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ABSTRACT 

Learning Ability and Factors Influencing Nest Establishment of the Solitary Bees  

Osmia lignaria and Megachile rotundata (Hymenoptera: Megachilidae) 

 
by 
 
 

Cory A. Vorel, Doctor of Philosophy 

Utah State University, 2010 

 
Major Professor: Dr. Michael E. Pfrender 
Department: Biology 

 Over the last several decades, the use of solitary bees as an alternative to honey 

bees (Apis mellifera L.) for pollination of commercial crops has increased, in part as a 

response to ongoing problems faced by commercial honey bee populations.  Two solitary 

bee species have exhibited great commercial potential:  the blue orchard bee, Osmia 

lignaria Say, and the alfalfa leafcutting bee, Megachile rotundata Fabricius 

(Hymenoptera: Megachilidae).  However, growth of O. lignaria and M. rotundata 

populations is limited in commercial systems, mainly due to low establishment of 

females at provided nesting sites, possibly due to mortality, dispersal, or other causes. 

 Rough handling of pre-emergent bees may possibly contribute to post-emergence 

dispersal in O. lignaria.  The current work addressed this hypothesis by using shaking as 

a proxy for rough handling.  However, shaken bees did not establish fewer nests than 

unshaken bees.  Therefore, commercial fruit growers using O. lignaria as pollinators 
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should be able to remove cocoons from their nests as part of their management plan, 

without fear of increasing bee dispersal. 

 When searching for a nest site, M. rotundata females are known to be attracted to 

previously used nest materials.  The current work verified the attraction of M. rotundata 

females to old conspecific nests.  It also sought to determine which nest components were 

most attractive to females.  It was found that all components were equally attractive.  

 It may be useful to establish these species’ learning abilities in a laboratory 

setting.  The current work attempted to design a conditioning protocol for solitary bees. 

Initially, a method utilizing the proboscis extension reflex was sought.  However, O. 

lignaria and M. rotundata did not reflexively extend their proboscises upon antennal 

stimulation with sucrose solution.  Therefore, another method of conditioning was 

implemented.  Bees were conditioned to respond to floral odors in a feeding bioassay.  

Results are compared for both species, as well as for males and females.   

 The research completed for this dissertation may provide helpful information for 

commercial managers of solitary bees seeking to decrease both bee dispersal and the 

incidence of disease and parasites. 

(139 pages) 
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CHAPTER 1 

INTRODUCTION 
 
 

Over the last several decades, the use of solitary bees as an alternative to honey 

bees (Apis mellifera L.) for pollination of commercial crops has increased, in part as a 

response to ongoing problems faced by commercial honey bee populations and 

pollinators in general (National Research Council, 2007).  Two solitary bee species have 

exhibited great commercial potential:  the blue orchard bee, Osmia lignaria Say, and the 

alfalfa leafcutting bee, Megachile rotundata Fabricius (Hymenoptera: Megachilidae).  

With its strong preference for fruit tree flowers and its tendencies to fly in cooler weather 

and to cross-pollinate by frequently moving between trees, O. lignaria is a proficient 

pollinator for commercial orchards (Bosch and Kemp, 2001).  Since the 1960’s, M. 

rotundata’s efficient handling of alfalfa flowers and straightforward maintainability has 

made it an important pollinator for the commercial production of alfalfa seed (Bohart, 

1957; Stephen and Torchio, 1961; Richards, 1984; Torchio, 1987).  

 Both species construct their nests within existing cavities, such as holes left in 

wood by beetles.  Osmia lignaria nests in the spring, while M. rotundata nests in the 

summer, but the two species build similar nests.  Females create nests consisting of linear 

rows of cells.  Each cell is provisioned with pollen and nectar, upon which an egg is 

deposited.  Osmia lignaria females separate adjacent cells with mud partitions, and mud 

is also used to plug completed nests (Torchio, 1989). Megachile rotundata’s cells are 

surrounded with cut leaf pieces, and completed nests are plugged with leaf discs 

(Richards, 1984).  
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In agricultural settings, O. lignaria and M. rotundata readily nest in cavities in 

provided wooden or polystyrene blocks, reeds, or cardboard straws (Richards, 1984; 

Bosch and Kemp, 2001; Frank, 2003).  Females nest gregariously, and are attracted to 

previously used nests (Bohart, 1962; Torchio, 1976, 1981; Fairey and Lieverse, 1986; 

Fairey and Lefkovitch 1993).  Each female produces several nests, laying multiple female 

and male eggs (Richards, 1984; Bosch and Kemp, 2002).  Therefore, populations should 

be easily sustained and possibly expanded in agricultural settings.  In fact, O. lignaria 

commercial populations have been known to increase by two-fold or more each year 

(Torchio, 1985; Bosch et al., 2006).   

However, O. lignaria population growth is limited in commercial systems, mainly 

due to low establishment of females at provided nesting sites (Bosch and Kemp, 2002).  

Low establishment in Osmia may be attributed to post-emergence mortality (Tepedino 

and Torchio, 1982; Bosch, 1994a; Bosch and Kemp, 2004; Bosch, 2008), but another 

potential cause is pre-nesting dispersal.  Osmia lignaria populations are commonly 

removed from their natal nests and placed in orchards as loose cocoons, a practice that 

has been repeatedly shown to result in increased dispersal (Maeta, 1978; Torchio, 1985; 

Bosch, 1994b).  Why bees released as loose cocoons tend to disperse remains a mystery, 

but one hypothesis is that the manipulation of removing the cocoons from the nests and 

the subsequent handling of the loose cocoons is more stress than the bees can tolerate. 

Commercial populations of M. rotundata in the United States can also be difficult 

to maintain, and field managers are forced to supplement their populations annually.  

Many challenges, such as chalkbrood (fungal) disease, parasitism, emergence of a 
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summer generation, and immature mortality from unknown causes, must be overcome in 

order to maintain commercial populations (Richards, 1984; Frank, 2003).  Also, far more 

female bees are released than actually establish nests at commercial sites (Peterson et al., 

1992; Pitts-Singer, unpublished).  In addition to post-emergence mortality, pre-nesting 

dispersal has also been implicated as a possible explanation for poor establishment (Pitts-

Singer, unpublished).  Megachile rotundata may disperse in an effort to escape 

overcrowded conditions.  They may also perceive the commercial materials that are 

provided as less than suitable, and may disperse in search of more attractive natural 

nesting sites.   

It has been well-documented that solitary bees searching for a nesting site are 

attracted to areas where active nesting is already occurring or where old nests exist 

(Michener, 1960; Cardale, 1968; Stephen et al., 1969; Michener, 1974; Eickwort et al., 

1977; Buttery et al., 1981; Parker et al., 1983; Fairey and Lieverse, 1986).  Although in 

many cases it is true that solitary bees choose to remain near the natal nest, often the 

criteria for nest selection is simply previous or current use of a nesting site by 

conspecifics.  Michener (1960) and Cardale (1968) both give accounts of solitary, yet 

gregarious, bees being attracted to active nests and old sites. The ability of active nests or 

old nests to attract bees is frequently exploited for the encouragement of population 

establishment.  Bohart (1962) advised bee managers seeking to establish M. rotundata at 

commercial domiciles to intersperse new nesting blocks with some blocks containing 

completed nests, while Parker et al. (1983) suggest sprinkling a few loose cells around 

new nesting blocks to attract females. 
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The fact that M. rotundata females are attracted to old nest materials from a 

previous season indicates that at least some short-range chemical (olfactory) cues persist 

over time.  Buttery et al. (1981) identified several volatile compounds present in old M. 

rotundata cells. In preliminary tests, both caryophyllene epoxide and a mixture of 

caryophyllene epoxide, caryophyllene, and 2-phenylethanol were tested for their ability 

to attract nesting females.  Buttery et al. were able to get more nesting in the new, treated 

nesting materials than in either new, untreated nesting materials or old nesting materials, 

but the results were not significant.  These tests were expanded by Parker et al. (1983), 

who found that old cells were attractive to nesting M. rotundata, but neither of the 

compounds tested by Buttery et al. (1981) was significantly attractive.  Perhaps the 

volatility of the compounds tested was a factor, or perhaps these compounds are simply 

not what the bees find attractive.  More recently, the attraction to unidentified odors of 

old nest materials has been addressed in laboratory assays that revealed attraction to 

certain nest components and extracts of nest components (Pitts-Singer, 2007).   

Establishment and expansion of M. rotundata populations could possibly be 

enhanced by taking advantage of their attraction to previously used nest materials.  

However, use of old materials may increase the incidence of parasites and pests, as well 

as enhance the spread of bee diseases (Bohart, 1971; Vandenberg and Stephen, 1982; 

Bosch and Kemp, 2001; Pitts-Singer, 2004).  If the compounds responsible for the 

attractiveness of old nest materials could be identified, it may be possible to develop a 

method of treating new nest materials to make them more attractive to nesting females, 

thus increasing commercial populations without increasing parasites and disease. 
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In experiments with the solitary bee Colletes fulgidus longiplumosus, Dobson 

(1987) found that naïve bees preferred the plant species whose pollen they ate as larvae.  

She attributed this result to olfactory chemical conditioning of the developing bee within 

the natal nest.  It has been reported that M. rotundata will nest in materials similar to 

those that they were reared in, even if other nesting materials are available, and that this 

may be a conditioned response (Stephen, 1962; Stephen et al., 1969).  I believe that O. 

lignaria and M. rotundata may experience a form of imprinting on the olfactory cues 

present while they are developing in the nests, which then influences their nest choice 

later in life.   

In the future, the possibility that the experiences of O. lignaria and M. rotundata 

within the natal nest influence their nesting behavior upon emergence should be 

addressed.  However, first an important initial step is to establish their learning abilities in 

a controlled laboratory setting.  Conditioning of honey bees has become a common way 

to examine their learning and cognitive abilities, including their neurophysiological and 

molecular attributes.  Especially common is the use of respondent conditioning utilizing 

the proboscis extension reflex (PER) (Takeda, 1961; Bitterman et al., 1983; Giurfa, 

2007).  This conditioning method takes advantage of the honey bee’s reflexive extension 

of its proboscis upon antennal stimulation with sucrose.  This method has also been used 

to demonstrate the learning abilities of bumble bees (Laloi et al., 1999; Laloi and Pham-

Delègue, 2004) and stingless bees (Abramson et al., 1999; McCabe et al., 2007).  The 

design of a conditioning protocol for solitary bees, possibly utilizing the PER, would be 

useful for many reasons.  First, it would help us understand the learning abilities of these 
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bees, paving the way for future exploration of learning during development within the 

natal nest.  Second, it may provide useful information toward developing methods of 

increasing commercial population retention, such as training bees to nest in provided 

materials.  Finally, knowledge gained from conditioning studies may be used to compare 

species’ evolutionary and developmental pathways.  

The initial focus of my dissertation research was the minimization of dispersal in 

O. lignaria and M. rotundata.  In the second chapter, I investigate one factor that may 

contribute to O. lignaria dispersal:  rough handling by growers prior to bee release.  Bees 

were shaken as a proxy for rough handling, and nest establishment of shaken and 

unshaken bees was compared.   

In the third chapter, I examine the role of olfactory cues present in old nests, 

which M. rotundata may use for nest selection.  The attraction to old nests was verified 

using intact cells.  The attraction to the individual components of nests was also explored, 

so that it could be determined if females were more attracted to some components than 

they were to others.  Females’ nest selections were compared in both field cage assays 

and open field assays.   

The fourth and fifth chapters explore conditioning of O. lignaria and M. 

rotundata.  First I attempted to use the PER in developing a method of conditioning O. 

lignaria and M. rotundata.  This proved to be impossible because these species did not 

reflexively extend their proboscises in response to sucrose stimulation of their antennae.  

Therefore, I developed a novel approach to conditioning O. lignaria and M. rotundata 

using a feeding bioassay.  Using this method, I was able to condition bees using floral 
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odors, exploring their learning and discriminatory capabilities.  I was also able to 

compare the performances of males and females, as well as comparing the two species’ 

performances. 

The sixth chapter briefly summarizes the results and discusses the implications of 

this study, while considering possible future directions.  
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CHAPTER 2 

INFLUENCE OF ROUGH HANDLING ON BLUE ORCHARD BEE (OSMIA 

LIGNARIA) NEST ESTABLISHMENT1

 

 

Summary 
 

 The blue orchard bee, Osmia lignaria Say, is a promising alternative pollinator for 

fruit trees.  Commercial O. lignaria populations can be sustained in agricultural settings 

and have been known to increase by two-fold or more each year.  However, some 

females fail to establish at the provided nesting sites, which may be attributable to pre-

nesting dispersal.  Dispersal has been repeatedly found to increase when O. lignaria 

populations were placed in orchards as loose cocoons (extricated from their nests), which 

subjects pre-emergent bees to excessive handling.  In this study we addressed the 

hypothesis that excessive or rough handling of pre-emergent adult blue orchard bees 

results in a decreased number of females that establish nests at the site from which they 

emerged.  We tested this hypothesis by severely shaking bees (as a proxy for rough 

handling) and subsequently monitoring nest establishment of shaken bees, as well as 

unshaken bees.  There was no significant difference in the number of shaken and 

unshaken females that nested.  Based on the results of this experiment, rough handling 

does not discourage nest establishment.  This is welcome news for O. lignaria mass 

producers who desire to control pathogens and parasites by removing healthy bees in 

their cocoons from their nests for winter storage. 

                                                
1 Coauthored by Cory A. Vorel and Theresa L. Pitts-Singer 
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Introduction 

 
According to a recent report from a national scientific council, pollinators are 

imperiled and thus, the ability to commercially produce certain fruits and vegetables may 

be in jeopardy (National Research Council, 2007).  One recommendation afforded by this 

council to alleviate the dependence and burden of pollination services provided by honey 

bees, Apis mellifera L., is to develop other reliable sources of pollination.  For some tree 

fruit crops, the blue orchard bee, Osmia lignaria Say, is a very effective pollinator.  

These bees have a strong preference for fruit tree flowers and facilitate cross-pollination 

by frequently moving between trees.  Also, they are able to forage during weather 

conditions that are not amenable to other bees.  Compared to A. mellifera, fewer O. 

lignaria are required per hectare to maximize crop yield (Bosch and Kemp, 2002).  

Because of their superior pollination efficiency and the ongoing problems faced by 

commercial A. mellifera populations, interest in the use of O. lignaria as pollinators of 

commercial orchards has increased in recent years. 

 Osmia lignaria is a solitary bee that constructs nests within existing cavities, such 

as holes left by beetles in wood.  In the spring, female bees create nests consisting of 

linear rows of cells.  Each cell is provisioned with pollen and nectar, upon which an egg 

is deposited.  Adjacent cells are separated by mud partitions, and mud is also used to plug 

completed nests (Torchio, 1989).  Brood develop throughout the summer, becoming 

adults by late fall.  They then enter winter diapause as adults in cocoons and emerge from 

cocoons the following spring (Torchio, 1989; Kemp et al., 2004).  In agricultural settings, 

O. lignaria readily nest in cavities in provided wooden blocks (Bosch and Kemp, 2001).  
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Females tend to nest gregariously, and are attracted to previously used nests (Torchio, 

1976, 1981).  Each female produces several nests, laying an average of two to four 

female eggs and five to eight male eggs in each nest (Bosch and Kemp, 2002).  It follows 

that if a minimum of 50% of the released population successfully reproduces within the 

orchard, then O. lignaria populations can be sustained in agricultural settings.  In fact, 

commercial populations have been known to increase by two-fold or more each year 

(Torchio, 1985; Bosch et al., 2006).  However, in each population released, some females 

fail to establish at the provided nesting sites, and low establishment is the main factor 

limiting O. lignaria population growth in commercial systems (Bosch and Kemp, 2002).  

Low establishment in Osmia can be in part attributed to post-emergence mortality that 

results from natural causes (e.g., vertebrate predation or extreme weather) or from 

consequences of suboptimal management that lead to bees emerging in a weakened 

condition (Tepedino and Torchio, 1982; Bosch, 1994a; Bosch and Kemp, 2004; Bosch, 

2008). 

However, an unknown fraction of poor establishment is attributable to pre-nesting 

dispersal.  Dispersal of pre-nesting females appears to increase when populations are 

released in areas with inadequate bloom, i.e., floral resources (Maeta, 1978).  In addition, 

dispersal has been repeatedly found to increase when O. lignaria populations were placed 

in orchards as loose cocoons (extricated from their nests), rather than as cocoons still in 

natal nests (Maeta, 1978; Torchio, 1985; Bosch, 1994b).   No study has yet explained 

why the release of bees as loose cocoons results in their low retention at commercial 
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sites.  The exposure of the bees to an intolerable amount of mechanical stress caused by 

manipulation (nest dissection and handling of loose cocoons) is one hypothesis.    

In this study we addressed the hypothesis that excessive or rough handling of pre-

emergent adult blue orchard bees results in a decreased number of females that establish 

nests at the site from which they emerged.  We tested this hypothesis by severely shaking 

bees as a proxy for rough handling and subsequently monitoring nest establishment of 

shaken bees, as well as unshaken bees.   

 
Materials and Methods 

 

Blue orchard bees were collected from wildlands and rural areas in Northern Utah 

by trap-nesting, a procedure whereby wooden blocks are placed in trees or in manmade 

shelters in areas where bees can easily find and use them.  Each block contains several 

drilled holes that form nest cavities into which paper drinking straws are inserted.  Bees 

construct nests in these straws, which can then be removed for easy monitoring and 

manipulation.   

Bee-filled trap-nest straws collected for this study were taped to 8 x 10 plastic 

boards and placed in plastic storage boxes.  Periodically, x-rays of the nests in straws 

were made to monitor bee development.  One week after all of the bees reached 

adulthood, they were moved to a 4°C cold room for wintering, according to standard 

protocol (Bosch and Kemp, 2001).  Over the winter months, straws were x-rayed to 

determine the number, location, and sex of adult bees in each nest.  The outside of the 

straws was marked to indicate where bee cells were positioned and what sexes were 
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present in them.  Straws were sliced longitudinally along one side to allow access to nest 

contents for parasite removal and later monitoring of bee emergence.  Bees from all 

collection sites were then divided equally into two treatment groups, “shaken” and 

“unshaken,” and returned to plastic storage boxes kept in the cold room. 

In April 2007 and 2008, 10 wooden shelters (61 cm x 61 cm x 61 cm) were placed 

in a River Heights, Utah apple orchard.  Shelters were evenly spaced to create two rows 

(approx. 24 m apart) of five shelters (approx. 15-20 m apart), with all of the shelter 

openings facing southeast.  Ten wooden nesting blocks, each having 49 – 56 drilled 

holes, were placed in each shelter to provide nesting sites for bees. Paper drinking straws 

of the same diameter as the holes were inserted into all of the nesting block holes. 

 Each year the progression of apple bloom was monitored to predict an appropriate 

time to place the wintered bee nests in the orchard (from this point forward referred to as 

“bee release”) and to record the number of flowers available to foraging bees (Fig. 2-1).  

Five trees of each variety being monitored were randomly chosen every third day 

throughout the experiment.  Five branches on different parts of each tree were selected 

and the number of flowers in each of four designated categories was counted.  The 

categories were tight bud, pink bud, open flower, and flowers with petals dropped.  In 

2007, three varieties were monitored (those closest to the nest shelters, covering an area 

of approx. 72 x 74 m).  Those three varieties happened to be strongly biennial and, 

therefore, bloomed heavily in 2007, but sparsely in 2008.  Consequently, we expanded 

our bloom monitoring in 2008 to include seven varieties, the three varieties monitored in 

2007 plus four more varieties located further from the shelters.  All trees monitored in 



18 
 
2007 ranged in distance from 1 to 113 m from the shelters (covering an area of approx. 

140 x 170 m).  Daily maximum and minimum temperatures and precipitation for Utah 

State University (2 km from the orchard) were downloaded from the Utah Climate Center 

website (http://climate.usurf.usu.edu/products/data.php, accessed 3 February 2009) (Fig. 

2-1).   

Ten days prior to the projected date of bee release (determined by monitoring 

bloom), the plastic boxes containing nests were removed from the cold room.  For 

simulation of a single bout of “rough handling,” the box containing the bees that had been 

designated as the “shaken” treatment group was placed in a shaker incubator (Innova 

4230, Brunswick Scientific, Edison, NJ) set at 25°C and shaken at 200 rpm for 2 min.  

