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Abstract

Design of a Low-Power Automatic Wireless Multi-Logger Networking Device

by

Kelly S. Lewis, Master of Science

Utah State University, 2007

Major Professor: Dr. Brandon Eames
Department: Electrical and Computer Engineering

Virtually every industry and discipline (e.g., mining, pharmaceutical, construction, agricul-

ture, reclamation, etc.) is finding applications for wireless data acquisition for monitoring

and managing processes and resources. Two sectors, namely agriculture and environmental

research, are seeking ways to obtain distributed soil and plant measurements over larger

areas like a watershed or large fields rather than a single site of intensive instrumentation

(i.e., a weather station). Wireless sensor networks and remote sensing have been explored

as a means to satisfy this need. Commercial products are readily available that have re-

mote wireless options to support distributed senor networking. However, these systems

have been designed with a field engineer or technician as the target end-user. Equipment

and operating costs, device specific programming languages, and complex wireless config-

uration schemes have impeded the adoption of large-scale, multi-node wireless systems in

these fields. This report details the development of an easy-to-use, ultra-low power wireless

datalogger incorporating a scalable, intelligent data collection and transmission topology.

The final product can interface to various sensor types including SDI-12 and uses an LCD

display to help simplify device setup.

(68 pages)
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Taking the technical out of new technology.
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Chapter 1

Introduction

This chapter contains a brief introduction to the rationale and design behind the devel-

opment of the Acclima DataManager. Supporting background in wireless data acquisition,

along with a discussion of current issues existing in agriculture and environmental moni-

toring is also presented. The Acclima DataManager aims to resolve these issues presented

and provide a low-power cost-effective platform to further intelligent resource management

and control.

1.1 Background

In the agricultural and environmental work of today, critical biological and physical

processes are monitored and recorded using sophisticated measuring equipment. Common

measurements referred to by these interest groups include, but are not limited to, soil

water content, soil and air temperature, relative humidity, soil CO2, soil O2, soil pH, soil

electrical conductivity, and rain water. Of these characterizations, subsurface processes

have traditionally been more elusive to observe. The corrosive nature of soil and its varying

properties of composition have made it difficult to feasible obtain accurate measurements

(less than five percent) of any properties in this medium for years and one location. Some

in these fields have also been interested in long term acquisition of soil characteristics for

the purpose of closed-loop management of property and conservation of natural resources.

Acclima Incorporated is an irrigation control company that specializes in precise water

management. One of Acclima’s market interests includes agricultural and environmental

research markets. Therefore, Acclima undertook to fund a large portion of this work.

Another key contributer was Aquarius Brands. Large-scale agricultural producers have

expressed to Acclima and Aquarius Brands the desire to not only have automatic equipment
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for supporting crop water and nutrient management, but also to obtain a descriptive, spatial

measure of the function and efficiency of these management systems. Researchers and

environmental analysts are searching for ways to increase spatial resolution of subsurface

soil properties to assist in characterizing and modeling below-ground processes in the large

(e.g., watersheds and basins).

1.2 Problem Definition

One method suggested by Morse and Kramberis is to use remote sensing and satellite

imaging to infer the desired properties from pictures taken from low-earth orbit [2,3]. This

method is based on Evapotranspiration (ET) models and has received much attention during

the last twenty years. It has excelled in many areas like forest resource management, crop

yield estimation in precision agriculture, and analyzing the environmental effects of urban-

ization guiding city planners. However, it has produced little in terms of useful subsurface

property estimation in agriculture. The cost of access, infrequent access times, complexity,

and estimation error inherent to such approaches also deter agricultural producers from

choosing this option. Researchers like Verhoest, on the other hand, have made use of this

technology but desire a more timely and reliable method. He claims that more ground data

is needed to continue refining their subsurface property estimation techniques [4].

The more common approach employed by producers and researchers alike involves the

use of weather stations as a static means of collecting environmental data, and separately

paying for soil testing laboratories to examine the more elusive soil properties. A single

on-site weather station, similar to the one seen in fig. 1.1, can cost thousands to tens

of thousands of dollars. These systems are also based on ET models and estimate the

amount of water in the soil from observable air characteristics. Due to the complexity of

these systems, most require experienced technicians trained to operate the measurement

equipment and manage extensive databases. In the ambit of academia, professors employ

students studying in technical fields to manage the complex field equipment used in their

research. The drawback for universities is that student turnover is very high and research

is put on hold to train new research assistants every one or two years.
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Fig. 1.1: Weather station located at TWDEF, Cache, UT.
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The above mentioned approaches are in practice all around the world. For ground-based

systems, using wireless data links is becoming the norm for remote data collection sites.

