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ABSTRACT 

Potential Effects of Altered Precipitation Regimes on 

Primary Production in Terrestrial Ecosystems

by

Joanna S. Hsu, Master of Science

Utah State University, 2011

Major Professor: Dr. Peter B. Adler
Department: Wildland Resources

In addition to causing an increase in mean temperatures, climate change is also altering 

precipitation regimes across the globe. General circulation models project both latitude-dependent 

changes in precipitation mean and increases in precipitation variability. These changes in water 

availability will impact terrestrial primary productivity, the fixation of carbon dioxide into 

organic matter by plants. In my thesis, I addressed the following three questions: 1.) What will be 

the relative effect of changes in the mean and standard deviation of annual precipitation on mean 

annual primary production? 2.) Which ecosystems will be the most sensitive to changes in 

precipitation?  3.) Will increases in production variability be disproportionately greater than 

increases in precipitation variability?

I gathered 58 time series of annual precipitation and aboveground net primary production 

(ANPP) from long-term ecological study sites across the globe. I quantified the sensitivity of 

ANPP at each site to changes in precipitation mean and variance. My results indicated that mean 

ANPP is about 40 times more sensitive to changes in precipitation mean than to changes in 

precipitation variance. I showed that semi-arid ecosystems such as shortgrass steppe in Colorado 

or typical steppe in Inner Mongolia may be the most sensitive to changes in precipitation mean. 
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At these sites and several others, a 1% change in mean precipitation may result in a change in 

ANPP that is greater than 1%.

To address how increases in interannual precipitation variability will impact the 

variability of ANPP, I perturbed the variability of observed precipitation time series and evaluated 

the impact of this perturbation on predicted ANPP variability. I found that different assumptions 

about the precipitation-ANPP relationship had different implications for how increases in 

precipitation variability will impact ANPP variability. Increases in ANPP variability were always 

directly proportional to increases in precipitation variability when ANPP was modeled as a simple 

linear or a lagged function of precipitation. However, when ANPP was modeled as a nonlinear, 

saturating function of precipitation, increases in ANPP variability were disproportionately low 

compared to increases in precipitation variability during wet years but disproportionately high 

during dry years. 

My thesis addresses an existing research gap regarding the long-term impact of increases 

in interannual precipitation variability on key ecosystem functioning. I showed that increases in 

precipitation variability will have negligible impacts on ANPP mean and have disproportionately 

large impacts on ANPP variability only when ANPP is a concave down, nonlinear function of 

precipitation. My work also demonstrates the importance of the precipitation-ANPP relationship 

in determining the magnitude of impacts to ANPP caused by changes in precipitation. Finally, my 

thesis highlights the potential for considerable changes in ANPP variability due to increases in 

precipitation variability. 

(80 pages)
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CHAPTER 1 

INTRODUCTION

  Primary production is an essential component of the global carbon cycle. The capacity 

for terrestrial vegetation to function as a carbon sink depends on how much carbon dioxide is 

fixed by plants. Annual net primary production (NPP) of the planet is about 105 Pg of carbon 

(Field et al. 1998, Geider et al. 2001). Terrestrial ecosystems cover about one-third of the earth's 

surface, but fix more than half of this carbon (Field et al.1998, Geider et al. 2001). At local scales, 

primary production is a key ecosystem function, influencing virtually all other ecosystem 

properties. In addition to being a direct resource for primary consumers, plant biomass determines 

the carrying capacity of an ecosystem by setting the energy available for all organisms. 

Quantifying how climate change will impact aboveground terrestrial primary production 

has become an important goal for ecologists. A large body of research shows that increases in 

atmospheric carbon dioxide and temperature both stimulate primary production, at least initially 

(Riedo et al. 2001, Nemani et al. 2003, Ainsworth et al. 2005, Boisvenue et al. 2006, Heimann 

and Reichstein 2008, Wu et al. 2011). Though some studies indicate that warming can lead to 

drought and decreases in primary production, one meta-analysis showed that warming led to 

increases in aboveground biomass by an average of 27% (Wu et al. 2011).

This thesis focuses on a different another way climate change is impacting primary 

production: through changes in the precipitation regime. Water availability may be the biggest 

limitation to plant growth in over 40% of the planet's vegetated surface (Nemani et al. 2003). 

Precipitation variability is a major driver of aboveground net primary production (ANPP) 

dynamics, especially in arid and semi-arid ecosystems (Smoliak 1986, Sala et al. 1988, Lauenroth 

and Sala 1992, O'Connor et al. 2001, Khumalo and Holechek 2005, Knapp et al. 2006, Patton et 

al. 2007). 

Global warming is altering precipitation patterns by increasing evaporation rates and the 
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moisture holding capacity of the lower atmosphere (Boer 1993, Allen and Ingram 2002, Trenberth 

et al. 2003). General circulation models (GCMs) project two types of changes in precipitation that 

are already evident (Räisänen 2002, Salinger 2005, Sun et al. 2007, Zhang et al. 2007, Allan and 

Soden 2008, Stephens and Hu 2010). First, latitude-dependent changes in mean precipitation are 

causing some regions to become wetter and others to become drier. Second, increases in 

precipitation variability are resulting in fewer rainfall days, longer droughts, and more extreme 

events. In one study across 19 GCMs, a doubling of atmospheric CO2 led to increases in the mean 

and standard deviation of annual precipitation of 2.5% and 4.2%, respectively (Räisänen 2002). 

 This thesis utilizes 58 long-term data sets of rainfall and ANPP from across the globe to 

examine how these two types of changes in precipitation regime might impact the mean and 

interannual variability of ANPP in terrestrial ecosystems. Using relationships between 

precipitation and primary production derived empirically from my data sets, I make predictions 

about the size of potential changes in ANPP relative to the size of potential changes in 

precipitation. 

In Chapter 2, I examine how changes in precipitation mean and variance will impact 

mean annual ANPP. I characterize the precipitation-production relationship at each site using 

linear and nonlinear regression models and use partial derivatives to quantify the sensitivity of 

primary production to changes in precipitation mean and variance. The sensitivity of production 

to precipitation mean depends on the slope of the precipitation-production relationship, while the 

sensitivity to precipitation variance depends on the nonlinearity of this relationship. I also test 

whether production sensitivities correlate with abiotic variables such as mean annual temperature 

and precipitation. 

 In Chapter 3, I explore how increases in the interannual variability of precipitation will 

affect the interannual variability of ANPP in grasslands. Increases in the variability of 

precipitation should cause increases in the variability of ANPP since ANPP is a function of 
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precipitation. These increases in ANPP variability will pose challenges for natural resource 

management. However, depending on how vegetation responds to precipitation variability, 

increases in ANPP variability may be relatively less than, equal to, or greater than increases in 

precipitation variability. In this chapter, I model three likely ways that ANPP responds to 

precipitation: linearly, nonlinearly, and with a time lag. I directly perturb the variability of 

observed precipitation time series and quantify how ANPP variability is affected in each of these 

three cases.

In Chapter 4, I summarize my findings, synthesizing across chapters.  I discuss the 

contributions of my work to our understanding of how changes in precipitation will affect ANPP 

mean and variability.  
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CHAPTER 2

SENSITIVITY OF MEAN ANNUAL PRIMARY PRODUCTION TO PRECIPITATION1 

Abstract. In many terrestrial ecosystems, variation in aboveground net primary 

production (ANPP) is positively correlated with variation in interannual precipitation. Global 

climate change will alter both the mean and the variance of annual precipitation, but the relative 

impact of these changes in precipitation on mean ANPP remains uncertain. At any given site, the 

slope of the precipitation-ANPP relationship determine the sensitivity of mean ANPP to changes 

in mean precipitation, while the curvature of the precipitation-ANPP relationship determines the 

sensitivity of ANPP to changes in precipitation variability. We used 58 existing long-term data 

sets to characterize precipitation-ANPP relationships in terrestrial ecosystems and to quantify the 

sensitivity of mean ANPP to the mean and variance of annual precipitation. We found that most 

study sites have a nonlinear, saturating relationship between precipitation and ANPP, but these 

nonlinearities were not strong. As a result of these weak nonlinearities, ANPP was nearly 40 times 

more sensitive to precipitation mean than variance. A 1% increase in mean precipitation caused a 

-0.2% to 1.8% change in mean ANPP, with a 0.64% increase on average. Sensitivities to 

precipitation mean peaked at sites with a mean annual precipitation near 500 mm. Changes in 

species composition and increased intra-annual precipitation variability could lead to larger ANPP 

responses to altered precipitation regimes than predicted by our analysis. 

INTRODUCTION

Primary production influences many soil and ecosystem properties. Primary production is 

also an important component of the global carbon cycle, and anticipating future changes in mean 

primary production is a goal of global change ecology.  

Water availability is a key control of plant productivity, and aboveground net primary 

1 Coauthored by Joanna Hsu, James Powell, and Peter Adler
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production (ANPP) is positively correlated with mean annual precipitation (MAP) at regional 

scales (Lieth 1973, Sala et al. 1988, Huxman et al. 2004, Jobbagy et al. 2002, Bai et al. 2004). 

Interannual variability in ANPP is also correlated with interannual variability in precipitation at 

many sites, especially in water-limited ecosystems (Smoliak 1986, Lauenroth and Sala 1992, 

O'Connor et al. 2001, Khumalo and Holechek 2005, Knapp et al. 2006, Patton et al. 2007). 

General circulation models (GCMs) project latitude-dependent changes in MAP due to 

climate forcing (Giorgi and Francisco 2000, Zhang et al. 2007, John et al. 2009). In addition to 

changes in mean precipitation, GCMs also project changes in the distribution of precipitation as 

the global hydrological cycle intensifies (Räisänen 2002, Salinger 2005, Sun et al. 2007, Allan 

and Soden 2008, Wetherald et al. 2009). However, while GCMs sometimes disagree on the 

magnitude and direction of changes in regional mean precipitation (Neelin et al. 2006, Zhang et 

al. 2007), they consistently predict increases in the intra- and interannual variability of 

precipitation. Observational studies and experimental manipulations both suggest that production 

is sensitive to the timing and size of precipitation inputs (Fay et al. 2003, Swemmer et al. 2007, 

Heisler-White et al. 2009), indicating that increases in precipitation variance will affect ANPP. 

Thus, mean ANPP may respond to changes in both the mean and the variance of the precipitation 

regime. 

At a given site, the response of mean ANPP to changes in mean annual precipitation will 

depend on the slope and intercept of the relationship between precipitation and ANPP. Assuming 

that ANPP is a positive function of precipitation, the steeper this slope, the greater the effect of 

increases in mean precipitation on mean ANPP. How changes in precipitation variability can 

affect mean ANPP is less intuitive, but two mechanisms are possible. If precipitation across years 

is not symmetrically (normally) distributed around a mean, then an increase in precipitation 

variance may alter the precipitation mean, which in turn could alter mean ANPP. In addition, if 

the precipitation-ANPP relationship is nonlinear, changes in precipitation variance will alter mean 
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ANPP according to the curvature of the response function due to a mathematical property known 

as Jensen's inequality (Jensen 1906) (Fig. 2-1). Specifically, if the precipitation-ANPP 

relationship is concave down, then increases in precipitation variance will decrease mean ANPP 

even when MAP is held constant.  

Nonlinear, concave-down relationships have been documented for regional precipitation-

ANPP relationships (Huxman et al. 2004, Yang et al. 2008), but few studies have explored 

nonlinearities in temporal precipitation-ANPP relationships (but see Khumalo and Holechek 

2005). In fact, we might expect nonlinear, concave-down relationships in any ecosystem where 

other resources, such as nitrogen, limit production in wet years more than in dry years. Where 

such nonlinear relationships exist, Jensen's inequality would apply. However, we do not know 

how common these nonlinearities are or how large a change in mean ANPP they would cause 

given changes in interannual precipitation variability.

We used existing long-term time series of precipitation and ANPP to pursue three 

objectives. First, we characterized temporal precipitation-ANPP relationships for all terrestrial 

ecosystems for which data was available. Second, we calculated the sensitivity of mean ANPP to 

the mean and variance of annual precipitation. Third, we tried to explain cross-system variation in 

ANPP sensitivities as a function of ecosystem type and abiotic covariates. To address these 

objectives, we built linear and nonlinear regression models to predict ANPP from precipitation 

and selected the best model for each data set using Akaike's Information Criterion (AICc). We 

then used partial derivatives to quantify the sensitivity of ANPP mean to precipitation mean and 

variance. Finally, we used regression to test for cross-system patterns in ANPP sensitivities to 

precipitation.  
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METHODS

Data collection

We located long-term time series of annual precipitation and ANPP in three different 

ways.  First, we used data sets previously analyzed for other rainfall and production patterns by 

Knapp and Smith (2001) and by Lehouerou (1988).  The Knapp and Smith data sets are from 

Long-Term Ecological Research (LTER) sites across North America. We added updated data from 

these LTER sites when it was available. The Lehouerou data sets are from semi-arid and arid 

sites. In a few cases, updated data from these sites was also available. Secondly, we electronically 

searched ISI Web of Knowledge for articles published to date that might contain precipitation and 

ANPP data sets. We used “precipitation” and “primary production” as topic search algorithms in 

the subject area of ecology.  We extracted raw data from papers by using the published tabular 

data or by digitizing figures. Finally, we used net primary productivity data sets from the Oak 

Ridge National Laboratory Distributed Active Archive Center, accessible at http://daac.ornl.gov/.

To ensure that studies had reasonable power to detect linear and nonlinear trends, we 

excluded data sets with fewer than 10 years of precipitation and ANPP data. We also excluded 

studies in which productivity was estimated using remote sensing approaches. In studies where 

productivity was experimentally manipulated via fertilization, only data from non-fertilized plots 

was used. Finally, we excluded studies from agricultural systems.  

Model fitting

We fit a linear and nonlinear model to each data set using least squares regression. The 

nonlinear model we used (ANPP=a-b/precipitation) is a concave down, saturating function when 

a and b are positive. This nonlinear function is parsimonious, linear in its parameters (so that 

unique least squares parameter estimates are guaranteed to exist), and fit the data better than other 

http://daac.ornl.gov/etc
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saturating, quadratic, and sigmoidal models that we tested. We used AICc model weights to 

compare linear and nonlinear model fits and to select a best model for each data set.

In cases where growing season precipitation was available and accounted for more 

variation in ANPP than total annual precipitation, we used growing season precipitation as the 

predictor variable. We did not remove outliers and influential observations due to their important 

contribution to the precipitation-ANPP relationship. In many cases, ANPP during very wet years 

determines the nonlinearity of precipitation-ANPP relationship, and the frequency of these 

“outlier” years is increasing with climate change (Frich et al. 2002, Svoma and Balling et al. 

2010).

