl-CoM (2-KPC), yielding free CoM and the enolate of acetone (4, 10, 12, 21, 

22).  This product can then undergo carboxylation in the presence of CO2 to form 

acetoacetate, or protonation in the absence of CO2 to form acetone as shown in Figure 2-1 

(10).  In addition to the two aforementioned catalytic activities, 2-KPCC has been shown 

to catalyze three other reactions which are [1] the NADP+-dependent synthesis of 2-KPC 

from acetoacetate and CoM; [2] acetoacetate decarboxylation to form acetone and CO2; 
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and [3] acetoacetate/14CO2 exchange to form 14C1-acetoacetate and CO2, with reactions 

[2] and [3] being redox-independent (10).         

While typical DSOR members, like glutathione reductase and thioredoxin 

reductase cleave a disulfide bond (5, 6), 2-KPCC is distinctive in that it is the only  

 

 

        

 

Figure 2-1. Schematic representation illustrating the fate of the enolate intermediate 
formed upon attack of the CoM thiol by Cys82 of 2-KPCC, which can undergo 
carboxylation, or in the absence of CO2, protonation.  
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identified member of the DSOR family that is also a carboxylase, and in addition, 

employs a novel approach to carboxylation in that it is the only carboxylase known to 

form a carbanionic nucleophile from reductive cleavage of a thioether substrate without 

the requirement of thiamin pyrophosphate (TPP) (2, 10).   

Although 2-KPCC is capable of both protonating and carboxylating the enolate 

intermediate formed during catalysis, carboxylation is favored to the extent that in the 

presence of CO2, no detectable acetone is formed.    Preferential carboxylation is thought 

to be mediated in part by the stabilization of the enolacetone intemediate formed. 

Previous mechanistic studies indicated enolate stabilization by either [1] catalytic acid 

mediated proton donation to the carbonyl oxygen or [2] electrostatic stabilization using a 

positively charged amino acid side chain(s) (10).  Elucidation of the crystal structure of 

2-KPCC indicates an ordered water molecule within hydrogen bonding distance of the 

keto group of the substrate (16).  Two histidine residues orient this water molecule within 

the active site, and acting together as a catalytic triad, allow the water molecule to serve 

as a proton donor involved in stabilizing the enolacetone intermediate and facilitating the 

reductive cleavage of the thioether linkage (Figure 2-2) (16).  

Conserved between the enzymes in the last two steps in the epoxide degradation 

pathway, are two methionine residues believed to play a role in shielding the substrate 

from nonproductive electrostatic interactions (13, 16).  Mutation of these residues in R-

HPCDH revealed enzymes with a slightly lower kcat values, but much lower Km values 

than the wild type enzyme (Sliwa, unpublished).  It is hypothesized that mutation of these 

methionine residues, Met140 and Met361 in 2-KPCC would generate an enzyme that 

exhibited similar changes in kinetic parameters.          
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Figure 2-2.  Active site of 2-KPCC with the substrate, 2-KPC bound.  His137 
coordinates an ordered water molecule in the active site and is indirectly coordinated by 
His84, forming a purported catalytic triad involved in stabilizing the enolate intermediate 
formed during catalysis. 
 

 

In these studies, a recombinant expression system was utilized to express high 

levels of soluble, active 2-KPCC and to allow the generation of desired variants.  The 

catalytic activities of 2-KPCC have been examined upon alteration of the two histidine 

residues comprising the catalytic triad to alanine residues, His137, involved in directly 

coordinating the water molecule, termed the proximal histidine, and His84 which 

coordinates His137, termed the distal histidine, as well as alteration of Met140 to alanine.  

Although generation of M361A 2-KPCC was unsuccessful, mutation of one of the 
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conserved methionine residues was still able to provide considerable insight into the roles 

of these methionine residues in 2-KPCC.   

As expected, mutation of the proximal histidine residue completely diminished 

the activity of 2-KPCC, while H84A 2-KPCC exhibited 23-25% of wild type 2-KPCC 

activity, with regard to the physiologically relevant reactions.  The M140A 2-KPCC 

exhibited a kcat value 25% of wild type 2-KPCC but with a Km 45 times higher than for 

that of the wild type enzyme.  This work contributes to the greater understanding of the 

versatility of the DSOR family of enzymes. 

 
METHODS 

 

Materials.  Commercially available compounds used were of analytical grade and 

purchased from either Sigma-Aldrich Chemicals or Fisher Scientific.  2-(2-Keto-

propylthio)ethanesulfonate (2-KPC) was synthesized as described previously (1).  All 

oligonucleotides were purchased from Integrated DNA Technologies. 

Site Directed Mutagenesis.  Site directed mutagenesis of pDW1 was carried out 

utilizing the Quikchange® Site Directed Mutagenesis Kit (Stratagene) according to the 

manufacturer’s protocols.  The sequences of the primer pairs used to create the desired 

mutations are as follows: H137A, 5’-GAA GTT CAT GAT GCC GGC CGG GCC GTT 

GCG CC-3’ and CGC AAC GGC CCG GCC GGC ATCATG AAC TTC CA-3’; H84A, 

5’-CAC GCA CGC ATT GGC CGG GCA CGA GCC GCC-3’ and 5’-CCG CCG AGC 

ACG GGC CGG TTA CGC ACG CAC-3’; M140A, 5’-CGG CCC GCA CGG CAT 

CGC GAA CTT CCA GTC CAA GG-3’ and 5’-CCT TGG ACT GGA AGT TCG CGA 
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TGC CGT GCG GGC CG-3’.  Mutations were confirmed by primer extension 

sequencing at SeqWright DNA Technology Services (Houston, TX). 

Growth Media.  E. coli Top10 cells were grown in Luria-Bertani Rich (LB-Rich) 

broth containing ampicillin (100 µg/mL).  The LB-Rich media contained the following 

components per liter: 20 g of tryptone, 15 g of yeast extract, 2 g of K2HPO4, 1 g of 

KH2PO4, and 8 g of NaCl.   

Growth of Bacteria. All bacteria were grown at 37˚C.  E. coli Top10 cells that 

had been transformed with the pDW1 or corresponding mutant plasmid were plated and 

grown overnight.  A single colony from this plate was used to grow a 25 mL liquid 

culture to an A600 of 0.6 for preparation of 25% glycerol (v/v) stocks that were stored at -

80˚C until use.  For use, cells from a frozen stock were inoculated into 125 mL of LB-

Rich media and grown to an A600 between 0.6 and 1.0.  This culture was used as the 

inoculum for a 15 L capacity microferm fermentor (New Brunswick Scientific) 

containing 12 L of LB-Rich media supplemented with riboflavin (15 mg/L) and antifoam 

A (0.005% v/v).  Cells were allowed to grow at 37˚C with stirring at 400 rpm and forced 

aeration to an OD600 between 0.6 and 1.0.  At this time, the temperature was reduced to 

30˚C, arabinose was added to 0.02% and the cells were allowed to grow at this 

temperature for 6 h.  Cells were concentrated using a tangential flow filtration system 

(Millipore) and pelleted by centrifugation.  Cell paste was drop frozen in liquid nitrogen 

and stored at -80˚C.    

Purification of Recombinant 2-KPCC. Cell paste was resuspended in 3 volumes 

of buffer A (50 mM Tris, 1 mM DTT, 0.1 mM EDTA, 5% glycerol v/v) with DNase I 

(0.03 mg/mL) and lysozyme (0.03 mg/mL) and thawed at 30˚C with shaking.  All 
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subsequent treatments were prefomed either on ice or at 4˚C.  Cell suspension was passed 

three times through a French pressure cell (16000 psi) and clarified by centrifugation 

(184000 RCF). Clarified cell extract was applied to a 0.5 x 5.0 cm column of Ni-NTA 

Superflow (Pharmacia Biotech) at 7.0 mL/min.  The column was then washed with 4 

column volumes of buffer A and the bound sample was eluted with a 15 column volume 

gradient from 0-400 mM imidazole, although most protein eluted during the wash phase.  

The purification was followed using SDS-PAGE analysis.  Appropriate fractions were 

pooled and, the solution was incubated at 4˚C with gentle stirring while (NH4)2SO4 was 

added to 800 mM, and then applied to a 2.6 x 5.5 cm column of phenyl sepharose that 

had been equilibrated with buffer C (buffer A + 800 mM (NH4)2SO4).  The column was 

then washed with 4 column volumes buffer C and bound protein was eluted with a 15 

column volume gradient from 0-100% buffer A followed by an additional five column 

volumes buffer A.  Appropriate fractions were pooled and concentrated by ultrafiltration 

using a YM30 membrane (Amicon) and frozen dropwise in liquid nitrogen for storage at 

-80°C.   

Protein Concentration Determination.  2-KPCC concentrations were 

determined by using the previously determined extinction coefficient (є450 of 11828 M-

1•cm-1) (3). 