During this time, the plastic box containing the “unshaken” treatment group remained at 

room temperature.  The boxes were then returned to the 4°C cold room.  This procedure 

was repeated three days prior to bee release.  

Bees in nests from each treatment group, shaken and unshaken, were divided 

between the 10 shelters, such that each shelter received a similar number of females.  The 

nest straws of the shaken bees were placed in the top rows of holes of a wooden block 

situated in the top row of blocks in each shelter. The nest straws of the unshaken bees 

were similarly placed in a block adjacent to the shaken bees.  Any remaining holes in 

these blocks contained new, unused straws, as did the other eight blocks in each shelter. 
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Figure 2-1. Maximum and minimum temperatures, precipitation, and proportion of open 
apple flowers in 2007 (A) and 2008 (B).  Also, the number of nests initiated daily by 
shaken, unshaken, and unpainted Osmia lignaria females in 2007 (total no. nests initiated 
= 1959) and 2008 (total no. nests initiated = 442). 
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Beginning the day after the nest straws were placed in the shelters, bees were 

checked twice daily (approx. 1000 – 1200 hr and 1300 – 1500 hr MST) for emergence 

from the cocoon.  Each nest straw was carefully removed from the block, and because the 

straws had previously been cut longitudinally, it was easy to peek inside and look for 

bees that had emerged or were in the process of emerging.  If a female was chewing out 

of the cocoon or had already emerged, she was anesthetized with CO2 sprayed from a 

hand-held Air Dr.® air blaster (Digital Innovations, Arlington Hts., IL).  Two dots of 

paint were placed on the bee’s thorax:  one dot was either red (shaken bees) or green 

(unshaken bees); the second dot indicated the female’s shelter of release.  After paint-

marking, each female was returned to the same cell position in the nest, which allowed 

her to crawl out through the straw in a natural manner when she was ready to do so.  

Some females emerged and left the nest undetected and, therefore, were not painted 

(Table 2-1).   

 
Table 2-1.  For 2007 and 2008 for each treatment group, the number of females that 
emerged from natal nests, the number of females that were paint-marked, the estimated 
number of paint-marked females that nested in the provided shelters, and the percent of 
established females (paint-marked bees that nested).  

 2007 2008 
 unshaken shaken unshaken shaken 
No. females released 319 317 429 428 
No. females paint-marked 238 254 339 347 
No. paint-marked females established 142 144 9 15 
% paint-marked females established  60% 57% 3% 4% 

 

Painted females began investigating holes in the wooden nesting blocks, in search 

of a nest site, 7-10 days after the initial bee release.  Observations of the shelters for 

nesting activity began the day after painted females were first seen checking holes.  At 
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this time, early observations of nesting bees occurred simultaneously with the paint-

marking of late-emerging bees as described above; observations continued once paint-

marking was completed.  To monitor nesting bees, each shelter was observed for 20 

minutes in the morning (approx. 1000 – 1200 MST) and again in the afternoon (approx. 

1300 -1500 MST).  A bee was considered to have established a nest only if she was 

actively provisioning a cell with pollen.  When an established bee was identified, the 

colors painted on the bee and the location of her nest were recorded.  Nesting activity of 

unpainted bees was also recorded (Fig. 2-1).  In 2007, nesting activity was recorded until 

the orchard was sprayed with insecticide, allowing for 18 days of nesting observations 

(Fig. 2-1A).  In 2008, nesting activity was recorded until bees ceased initiating new nests, 

for a total of 19 days of observations (Fig. 2-1B). 

Because each female bee creates multiple nests, and because bees of the same 

treatment and shelter received the same color paint-marks, we could not know 

definitively whether similarly marked bees initiating new nests had been previously 

observed at the same shelter.  However, we were able to estimate the number of nesting 

females (Table 2-1).  This was done by evaluating the paint-marks of the female seen 

creating each nest; if adjacent nests were created successively by females marked with 

the same colors, it was assumed that all of the nests were created by the same female.  

ANOVA (Proc GLM, SAS 9.2) was used to determine if treatment or year had an effect 

on 1) the proportion of paint-marked females released at each shelter that nested at any of 

the provided shelters in the orchard and 2) within each shelter, the proportion of paint-

marked females released at each shelter that nested at that shelter. 
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Results 
 
 

 The maximum and minimum daily temperatures, the centimeters of daily 

precipitation, and the proportion of flowers that were open and available for foraging 

during the study period were different in timing, but not pattern, for the two years of the 

study (Fig. 2-1).  In 2007, the trees began blooming on 25 April.  In 2008, bloom came 

later, on 14 May.  In both years, several days with warm, dry weather and many open 

flowers were accompanied by numerous nest initiations.  The dry days were followed by 

several days of colder, wetter weather coinciding with a decline in the number of open 

flowers and as well as nesting activity.  Although drier, warmer days were subsequently 

observed, the number of available flowers and nest initiations continued to decline.  

Nesting by all bees, painted and unpainted (whether released by us or naturally 

occurring), took place for the same amount of time in both years (Fig. 2-1). 

Fewer bees were released in 2007 than in 2008, but a larger percentage of bees 

established nests in 2007 than in 2008, for both unshaken and shaken females (Table 2-

1).  In 2007, the mean proportion of shaken females nesting at any of the 10 available 

shelters was similar to the mean proportion of unshaken nesting females (Fig. 2-2).  In 

2008, fewer females were observed nesting, but the proportions of shaken and unshaken 

females were again similar (Fig. 2-2).  A significant difference was found between the 

two years in the proportion of females paint-marked at each shelter that nested at any of 

the shelters in the orchard (F = 55.82, df = 1, 37, P < 0.01), but there was no treatment 

effect (F = 0.05, df = 1, 37, P = 0.83). 

 



23 
 

Year

2007 2008

M
ea

n 
Pr

op
or

tio
n 

of
 F

em
al

es
 N

es
tin

g

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Shaken 
Unshaken 

 
Figure 2-2.  The mean proportion (±SE) of shaken and unshaken paint-marked Osmia 
lignaria females that nested at any of the shelters within an apple orchard in 2007 and 
2008. 
 

In examining the proportion of females paint-marked at each shelter that nested at 

the shelter from which they were released, once again shaken and unshaken females did 

not differ from each other in either 2007 or 2008, but the mean for both treatment groups 

decreased from 2007 to 2008 (Fig. 2-3).  The proportion of females paint-marked at each 

shelter that nested at that shelter was significantly affected by year (F = 24.93, df = 1, 37, 

P < 0.01), but not by treatment (F = 0.03, df = 1, 37, P = 0.87). 
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Figure 2-3. The mean proportion (±SE) of shaken and unshaken paint-marked Osmia 
lignaria females that nested at the shelter from which they were released in an apple 
orchard in 2007 and 2008. 

 

Discussion 
 
 

Philopatry, as defined here for female bees, is the tendency for a female bee to 

nest in the same area as the natal nest from which she emerged, and is believed to be an 

important influence on female bees during nest site selection (Malyshev, 1936; Michener 

et al., 1958; Yanega, 1990; Potts and Willmer, 1997; Soucy, 2002; Bischoff, 2003).  It 

has been suggested that bees remain in natal areas to avoid a potentially costly search for 

resources such as suitable nest sites and mates (Michener et al., 1958; Bischoff, 2003).  

Some degree of philopatry is expected in Osmia lignaria populations.  Not only are these 
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gregarious bees attracted to previously used nests (Torchio, 1976, 1981; Pitts-Singer, 

2007), but because they spend the winter as adults in cocoons, they are able to emerge 

from their natal nests relatively quickly in response to improving environmental 

conditions in the spring.  At the time of O. lignaria adult emergence, foraging resources 

and suitable pre-existing nest sites may be limited, so if these resources are available near 

the natal nest, blue orchard bees should tend to stay, thus conserving energy and 

maximizing brood production.  

While Osmia lignaria populations have often been significantly increased in 

orchards, establishment of enough females to maintain commercial populations through 

successful brood production is considered one of the main factors limiting population 

growth in agricultural environments (Bosch and Kemp, 2002).  Despite their predicted 

philopatric tendency, perhaps female bees are compelled to disperse because they sense 

an unacceptable level of competition for resources or peril from parasites, predators, or 

disease.  It is also possible that some O. lignaria in a population are simply genetically 

prone to disperse.  Additionally, a higher than expected level of post-emergence mortality 

could be mistaken for dispersal.   

  Our study considered a mechanical factor as a dispersal-inducing mechanism.  

Excessive handling of commercial populations prior to emergence, such as removal of 

cocoons from nests, rough handling of nests or loose cocoons, and shipment of nests or 

cocoons, may encourage females to disperse from the release site after emergence.  Our 

results show that females subjected to excessive shaking prior to emergence created the 

same mean proportion of nests in the orchard and shelters as females that were not 
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shaken.  Also, there was no difference between shaken and unshaken females in their 

likelihood to nest at the same shelter from which they emerged.  Therefore, our 

experiment affords no evidence that rough handling of pre-emergent bees influences 

future nest establishment at provided shelters.  An alternative explanation may be that 

during the process of emerging out of the natal nest and crawling through cocoons and 

nest debris, females are exposed to some unknown cues that affect their philopatric 

response, which are lost when bees are released as loose cocoons.  

The similar nesting response of the bees in the two treatment groups also begs the 

question of whether our post-shaking methodology obscured the treatment.  We subjected 

the shaken group of bees to what we considered an excessive amount of mishandling 

(two bouts of violent shaking).  The shaken group undoubtedly sensed the effects of the 

treatment, despite the fact that both treatment groups eventually had to be handled to 

place nests in the orchard and to paint female bees.  It is possible that the level of 

handling involved in setting up the experiment and in paint-marking the bees surpassed 

the threshold of handling that would result in bee dispersal, causing the unshaken group 

of bees to be just as unlikely to nest at the release site as the shaken group.  The use of 

CO2 to anesthetize females for paint-marking also may have influenced nest 

establishment.  However, Guédot et al. (2009) used CO2 to anesthetize actively nesting 

O. lignaria females for paint-marking in a homing ability experiment, and this technique 

did not seem to affect the ability of bees to return to their nests after being displaced up to 

1200 m.  Paint-marking was important in the current study; not only was it necessary for 

discerning shaken from unshaken bees, but also for precisely identifying which observed 
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O. lignaria were released for the experiment and which came to the orchard from the 

surrounding environment.  An alternative procedure, such as allowing bees to emerge 

under laboratory conditions, to be paint-marked in a cold room, and then to be 

transported to the orchard for mass release, is known to be even more disruptive to the 

bees (Pitts-Singer, personal observations).  Except for the treatment, our methods were 

designed for minimal disturbance and stress, with natural emergence from natal nests.  In 

fact, the estimated percent establishment in 2007 was at a level considered to be 

sustainable; because every established female in 2007 should have laid two to four 

female eggs, the brood produced should have been of equal size to, or larger than, the 

parental stock. 

The disparity between the two years of study, both in the percent O. lignaria 

establishment and in the number of wild, non-experimental bees that were present, is 

perplexing, especially because the environmental conditions were similar.  The orchard 

where this research was conducted contains several varieties of fruit trees that bloom on 

both annual and biennial cycles.  Our nest shelters happened to be directly surrounded by 

strongly biennial varieties of apple trees, which bloomed heavily in 2007, but sparsely in 

2008.  However, O. lignaria can forage on a variety of flowering plants (Bosch & Kemp, 

2001), and bees were seen foraging on wildflowers within the orchard in addition to other 

fruit tree blossoms.  In 2008, bees were also observed collecting pollen and nectar from 

distant, abundant apple and fruit trees within the orchard compound (approximately 200 x 

300 m2).  Females may have had to travel further for flowers in 2008 than in 2007, but 

the distance was well within the 1200 m homing distance demonstrated for O. lignaria 
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(Guédot et al., 2009).  Therefore, it is not likely that bees dispersed in 2008 due to lack of 

local floral resources or inability to orient back to their nests after foraging trips. 

It is possible that fewer females established nests in 2008 than in 2007 due to 

increased mortality in 2008.  An unexplained three-fold increase in winter mortality was 

observed in 2008, compared to winter mortality in 2007.  If bees experienced higher 

mortality in winter 2008, it is possible that post-emergent bees also experienced higher 

mortality, resulting in fewer established nests that year.  Populations in both years 

included the progeny of wild bees from the same orchard.  Therefore, in both 2007 and 

2008, our experimental populations would be similar to wild populations.  This may 

explain why decreased nest establishment was seen in both experimental and wild 

populations in 2008; both may have experienced increased post-emergence mortality. 

Although we cannot be sure, one potential explanation for the observed 

differences in winter mortality for the two years could be the different timing for the 

arrival of spring in the two years.  Because warm temperatures came later in 2008 than in 

2007, both wild and experimental bee populations emerging in 2008 would have had a 2-

3 week longer overwintering period than populations emerging the previous spring, 

possibly increasing mortality in the 2008 experimental population.     

If large scale O. lignaria commercialization for pollination is to be successful, it 

is essential to determine how to maintain and increase their populations.  Based on the 

results of this experiment, rough handling does not discourage nest establishment.  This is 

welcome news for O. lignaria mass producers who desire to control pathogens and 

parasites by removing healthy bees in their cocoons from their nests for winter storage.  



29 
 
Continued research should address the possibility that when bee cocoons are removed 

from their nests, they are limited in their exposure to cues within the natal nest that are 

important for future nest selection.  Many bees use olfactory cues to locate previously 

used nests (Michener, 1960; Butler, 1965; Cardale, 1968; Batra, 1978; Parker et al., 1983; 

Pitts-Singer, 2007), and bee managers should consider how such cues are used in nest 

establishment and recognition.  
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CHAPTER 3 

ATTRACTION TO OLD NEST CUES DURING NEST SELECTION BY THE 

SOLITARY BEE MEGACHILE ROTUNDATA (HYMENOPTERA: 

MEGACHILIDAE)2

 

 

Summary 
 

The alfalfa leafcutting bee, Megachile rotundata F. (Hymenoptera: 

Megachilidae), is an important pollinator for the commercial production of alfalfa seed.  

However, poor nest establishment is an ongoing problem for bee managers.  Megachile 

rotundata are solitary, yet gregarious bees that nest in pre-existing cavities.  When 

selecting nest cavities, M. rotundata are attracted to previously used nests.  Nests consist 

of a linear series of cells, each containing several components that may serve as cues for 

nesting females.  In the current study, we sought to:  a) determine if there is a preference 

for cells that previously held male or female conspecific bees, b) verify attraction to 

conspecific whole nest cells, and c) determine which individual nest components of a cell 

are attractive to nesting females.  In a series of cage and open field experiments, M. 

rotundata females were allowed to initiate nests in blocks containing whole cells or 

individual cell components from old nests.  Their nest choices were compared using 

ANOVA and REGWQ.  Females were attracted to whole cells from old nests in both 

cage and open field studies.  They were equally attracted to male and female cells.  Also, 

they were equally attracted to whole cells from conspecifics and from another megachilid 

bee, Osmia lignaria.  In cages, they were equally attracted to all cell components.  
                                                
2 Coauthored by Cory A. Vorel and Theresa L. Pitts-Singer 
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However, in the open field, females preferred some cell components over others.  These 

results provide a foundation for future studies to identify potential chemical lures to aid in 

the retention of bee populations at commercial nest sites.  

 
Introduction 

 
 

Since the 1960’s, the alfalfa leafcutting bee, Megachile rotundata F. 

(Hymenoptera: Megachilidae), has been an important pollinator for the commercial 

production of alfalfa seed (Bohart, 1957; Stephen and Torchio, 1961; Richards, 1984; 

Torchio, 1987).  Alfalfa leafcutting bee managers in the United States struggle to 

maintain M. rotundata populations, resulting in the annual augmentation of these 

pollinators.  Maintenance of bee populations is hampered by chalkbrood (fungal) disease, 

parasitism, emergence of a summer generation, and immature mortality resulting from 

unknown causes (Richards, 1984; Frank, 2003).  Furthermore, field studies indicate that 

the number of female bees that establish nests at commercial sites falls far short of the 

number of female bees released (100,000-150,000 bees/ha) (Peterson et al., 1992; Pitts-

Singer, unpublished).  The causes of poor M. rotundata nest establishment have not been 

elucidated, but at least two explanations are possible.  First, the number of bees released 

in a field is excessive relative to nesting and floral resources, prompting bees to leave the 

overcrowded commercial site.  Second, commercial nesting sites are not as attractive as 

natural nesting sites, and bees leave to find more preferable nesting substrates.  If the 

number of bees released in a field is appropriate for the resources available, then it would 
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be important to assure that those bees remain at commercial sites where they can 

reproduce to create a sustainable population. 

Megachile rotundata is a solitary, cavity-nesting bee that nests in aggregations.  

Female bees construct nest cells within existing cavities, such as those left in wood by 

beetles or holes and grooves in manmade structures.  In agricultural settings, females 

readily nest in cavities made in large boards made of polystyrene or wood (Richards, 

1984; Frank, 2003).  In the summer, females create nests consisting of linear rows of 

cells.  Each cell is surrounded with cut leaf pieces and provisioned with pollen and 

nectar, upon which an egg is deposited.  Completed nests are plugged with leaf discs 

(Richards, 1984).  Some brood develop to adulthood in 6-8 weeks.  Other brood develop 

only to the prepupal stage (fifth instar) before entering winter diapause, completing 

development the following summer before emerging from cocoons as adults.   

When selecting a nest, M. rotundata may use visual orientation cues (Guédot et 

al., 2005a, 2006, 2007), physical properties of nesting substrates, and both long- and 

short-range chemical cues.  It is known that M. rotundata females are attracted to old nest 

materials from a previous season, indicating that at least some short-range chemical 

(olfactory) cues persist over time.  Megachile rotundata will readily reuse cavities due to 

this attraction (Buttery et al., 1981; Parker et al., 1983; Fairey and Lieverse, 1986).  The 

attraction to unidentified odors of old nest materials has been addressed in laboratory 

assays that revealed attraction to certain nest components (Pitts-Singer, 2007).  Other 

previous studies identified volatile compounds (caryophyllene epoxide and a mixture of 

caryophyllene epoxide, caryophyllene, and 2-phenylethanol) present in old M. rotundata 
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cells, which were tested for their attraction in the field but were not found to be 

significantly attractive (Buttery et al., 1981; Parker et al., 1983). 

In addition to reusing old conspecific nests, M. rotundata occasionally build nests 

in cavities that have previously been used by other solitary bees, such as the blue orchard 

bee, Osmia lignaria (Hymenoptera: Megachilidae) (Vorel, personal observation).  It is 

assumed that M. rotundata’s use of old conspecific nests is based on attraction, but the 

use of old O. lignaria nests is based on opportunity.  However, this has never been 

formally tested.   

It is possible that the reuse of nesting boards for attracting bees could aid in the 

retention and expansion of commercial M. rotundata populations.  However, use of old 

materials may increase the incidence of parasites and pests, as well as enhance the spread 

of bee diseases (Bohart, 1971; Vandenberg and Stephen, 1982; Bosch and Kemp, 2001; 

Pitts-Singer, 2004).  Rather than simply reusing old materials to lure bees to nest cavities, 

it may be possible to increase the attractiveness of new nesting materials in commercial 

sites by identifying attractive olfactory cues and using them to develop lures.  

Cues could originate from several components found in old M. rotundata nests.  

A pre-nesting female may detect these cues as she explores many empty cavities before 

choosing one as her nest.  Nest components are provided in the previous year by females 

that made nests and by brood that developed in them.  Contributions of a female bee 

include the individual nest recognition cue, possibly originating in the Dufour’s gland, 

that she applies to the inside of the nest cavity once she has accepted it (Guédot et al., 

2005b) and the leaf pieces she uses as nest partitions, linings, and end caps.  She also 
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accumulates pollen and nectar before laying an egg.  The developing bee contributes 

feces and a cocoon to the collection of nest components.  If the bee does not complete 

development, it leaves behind remnants of pollen-nectar provisions.  Any of these nest 

components could contain olfactory cues that cavity-seeking females find attractive and 

meaningful. 