We fit normal and lognormal distributions to each precipitation time series using 

maximum likelihood estimation. We determined which distribution best described each time 

series using AICc, and obtained the mean ( x ) and variance (σ2) of each precipitation time series 

from that distribution. When precipitation is lognormally distributed, an increase in precipitation 

variance will increase precipitation mean, which in turn may increase ANPP.

Sensitivity analysis

We used a quadratic approximation (Chesson et al. 2005) to quantify the expected value 

of ANPP (R) for each data set :

R≈ f ( x̄ , a , b)+.5 f ' ' ( x̄ , a ,b)σ2.  (1)

In Equation 1, a and b are the fitted parameters of the linear or nonlinear precipitation-ANPP 

model, while ( x̄ ) and (σ2)  are the mean and variance of the precipitation time series. The second 

term in Equation 1 is the source of Jensen's inequality; it is negative when f is concave down, 

positive when f is concave up, and zero when f  is linear. Equation 1 accounts for both ways that 

changes in precipitation variance can cause changes in ANPP: 1) directly, by changing the 

precipitation mean in lognormally distributed precipitation time series, and 2) indirectly, through 



11
Jensen's inequality. 

Next, we calculated ANPP sensitivities to the mean and variance of precipitation by 

taking the partial derivative of Equation 1 with respect to the mean and variance of precipitation. 

Details of the sensitivity analysis are given in Appendix A. We scaled the sensitivities to the mean 

response so that they are relative, not absolute, measures: a sensitivity of 1 implies that a 1% 

change in precipitation mean results in a 1% change in ANPP mean in the same direction. For 

each data set, we calculated separate sensitivities for linear and nonlinear models. Rather than 

choosing between the two sensitivities, we obtained the final sensitivities for each data set using a 

weighted average based on AICc weights from the model fitting. In cases where multiple data 

sets of the same vegetation type were available from the same study, we averaged across data sets 

to obtain mean sensitivities.

Cross-system patterns in sensitivities

Previous studies have assumed a linear relationship between precipitation and production, 

and used the slopes of temporal precipitation-ANPP relationships to quantify ANPP sensitivity to 

precipitation mean. These studies suggest that the highest ANPP sensitivities to precipitation may 

be at the driest, most water-limited sites (Huxman et al. 2004) or at sites that receive an 

intermediate amount of precipitation (Paruelo et al. 1999, Bai et al. 2008). To the best of our 

knowledge, cross-system studies of primary production sensitivity to changes in precipitation 

variance have been limited to comparing different measures of variability, such as coefficient of 

variation (Noy-Meir and Walker 1984, Lehouerou et al. 1988, Knapp et al. 2001). To determine 

which ecosystems might be affected most by altered precipitation patterns, we used regression to 

test whether ANPP sensitivities to mean and variance were correlated with patterns in 

precipitation, precipitation seasonality (summer or winter), temperature, or data set length.
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RESULTS

Data set description

We collected a total of 58 precipitation and ANPP data sets, representing 37 different 

study sites (Table 2-1, Table 2-2). The average length of our data sets was 19 years.  Many of the 

study sites are in North America, including 8 LTER sites, but we also used data sets from Eurasia, 

South America, and Africa.  We collected 46 data sets from grasslands, 6 from alpine meadows, 3 

from shrub-dominated ecosystems, and 3 from forests. Peak live biomass was used to 

approximate ANPP at most sites, but peak standing crop was used at several sites. The Jornada, 

Sevilleta, and Bonanza LTER sites used non-destructive measurements combined with allometric 

equations to estimate ANPP.

Model fitting

A nonlinear relationship between precipitation and ANPP best described 31 out of the 58 

data sets. Fig. 2-2 shows examples of linear and nonlinear data sets. Within the linear data sets, 

precipitation explained an average of 33% of the variation in ANPP. The nonlinear precipitation 

model explained an average of 30% of the variation in ANPP within the nonlinear data sets. A 

chi-square goodness of fit test indicated that the probability of having a nonlinear precipitation-

ANPP relationship was not different across biomes (χ2=1.68, df=3, p=0.69). 

Of the 31 nonlinear data sets, 27 were concave down; an increase in precipitation 

variability at these sites will lead to a decrease in mean ANPP. Four data sets exhibited a concave 

up precipitation-ANPP relationship, three of which were from Niwot Ridge LTER. However, 

AICc model weights suggest that the nonlinear model is not overwhelmingly supported by the 

data, especially when the pattern is concave up. Across all data sets, the AICc weight for the 

nonlinear model averaged only 0.49. Within the 27 nonlinear, concave down data sets, the AICc 
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weight of the nonlinear model ranged from 0.50 to 0.97, averaging 0.66. AICc support for 

concave up models was especially weak, averaging 0.54 across the 4 concave up data sets.

There were 45 unique precipitation time series within the 58 data sets.  Based on AICc 

weights, precipitation was normally distributed for 18 data sets and lognormally distributed for 27 

data sets. However, AICc only showed clear support (AICc weight > 0.8) for a normal 

distribution in 4 cases and for a lognormal distribution in 8 cases. If precipitation is lognormally 

distributed, then precipitation mean and variance are not independent of each other, and changes 

to precipitation variance will affect the mean of both precipitation and ANPP. 

Sensitivity analysis

The sensitivity of  mean ANPP to changes in mean precipitation ranged from -0.2 to 1.81 

with a mean of 0.64, indicating that on average, a 1% change in mean precipitation will translate 

into a 0.64% change in ANPP.  Eight sites showed sensitivities greater than one and two sites had 

negative sensitivities. 

In almost all data sets, mean ANPP exhibited negative sensitivities to precipitation 

variance due to concave down precipitation-ANPP relationships (Table 2-1, Fig. 2-3). For every 

data set, the sensitivity of mean ANPP to changes in precipitation variance was smaller than the 

sensitivity to changes in precipitation mean (Fig. 2-3). In Appendix B, we demonstrate that this 

result would not change had we chosen a different saturating function to characterize the 

precipitation-ANPP relationship. The mean sensitivity to changes in variance was -0.016.  Across 

data sets, ANPP was 39 times more sensitive to changes in precipitation mean than to changes in 

precipitation variance. 

Cross-system patterns in sensitivities

A quadratic regression model (sensitivity = .20 + .002(MAP) - 2.26*10-6(MAP)2) fit the 
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relationship between MAP and ANPP sensitivity to precipitation mean better than a linear 

regression model, according to AICc (Fig. 2-4). In this model, which explains 17% of the 

variation in sensitivities to precipitation mean, sensitivity to mean peaks at sites with 505 mm 

MAP. Sensitivities to precipitation mean were not correlated with mean annual temperature alone 

(p=0.09), but a multiple regression with mean annual temperature and a quadratic MAP effect 

explained 28% of the variation in sensitivity to precipitation mean and had stronger AICc support 

(AICc weight=0.79) than the quadratic MAP model alone. In the multiple regression model, 

sensitivity to precipitation mean was positively correlated with mean annual temperature. ANPP 

sensitivities to precipitation mean were not correlated (p>0.1) with data set length or precipitation 

seasonality. Shrublands exhibited the highest sensitivities to precipitation mean (mean =0.87, 

followed by grasslands (mean=0.69), forests (mean=0.06), and then alpine meadows 

(mean=0.04), but these differences were only marginally significant (p=0.06).

There was a significant, negative correlation between sensitivity to precipitation variance 

and mean annual temperature (p=0.01 ,r2=0.16). However, because the range of sensitivities to 

precipitation variance was so small, this trend is not ecologically important. There was no 

correlation (p>0.1) between sensitivity to precipitation variance and MAP, data set length, biome, 

or precipitation seasonality. 

DISCUSSION

Relative effect of changes in precipitation mean and variance

The precipitation-ANPP relationship at the majority of sites was best described by a 

nonlinear, concave down function. However, in most cases, the nonlinearity was not very strong 

and AICc model weights indicated that a linear model fit the precipitation-ANPP relationship 

almost as well as a nonlinear model. Similarly, skewness in precipitation distributions was 

common but weak. As a result, sensitivities to changes in precipitation variance caused by
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Jensen's inequality or skewed precipitation distributions were very small compared to sensitivities 

to changes in precipitation mean. When comparing the magnitude of potential impacts on mean 

ANPP, the low sensitivities to precipitation variance override the fact that changes in variance are 

projected to be about 1.5 times greater than changes in mean (Räisänen 2002). Overall, our 

results suggest that changes in the interannual variability of precipitation will have negligible 

effects on mean ANPP.

This conclusion is accompanied by several caveats. First, the linear sensitivity analysis is 

valid only for relatively small (on the order of 10% or less) perturbations to means and variances, 

so large changes in precipitation are outside the scope of our inference. For a doubling of CO2, 

almost all GCMs project changes in interannual precipitation that fall within this range (Räisänen 

2002). Second, though ANPP sensitivities to interannual precipitation variability were small, 

primary production could be more sensitive to intra-annual precipitation variability (Lázaro et al. 

2001, Fay et al. 2003, Snyder and Tartowski 2006, Swemmer et al. 2007, Heisler-White et al. 

2009, Medvigy et al. 2010). Finally, our approach does not account for potential changes in 

species composition or long-term shifts in vegetation structure that could alter ANPP (Silvertown 

et al. 1994, O'Connor et al. 2001, Shaver et al. 2001, Lett and Knapp 2005).  

Cross-system patterns in sensitivities

While the wettest sites are insensitive to changes in mean precipitation, small changes in 

mean precipitation could cause large changes in ANPP in some arid to semi-arid grasslands and 

shrublands. On average, a 1% change in mean precipitation will lead to a 0.72% change in ANPP 

at sites that receive less than 600 mm rainfall each year. At eight sites, sensitivities to 

precipitation mean are greater than 1. With more data from non-grassland sites, the trend showing 

shrublands and grasslands ecosystems to be more sensitive to MAP would likely become clearer.

The unimodal relationship between MAP and sensitivity to precipitation mean is 
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consistent with several other studies that also found a peak in ANPP sensitivity at sites that 

receive 475 to 500 mm MAP (Paruelo et al. 1999, Bai et al. 2008, Hu et al. 2010). Our results 

strengthen the evidence for this pattern, especially given that this study uses a different measure 

of ANPP sensitivity. Semi-arid sites with MAP between 300 mm and 600 mm such as mixed 

prairie or shortgrass steppe in the U.S. or typical steppe in Inner Mongolia have the highest 

sensitivities to precipitation mean. (Noy-Meir 1973, Schlesinger 1997, Austin et al. 2004, 

Yahdjian et al. 2006). At the driest sites, ANPP sensitivities may be low due to low relative 

growth rates, density limitations, and high evaporation rates (Noy-Meir 1973, Paruelo et al. 1999, 

Bai et al. 2008). At sites with more than 500 mm MAP, ANPP responses to precipitation may be 

constrained by nutrient or light limitation (Paruelo et al. 1999, Knapp and Smith 2001).

Although our analyses show that semi-arid sites are most sensitive to precipitation mean, 

we have little data for sites receiving over 1000 mm annual rainfall. Long-term ANPP data comes 

chiefly from grassland sites, due to the interest in predicting forage availability in these 

ecosystems and the difficulties associated with quantifying ANPP in ecosystems dominated by 

woody species (Gower et al. 1999, Clark et al. 2001). Because we have so few data sets from wet 

or forested sites, we cannot rule out the possibility that changes in precipitation regime could 

have stronger effects on  ANPP at wet sites than our analysis suggests.

CONCLUSION

Climate change will alter both the mean and variance of interannual precipitation. This 

analysis quantifies the sensitivity of mean ANPP to these changes; how ANPP variability might 

respond is addressed in Chapter 4. Our analysis indicates that the impact of increases in 

interannual precipitation variability on ANPP will be very small; ANPP is about 40 times more 

sensitive to precipitation mean than to interannual variance in precipitation. Semi-arid ecosystems 

are the most sensitive to changes in mean precipitation. Our sensitivity analysis quantifies the 
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likely magnitude of these changes, at least over short time scales before species composition 

shifts take place. Many semi-arid regions such as the southwest United States are projected to 

become even drier (NAST 2000), and resulting decreases in mean ANPP will have implications 

for the function and management of the ecosystems in these regions.
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TABLE 2-1. Summary of the sensitivity of ANPP mean to precipitation mean and variance.

Data 
sets Reference Years Location Study site Biome

Mean 
annual 
precip. 
(mm)

Mean 
annual 
temp. 
(ºC)

Mean
annual 
ANPP 
(g/m2)

Sensitivity 
to mean

Sensitivity 
to variance

1 Andales et 
al. 2006 18

Cheyenne, 
Wyoming, 

United States

High Plains 
Grasslands 

Research Station
grassland 384 7.6 144 0.73 -0.0149

1 ORNL 31 Badkyz, Mary, 
Turkmenistan

Badkhzy Nature 
Reserve Station grassland 266 14.8 61 0.94 -0.0576

1 Bai et al. 
2001 12

Ewenke Qi, 
Inner Mongolia, 

China

Ewenke 
Grassland 

Management 
Station

grassland 330 -1.9 243 0.29 -0.0081

1 Bai et al. 
2001 11

Xiwu Qi, Inner 
Mongolia, 

China

Xiwu Grassland 
Management 

Station
grassland 330 1.1 190 0.1 -4e-04

1 Bai et al. 
2001 12

Damao Qi, 
Inner Mongolia, 

China

Damao Grassland 
Management 

Station
grassland 256 4.7 28 0.55 -0.0057

1
Bentley 

and Talbot 
1951

13
Oneals, 

California, 
United States

San Joaquin 
Experimental 

Range
grassland 527 15.8 184 0.46 -0.0214

1 Blaisdell 
1958 13 Dubois, Idaho, 

United States
USDA Sheep 

Station shrubland 324 6 92 0.94 -0.0237

2
Bonanza 

Creek 
LTER

14
Fairbanks, 

Alaska, United 
States

Bonanza Creek 
LTER forest 276 -1.4 212 0.02 -5e-04

4
Cedar 
Creek 
LTER

11
Bethel, 

Minnesota, 
United States

Cedar Creek 
Ecosystem 

Science Reserve
grassland 803 6.7 124 0.5 -0.0138

1 ORNL 34

Dzhanybek, 
West 

Kazakhstan, 
Kazakhstan

Dzhanybek 
Research Station grassland 274 6.6 140 0.49 -0.0043

1
Wang et al. 
1998, Guo 
et al. 2006

14 Haibei, 
Qinghai, China

study site near 
Haibei

alpine 
meadow 350 0.6 340 0.27 -0.0066

1 Guo et al. 
2006 14

Zhenglan Qi, 
Inner Mongolia, 

China

Inner Mongolia 
study site grassland 365 1.7 140 0.4 -0.0068

1
Hubbard 
Brook 
LTER

10

Grafton County, 
New 

Hampshire, 
United States

Hubbard Brook 
LTER forest 1196 5.3 704 0.1 -0.0012

1
Hulett and 
Tomanek 

1969
24 Hays, Kansas, 

United States

near Fort Hays 
Experiment 

Station
grassland 580 12 291 0.81 -0.0074

1
Jobbagy 
and Sala 

2000
10

Rio Mayo, 
Chubut, 

Argentina
near Rio Mayo shrubland 152 8.1 56 0.5 -0.0523

3 Jornada 
LTER 19

Las Cruces, 
New Mexico, 
United States

Jornada LTER grassland 138 14.7 249 0.37 -0.0214
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1