SDS-PAGE and Immunoblotting Procedures.  SDS-PAGE (12% T) was 

performed following the Laemmli procedure (14).  Electrophoresed proteins were 

visualized by staining with Coomassie blue.  The apparent molecular masses of 

polypeptides were determined by comparison with Rf values of standard proteins.   
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Coupled Spectophotometric Assay for 2-KPCC Carboxylation Activity.  A 

continuous spectrophotometric assay was utilized that couples acetoacetate production by 

2-KPCC to acetoacetate reduction and concomitant NADH oxidation by β-

Hydroxybutyrate Dehydrogenase (β-HBDH) (8).  Purification of β-HBDH for use in the 

assay was performed as described previously (9).  Assays were conducted in 2 mL 

anaerobic quartz cuvettes that contained a total reaction volume of 1 mL.  Assays 

contained 0.125 mg 2-KPCC, 0.345 mg β-HBDH, 10 mM DTT, 0.2 mM NADH and 60 

mM carbonate species (added as 33.5 mM CO2 gas plus 26.5 mM KHCO3) in 100 mM 

Tris buffer, pH 7.4.  Reactions were allowed to equilibrate to 30°C and assays were 

initiated by the addition of 2.5 µmol 2-KPC.  Acetoacetate production by 2-KPCC and 

subsequent reduction by NADH was quantified by monitoring the decrease in absorbance 

(A340) associated with the oxidation of NADH in a Shimadzu UV160U 

spectrophotometer containing a water-jacketed cell holder for temperature control. 

2-Ketopropyl-CoM Protonation Assays.  Assays were performed as described 

previously (10).  Assays were conducted in 9 mL sealed serum vials with a total reaction 

volume of 1 mL.  Each assay contained 0.125 mg 2-KPCC and 10 mM DTT in 100 mM 

Tris buffer, pH 7.4.  Assay vials were incubated in a 30°C shaking water bath and assays 

were initiated by the addition of 2.5 µmol 2-KPC.  Acetone formation was quantified as a 

function of time using gas chromatography as described previously (11). 

Acetoacetate Decarboxylation Assay.  Assays were performed as described 

previously (10).  Assays were conducted in 9 mL sealed serum vials with a total reaction 

volume of 1 mL.  Vials were depleted of carbonate species by including a KOH-

containing trap as described previously (11).  Each assay contained 250 mM acetoacetate 
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and 5 mM CoM in 100 mM Tris buffer, pH 7.4.  Assay vials were incubated in a 30°C 

shaking water bath and assays were initiated by addition of 0.125 mg 2-KPCC.  Acetone 

was quantified by gas chromatography as described previously (11).  Background rates of 

spontaneous acetoacetate decarboxylation were subtracted from all assays. 

Continuous Spectrophotometric Assay for 2-Ketopropyl-CoM Formation.  

Assays were performed as described previously (10).  Assays were conducted in 2 mL 

anaerobic quartz cuvettes with a total reaction volume of 1 mL.  Each assay contained 

0.125 mg 2-KPCC, 5 mM NADP+, 5 mM CoM, and 100 mM acetoacetate in 100 mM 

Tris buffer, pH 7.4.  Reactions were allowed to equilibrate to 30°C and assays were 

initiated by the addition of acetoacetate.  Formation of 2-KPC was quantified by 

monitoring the increase in absorbance (A340) associated with the production of NADPH 

in a Shimadzu UV160U spectrophotometer containing a water-jacketed cell holder for 

temperature control. 

Data Analysis.  Kinetic constants (Km and Vmax) were calculated by fitting initial 

rate data to the Michaelis-Menten equation using the software SIGMAPLOT.   

 
RESULTS 

 
 

 Redox-dependent Reactions of H84A and H137A 2-KPCC.  The two histidine 

mutants created were kinetically characterized relative to the recombinant wild type 

enzyme with respect to the redox-dependent reactions of 2-KPCC, protonation of the 

enolacetone intermediate formed to form acetone, carboxylation of the enolacetone 

intermediate formed to form acetoacetate and the reverse of the physiological reaction, 

formation of 2-KPC from acetoacetate and CoM.  His137 is directly involved in 
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coordinating the lone water molecule in the active site of 2-KPCC and as expected, when 

modified to alanine, the enzyme had minimal to no activity in any of the three redox-

dependent reactions studied (Table 2-1).   

 

Table 2-1.  Redox-dependent activities of 2-KPCC mutants. 

 Protonation Carboxylation Formation of 2-KPC 
wt 2-KPCC 79 ± 14 mU 278 ± 47 mU 48 ± 2 mU 
H84A 2-KPCC 18 ± 1 mU 37 ± 4.2 mU 12 ± 0.57 mU 
H137A 2-KPCC nd 18 ± 1 mU 1 ± 0.1 mU 
*One unit of activity (U) is defined as 1 µmol of product formed per minute per mg of protein. 

 

For the H137A 2-KPCC mutant, no protonation activity was detected while the 

enzyme retained only 6% of wild type carboxylation activity, and 2% of the wild type 

rate of the formation of 2-KPC.  His84 is indirectly involved in coordinating the lone 

water molecule in the active site through His137, and when modified to alanine, the 

activity of 2-KPCC is significantly decreased.  The H84A 2-KPCC mutant exhibited 

activities of 23%, 13% and 25% of the wild type enzyme activity with regard to the 

protonation, carboxylation, and formation of 2-KPC activities of 2-KPCC respectively.  

The results of these studies demonstrate that both histidine residues of the purported 

catalytic triad are essential for efficient catalysis.  This evidence lends further support to 

the hypothesis that these two histidine residues are directly involved in stabilization of 

the enolate intermediate through an ordered water molecule within the active site. 

 Redox-independent Reactions of H84A and H137A 2-KPCC.  Although 

acetoacetate decarboxylates spontaneously, 2-KPCC has been shown to accelerate the 

rate of acetoacetate decarboxylation in the presence of CoM.  Unlike the physiologically 

relevant reactions of 2-KPCC, which require NADP+/NADPH, acetoacetate 
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decarboxylation is independent of a redox active cofactor.  While the mechanism of 2-

KPCC catalyzed acetoacetate decarboxylation is presumably through an enolacetone 

intermediate, mutation of either the proximal or distal histidine residue resulted in an 

enzyme that was more active than the wild type enzyme (Figure 2-3).  This is a result that 

was also observed for mutation of each of two active site cysteine residues.  One possible 

explanation for this observation is that mutation of a larger residue, such as cysteine or 

histidine, to a much smaller alanine, creates a larger active site allowing easier access to 

acetoacetate molecules. 

 Substrate access to the active site of 2-KPCC is by a narrow channel and is unlike 

that of conventional DSOR enzymes.  The elucidation of the crystal structure has shown 

that 2-KPCC undergoes a conformational shift upon substrate binding, closing the 

channel and presumably limiting solvent access to the active site to prevent protonation 

of the enolacetone formed (16).  Because 2-KPCC catalyzed acetoacetate 

decarboxylation is not observed in the absence of CoM, it is thought that perhaps 

orientation of CoM in the active site induces a conformational change, which allows for 

the channel closing and more efficient catalysis.  Compounds such as ethanethiol, 

ethanesulfonate, and taurine have been studied for their ability to substitute for CoM in 

acetoacetate decarboxylation catalysis, but none of the compounds were able to stimulate 

activity above that of protein alone (data not shown). 

Although His137 is directly involved in ordering a water molecule within the 

active site to serve as a proton donor for stabilization of the enolate intermediate formed 

during catalysis, the crystal structure of 2-KPCC with the interchange thiol-CoM mixed 

disulfide trapped shows the absence of the histidine ordered water molecule and the side 
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Figure 2-3. Time course of acetone production as a product of 2-KPCC catalyzed 
acetoacetate decarboxylation.  Assays were performed in duplicate and contained the 
standard assay mixture as described in Methods.  Assays contained 0.125 mg 2-KPCC: 
, wt 2-KPCC; , H84A 2-KPCC;  H137A 2-KPCC.   

 

 

chain of His137 rotated 180° away from the active site cavity (18).  This structure may be 

similar to the conformation of 2-KPCC with CoM bound and is in agreement with the 

observation that the neither His84 nor His137, and hence, enolate stabilization, is 

important for the rate enhancement of acetoacetate decarboxylation. 

The most recent crystal structure of 2-KPCC solved (17), shows CO2 bound at the  

bottom of a hydrophobic channel at the hydrophobic interface between the two subunits 
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of 2-KPCC.  Perhaps the stabilization of released CO2 from the decarboxylation of 

acetoacetate also lends to the catalytic rate enhancement of acetoacetate decarboxylation 

by 2-KPCC. 