Pitts-Singer (2007) found in laboratory assays that M. rotundata females were 

significantly attracted to year-old conspecific whole nest cells, as well as two of the 

individual nest components, leaf pieces and feces.  However, laboratory bioassays may 

not reflect choices that would be made in the field by active, mated, nest-seeking females.  

The present work seeks to expand upon the results of the laboratory assay by working 

under settings that more accurately reflect natural conditions.  Objectives were to give 

bees an array of choices and allow them to initiate nests to: a) determine if there is a 

preference for cells that previously held male or female conspecific bees, b) verify 

attraction to conspecific whole nest cells, and c) determine which individual nest 

components of a cell are attractive to nesting females.  Verifying the attractiveness of 

certain old nest materials to female bees would provide information that directs future 

studies to identify potential chemical lures to aid in the retention of bee populations at 

commercial nest sites. 
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Materials and Methods 
 
 

Nest Initiation in Field Cages 

Studies were conducted during the summers of 2007 and 2008 in field cages.  

Nests of M. rotundata were obtained from Logan, Utah populations.  Bees from the 

previous year had nested in holes containing removable paper straw inserts.  These nest-

filled straws were collected and x-rayed (Stephen and Undurraga, 1976).  By referring to 

the x-rays, it was possible to see where individual cells were in the nest, allowing each 

nest-filled straw to be cut into segments, each containing one bee cell.  These cells were 

individually placed into vials and kept at 4°C from early October until June.  In June, the 

cells were incubated at 29°C until the bees completed development and emerged from 

their cocoons.  Because each cell was in a vial, it was possible to keep vacated male and 

female cells separated for later use in experiments.   

Four field cages (length x width x height = 6.1 m x 6.1 m x 1.8 m) were erected in 

a blooming alfalfa field in Logan, Utah.  A simple shelter (Fig. 3-1) made of plywood 

and plastic pipes was placed in each cage, facing southeast to capture the warmth of the 

early morning sun.  Polystyrene blocks (width x height x depth = 7 cm x 8 cm x 9 cm) 

(Beaver Plastics, Edmonton, Canada) with holes (0.5 cm diameter, 9 cm depth) in them 

were attached with Velcro (Velcro USA, Inc., Manchester, NH) in a horizontal line 

across the face of the shelter, approximately 10 cm apart.  Each block was covered 

entirely with aluminum tape, except for 16 holes (4 x 4) in the face of the block.  A paper 

straw (0.5 cm diameter, 9 cm length) was inserted into each hole; each straw contained a 

cue as assigned by the experimental design (described below).  
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Figure 3-1.  Shelter used for M. rotundata nesting cue attraction studies.  The back panel 
and the roof were made of plywood.  Legs and cross-pieces were made of plastic pipes.  
Polystyrene nesting blocks (small rectangles in center of panel) were attached with 
Velcro.  The number of nesting blocks was three or six, depending on the experiment. 
 

Trials were conducted by placing a different nesting cue in each block, with the 

same cue in the back of every hole (straw) of a block.  Bees were released inside the 

cage, and nest initiation was recorded as described below.  When one trial had ended, the 

same field cage could be used for another trial, but with a different arrangement of cues 

and a different set of released bees. 

 
Attraction to Whole Female and Male  
Conspecific Cells 
  

These trials were conducted to determine if nesting females have a preference for 

cells that previously held male or female conspecifics, whilst verifying attraction to 

conspecific whole nest cells in a closed system.  The cues used for these trials were entire 

individual M. rotundata cells, which would include the segment of paper straw 

surrounding the cell and bearing a nest recognition cue, leaf pieces, a cocoon, and feces.  
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The cells were collected the previous year, and it was known whether a male or a female 

bee had emerged from each cell.  For these trials, three blocks were attached to each 

shelter.  One block had a female cell placed in the back of each hole before adding new 

paper straws to the holes, in front of the cell.  A similar arrangement of male cells and 

straws was made in another block.  The final block only had paper straws in the holes; 

there were no bee cells (hereafter referred to as ‘blank’).  Twelve trials were conducted.  

The three blocks were arranged differently for each trial, so that each of the six possible 

arrangements was used twice. 

Fifteen females were paint-marked with enamel paint at room temperature 

(approximately 22ºC).  All females were marked with the same color, and a different 

color was used for each trial.  Thus, we were ensured that observed females were from 

the current trial and not from a previous trial in the same cage or unintentionally 

introduced as we were entering and exiting the cage.  Paint-marked females and 15 males 

were released in each cage where they could mate and forage freely on the blooming 

alfalfa.  Usually 2-3 days after bee release, females had commenced nest-building at the 

blocks.  Each nest hole was examined daily with an otoscope to look for evidence that a 

female had begun to build a nest.  Because females occasionally initiate a nest by lining a 

hole with leaf pieces but then they abandon it, a female was considered to have chosen a 

nest only when she began provisioning her first cell with pollen and nectar.  When a 

provisioned nest was identified, its location was recorded.  Once the female creating this 

nest returned after a foraging bout, she was caught and removed from the cage.  The nest 

also was removed and replaced with another straw of the same type (male cell, female 
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cell, or blank).  Nesting activity was checked 2-3 times daily (1000 – 1800 hrs MST), 

until every female had chosen a nest hole or until no new nests had been initiated for two 

days.  Frequent nest monitoring and prompt removal of nesting females were performed 

in an effort to reduce the gregarious nesting behavior of these bees as much as possible. 

 
Attraction to Individual Nest Components in  
Field Cages 
 

These trials were conducted to determine, in a closed system, which individual 

nest components are attractive to nesting females.  The cues used for these trials were 

individual components of M. rotundata nests, representing every cue that a bee could 

experience throughout its development in the natal nest.  Nest components used were:  

female cocoon, feces, nest straw, pollen-nectar provision (hereafter referred to as 

‘provision’), and leaf pieces.  Nest components had been collected in the previous year 

after the adults had emerged from the nest, with the exception of provisions, which were 

collected from the previous year’s cells in which eggs had not been deposited or the eggs 

failed to hatch.  Each cue was used in an amount equal to one cell’s worth, on average, of 

that nest component (Table 3-1).  Cues were attached to corks using hot glue, and the 

corks were placed in the back of paper straws, which were then inserted into nesting 

blocks.  Six nesting blocks were used for each trial.  Five blocks each contained a 

different nest component.  Inserted into each hole of the sixth block was a paper straw 

with a cork in the back.  The cork had a dab of hot glue placed on it, but no nest 

component (hereafter referred to as ‘blank’).  Fourteen trials were completed, with the 

blocks placed in a different arrangement for each trial. 
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As in the above trials, 15 paint-marked females and 15 males were released in 

each cage and monitored for nest-building, the location of nest initiation was recorded, 

and newly nesting bees and their nests were removed.  Once straws with nests were 

removed, they were replaced with straws containing cues of the same type. 

 
Table 3-1.  Amount of each nest component used in M. rotundata cue attraction studies. 
Component Amount 
Leaf Pieces 0.030 ± 0.005 g 
Female Cocoon 1 cocoon 
Feces 0.010 ± 0.005 g 
Provision 1 provision 
Straw Pieces 0.025 ± 0.005 g 
 

Nest Initiation in an Open Field 

The following studies, using either whole cells or individual cell components as 

nesting cues, were conducted in Logan, Utah, in an open alfalfa field setting; i.e., bees 

were not held in cages.  Megachile rotundata were not released en masse for these 

experiments.  Approximately 100 females, managed as described above, were released 

slowly over the course of each experiment.  The majority of nesting females immigrated 

from the surrounding farming area, and as such their management history was not known. 

 
Attraction to Whole Cells of Conspecifics  
and of Another Megachilid Species 
 

To verify attraction to conspecific whole nest cells in an open system, in 2007 six 

shelters (Fig. 3-1) were aligned north to south and facing southeast on the edge of an 

alfalfa field in Logan, Utah.  Three polystyrene nesting blocks, as described above, were 

attached to each shelter.  One block had an entire M. rotundata female cell (from which a 
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female had emerged in the previous year) placed behind a new paper straw in each hole.  

One block had an entire O. lignaria female cell (from which the bee had emerged) placed 

behind a new paper straw in each nest hole.  One block had a new paper straw, but no bee 

cell, in each nest hole.  Each shelter had a different arrangement of blocks, such that each 

of the six possible configurations was used. 

Nesting activity was checked twice daily (approx. 1000 – 1200 hrs and 1600 – 

1800 hrs MST).  If a bee had begun provisioning a nest hole with pollen and nectar, the 

date and location of the nest were recorded, and the straw and cue, if applicable, were 

replaced.  Nest-building was monitored daily from 25 June to 13 August 2007.  

 Unlike the field cage experiments, only the newly initiated nests (but not the 

nesting females) were removed in an effort to reduce the effect of M. rotundata’s 

predisposition for aggregative nesting.  Because nesting females were not removed from 

the experiment, they tended to repeatedly initiate nests in the same hole, even after their 

nest was replaced with a new straw.  To account for this in data analysis, consecutive 

instances of nesting in a hole were scored as the effort of only one nesting bee.  If a hole 

was vacant for 2 days and then reoccupied, this was scored as the effort of a new bee. 

 
Attraction to Individual Nest Components in 
 an Open Field 
 

This experiment was conducted to determine which individual nest components of 

a cell are attractive to nesting females in an open system.  In 2008, six shelters (Fig. 3-1) 

were aligned north to south and facing southeast on the edge of the same alfalfa field in 

Logan, Utah that was used in 2007.  Six polystyrene nesting blocks were attached to each 
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shelter, as described above.  The cues within the blocks were as described in the 

“attraction to individual nest components” cage study above.  Each shelter had a different 

arrangement of blocks, randomizing as much as possible so that two types of blocks were 

not next to each other more than twice. 

 Monitoring of nest-building activity and data compilation took place from 8 July 

– 25 July 2008 and were as described above in the “attraction to whole cells” field study. 

 
Statistical Analysis 

For each trial in a cage or for each shelter in the open field, the proportion of nests 

initiated for each cue choice (whole cell or individual component) or blank was 

calculated (i.e., the number of nests made in a particular block in comparison to the total 

number of nests made in that cage or shelter).  For cage studies, ANOVA (Proc GLM, 

SAS 9.2) was used to determine if the arcsine square root-transformed proportion of nests 

initiated was affected by nest cues present in the chosen nesting block, position of the 

block on the shelter, and trial (i.e., was there a difference between the different trials?).  

For field studies, ANOVA was used to determine if the arcsine square root-transformed 

proportion of nests initiated was affected by nest cues present in the chosen nesting 

block, position of the block on the shelter, and position of the shelter within the field.  

REGWQ was used for post hoc comparisons among factors determined to be significant 

by ANOVA (Proc GLM, SAS 9.2). 
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Results 
 
 

Nest Initiation in Field Cages 

Attraction to Whole Female and Male  
Conspecific Cells 
 
 The presence of a cue (either male or female) in the nesting block had a 

significant effect on the mean proportion of nests initiated (n = 176, F = 6.40, d.f. = 2,16, 

P < 0.01).  The position of the block at the shelter did not have a significant effect, nor 

did the interaction between cue and position of the block.  On average, bees initiated 

more nests in blocks containing female cells than blank blocks (P < 0.05) and also 

initiated more nests in blocks containing male cells than in blank blocks (P < 0.05) (Fig. 

3-2).  However, there was no significant difference in the mean proportion of nests 

initiated in blocks containing female or male cells (Fig. 3-2).  The 12 trials were not 

significantly different from each other. 

 
Attraction to Individual Nest Components in  
Field Cages 
 
The mean proportion of nests initiated in each block was significantly different 

depending on the position of the block on the shelter (n = 143, F = 4.29, d.f. = 5,35, P < 

0.01).  Post hoc comparison with REGWQ found that the mean proportion of nests made 

in the western-most block (0.06) was significantly less than the mean proportion of nests 

made in the two eastern-most blocks (0.55 and 0.50) (P < 0.05).  Although the holes 

containing feces and provisions had the most initiated nests, the cue present in the block 

had no significant effect on the mean proportion of nests made (Fig. 3-3), nor did the 
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interaction between the cue present and the position of the block have a significant effect.  

The results of the 14 trials were not significantly different from each other. 
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Figure 3-2.  From experiments in field cages, mean proportion (±SE) of nests initiated by 
M. rotundata females in blank blocks, blocks containing female cells, and blocks 
containing male cells serving as cues.  Bars with different letters indicate significant 
difference at α = 0.05. 
 
 
Nest Initiation in an Open Field 

Attraction to Whole Cells of Conspecifics  
and of Another Megachilid Species 

The whole cell cue present in the block had a significant effect on the mean proportion of 

nests initiated (n = 280, F = 10.81, d.f. = 2,4, P < 0.03).  Nest selection was not affected 

by the position of the block on the shelter, the position of the shelter in the field, or the 

interaction between the cue present in the block and the position of the block on the 

shelter.  Bees were more likely to initiate a nest in any block containing old bee nests of 
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either species than in a blank block (P < 0.05), but there was no difference in nesting 

between blocks containing O. lignaria cells and blocks containing M. rotundata cells 

(Fig. 3-4). 

 
Attraction to Individual Nest Components in  
an Open Field 

 A significant difference was found in the mean proportion of nests that M. 

rotundata females initiated in response to the individual nest component cue present in 

the chosen block (n = 737, F = 3.95, d.f. = 5,20, P < 0.02).  The position of the block on 

the shelter did not affect nest selection, nor did the position of the shelter within the field.  

Post hoc comparisons with REGWQ showed that the mean proportion of nests initiated in 

blocks containing pieces of used straw was significantly less than the mean proportions 

of nests initiated in blocks containing feces or female cocoons (Fig. 3-5). 
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Figure 3-3. From experiments in field cages, mean proportion (±SE) of nests initiated by 
M. rotundata females in blocks containing different nest components serving as cues.  No 
significant difference was found at α = 0.05.  
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Figure 3-4.  From experiment in open field, mean proportion (±SE) of nests initiated by 
M. rotundata females in blocks containing M. rotundata female cells, blocks containing 
O. lignaria female cells, and blank blocks.  Bars with different letters indicate significant 
difference at α = 0.05. 
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Figure 3-5.  From experiment in open field, mean proportion (±SE) of nests initiated by 
M. rotundata females in blocks containing different nest components serving as cues.  
Bars with different letters indicate significant difference at α = 0.05. 
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Discussion 
 
 

 This study was designed to determine what olfactory cues stimulate nest initiation 

by an individual M. rotundata female, and not what cues influence aggregation among 

members of a nesting population.  This is a difficult question to ask in the midst of other 

bees and other cues.  Therefore, our data were analyzed and results were interpreted 

while keeping in mind the impact of uncontrollable and unavoidable stimuli.  We also 

wanted to verify the general attraction of bees to old nest materials, which is known from 

long-standing anecdotes and results of tests that were less controlled than the ones we 

devised.  We found that, whether free-flying or enclosed in cages, M. rotundata females 

were more likely to nest in holes that contained old nest cells than in holes containing no 

cues.  While caged, the bees did not reveal a statistically significant preference for any 

particular nest component, but the caged bees’ preferences were still similar to those 

observed in an open field situation, where a preference for some of the individual nest 

components was revealed.  Although evidence from a previous cue attraction study 

performed under strict laboratory conditions yielded more definitive results, the evidence 

from free-nesting conditions underscores the complexity of bee behavior in the field. 

 Interestingly, M. rotundata females nested equally in response to old conspecific 

cells and cells of another megachilid species, O. lignaria.  This contrasts with the results 

of a similar study, in which O. lignaria females were allowed to choose between old O. 

lignaria cells, old M. rotundata cells, and new nests (Vorel and Pitts-Singer, 

unpublished).  Osmia lignaria chose to nest in old conspecific nests significantly more 

often than in old M. rotundata nests.  They also were more likely to nest in new nests 
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than in the old M. rotundata nests (Vorel and Pitts-Singer, unpublished).  It is possible for 

both species to encounter each other’s old nests in their environment.  However, due to 

size differences, M. rotundata can easily nest in cavities used by O. lignaria, and often 

do, but the reverse is not true.  This may help explain why O. lignaria would be more 

selective than M. rotundata.  The presence of an old nest, not necessarily conspecific, 

could signal a suitable nest site to M. rotundata; O. lignaria’s size limits its options for 

nest sites. 

Furthermore, Guédot et al. (2007) found that upon returning to the nest site, M. 

rotundata is more reliant on visual cues for nest location than O. lignaria.  If the 

attraction to old nests found in the current study represents a response to an olfactory cue, 

the difference in degree of species-specificity for M. rotundata and O. lignaria could 

indicate that O. lignaria relies more heavily on olfactory cues when selecting a nest, and 

M. rotundata is more reliant on visual cues. 

The differences in selectivity in these two bee species may be attributed to the 

duration of nesting season and abundance of resources available to bees during their 

nesting cycles.  Thus, biotic factors may influence female bees’ level of urgency and 

discrimination in choosing nest holes for optimizing their reproductive success.  Orchard 

bloom and spring weather experienced by O. lignaria are more ephemeral and less 

reliable than alfalfa bloom and summer weather experienced by M. rotundata.  That is, 

M. rotundata may not have to be as choosy as O. lignaria because they have a relatively 

long nesting season. 
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Megachile rotundata females were just as likely to nest in holes containing male 

conspecific cells as those containing female conspecific cells.  Only components 

produced by the developing bee, i.e., feces and cocoon, would potentially contain 

compounds that may differ depending on gender.  The fact that nesting females were not 

differentially attracted to male and female cells implies that the key compounds are 

present in cells of both sexes and are equally attractive upon detection, or that the 

attractive compounds are found in several nest components, including feces and cocoon. 

When old bee cells were divided into separate components that were tested as 

nesting cues, caged M. rotundata did not preferentially nest in response to any 

component(s).  However, in the field study, free-flying M. rotundata were more likely to 

nest in blocks containing feces or female cocoons than in blocks containing pieces of old 

nest straws.  Guédot et al. (2005b) found that a nesting M. rotundata female will mark the 

sides of her chosen nest, enabling her to distinguish it from among thousands of other 

nest holes.  This may explain why females in the current field study were least likely to 

choose a nest hole containing old straw pieces; they may have detected the nest 

recognition cue left by other bees (that created the nests from which the straw pieces 

were cut) and interpreted the hole as already being occupied.  In contrast, the presence of 

old feces or cocoons may have indicated to a nesting female that successful nesting had 

previously taken place in that hole, and therefore, the hole was suitable for new nesting. 

Results for attraction to nest components in the cage study may have differed 

from the results in the companion field study because of sample sizes as well as the 

gregarious nature of these bees.  Only 15 females were released in each of the cage trials, 
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and in most trials, not all of the released females initiated nests.  Therefore, the combined 

total of initiated nests for all 14 trials of the cage study was 143.  Additionally, in the 

cages there was a significant effect of the position of the cue at the shelters that may have 

diminished the revelation of a cue preference.  In the open field, a total of 737 nests were 

initiated, and this large number of data points may have made cue choice differences 

more apparent, especially because no effect of cue position was detected.  Also in the 

cage study, we carefully managed against aggregative nesting by removing females when 

they first started a nest; in the open field it was very difficult to control gregarious 

behavior.  In the absence of the confounding effect of gregarious behavior, nest choices 

made within the cages may have better represented females’ responses to nest initiation 

cues than choices made in the field.  Conversely, in the open field bees’ choices may 

have been influenced by the presence of other bees, and these results are more likely to 

represent a natural or commercial situation, where bees select nests in response to many 

stimuli.  Furthermore, nest initiations of only a few bees were examined in the cages for 

only a few days, while the choices of many bees were examined in the field over several 

weeks. 

In a previous study, predominant compounds from M. rotundata whole cell 

extracts were identified (Buttery et al., 1981), but in a follow-up field study did not prove 

attractive to nest-seeking M. rotundata females (Parker et al., 1983).  The identified 

compounds, caryophyllene epoxide and a mixture of caryophyllene epoxide, 

caryophyllene, and 2-phenylethanol, are common plant components.  Our study 

corroborated the results of Parker et al. (1983); bees were not attracted to plant chemicals 
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(i.e., leaf pieces in our experiment).  Because leaf pieces were not more attractive to the 

bees than any of the other components tested in our study, it is unlikely that these plants 

compounds play an important role in nest initiation.  Another laboratory bioassay, 

however, found that old leaf pieces and feces were attractive to M. rotundata females 

(Pitts-Singer, 2007).  Our study did agree with the previous laboratory study in the 

attractiveness of feces, which was very often chosen by females along with cocoons.   