Kellogg 
Biological 

Station 
LTER

18

Hickory 
Corners, 

Michigan, 
United States

Kellogg 
Biological 

Station LTER
grassland 888 9 398 -0.05 6e-04

3
Konza 
Prairie 
LTER

27
Manhattan, 

Kansas, United 
States

Konza Prairie 
Biological 

Station
grassland 810 12.5 415 0.37 -0.0074

1 ORNL 30 Kursk, Kursk 
Oblast, Russia 

Kursk long-term 
ecological study 

site
grassland 560 5.6 367 0.23 -0.0038

1 Ma et al. 
2010 20 Xilinhot, Inner 

Mongolia,China

Inner Mongolia 
Grassland 
Ecosystem 

Research Station

grassland 342 0.6 208 0.18 -0.0025

1 ORNL 11
Texcoco, 
Mexico, 
Mexico

Colegio de 
Postgraduodos 

site
grassland 580 14.8 298 0.76 -0.0116

1 Murphy 
1970 16

Hopland, 
California, 

United States 

Hopland 
grassland Station grassland 930 13.9 228 0.34 -0.0106

5 Niwot 
LTER 16

Boulder, 
Colorado, 

United States

Niwot Ridge 
LTER

alpine 
meadow 901 7.3 181 -0.18 0.0074

1 O'Connor 
et al. 2001 19

Bloemfontein, 
Free State, 

South Africa

Sydenham farm, 
Univ. of Orange 

Free State
grassland 560 15.6 125 1.71 -0.1425

2 Patton et 
al. 2007 21

Streeter, North 
Dakota, United 

States

Central 
Grasslands 
Research 

Extension Center

grassland 454 5 299 0.19 -0.0116

1 Rogler and 
Haas 1947 20

Mandan, North 
Dakota, United 

States

Northern Great 
Plains grassland 

Station
grassland 406 5.6 42 1.81 0.0000

1 Sevilleta 
LTER 10

Albuquerque, 
New Mexico, 
United States

Sevilleta LTER shrubland 254 14.5 66 1.19 -0.0117

1 Sevilleta 
LTER 10

Albuquerque, 
New Mexico, 
United States

Sevilleta LTER grassland 247 13.4 95 0.51 -0.0129

7
Shortgrass 

Steppe 
LTER

28
Nunn, 

Colorado, 
United States

Shortgrass Steppe 
LTER grassland 332 9.5 79 1.14 -0.0419

1 Smoliak 
1986 50 Manyberries, 

Alberta, Canada

Agriculture 
Canada Research 

Substation
grassland 327 4.7 39 0.81 -6e-04

1
Towne and 
Owensby 

1984
42

Manhattan, 
Kansas, United 

States
Kansas Flint Hills grassland 828 12.9 327 0.68 -0.0276

1 ORNL 41
Bela-Bela, 

Limpopo, South 
Africa

Towoomba 
Research Station grassland 645 18.7 132 1.14 -0.0302

3 Knapp et 
al. 2006 22

Pietermaritzbur
g, KwaZulu-
Natal, South 

Africa

Ukulinga 
Research Farm grassland 838 18.6 396 0.71 -0.0100
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1 ORNL 10
Tumugi, Inner 

Mongolia, 
China

Inner Mongolia 
study site grassland 411 4.3 152 1.28 -0.0023

1 ORNL 10
Tumugi, Inner 

Mongolia, 
China

Inner Mongolia 
study site grassland 411 4.3 162 1.22 -0.0025

1 ORNL 10
Tumugi, Inner 

Mongolia, 
China

Inner Mongolia 
study site grassland 411 4.3 152 1.25 -0.0026

1 Xiao1995b 10
Xilinhot,Inner 

Mongolia, 
China

Inner Mongolia 
study site grassland 313 0 144 0.9 -0.0277
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TABLE 2-2. Sensitivity of ANPP mean to precipitation mean and variance (detailed version).

Data set Reference Years Location Study site Biome Dominant species

Mean 
annual 
precip. 
(mm)

Mean 
annual 
temp. 
(ºC)

Precip. 
data

Mean of 
precip. 
time 
series

Std. dev. 
precip.

Precip. 
distribution

Mean 
ANPP
(g/m2)

Std. dev.
ANPP

Linear 
model 

AICc wt.

Linear 
model 
slope

Linear 
model 

intercept

Linear 
model r2

Nonlin. 
model 

parameter a

Nonlin. 
model 

parameter b

Nonlin. 
model r2

Sensitivity to 
mean

Sensitivity to 
variance

Andales Andales et al. 
2006 18 Cheyenne, Wyoming, 

United States
High Plains Grasslands 

Research Station grassland unknown 384 7.6 April-Aug. 281 63.8 normal 144 53 0.54 0.38 38.5 0.2 241 25820 0.19 0.73 -0.01

Badkhzy ORNL 31 Badkyz, Mary, 
Turkmenistan

Badkhzy Nature Reserve 
Station grassland Poa bulbosa 266 14.8 Jan.-May 236 68.78 normal 61 36 0.12 0.19 16.9 0.12 114 11286 0.23 0.94 -0.06

Bai1 Bai et al. 2001 12 Ewenke Qi, Inner 
Mongolia, China

Ewenke Grassland 
Management Station grassland Stipa baicalensis 330 -1.9 Jan.-Dec. 348 83.18 normal 243 53 0.42 0.2 174.8 0.09 307 20876 0.14 0.29 -0.01

Bai2 Bai et al. 2001 11 Xiwu Qi, Inner 
Mongolia, China

Xiwu Grassland 
Management Station grassland Stipa grandis 330 1.1 Jan.-Dec. 369 31.1 normal 190 33 0.5 0.03 177.9 0 214 8800 0 0.1 -4e-04

Bai4 Bai et al. 2001 12 Damao Qi, Inner 
Mongolia, China

Damao Grassland 
Management Station grassland Stipa klemenzii 256 4.7 Jan.-Dec. 255 40.4 normal 28 11 0.52 0.06 11.4 0.06 41 3262 0.05 0.55 -0.01

Bentley Bentley and 
Talbot 1951 13 Oneals, California, 

United States
San Joaquin 

Experimental Range grassland Hordeum marinum 527 15.8 Sept.-Aug. 495 154.89 lognormal 184 39 0.4 0.14 113.3 0.32 265 36689 0.36 0.46 -0.02

Blaisdell Blaisdell 1958 13 Dubois, Idaho, United 
States USDA Sheep Station shrubland

Artemisia 
tripartita, 

Pseudoroegneria 
spicata

324 6 July-June 283 52.46 lognormal 92 19 0.13 0.26 17.8 0.55 176 22920 0.66 0.94 -0.02

BNZ
FP4

Bonanza Creek 
LTER 15 Fairbanks, Alaska, 

United States Bonanza Creek LTER forest Picea glauca 276 -2.5 April-Aug. 204 48.26 lognormal 239 46 0.49 -0.02 243.3 0 251 2383 0 0.02 0

BNZ UP3 Bonanza Creek 
LTER 13 Fairbanks, Alaska, 

United States Bonanza Creek LTER forest Picea glauca 276 -0.3 April-Aug. 210 47.01 lognormal 185 59 0.5 0.04 175.5 0 183 -419 0 0.02 2e-04

CC 1927 Cedar Creek 
LTER 11 Bethel, Minnesota, 

United States
Cedar Creek Ecosystem 

Science Reserve grassland Poa pratensis 803 6.7 Jan.-Dec. 842 198.55 lognormal 116 33 0.47 0.05 72.1 0.1 165 38969 0.12 0.42 -0.01

CC 1941 Cedar Creek 
LTER 11 Bethel, Minnesota, 

United States
Cedar Creek Ecosystem 

Science Reserve grassland Poa pratensis 803 6.7 Jan.-Dec. 842 198.55 lognormal 143 47 0.4 0.11 53.1 0.2 246 82139 0.25 0.72 -0.02

CC 1943 Cedar Creek 
LTER 11 Bethel, Minnesota, 

United States
Cedar Creek Ecosystem 

Science Reserve grassland Poa pratensis 803 6.7 Jan.-Dec. 842 198.55 lognormal 111 36 0.5 0.05 70.5 0.07 151 32292 0.07 0.38 -0.01

CC 1947 Cedar Creek 
LTER 11 Bethel, Minnesota, 

United States
Cedar Creek Ecosystem 

Science Reserve grassland Poa pratensis 803 6.7 Jan.-Dec. 842 198.55 lognormal 127 32 0.43 0.06 73.8 0.16 188 48755 0.2 0.48 -0.01

Dzhanybek ORNL 34
Dzhanybek, West 

Kazakhstan, 
Kazakhstan

Dzhanybek Research 
Station grassland Agropyron 

desertorum 274 6.6 Jan.-May 104 36.42 normal 140 36 0.88 0.68 69.4 0.47 189 4372 0.4 0.49 0

Guo4 Guo et al. 2006 14 Zhenglan Qi, Inner 
Mongolia, China Inner Mongolia study site grassland Stipa krylovii 365 1.7 Jan.-Dec. 375 77.69 lognormal 140 51 0.51 0.15 85 0.05 193 18988 0.04 0.4 -0.01

HB Hubbard Brook 
LTER 10

Grafton County, New 
Hampshire, United 

States
Hubbard Brook LTER forest unknown 1196 5.3 Jan.-Dec. 1413 227.78 lognormal 704 24 0.46 0.05 640.4 0.18 777 99924 0.21 0.1 0

Hulett Hulett and 
Tomanek 1969 24 Hays, Kansas, United 

States
near Fort Hays 

Experiment Station grassland
Bouteloua gracilis, 

Buchloe 
dactyloides 

580 12 Jan.-Dec. 606 171.31 normal 291 118 0.82 0.41 43.5 0.35 454 90291 0.26 0.81 -0.01

Jobbagy Jobbagy and Sala 
2000 10 Rio Mayo, Chubut, 

Argentina near Rio Mayo shrubland

Senecio 
filaginoides, Stipa 

speciosa, Poa 
ligularis, Adesmia 

campestris

152 8.1 Jan.-Dec. 154 61.65 normal 56 15 0.03 0.14 34.4 0.35 79 2974 0.68 0.5 -0.05

JOR BASN Jornada LTER 19 Las Cruces, New 
Mexico, United States Jornada LTER grassland Bouteloua eriopoda 138 14.7 Jan.-Dec. 138 64.98 lognormal 242 75 0.44 0.55 166 0.23 339 11311 0.25 0.44 -0.04
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Data set Reference Years Location Study site Biome Dominant species

Mean 
annual 
precip. 
(mm)

Mean 
annual 
temp. 
(ºC)

Precip. 
data

Mean of 
precip. 
time 
series

Std. dev. 
precip.

Precip. 
distribution

Mean 
ANPP
(g/m2)

Std. dev.
ANPP

Linear 
model 

AICc wt.

Linear 
model 
slope

Linear 
model 

intercept

Linear 
model r2

Nonlin. 
model 

parameter a

Nonlin. 
model 

parameter b

Nonlin. 
model r2

Sensitivity to 
mean

Sensitivity to 
variance

JOR IBPE Jornada LTER 19 Las Cruces, New 
Mexico, United States Jornada LTER grassland Bouteloua eriopoda 106 14.7 Jan.-Dec. 106 57.4 lognormal 242 92 0.82 0.83 153.5 0.27 293 3878 0.14 0.36 -0.01

JOR SUMM Jornada LTER 19 Las Cruces, New 
Mexico, United States Jornada LTER grassland Bouteloua eriopoda 146 14.7 Jan.-Dec. 146 113.72 lognormal 263 87 0.83 0.48 193.8 0.39 331 5882 0.28 0.3 -0.02

Kellogg
Kellogg 

Biological 
Station LTER

18
Hickory Corners, 
Michigan, United 

States

Kellogg Biological 
Station LTER grassland Setaria faberi 888 9 Jan.-Dec. 859 143.86 lognormal 398 78 0.5 -0.02 417.2 0 380 -15829 0 -0.05 6e-04

KNZ 001d Konza Prairie 
LTER 34 Manhattan, Kansas, 

United States
Konza Prairie Biological 

Station grassland unknown 810 12.5 Jan.-Dec. 812 188.44 lognormal 457 92 0.68 0.29 218 0.36 681 172661 0.33 0.53 -0.01

KNZ 004b Konza Prairie 
LTER 24 Manhattan, Kansas, 

United States
Konza Prairie Biological 

Station grassland unknown 810 12.5 Jan.-Dec. 795 186.55 lognormal 400 89 0.43 0.17 268.1 0.12 536 102149 0.14 0.36 -0.01

KNZ 020b Konza Prairie 
LTER 24 Manhattan, Kansas, 

United States
Konza Prairie Biological 

Station grassland unknown 810 12.5 Jan.-Dec. 795 186.55 lognormal 389 70 0.59 0.11 301.8 0.08 455 50331 0.06 0.21 0

Kursk ORNL 30 Kursk, Kursk Oblast, 
Russia 

Kursk long-term 
ecological study site grassland Bromus riparius 560 5.6 April-Oct. 390 91.63 normal 367 124 0.56 0.26 267 0.04 428 22281 0.02 0.23 0

Ma 2010 Ma et al. 2010 20 Xilinhot, Inner 
Mongolia,China

Inner Mongolia 
Grassland Ecosystem 

Research Station
grassland Leymus chinensis, 

Stipa grandis 342 0.6 Jan.-Dec. 344 67.47 lognormal 208 36 0.53 0.1 172.3 0.04 243 11634 0.03 0.18 0

Montecillo ORNL 11 Texcoco, Mexico, 
Mexico

Colegio de 
Postgraduodos site grassland Distichlis spicata 580 14.8 April-July 312 59.3 lognormal 298 79 0.5 0.69 82.8 0.27 522 67604 0.27 0.76 -0.01

Murphy Murphy 1970 16 Hopland, California, 
United States 

Hopland grassland 
Station grassland

Bromus, Festuca, 
Avena, Hordeum 

spp.
930 13.9 Nov.-May 901 256.6 lognormal 228 77 0.51 0.08 157.8 0.07 305 64754 0.06 0.34 -0.01