Analysis of M140A 2-KPCC.  There are many striking similarities between the 

active site of 2-KPCC and the active sites of the dehydrogenases catalyzing the 

pentultimate step in the epoxide degradation pathway.  Included are two signature 

positively charged residues, two arginines or an arginine and lysine, which function to 

coordinate the negatively charged sulfonate group of CoM, and a bulky residue, either 

phenylalanine or tryptophan, which functions in the active site as a backstop, preventing 

the translocation of the substrate.  Perhaps more interesting is the conserved presence of 

two methionine residues, Met187 and Met192 in R-hydroxypropyl-CoM dehydrogenase 

(R-HPCDH) and Met140 and Met361 in 2-KPCC (Figure 2-4).  It is presumed that these 

methionine residues function to shield the substrate sulfonate group from electrostatic 

interactions with the surrounding environment.  Previous analysis of methionine to 

alanine mutations in R-HPCDH revealed an enzyme with kcat values 2-4 times lower than 

that of wild type R-HPCDH and Km values 18-24 times lower than that of the wild type 

enzyme. 

Ideally both methionine to alanine mutations (M140A, M361A) would have been 

made in 2-KPCC, however the many attempts at creating the M361A mutant were 

unsuccessful.  Nonetheless, the generation and characterization of M140A still provides 

relevant insights into the role of these methionine residues in the active site of 2-KPCC.  

The M140A enzyme exhibited saturation kinetics with regard to the substrate 2-KPC and 

afforded an apparent Km = 6.37 ± 0.82 mM and Vmax = 75.6 ± 3.3 mU/mg (Figure 2-5). 
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Figure 2-4.  Active site of 2-KPCC showing the position of 2-KPC where the sulfonate is 
oriented by Arg56 and Arg365.  Phe57 serves as a backstop preventing translocation of 
the substrate while the two flanking methionine residues, Met361 and Met140 
presumably shield the negatively charged sulfonate group and positively charged arginine 
residues from nonproductive electrostatic interactions. 
 
 

Kinetic characterization of the M140A 2-KPCC mutant revealed an enzyme with 

a kcat only 3 times lower than the wild type enzyme, but with a Km close to 45 fold higher 

(Table 2-2).  These results are nearly identical to those obtained with R-HPCDH. 

Additionally, the methionine residues have also been shown to function in aiding 

in the stereospecificity of R- and S-HPCDH, in contrast to 2-KPCC where both the 

reactant and product are achiral. 
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Figure 2-5.  Initial velocities of 2-KPC cleavage and carboxylation to form acetoacetate 
as a function of [2-KPC].  Assays were performed in duplicate and contained the standard 
assay mixture as described in Methods with 0.125 mg 2-KPCC and 0-40 mM 2-KPC.  
Data points were fit to a rectangular hyperbola as described by the standard form of the 
Michaelis-Menten equation.  Inset, nonlinear regression from fit of experimental data to 
Michaelis-Menten equation. 
 
 
Table 2-2. Comparison of kinetic parameters between wild type and M140A 2-KPCC.  

 Km 
(mM) 

Change in Km 
(x-fold) 

kcat 
 (min-1) 

Change in kcat 
(x-fold) 

kcat/Km 

wild-type 0.142 ± 0.02 1 11.6  1 83.1 
M140A 6.37 ± 0.82  45 4.3 3 0.74 
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DISCUSSION 
 

 This chapter highlights two of the features that set 2-KPCC apart from other 

members of the DSOR family.  The initial mechanism proposed for 2-KPCC indicated 

the formation of an enolate intermediate during catalysis (10).  While the crystal structure 

data for 2-KPCC supported this mechanism and indicated enolate stabilization by the 

presence of a water molecule ordered directly and indirectly by two histidine residues, 

kinetic studies of 2-KPCC mutants had yet to confirm this observation.  Mutation of 

His137, the proximal histidine, prevented ordering of the water molecule in the active site 

and was determined to be essential for catalysis.  When only the distal histidine, His84, 

was mutated, the enzyme was still capable of catalyzing all redox-dependent reactions, 

albeit, at a rate of only approximately 25% of that of the wild type enzyme.  These 

observations further emphasize the important roles that these two histidines play in the 

physiologically relevant reactions catalyzed by 2-KPCC. 

 With regard to acetoacetate decarboxylation, it was surprising to find that both of 

the histidine mutants had activities comparable to, and even slightly higher than the wild 

type enzyme.  It had been previously assumed that the enzyme catalyzed acetoacetate 

decarboxylation proceeded through an enolate intermediate presumably stabilized by the 

oriented water molecule in the active site.  Further analysis of the 2-KPCC structure 

solved with the mixed disulfide intermediate formed has indicated, in addition to the 

rotation of the His137 side chain and absence of the ordered water molecule, an alternate 

anion binding pocket similar to that created by the two arginine residues responsible for 

orienting the CoM sulfonate of 2-KPC (18).  It is hypothesized that this binding pocket, 

composed of Gln509 and His506, stabilizes the negatively charged carboxylate moiety 
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during the formation of acetoacetate.  As 2-KPCC catalyzed acetoacetate 

decarboxylation, is CoM-dependent, perhaps the binding of CoM in the active site 

enhances productive acetoacetate orientation to the alternate anion binding site, allowing 

for more efficient catalysis. 

 Also unique to DSOR enzymes, is the highly hydrophobic active site of 2-KPCC, 

which is believed to play a pertinent role in isolating the active site from unrestricted 

solvent access, thereby promoting the more metabolically favorable production of 

acetoacetate as opposed to acetone that would be produced by unlimited access of 

protons to the active site.  Included in the hydrophobic architecture of the 2-KPCC active 

site, are two methionine residues, which are also interestingly conserved in both R- and S-

HPCDH, which catalyze the formation of 2-KPC just subsequent to it being cleaved and 

carboxylated by 2-KPCC.  While methionine residues have been shown to play many 

roles in enzyme active sites, the studies of M140A in this chapter, complemented by 

studies of methionine mutants in R- and S-HPCDH, fulfill the objective of shielding the 

negatively charged sulfonate group of 2-KPC and the positively charged coordinating 

arginine residues from unproductive electrostatic interactions.  The similar active site 

architectures of 2-KPCC and R- and S-HPCDH also call into question whether or not the 

conserved residues may serve as a sort of “signature” for as yet unidentified enzymes 

which utilize CoM bound substrates. 
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CHAPTER 3 
 

COMPLETED STUDIES OF C87A and C82A 2-KPCC AND COMPARATIVE 

SPECTRAL ANALYSIS OF C82A AND 2-BROMOETHANESULFONATE 

MODIFIED 2-KPCC1 

 
ABSTRACT 

 

Characteristic and essential to all members of the disulfide oxidoreductase 

(DSOR) family of enzymes is the presence of a redox active disulfide pair that facilitate 

electron movement from a bound flavin to the substrate. Previous studies have indicated 

that mutation of either of these residues in 2-KPCC renders the enzyme inactive with 

regard to redox dependent reactions, however both the C82A and C87A 2-KPCC mutants 

catalyze redox independent acetoacetate decarboxylation at rates 204% and 181%, 

respectively, of the wild type enzyme.  While DSOR enzymes typically catalyze the 

reductive cleavage and protonation of a substrate disulfide bond, 2-KPCC, a novel 

member of this family, catalyzes reductive cleavage of a thioether bond and subsequent 

carboxylation of the intermediate formed.  Necessary to promote carboxylation over 

protonation of the substrate, and in stark contrast to other DSOR enzymes, 2-KPCC has a 

highly hydrophobic active site.  Contributing to this architecture is the presence of a 

phenylalanine residue (Phe501) in place of a highly conserved histidine residue in other 

members of this family.  The replacement of histidine with a hydrophobic phenylalanine 

in close proximity to the redox active cysteine pair has been shown to greatly increase the
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 pKa of the flavin thiol, Cys87, relative to other DSOR enzymes.  In this chapter, two 

methods were used to determine the pKa of the flavin thiol of 2-KPCC to be 

approximately 8.75, including site-directed mutagenesis, and modification of the 

proximal thiol, Cys82, by the inhibitor and alkylating agent 2-bromoethanesulfonate. 

 
INTRODUCTION 

 

The final step in epoxide metabolism in Xanthobacter autotrophicus strain Py2 is 

catalyzed by the atypical member of the disulfide oxidoreductase (DSOR) family, 

NADPH:2-ketopropyl-Coenzyme M oxidoreductase/carboxylase (2-KPCC).  

Characteristic of DSOR enzymes, 2-KPCC contains a flavin cofactor and two conserved 

cysteine residues essential for reductive catalysis (10).  Termed the proximal, Cys87, and 

interchange, Cys82 thiols with respect to the flavin, these cysteine residues function to 

facilitate electron movement from the flavin to the substrate, 2-ketopropyl-CoM (2-KPC).  

The novelty of 2-KPCC is highlighted by the subsequent cleavage of a thioether bond, 

formation of an enolacetone intermediate, and carboxylation of the substrate (7).   