The current study sought to separate the various components present in M. 

rotundata nests and compare their relative attractiveness.  Successful identification of 

feces and cocoon as attractive nest components in an open field situation has narrowed 

the scope of future attempts to identify attractive compounds that may serve as nesting 

cues.  It would seem that, in a natural nesting situation, the cue that M. rotundata females 

find attractive may be a particular suite of components rather than any individual 

compound.  In the continued search for attractive compounds, chemical analysis of all 

individual cues will be performed and may provide a chemical concoction that can be 

applied to new or clean nesting boards to enhance establishment at commercial sites and 

minimize the exposure to disease and parasitism. 

No study has yet attempted to answer why bees are attracted to certain cues 

during nest selection.  Are the recognition and discrimination of cues innate, or are they 

learned?  If they are learned, then when and how might this occur?  If learning occurs in 

the nest as an immature or as a pre-emerged adult, then bees would be exposed to all 

odors and textures of these nest components.  If the bees are removed from the nest 

cavity, as occurs in the commercial management system designed for M. rotundata, then 
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the chance to learn important cues may be disrupted or lost.  If we knew the importance 

of odor cues and their chemical identities, bee managers could provide cues for bees to 

encounter and learn at appropriate developmental times so that adult bees are able to 

orient more effectively and reliably at commercial nesting sites where those cues are 

made available. 
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CHAPTER 4 

EVALUATION OF THE PROBOSCIS EXTENSION REFLEX IN HYMENOPTERA 

OF VARIOUS SOCIAL LEVELS UNDER LABORATORY CONDITIONS3

Summary 

 

 
 

 Elicitation of the proboscis extension reflex (PER) is a tool used to further the 

understanding of the cognitive processes of social bees, such as honey bees, stingless 

bees, and bumble bees.  We were interested in answering questions about the cognitive 

processes of solitary bees by using the same laboratory procedures that are used for 

honey bees.  We investigated the use of various PER-elicitation procedures with several 

Hymenoptera representing different levels of sociality and domestication.  We predicted 

that eusocial Hymenoptera would be most likely to extend their proboscises in response 

to a reward stimulus touched to their antennae.  By fully or partially restraining their 

bodies but not their heads, we attempted to elicit the PER from honey bees, 

yellowjackets, bumble bees, sweat bees, blue orchard bees, alfalfa leafcutting bees, and 

sunflower leafcutting bees.  The eusocial bees and wasps responded to a drop of sucrose 

touched to their antennae by extending their proboscises and glossae, respectively.  The 

communal and solitary species never responded with the PER.  Consequently, for 

answering questions about the cognitive processes of solitary bees, an alternative 

conditioning technique will have to be used and perhaps a different behavioral response 

will have to be sought. 

                                                
3 Coauthored by Cory A. Vorel and Theresa L. Pitts-Singer 
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Introduction 
 
 

A honey bee will reflexively extend its proboscis in response to antennal 

stimulation with sucrose solution (Bitterman et al., 1983).  Elicitation of the proboscis 

extension reflex (PER) from honey bees (Apis mellifera L.) has been used for decades as 

a tool to further the understanding of bees’ cognitive processes, such as learning and 

memory (Takeda, 1961; Bitterman et al., 1983), and revealing their neural and molecular 

foundations (reviewed in Giurfa, 2007).  The PER has also been used to demonstrate the 

learning abilities of bumble bees (Laloi et al., 1999; Laloi and Pham-Delègue, 2004) and 

stingless bees (Abramson et al., 1999; McCabe et al., 2007).   

We were interested in answering questions about the cognitive processes of 

solitary bees, especially blue orchard bees (Osmia lignaria Say) and alfalfa leafcutting 

bees (Megachile rotundata Fabricius), and were encouraged to use the PER for this 

purpose.  We assumed that the same basic laboratory procedures that are used for honey 

bees (e.g., Bitterman et al., 1983) could be used to elicit a response from solitary bees.  

However, our attempts to use these procedures with blue orchard bees failed, although 

honey bees readily responded.  We thus questioned whether the technique used to elicit 

the PER from honey bees can be applied universally to all bees, or if the success of the 

technique is influenced by procedural factors such as method of bee restraint (Robin L. 

Foster, personnal communication).  We also wondered if success could be influenced by 

species-specific factors, such as level of sociality. 

We investigated the use of various PER-elicitation procedures, and applied these 

procedures to several Hymenoptera representing different levels of sociality.  We 
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predicted that eusocial Hymenoptera would be most likely to extend their proboscises in 

response to a reward stimulus touched to their antennae.   

 
Materials and Methods 

 
 

 All trials were performed at the USDA-ARS Bee Biology and Systematics 

Laboratory (BBSL) in Logan, Utah, and only female bees and wasps were used (Table 4-

1).  All “wild caught” bees and wasps were captured while they were foraging within a 

0.5 km radius of the BBSL. 

In honey bees, the concentration of sucrose solution that will elicit the PER can be 

influenced by factors such as age, foraging behavior, and foraging experience (Page et 

al., 1998; Pankiw et al., 2001).  As a preliminary step, we tested several bumble bees, 

blue orchard bees, honey bees, sweat bees, and yellowjackets, using the method described 

in Question 1 below, with sucrose concentrations of 25%, 40%, 50%, 60%, and 70% w/v 

to determine which would be most likely to successfully elicit the PER.  This range 

corresponds to the average sugar concentrations of floral resources normally foraged 

upon by the solitary bees (Free, 1993) and the sucrose concentrations used at the BBSL 

for lab-rearing solitary bees (25%) and bumble bees (50%).  Also, this is a range of 

concentrations similar to those commonly used in the literature (Bitterman et al., 1983; 

Abramson et al., 1997; Buckbee and Abramson, 1997; Laloi et al., 1999; Erber et al., 

2000; Sandoz et al., 2000; Déglise et al., 2003; Laloi and Pham-Delègue, 2004; Rueppell 

et al., 2006).  In these preliminary attempts, only honey bees and yellowjackets 

responded with the PER, and based on their responses, we decided to use 25% and 50% 
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sucrose solution for our bioassays.  We then performed the following series of 

experiments in an effort to find a universally successful PER technique.   

 
Insect Preparation 
 

The following pre-testing procedure was used for all trials, unless otherwise 

noted.  Hymenoptera were held individually in a small, covered paper cup for 30 min.  

They were then restrained by anesthetizing them with CO2 and inserting them into 

modified, inverted centrifuge tubes.  The modifications made to the tubes differed 

between some methodological treatments, and are described below.  During earlier 

experiments, insects were left in their restraints prior to testing until some died (possibly 

from starvation or dehydration).  In later experiments, holding times were adjusted to 

minimize mortality.  In general, insects were left in their restraints unfed for 15-22 hours, 

except honey bees, which were restrained and unfed for 3 hours because they experienced 

high mortality when restrained for longer time periods.  

 
PER Bioassay 
 

To eliminate the possibility that insect response was due to thirst, a drop of water 

delivered from the needle tip of a 1 ml hypodermic syringe was touched to an antenna.  

(In our study, none of the test insects extended their proboscis in response to water.)  A 

syringe needle was then used to touch a drop of 25% or 50% sucrose solution to an 

antenna (Fig. 4-1A).  If the insect extended its proboscis (or glossa, in the case of 

yellowjackets), then the drop was placed on the proboscis as a reward (Fig. 4-1C), and a 

positive response was recorded. 
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Fig. 4-1. Bee restraint variations: A) “Mummy” - Honey bee is restrained in an inverted 
centrifuge tube with the tip cut out; Teflon tape below the head secures the bee.  Sucrose 
solution touched to an antenna elicits the PER. B) “Belt” - Bombus griseocollis female is 
restrained by cutting all but a narrow strip from the tip of an inverted centrifuge tube.  
Elastic string secures the bee’s petiole to the strip, and the string is taped in place. C) 
“Intermediate” - Bombus nevadensis female is restrained in a centrifuge tube that has a 
wide slot cut into it; adhesive tape secures the bee.  The bee’s proboscis is extended and 
the bee is rewarded with sucrose solution. 
 

Eliciting the PER 
 
 
Methodological Question 1:  Will fully restrained Hymenoptera of several social levels 
exhibit the PER? 
 

This series of trials, using bees and yellowjackets, was conducted in May and 

June 2006 (Table 4-1).  The number of individuals of each species tested and the sucrose 

concentrations used are shown in Table 4-2.  Yellowjackets, honey bees, bumble bees, 

and sweat bees were wild caught.  Standard protocols were followed for overwintering 

blue orchard bees (Bosch and Kemp, 2001), alfalfa leafcutting bees (Richards, 1984), and 

sunflower leafcutting bees (Pitts-Singer, 2007).  These bees emerged from their cocoons 

in an incubator (22°C for blue orchard bees, 29°C for leafcutting bees).  They were then 

allowed to forage in a greenhouse (blue orchard bees) or a field cage (leafcutting bees) 

for 1-2 weeks before testing. 

To create restraints, the tips were cut out of inverted centrifuge tubes, so that 

when the insects were inserted, only their heads were exposed and able to move. The 
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insects were secured by wrapping Teflon tape around them, just below their heads, such 

that the tape overlapped with the centrifuge tube (Fig. 4-1A).  From this point on, we 

refer to this method as the “mummy” restraint. 

The preparation and PER bioassay proceeded as described above, except when the 

insects were first brought into the laboratory, they were fed 25% or 50% sucrose solution 

ad libitum for 30 min while they were held in small cups (sucrose concentration fed 

corresponds to concentration used for testing). 

 
Table 4-1.  Hymenoptera tested, their social level, and experiments in which they were 
used. 

Common Name Species Social Level Question(s) 
Blue orchard bee Osmia lignaria Say solitary, aggregating 1, 2, 5 
Alfalfa leafcutting bee Megachile rotundata Fabricius solitary, aggregating 1, 2, 5 
Sunflower leafcutting bee Megachile pugnata Say solitary, aggregating 1, 2 
Sweat bee Agapostemon spp.,  

     possibly A. nasutus Smith,  
     A. virescens Fabricius, or 
     A. coloradinus Vachal 

communal 1 

Bumble bee Bombus appositus Cresson  
B. centralis Latrielle  
B. fervidus Fabricius 
B. griseocollis DeGeer 
B. huntii Greene 
B. nevadensis Cresson 

primitively eusocial 1, 2, 3, 4 

Yellowjacket Vespula pensylvanica Saussure 
V. germanica Fabricius 

eusocial 1 

Honey bee Apis mellifera Linnaeus highly eusocial 1 
 
 
Methodological Question 2:  Would a restraint that allowed more movement increase the 
likelihood of the PER in bumble bees and solitary bees? 
 
 This series of trials was conducted in June 2006, and focused on bumble bees and 

solitary bees (Table 4-1).  Bees were acquired as described above.  Honey bees and 

yellowjackets were not included in this series of trials, because they readily responded 
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when the mummy restraint was used.  Sweat bees were not included because wild sweat 

bees were not flying during this time of year. 

As in the previous trials, these bees were fed ad libitum for 30 min prior to 

testing.  All bees were fed and tested with 25% sucrose solution, except for nine bumble 

bees that were fed, and subsequently tested with, 50% sucrose solution.  Restraints for 

this method were inverted centrifuge tubes cut such that they became a circular base with 

a long, narrow strip extending upward.  A piece of elastic string was tied around the bee’s 

petiole and the narrow strip, to bind the bee to the strip.  The string was then secured with 

adhesive tape (Fig. 4-1B).  Bees restrained in this manner were only secured at the petiole 

so that they could move their heads, wings, and legs.  Hereafter, we refer to this method 

as the “belt” restraint. 

 
Table 4-2.  From Question 1, showing Hymenoptera that responded with proboscis 
extension while restrained by the mummy method. 

Hymenoptera Tested (n) 
Sucrose 

Concentration 
No. Exhibiting 

PER 
Percent 

PER 
Osmia lignaria (30) 25% 0 0% 
Osmia lignaria (2) 50% 0 0% 
Megachile rotundata (15) 25% 0 0% 
Megachile pugnata (15) 25% 0 0% 
Agapostemon spp. (22) 25% 0 0% 
Bombus spp. (38) 25% 2 5% 
Bombus spp. (5) 50% 1 20% 
Vespula spp. (14) 25% 10 71% 
Apis mellifera (32) 25% 26 81% 

 
 
Methodological Question 3:  Would an intermediate level of restraint increase the 
likelihood of the PER in bumble bees? 
 

This series of trials was conducted in June 2007.  The bumble bees tested were 

wild B. griseocollis DeGeer, B. rufocinctus Cresson, B. fervidus Fabricius, B. huntii 
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Greene, and B. bifarius Cresson.  Unlike the previous trials, these bees were kept in 

Plexiglas cages (length by width by height: 26.2 by 26.2 by 30.5 cm) in the laboratory for 

1-6 days and fed a diet of 25% sucrose solution before testing. 

R. L. Foster (personal communication) successfully elicited the PER from B. 

huntii using a restraint that allowed more movement than the mummy restraint, but less 

than the belt restraint.  Therefore, the restraints for this method were made by cutting a 

slot in each centrifuge tube, such that the bee’s wings would be exposed but not its legs.  

The bee was placed high enough in the tube so that only her forelegs were able to move 

freely.  Each bee was then secured with a thin strip of adhesive tape affixed anterior to 

the tegulae and another strip affixed under her wings, posterior to the tegulae but before 

the petiole (Fig. 1C).  From this point on, we refer to this method as the “intermediate” 

restraint.  Ten bumble bees were tested with 25% sucrose solution, exclusively.  Sixteen 

bumble bees were tested with 25% sucrose solution, and then after a waiting period of 10 

min, were tested with 50% sucrose solution. 

 
Methodological Question 4:  Would maintaining bumble bees in the laboratory for an 
extended period of time increase the likelihood of the PER? 
 

Intermediate restraint:  These tests were conducted in June 2007.  A colony of B. 

centralis Cresson was brought into the laboratory for rearing under standard laboratory 

conditions (Plowright and Jay, 1966).  Testing occurred over a period of 17-28 days after 

the colony was brought into the laboratory.  The 21 workers tested from this colony may 

have been adults that were brought into the lab as part of the original colony, or they may 

have eclosed after the colony was maintained in the lab.  In addition, we tested two B. 
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bifarius queens and one B. fervidus queen that had been in the lab for 19 days and 23 

days, respectively.  Bees were restrained using the intermediate restraint, as in 

Experiment 3.  They were tested with 25% sucrose solution and, after a 10 min waiting 

period, tested again with 50% sucrose solution.  After testing, a dot of paint was placed 

on each bee’s thorax before returning her to the colony, to avoid the possibility of any 

bee being tested twice.  

Belt restraint:  These tests were conducted in July 2007.  All eight bumble bees 

used in this experiment were B. centralis from the colony described above, which by this 

time had been in the lab for 39-41 days.  They were tested with both 25% and 50% 

sucrose solutions, as described above.  They were restrained with the belt restraint, as 

described in Experiment 2. 

 
Methodological Question 5:  Would maintaining solitary bees in the laboratory and using 
an intermediate restraint increase the likelihood of the PER? 
 
 Twenty-two blue orchard bee females and 34 alfalfa leafcutting bee females were 

overwintered and then incubated for laboratory emergence in July 2007.  Once emerged, 

the bees were kept in Plexiglas cages, along with males, and fed 25% sucrose solution ad 

libitum for one week (blue orchard bees) or 3-4 weeks (alfalfa leafcutting bees).  The 

bees were restrained for testing using the intermediate restraint.  They were tested with 

25% sucrose solution and, after a 10 min waiting period, 50% sucrose solution.  
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Results 
 
 

 Using Methodology 1, honey bees and yellowjackets had a high rate of proboscis 

extension, 71% and 81%, respectively, which was not observed in any of the other bees 

tested (Table 4-2).  We saw very little response from bumble bees (Table 4-2).  No 

communal or solitary bees responded using this method (Table 4-2). 

The results from testing with Methodology 2 are shown in Table 4-3.  The single 

response was from a bumble bee tested with 50% sucrose solution.  None of the solitary 

bees that were tested responded.  

  
Table 4-3.  Results from Question 2, showing number and percent Hymenoptera that 
responded with proboscis extension while restrained by the belt method.  Bees were 
tested with 25% sucrose solution, except for nine bumble bees, which were tested with 
50%.  The single response was to 50% sucrose solution. 
Hymenoptera Tested (n) No. Exhibiting PER Percent PER 
Osmia lignaria (10) 0 0% 
Megachile rotundata (15) 0 0% 
Megachile pugnata (15) 0 0% 
Bombus spp. (12) 1 8% 

 

Using Methodology 3, the PER was exhibited by one out of 10 bumble bees that 

were tested with 25% sucrose solution only.  Of the 16 bumble bees tested using 

Methodology 3 and tested with both 25% and 50% sucrose solutions, one bee responded 

to both 25% and 50%, and two bees responded to 50% only.  In total, four of the 26 

bumble bees (15%) tested using Methodology 3 responded with the PER.    

When we tested lab-reared bumble bees using Methodology 4, 12 out of 21 (57%) 

that were held in the intermediate restraint responded positively.  Of these, six responded 

only to 25%, four responded to both concentrations, and two responded to only 50%.  
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When the belt restraint was used in conjunction with Methodology 4, six out of eight 

(75%) held in the belt restraint responded with the PER; five responded to both sucrose 

concentrations and one responded only to 50%. 

Methodology 5 mimicked conditions under which bumble bees had responded 

with the PER.  However, none of the solitary bees in this series of trials responded 

positively, regardless of sucrose concentration. 

The restraint used with bumble bees, as well as the length of time that they were 

held in the lab, influenced their response.  There was a progressive increase in positive 

responses of bumble bees across trials (Fig. 4-2). 

 

 
Figure 4-2. Proportions of bumble bees that responded positively with the PER to either 
25% or 50% sucrose solution, grouped according to restraint and source. 
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Discussion 
 
 

As we had predicted, the PER was more readily elicited from eusocial species.  

The presence of the proboscis extension reflex in honey bees has been well documented, 

so it is not surprising that honey bees readily responded to the sugar stimulus using the 

traditional mummy restraint (Methodology 1).  Although yellowjackets do not actually 

have a proboscis, many of those tested clearly extended their glossa when an antenna was 

touched with a drop of sucrose solution, demonstrating an oral response quite similar to 

that of honey bees.  These results, coupled with the complete lack of proboscis extension 

in all of the solitary and communal species tested, seem to suggest that the basic 

technique used for eliciting the PER in honey bees (Bitterman et al., 1983) cannot be 

universally employed for all bees.   

We presumed that bumble bees have a proboscis extension reflex that can be 

elicited in a similar manner as for honey bees, but our results show that the protocol that 

works for honey bees was ineffective for bumble bees.  Other studies have had success in 

conducting conditioning experiments that train bumble bees using the PER as the 

response (Laloi et al, 1999; Laloi and Pham-Delegue, 2004; R. L. Foster, personal 

communication).  The difficulty we had in eliciting the PER in wild caught bumble bees 

using either a mummy or a belt restraint (Methodologies 1 and 2) was perplexing.  By 

changing the restraint as suggested by R. L. Foster (personal communication) and by 

maintaining the bees for extended time periods in the laboratory prior to testing, however, 

we were able to get positive responses using less restrictive restraints than were used for 

honey bees (Methodologies 3 and 4).  Nevertheless, when similar protocol changes were 
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made for alfalfa leafcutting bees and blue orchard bees, these bees still failed to display 

the PER. 

In eusocial species, the PER could possibly function in feeding.  Many eusocial 

bees and wasps distribute food to larvae and adults via trophallaxis (Wilson, 1971; 

Michener, 1974).  In fact, trophallactic interactions are a key feature of honey bee 

societies, where trophallactic behaviors include antennal stimulation followed by 

proboscis extension (Wilson, 1971).  It has been demonstrated that associative learning 

via trophallaxis is important for the dissemination of olfactory information throughout 

honey bee colonies (Farina et al., 2005; Gil and De Marco, 2005; Grüter et al., 2006; 

Farina et al., 2007), so it is logical that the PER could be used to readily condition honey 

bees in the laboratory. 