NiwotDM Niwot LTER 16 Boulder, Colorado, 
United States Niwot Ridge LTER alpine 

meadow unknown 901 7.3 Jan.-Dec. 825 237.17 lognormal 202 44 0.37 -0.1 285 0.29 101 -77151 0.34 -0.51 0.02

NiwotFF Niwot LTER 15 Boulder, Colorado, 
United States Niwot Ridge LTER alpine 

meadow unknown 901 7.3 Jan.-Dec. 800 221.59 lognormal 220 68 0.45 -0.13 325.4 0.19 92 -96264 0.21 -0.57 0.02

NiwotMM Niwot LTER 16 Boulder, Colorado, 
United States Niwot Ridge LTER alpine 

meadow unknown 901 7.3 Jan.-Dec. 825 237.17 lognormal 209 26 0.43 -0.06 255.3 0.26 155 -41747 0.28 -0.26 0.01

NiwotSB Niwot LTER 15 Boulder, Colorado, 
United States Niwot Ridge LTER alpine 

meadow unknown 901 7.3 Jan.-Dec. 800 221.59 lognormal 105 25 0.51 0.02 88.7 0.03 123 13256 0.03 0.17 -0.01

NiwotWM Niwot LTER 16 Boulder, Colorado, 
United States Niwot Ridge LTER alpine 

meadow unknown 901 7.3 Jan.-Dec. 825 237.17 lognormal 170 35 0.5 0.05 131.8 0.1 213 33206 0.1 0.26 -0.01

O'Connor O'Connor et al. 
2001 19 Bloemfontein, Free 

State, South Africa
Sydenham farm, Univ. of 

Orange Free State grassland
Themeda triandra, 

Cymbopogon 
plurinodes

560 15.6 Jan.-Dec. 533 193.83 lognormal 125 74 0.08 0.28 -21.5 0.52 305 85694 0.63 1.71 -0.14

Patton
overflow Patton et al. 2007 21 Streeter, North Dakota, 

United States

Central Grasslands 
Research Extension 

Center
grassland

Poa pratensis, 
Bromus inermis, 
Symphoricarpos 

occidentalis

454 5 Nov.-Oct. 416 138.42 normal 314 45 0.4 0.05 291.1 0.03 339 9161 0.07 0.09 0

Patton
silty Patton et al. 2007 21 Streeter, North Dakota, 

United States

Central Grasslands 
Research Extension 

Center
grassland

Poa pratensis, 
Nassella viridula, 
Carex inops spp. 

heliophila

454 5 Nov.-Oct. 415 138.49 normal 283 57 0.25 0.21 195.4 0.26 356 26537 0.33 0.3 -0.02

Rogler
Haas

Rogler and Haas 
1947 20 Mandan, North 

Dakota, United States
Northern Great Plains 

grassland Station grassland
Bouteloua gracilis, 

Hesperostipa 
comata

406 5.6 April-July 223 80.89 normal 42 36 1 0.33 -32.8 0.57 52 1580 0.15 1.81 0
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Data set Reference Years Location Study site Biome Dominant species

Mean 
annual 
precip. 
(mm)

Mean 
annual 
temp. 
(ºC)

Precip. 
data

Mean of 
precip. 
time 
series

Std. dev. 
precip.

Precip. 
distribution

Mean 
ANPP
(g/m2)

Std. dev.
ANPP

Linear 
model 

AICc wt.

Linear 
model 
slope

Linear 
model 

intercept

Linear 
model r2

Nonlin. 
model 

parameter a

Nonlin. 
model 

parameter b

Nonlin. 
model r2

Sensitivity to 
mean

Sensitivity to 
variance

SEV
creosote Sevilleta LTER 10 Albuquerque, New 

Mexico, United States Sevilleta LTER shrubland Larrea tridentata 254 14.5 Jan.-Dec. 254 58.7 normal 66 21 0.76 0.32 -15.3 0.83 129 15201 0.79 1.19 -0.01

SEV
grass Sevilleta LTER 10 Albuquerque, New 

Mexico, United States Sevilleta LTER grassland Bouteloua eriopoda 247 13.4 Jan.-Dec. 238 49.34 normal 95 67 0.45 0.15 59.3 0.01 150 12421 0.05 0.51 -0.01

SGS ESA1 Shortgrass Steppe 
LTER 38 Nunn, Colorado, 

United States Shortgrass Steppe LTER grassland Bouteloua gracilis 332 9.5 Jan.-Dec. 338 82.56 lognormal 88 34 0.58 0.2 23 0.21 159 22259 0.19 0.79 -0.02

SGS forage Shortgrass Steppe 
LTER 52 Nunn, Colorado, 

United States Shortgrass Steppe LTER grassland Bouteloua gracilis 332 9.5 Jan.-Dec. 323 92.72 normal 68 26 0.98 0.17 13.1 0.39 100 9065 0.29 0.8 -6e-04

SGS 
midslope

Shortgrass Steppe 
LTER 25 Nunn, Colorado, 

United States Shortgrass Steppe LTER grassland Bouteloua gracilis 332 9.5 Jan.-Dec. 345 84.43 lognormal 65 23 0.34 0.21 -8.6 0.6 136 23180 0.62 1.19 -0.04

SGS OC Shortgrass Steppe 
LTER 17 Nunn, Colorado, 

United States Shortgrass Steppe LTER grassland Bouteloua gracilis 332 9.5 Jan.-Dec. 347 97.08 lognormal 108 44 0.25 0.26 17.9 0.34 205 30971 0.42 0.97 -0.05

SGS ridge Shortgrass Steppe 
LTER 25 Nunn, Colorado, 

United States Shortgrass Steppe LTER grassland Bouteloua gracilis 332 9.5 Jan.-Dec. 345 84.43 lognormal 58 21 0.16 0.19 -7.3 0.55 123 21293 0.61 1.23 -0.05

SGS sec25 Shortgrass Steppe 
LTER 17 Nunn, Colorado, 

United States Shortgrass Steppe LTER grassland Bouteloua gracilis 332 9.5 Jan.-Dec. 347 97.08 lognormal 62 29 0.27 0.25 -25.8 0.71 147 27505 0.74 1.54 -0.07

SGS swale Shortgrass Steppe 
LTER 25 Nunn, Colorado, 

United States Shortgrass Steppe LTER grassland Bouteloua gracilis 332 9.5 Jan.-Dec. 345 84.43 lognormal 103 47 0.22 0.4 -35.5 0.52 240 44803 0.57 1.46 -0.06

Smoliak 
1986 Smoliak 1986 50 Manyberries, Alberta, 

Canada
Agriculture Canada 
Research Substation grassland

Hesperostipa 
comata, 

Pascopyrum 
smithii

327 4.7 April-July 164 64.76 lognormal 39 17 0.99 0.19 7.3 0.55 72 4773 0.45 0.81 -6e-04

Towne Towne and 
Owensby 1984 42 Manhattan, Kansas, 

United States Kansas Flint Hills grassland
Schizachyrium 

scoparium, 
Koeleria macrantha

828 12.9 Jan.-Dec. 831 191.55 lognormal 327 130 0.19 0.21 152.1 0.1 540 167818 0.16 0.68 -0.03

Towoomba ORNL 41 Bela-Bela, Limpopo, 
South Africa

Towoomba Research 
Station grassland Cymbopogon 

pospischilii 645 18.7 Sept.-April 619 145.13 lognormal 132 73 0.47 0.24 -15.2 0.27 281 84484 0.27 1.14 -0.03

Ukulinga
C3 Knapp et al. 2006 22

Pietermaritzburg, 
KwaZulu-Natal, South 

Africa
Ukulinga Research Farm grassland

Themeda triandra, 
Heteropogon 

contortus
838 18.6 Sept.-

March 546 102.47 lognormal 413 111 0.54 0.71 38.4 0.46 796 195357 0.05 0.92 -0.01

Ukulinga
D1 Knapp et al. 2006 23

Pietermaritzburg, 
KwaZulu-Natal, South 

Africa
Ukulinga Research Farm grassland

Themeda triandra, 
Heteropogon 

contortus
838 18.6 Sept.-

March 532 117.4 normal 424 80 0.71 0.46 179 0.44 619 98024 0.34 0.55 -0.01

Ukulinga D3 Knapp et al. 2006 22
Pietermaritzburg, 

KwaZulu-Natal, South 
Africa

Ukulinga Research Farm grassland
Themeda triandra, 

Heteropogon 
contortus

838 18.6 Sept.-
March 546 102.47 lognormal 352 73 0.52 0.42 129.4 0.39 581 116782 -0.08 0.65 -0.01

Wang1998 Wang et al. 1998, 
Guo et al. 2006 14 Haibei, Qinghai, China study site near Haibei alpine 

meadow Kobresia humilis 350 0.6 Jan.-Dec. 589 136.74 lognormal 340 54 0.46 0.13 263.2 0.11 435 53550 0.13 0.27 -0.01

Xiao FISI 
Tumugi ORNL 10 Tumugi, Inner 

Mongolia, China Inner Mongolia study site grassland Filifolium 
sibiricum 411 4.3 Jan.-Dec. 411 100.96 normal 152 55 0.94 0.49 -48.3 0.79 257 39388 0.64 1.28 0

Xiao LECH
Tumugi ORNL 10 Tumugi, Inner 

Mongolia, China Inner Mongolia study site grassland Leymus chinensis 411 4.3 Jan.-Dec. 411 100.96 normal 162 56 0.93 0.49 -41.5 0.79 269 40332 0.64 1.22 0

Xiao STBA
Tumugi ORNL 10 Tumugi, Inner 

Mongolia, China Inner Mongolia study site grassland Stipa baicalensis 411 4.3 Jan.-Dec. 411 100.96 normal 152 54 0.93 0.48 -43.9 0.79 256 38899 0.65 1.25 0

Xiao STGR 
Xilin Xiao1995b 10 Xilinhot,Inner 

Mongolia, China Inner Mongolia study site grassland Stipa grandis 313 0 Jan.-Dec. 314 73.79 normal 144 38 0.35 0.4 17.2 0.62 261 34982 0.67 0.9 -0.03
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FIG. 2-1. An increase in precipitation variance will not affect mean ANPP if the relationship 
between precipitation and ANPP is linear (A). A concave down relationship (B) skews the 
distribution for decreasing values of ANPP, such that the future mean of ANPP (μF) will decrease 
relative to the present mean (μP). 

FIG. 2-2. Linear (A) and saturating (B) models fit to precipitation-ANPP relationships. Data 
shown is from semi-desert steppe in Dzhanybek, Kazakhstan (A) and tallgrass prairie in 
Manhattan, Kansas (B). The AICc weights for the linear model for the Dzhanybek and Manhattan 
data sets are 0.88 and 0.19, respectively.



29

FIG. 2-3. Mean ANPP is more sensitive to precipitation mean than to precipitation variance. Most 
sites exhibit a positive sensitivity to precipitation mean and a negative sensitivity to precipitation 
variance. The long-term data shown here is from 37 different study sites.
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Fig. 2-4. ANPP sensitivity to precipitation mean is highest at sites that receive between 300 and 
600 mm precipitation each year (A).   The quadratic pattern shown in (A), 0.20 + 0.002(MAP) – 
2.26*10-6(MAP)2, explains 16.5% of the variation in ANPP sensitivity to mean precipitation. 
Sensitivity to precipitation variance was not correlated with mean annual precipitation (B). 
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CHAPTER 3

ANTICIPATING CHANGES IN VARIABILITY OF GRASSLAND PRIMARY PRODUCTION 

DUE TO INCREASES IN INTERANNUAL PRECIPITATION VARIABILITY 

Abstract. Increases in interannual precipitation variability will lead to increases in the 

variability of primary production, with potentially important consequences for natural resource 

management. However, previous work has suggested that vegetation might amplify or buffer 

precipitation variation, implying disproportionately large or small changes in production 

variability depending on how we model the production response to precipitation. I used 27 long-

term data sets from grasslands across the globe to evaluate whether relative increases in the 

interannual variability of aboveground net primary production (ANPP) will be relatively less 

than, equal to, or greater than increases interannual precipitation variability. For each data set, I 

used three models to predict ANPP from precipitation: 1) a simple linear model, 2) a nonlinear 

model, and 3) a lag model, in which ANPP is a function of previous year production in addition to 

current year precipitation. I then perturbed the standard deviation of the observed precipitation 

time series and quantified the effect of this perturbation on the standard deviation of predicted 

ANPP. Using the simple linear model, relative increases in ANPP variability were always equal to 

the relative increases in precipitation variability. Under the lag effect model, an increase in 

precipitation variability also led to a proportional increase in ANPP variability, in spite of 

previous research suggesting that lag effects might buffer or amplify precipitation variability. 

When I modeled ANPP as a nonlinear, saturating function of precipitation, increases in ANPP 

variability were disproportionately high. In 6 out of 27 cases, increases in variability were twice 

as large as increases in precipitation variability. After using AICc model weights to account for 

which ANPP models best fit each site's precipitation and production data, a 5% increase in 

precipitation variability led to a 6.3% increase in ANPP variability on average.
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INTRODUCTION

General circulation models (GCMs) consistently predict that climate change is bringing 

increasing levels of precipitation variability at a variety of time scales (Räisänen 2002, Salinger 

2005, Sun et al. 2007, Allan and Soden 2008). One projected change in variability is an increase 

in the standard deviation and variance of annual precipitation (Räisänen 2002, Boer 2009, 

Wetherald 2009).  GCMs vary in their predictions of how much interannual precipitation 

variability is changing (Räisänen 2002, Boer 2009). In one study across 19 GCMs,  predictions 

on the high end are over 10%, but on average, the predicted increase in the standard deviation of 

annual precipitation for a doubling of CO2 concentrations was 4.2% (Räisänen 2002). 

This change in rainfall distribution could impact ecosystem processes, including primary 

productivity (Weltzin et al. 2003, Heisler and Weltzin 2006, Knapp et al. 2008). Since interannual 

variability in production depends on interannual variability in precipitation in water-limited 

ecosystems, an increase in precipitation variability will lead to an increase in primary production 

variability. However, depending on how vegetation responds to increased variability in 

precipitation, increases in production variability could be disproportionately high or low relative 

to increases in precipitation variability.