Previous studies have shown that neither the C87A nor the C82A 2-KPCC 

mutants have any catalytic activity with respect to the redox dependent reactions of 2-

KPCC (Wampler, unpublished).  As these two cysteine residues are proposed to serve 

purely a redox role in catalysis, it was as expected that neither of the mutations had any 

effect on the redox independent activity of 2-KPCC, although interestingly, the redox 

independent catalyzed rate enhancement of acetoacetate decarboxylation was increased 

with respect to the wild type enzyme. 
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Figure 3-1.  Active site of 2-KPCC with substrate bound.  Electrons are transferred from 
the FADH to reduce the disulfide bond between Cys87 (flavin thiol) and Cys82 
(interchange thiol).  The mechanism of 2-KPCC proceeds by a mixed disulfide formed 
between Cys82 and the thiol of CoM in 2-KPC. 
 
 

It is hypothesized that the thioether bond cleavage requires the thiol distal to the 

flavin to form a mixed disulfide bond with the thiol of CoM (7).  Although this chemistry 

may seem unlikely, this hypothesis is supported by a crystal structure with the trapped 

interchange thiol-CoM mixed disulfide intermediate (13) and previous studies with the 

C82A mutant and with protein that had been modified by the alkylating agent, 2-

bromoethanesulfonate (6).   

2-bromoethanesulfonate (BES) has been shown to be an inhibitor of growth of X. 

autotrophicus on short-chain alkenes, but not propane, acetone or n-propanol, which are 

metabolized using CoM-independent pathways.  The utility of BES as a specific inhibitor 

of alkene oxidation in X. autotrophicus by acting as a CoM analog, has indicated that it 

may be a useful probe to potentially identify other alkene utilizing bacteria or even other 
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classes of CoM utilizing bacteria in addition to the ones currently known.  In addition, the 

identification of BES as a specific alkylating agent of the interchange thiol of 2-KPCC 

has been utilized to further investigate the novel features of the active site of 2-KPCC. 

With the exception of the bound water molecule and coordinating histidine 

residues the remainder of the active site cavity is highly hydrophobic, which is believed 

to contribute to the preferential carboxylation of the substrate (12).  In contrast to other 

DSOR members, which have a conserved histidine residue in close proximity of the 

interchange thiol, stabilizing it in the reduced state, 2-KPCC has instead a phenylalanine 

residue.  This presence of a hydrophobic residue is thought to aid in eliminating the 

availability of protons to the enolacetone intermediate formed and concurrently increases 

the pKa of the nearby cysteine residues with respect to other DSOR members.   

The spectral features of FAD provide a valuable tool to examine the interaction of 

the flavin with the proximal catalytic cysteine residue Cys87 (15).  When the proximal 

cysteine is in the thiolate form, a broad flavin-thiol charge transfer absorbance can be 

detected with a λmax at 555 nm.  Early studies of 2-KPCC utilized stopped flow 

spectroscopy and while a tremendous amount of knowledge was acquired from this work, 

some of the intermediate steps occurred too quickly to obtain spectral data (16).  In these 

studies, two methods were used, mutation of the interchange thiol (Cys82) to an alanine, 

and alkylation of the interchange thiol by the inhibitor 2-bromoethanesulfonate (BES) to 

trap the proximal thiol in the reduced state, allowing the flavin-thiol charge transfer to be 

more easily observed.  These modifications to 2-KPCC, along with spectral analysis were 

used to approximate the pKa of the flavin thiol to be approximately 8.75, in stark contrast 
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to the pKa’s determined for typical members of the DSOR family such as glutathione 

reductase, and lipoamide dehydrogenase. 

 
METHODS 

 

Materials.  Commercially available compounds used were of analytical grade and 

purchased from either Sigma-Aldrich Chemicals or Fisher Scientific.  2-(2-Keto-

propylthio)ethanesulfonate (2-KPC) was synthesized as described previously (2).  All 

oligonucleotides were purchased from Integrated DNA Technologies. 

Site Directed Mutagenesis.  Site directed mutagenesis of pDW1 was carried out 

utilizing the Quikchange® Site Directed Mutagenesis Kit (Stratagene) according to the 

manufacturer’s protocols.  The sequences of the primer pairs used to create the desired 

mutations are as follows: C82A, 5'-TCC TGG GCG GCT CGG CCC CGC ACA ATG  

CGT-3' and 5'-AAG GAC CCG CCG AGC CGG GGC GTG TTA CGC-3'; C87A 5'-

GTG CCC GCA CAA TGC GGC CGT GCC GCA CCA TAT GTT-3' and 5'-GAA CAG 

ATG GTG CGG CAC GGC CGC ATT GTG CGG GCA-3'.  Mutations were confirmed 

by primer extension sequencing at SeqWright DNA Technology Services (Houston, TX). 

Growth Media.  E. coli Top10 cells were grown in Luria-Bertani Rich (LB-Rich) 

broth containing ampicillin (100 µg/mL).  The LB-Rich media contained the following 

components per liter: 20 g of tryptone, 15 g of yeast extract, 2 g of K2HPO4, 1 g of 

KH2PO4, and 8 g of NaCl.   

Growth of Bacteria. All bacteria were grown at 37˚C.  E. coli Top10 cells that 

had been transformed with the pDW1 or corresponding mutant plasmid were plated and 

grown overnight.  A single colony from this plate was used to grow a 25 mL liquid 
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culture to an A600 of 0.6 for preparation of 25% glycerol (v/v) stocks that were stored at -

80˚C until use.  For use, cells from a frozen stock were inoculated into 125 mL of LB-

Rich media and grown to an A600 between 0.6 and 1.0.  This culture was used as the 

inoculum for a 15 L capacity microferm fermentor (New Brunswick Scientific) 

containing 12 L of LB-Rich media supplemented with riboflavin (15 mg/L) and antifoam 

A (0.005% v/v).  Cells were allowed to grow at 37˚C with stirring at 400 rpm and forced 

aeration to an A600 between 0.6 and 1.0.  At this time, the temperature was reduced to 

30˚C, arabinose was added to 0.02% and the cells were allowed to grow at this 

temperature for 6 h.  Cells were concentrated using a tangential flow filtration system 

(Millipore) and pelleted by centrifugation.  Cell paste was drop frozen in liquid nitrogen 

and stored at -80˚C.    

Purification of recombinant 2-KPCC. Cell paste was resuspended in 3 volumes 

of buffer A (50 mM Tris, 1 mM DTT, 0.1 mM EDTA, 5% glycerol v/v) with DNase I 

(0.03 mg/mL) and lysozyme (0.03 mg/mL) and thawed at 30˚C with shaking.  All 

subsequent treatments were perfomed either on ice or at 4˚C.  Cell suspension was passed 

three times through a French pressure cell (16000 psi) and clarified by centrifugation 

(184000 RCF). Clarified cell extract was applied to a 0.5 x 5.0 cm column of Ni-NTA 

Superflow (Pharmacia Biotech) at 7.0 mL/min.  The column was then washed with 4 

column volumes of buffer A and the bound sample was eluted with a 15 column volume 

gradient from 0-400 mM imidazole.  The purification was followed using SDS-PAGE 

analysis.  Appropriate fractions were pooled and (NH4)2SO4 was added to 800 mM.   The 

solution was incubated at 4˚C with gentle stirring and then applied to a 2.6 x 5.5 cm 

column of phenyl sepharose that had been equilibrated with buffer C (buffer A + 800 mM 
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(NH4)2SO4).  The column was then washed with 4 column volumes buffer C and bound 

protein was eluted with a 15 column volume gradient from 0-100% buffer A followed by 

an additional five column volumes buffer A.  Appropriate fractions were pooled and 

concentrated by ultrafiltration using a YM30 membrane (Amicon) and frozen dropwise in 

liquid nitrogen for storage at -80°C.   

Protein Concentration Determination.  2-KPCC concentrations were 

determined by using the previously determined extinction coefficient (є450 of 11828 M-

1•cm-1) (3). 

SDS-PAGE Procedures.  SDS-PAGE (12% T) was performed following the 

Laemmli procedure (11).  Electrophoresed proteins were visualized by staining with 

Coomassie blue.  The apparent molecular masses of polypeptides were determined by 

comparison with Rf values of standard proteins.   

Acetoacetate Decarboxylation Assay.  Assays were performed as described 

previously (7).  Assays were conducted in 9 mL sealed serum vials with a total reaction 

volume of 1 mL.  Vials were depleted of carbonate species by including a KOH-

containing trap as described previously (8).  Each assay contained 250 mM acetoacetate 

and 5 mM CoM in 100 mM Tris buffer, pH 7.4.  Assay vials were incubated in a 30°C 

shaking water bath and assays were initiated by addition of 0.125 mg 2-KPCC.  Acetone 

was quantified by gas chromatography as described previously (8). 

Incubation of 2-KPCC with BES.  Samples of 2-KPCC (3.6 mg/ml) were 

incubated anoxically as previously described in the presence of 10 mM DTT and 10 mM 

BES for four hours (6).  At that time, the samples were desalted into 2 ml using 

prepacked columns of Sephadex G-25 (Pharmacia, PD-10) equilibrated in 50 mM 
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glycine-tris-phosphate buffer at pH 7, 9 or 11.  Desalted samples were air oxidized for 30 

minutes.  The concentrations were normalized by extracting and quantifying FAD using 

sodium dodecyl sulfate as described by Aliverti and co-workers (1). 