Trophallaxis is not seen in bumble bees or solitary bees, so the PER would not 

play a role in feeding for these bees.  Adult bumble bees do have other interactions and 

methods of communication (Goulson, 2003).  It may be that the PER can be elicited from 

bumble bees in the laboratory, under the right conditions, because of their social lifestyle 

and similarities to the highly eusocial bees.  However, solitary bees have no adult-larva 

and very few adult-adult interactions, so antennal stimulation might not be expected to 

have any relevance for them.  These differences in feeding and conspecific interactions 

may explain why Hymenoptera of different social levels would differ in their propensities 

to exhibit the PER in the laboratory. 

Abramson et al. (1999) found that the stingless bee Melipona scutellaris Latreille 

would not exhibit the PER in response to sucrose solution.  However, when the protocol 
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was changed such that M. scutellaris honey was touched to the antennae, the PER was 

elicited from these bees.  We were able to increase our success in eliciting the PER from 

bumble bees by changing the basic (i.e., honey bee) protocol.  Therefore, the possibility 

remains that the PER can be elicited from communal and solitary bees, but further 

protocol changes are needed. 

  We remain interested in answering questions about the cognitive processes of 

blue orchard bees and alfalfa leafcutting bees.  We have developed an alternative 

technique involving a more passive protocol for the learning of olfactory cues, which we 

are currently using to explore solitary bees’ learning capabilities.  Although the PER has  

proven to be an immensely useful tool for studying learning in eusocial bees, the PER 

was not elicited in solitary bees using any of the protocol variations that we tried in this 

study. 
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CHAPTER 5 

OLFACTORY CONDITIONING OF THE SOLITARY BEES OSMIA LIGNARIA AND 

MEGACHILE ROTUNDATA (HYMENOPTERA: MEGACHILIDAE)4

 

 

Summary 
 
 

For decades, scientists have been using conditioning experiments to explore the 

cognitive processes of honey bees, as well as the neurophysiological and molecular 

mechanisms underlying those processes.  Few studies have utilized conditioning to 

further understand learning and cognition in solitary bees.  In this study, two species of 

solitary megachilid bees, Osmia lignaria Cresson and Megachile rotundata Fabricius 

(Hymenoptera: Megachilidae) were conditioned to respond to, and discriminate between, 

particular floral odors during feeding bioassays in the laboratory.  As expected, both 

species were able to learn and to discriminate between floral odors in the laboratory 

bioassays, although O. lignaria performed better in the discrimination test.  Also, for 

some of the odor pairs tested, one sex responded better than the other sex, although the 

better performances were not consistently associated with either males or females. 

 
Introduction 

 

 For nearly half of a century, scientists have been conditioning honey bees in an 

effort to explore their sensory abilities (e.g., von Frisch, 1950) and cognitive processes 

such as learning and memory (Bitterman et al., 1983; reviewed in Giurfa, 2007).  In the 

laboratory, conditioning has become a useful tool for examining the neurophysiological 
                                                
4 Co-authored by Cory A. Vorel and Theresa L. Pitts-Singer 
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and molecular mechanisms (e.g., Menzel et al., 1974; Farooqui et al., 2003) that underlie 

cognitive processes.  In the field, conditioning is a useful tool for examining the role of 

learning and other cognitive processes in daily life, including insect-insect interactions 

and insect-environment interactions.  Much information has been gleaned from honey 

bee, Apis mellifera L. (Hymenoptera: Apidae), conditioning studies, but one cannot 

assume that the honey bee represents all Hymenoptera.  Differences in ecological 

requirements and constraints, as well as differences in physiology and in life histories 

(such as social systems), could lead to differences in learning ability and other cognitive 

processes (Gould and Marler, 1984; Heinrich, 1984).  Thorough understanding of 

learning and cognition can be gained only through studies in a variety of Hymenoptera. 

 Few studies have utilized conditioning to further understand learning and 

cognition in solitary bees.  Solitary bees do not live in a colony, but instead every female 

creates her own nest and produces her own progeny.  For solitary bees, previous research 

has been done in controlled field conditions, such as field cages (Dukas and Real, 1991; 

Campan and Lehrer, 2002; Amaya-Márquez et al., 2008), that may lack the rigid control 

afforded under laboratory conditions.  Examination of the cognitive abilities of bees that 

represent different evolutionary histories would allow us to learn more about the 

differences and similarities in cognitive processes, neurophysiology, and molecular 

workings between species.  A phylogenetic comparison of learning ability in 

Hymenoptera, comparing different hymenopterans’ learning abilities for different tasks 

and contexts, may also help answer questions about the evolution of sociality. 
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Conditioning typically takes one of two forms, respondent conditioning or operant 

conditioning (Gould and Marler, 1984; Pierce and Cheney, 2004).  Respondent 

conditioning, often referred to as classical conditioning, takes advantage of reflex 

behaviors.  An unconditioned stimulus elicits an unconditioned response (reflex).  A 

conditioned stimulus is paired with the unconditioned stimulus, and together they elicit 

the unconditioned response.  Subsequently, the conditioned stimulus presented alone will 

elicit the same response, which is now known as the conditioned response.  Pavlov’s 

work with salivating dogs is the most well-known example of respondent conditioning.   

Operant conditioning, sometimes called trial-and-error learning, requires some 

active behavior (as opposed to an involuntary reflex) by the subject being conditioned.  

An operant behavior is reinforced, with either reward or punishment, until the point 

where the subject’s behavior is modified.  A cue, such as a light or an odor, may be 

employed for a more complex form of operant conditioning, in which the reinforcement 

only occurs in the presence of the cue.  An example of operant conditioning in nature is a 

bee learning how to recognize a newly encountered species of flower and what 

maneuvers are needed to efficiently handle that particular flower for retrieving its 

rewards.  The bee learns to respond to the visual and olfactory cues associated with the 

most rewarding flowers.  

In the laboratory, the conditioning of honey bees often employs the proboscis 

extension reflex (PER), an example of respondent conditioning (Bitterman et al., 1983; 

Farooqui et al., 2003; reviewed in Giurfa, 2007).  However, the PER cannot be elicited in 

the laboratory from some solitary bees (Vorel and Pitts-Singer, Ch. 3).  Without the PER 
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bioassay for solitary bees, a different approach is needed in order to assess learning 

through conditioning in a controlled manner in the laboratory.   

The work presented here employs operant conditioning with two species of 

solitary megachilid bees, Osmia lignaria Cresson and Megachile rotundata Fabricius 

(Hymenoptera: Megachilidae).  We attempted to condition bees to respond to particular 

floral odors during feeding bioassays in the laboratory.  If conditioning were successful, 

then the bees would respond by “choosing” (the operant behavior) the feeder bearing the 

odor that was previously associated with a sucrose reward.  We hypothesized that these 

solitary bee species could be conditioned to choose the scented feeder when given a 

choice between a scented feeder and 1) an unscented feeder and 2) a feeder scented with 

a second odor. 

 
Materials and Methods 

 

All experiments were conducted at the USDA-ARS Bee Biology and Systematics 

Laboratory (BBSL) in Logan, Utah.  Two species of solitary, cavity-nesting bees were 

used.  The spring-flying blue orchard bee, Osmia lignaria, is being increasingly used as a 

pollinator of orchard crops.  The alfalfa leafcutting bee, Megachile rotundata, flies in the 

summer and is widely used to pollinate alfalfa for seed production.  Both bee species are 

available commercially and are readily maintained in the laboratory.  Osmia lignaria 

originated from Northern Utah populations (3 B Sales and Service, North Logan, UT, 

USA).  Megachile rotundata were from Manitoba, Canada (JWEM Leafcutters, Inc.).  

Both species were purchased in the fall and maintained at the BBSL following standard 
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protocols (O. lignaria:  Bosch and Kemp, 2001; M. rotundata:  Richards, 1984) 

throughout the winter.  Bees emerged from their cocoons stored in Petri dishes in an 

incubator (22°C for O. lignaria, 29°C for M. rotundata) before being used in 

conditioning experiments as follows. 

Three conditioning experiments were carried out.  In the first experiment, bees 

were conditioned to associate sucrose solution with an odor and to associate water with 

the absence of odor.  In the second and third experiments, bees were conditioned to 

associate sucrose solution with one odor (the positive odor) and to associate water with a 

second odor (the negative odor).  The odors used for conditioning were citral, geraniol, 

and phenylacetaldehyde (PAA).  These odors are components of floral aromas and were 

chosen because they have been used extensively by other researchers to condition honey 

bees.   

 
Experiment One - Simple Conditioning 
 
 For this experiment, O. lignaria and M. rotundata were conditioned to select the 

scented feeder when given a choice between a scented feeder and an unscented feeder.  

Osmia lignaria were conditioned and tested April - June 2007.  Megachile rotundata 

were conditioned and tested June - July 2007. 

Two groups of bees were designated, a conditioned group and an unconditioned 

group.  The unconditioned bees were treated and tested exactly as were the conditioned 

bees, as described below, but odor was never applied to any of their feeders, thus they 

were never exposed to an odor during the conditioning phase.  The unconditioned bees 

did not encounter an odor until the testing phase.   
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Osmia lignaria were conditioned and tested in a room with overhead lighting at 

22-23°C; artificial lighting was kept on an 11:13 day:night schedule.  Megachile 

rotundata were conditioned in a temperature-controlled greenhouse (~18-38°C) under 

natural lighting (i.e., sunlight).  Megachile rotundata were tested in a room with overhead 

lighting.  The room temperature was ~22-23°C; extra heat was provided by placing 

testing arenas on heating pads (Kaz, Inc., Southborough, MA, USA; Sunbeam Products, 

Inc., Baton Rouge, FL, USA) with the dial set to “medium.”  The extra warmth was 

needed because the temperature of the room was inadequate for sustaining M. rotundata 

activity.  

Conditioning took place in well-ventilated Plexiglas cages (length x width x 

height: 26.2 cm x 26.2 cm x 30.5 cm).  Two feeders were placed in each cage, which 

served as the method of odor delivery.  Each feeder consisted of a small plastic 5.0 ml 

cup with a lid (height x diameter:  2.5 cm x 2.3 cm) (Nalgene, Rochester, NY, USA) (Fig. 

5-1).  The lid had a wick (4.0 ± 0.5 cm) made from clean cigarette filter.  A 2.3 cm ring 

of filter paper (Whatman International, Ltd., Maidstone, England) surrounded the wick 

and was secured from underneath using white medical tape (Fisher Scientific, Pittsburgh, 

PA, USA).  An odor, either 0.50 μl geraniol (MP Biomedicals, Inc., Solon, OH, USA) or 

0.25 μl PAA (Sigma-Aldrich Co., St. Louis, MO, USA), was dripped onto the filter paper 

ring using a Hamilton syringe.  

All bees that emerged from their cocoons by noon on a given day were placed in a 

Plexiglas cage together in a male:female ratio of approximately 1:1.  The bees were given 

scented feeders filled with 25% sucrose solution.  These feeders were alternated with 
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unscented feeders (no odor placed on the filter paper ring) filled with filtered water.  The 

scented and unscented feeders were alternated over two days according to the schedule 

shown in Table 5-1.  On the third day, the bees were tested. 

 

 
Figure 5-1.  Feeder used to deliver conditioning odors.  Feeder is a covered 5.0 ml plastic 
cup, with a hole drilled through the lid.  Feeder and lid combined height is 2.5 cm; 
diameter is 2.3 cm.  A wick (4.0 ± 0.5 cm) made of a segment of cigarette filter is 
inserted into the hole.  A filter paper ring (2.3 cm diameter) surrounds the wick and is 
affixed to the lid with a small piece of white medical tape. 
 
 
Table 5-1.  Schedule of feeder changes and testing for Experiments One and Two. 
Day 1  
1200 MST Scented, sucrose solution-filled feeder 
1700 MST Unscented, water-filled feeder 
Day 2  
0800 MST Scented, sucrose solution-filled feeder 
1100 MST Unscented, water-filled feeder 
1400 MST Scented, sucrose solution-filled feeder 
1700 MST Unscented, water-filled feeder 
Day 3  
0900 MST Testing 

 
 

Testing arenas were made from 1.42 L (48 fl. oz.) reusable plastic bowls (height x 

diameter:  8.5 cm x 16.5 cm) with lids (Western Family, Portland, OR, USA) (Fig. 5-2).  

For ventilation and to facilitate observation during testing, the entire center of each lid 

was replaced with mesh screen.  Three 5.0 cm x 3.0 cm holes were cut in the sides of 
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each bowl and covered with mesh screen.  Also, a circular hole was cut in the side of 

each bowl; the circular hole was exactly large enough for the mouth of a 20.0 ml glass 

scintillation vial to be inserted with a fit tight enough to prevent the vial from falling out 

of the hole.  This circular hole served as the entry point for the bees.  A rectangle of 

aluminum foil (length x width = 4.0 cm x 9.0 cm ± 0.5 cm) was placed in the bottom of 

each bowl.  Two “faux feeders” were placed on the aluminum foil, approximately 2.5 cm 

apart and equidistant from the entry hole.  The foil allowed for swapping of the positions 

of the faux feeders in between each individual test bee.  The faux feeders were made of a 

2.3 cm diameter circle of filter paper and a small length (1.0 – 2.0 cm) of cigarette filter 

wick, which was held in place by a thumbtack on the underside of the filter paper circle.  

The wicks of both faux feeders were saturated with filtered water.  One faux feeder was 

scented with the same odor used for conditioning, either 0.25 µl geraniol or 0.50 µl PAA; 

the other faux feeder was unscented. 

On Day 3, a bee was removed from the Plexiglas holding box using a 20.0 ml 

glass scintillation vial, and the vial was attached to the entry hole of the arena.  As soon 

as the bee left the vial, a timer was started.  The bee was given 10 min to choose between 

the two faux feeders.  A feeder choice was recorded if the bee extended its proboscis to 

drink from a faux feeder.  A small number of bees tested never actually extended their 

proboscises, but they circled one of the faux feeders with their heads down, intensely 

probing with their antennae.  If they continued this behavior for more than 10 sec, it was 

recorded that the bee had chosen that particular faux feeder.  We also recorded if the bee 

did not choose either feeder during the 10 min period. 
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Figure 5-2. Testing arena made from a 1.42 L plastic bowl (height x diameter:  8.5 cm x 
16.5 cm) with mesh windows and a mesh lid.  A bee enters the arena from a vial attached 
to the side.  Once inside, the bee chooses between two faux feeders, which are filter paper 
circles with small segments of cigarette filter attached from below by thumbtacks.  The 
faux feeders rest on a rectangle of aluminum foil. 

 
 
Experiment Two – Discriminatory Conditioning, Protocol A 
 

For this experiment, O. lignaria and M. rotundata were conditioned to select the 

positively-scented feeder when given a choice between a positively-scented feeder and a 

negatively-scented feeder.  Osmia lignaria were conditioned and tested June 2008.  

Megachile rotundata were conditioned and tested July - August 2008.  Unfortunately, on 

25 June, an incubator failure resulted in the premature emergence of most of the male O. 

lignaria being held at 4ºC until needed for the experiment.  As a result, there were fewer 

bees than intended in many of the groups of males that were tested. 

As above, there were two groups of bees, a conditioned group and an 

unconditioned group; the unconditioned bees did not encounter an odor until the testing 

phase.  Conditioning and testing protocols for both species were the same as described 

above, except water-filled feeders now had an odor applied to the filter paper ring.   

The odors used for conditioning and testing during this experiment were 0.25 μl 

geraniol, 0.25 μl PAA, or 0.25 μl citral (Sigma-Aldrich, St. Louis, MO, USA). Odors 
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were applied to the filter paper rings with a micropipetter.  The odors were paired such 

that every combination of odors was tested (Table 5-2). 

 
Table 5-2. Odor pairings used in Experiments Two and Three. 

Positive Odor  
(Paired with Sucrose Solution) 

Negative Odor  
(Paired with Water) 

Geraniol PAA 
PAA Geraniol 

Geraniol Citral 
Citral Geraniol 
PAA Citral 
Citral PAA 

 
 
Experiment Three – Discriminatory Conditioning, Protocol B 
 

For this experiment, O. lignaria and M. rotundata again were conditioned to 

select the positively-scented feeder when given a choice between a positively-scented 

feeder and a negatively-scented feeder, as in Experiment Two.  However, some changes 

were made to the conditioning and testing procedures to determine if increasing the time 

the bees had with the feeders present enhanced their performance in the bioassay.  Osmia 

lignaria were conditioned and tested April - June 2009.  Megachile rotundata were 

conditioned and tested July - September 2009. 

Again, there were two groups of bees, a conditioned group and an unconditioned 

group.  The conditioning schedule was modified so that conditioned bees were exposed to 

each odor/feeder pairing (positive odor + sucrose solution or negative odor + filtered 

water) for a longer period of time; therefore, conditioning occurred over 4 days instead of 

2 days (Table 5-3).  Bees were placed in a Plexiglas cage at 0800 MST on Day 1 and 

feeder changes took place at 0800 MST on subsequent days (Table 5-3).  Other than the 
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schedule change, O. lignaria conditioning was as previously described.  Testing of O. 

lignaria was also as previously described, except that all bees made a choice by extension 

of the proboscis to drink from a faux feeder.   

 
Table 5-3.  Schedule of feeder changes and testing for Experiment Three.  All feeder 
changes took place at 0800 MST. 
Day 1 Positively-scented, sucrose solution-filled feeder 
Day 2 Negatively-scented, water-filled feeder 
Day 3 Positively-scented, sucrose solution-filled feeder 
Day 4 Negatively-scented, water-filled feeder 
Day 5, 0900-1200 MST Testing 

 
 

Conditioning of M. rotundata was as previously described, except for the 

aforementioned schedule change.  However, during testing of M. rotundata, two protocol 

changes were made.  First, testing occurred in the same greenhouse as conditioning and 

no heating pads were used to provide additional heat.  Testing occurred under natural 

lighting at ~26-32°C.  Second, as with O. lignaria, choices were only recorded when a 

bee extended its proboscis to drink.  

As in Experiment Two, the odors used for conditioning and testing during this 

experiment were 0.25 μl geraniol, 0.25 μl PAA, or 0.25 μl citral, and they were applied 

with a micropipetter. The odors were paired such that every combination of odors was 

tested (Table 5-2). 

 
Statistical Analysis 

Bees were grouped according to species and gender for statistical analyses.  

Statistical analyses addressed five questions.  First, were conditioned bees more likely 

than unconditioned bees to choose a faux feeder during testing?  Second, were 
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conditioned bees more likely than unconditioned bees to choose the reward-associated 

faux feeder during testing?  Third, did male bees perform differently than female bees, in 

terms of likelihood of making a choice and in terms of likelihood of choosing the reward-

associated faux feeder?  Fourth, did bees have a bias toward the left or the right during 

testing?  Fifth, did unconditioned bees exhibit an odor preference during testing?  A two-

tailed Fisher’s exact test (Zar, 1999; Proc Freq, SAS 9.2) was used to answer the first, 

second, and third questions.  The fourth and fifth questions were answered using a 

binomial test (Zar, 1999; Proc Freq, SAS 9.2). 

 
Results 

 

Experiment One - Simple Conditioning 

Were conditioned bees more likely than unconditioned bees to choose a faux feeder 
during testing? 
 

In all cases, conditioned bees made a choice more often than unconditioned bees, 

but only O. lignaria females were significantly more likely than unconditioned bees to 

make a choice (Table A-1). 

 
Were conditioned bees more likely than unconditioned bees to choose the reward-
associated faux feeder during testing? 

 
In all cases, a higher proportion of conditioned bees than unconditioned bees 

chose the scented feeders over the unscented feeders, but, in some cases, the results were 

not significant (Table A-2).  Geraniol-conditioned O. lignaria males,  geraniol-

conditioned M. rotundata females, and PAA-conditioned M. rotundata males were not 
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significantly more likely than unconditioned bees to choose the reward-associated (i.e., 

scented) faux feeder (Table A-2).   

 
Did male bees perform differently than female bees, in terms of likelihood of making a 
choice and in terms of likelihood of choosing the reward-associated faux feeder? 
 
 Of all groups tested, only one group exhibited a difference between males and 

females in their likelihood of making a choice: PAA-conditioned O. lignaria females 

were more likely to choose than PAA-conditioned O. lignaria males (Table A-3).  Males 

and females from all groups performed similarly in terms of their likelihood of choosing 

the scented faux feeder (Table A-4). 