Given a simple, linear relationship between precipitation and aboveground net primary 

production (ANPP), the absolute increase in ANPP variability due to an increase in precipitation 

variability will depend on the slope of the precipitation-ANPP relationship. However, the relative 

increase in ANPP variability will always match the relative increase in precipitation variability: a 

1% increase in precipitation variability will lead to a 1% increase in the portion of ANPP 

variability that is explained by precipitation variability. If the precipitation-ANPP relationship is 

more complex, then the increase in ANPP variability is harder to predict. In this chapter, I 

examine two ways in which increases in interannual precipitation variability could lead to 

disproportionately large or small changes in interannual ANPP variability. 
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First, I consider the influence of lag effects: current year production might reflect 

previous year production in addition to current year precipitation (e.g. Oesterheld et al. 2001, 

Wiegand et al. 2004, Yahdjian and Sala 2006, Arnone et al. 2008, Sherry et al. 2008). Such lagged 

responses to precipitation could occur when ecosystems store the effects of previous years in 

soils, seed banks, and structural organs. For example, ANPP may not be lower than expected 

given current-year rainfall if drought the previous year reduced plant densities (Yahdjian and Sala 

2006). 

Previous authors (Oesterheld et al. 2001, Wiegand et al. 2004) have suggested that lag 

effects can amplify or dampen precipitation variability depending on the sequence of precipitation 

years (Fig. 2 in Oesterheld et al. 2001). Positive lag effects can amplify ANPP variability if 

consecutive wet or dry years ratchet production up or down up. In contrast, lag effects would 

dampen precipitation variability if wet and dry years alternate (negative autocorrelation in 

precipitation), “evening out” the differences in production. These studies seem to imply that lag 

effects might amplify or buffer future increases in precipitation variability, depending on 

precipitation autocorrelation.

However, Oesterheld et al. (2001) and Wiegand et al. (2004) did not explicitly address the 

consequences of an increase in precipitation variability.  While lag effects might generate more 

variability in ANPP for a given precipitation time series compared to a linear model, it is not clear 

whether the same logic applies to a perturbation in the variability of precipitation. 

Second, I consider the possibility that the relationship between precipitation and ANPP is 

nonlinear, concave down. Nonlinear, concave-down relationships may characterize ecosystems 

(Nicholson and Farrar 1994) where resources other than water limit production in wet years more 

than in dry years. Chapter 1 showed that relationships between precipitation and ANPP often take 

this form. If the relationship between precipitation and ANPP is concave down at a site, then an 

increase in precipitation variability will lead to a disproportionately large increase in ANPP 
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variability. Large decreases in ANPP in dry years drive ANPP variability higher, and this effect 

outweighs the buffering of variability (relative to a linear model) that occurs in wet years. 

In this study, I use 27 long-term data sets of precipitation and primary production from 

grasslands to evaluate whether increases in precipitation variability are likely to cause 

disproportionately high or low changes in ANPP variability. I fit linear, nonlinear, and lag 

regression models to predict ANPP from precipitation. For each of these ANPP models, I 

quantify the effect of a perturbation of precipitation variability on ANPP variability.

METHODS

Data sets

I collected 37 long-term time series of annual precipitation and ANPP from grassland 

sites. For sites where growing season precipitation was available and accounted for more 

variation in ANPP than total annual precipitation, I used growing season precipitation in my 

analyses. All time series contained at least 11 consecutive years. Most of the data sets are from 

long-term ecological research sites in the United States, Eurasia, and South Africa. Remotely 

sensed data and data from fertilized plots were excluded. For more details about data collection, 

please see Chapter 1. All analyses were conducted in R version 2.8.1.

ANPP models 

Using least squares regression, I fit three models to each data set to predict ANPP in year 

y: linear (ANPPy=k+m*precipitationy), lag effect (ANPPy = d+f*precipitation+g*ANPPy-1), and 

nonlinear (ANPPy=a-b/precipitationy).  In the lag model, the lag parameter g controls how much 

ANPP is influenced by previous-year conditions. The nonlinear model is a concave down, 

saturating function when a and b are positive. This nonlinear function is parsimonious, linear in 

its parameters (so that unique least squares parameter estimates are guaranteed to exist), and fit
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 the data better than other saturating models that I tested. Fig. 3-1 shows the linear, lag, and 

nonlinear models fit to a data set.

Next, I used F-tests to determine whether any of these precipitation-based models 

predicted interannual variation in ANPP better than a simple mean. For 10 data sets, a 

precipitation model did not fit the data significantly better (p>0.05) than a model with only a 

mean. These 10 data sets were excluded from subsequent analyses. For the remaining 27 data sets 

from 18 different study sites, I used Akaike's Information Criterion (AICc) weights to compare 

linear, nonlinear, and lag model fits. The average length of these data sets was 22 years.

Perturbation of precipitation variability 

 I used the fitted model parameters and the observed precipitation time series to generate 

predictions of ANPP for each data set based on the linear, lag, and nonlinear models. Variability 

in these “predicted” ANPP time series reflects variability in precipitation and not any other 

sources of variability. Thus, my analysis focuses only on the portion of ANPP variability 

deterministically related to precipitation. This approach assumes that the unexplained variation in 

ANPP (the model residuals) is not sensitive to precipitation variability, an assumption I return to 

in the Discussion.

To directly examine changes in ANPP variability due to increases in precipitation 

variability, I perturbed the interannual variation of the observed precipitation time series and 

quantified the effect of this perturbation on predicted ANPP variation. I increased the standard 

deviation of each precipitation time series by 5% without changing precipitation mean (Fig. 3-

2A). This approach preserves the observed sequence and distribution of precipitation. I then used 

these perturbed precipitation time series to generate a second set of predicted ANPP values for 

each of the models (Fig. 3-2). Again, these predicted ANPP time series reflect only precipitation 

variability .
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I compared absolute and relative variability between the two sets of predicted ANPP time 

series (e.g. linear ANPP predictions based on observed precipitation were compared with linear 

ANPP predictions based on perturbed precipitation). I calculated absolute changes in ANPP 

variability as the difference in ANPP standard deviation. I divided these differences in standard 

deviation by the standard deviation of the unperturbed time series to yield relative changes in 

ANPP variability. Finally, I compared relative changes in ANPP variability with the change in 

precipitation variability (5%) to determine whether changes in ANPP variability were 

proportional to changes in precipitation variability. 

To obtain the final result for each data set, I calculated a weighted average of the relative 

changes in ANPP standard deviation using AICc weights from the model fitting. In cases where 

multiple data sets of the same vegetation type were available from the same study, I averaged 

across data sets to obtain mean changes in ANPP variability for that site.

RESULTS

Linear and nonlinear precipitation models each explained an average of 35% of the 

interannual variability in ANPP. A lag model did slightly better, explaining 43% of the variability 

in ANPP, on average. Of the 27 data sets, 9 best fit a linear model, 3 best fit a lag model, and 15 

best fit a nonlinear model. The average AICc weight for the linear, lag, and nonlinear models 

were 0.36, 0.21, and 0.42, respectively. Within the data sets that best fit each model, the average 

AICc weights for the best fit model were 0.60, 0.91, and 0.62 for the linear, lag, and nonlinear 

models, respectively. Across data sets, there were no patterns between mean annual precipitation 

or temperature and AICc weights for any of the models.

In the lag model, estimates for the lag parameter ranged from -0.5 to 0.54 across data 

sets, but were statistically significant (p<.05) at only the following 4 sites: Shortgrass Steppe 

LTER; Bloemfontein, South Africa; Kursk, Russia; and Alberta, Canada. All of these data sets 
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except for Bloemfontein best fit a lag model over a linear or nonlinear model; estimates for the 

lag parameter within these data sets ranged from 0.42 to 0.46. On average, adding a lag parameter 

to a linear precipitation-ANPP model explained an additional 7.5% of the variability in ANPP 

across all data sets, but explained an additional 17.4% of the variability in ANPP in these four 

data sets. 

A 5% increase in precipitation standard deviation led to an absolute increase of 1.49, 

1.48, and 2.66 g/m2 in the standard deviation of ANPP across the linear, lag, and nonlinear 

models, respectively. As expected, a 5% increase in precipitation standard deviation always led to 

a 5% increase in ANPP standard deviation when ANPP was modeled as a linear function of 

precipitation. The relative increase in ANPP standard deviation for the lag model was also always 

very close to 5% (ranging from 4.91% to 5.01%), meaning that the lag model did not cause a 

disproportionate increase in ANPP for any of the data sets (Fig. 3-2C). 

The relative increase in ANPP standard deviation for the nonlinear model across data sets 

ranged from 4.9% to 20%, averaging 8.6%. Within the data sets that best fit a nonlinear model, 

the relative increases averaged 7.3%. A nonlinear, concave down precipitation-ANPP model 

produces an ANPP distribution that is left-skewed compared to the distribution of precipitation 

(Fig. 3-2D). As a result, ANPP variances predicted by this model, as well as changes in ANPP 

variance due to perturbations, are not symmetric about the mean of ANPP. On average, a 5% 

increase in precipitation standard deviation caused an 8.6% increase in ANPP standard deviation, 

which was comprised of a 2.7% increase in variability in years where precipitation was below 

mean and an 11.3% increase in years precipitation was above mean. In one data set, the relative 

increase in ANPP standard deviation (4.9%) was less than the increase in precipitation standard 

deviation (5%).

Note that these estimates for increases in variability under a nonlinear model are a little 

high because the nonlinear model generates negative ANPP predictions for one very dry year in 
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each of three data sets, which leads to artificially high standard deviations, especially in the 

perturbed time series. Removing these three data sets from my analysis does not change the 

overall conclusions. 

After accounting for AICc model weights and averaging across multiple data sets from 

the same study site, relative increases in ANPP standard deviation ranged from 5.0% to 10.7%, 

averaging 6.3% across 18 different study sites (Fig. 3-3). The extent to which nonlinearity 

amplifies precipitation variability depends on the size of the perturbation. Perturbations of 1%, 

2%, 5%, and 10% led to median relative increases in ANPP variability of 1.2%., 2.4%, 6.0%, and 

12.5%, respectively (Table 3-1). See Appendix C for a complete list of the fitted model 

parameters and the results from the 5% perturbation trial for each data set. Appendix D shows 

that direct comparisons of the relative variability in observed precipitation and ANPP time series 

should account for the fact that ANPP is a function of precipitation.

DISCUSSION

My results indicate that different assumptions about the functional relationship between 

precipitation and production have different implications for the impact of climate change on the 

interannual variability of annual ANPP in grasslands. If ANPP has a linear or lagged response to 

precipitation, an increase in precipitation variability is simply matched by a proportional increase 

in ANPP variability. However, if ANPP is a nonlinear, saturating function of precipitation, an 

increase in precipitation variability will lead to a change in ANPP variability that is 

disproportionately high.

Lag effects did not cause disproportionate changes in predicted ANPP variability because 

a lag model maintains the linear relationship between precipitation and ANPP. The amplification 

of precipitation variability reported by Oesterheld et al. (2001) and Wiegand et al. (2004) occurs 

when comparing variance explained by two different regression models for a given precipitation 
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sequence, not when evaluating the effect of increased precipitation variability. My perturbation of 

precipitation variability preserved the sequence of precipitation, so it did not lead to a 

disproportionate change in ANPP variability via lag effects. However, if climate change alters 

precipitation autocorrelation, then we could see disproportionate responses in ANPP variability 

due to lag effects.

 In addition, the evidence for lag effects in grasslands was weak. ANPP at most sites did 

not exhibit a lagged response to precipitation. Only 4 sites had significant lag effects, and the 

average extra variability explained by a lag model over a linear model was only 7.5%. Very 

strong lag effects such as those observed at the shortgrass steppe (Oesterheld et al. 2001) are not 

common. However, lag effects may still operate on time scales that my data sets do not capture; 

many studies report intra-annual lag effects in production (e.g. Nicholson and Farrar 1994, 

Wiegand et al. 2004, Nippert et al. 2006, Sherry et al. 2008, Ma et al. 2010). 

Where ANPP is a nonlinear, concave down function of precipitation, increases in 

precipitation variability will lead to disproportionately high increases in predicted ANPP 

variability (Figs. 3-2D, 3-3). In fact, most sites exhibit precipitation-ANPP relationships that are 

somewhat nonlinear. Even when nonlinearities in ANPP are not very strong (Chapter 2), they 

result in considerable amplification of precipitation variability. On average, relative increases in 

predicted ANPP variability were over 1.5 times larger than increases in precipitation variability 

when ANPP was modeled as a nonlinear function of precipitation. 

The disproportionately high increase in ANPP variability is caused by the asymmetric 

change in ANPP variability in wet and dry years. Increases in precipitation variability lead to 

disproportionately large decreases in ANPP in dry years, where the slope of the precipitation-

ANPP relationship is steep. However, in wet years, increases in precipitation variability lead to 

disproportionately small increases in ANPP due to shallow precipitation-ANPP slopes. The 

overall change in ANPP variability, then, depends on the distribution of precipitation. Since a 
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nonlinear model produces a distribution of ANPP that is skewed towards dry years (Fig. 3D), the 

overall change in ANPP variability is usually disproportionately high. In only 1 of my 27 data sets 

was the observed precipitation distribution skewed strongly enough towards wet years such that 

the buffering effect of wet years slightly outweighed the amplifying effect of dry years. In most 

cases, an increase in interannual precipitation variability will lead to relative increases in primary 

production in wet years that are smaller than decreases in production in dry years.

The average predicted increase in the interannual variability of precipitation is 4.2% 

(Räisänen 2002) for a doubling of CO2 concentrations. According to my analysis, a 5% increase 

in precipitation variability will lead to a 6.3% increase in grassland ANPP variability, on average. 

At some sites, increases will be much larger: 10.5% in mixed prairie in North Dakota and 7.5% in 

desert grasslands in New Mexico.  These considerable increases in ANPP variability make ANPP 

more difficult to forecast and could create other challenges for natural resource management.  

 My analysis utilized only the portion of ANPP variability related to precipitation and 

assumed that remaining variation in ANPP is not sensitive to interannual precipitation variability. 

However, other drivers of ANPP may be indirectly influenced by precipitation and precipitation 

variability. For example, nitrogen availability, especially in arid and semi-arid regions, is strongly 

controlled by water availability (Noy-Meir 1973, Schlesinger 1997, Austin et al. 2004, Yahdjian 

et al. 2006). Increases in precipitation variability could lead to changes in the duration and timing 

of nitrogen mineralization and plant uptake, which would impact ANPP variability. Within the 

data sets used in this study, which represent grasslands where precipitation influences ANPP, an 

average of 35% of the variability in ANPP is directly explained by precipitation, but the 

percentage of ANPP that is indirectly affected by precipitation could actually be higher.
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TABLE 3-1.  Relative increases in the standard deviation of annual ANPP with 1%, 2%, 5%, and 
10% increases in the standard deviation of annual precipitation.

Data 
sets Reference Years Location Study site Ecosystem

Mean 
annual 
precip.
(mm)

Mean
annual 
ANPP
(g/m2)

Std. 
dev. 

precip.

Std. 
dev. 