UV/Vis spectral analysis of 2-KPCC.  Spectra were recorded on a Shimadzu 

UV-2401PC spectrophotometer.   

Determination of Cys87 pKa.  All absorbance readings were obtained in a quartz 

untramicro (120 µl) cuvette with black sides and a 1 cm lightpath.  Aliquoted GTP buffer 

was adjusted to the desired pH, and 2-KPCC was added to 130 µl of buffer.   Absorbance 

values at 555 nm and 450 nm were then obtained using a Shimadzu UV160U UV-Vis 

recording spectrophotometer, interfaced with a PC running PC160 Personal Spectroscopy 

Software Version 1.4.  The reference cell contained protein free GTP buffer.  The actual 

pH of each solution used to obtain a spectrum was determined by mixing an appropriate 

amount of protein free buffer A with the each of the GTP buffers.   

Data Analysis.  The pKa of the flavin cysteine residue was determined by fitting 

A555 data to a four parameter sigmoidal equation, y = yo + (a/(1 + exp(-(x-xo)/b)) using 

the software SigmaPlot.   

 
RESULTS 

 

 Redox-independent reactions of C82A and C87A 2-KPCC.  Acetoacetate 

decarboxylation is a thermodynamically favorable process that occurs spontaneously, 

however, 2-KPCC, in the presence of CoM, has been shown to catalytically enhance the 

rate of acetoacetate decarboxylation (7).  Unlike the physiological reaction of 2-KPC 

cleavage and carboxylation, 2-KPCC catalyzed acetoacetate decarboxylation is 
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independent of a redox active cofactor.  As the role of Cys82 and Cys87 is to shuttle 

electrons from FADH to the substrate, it is not surprising that mutation of these residues 

had no negative effect on the redox independent rate of acetoacetate decarboxylation.  

What is more intriguing is that, both the C82A and C87A mutants had increased 

acetoacetate decarboxylation activity as compared to the wild type protein (Figure 3-2).  

 The activites of C82A and C87A 2-KPCC were 204% and 181%, respectively, of 

that of the wild type protein.  One explanation may be that the replacement of the 

cysteine residues with alanine residues creates a larger binding pocket and perhaps allows 

for easier active site access by acetoacetate.  

 UV-Vis spectral analysis of BES-alkylated 2-KPCC and C82A 2-KPCC.  A 

distinguishing feature of DSOR enzymes is the formation of a charge transfer complex 

that forms between the oxidized flavin and the deprotonated flavin thiolate, Cys87 in 2- 

KPCC.  Typically the formation and disappearance of this charge transfer occurs too 

quickly to be easily observed, due to the tendency of the flavin thiolate to reform a 

disulfide bond with the interchange thiol, in this case Cys82.  The charge transfer 

absorbance can be more readily observed upon alteration of the interchange thiol to a 

non-thiol containing residue or by alkylation of the interchange thiol preventing 

reformation of the disulfide bond.  2-bromoethanesulfonate (BES) has been shown to be 

an inhibitor of 2-KPCC and a selective alkylating agent of Cys82.  To demonstrate this, 

2-KPCC was incubated in the presence of DTT, with or without BES.  The protein was 

desalted using gel filtration chromatography into buffer at varying pH and allowed to air 

oxidize before being subjected to UV-Vis spectral analysis.   
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Figure 3-2.  Acetone production as a result of 2-KPCC catalyzed acetoacetate 
decarboxylation.  Assays were performed in duplicate and contained the standard assay 
mixture as described in Methods.  Assays contained 0.125 mg 2-KPCC: , wild type 2-
KPCC; , C87A 2-KPCC; , C82A 2-KPCC. 
 
 

As shown in Figure 3-3, 2-KPCC that had been incubated without BES showed the 

normal oxidized flavin spectra, while 2-KPCC that had been incubated in the presence of 

BES showed an increase in absorbance at A555 and a slightly blue shifted peak at A450 at 

pH 11, spectral features characteristic of a charge-transfer complex.  Spectra of both 

normal 2-KPCC and BES-modified 2-KPCC that had been reduced with 1 mM dithionite 
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Figure 3-3.  UV-visible spectra of untreated 2-KPCC and BES-modified 2-KPCC.  
Samples were prepared as described in Materials and Methods.  The reduced spectra were 
obtained after removal of oxygen and the addition of 1 mM dithionite.  Trace 1, air 
oxidized 2-KPCC; trace 2, air oxidized 2-KPCC modified by BES; trace 3, dithionite 
reduced 2-KPCC; trace 4, dithionite reduced 2-KPCC modified by BES. 
 
 
 
were nearly identical, indicating spectral changes were due only to the modification of 

the interchange thiol.  Similar results have been obtained with the C82A 2-KPCC mutant. 

What is most interesting is that a pH of greater than 9 was required in order to observe 

the optimal charge transfer spectrum in either the C82A mutant or the BES modified 

protein.  Spectra were obtained from BES modified 2-KPCC at a pH of 7.0, 9.0, and 11.0 

(Figure 3-4).    
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Figure 3-4.  UV-visible spectra of BES modified 2-KPCC at varying pH showing the 
development of spectral charge transfer characteristics as a function of increasing pH.  2-
KPCC samples were prepared as described in Materials and Methods.  Trace 1 (red), 
BES-modified 2-KPCC at pH 7; trace 2 (purple), BES-modified 2-KPCC at pH 9; trace 
3 (blue), BES-modified 2-KPCC at pH 11.  
 

 

At pH 7.0, the alkylated protein retains the same spectra as that of wild type 2-KPCC.  At 

a pH of 9.0, the spectral changes characteristic of the formation of a charge transfer 

complex can begin to be observed.  The complete spectral changes associated with the 

charge transfer complex cannot be visualized until pH 11.0. This is in stark contrast to 

other more classical DSOR members in which the charge transfer absorbance can be seen 

at much lower pH, for example, in the case of mercuric reductase, alkylated by 
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iodoacetamide, where the spectral changes can be seen at a pH of 7.4 (9), and indicates a 

higher pKa for the flavin thiol in 2-KPCC than in other DSOR enzymes. 

Determination of the pKa of Cys87.  The charge-transfer absorbance spectral 

changes, primarily the increase in A555, occurs only when the flavin thiol is in the 

unprotonated thiolate form, and hence provides a unique tool to determine the pKa of 

Cys87.  Samples of 2-KPCC that had been preincubated with BES and then desalted 

using gel filtration chromatography were mixed with 200 mM GPT buffer at varying pH, 

ranging from pH 6-12 and the absorbance at A555 was measured.  The data was then fit to 

a four parameter sigmoidal equation to calculate a pKa of 8.76 ± 0.09 for Cys87.  Similar 

analysis using the C82A 2-KPCC mutant gave a nearly identical pKa of 8.74 ± 0.13. 

 

 

 

Figure 3-5.  Determination of the pKa of Cys87.  The absorbance values of 2-KPCC were 
measured and plotted as a function of increasing pH as described in Materials and 
Methods.  The data points were fit to a four parameter sigmoidal equation for pKa 
determination.  A, BES-modified 2-KPCC; B, Cys82Ala 2-KPCC. 
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This value varies significantly with the pKa values for the archetypal DSOR members 

glutathione reductase, 4.8 (4) and mercuric ion reductase, 5.2 (14), and is most likely a 

result of the  

unique, predominantly hydrophobic architecture of the active site of 2-KPCC.  A 

significant contributer to this hydrophobicity is the substitution of a phenylalanine 

residue in 2-KPCC for the conserved histidine residue seen in other DSOR enzyme active 

sites (Figure 3-6) (5). 

 

  

 

Figure 3-6.  Comparison of the active sites of 2-KPCC and glutathione reductase.  A, 2-
KPCC active site with a phenylalanine residue in the postion of a conserved histidine 
residue in other DSOR members; B, glutathione reductase (PDB ID: 3DK4) showing the 
conserved histidine residue typical of DSOR enzymes. 
 
 
 

DISCUSSION 
 
 

 In these studies two different methods were utilized to further the investigation 

into the unique active site of 2-KPCC. Site-directed mutagenesis was used to complete 

the characterization of the two active site cysteine residues, Cys87 and Cys82 with 

respect to the redox independent reaction catalyzed by 2-KPCC, acetoacetate 
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decarboxylation.  Both of the cysteine mutants had activity higher than the wild type 

protein with regard to this reaction, these results have also been seen in 2-KPCC with 

other active site mutations.  The C82A mutation also allowed the previously 

undetermined pKa of the flavin thiol of 2-KPCC, Cys87.  This result was confirmed by 

similar analysis using 2-KPCC that had been selectively alkylated at the Cys82 position 

by the modifying agent and CoM analog, BES.  Both modified proteins gave nearly exact 

values for the pKa of Cys87.  The higher pKa value for Cys87, as opposed to the pKa 

values for other DSOR enzymes, is also supported by the observation that the enzyme has 

optimal activity at pH 8.2 (7), a much higher pH than is typical for DSOR enzymes.   