 
Did bees have a bias toward the left or the right during testing? 
 
 Only PAA-conditioned M. rotundata females were more likely to choose the faux 

feeder on the right (Table A-5).  No other groups of bees displayed a bias. 

Did unconditioned bees exhibit an odor preference during testing? 
 
 Only unconditioned M. rotundata males were significantly more likely to choose 

unscented faux feeders than geraniol-scented faux feeders (Table A-6). 

 
Experiment Two - Discriminatory Conditioning, Protocol A 
 
Were conditioned bees more likely than unconditioned bees to choose a faux feeder 
during testing? 
 
 The citral/geraniol-conditioned females were the only conditioned O. lignaria 

significantly more likely than unconditioned O. lignaria to make a choice (Table A-7).  

Both sexes of the citral/PAA-conditioned M. rotundata were significantly more likely 

than the unconditioned M. rotundata to choose either faux feeder (Table A-7). 
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Were conditioned bees more likely than unconditioned bees to choose the reward-
associated faux feeder during testing? 
  

Females and males of both species that were conditioned with the geraniol/PAA 

pairing were significantly more likely than the unconditioned bees to choose the 

positively-scented (i.e., geraniol-scented) feeder (Table A-8).  There was also a 

significantly higher proportion of PAA/geraniol-conditioned M. rotundata females that 

chose the positively-scented feeder than their unconditioned counterparts (Table A-8). 

 
Did male bees perform differently than female bees in terms of likelihood of making a 
choice and in terms of likelihood of choosing the reward-associated faux feeder? 
 
 For all of the groups of O. lignaria tested, females and males were equally likely 

to choose a faux feeder (Table A-9).  Unconditioned M. rotundata males tested with 

geraniol/PAA, geraniol/citral, and citral/geraniol pairings were significantly more likely 

to make a choice than females tested with the same odors (Table A-9). 

 For all groups, no significant differences in the likelihood of choosing the 

positively-scented faux feeder were found between O. lignaria females and males (Table 

A-10).  For conditioned M. rotundata tested with PAA/ geraniol pairing, as well as 

unconditioned M. rotundata tested with PAA/ citral pairing, males were significantly 

more likely to choose the positively-scented faux feeder than females. 

 
Did bees have a bias toward the left or the right during testing? 
 
 None of the groups of bees tested in Experiment Two were more likely to choose 

the left or right faux feeder during testing (Table A-11). 
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Did unconditioned bees exhibit an odor preference during testing? 
 
 Unconditioned O. lignaria males were significantly more likely to choose PAA 

when given a choice between citral and PAA (Table A-12), although the number of bees 

that chose for this odor pairing was very low.  Unconditioned M. rotundata males were 

significantly more likely to choose PAA in both cases where PAA was one of the choices 

tested (Table A-12).  

 
Experiment Three – Discriminatory Conditioning, Protocol B 
 
Were conditioned bees more likely than unconditioned bees to choose a faux feeder 
during testing? 
 
 For all of the O. lignaria groups tested, the conditioned bees were significantly 

more likely to make a choice than unconditioned bees, with only two exceptions:  males 

tested with the citral/geraniol pairing and females tested with the PAA/citral pairing 

(Table A-13).  For only half of the M. rotundata groups tested were the conditioned bees 

significantly more likely to make a choice than the unconditioned bees (Table A-13). 

 
Were conditioned bees more likely than unconditioned bees to choose the reward-
associated faux feeder during testing? 
 
 Geraniol/citral-conditioned males were the only O. lignaria group not 

significantly more likely than their corresponding unconditioned group to choose the 

positively-scented faux feeder (Table A-14).  In contrast none of the M. rotundata groups 

of conditioned bees were significantly more likely than the unconditioned groups to 

choose the positively-scented faux feeder except for males conditioned with the 

PAA/citral pairing (Table A-14). 
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Did male bees perform differently than female bees in terms of likelihood of making a 
choice and in terms of likelihood of choosing the reward-associated faux feeder? 
 
 Unconditioned O. lignaria males tested with geraniol and citral were significantly 

more likely to make a choice than their female counterparts, as were conditioned M. 

rotundata males tested with PAA and citral (Table A-15). 

 Osmia lignaria females conditioned with geraniol and PAA and females 

conditioned with citral and PAA were significantly more likely than males from these 

same groups to choose the positively-scented faux feeder (Table A-16).  Male and female 

M. rotundata were equally likely to choose the positively-scented faux feeder for all 

groups tested (Table A-16).   

 
Did bees have a bias toward the left or the right during testing? 
 
 None of the groups tested in Experiment Three were more likely to choose the left 

or right faux feeder during testing (Table A-17). 

 
Did unconditioned bees exhibit an odor preference during testing? 
 
 The only group of unconditioned bees tested that exhibited an odor preference 

was the O. lignaria males tested with the geraniol/PAA paring; they were significantly 

more likely to choose PAA (Table A-18). 

 
Discussion 

 
 

 The conditioning experiments described here involving females and males of two 

related solitary bee species yielded both expected and surprising results.  As expected, 
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both species were able to learn and to discriminate between floral odors in the laboratory 

bioassays, although surprisingly O. lignaria responded more often to the bioassay and 

better exhibited learning through conditioning than did M. rotundata.  Differences in the 

bioassay responses between conspecific males and females also were particularly 

interesting. 

 Determining whether unconditioned bees were similar to conditioned bees in 

bioassay performance gave insight into whether any choice responses were on account of 

bee behaviors or characteristics unrelated to the conditioning experience.  It is important 

to note that no right/left bias was exhibited by unconditioned or conditioned bees, except 

in Experiment One where PAA-conditioned M. rotundata females were more likely to 

choose the feeder on the right for unknown reasons (Table A-5).  Finding no consistent 

positional bias ruled out the influence of physical or environmental factors in the 

experimental process or design.  By design in Experiment One, O. lignaria and M. 

rotundata females and males were conditioned to associate either geraniol or PAA with 

sucrose solution and to associate the absence of odor with water (Table A-1).  Only 

conditioned O. lignaria females were more likely to respond than unconditioned bees.  

Otherwise, this simple conditioning did not result in a behavior modification in that 

conditioned bees were not more likely than unconditioned bees to make a choice during 

the testing phase.  Little evidence of behavior modification also was revealed when the 

bees were conditioned by exposing them in short time intervals (< 5 hrs during daytime) 

to two odors in Experiments Two.  Under such circumstances, only the unconditioned O. 

lignaria females exposed to one of the six odor pairings (citral/geraniol) and both sexes 
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of unconditioned M. rotundata in one odor pairing group (citral/PAA) were more likely 

to make a choice in the bioassay (Table A-7).  In Experiment Three, however, when bees 

were conditioned by twice exposing them for an entire day to each odor, all groups of the 

conditioned O. lignaria females and most of the males were more likely to choose than 

unconditioned bees (Table A-13).  Half of the M. rotundata conditioned groups 

responded more often than the unconditioned bees.  Therefore, when odor discrimination 

was involved, the behavior of the conditioned bees seemed to have been modified, 

especially in O. lignaria, when an adequate amount of time was allowed for passive 

learning.  

 If the bees made a choice in the bioassays, then the conditioned bees were more 

likely (although not always significantly) than the unconditioned bees to make a choice 

that indicated an effect of the conditioning experience by choosing the reward-associated 

(“positive”) odor (Tables A-2, A-8, A-14).  This was especially clear in Experiment 

Three.  The extra time allowed for the O. lignaria to find and feed from the scented 

feeders influenced not only the percentage of bees that chose, but the percentage of bees 

that chose the positive feeder.  It was quite surprising that, with only one exception, the 

M. rotundata conditioned groups were not more likely than unconditioned groups to 

choose the positive odor even with the increased exposure time.  There is an apparent 

difference between the ability, or perhaps the propensity, of the two solitary bees to 

respond to this conditioning experience. 

  The use of common floral odors raised concern that conditioning could be 

influenced by bees’ innate biases.  Interesting choices indeed were made in the bioassay 
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by some groups of unconditioned O. lignaria and M. rotundata males that seemed to 

have an innate preference to PAA (Tables A-12, A-18).  PAA was likely to be chosen by 

males, although not always with statistical significance, even when it had not been paired 

with a reward.  Otherwise, no innate preference for an odor was prevalent in any of the 

groups of unconditioned bees tested, except for the unconditioned M. rotundata males 

that chose the unscented faux feeder every time they were given a choice between 

geraniol-scented and unscented feeders, as if they were repelled by geraniol.   

It is possible that O. lignaria and M. rotundata have an innate, hard-wired 

preference for certain odors, but a preference may also be the result of previous 

experience during the bees’ development.  Dobson (1987) found a preference for certain 

flower, pollen, and pollenkitt odors in inexperienced Colletes fulgidus longiplumosus, 

another solitary bee.  Dobson believed that these bees were not acting on an innate 

preference for which they were hard-wired, but rather they had been conditioned or 

imprinted on floral odors while developing in the nest.  All three of the odors that were 

used for conditioning in this study are common components of floral aromas, including 

the aromas of many Rosaceae and Leguminosae, which are the preferred floral resources 

of O. lignaria and M. rotundata, respectively.  Therefore, O. lignaria and M. rotundata 

may have been exposed to PAA during development within the nest, but they may have 

also been exposed to geraniol and citral.  Without additional information about the pollen 

consumed during development by the bees used in this study, it cannot be determined if 

the innate preference observed was due to hard-wiring, previous exposure to PAA, or 

some other cause.  However, regardless of the origination of a pre-existing preference, 
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the preference should not preclude future behavioral modification as a result of 

experience or conditioning (Heinrich, 1984; Dobson, 1987; Amaya-Márquez et al., 

2008).  Indeed, the current study includes several examples of male bees that were 

successfully conditioned to choose a geraniol- or citral-scented feeder, even when a 

PAA-scented feeder was also a choice.  Further research concerning innate preferences 

for, or avoidance of, certain floral odors in more context specific bioassays may lead to 

interesting species- or sex-specific results.    

Two experimental factors influenced the statistical outcome of the results in this 

study.  For O. lignaria males, the sample size for some groups was quite low due to the 

failure of an incubator that caused the entire stock of bees to begin the incubation process 

en masse rather than in small sample sizes over time.  Also, the number of bees that made 

a choice in some groups was very low.  These small groups lacked statistical power, and 

results may have differed if large sample sizes had been possible.   

 Another adjustment to protocol was necessary in the conditioning process 

performed in cages where mating, but no nesting, could occur.  Because all visits to 

feeders during training were for adult sustenance, and not for larval provisioning, the 

bees were not compelled to frequently visit the feeders.  In Experiment Three, the 

conditioning schedule was adjusted to allow bees more time to learn each association.  

The schedule change resulted in a great improvement in O. lignaria performance, with all 

but two groups of conditioned bees being more likely than their unconditioned 

counterparts to choose between the two faux feeders during testing; in Experiment Two, 

only one conditioned group was more likely to choose than the unconditioned group.  
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However, M. rotundata did not show as marked an improvement in discrimination, with 

six groups of conditioned bees not being any more likely than unconditioned bees to 

make a choice (as compared to 10 groups in Experiment Two).   

Although O. lignaria and M. rotundata are both solitary-nesting, aggregating 

bees, there are some differences in their life histories.  Osmia lignaria emerge as adults, 

mate, and nest in the spring. Their offspring develop into adults by fall, and therefore, 

they spend the winter as adults in cocoons.  Osmia lignaria populations forage during the 

early spring at times when floral resources may be sparse and ephemeral.  In contrast, M. 

rotundata emerge in the summer, mate, and then nest into late summer.  Their offspring 

only develop to the fifth instar, prepupal stage by fall.  They remain in this stage for the 

winter, completing development over the following spring and summer.  These summer-

flying M. rotundata have ample forage and foraging time during the summer flowering 

season.  Such differences in the lives of these two species may result in differences in the 

mechanisms by which they learn and in their abilities to learn.  So, although M. rotundata 

did not perform as well as O. lignaria in all of the current bioassays, M. rotundata may 

equal or outperform O. lignaria in other olfactory conditioning experiences.    

Other conditioning studies have either tested females only, or tested females and 

males together, without differentiating by sex.  No other conditioning study has compared 

the performance of female and male solitary bees.  Perhaps this is because the importance 

of males is discounted because males only need to forage and mate, and therefore, would 

not have as great of a need for learning as females, who live longer and need to make 

repeated trips between nest sites and foraging sites.  In the current study, males did just as 
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well as females, and in fact, comparison of females and males found seven instances in 

which males performed better than females, as compared to three instances in which the 

females outperformed the males.  So, this study afforded no evidence that males are less 

able to learn than females.  The similar learning ability between males and females 

should not be surprising, because male bees are genetically identical to their mothers, and 

therefore, should inherit similar learning abilities.  Also, female and male O. lignaria 

have been shown to have similar patterns of development in their mushroom bodies, the 

brain region responsible for learning in insects (Withers et al., 2008).  

Menzel (2001) did not believe that honey bees should differ from other bees in 

their cognitive capacities, because all bees have essentially the same goals, such as 

navigation between nesting and foraging sites.  However, previous experiments 

comparing social and solitary bees’ learning capabilities conclude that social bees 

demonstrate better learning than solitary bees as a result of differences in social systems 

or as a result of social bees being evolutionarily more advanced (Bombus bimaculatus 

and Xylocopa virginica:  Dukas and Real, 1991; Apis mellifera and M. rotundata:  

Campan and Lehrer, 2002).  Amaya-Márquez et al. (2008) compared the learning 

capability of O. lignaria to the results obtained by Dukas and Real (1991) for A. mellifera 

and X. virginica.  Amaya-Márquez et al. determined that the solitary O. lignaria 

performed more similarly to the social B. bimaculatus than to the solitary X. virginica.  

They argued that life history plays a more important role than social system in 

determining species’ cognitive capabilities. 
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 In the current study, O. lignaria and M. rotundata were conditioned in a foraging 

context using very similar methods, but O. lignaria’s learning ability was better 

demonstrated than that of M. rotundata.  It would be difficult to make the argument that 

O. lignaria has more derived learning ability, given that these two species are in the same 

family, are somewhat specialists on particular plant families, and have other biological 

and ecological similarities.  However, the physiological, ecological, and other life history 

differences that exist between these two species may be responsible for the different 

outcomes in this bioassay (Gould and Marler, 1984; Heinrich, 1984; Amaya-Márquez et 

al., 2008).   

The extent of adult experience in honey bees and O. lignaria is evidenced from 

changes in the mushroom bodies of the brain, although the changes are not exactly 

similar between the two species (Withers et al., 2008).  Withers et al. (2008) posit that 

honey bees, like other social species, continue brain development after adult emergence 

from the natal cell. Osmia lignaria emerge from the natal nest with fully developed 

brains because they spend the entire winter as adults, during which time their brains may 

go through developmental changes that honey bees and M. rotundata do not experience 

until after emergence.  In our study, bees were tested 3-5 days after emergence, but this 

represents a large difference in the time that the two species had been adults.  It is 

possible that if M. rotundata were tested at a later time, their learning ability may have 

increased as brain development continued. 

It may be, in fact, that O. lignaria and M. rotundata do not differ from each other 

or from social Hymenoptera because of decreased learning abilities in one species or 
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another, but rather they simply have different or selective learning abilities.  Learning is 

context-dependent, and contexts may carry different levels of importance depending on a 

species’ life history.  It would not be adaptive to learn everything and then forget those 

things that are unimportant.  Instead, it would make more sense to evolve the ability to 

learn only those things that are important (Gould and Marler, 1984).  For example, a bee 

species that specializes on only a few flowers would not be likely to evolve the ability to 

learn an unlimited number of floral odors; instead it would be more efficient to have an 

innate ability to recognize the odors of the few flowers that are meaningful.  On the other 

hand, a generalist bee species, which can utilize a wide variety of flowers, would be 

better served by having the ability to learn the floral odors that are relevant at a particular 

time and place, learning new odors as necessary. 

 
References 

 
 

AMAYA-MÁRQUEZ, M; HILL, P S M; BARTHELL, J F; PHAM, L L; DOTY, D R; 

WELLS, H (2008) Learning and memory during foraging of the blue orchard bee, 

Osmia lignaria Say (Hymenoptera: Megachilidae). Journal of the Kansas 

Entomological Society 81: 315-327. 

BITTERMAN, M E; MENZEL, R; FIETZ, A; SCHÄFER, S (1983) Classical 

conditioning of proboscis extension in honeybees (Apis mellifera). Journal of 

Comparative Psychology 97: 107-119. 



100 
 
BOSCH, J; KEMP, W P (2001) How to manage the blue orchard bee as an orchard 

pollinator. Sustainable Agriculture Network, National Agricultural Library; 

Beltsville, MD, USA; 88 pp. 

CAMPAN, R; LEHRER, M (2002) Discrimination of closed shapes by two species of 

bee, Apis mellifera and Megachile rotundata. Journal of Experimental Biology 

205: 559-572. 

DOBSON, H E M (1987) Role of flower and pollen aromas in host-plant recognition by 

solitary bees. Oecologia 72: 618-623. 

DUKAS, R; REAL, L A (1991) Learning foraging tasks by bees:  a comparison between 

social and solitary species. Animal Behaviour 42: 269-276. 

FAROOQUI, T; ROBINSON, K; VAESSIN, H; SMITH, B H (2003) Modulation of 

early olfactory processing by an octopaminergic reinforcement pathway in the 

honeybee. Journal of Neuroscience 23: 5370-5380. 

GIURFA, M (2007) Behavioral and neural analysis of associative learning in the 

honeybee:  a taste from the magic well. Journal of Comparative Physiology A – 

Neuroethology, Sensory, Neural, and Behavioral Physiology 193: 801-824. 

GOULD, J L; MARLER, P (1984) Ethology and the natural history of learning. In 

Marler, P; Terrace, H S (eds). The Biology of Learning. Springer-Verlag; Berlin, 

Germany. pp. 47-74. 

HEINRICH, B (1984) Learning in invertebrates In Marler, P; Terrace, H S (eds). The 

biology of learning. Springer-Verlag; Berlin, Germany; pp. 135-147. 



101 
 
MENZEL, R (2001) Behavioral and neural mechanisms of learning and memory as 

determinants of flower constancy. In Chittka, L; Thomson, J D (eds). Cognitive 

ecology of pollination: animal behavior and floral evolution. University Press; 

Cambridge, U.K.; pp. 21-40. 

MENZEL, R; ERBER, J; MASUHR, T (1974) Learning and memory in the honeybee. In 

Browne, L B (ed). Experimental analysis of insect behavior. Springer-Verlag; 

Berlin, Germany. pp. 195-217. 

PIERCE, W D; CHENEY, C D (2004) Behavioral Analysis and Learning. Lawrence 

Erlbaum Associates; Mahwah, NJ, USA. 509 pp.  

RICHARDS, K W (1984) Alfalfa leafcutter bee management in Western Canada. 

Agriculture Canada Publication 1495/E. Agriculture Canada; Ottawa, Canada. 

SAS (2002-2007) Version 9.2, SAS Institute Inc.; Cary, NC, USA. 

VON FRISCH, K (1950) Bees: Their Vision, Chemical Senses, and Language. Cornell 

University Press; Binghamton, NY, USA. 119 pp. 

WITHERS, G S; DAY, N F; TALBOT, E F; DOBSON, H E M; WALLACE, C S (2008) 

Experience-dependent plasticity in the mushroom bodies of the solitary bee 

Osmia lignaria (Megachilidae). Developmental Neurobiology 68: 73-82. 

ZAR, J H (1999) Biostatistical Analysis (4th edition). Prentice Hall; Upper Saddle River, 

NJ, USA. 663 pp. 

 

  



102 
 

CHAPTER 6 

CONCLUSIONS 

 Employing the use of Osmia lignaria and Megachile rotundata as additional and 

alternative pollinators may help to alleviate the current deficit of honey bees, which are in 

decline in the United States due to health problems.  However, efficient management of 

these solitary bees requires that the problem of dispersal of commercial populations be 

resolved.  In this dissertation, the study reported in Chapter 2 eliminates rough handling 

of pre-emergent bees as a possible cause of dispersal in O. lignaria.  In Chapter 3, 

another approach to solving this problem was also considered:  decreasing dispersal of M. 

rotundata by attracting nesting females.  This approach shows promise, both for M. 

rotundata and for O. lignaria (Vorel and Pitts-Singer, unpublished), although more work 

is needed if the attractive compounds present in old nests are to be identified.  Once 

identified, these compounds may be used to develop a method of luring females to 

provided nesting materials on a large commercial scale. 