ANPP
1% 2% 5% 10%

1 Andales et 
al. 2006 18

Cheyenne, 
Wyoming, 

United States

High Plains 
Grasslands 
Research 
Station

mixed 
prairie 384 144 64 53 1.06 2.12 5.33 10.71

1 ORNL 31 Badkyz, Mary, 
Turkmenistan

Badkhzy Nature 
Reserve Station

desert 
steppe 266 61 69 36 1.37 2.75 6.99 14.41

1 Bai et al. 
2001 12

Ewenke Qi, 
Inner 

Mongolia, 
China

Ewenke 
Grassland 

Management 
Station

meadow 
steppe 330 243 83 53 1.36 2.74 6.96 14.34

1
Bentley 

and Talbot 
1951

13
Oneals, 

California, 
United States

San Joaquin 
Experimental 

Range

annual 
grassland 527 184 155 39 1.1 2.21 5.56 11.24

4
Cedar 
Creek 
LTER

11
Bethel, 

Minnesota, 
United States

Cedar Creek 
Ecosystem 

Science Reserve
old field 803 124 199 37 1.07 2.14 5.36 10.78

1 ORNL 34

Dzhanybek, 
West 

Kazakhstan, 
Kazakhstan

Dzhanybek 
Research 
Station

semi-arid 
steppe 274 140 36 36 1.16 2.34 5.93 12.26

1
Hulett and 
Tomanek 

1969
24 Hays, Kansas, 

United States

near Fort Hays 
Experiment 

Station

mixed 
prairie 580 291 171 118 1.21 2.43 6.16 12.69

3 Jornada 
LTER 19

Las Cruces, 
New Mexico, 
United States

Jornada LTER desert 
grassland 138 249 78 85 1.42 2.88 7.48 16.22

3
Konza 
Prairie 
LTER

27
Manhattan, 

Kansas, United 
States

Konza Prairie 
Biological 

Station

tallgrass 
prairie 810 415 187 84 1.11 2.23 5.6 11.31

1 ORNL 30 Kursk, Kursk 
Oblast, Russia 

Kursk long-term 
ecological study 

site

meadow 
steppe 560 367 92 124 1.29 2.6 6.6 13.58

1 Ma et al. 
2010 20

Xilinhot, Inner 
Mongolia,Chin

a

Inner Mongolia 
Grassland 
Ecosystem 
Research 
Station

typical 
steppe 342 208 67 36 0.99 1.98 4.95 9.92

1 O'Connor 
et al. 2001 19

Bloemfontein, 
Free State, 

South Africa

Sydenham farm, 
Univ. of Orange 

Free State

Semi-arid 
grassland 560 125 194 74 1.27 2.55 6.48 13.31

2 Patton et 
al. 2007 21

Streeter, North 
Dakota, United 

States

Central 
Grasslands 
Research 
Extension 

Center

old field 454 299 138 52 2.03 4.11 10.74 23.24

1
Rogler 

and Haas 
1946

20
Mandan, North 
Dakota, United 

States

Northern Great 
Plains grassland 

Station

mixed 
prairie 406 42 81 36 1.15 2.3 5.81 11.78
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Data 
sets Reference Years Location Study site Ecosystem

Mean 
annual 
precip.
(mm)

Mean
annual 
ANPP
(g/m2)

Std. 
dev. 

precip.

Std. 
dev. 

ANPP
1% 2% 5% 10%

7
Shortgrass 

Steppe 
LTER

28
Nunn, 

Colorado, 
United States

Shortgrass 
Steppe LTER

shortgrass 
steppe 332 79 89 32 1.25 2.51 6.38 13.09

1 Smoliak 
1986 50

Manyberries, 
Alberta, 
Canada

Agriculture 
Canada 

Research 
Substation

mixed 
prairie 327 39 65 17 1.11 2.22 5.59 11.36

1

Towne 
and 

Owensby 
1984

42
Manhattan, 

Kansas, United 
States

Kansas Flint 
Hills

tallgrass 
prairie 828 327 192 130 1.22 2.46 6.2 12.64

1 ORNL 41
Bela-Bela, 
Limpopo, 

South Africa

Towoomba 
Research 
Station

mesic 
grassland 645 132 145 73 1.15 2.3 5.79 11.73

FIG. 3-1.  Examples of the three types of precipitation-ANPP models used in this study. Data 
shown is from grasslands near Bloemfontein, South Africa (O'Connor et al. 2001). At this site, the 
linear, nonlinear, and lag models explain 53%, 66%, and 68% of the observed interannual 
variability in ANPP, respectively. A nonlinear model best fits the precipitation-ANPP relationship 
at this site (AICc weight=73%).
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FIG. 3-2.  Histograms of observed (black) and high-variability (gray) annual precipitation time 
series from Jornada Long-Term Ecological Research site between 1990 and 2008 (A). The high-
variability precipitation time series was obtained by increasing the standard deviation of each 
observation by 10% without changing the precipitation mean. Panels B through D show 
histograms of ANPP predicted from the observed and high variability precipitation time series 
depicted in (A).  When ANPP is a linear (B) or lagged (C) function of precipitation, a 10% 
increase in the variability of precipitation leads to a 10% increase in the variability of ANPP. 
However, when ANPP is a nonlinear, concave down function of precipitation (D), a 10% increase 
in the variability of precipitation leads to a 4% increase in ANPP variability during wet years and 
a 29% increase during dry years. Since a nonlinear model produces a distribution of ANPP that is 
skewed towards dry years, the overall increase in ANPP variability was 21%, much greater than 
the 10% increase in precipitation variability used in this simulation.

FIG. 3-3.  Relative changes in ANPP standard deviation (%) given a 5% increase in the standard 
deviation of annual precipitation for 27 data sets from 18 different grassland sites. A 5% increase 
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in the variability of precipitation always results in a 5% increase in the variability of ANPP when 
the relationship between precipitation and ANPP is linear or lagged (not shown), and usually 
results in a disproportionately large increase in ANPP variability when the precipitation-ANPP 
relationship is nonlinear. The weighted ANPP model accounts for AICc weights for the linear and 
nonlinear models fitted to each data set. The inset of the weighted model shows that the change in 
ANPP variability is disproportionately high for dry years and disproportionately low for wet years 
due to the contribution of the nonlinear model.



48
CHAPTER 4

CONCLUSIONS

 Precipitation is an important driver of primary production in water-limited ecosystems 

and changes in precipitation regime are already impacting primary production. A recent study 

showed that global net primary production (NPP) decreased between 2000 and 2009 due to large-

scale regional droughts and a general drying trend in the southern hemisphere (Zhao and Running 

et al. 2011). Temperature-driven changes in the global hydrological cycle will continue to alter 

the mean and variability of primary production as greenhouse gases continue to accumulate in the 

atmosphere. 

My work used the longest field-collected primary production time series available to 

evaluate potential aboveground net primary production (ANPP) responses to alterations in 

precipitation.  My thesis makes two important contributions towards our understanding of how 

changes in precipitation will impact ANPP: it 1) establishes the importance of the precipitation-

production relationship in determining the size of impacts and 2) quantifies the impacts of altered 

precipitation variability on ANPP. 

First, my thesis shows clearly that the impacts of changes in precipitation on ANPP are 

highly dependent upon site-specific precipitation-production relationships (Table 4-1). In Chapter 

2, I demonstrated that ANPP sensitivity to precipitation mean is controlled by the slope of the 

precipitation-ANPP relationship and that ANPP sensitivity to precipitation variance is controlled 

by the nonlinearity of this relationship. Because nonlinearities in the precipitation-ANPP 

relationship were weak at most sites, mean ANPP was nearly 40 times more sensitive to 

precipitation mean than to precipitation variance. In Chapter 3, I showed that increases in ANPP 

variability relative to increases in precipitation variability also depend on the form of the 

precipitation-production relationship. If we assume a nonlinear relationship between precipitation 

and ANPP, increases in ANPP variability were over 1.5 times greater than increases in 
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precipitation variability on average. 

Second and perhaps more importantly, my research meets the gap in knowledge about 

how an increase in precipitation variability will impact key ecosystem functions. Despite the 

abundant evidence from climate models indicating that an intensification of the global 

hydrological cycle is driving an increase in the frequency of extreme events, most climate change 

studies have focused on how ecosystems will be impacted by increases in mean temperatures 

(e.g. Petchey et al. 1999, Yvon-Durocher et al. 2010, Traill et al. 2010). In Chapter 2, I 

demonstrated that long-term mean primary production levels may be insensitive to interannual 

precipitation variability. Primary production may respond more strongly to increases in intra-

annual variability in precipitation. Both rainfall manipulation experiments and analyses of long-

term precipitation and primary production data indicate that mean ANPP is sensitive to the size of 

precipitation events, independent of precipitation amount (Lázaro et al. 2001, Fay et al. 2003, 

Snyder and Tartowski 2006, Nippert et al. 2006, Swemmer et al. 2007, Heisler-White et al. 2009, 

Medvigy et al. 2010). For example, in one experiment in the Chihuahua Desert, plots that 

received a single large rainfall event each month during the monsoon season had higher soil 

moisture content and aboveground production than plots receiving the same total rainfall in 

multiple smaller events (Thomey et al. 2011). 

In Chapter 3, I showed that increases in ANPP variability were greater than increases 

precipitation variability only when production was assumed to be a nonlinear function of 

precipitation. Since most sites exhibit temporal precipitation-ANPP relationships that are at least 

slightly nonlinear (Chapter 2), the increase in ANPP variability given a 5% increase in 

precipitation variability averaged 6.3% across data sets. Furthermore, also due to the nonlinearity 

of the precipitation-ANPP relationships, increases in ANPP in wet years will be much less than 

decreases in ANPP during dry years. My thesis suggests that although increases in interannual 

precipitation variability will have negligible impacts on ANPP mean, they could have 
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considerable impacts on ANPP variability. At most sites in fact, impacts to ANPP variability will 

be greater than impacts to ANPP mean. The average sensitivity of ANPP mean to changes in 

precipitation  mean was only 0.65% (Chapter 1).

My thesis highlights the potential for changes in ANPP due to increases in precipitation 

variability. These increases in ANPP variability will have implications for natural resource 

management (Landres et al. 1999, le Roux and McGeoch 2008). On rangelands, land managers 

will have more difficulty forecasting forage availability for grazers. An increase in the interannual 

variability of ANPP will also increase the chances of stochastic extinction for rare species (Boyce 

1992, Menges 2000) dependent upon the availability of primary production. 
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TABLE 4-1. Summary of how precipitation changes impact ANPP.

Change in precipitation Response of ANPP mean Response of ANPP variability 

Altered mean Depends on slope of 
precipitation-ANPP 
relationship. Can be relatively 
higher or lower than change in 
precipitation mean. 

Not considered in thesis.

Altered variability Depends on the nonlinearity of 
precipitation-ANPP 
relationship. Decreases in 
mean are expected with 
nonlinear, concave-down 
relationships due to Jensen's 
inequality. 

Depends on nonlinearity of 
precipitation-ANPP 
relationship. Impacts are 
always proportional if this 
relationship is linear.  Always 
relatively higher if relationship 
is nonlinear, concave-down.   
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APPENDIX A

SENSITIVITY ANALYSIS1

For each data set, we used a quadratic approximation (Chesson et al. 2005) to quantify 

the expected value of ANPP  (R)  given the distribution of precipitation: 

R≈ f x ,a ,b.5 f ' ' x ,a ,b2 .  (1)

where f is the linear or nonlinear model describing the precipitation-ANPP relationship, a and b 

are the fitted parameters of f, and  ( x ) and (σ2)  are the mean and variance of precipitation. The 

second term in Equation 1 is the source of Jensen's inequality; it is negative when f is concave 

down, positive when f is concave up, and zero when f  is linear. We fit normal and lognormal 

distributions to each precipitation time series using maximum likelihood estimation, obtaining x  

and σ2  from the distribution with the lower AIC value. Thus, Equation 1 accounts for both ways 

that changes in precipitation variance can cause changes in ANPP: 1) directly, by changing the 

precipitation mean in lognormally distributed precipitation time series, and 2) indirectly, through 

Jensen's inequality.  

To obtain the sensitivity of ANPP to changes in the variance of precipitation, we took the 

partial derivative of R with respect to σ2:

∂R
∂2

=.5 f ' '  x ,a , b .

Approximating the derivative by using a difference equation (
∂R

∂2
≈  R

 2
) yields the 

expected change in ANPP ( Δ R ) given a change in precipitation variance (  2 ) : 

1 Coauthored by Joanna Hsu, James Powell, and Peter Adler

Δ R≈.5 f ' ' ( x̄ , a , b)Δ(σ2).
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Note that Jensen's inequality controls whether Δ R is positive or negative, though both Jensen's 

inequality and lognormal precipitation distributions can decrease Δ R . To obtain the 

proportional change in ANPP, we multiplied the right side of the equation by  σ 2/σ2 and divided 

both sides by R: 

 R
R

≈ .52 f ' ' x , a , b
f x , a ,b.5 f ' '  x , a , b 2

  2

 2 .  (2)

The first term on the right hand side of Equation 2 is the sensitivity of ANPP to changes in 

precipitation variance.   Using similar steps, we obtained the sensitivity of ANPP to changes in 

mean precipitation: 

Δ R
R

≈[ f ' ( x̄ , a , b)+.5 f ' ' ' ( x̄ , a , b)σ2] x̄
f ( x̄ , a , b)+.5 f ' ' ( x̄ , a , b)σ2

Δ x̄
x̄

.  (3)

This analytic sensitivity analysis assumes that perturbations to mean precipitation mean 

and variance ( Δσ2 and Δ x̄ ) are small so that differentials can be reasonably 

approximated by finite changes to the mean and variance. Equations 2 and 3 indicate that ANPP 

sensitivity to changes in precipitation variance is dependent on the second derivative of f, while 

sensitivity to changes in mean precipitation is dependent on the first and third derivatives of f.  

For each data set, we calculated separate sensitivities for linear and nonlinear models. We 

obtained the final sensitivities for each data set using a weighted average of model sensitivities 

using AICc weights from the model fitting. 

Note that quantifying R with a quadratic approximation (Equation 1) does not capture the 

changing concavity of the nonlinear models. To avoid this limitation, we also used a Monte Carlo 

simulation approach to quantify R, sampling precipitation distributions using maximum 

likelihood parameter estimates. R obtained from the simulations was very close to R obtained 
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from the quadratic approximation (not shown). 