BES has been shown to be a specific inhibitor of bacterial short chain alkene 

metabolism, having no effect on the same bacteria grown on different substrates such as 

isopropanol or propane, in addition to inhibiting the growth of methanogens.  There is a 

broad utility for BES to act as an environmental probe to potentially identify and 

characterize not only CoM-dependent alkene-oxidizing bacteria but also new classes of 

CoM utilizing bacteria in addition to the already known methanogens and alkene 

oxidizers. 

 Although BES has been shown to be an inhibitor of enzymes involved in the last 

two steps in the epoxide carboxylase pathway, it irreversibly inhibits only 2-KPCC and 

neither R- or S-HPCDH.  The specificity of BES alkylation of only the interchange thiol 

in 2-KPCC gives BES a more specific function in the utility of it as a mechanistic probe, 

providing additional insight into the unique active site of this unconventional DSOR 

member. 
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CHAPTER 4 
 

BROMOPROPANESULFONATE AS AN INHIBITOR OF GROWTH IN 

XANTHOBACTER AUTOTROPHICUS  STRAIN PY2 AND AN INHIBITOR AND 

SELECTIVE ALKYLATING AGENT OF 2-KPCC 

 
ABSTRACT 

  

 The metabolism of epoxides in the bacteria Xanthobacter autotrophicus strain 

Py2, requires the atypical cofactor CoM, thought previously to be utilized only by 

methanogens.  The CoM analog, 2-bromoethanesulfonate (BES)  has been shown to be 

an inhibitor of growth of both methanogens and alkene oxidizing bacteria, the latter by 

acting as a suicide substrate and specifically and irreversibly alkylating and inactivating 

the last enzyme in the X. autotrophicus epoxide metabolism pathway, NADPH:2-

ketopropyl-CoM oxidoreductase/carboxylase (2-KPCC) a member of the disulfide 

oxidoreductase (DSOR) family.  BES inhibition of 2-KPCC occurs by specific alkylation 

of the interchange thiol leaving the cysteine residue modified by an ethylsulfonate group. 

In these studies, 3-bromopropanesulfonate (BPS) has been shown to be an even more 

potent inhibitor of X. autotrophicus growth and of the enzyme 2-KPCC, presumably 

because the alkylation of the interchange cysteine residue more closely resembles the 

normal interchange thiol-CoM mixed disulfide formed during catalysis.  The 

concentration of BPS required for complete inhibition of X. autotrophicus growth was 

less than 75 µM, close to two orders of magnitude lower than the concentration of BES 

required for growth inhibition.  Over short time courses, BPS exhibited competitive 
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inhibition of 2-KPCC with a Ki = 34.9 ± 8.4 µM, which was also two orders of magnitude 

lower than the Ki determined for BES. 

 
INTRODUCTION 

 

The bacterial metabolism of epoxides formed from short chain aliphatic alkene 

epoxidation occurs by a three step, four enzyme pathway that uses the atypical cofactor 

coenzyme M (CoM) to facilitate epoxide ring opening and as a carrier of intermediates 

through the pathway.  Before the discovery of CoM in Xanthobacter autotrophicus, the 

only known function of CoM was of a methyl group carrier in archaeal methanogenesis 

(14). 2-bromoethanesulfonate, a CoM analog, has previously been shown to be an 

inhibitor of both methanogenesis in archaea as well as aliphatic epoxide carboxylation in 

bacteria (3, 4, 9, 19).  While the inhibition of these two pathways by a CoM analog may 

not be in itself surprising, what is interesting is that the mechanism of inhibition varies 

substantially between the enzymes inhibited in the aforementioned pathways.  In 

methanogens, the target of BES is methyl CoM reductase (MCR).  BES binds as a CoM 

analog and inactivates the enzyme by oxidizing the nickel tetrapyrrole cofactor from the 

+1 to +2 oxidation state (8).  In bacterial epoxide metabolism, BES has been shown to be 

a mixed rapid equilibrium inhibitor of enzymes catalyzing the last two steps in the 

pathway, R-hydroxypropyl-CoM dehydrogenase (R-HPCDH) and NADPH:2-ketopropyl-

CoM oxidoreductase/carboxylase (2-KPCC) (3).  In addition, BES has been shown to be 

a time-dependent, irreversible inactivator of the terminal enzyme in the pathway, 2-

KPCC, via selective alkylation of an active site cysteine residue (3). 
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As a member of the disulfide oxidoreductase (DSOR) family of enzymes, 2-

KPCC reflects all of the notable features of this family.  A flavin containing enzyme, 2-

KPCC uses NADPH to reduce the bound flavin, which in turn reduces a redox active 

disulfide to free thiols designated as the flavin thiol and the interchange thiol.  But 2-

KPCC is a unique member of the DSOR family with regard to many aspects.  

Conventional members of the DSOR family, such as glutathione reductase and 

dihydrolipoamide dehydrogenase catalyze disulfide bond cleavage, forming a temporary 

mixed disulfide between the interchange thiol and the substrate molecule (10, 17).  In 

contrast, 2-KPCC catalyzes the thioether bond cleavage of 2-ketopropyl-CoM (2-KPC) 

forming a mixed disulfide between the interchange thiol and CoM (16).  The mechanism 

of BES inhibition in 2-KPCC has been shown to be by irreversible alkylation of the 

interchange thiol when the enzyme is in the reduced form.  The selectivity of BES as an 

alkylating agent is due to the interaction of the sulfonate group with the two arginine 

residues that have been shown to coordinate the sulfonate group of the native substrate, 

2-KPC (15). 

Although the free BES molecule is an excellent CoM analog, the debrominated 

ethyl sulfonate bound to the enzyme is an alkyl group shorter than the mixed disulfide 

normally formed by CoM (Figure 4-1).  It is reasonable to assume that 3-

bromopropanesulfonate (BPS) may be a better CoM mimic when bound to the 

interchange thiol of 2-KPCC.  BPS has also been shown to be an even more potent 

inhibitor of MCR, also by oxidizing the nickel tetrapyrole cofactor, but by a different 

mechanism than BES (8, 11, 12). 
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Figure 4-1.  Comparative structures of 2-mercaptoethanesulfonate (CoM), 2-
bromoethanesulfonate (BES) and 2-bromopropanesulfonate (BPS). 
 
 

Based on the studies of BES inhibition in bacterial epoxide metabolism, and BPS 

inhibition in methanogens, BPS was studied as a potential inhibitor of epoxide 

metabolism in X. autotrophicus and specifically of the last enzyme in the bacterial 

epoxide degradation pathway, 2-KPCC.  BPS has been shown to completely inhibit X. 

autotrophicus growth at a concentration of 75 µM, which is close to two orders of 

magnitude lower than the threshold concentration of BES, 3 mM, required to completely 

inhibit bacterial growth.  In addition, over the course of short time frames, BPS was 

found to act as a competitive inhibitor of 2-KPCC with an inhibition constant also two 

orders of magnitude lower that that determined for BES. 

 
METHODS 

 

Materials.  Commercially available compounds used were of analytical grade and 

purchased from either Sigma-Aldrich Chemicals or Fisher Scientific. 3-

bromopropanesulfonate was purchased from ScienceLab, Houston, TX.  2-(2-Keto-

propylthio)ethanesulfonate (2-KPC) was synthesized as described previously (1).  

Growth of X. autotrophicus and Measurement of Cell Growth.  Bacteria were 

grown at 30°C in a mineral salts medium (6) as described previously (18).  Cultures were 
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grown in 50 mL of medium in sealed 250 mL shake flasks that had been modified by the 

addition of a Klett-compatible side arm for measuring optical densities and by 

replacement of the flask openings with 20 mm crimp-sealable tops and side arms for 

introduction of gaseous growth substrates.  Cultures were inoculated with 1 mL of cells 

growing in log phase and with 30 mL of propylene.  For the addition of BPS to cultures, a 

26.7 mM stock solution was prepared and filter sterilized using a 0.2 µm acrodisc filter.  

BPS was then added from the stock soluton so that the final concentration was 75 µM.  

The optical densities were determined approximately every three hours by placing the 

side arms of the culture flasks in a Klet-Summerson photoelectric colorimeter with a no. 

66 filter.  The Klett-Summerson colorimeter was standardized using a Shimadzu model 

UV-2101 spectrophotometer for conversion of Klett readings to absorbance values 

(optical density at 600 nm). 