 Attraction of females to provided nesting materials may be facilitated by the bees’ 

ability to learn olfactory cues.  Conditioning of solitary bees has been accomplished 

before (Dukas and Real, 1991; Campan and Lehrer, 2002; Amaya-Márquez et al., 2008).  

Chapters 4 and 5 demonstrate that, if the correct technique is utilized, O. lignaria and M. 

rotundata can learn to respond to olfactory cues in a foraging context.  This is not 

surprising, but does provide a baseline measure of these species’ learning abilities.   

Dobson (1987) believed that the preferences exhibited by inexperienced Colletes 

fulgidus longiplumosus for certain flower, pollen, and pollenkitt odors were the result of 
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learning in the natal nest.  It is possible that exposure to odors in the natal nest could 

impact developing bees in other ways.  The often noted attraction of solitary bees to 

active nesting and to previously used nesting materials (Michener, 1960; Cardale, 1968; 

Stephen et al., 1969; Michener, 1974; Eickwort et al., 1977; Buttery et al., 1981; Parker et 

al., 1983; Fairey and Lieverse, 1986) may not be an entirely hard-wired response, but 

may be, in part, a learned response.  Megachile rotundata have been known to nest in the 

same type of nesting materials as they emerged from, even if more suitable nest sites are 

available (Stephen, 1962).  A straight-forward method of determining if learning within 

the natal nest influences bees’ future nest selections would be to add a novel olfactory 

cue to the natal nest.  If, upon emergence, females preferentially nest in materials treated 

with the novel cue, this would provide strong evidence for the influence of learning on 

nest selection.  In addition, this learned attraction to novel cues could be used in the 

future to develop methods of attracting females to new or treated nesting materials, thus 

increasing retention of commercial populations while decreasing the incidence of disease. 

Experiments in which developing O. lignaria and M. rotundata are exposed to 

novel cues in an effort to influence their nest choices have already been initiated (Vorel 

and Pitts-Singer, unpublished).  In 2008-2009, M. rotundata cells were exposed to either 

PAA or citral throughout development, beginning at the first instar.  In summer 2009, the 

odor-exposed bees were allowed to choose between odor-treated nested materials and 

untreated nest materials.  However, additional replication is needed, and conclusions 

cannot be drawn from the data collected thus far.    
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In 2009, O. lignaria females were exposed to PAA during the two weeks prior to 

emergence from the cocoon.  However, they did not preferentially nest in response to 

PAA.  It appears that, if learning occurs within in the natal nest, it most likely occurs at 

an earlier point in time. 

Megachile rotundata are already widely used as pollinators for the commercial 

production of alfalfa seed.  Osmia lignara are being heavily developed as pollinators for 

a variety of fruit trees.  The work contained in this dissertation, as well as the results of 

future experiments, can be applied to make commercial management of these pollinators 

more efficient and productive. 
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RESULTS OF STATISTICAL ANALYSES FOR CHAPTER 5  

Table A-1.  Results of two-tailed Fisher’s exact tests comparing the likelihood of 
conditioned and unconditioned bees choosing either faux feeder in Experiment One. 

Bee Tested Odor Pairing 
No. Tested  

(Cond. / Uncond.) 
Percent that Chose 
(Cond. / Uncond.) P 

O. lignaria ♀ Geraniol vs. Blank 60 / 61 68% / 36% <0.01 
O. lignaria ♂ Geraniol vs. Blank 57 / 37 61% / 43%   0.09 
O. lignaria ♀ PAA vs. Blank 56 / 72 84% / 58% <0.01 
O. lignaria ♂ PAA vs. Blank 49 / 35 65% / 54%   0.37 
M. rotundata ♀ Geraniol vs. Blank 51 / 50 20% /   6%   0.07 
M. rotundata ♂ Geraniol vs. Blank 57 / 51 25% / 18%   0.48 
M. rotundata ♀ PAA vs. Blank 46 / 50 39% / 26%   0.19 
M. rotundata ♂ PAA vs. Blank 47 / 50 49% / 32%   0.10 

 
 
Table A-2. Results of two-tailed Fisher’s exact tests comparing the likelihood of 
conditioned and unconditioned bees choosing the scented faux feeder in Experiment One. 

Bee Tested Odor Pairing 
No. Chose 

(Cond. / Uncond.) 

Percent that  
Chose Scented  

(Cond. / Uncond.)   P 
O. lignaria ♀ Geraniol vs. Blank  41 / 22   93% / 32% <0.01 
O. lignaria ♂ Geraniol vs. Blank  35 / 16   83% / 63% 0.16 
O. lignaria ♀ PAA vs. Blank  47 / 42   85% / 36% <0.01 
O. lignaria ♂ PAA vs. Blank  32 / 19   84% / 47% <0.01 
M. rotundata ♀ Geraniol vs. Blank  10 /   3   90% / 33% 0.11 
M. rotundata ♂ Geraniol vs. Blank  14 /   9 50% / 0% <0.02 
M. rotundata ♀ PAA vs. Blank  18 / 13   89% / 38% <0.01 
M. rotundata ♂ PAA vs. Blank  23 / 16   74% / 50% 0.18 

 
 
Table A-3. Results of two-tailed Fisher’s exact tests comparing female and male bees’ 
likelihood of choosing either faux feeder in Experiment One. 

Species Tested 
Conditioning 

Status Odor Pairing 
No. Tested  

(♀ / ♂) 
Percent that 

Chose (♀ / ♂) P 
O. lignaria Cond. Geraniol vs. Blank 60 / 57 68% / 61% 0.45 
O. lignaria Uncond. Geraniol vs. Blank 61 / 37  36% / 43% 0.53 
O. lignaria Cond. PAA vs. Blank 56 / 49 84% / 65% <0.05 
O. lignaria Uncond. PAA vs. Blank 72 / 35 58% / 54% 0.84 
M. rotundata Cond. Geraniol vs. Blank 51 / 57 20% / 25% 0.64 
M. rotundata Uncond. Geraniol vs. Blank 50 / 51   6% / 18% 0.12 
M. rotundata Cond. PAA vs. Blank 46 / 47 39% / 49% 0.41 
M. rotundata Uncond. PAA vs. Blank 50 / 50 26% / 32% 0.66 
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Table A-4. Results of two-tailed Fisher’s exact tests comparing female and male bees’ 
likelihood of choosing the scented faux feeder in Experiment One. 

Species Tested 
Conditioning 

Status Odor Pairing 
No. Chose 

(♀ / ♂) 
Percent that Chose 

Scented (♀ / ♂) P 
O. lignaria Cond. Geraniol vs. Blank 41 / 35   93% / 83% 0.29 
O. lignaria Uncond. Geraniol vs. Blank 22 / 16   32% / 63% 0.10 
O. lignaria Cond. PAA vs. Blank 47 / 32   85% / 84% 1.00 
O. lignaria Uncond. PAA vs. Blank 42 / 19   36% / 47% 0.41 
M. rotundata Cond. Geraniol vs. Blank 10 / 14   90% / 50% 0.08 
M. rotundata Uncond. Geraniol vs. Blank   3 /   9   33% /   0% 0.25 
M. rotundata Cond. PAA vs. Blank 18 / 23   89% / 74% 0.43 
M. rotundata Uncond. PAA vs. Blank 13 / 16   38% / 50% 0.71 

 
 
Table A-5. Results of binomial tests of bees’ likelihood of choosing the left or right faux 
feeder during testing in Experiment One. 

Bee Tested 
Conditioning 

Status Odor Pairing 

No. 
that 

Chose 

Percent that 
Chose  

Left / Right Z P 
O. lignaria ♀ Cond. Geraniol vs. Blank 41 51% / 49% 0.16 0.88 
O. lignaria ♂ Cond. Geraniol vs. Blank 35 57% / 43% 0.85 0.40 
O. lignaria ♀ Uncond. Geraniol vs. Blank 22 50% / 50% 0.00 1.00 
O. lignaria ♂ Uncond. Geraniol vs. Blank 16 37% / 63% -1.00 0.32 
O. lignaria ♀ Cond. PAA vs. Blank 47 49% / 51% -0.15 0.88 
O. lignaria ♂ Cond. PAA vs. Blank 32 53% / 47% 0.35 0.72 
O. lignaria ♀ Uncond. PAA vs. Blank 41 49% / 51% -0.16 0.88 
O. lignaria ♂ Uncond. PAA vs. Blank 19 53% / 47% 0.23 0.82 
M. rotundata ♀ Cond. Geraniol vs. Blank 10 50% / 50% 0.00 1.00 
M. rotundata ♂ Cond. Geraniol vs. Blank 14 57% / 43% 0.53 0.59 
M. rotundata ♀ Uncond. Geraniol vs. Blank   3 67% / 33% 0.58 0.56 
M. rotundata ♂ Uncond. Geraniol vs. Blank   9 56% / 44% 0.33 0.74 
M. rotundata ♀ Cond. PAA vs. Blank 17 24% / 76% -2.18 <0.03 
M. rotundata ♂ Cond. PAA vs. Blank 23 52% / 48% 0.21 0.83 
M. rotundata ♀ Uncond. PAA vs. Blank 13 46% / 54% -0.28 0.78 
M. rotundata ♂ Uncond. PAA vs. Blank 16 56% / 44% 0.50 0.62 

 
 



110 
 
Table A-6.  Results of binomial tests of unconditioned bees’ likelihood of choosing the 
scented or unscented faux feeder during testing in Experiment One. 

Bee Tested Odor Pairing 
No. that 
Chose 

Percent that Chose 
Scented / Unscented Z P 

O. lignaria ♀ Geraniol vs. Blank 22   32% /   68% 1.71 0.09 
O. lignaria ♂ Geraniol vs. Blank 16   63% /   37% -1.00 0.32 
O. lignaria ♀ PAA vs. Blank 42   36% /   64% 1.85 0.06 
O. lignaria ♂ PAA vs. Blank 19   47% /   53% 0.23 0.82 
M. rotundata ♀ Geraniol vs. Blank   3   33% /   66% 0.58 0.56 
M. rotundata ♂ Geraniol vs. Blank   9     0% / 100% 3.00 <0.01 
M. rotundata ♀ PAA vs. Blank 13   38% /   62% 0.83 0.41 
M. rotundata ♂ PAA vs. Blank 16   50% /   50% 0.00 1.00 

 
 
Table A-7.  Results of two-tailed Fisher’s exact tests comparing the likelihood of 
conditioned and unconditioned bees choosing either faux feeder in Experiment Two. 

Bee Tested 
Odor Pairing  

(Positive vs. Negative) 
No. Tested  

(Cond. / Uncond.) 
Percent that Chose 
(Cond. / Uncond.) P 

O. lignaria ♀ Geraniol vs. PAA   50 / 50    94% / 84% 0.20 
O. lignaria ♂ Geraniol vs. PAA   19 / 20    89% / 75% 0.41 
O. lignaria ♀ PAA vs. Geraniol   59 / 50    86% / 84% 0.79 
O. lignaria ♂ PAA vs. Geraniol     5 / 20    80% / 75% 1.00 
O. lignaria ♀ Geraniol vs. Citral   52 / 45    71% / 73% 0.82 
O. lignaria ♂ Geraniol vs. Citral   31 /   7   65% / 57% 1.00 
O. lignaria ♀ Citral vs. Geraniol  46 / 45   43% / 73% <0.01 
O. lignaria ♂ Citral vs. Geraniol    8 /   7   38% / 57% 0.62 
O. lignaria ♀ PAA vs. Citral  21 / 25   57% / 44% 0.55 
O. lignaria ♂ PAA vs. Citral    2 /   7 100% / 57% 0.50 
O. lignaria ♀ Citral vs. PAA  32 / 25   72% / 44% 0.06 
O. lignaria ♂ Citral vs. PAA    3 /   7 100% / 57% 0.48 
M. rotundata ♀ Geraniol vs. PAA  39 / 40   56% / 43% 0.26 
M. rotundata ♂ Geraniol vs. PAA  40 / 44   73% / 80% 0.61 
M. rotundata ♀ PAA vs. Geraniol  42 / 40   57% / 43% 0.27 
M. rotundata ♂ PAA vs. Geraniol  40 / 44   68% / 80% 0.23 
M. rotundata ♀ Geraniol vs. Citral  40 / 42  50% / 33% 0.18 
M. rotundata ♂ Geraniol vs. Citral  40 / 41  55% / 56% 1.00 
M. rotundata ♀ Citral vs. Geraniol  41 / 42  20% / 33% 0.16 
M. rotundata ♂ Citral vs. Geraniol  40 / 41  45% / 56% 0.38 
M. rotundata ♀ PAA vs. Citral  41 / 40  56% / 68% 0.36 
M. rotundata ♂ PAA vs. Citral  40 / 40  70% / 73% 1.00 
M. rotundata ♀ Citral vs. PAA  40 / 40  35% / 68% <0.01 
M. rotundata ♂ Citral vs. PAA  40 / 40  48% / 73% <0.04 
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Table A-8. Results of two-tailed Fisher’s exact tests comparing the likelihood of 
conditioned and unconditioned bees choosing the positively-scented faux feeder in 
Experiment Two.  Some groups, designated NC for “not computed,” were too small for 
statistical analysis. 

Bee Tested 
Odor Pairing  

(Positive vs. Negative) 
No. Chose 

(Cond. / Uncond.) 

Percent that Chose 
Positive Odor  

(Cond. / Uncond.) P 
O. lignaria ♀ Geraniol vs. PAA    47 / 42  72% /   43% <0.01 
O. lignaria ♂ Geraniol vs. PAA    17 / 15  88% /   53% <0.05 
O. lignaria ♀ PAA vs. Geraniol    51 / 42  57% /   57% 1.00 
O. lignaria ♂ PAA vs. Geraniol      4 / 15  75% /   47% 0.58 
O. lignaria ♀ Geraniol vs. Citral    37 / 33  70% /   48% 0.09 
O. lignaria ♂ Geraniol vs. Citral   20 /  4  85% /   75% 0.54 
O. lignaria ♀ Citral vs. Geraniol    20 / 33  45% /   52% 0.78 
O. lignaria ♂ Citral vs. Geraniol     3 /  4  33% /   25% 1.00 
O. lignaria ♀ PAA vs Citral   12 / 11  67% /   55% 0.68 
O. lignaria ♂ PAA vs Citral     2 /   4 100% / 100% NC 
O. lignaria ♀ Citral vs PAA   23 / 11  61% /   45% 0.47 
O. lignaria ♂ Citral vs PAA    3 /   4 100% / 100% NC 
M. rotundata ♀ Geraniol vs. PAA  22 / 17  68% /   29% <0.03 
M. rotundata ♂ Geraniol vs. PAA  29 / 35  66% /   31% <0.02 
M. rotundata ♀ PAA vs. Geraniol  24 / 17  25% /   71% <0.01 
M. rotundata ♂ PAA vs. Geraniol  27 / 35  89% /   69% 0.07 
M. rotundata ♀ Geraniol vs. Citral  20 / 14  70% /   57% 0.49 
M. rotundata ♂ Geraniol vs. Citral  22 / 23  55% /   35% 0.24 
M. rotundata ♀ Citral vs. Geraniol   8 / 14  50% /   43% 1.00 
M. rotundata ♂ Citral vs. Geraniol 18 / 23  50% /   65% 0.36 
M. rotundata ♀ PAA vs. Citral 23 / 27  61% /   56% 0.78 
M. rotundata ♂ PAA vs. Citral 28 / 29  79% /   83% 0.75 
M. rotundata ♀ Citral vs. PAA 14 / 27  50% /   44% 0.75 
M. rotundata ♂ Citral vs. PAA 19 / 29  26% /   17% 0.49 
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Table A-9. Results of two-tailed Fisher’s exact tests comparing female and male bees’ 
likelihood of choosing either faux feeder in Experiment Two. 

Species Tested 
Conditioning 

Status Odor Pairing 
No. Tested  

(♀ / ♂) 
Percent that 

Chose (♀ / ♂) P 
O. lignaria Cond. Geraniol vs. PAA   50 / 19     94% /   89% 0.61 
O. lignaria Uncond. Geraniol vs. PAA   50 / 20     84% /   75% 0.50 
O. lignaria Cond. PAA vs. Geraniol   59 /   5     86% /   80% 0.54 
O. lignaria Cond. Geraniol vs. Citral   52 / 31     71% /   65% 0.63 
O. lignaria Uncond. Geraniol vs. Citral  45 /   7     73% /   57% 0.40 
O. lignaria Cond. Citral vs. Geraniol  46 /   8     43% /   38% 1.00 
O. lignaria Cond. PAA vs. Citral  21 /   2     57% / 100% 0.50 
O. lignaria Uncond. PAA vs. Citral  25 /   7     44% /   57% 0.68 
O. lignaria Cond. Citral vs. PAA  32 /   3     72% / 100% 0.55 
M. rotundata Cond. Geraniol vs. PAA  39 / 40     56% /   73% 0.16 
M. rotundata Uncond. Geraniol vs. PAA  40 / 44     43% /   80% <0.01 
M. rotundata Cond. PAA vs. Geraniol  42 / 40     57% /   68% 0.37 
M. rotundata Cond. Geraniol vs. Citral  40 / 40    50% /   55% 0.82 
M. rotundata Uncond. Geraniol vs. Citral  42 / 41    33% /   56% <0.05 
M. rotundata Cond. Citral vs. Geraniol  41 / 40    20% /   45% <0.02 
M. rotundata Cond. PAA vs. Citral  41 / 40    56% /   70% 0.25 
M. rotundata Uncond. PAA vs. Citral  40 / 50    68% /   78% 0.34 
M. rotundata Cond. Citral vs. PAA  40 / 40    35% /   48% 0.36 

 

Table A-10. Results of two-tailed Fisher’s exact tests comparing female and male bees’ 
likelihood of choosing the positively-scented faux feeder in Experiment Two. 

Species 
Tested 

Conditioning 
Status Odor Pairing 

No. Chose 
(♀ / ♂) 

Percent that Chose 
Positive (♀ / ♂) P 

O. lignaria Cond. Geraniol vs. PAA   49 / 15   69% /   87% 0.32 
O. lignaria Uncond. Geraniol vs. PAA   42 / 15   43% /   53% 0.55 
O. lignaria Cond. PAA vs. Geraniol   51 /   4   57% /   75% 0.63 
O. lignaria Cond. Geraniol vs. Citral   37 / 20   70% /   85% 0.34 
O. lignaria Uncond. Geraniol vs. Citral   33 /   4   48% /   75% 0.60 
O. lignaria Cond. Citral vs. Geraniol   20 /   3   45% /   33% 1.00 
O. lignaria Cond. PAA vs. Citral   12 /   2   67% / 100% 1.00 
O. lignaria Uncond. PAA vs. Citral   11 /   4   55% / 100% 0.23 
O. lignaria Cond. Citral vs. PAA   23 /   3   61% / 100% 0.53 
M. rotundata Cond. Geraniol vs. PAA   22 / 29   68% /   66% 1.00 
M. rotundata Uncond. Geraniol vs. PAA   17 / 35   29% /   31% 1.00 
M. rotundata Cond. PAA vs. Geraniol   24 / 27   25% /   89% <0.01 
M. rotundata Cond. Geraniol vs. Citral   20 / 22   70% /   55% 0.35 
M. rotundata Uncond. Geraniol vs. Citral   14 / 23   57% /   35% 0.31 
M. rotundata Cond. Citral vs. Geraniol     8 / 18   50% /   50% 1.00 
M. rotundata Cond. PAA vs. Citral   23 / 28   61% /   79% 0.22 
M. rotundata Uncond. PAA vs. Citral   27 / 29   56% /   83% <0.05 
M. rotundata Cond. Citral vs. PAA   14 / 19   50% /   26% 0.27 
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Table A-11. Results of binomial tests of bees’ likelihood of choosing the left or right faux 
feeder during testing in Experiment Two. 