Other studies have used slopes from linear precipitation-ANPP regressions or 

precipitation use efficiencies to approximate ANPP sensitivities to precipitation mean (Paruelo et 

al. 1999, Lauenroth et al. 2000, Huxman et al. 2004, Bai et al. 2008). Unlike those measures of 

sensitivities, our sensitivities account for nonlinearity in the precipitation-ANPP relationship and 

are relative (not absolute) measures: a sensitivity of 1 implies that a 1% change in precipitation 

mean results in a 1% change in ANPP mean in the same direction. Relative sensitivities change 

with precipitation; this sensitivity measure quantifies the sensitivity at mean precipitation. When 

the slope is positive, as it typically is in temporal precipitation-ANPP relationships, this measure 

underestimates sensitivity in wet years and overestimates it in dry years. 
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APPENDIX B

COMPARISON OF SENSITIVITIES2

In this appendix, we demonstrate that for any reasonable concave down, saturating curve 

we might use to model a precipitation-ANPP relationship, sensitivity to mean will always be 

greater than sensitivity to variance. “Reasonable” saturating curves include all those that 

approach their constant value a  like a power law or decaying exponential function for large 

precipitation values. We use an asymptotic argument that holds for large values of mean 

precipitation ( x. ), far to the right of any inflection point on the curve such that  

f ' x ,a ,b , f ' ' x ,a ,b ,and f ' ' ' x ,a , b  are monotonically decreasing and the odd 

derivatives have the same sign.  

To indicate that a function g(x) behaves like h(x) at large x, we will use the notation g(x) ~ 

h(x), which is defined to mean  g  x/h x1 as x ∞ (Holmes 1995). For example, for the 

saturating curve  g  x= axn

bnxn , g ' x =abn n xn−1

bnxn2 ~ nabn

xn1  because 

abn n xn−1/bn xn2

n abn/ xn1 = x2n

bn xn2 1  as x ∞ .  This particular g(x) is the Michaelis-

Menten curve when n = 1 and is an example of a saturating curve whose first derivative is 

bounded by a power law.  The curve that we chose,  f (x)  = a – b/x, is also bound by a power law. 

Negative exponential functions could also be used to model precipitation-ANPP 

relationships. Both the logistic model, g  x= a
ce−bx

 , and the common type II model 

2 Coauthored by Joanna Hsu, James Powell, and Peter Adler
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g  x=a 1−e−bx   have the property that g ' x ~abe−bx . Thus, the first derivative of 

common saturating curves used in ecology behave asymptotically like (~) either a power law or 

like a decaying exponential. We will show that in both of these cases, sensitivity to mean always 

dominates the sensitivity to variance. 

We begin by establishing the ratio of sensitivity to variance (Equation 2): sensitivity to 

mean (Equations 3):    
sensitivity to σ2

sensitivity to x̄
= .5σ2 f ' ' ( x̄ , a , b)

[ f ' ( x̄ , a , b)+.5 f ' ' ' ( x̄ , a , b)σ2] x̄
. Note that 

this ratio reflects the quadratic approximation for Jensen's inequality (Equation 1) because our 

ANPP sensitivities to mean and variance (Equations 3 and 2) use this approximation. Since f '(x)  

and    f' ' '(x) must have the same sign, 
sensitivity to σ2

sensitivity to x̄
⩽ .5σ2∣ f ' ' ( x̄ , a ,b)∣

[ f ' ( x̄ , a ,b)] x̄ .

If the first derivative of a saturating curve behaves asymptotically like a power law with 

constant k and scaling exponent z, then ∣ f ' x ∣~ k
x z  , ∣ f ' ' x∣~

zk
xz1   , and

sensitivity to σ2

sensitivity to x̄
⩽

.5σ2 zk
x̄ z+1

k
x̄z x̄

. Therefore, 

sensitivity toσ2

sensitivity to x̄
⩽ .5σ2 z

x̄2 .  (4)

We can also model the precipitation-ANPP relationship with a saturating function whose 

first derivative behaves like a negative exponential with constant C and exponent m. In this case, 

∣ f ' x ∣~Ce−mx ,   ∣ f ' ' x∣~Cbe−m x , and sensitivity to σ2

sensitivity to x̄
⩽ .5σ2Cbe−m x̄

x̄Ce−m x̄  . 
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Therefore,

sensitivity to 2

sensitivity to x
 .5m2

x
.  (5)

Both Equations 4 and 5 show that 
sensitivity to σ2

sensitivity to x̄
→0

as x ∞  , implying that the 

numerator is much smaller in size than the denominator for large values of x.  Sensitivity to 

mean is greater than sensitivity to variance for sufficiently large x , regardless of the saturating 

function used to model the precipitation-ANPP relationship. In the case of f(x) = a – b/x, 

Equation 4 indicates that sensitivity to mean will be greater than sensitivity to variance whenever 

x  is greater than σ, which is always the case when looking at interannual time series of 

precipitation and ANPP.
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APPENDIX C

CHAPTER THREE TABLES1

TABLE C-1. Data set description.

Data
set Reference Years Location Site Ecosystem Dom.

species
MAT
(°C)

Precip.
data

Mean 
annual 
precip. 
(mm)

Std. 
dev. 

precip.

Mean 
ANPP 
(g/m2)

Std. 
dev. 

ANPP

Andales Andales et 
al. 2006 17

Cheyenne, 
Wyoming, 

United States

High Plains 
Grasslands 

Research Station

mixed 
prairie unknown 7.6 April-

Aug. 384 64 144 48

Badkhzy ORNL 25 Badkyz, Mary, 
Turkmenistan

Badkhzy Nature 
Reserve Station

desert 
steppe

Poa 
bulbosa 14.8 Jan.-

May 266 69 61 29

Bai1 Bai et al. 
2001 12

Ewenke Qi, 
Inner 

Mongolia, 
China

Ewenke 
Grassland 

Management 
Station

meadow 
steppe

Stipa 
baica-
lensis

-1.9 Jan.-
Dec. 330 83 243 53

Bentley Bentley and 
Talbot 1951 13

Oneals, 
California, 

United States

San Joaquin 
Experimental 

Range

annual 
grassland

Hordeum 
marinum 15.8 Sept.-

Aug. 527 155 184 41

CC
1927

Cedar 
Creek 
LTER

11
Bethel, 

Minnesota, 
United States

Cedar Creek 
Ecosystem 

Science Reserve
old field Poa 

pratensis 6.7 Jan.-
Dec. 803 199 116 27

Dzhany-
bek ORNL 21

Dzhanybek, 
West 

Kazakhstan, 
Kazakhstan

Dzhanybek 
Research Station

semi-arid 
steppe

Agro-
pyron 
deser-
torum

6.6 Jan.-
May 274 36 140 39

Hulett
Hulett and 
Tomanek 

1969
24 Hays, Kansas, 

United States

near Fort Hays 
Experiment 

Station

mixed 
prairie

Boute-
loua 

gracilis, 
Buchloe 
dacty-
loides 

12 Jan.-
Dec. 580 171 291 114

JOR
BASN

Jornada 
LTER 19

Las Cruces, 
New Mexico, 
United States

Jornada LTER desert 
grassland

Boute-
loua 

eriopoda
14.7 Jan.-

Dec. 138 65 242 76

JOR
IBPE

Jornada 
LTER 19

Las Cruces, 
New Mexico, 
United States

Jornada LTER desert 
grassland

Boute-
loua 

eriopoda
14.7 Jan.-

Dec. 106 57 242 95

JOR
SUMM

Jornada 
LTER 19

Las Cruces, 
New Mexico, 
United States

Jornada LTER desert 
grassland

Boute-
loua 

eriopoda
14.7 Jan.-

Dec. 146 114 263 89

KNZ
001d

Konza 
Prairie 
LTER

34
Manhattan, 

Kansas, 
United States

Konza Prairie 
Biological 

Station

tallgrass 
prairie unknown 12.5 Jan.-

Dec. 810 188 457 93

KNZ
004b

Konza 
Prairie 
LTER

24
Manhattan, 

Kansas, 
United States

Konza Prairie 
Biological 

Station

tallgrass 
prairie unknown 12.5 Jan.-

Dec. 810 187 400 91

Kursk ORNL 30 Kursk, Kursk 
Oblast, Russia 

Kursk long-term 
ecological study 

site

meadow 
steppe

Bromus 
riparius 5.6 April-

Oct. 560 92 367 126

1 Coauthored by Joanna Hsu and Peter Adler
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Data
set Reference Years Location Site Ecosystem Dom.

species
MAT
(°C)

Precip.
data

Mean 
annual 
precip. 
(mm)

Std. 
dev. 

precip.

Mean 
ANPP 
(g/m2)

Std. 
dev. 

ANPP

Ma 
2010

Ma et al. 
2010 13

Xilinhot, 
Inner 

Mongolia,
China

Inner Mongolia 
Grassland 
Ecosystem 

Research Station

typical 
steppe

Leymus 
chinensis

, Stipa 
grandis

0.6 Jan.-
Dec. 342 67 208 35

O'Con-
nor

O'Connor et 
al. 2001 19

Bloemfontein, 
Free State, 

South Africa

Sydenham farm, 
Univ. of Orange 

Free State

semi-arid 
grassland

Themeda 
triandra, 
Cymbo-
pogon 
pluri-
nodes

15.6 Jan.-
Dec. 560 194 125 76

Patton
silty

Patton et al. 
2007 21

Streeter, North 
Dakota, 

United States

Central 
Grasslands 
Research 

Extension Center

old field

Poa 
pratensis, 
Nassella 
viridula, 
Carex 
inops 
spp. 

heliophil
a

5 Nov.-
Oct. 454 138 283 56

Rogler
Haas

Rogler and 
Haas 1946 12

Mandan, 
North Dakota, 
United States

Northern Great 
Plains grassland 

Station

mixed 
prairie

Boutelou
a gracilis, 
Hesperos

tipa 
comata

5.6 April-
July 406 81 42 27

SGS
ESA1

Shortgrass 
Steppe 
LTER

16
Nunn, 

Colorado, 
United States

Shortgrass 
Steppe LTER

short-grass 
steppe

Boute-
loua 

gracilis
9.5 Jan.-

Dec. 332 83 88 30

SGS
forage

Shortgrass 
Steppe 
LTER

39
Nunn, 

Colorado, 
United States

Shortgrass 
Steppe LTER

short-grass 
steppe

Boute-
loua 

gracilis
9.5 Jan.-

Dec. 332 93 68 25

SGS
mid-
slope

Shortgrass 
Steppe 
LTER

25
Nunn, 

Colorado, 
United States

Shortgrass 
Steppe LTER

short-grass 
steppe

Boute-
loua 

gracilis
9.5 Jan.-

Dec. 332 84 65 23

SGS
OC

Shortgrass 
Steppe 
LTER

17
Nunn, 

Colorado, 
United States

Shortgrass 
Steppe LTER

short-grass 
steppe

Boute-
loua 

gracilis
9.5 Jan.-

Dec. 332 97 108 43

SGS
ridge

Shortgrass 
Steppe 
LTER

25
Nunn, 

Colorado, 
United States

Shortgrass 
Steppe LTER

shortg-rass 
steppe

Boutelou
a gracilis 9.5 Jan.-

Dec. 332 84 58 20

SGS
sec25

Shortgrass 
Steppe 
LTER

17
Nunn, 

Colorado, 
United States

Shortgrass 
Steppe LTER

short-grass 
steppe

Boutelou
a gracilis 9.5 Jan.-

Dec. 332 97 62 30

SGS
swale

Shortgrass 
Steppe 
LTER

25
Nunn, 

Colorado, 
United States

Shortgrass 
Steppe LTER

short-grass 
steppe

Boutelou
a gracilis 9.5 Jan.-

Dec. 332 84 103 48

Smoliak
1986

Smoliak 
1986 37

Manyberries, 
Alberta, 
Canada

Agriculture 
Canada Research 

Substation

mixed 
prairie

Hespero-
stipa 

comata, 
Pascopyr

um 
smithii

4.7 April-
July 327 65 39 16
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Data
set Reference Years Location Site Ecosystem Dom.

species
MAT
(°C)

Precip.
data

Mean 
annual 
precip. 
(mm)

Std. 
dev. 

precip.

Mean 
ANPP 
(g/m2)

Std. 
dev. 

ANPP

Towne Towne and 
Owensby 

1984
13

Manhattan, 
Kansas, 

United States

Kansas Flint 
Hills

tallgrass 
prairie

Schizach
yrium 

scopariu
m, 

Koeleria 
macranth

a

12.9 Jan.-
Dec. 828 192 327 70

To-
woomba ORNL 26

Bela-Bela, 
Limpopo, 

South Africa

Towoomba 
Research Station

mesic 
grassland

Cymbopo
gon 

pospischi
lii

18.7 Sept.-
April 645 145 132 72

TABLE C-2. Fitted model parameters.