Growth of Escherichia coli Expressing Recombinant 2-KPCC. All E. coli 

were grown at 37˚C. E. coli Top10 cells were grown in Luria-Bertani Rich (LB-Rich) 

broth containing ampicillin (100 µg/mL).  The LB-Rich media contained the following 

components per liter: 20 g of tryptone, 15 g of yeast extract, 2 g of K2HPO4, 1 g of 

KH2PO4, and 8 g of NaCl.  For the expression of 2-KPCC, E. coli Top10 cells that had 

been transformed with pDW1 were plated and grown overnight.  A single colony from 

this plate was used to grow a 25 mL liquid culture to an A600 of 0.6 for preparation of 

25% glycerol (v/v) stocks that were stored at -80˚C until use.  For use, cells from a frozen 

stock were inoculated into 125 mL of LB-Rich media and grown to an A600 between 0.6 

and 1.0.  This culture was used as the inoculum for a 15 L capacity microferm fermentor 

(New Brunswick Scientific) containing 12 L of LB-Rich media supplemented with 
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riboflavin (15 mg/L) and antifoam A (0.005% v/v).  Cells were allowed to grow at 37˚C 

with stirring at 400 rpm and forced aeration to an A600 between 0.6 and 1.0.  At this time, 

the temperature was reduced to 30˚C, arabinose was added to 0.02% and the cells were 

allowed to grow at this temperature for 6 h.  Cells were concentrated using a tangential 

flow filtration system (Millipore) and pelleted by centrifugation.  Cell paste was drop 

frozen in liquid nitrogen and stored at -80˚C.    

Purification of recombinant 2-KPCC. Cell paste was resuspended in 3 volumes 

of buffer A (50 mM Tris, 1 mM DTT, 0.1 mM EDTA, 5% glycerol v/v) with DNase I 

(0.03 mg/mL) and lysozyme (0.03 mg/mL) and thawed at 30˚C with shaking.  All 

subsequent treatments were perfomed either on ice or at 4˚C.  Cell suspension was passed 

three times through a French pressure cell (16000 psi) and clarified by centrifugation 

(184000 RCF). Clarified cell extract was applied to a 0.5 x 5.0 cm column of Ni-NTA 

Superflow (Pharmacia Biotech) at 7.0 mL/min.  The column was then washed with 4 

column volumes of buffer A and the bound sample was eluted with a 15 column volume 

gradient from 0-400 mM imidazole.  The purification was followed using SDS-PAGE 

analysis.  Appropriate fractions were pooled and (NH4)2SO4 was added to 800 mM.   The 

solution was incubated at 4˚C with gentle stirring and then applied to a 2.6 x 5.5 cm 

column of phenyl sepharose that had been equilibrated with buffer C (buffer A + 800 mM 

(NH4)2SO4).  The column was then washed with 4 column volumes buffer C and bound 

protein was eluted with a 15 column volume gradient from 0-100% buffer A followed by 

an additional five column volumes buffer A.  Appropriate fractions were pooled and 

concentrated by ultrafiltration using a YM30 membrane (Amicon) and frozen dropwise in 

liquid nitrogen for storage at -80°C.   
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Protein Concentration Determination.  2-KPCC concentrations were 

determined by using the previously determined extinction coefficient (є450 of 11828 M-

1•cm-1) (2). 

SDS-PAGE Procedures.  SDS-PAGE (12% T) was performed following the 

Laemmli procedure (13).  Electrophoresed proteins were visualized by staining with 

Coomassie blue.  The apparent molecular masses of polypeptides were determined by 

comparison with Rf values of standard proteins.   

Coupled Spectophotometric Assay for 2-KPCC Carboxylation Activity.  A 

continuous spectrophotometric assay was utilized that couples acetoacetate production by 

2-KPCC to acetoacetate reduction and concomitant NADH oxidation by β-

Hydroxybutyrate Dehydrogenase (β-HBDH) (5).  Purification of β-HBDH for use in the 

assay was performed as described previously (5).  Assays were conducted in 2 mL 

anaerobic quartz cuvettes that contained a total reaction volume of 1 mL.  Assays 

contained 0.125 mg 2-KPCC, 0.345 mg β-HBDH, 10 mM DTT, 0.2 mM NADH, 60 mM 

carbonate species (added as 33.5 mM CO2 gas plus 26.5 mM KHCO3), 0.25-5.0 mM 2-

KPC and 10-200 µM BPS in 100 mM Tris buffer, pH 7.4.  Reactions were allowed to 

equilibrate to 30°C and assays were initiated by the addition of 2-KPC and BPS, which 

was allowed to equilibrate in a needle before addition.  Acetoacetate production by 2-

KPCC and subsequent reduction by NADH was quantified by monitoring the decrease in 

absorbance (A340) associated with the oxidation of NADH in a Shimadzu UV160U 

spectrophotometer containing a water-jacketed cell holder for temperature control. 

Incubation of 2-KPCC with BES.  Samples of 2-KPCC (2.4 mg/ml) were 

incubated anoxically as previously described in the presence of 10 mM DTT and 10 mM 
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BPS for four hours (3).  At that time, the samples were desalted into 2 ml using 

prepacked columns of Sephadex G-25 (Pharmacia, PD-10) equilibrated in 100 mM lysine 

buffer with 100 mM NaCl and 0.1 mM EDTA at pH 11.  Desalted samples were air 

oxidized for 30 minutes before being subjected to UV/Vis spectral analysis. 

UV/Vis spectral analysis of 2-KPCC.  Spectra were obtained on a Cary 

UV/Visible Bio50 spectrophotometer. 

Data Analysis.  Initial velocity data were plotted as velocity versus substrate 

concentration and fit to the standard form of the Michaelis-Menten equation as described 

by Cleland (7) using the software SigmaPlot 11.  Enzyme inhibition data were fit to the 

following form of the Michaelis-Menten equation, f = Vmax[S]/(Km(1 + ([I]/Ki)) + [S]) 

which describes the effect of a competitive inhibitor (7).   

 
RESULTS 

 

 Growth Inhibition of X. autotrophicus by BPS.  Both BES and BPS have been 

shown to be inhibitors of methanogenesis with BPS being the more potent inhibitor of the 

two.  BES has been shown to be an inhibitor of epoxide metabolism in two known 

bacteria that utilize a CoM-dependent pathway, X. autotrophicus and Rhodococcus 

rhodochrous.  It was of interest to determine if BPS was also a more potent inhibitor of 

alkene oxidizing bacteria in a similar fashion to that observed in methanogens.  To 

determine this, cultures of X. autotrophicus were allowed to grow in sealed flasks on 

propylene in the absence and presence of BPS with OD600 readings taken every three 

hours.  Upon the addition of 75 µM BPS, growth was completely inhibited.  The 

concentration of BPS to be used was determined by prior growth experiments designed to 



	  

	  

89	  

find the minimum concentration at which BPS could completely inhibit growth. To 

determine the specificity of BPS inhibition, X. autotrophicus was also grown on 

isopropanol, a compound that does not require CoM for metabolism, in the presence and 

absence of BPS.  The presence of BPS had no effect on the growth of the bacteria when 

grown under these conditions (data not shown).   

 

 

 
Figure 4-2.  Growth of X. autotrophicus in the presence and absence of BPS.  , 0 µM 
BPS; , 75 µM BPS added at the time indicated on the graph. 
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Kinetic Characterization of Rapid Equilibrium Inhibition of 2-KPCC by BPS.  

Previous studies have shown BES to be a rapid equilibrium inhibitor of 2-KPCC, 

as well as a time dependent irreversible inactivator of the enzyme.   Although 2-KPCC is 

capable of catalyzing several different reactions, the physiologically relevant reaction 

catalyzed is the reductive cleavage and carboxylation of 2-KPC resulting in the formation 

of acetoacetate.  Previous measurement of this activity required a discontinuous assay 

which quantified the amount of radiolabeled 14CO2 incorporated into acetoacetate.  In 

these studies a new, recently developed assay was utilized which couples the production 

of acetoacetate to the activity of β-HBDH and concomitant oxidation of NADH, which 

can be measured spectrophotometrically by following the decrease in A340.  Activity of 

the enzyme was monitored over short time courses (20-40 s) and the progress curves for 

product formation were largely linear in the absence and presence of BPS.  If assays were 

allowed to proceed for longer time periods (longer than one minute) there was a decrease 

in progress curve linearity, suggesting that BPS may be a time dependent inactivator of 2-

KPCC as well. 

The carboxylation activity of 2-KPCC was measured as described above in the presence 

of varying concentrations of BPS and varying concentrations of 2-KPC, with saturating 

concentrations of DTT, NADH, CO2 and β-HBDH.  As shown in Figure 4-3, BPS 

behaved essentially as a competitive inhibitor during the short time courses of the assays.  

The experimental data were used to calculate the following kinetic parameters: kcat = 12.7 

min-1, Km = 269 ± 56 µM, and Ki = 34.9 ± 8.3 µM. 
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Figure 4-3.  Competitive rapid equilibrium inhibition of 2-KPCC catalyzed 2-KPC 
oxidation by BPS.  Assays of 2-KPC carboxylation were performed as described in 
Materials and Methods with 0.125 mg of 2-KPCC and varying concentrations of BPS.  
Data points represent the average of duplicate experiments and were fit to the standard 
form of the Michaelis-Menten equation.  Symbols: , 0 mM BPS; , 10 µM BPS; , 
100 µM BPS; , 200 µM BPS. Inset, double reciprocal plots for the assays with the solid 
lines being generated from nonlinear least-squares fits of the velocity versus [S] data to 
the equation for a rectangular hyperbola using Sigmaplot. 
 