Bee Tested 
Conditioning 

Status Odor Pairing 
No. that 
Chose 

Percent that 
Chose  

Left / Right Z P 
O. lignaria ♀ Cond. Geraniol vs. PAA 47 47% / 53% -0.44 0.66 
O. lignaria ♂ Cond. Geraniol vs. PAA 17 47% / 53% -0.24 0.81 
O. lignaria ♀ Uncond. Geraniol vs. PAA 42 48% / 52% -0.31 0.76 
O. lignaria ♂ Uncond. Geraniol vs. PAA 15 60% / 40% 0.77 0.44 
O. lignaria ♀ Cond. PAA vs. Geraniol 51 55% / 45% 0.70 0.48 
O. lignaria ♂ Cond. PAA vs. Geraniol   4 25% / 75% -1.00 0.32 
O. lignaria ♀ Cond. Geraniol vs. Citral 37 35% / 65% -1.81 0.07 
O. lignaria ♂ Cond. Geraniol vs. Citral 20 65% / 35% 1.34 0.18 
O. lignaria ♀ Uncond. Geraniol vs. Citral 33 55% / 45% 0.52 0.60 
O. lignaria ♂ Uncond. Geraniol vs. Citral   4 75% / 25% 1.00 0.32 
O. lignaria ♀ Cond. Citral vs. Geraniol 20 55% / 45% 0.45 0.65 
O. lignaria ♂ Cond. Citral vs. Geraniol   3 33% / 67% -0.58 0.56 
O. lignaria ♀ Cond. PAA vs. Citral 12 50% / 50% 0.00 1.00 
O. lignaria ♂ Cond. PAA vs. Citral   2 50% / 50% 0.00 1.00 
O. lignaria ♀ Uncond. PAA vs. Citral 11 64% /36% 0.90 0.37 
O. lignaria ♂ Uncond. PAA vs. Citral   4 50% / 50% 0.00 1.00 
O. lignaria ♀ Cond. Citral vs. PAA 23 65% / 35% 1.46 0.14 
O. lignaria ♂ Cond. Citral vs. PAA   3 33% / 67% -0.58 0.56 
M. rotundata ♀ Cond. Geraniol vs. PAA 22 36% / 64% -1.28 0.20 
M. rotundata ♂ Cond. Geraniol vs. PAA 29 45% / 55% -0.56 0.58 
M. rotundata ♀ Uncond. Geraniol vs. PAA 17 53% / 47% 0.24 0.81 
M. rotundata ♂ Uncond. Geraniol vs. PAA 35 60% / 40% 1.18 0.24 
M. rotundata ♀ Cond. PAA vs. Geraniol 24 63% / 37% 1.22 0.22 
M. rotundata ♂ Cond. PAA vs. Geraniol 27 56% / 44% 0.58 0.56 
M. rotundata ♀ Cond. Geraniol vs. Citral 20 45% / 55% -0.45 0.65 
M. rotundata ♂ Cond. Geraniol vs. Citral 22 50% / 50% 0.00 1.00 
M. rotundata ♀ Uncond. Geraniol vs. Citral 14 57% / 43% 0.53 0.59 
M. rotundata ♂ Uncond. Geraniol vs. Citral 23 61% / 39% 1.04 0.30 
M. rotundata ♀ Cond. Citral vs. Geraniol   8 37% / 63% -0.71 0.48 
M. rotundata ♂ Cond. Citral vs. Geraniol 18 61% / 39% 0.94 0.35 
M. rotundata ♀ Cond. PAA vs. Citral 23 57% / 43% 0.63 0.53 
M. rotundata ♂ Cond. PAA vs. Citral 28 39% / 61% -1.13 0.26 
M. rotundata ♀ Uncond. PAA vs. Citral 27 52% / 48% 0.19 0.85 
M. rotundata ♂ Uncond. PAA vs. Citral 29 52% / 48% 0.19 0.85 
M. rotundata ♀ Cond. Citral vs. PAA 14 50% / 50% 0.00 1.00 
M. rotundata ♂ Cond. Citral vs. PAA 19 47% / 53% -0.23 0.82 
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Table A-12.  Results of binomial tests of unconditioned bees’ likelihood of choosing 
either the positively-scented or the negatively-scented faux feeder during testing in 
Experiment Two. 

Bee Tested Odor Pairing 
No. that 
Chose 

Percent that Chose 
Positive / Negative Z P 

O. lignaria ♀ Geraniol vs. PAA 42   43% /   57% -0.93 0.35 
O. lignaria ♂ Geraniol vs. PAA 15   53% /   47% 0.26 0.80 
O. lignaria ♀ Citral vs. Geraniol 33   52% /   48% 0.17 0.86 
O. lignaria ♂ Citral vs. Geraniol   4   25% /   75% -1.00 0.32 
O. lignaria ♀ Citral vs. PAA 11   45% /   55% -3.00 0.76 
O. lignaria ♂ Citral vs. PAA   4     0% / 100% 2.00 <0.05 
M. rotundata ♀ Geraniol vs. PAA 17   29% /   71% -1.70 0.09 
M. rotundata ♂ Geraniol vs. PAA 35   31% /   69% -2.20 <0.03 
M. rotundata ♀ Citral vs. Geraniol 14   43% /   57% -0.53 0.59 
M. rotundata ♂ Citral vs. Geraniol 23   65% /   35% 1.46 0.14 
M. rotundata ♀ Citral vs. PAA 27   44% /   56% -0.58 0.56 
M. rotundata ♂ Citral vs. PAA 29   17% /   83% -3.53 <0.01 

 
 
Table A-13.  Results of two-tailed Fisher’s exact tests comparing the likelihood of 
conditioned and unconditioned bees choosing either faux feeder in Experiment Three. 

Bee Tested 
Odor Pairing  

(Positive vs. Negative) 
No. Tested 

(Cond. / Uncond.) 
Percent that Chose 
(Cond. / Uncond.) P 

O. lignaria ♀ Geraniol vs. PAA 38 / 56   84% / 54% <0.01 
O. lignaria ♂ Geraniol vs. PAA 39 / 63   82% / 52% <0.01 
O. lignaria ♀ PAA vs. Geraniol 36 / 56   92% / 54% <0.01 
O. lignaria ♂ PAA vs. Geraniol 38 / 63   79% / 52% <0.02 
O. lignaria ♀ Geraniol vs. Citral 38 / 84   84% / 37% <0.01 
O. lignaria ♂ Geraniol vs. Citral 42 / 56   79% / 55% <0.02 
O. lignaria ♀ Citral vs. Geraniol 41 / 84   80% / 37% <0.01 
O. lignaria ♂ Citral vs. Geraniol 42 / 56   71% / 55% 0.14 
O. lignaria ♀ PAA vs. Citral 39 / 50   82% / 70% 0.22 
O. lignaria ♂ PAA vs. Citral 34 / 47   94% / 64% <0.01 
O. lignaria ♀ Citral vs. PAA 37 / 50   89% / 70% <0.04 
O. lignaria ♂ Citral vs. PAA 34 / 47   88% / 64% <0.02 
M. rotundata ♀ Geraniol vs. PAA 51 / 50   24% / 10% 0.11 
M. rotundata ♂ Geraniol vs. PAA 50 / 55   26% / 15% 0.15 
M. rotundata ♀ PAA vs. Geraniol 41 / 50   32% / 10% <0.02 
M. rotundata ♂ PAA vs. Geraniol 51 / 55   27% / 15% 0.15 
M. rotundata ♀ Geraniol vs. Citral 43 / 51   14% /   6% 0.29 
M. rotundata ♂ Geraniol vs. Citral 42 / 51   79% /   8% <0.01 
M. rotundata ♀ Citral vs. Geraniol 46 / 51   39% /   6% <0.01 
M. rotundata ♂ Citral vs. Geraniol 49 / 51   45% /   8% <0.01 
M. rotundata ♀ PAA vs. Citral 44 / 55   11% /   9% 0.75 
M. rotundata ♂ PAA vs. Citral 54 / 52   57% / 13% <0.01 
M. rotundata ♀ Citral vs. PAA 44 / 55   30% /   9% <0.02 
M. rotundata ♂ Citral vs. PAA 44 / 52  30% / 13% 0.08 
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Table A-14. Results of two-tailed Fisher’s exact tests comparing the likelihood of 
conditioned and unconditioned bees choosing the positively-scented faux feeder in 
Experiment Three. 

Bee Tested 
Odor Pairing 

(Positive vs. Negative) 
No. Chose 

(Cond. / Uncond.) 

Percent that Chose 
Positive Odor  

(Cond. / Uncond.) P 
O. lignaria ♀ Geraniol vs. PAA    32 / 30   94% / 43% <0.01 
O. lignaria ♂ Geraniol vs. PAA    32 / 33   72% / 24% <0.01 
O. lignaria ♀ PAA vs. Geraniol    33 / 30   82% / 57% 0.05 
O. lignaria ♂ PAA vs. Geraniol    30 / 33   93% / 76% <0.01 
O. lignaria ♀ Geraniol vs. Citral    32 / 31   75% / 45% <0.03 
O. lignaria ♂ Geraniol vs. Citral    33 / 31   73% / 52% 0.12 
O. lignaria ♀ Citral vs. Geraniol    33 / 31   88% / 45% <0.01 
O. lignaria ♂ Citral vs. Geraniol    30 / 31 100% / 48% <0.01 
O. lignaria ♀ PAA vs Citral    32 / 35  88% / 57% <0.01 
O. lignaria ♂ PAA vs Citral    32 / 30  91% / 60% <0.01 
O. lignaria ♀ Citral vs PAA    33 / 35  94% / 43% <0.01 
O. lignaria ♂ Citral vs PAA   30 / 30  73% / 40% <0.02 
M. rotundata ♀ Geraniol vs. PAA   12 /   5  67% / 20% 0.13 
M. rotundata ♂ Geraniol vs. PAA   13 /   8  62% / 63% 1.00 
M. rotundata ♀ PAA vs. Geraniol   13 /   5  85% / 80% 1.00 
M. rotundata ♂ PAA vs. Geraniol   14 /   8  79% / 38% 0.08 
M. rotundata ♀ Geraniol vs. Citral     6 /   3  67% / 33% 0.52 
M. rotundata ♂ Geraniol vs. Citral   33 /   4  73% / 25% 0.09 
M. rotundata ♀ Citral vs. Geraniol   18 /   3  56% / 67% 1.00 
M. rotundata ♂ Citral vs. Geraniol   22 /   4  68% / 75% 1.00 
M. rotundata ♀ PAA vs. Citral     5 /   5  80% / 60% 1.00 
M. rotundata ♂ PAA vs. Citral   31 /   7 100% / 29% <0.01 
M. rotundata ♀ Citral vs. PAA   13 / 28  92% / 89% 1.00 
M. rotundata ♂ Citral vs. PAA   11 /   7  91% / 71% 0.53 
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Table A-15. Results of two-tailed Fisher’s exact tests comparing female and male bees’ 
likelihood of choosing either faux feeder in Experiment Three. 

Species 
Tested 

Conditioning 
Status Odor Pairing 

No. Tested 
(♀ / ♂) 

Percent that 
Chose (♀ / ♂) P 

O. lignaria Cond. Geraniol vs. PAA 38 / 39 84% / 82% 1.00 
O. lignaria Uncond. Geraniol vs. PAA 56 / 63 54% / 52% 1.00 
O. lignaria Cond. PAA vs. Geraniol 36 / 38 92% / 79% 0.19 
O. lignaria Cond. Geraniol vs. Citral 38 / 42 84% / 79% 0.58 
O. lignaria Uncond. Geraniol vs. Citral 84 / 56 37% / 55% <0.04 
O. lignaria Cond. Citral vs. Geraniol 41 / 42 80% / 71% 0.44 
O. lignaria Cond. PAA vs. Citral 39 / 34 82% / 94% 0.16 
O. lignaria Uncond. PAA vs. Citral 50 / 47 70% / 64% 0.67 
O. lignaria Cond. Citral vs. PAA 37 / 34 89% / 88% 1.00 
M. rotundata Cond. Geraniol vs. PAA 51 / 50 24% / 26% 0.82 
M. rotundata Uncond. Geraniol vs. PAA 50 / 55 10% / 15% 0.56 
M. rotundata Cond. PAA vs. Geraniol 41 / 51 32% / 27% 0.82 
M. rotundata Cond. Geraniol vs. Citral 43 / 49 14% / 29% 0.13 
M. rotundata Uncond. Geraniol vs. Citral 51 / 51   6% /   8% 1.00 
M. rotundata Cond. Citral vs. Geraniol 46 / 49 39% / 45% 0.68 
M. rotundata Cond. PAA vs. Citral 44 / 54 11% / 57% <0.01 
M. rotundata Uncond. PAA vs. Citral 55 / 52   9% / 13% 0.55 
M. rotundata Cond. Citral vs. PAA 44 / 52 30% / 21% 0.36 

 

Table A-16. Results of two-tailed Fisher’s exact tests comparing female and male bees’ 
likelihood of choosing the positively-scented faux feeder in Experiment Three. 

Species Tested 
Conditioning 

Status Odor Pairing 
No. Chose 

(♀ / ♂) 
Percent that Chose 

Positive (♀ / ♂) P 
O. lignaria Cond. Geraniol vs. PAA  32 / 32   94% /   72% <0.05 
O. lignaria Uncond. Geraniol vs. PAA  30 / 33   43% /   24% 0.12 
O. lignaria Cond. PAA vs. Geraniol  33 / 30   82% /   93% 0.26 
O. lignaria Cond. Geraniol vs. Citral  32 / 33   75% /   73% 1.00 
O. lignaria Uncond. Geraniol vs. Citral  31 / 31   45% /   52% 0.80 
O. lignaria Cond. Citral vs. Geraniol  33 / 30   89% / 100% 0.11 
O. lignaria Cond. PAA vs. Citral  32 / 32   88% /   91% 1.00 
O. lignaria Uncond. PAA vs. Citral  35 / 30   57% /   60% 1.00 
O. lignaria Cond. Citral vs. PAA  33 / 30   94% /   73% <0.04 
M. rotundata Cond. Geraniol vs. PAA  12 / 13   67% /   62% 1.00 
M. rotundata Uncond. Geraniol vs. PAA       5 /   8   20% /   63% 0.27 
M. rotundata Cond. PAA vs. Geraniol  13 / 14   85% /   79% 1.00 
M. rotundata Cond. Geraniol vs. Citral    6 / 14   67% /   64% 1.00 
M. rotundata Uncond. Geraniol vs. Citral    3 /   4   33% /   25% 1.00 
M. rotundata Cond. Citral vs. Geraniol  18 / 22   56% /   68% 0.52 
M. rotundata Cond. PAA vs. Citral    5 / 31   80% / 100% 0.14 
M. rotundata Uncond. PAA vs. Citral    5 /   7   60% /   29% 0.56 
M. rotundata Cond. Citral vs. PAA  13 / 11   92% /   91% 1.00 
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Table A-17. Results of binomial tests of bees’ likelihood of choosing the left or right faux 
feeder during testing in Experiment Three. 

Bee Tested 
Conditioning 

Status Odor Pairing 
No. that 
Chose 

Percent that 
Chose  

Left / Right Z P 
O. lignaria ♀ Cond. Geraniol vs. PAA 32   47% /   53% -0.35 0.72 
O. lignaria ♂ Cond. Geraniol vs. PAA 32   38% /   62% -1.41 0.16 
O. lignaria ♀ Uncond. Geraniol vs. PAA 30   57% /   43% 0.73 0.47 
O. lignaria ♂ Uncond. Geraniol vs. PAA 33   55% /   45% 0.52 0.60 
O. lignaria ♀ Cond. PAA vs. Geraniol 33   58% /   42% 0.87 0.38 
O. lignaria ♂ Cond. PAA vs. Geraniol 30   37% /   63% -1.46 0.14 
O. lignaria ♀ Cond. Geraniol vs. Citral 32   66% /   34% 1.77 0.08 
O. lignaria ♂ Cond. Geraniol vs. Citral 33   58% /   42% 0.87 0.38 
O. lignaria ♀ Uncond. Geraniol vs. Citral 31   42% /   58% -0.90 0.37 
O. lignaria ♂ Uncond. Geraniol vs. Citral 31   58% /   42% 0.90 0.37 
O. lignaria ♀ Cond. Citral vs. Geraniol 33   42% /   58% -0.87 0.38 
O. lignaria ♂ Cond. Citral vs. Geraniol 30   43% /   57% -0.73 0.47 
O. lignaria ♀ Cond. PAA vs. Citral 32   60% /   40% 1.06 0.29 
O. lignaria ♂ Cond. PAA vs. Citral 32   50% /   50% 0.00 1.00 
O. lignaria ♀ Uncond. PAA vs. Citral 35   54% /   46% 0.51 0.61 
O. lignaria ♂ Uncond. PAA vs. Citral 30   47% /   53% -0.37 0.72 
O. lignaria ♀ Cond. Citral vs. PAA 33   48% /   52% -0.17 0.86 
O. lignaria ♂ Cond. Citral vs. PAA 30   50% /   50% 0.00 1.00 
M. rotundata ♀ Cond. Geraniol vs. PAA 12   42% /   58% -0.58 0.56 
M. rotundata ♂ Cond. Geraniol vs. PAA 13   54% /   46% 0.28 0.78 
M. rotundata ♀ Uncond. Geraniol vs. PAA   5   40% /   60% -0.45 0.65 
M. rotundata ♂ Uncond. Geraniol vs. PAA   8   63% /   37% 0.71 0.48 
M. rotundata ♀ Cond. PAA vs. Geraniol 13   54% /   46% 0.28 0.78 
M. rotundata ♂ Cond. PAA vs. Geraniol 14   71% /   29% 1.60 0.11 
M. rotundata ♀ Cond. Geraniol vs. Citral   6   33% /   67% -0.82 0.41 
M. rotundata ♂ Cond. Geraniol vs. Citral 33  58% /   42% 0.87 0.38 
M. rotundata ♀ Uncond. Geraniol vs. Citral   3     0% / 100% 1.73 0.08 
M. rotundata ♂ Uncond. Geraniol vs. Citral   4   75% /   25% 1.00 0.32 
M. rotundata ♀ Cond. Citral vs. Geraniol 18   67% /   33% 1.41 0.16 
M. rotundata ♂ Cond. Citral vs. Geraniol 22   36% /   64% -1.28 0.20 
M. rotundata ♀ Cond. PAA vs. Citral   5   40% /   60% -0.45 0.65 
M. rotundata ♂ Cond. PAA vs. Citral 31   58% /   42% 0.90 0.37 
M. rotundata ♀ Uncond. PAA vs. Citral   5   40% /   60% -0.45 0.65 
M. rotundata ♂ Uncond. PAA vs. Citral   7   14% /   86% -1.89 0.06 
M. rotundata ♀ Cond. Citral vs. PAA 13   54% /   46% 0.28 0.78 
M. rotundata ♂ Cond. Citral vs. PAA 11   55% /   45% 0.30 0.76 
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Table A-18.  Results of binomial tests of unconditioned bees’ likelihood of choosing 
either the positively-scented or the negatively-scented faux feeder during testing in 
Experiment Three. 

Bee Tested Odor Pairing 
No. that 
Chose 

Percent that Chose 
Positive / Negative Z P 

O. lignaria ♀ Geraniol vs. PAA 22   36% /   64% -1.28 0.20 
O. lignaria ♂ Geraniol vs. PAA 28   18% /   82% -3.40 <0.01 
O. lignaria ♀ Citral vs. Geraniol 20   60% /   40% 0.89 0.37 
O. lignaria ♂ Citral vs. Geraniol 31   48% /   52% -0.18 0.86 
O. lignaria ♀ Citral vs. PAA 28   36% /   64% -1.51 0.13 
O. lignaria ♂ Citral vs. PAA 25   40% /   60% -1.00 0.32 
M. rotundata ♀ Geraniol vs. PAA   5   40% /   60% -0.45 0.65 
M. rotundata ♂ Geraniol vs. PAA   8   63% /   37% 0.71 0.48 
M. rotundata ♀ Citral vs. Geraniol   3     0% / 100% 1.73 0.08 
M. rotundata ♂ Citral vs. Geraniol   4   25% /   75% -1.00 0.32 
M. rotundata ♀ Citral vs. PAA   5   60% /   40% 0.45 0.65 
M. rotundata ♂ Citral vs. PAA   7   86% /   14% 1.89 0.06 
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