Data
set

Linear 
model 
slope

Linear 
model 

intercept

Linear 
model 

r2

Nonlin. 
model 

parameter 
a

Nonlin. 
model 

parameter 
b

Nonlin. 
model

 r2

Lag 
model 

intercept 

Lag 
model 
precip. 

parameter 

Lag 
model lag 
parameter 

Lag 
model 

r2

Linear 
model 
AICc 

weight

Nonlinear 
model 
AICc 

weight

Lag 
model 
AICc 

weight

Andales 0.47 9 0.41 255 30445 0.34 -23 0.51 0.16 0.43 0.62 0.25 0.14

Badkhzy 0.13 25 0.09 96 8966 0.2 46 0.09 -0.23 0.14 0.17 0.76 0.08

Bai1 0.28 152 0.19 331 26684 0.24 1 0.34 0.54 0.51 0.29 0.39 0.32

Bentley 0.14 113 0.32 268 37758 0.37 192 0.11 -0.32 0.39 0.37 0.56 0.06

CC
1927 0.01 114 0 127 4025 0 166 0.02 -0.5 0.4 0.38 0.38 0.24

Dzhany-
bek 0.73 64 0.52 186 4130 0.41 52 0.76 0.07 0.53 0.75 0.09 0.17

Hulett 0.38 51 0.34 437 84347 0.25 19 0.37 0.13 0.36 0.65 0.15 0.21

JOR
BASN 0.54 168 0.22 340 11494 0.24 137 0.5 0.15 0.24 0.4 0.51 0.09

JOR
IBPE 0.89 146 0.28 298 4451 0.15 186 0.92 -0.19 0.31 0.65 0.16 0.19

JOR
SUMM 0.48 191 0.39 331 6007 0.28 187 0.48 0.02 0.39 0.71 0.15 0.13

KNZ
001d 0.3 216 0.38 690 177656 0.35 230 0.3 -0.03 0.38 0.56 0.29 0.16

KNZ
004b 0.17 263 0.13 546 107791 0.15 223 0.16 0.12 0.15 0.38 0.51 0.1

Kursk 0.28 256 0.04 430 23923 0.02 54 0.37 0.46 0.22 0.14 0.11 0.75

Ma
2010 0.22 125 0.15 301 33949 0.21 214 0.13 -0.28 0.23 0.38 0.56 0.06

O'Con-
nor 0.28 -20 0.53 314 88221 0.66 -85 0.3 0.44 0.68 0.04 0.73 0.24

Patton
silty 0.2 204 0.25 360 26340 0.36 248 0.2 -0.16 0.28 0.16 0.79 0.05

Rogler
Haas 0.3 -35 0.5 101 14149 0.54 -28 0.33 -0.39 0.63 0.34 0.52 0.14

SGS
ESA1 0.19 13 0.41 143 20821 0.33 20 0.2 -0.11 0.43 0.64 0.24 0.12

SGS
forage 0.16 16 0.35 98 9211 0.3 -17 0.17 0.42 0.52 0.01 0 0.99

SGS 0.21 -7 0.59 134 22629 0.61 -10 0.2 0.07 0.59 0.31 0.61 0.08
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Data
set

Linear 
model 
slope

Linear 
model 

intercept

Linear 
model 

r2

Nonlin. 
model 

parameter 
a

Nonlin. 
model 

parameter 
b

Nonlin. 
model

 r2

Lag 
model 

intercept 

Lag 
model 
precip. 

parameter 

Lag 
model lag 
parameter 

Lag 
model 

r2

Linear 
model 
AICc 

weight

Nonlinear 
model 
AICc 

weight

Lag 
model 
AICc 

weight
mids-
lope
SGS
OC 0.26 15 0.37 198 29969 0.43 15 0.26 0 0.37 0.29 0.67 0.05

SGS
ridge 0.17 -3 0.55 118 19797 0.62 -10 0.17 0.13 0.57 0.12 0.83 0.05

SGS
sec25 0.25 -27 0.72 146 27284 0.74 -27 0.25 0.02 0.72 0.33 0.61 0.05

SGS
swale 0.41 -37 0.52 243 45465 0.57 -41 0.4 0.08 0.52 0.21 0.73 0.06

Smoliak
1986 0.17 11 0.48 74 5168 0.44 -6 0.17 0.44 0.67 0 0 1

Towne 0.23 84 0.43 438 127269 0.44 52 0.16 0.34 0.51 0.41 0.49 0.1

To-
woomba 0.24 -18 0.3 264 79059 0.29 -26 0.24 0.06 0.3 0.49 0.39 0.13

TABLE C-3. Relative increases in the standard deviation of annual ANPP with a 5% increase in the 
standard deviation of annual precipitation. Standard deviations shown are those from the 
“predicted” ANPP time series based on the observed, not the perturbed, ANPP time series.

Data
set

Linear 
model 

std. 
dev.

(g/m2)

Linear 
model 

inc.
in std. 
dev. 

(g/m2)

Linear 
model 

increase 
in std. 

dev. (%)

Nonlin. 
model 

std. dev.
(g/m2)

Nonlin. 
model 

increase 
in std. 
dev. 

(g/m2)

Nonlin. 
model 

increase 
in std. 

dev. (%)

Nonlin. 
model 

increase 
in std. 

dev., dry 
years 
(%)

Nonlin. 
model 

increase 
in std. 

dev., wet 
years 
(%)

Lag 
model 

std. 
dev.

(g/m2)

Lag 
model 

increase 
in std. 
dev. 

(g/m2)

Lag 
model 

increase 
in std. 

dev. (%)

Weigh-
ted 

model 
increase 
in std. 
dev 
(%)

Weigh-
ted 

model 
increase 
in std. 
dev.,
 dry 

years
(%)

Weigh-
ted 

model 
increase 
in std. 

dev., wet 
years 
(%)

Andales 31 1.5 5 28 1.7 6.1 7.7 3.3 31 1.5 5 5.3 5.8 4.5

Badkhzy 9 0.4 5 13 0.9 7.4 10 3 6 0.3 5 7 9.1 3.4

Bai1 23 1.2 5 26 2.2 8.4 10.3 3.3 37 1.8 4.9 7 8.1 4

Bentley 23 1.2 5 25 1.5 5.9 7.9 2.5 17 0.9 5 5.6 6.8 3.5
CC

1927 2 0.1 5 1 0.1 5.7 7.6 3.2 3 0.2 5 5.4 6.3 4.1

Dzhany-
bek 29 1.4 5 25 3.6 14.1 18.1 2.4 29 1.5 5 5.9 6.3 4.7

Hulett 67 3.3 5 57 6.4 11.2 13.6 2.5 62 3.1 5 6.2 6.6 4.5
JOR

BASN 35 1.8 5 37 3.2 8.5 13.3 1.7 35 1.8 5 7 9.6 3.1

JOR
IBPE 50 2.5 5 37 7.4 20 24.4 1.8 50 2.5 5 7.9 8.8 4.4

JOR
SUMM 56 2.8 5 47 9.1 19.5 24.8 0.6 55 2.8 5 7.6 8.5 4.2

KNZ
001d 57 2.9 5 55 3.5 6.3 8.9 3.2 56 2.8 5 5.4 6.3 4.4

KNZ
004b 33 1.6 5 35 2.2 6.3 8.8 3 31 1.5 5 5.8 7.2 3.9

Kursk 26 1.3 5 20 1.7 8.7 11 3.5 34 1.7 5 6.6 7.6 4.3
Ma

2010 14 0.7 5 16 0.8 4.9 6.5 3.6 8 0.4 5 5 5.9 4.2

O'Con-
nor 55 2.8 5 62 4.1 6.6 9.3 2.1 62 3.1 5 6.5 9.1 2.3
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Data
set

Linear 
model 

std. 
dev.

(g/m2)

Linear 
model 

inc.
in std. 
dev. 

(g/m2)

Linear 
model 

increase 
in std. 

dev. (%)

Nonlin. 
model 

std. dev.
(g/m2)

Nonlin. 
model 

increase 
in std. 
dev. 

(g/m2)

Nonlin. 
model 

increase 
in std. 

dev. (%)

Nonlin. 
model 

increase 
in std. 

dev., dry 
years 
(%)

Nonlin. 
model 

increase 
in std. 

dev., wet 
years 
(%)

Lag 
model 

std. 
dev.

(g/m2)

Lag 
model 

increase 
in std. 
dev. 

(g/m2)

Lag 
model 

increase 
in std. 

dev. (%)

Weigh-
ted 

model 
increase 
in std. 
dev 
(%)

Weigh-
ted 

model 
increase 
in std. 
dev.,
 dry 

years
(%)

Weigh-
ted 

model 
increase 
in std. 

dev., wet 
years 
(%)

Patton
silty 28 1.4 5 34 4 11.9 14.7 3 29 1.4 5 10.7 13.1 3.4

Rogler
Haas 19 1 5 20 1.3 6.3 8.7 3.1 21 1.1 5 5.8 7.3 3.8

SGS
ESA1 19 1 5 17 0.9 5.6 7.6 2.5 20 1 5 5.2 5.7 4.3

SGS
forage 15 0.7 5 14 1.8 12.8 15.6 2.8 16 0.8 5 6.6 7.2 4.5

SGS
mids-
lope

18 0.9 5 18 1.3 7.1 9.4 2.9 17 0.8 5 6.4 7.9 3.6

SGS
OC 26 1.3 5 28 2.1 7.3 10.1 2.8 26 1.3 5 6.6 8.6 3.5

SGS
ridge 15 0.7 5 16 1.1 7.1 9.4 2.9 14 0.7 5 6.8 8.9 3.2

SGS
sec25 25 1.3 5 26 1.9 7.3 10.1 2.8 25 1.3 5 6.5 8.3 3.6

SGS
swale 34 1.7 5 36 2.5 7.1 9.4 2.9 33 1.7 5 6.6 8.4 3.4

Smoliak1
986 11 0.6 5 11 0.8 7.5 10.7 1.9 12 0.6 5 5.6 6.3 4.3

Towne 46 2.3 5 47 3.4 7.2 8.9 3.3 32 1.6 5 6.2 7.1 4.1
To-

woomba 40 2 5 39 2.5 6.5 8.6 2.8 39 1.9 5 5.6 6.6 4
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APPENDIX D

INTERPRETING THE PRODUCTION TO RAINFALL VARIABILITY RATIO

An easy, common way to compare variability in precipitation and production is to directly 

compare the CV of production (CVPROD) with the CV of precipitation (CVPPT). Previous studies 

have attempted to explain why the ratio CVPROD:CVPPT (Production to Rain Variability Ratio, 

PRVR) is greater or less than 1 at different sites. PRVR greater than 1 has interested ecologists 

because it seems to suggest that production somehow amplifies variability in precipitation, which 

could have climate change implications. However, PRVR does not account for the fact that 

production is often a linear function of precipitation. In this appendix, I recast PRVR in a linear 

regression framework that reveals that PRVR is largely controlled by the y-intercept of the 

regression line that predicts production from precipitation. The y-intercept of a temporal 

precipitation-production model is typically an extrapolation of the data and does not accurately 

represent production in years of no rainfall. In other words, PRVR is very sensitive to an 

estimated statistical parameter that is not very informative about ecological processes. 

Background: Using PRVR to compare rainfall and production variability
 

To characterize production variability relative to precipitation variability, Noy-Meir and 

Walker (1984) compared the coefficient of variation (CV) of production with the CV of 

precipitation. Le Houerou et al. (1988) introduced the production to rain variability ratio (PRVR), 

the CV of production (CVPROD) divided by the CV of precipitation (CVPPT):

PRVR =
CV PROD

CV PPT
=

SD PROD PPT
SDPPT PROD  (1)

In Equation 1,  PROD and SDPROD are the mean and standard deviation of production, and PPT 

and SDPPT are the mean and standard deviation of precipitation. 
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PRVR has been widely used to compare production variability with rainfall variability: 

sites with PRVR greater than 1 have more variable production than rainfall. PRVR greater than 1 

is commonly documented (Lehouerou et al. 1988, Lauenroth and Sala 1992, Xiao et al. 1996, 

Guevara et al. 1997, Veron et al. 2002, Wiegand et al. 2004, Hu et al. 2007, Yang et al. 2008a), 

but PRVR can also be less than 1 (Guevara et al. 1997, Prince et al. 1998, Paruelo and Lauenroth 

1998, Diouf and Lambin 2001, Veron et al. 2002, Wessels et al. 2007, Yang et al. 2008b). 

PRVR greater or less than 1 seems to suggest that production variability could be 

amplifying or buffering variability in precipitation. Previous studies have sought explanations for 

high or low PRVR. For example, Lauenroth and Sala (1992) propose that high PRVR is related to 

the fact that years with the same annual precipitation may still differ in intraseasonal water 

availability. Wiegand et al. (2004) suggest that PRVR greater than 1 can be attributed to lag 

effects. LeHouerou et al. (1988) suggest that PRVR is indirectly linked to topography and that 

low PRVR in arid or semi-arid sites is only an artifact of short data sets. Hu et al. (2007) reason 

that PRVR is affected by vegetation type and condition. I argue that high or low PRVR does not 

need to be attributed to any of these factors, but has a much simpler explanation.

Analysis: Predicting PRVR from a site's precipitation-production relationship 

Production is a linear or mostly linear function of precipitation at most water-limited sites 

(Chapter 2). However, PRVR does not account for this relationship, which has an influence on the 

variability of production. To demonstrate how this is the case, I re-write PRVR in terms of a 

linear regression between the two variables. 

I begin by considering a time series in which production is a linear function of 

precipitation. Recall that in least squares regression, the slope of the fitted regression line, b, is 

related to the correlation coefficient r and the standard deviations of the two variables (SDx, SDy): 
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b = r
SD y

SD x
. I can rewrite the equation above in terms of our variables of interest:  

SDPROD =
b SDPPT

r
 (2)

Next, recall also that the intercept a of a least squares regression line can also be calculated: 

a = Y −b X , where X and Y are the means of the predictor and response variables, 

respectively.  Rearranging the equation and plugging in our variables of interest, I obtain the 

following expression for mean primary production:

PROD = ab PPT  (3)

Equation 3 indicates that mean production depends on the slope and the intercept of the 

precipitation-production relationship. If I substitute Equations 2 and 3 into Equation 1, we obtain 

the following equation for PRVR:

PRVR = b PPT
(a+b PPT )r  (4)

Equation 4 shows that PRVR depends on the correlation r and on each site's unique precipitation-

production relationship. When r = 1, all of the variability in ANPP can be attributed to variability 

in precipitation. It is important to notice that even in this case, when SDPROD is perfectly 

proportional to  SDPPT , PRVR is only 1 when the y-intercept is 0.  

 I fit a linear model to each of the 58 data sets of annual precipitation and primary 

production that I collected (Chapter 2) and then regressed PRVR on each of the variables in 

Equation 4 (Fig. D-1).  Equation 4 successfully predicts PRVR at all sites.

Solving Equation 4 for the conditions when the numerator is greater than the denominator 

indicates that PRVR is greater than 1 whenever a<b PPT ( 1
r
−1).  
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Conclusions: PRVR is not informative about ecological processes

 The y-intercept in temporal precipitation-production relationships is seldom zero and not 

necessarily an indicator of production in a year of no rain. Yet it explains over a third of the 

variability in PRVR. It is possible that positive y-intercepts reflect lag effects in production and 

that negative intercepts reflect minimum precipitation thresholds for production (Veron et al. 

2005), However, at wetter sites especially, the y-intercept fitted in a precipitation-production 

regression is an extrapolation from the data that makes assumptions about how production 

responds to precipitation in extremely dry years.  If we compare two sites that produce the same 

amount of biomass per unit precipitation (same slope) and have the same r, the site with a lower 

y-intercept will have a lower mean ANPP (Equation 4) and therefore a higher CVPROD and higher 

PRVR. Veron et al. (2005) demonstrated the importance of y-intercepts in determining 

interannual variation in rain use efficiency.

 Solving Equation 4 for the conditions when the numerator is greater than the 

denominator  indicates that PRVR is greater than 1 whenever a<b PPT ( 1
r
−1).  PRVR greater 

or less than 1 does not necessarily reflect lag effects, vegetation characteristics, or lack of 

appropriate data. Instead, it captures the correlation of two variables and their linear dependence 

upon each other. In most cases, high PRVR may simply indicate that a site's precipitation-

production relationship has a low y-intercept.
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Letters 35. 

FIG. D-1. PRVR is strongly controlled by the y-intercept fitted to a linear regression model of 
precipitation and production (B). The y-intercept explains 30.5% of the variation in PRVR across 
sites. The other variables that determine PRVR -  the slope of the regression relationship (A), 
mean precipitation (D), and the correlation coefficient between precipitation and production (D) - 
do not contribute significantly to explaining variation in PRVR. The data shown is from 58 long-
term data sets of precipitation and primary production from around the globe.
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