UV-Visible Spectroscopic Evidence for Alkylation of Cys82 by BPS.  As 

typical for all DSOR enzymes, a flavin-thiolate charge transfer complex results from the 

interaction of the proximal cysteine and the oxidized flavin when the proximal cysteine, 

Cys87 in the case of 2-KPCC, is in the deprotonated thiolate form.  Usually the charge-

transfer complex develops and dissipates too quickly to be easily observed.  However, 
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upon modification of the interchange thiol, which renders the proximal thiol in a 

continually reduced state, the distinguishing features of the complex, most prominently 

an increase in absorbance around A555 can be easily visualized spectrophometrically.  2-

KPCC that had been incubated in the presence of BPS, shows the typical spectral 

 

 

 
Figure 4-4.  Spectral changes associated upon modification of 2-KPCC that had been 
alkylated by BPS.  Trace 1, 2-KPCC that had been preincubated in the absence of BPS; 
Trace 2, 2-KPCC that had been incubated in the presence of BPS. 
 
 
 



	  

	  

93	  

characteristics associated with a flavin-thiol charge transfer complex, indicating that the 

protein undergoes alkylation in a similar fashion to protein modified by BES which has 

been more extensively characterized. 

 
DISCUSSION 

 

 The studies in this chapter have identified BPS as another and more potent 

inhibitor of epoxide metabolism in X. autotrophicus, with the target of irreversible 

alkylation being the final enzyme in the epoxide metabolism pathway, 2-KPCC.   

 BES was the initial structural CoM analog identified as an inhibitor of 

methanogenesis by inhibiting the methane liberating enzyme, methyl CoM reductase 

(MCR) with a Ki = 2 µM (8).  While BPS, also a structural analog of CoM, has been 

shown to be an even more potent inhibitor of methanogenesis (Ki = 0.1 µM) (8), its 

inhibition of MCR is by a different mechanism than BES. 

 The concentration of BPS at which X. autotrophicus growth was inhibited and the 

concentration at which half maximal inhibition for 2-KPCC were about 100 times lower 

than the concentrations of BES required.  These BPS concentrations are much more 

similar to the inhibition constant determined for MCR in methanogens.  This is most 

likely due to the mechanism of inhibition for BES and BPS in 2-KPCC.  Both inhibitors 

are suicide substrates for 2-KPCC and inhibit the enzyme by irreversibly alkylating the 

interchange thiol, Cys82.  The structure of the alkylated thiol most likely closely 

resembles the mixed disulfide intermediate formed between the thiol of CoM and the 

interchange thiol during catalysis.  Due to this mechanism (Figure 4-5), with bromine 

serving as the leaving group, BPS is a better CoM analog after modifying Cys82.  As 
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CoM is oriented in the active site of 2-KPCC by interaction of the sulfonate group with 

two arginine residues, it is reasonable to assume that the orientation of BPS in the active 

site, being one alkyl group longer than  

                   

 

 

 
Figure 4-5.  Comparison of the mixed disulfide formed in 2-KPCC during catalysis 
between the interchange thiol and the thiol of CoM and 2-KPCC that had been alkylated 
by BES or BPS at Cys82.  A, Mixed disulfide intermediate formed between Cys82 and 
CoM; B, alkylation of Cys82 by BES; C, alkylation of Cys82 by BPS. 
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BES, puts the inhibitor in a conceivably better orientation for nucleophilic attack by the 

thiol of Cys82.  This hypothesis is also supported by the observation that no inhibition 

was seen with other brominated compounds lacking a sulfonate group. 

 Further studies will investigate the time dependent irreversible inactivation of 2-

KPCC by BPS.  It is also planned to look at the inhibition R-HPCDH by BPS.   Inhibition 

in R-HPCDH is presumed to be completely reversible, in a similar fashion as inhibition 

by BES, and the inhibition constant for this enzyme by BPS is proposed to be similar as 

that obtained using BES. 
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CHAPTER 5 

CONCLUSIONS  AND FUTURE DIRECTIONS 
 

 Aliphatic alkenes and epoxides have been shown to have detrimental effects on 

biological organisms. However, there are some bacteria that have been shown to not only 

detoxify these compounds, but productively metabolize them as well.  Xanthobacter 

autotrophicus and Rhodococcus rhodochrous, utilize a distinct pathway for epoxide 

metabolism that necessitates the use of the atypical cofactor Coenzyme M (CoM) (1-4, 

8), contains one of only two known pairs of short chain dehydrogenases that catalyze the 

same reaction but with opposite stereospecificity, and concludes with an innovative 

strategy of substrate carboxylation. 

The chapters in this dissertation have provided an in-depth look the terminal 

enzyme in the epoxide metabolism pathway, a carboxylase and the CoM regenerating 

enzyme of the pathway, and specifically at the features that make NADPH:2-ketopropyl 

CoM oxidoreducutase/carboxylase (2-KPCC) unique as a member of the disulfide 

oxidoreductase (DSOR) family of enzymes.  Previous hypotheses of enolate stabilization 

by an ordered water molecule, based on the initial studies of 2-KPCC and refined crystal 

structures, have now been confirmed by the analysis of two histidine mutants.  The effect 

of the unique hydrophobic architecture of the 2-KPCC active site on the pKa of the 

interchange thiol has been investigated, and the determination of the pKa of Cys87 is 

shown to be significantly higher than its DSOR counterparts. The molecules 2-

bromoethanesulfonate (BES) and 3-bromopropanesulfonate (BPS) have been investigated 

not only as inhibitors of 2-KPCC, but also as modifying agents of 2-KPCC.  This 

provides additional insight into the active site of this novel enzyme.  Detailed 
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investigation of these features, have provided a comprehensive picture of how 2-KPCC is 

capable of catalyzing the cleavage of a thioether bond and subsequent carboxylation, by a 

previously unprecedented mechanism.   

The characterization of BPS as an inhibitor of the epoxide carboxylation pathway 

has not been fully investigated.  Similar to BES, preliminary studies have indicated that 

BPS is a time-dependent inactivator of 2-KPCC in addition to being a competitive 

inhibitor.  In contrast to the four hours required for BES to completely inactivate 2-

KPCC, it appears that inactivation by BPS requires only about thirty minutes.  These 

observations further emphasize the increased potency of BPS as an inhibitor and indicate 

that BPS may serve as a better environmental probe than BES to discover and identify 

methanogens, alkene oxidizing bacteria and other potential CoM dependent organisms.   

Recent crystal structure data for 2-KPCC have identified other structural features 

that would be worth further investigation.  One of the main structural differences between 

2-KPCC and typical DSOR enzymes is the presence of a thirteen amino acid insertion 

flanked by two proline residues that allow tight looping of the region (5).  2-KPCC also 

has notable differences at both the N- and C-termini of the protein, and together these 

three additional regions occupy what would be the large substrate binding cleft in other 

members of the DSOR family.  This loop not only serves to prevent solvent access to the 

active site but also aids in formation of the small hydrophobic channel that allows CO2 

access to the active site.  It would be interesting to try to make a 2-KPCC loop deletion 

mutant and to observe the changes in activity and differential product formation as a 

result. 
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Besides the presence of the histidine residues comprising the catalytic triad, one 

of the main active site differences between 2-KPCC and other DSOR enzyme active sites 

is the substitution of a phenylalanine residue for a conserved histidine residue.  This 

difference is proposed to be a reflection of the different reactions catalyzed by 2-KPCC 

and functions to maintain the general hydrophobicity of the active site and eliminate 

protons. It is the presence of this residue that is thought to be a major contributor to the 

basic shift of the pKa of the Cys87.  The generation of a F501H 2-KPCC mutant would 

have provided interesting insight into the unique active site of 2-KPCC.  Unfortunately 

many attempts at the creation of this mutant have proven unsuccessful. 

There is also a proposed alternate anion binding site composed of Gln509 and 

His506 that is proposed to function to stabilize the negative charge on acetoacetate 

formed during catalysis (6, 7).  This site may also aid in acetoacetate binding in the active 

site during the redox independent catalyzed acetoacetate decarboxylation reaction.  

Again, site directed mutagenesis of these two residues could provide more information on 

the role of this potential alternate anion binding site. 

Although there are still some questions to be answered, many of the details of 2-

KPCC have been elucidated.  The basis for 2-KPCC cleavage of a thioether bond and 

preferential carboxylation of the substrate, highlights the mechanistic versatility of DSOR 

enzymes and contributes to furthering the understanding of fundamental mechanisms that 

impart bacteria with the ability to detoxify and exploit potentially toxic compounds for 

productive metabolism. 
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