Cost and installation time concerns drive the deviation from wired-based communications.

The complexity added by introducing wireless into standing systems, coupled with the need

for potentially adding thousands of network nodes, is quickly pushing current technologies

and methodologies to their limit. The market currently offers no solution that addresses the

challenges associated with large network management and simplifying the implementation

of a scalable, highly spatial measurement system.

1.3 Desired Equipment Features

Considering the challenges with current approaches to large scale subsurface soil char-

acterization, Acclima Inc. and investor Aquarius Brands decided to probe whether there

would be a need or desire for new instrumentation. They approached produce farmers from

California and Washington and soil and agricultural researchers at Utah State University

and Boise State University. They received encouraging feedback and proceeded to ask what

device properties and characteristics they thought lacked in some of the currently available

equipment. Acclima then proceeded to present proposals for a new device that would satisfy

these needs.

The results from this informal poll illustrated that these two interest groups are looking

for a rugged, simple to use, power-efficient logger that has a built-in intelligent wireless

option. Naturally, they also did not want to pay thousands for one logger because the nature

of their work or research incorporates tens to hundreds of these devices. The following are

key requirements assembled from these discussions.

• Simple to Use - targeted toward producers, not engineers

• Low Power - able to run on inexpensive batteries for at least one growing season

(i.e., about six to eight months of operation)

• Low Cost - a distributed system with a per-node cost of $800 or less is acceptable
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• Radio Access - wireless system that is reliable up at least a half a mile and supports

a one-step network setup and data routing

• Sufficiently Rugged - resistant to environment, rough handling, and vandalism

• Automatic Centralized Data Collection - All data in a network of devices must

be collected and stored at one central location

• Versatile Sensor Interface - Support wide array of readily available sensors in-

terfaces like analog voltage or current measurements, digital pulse-width and pulse-

frequency measurements, and SDI-12 measurements.

Of note among this list is the requirement that this device must have radio access.

This feature alone is the most sought after and, ironically, introduces the most complexity.

This feature has pushed the cost of some existing systems into the thousands of dollars. It

also introduces the need for a network management level, which has frustrated and deterred

many producers and researches.

1.4 Proposed Objectives

Given the need for a new system, the author partnered with Acclima and Aquarius

Brands who provided funding to develop a new market-ready wireless data-logging platform

called the Acclima DataManager which:

1. Offers, through the integration of ultra low-power electronic devices and on-board

power management, a longer battery life than any existing equivalent product on the

market.

2. Supports a wide variety of sensors with analog, digital, and SDI-12 interfaces in a

competitive, low-cost package.

3. Facilitates a dynamically integrated sensor-network approach to environmental sens-

ing and data communication by making use of the ZigBee (IEEE 802.15.4) Mesh inter-

face and supporting runtime reconfiguration of ZigBee network personalities. This will

allow any product purchased to be configured as a coordinator, router, or endpoint.
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4. Allows non-engineers to easily access advanced logger features through a simple, yet

powerful LCD driven user interface and PC software.

This report describes in detail the design of an ultra low-power ZigBee-enabled data-

logging device targeted for agricultural and environmental monitoring. Beyond general

funding, Acclima also initially provided the market study, development tools, and code

libraries that assisted with the development of the LCD and MCU flash drivers. All other

development described in this report constitutes the project effort. Acclima engineer David

Anderson assisted in advising the author during the generation of hardware and firmware

modules. He also coordinated the author’s work with the concurrent development of the

PC interface software and the custom enclosure development.

1.5 Scope of Impact

With the completion of this new generation of advanced data loggers with integrated

intelligent wireless network management, approaches and methods to environmental mon-

itoring that were previously unattainable now can be considered. To the fullest scope, a

multi-tiered data fusion effort can fully be realized. The benefits of this effort include early

error and automatic statistical outlier detection, local and global analysis of correlative

data, and an adjustable field of view for collaboration. One DataManager can support

multiple sensor types delivering a more complete picture of the processes being observed.

Then data from one site can readily be combined with data from one to hundreds of local

collection points. Finally, this compilation can be submitted to strengthen fine-grain, spec-

tral remote sensing algorithms by providing a sensor network of geospatially located sites

that can be fused with satellite data. This diverse dataset can eventually pave the way to

truly automatic robots that can “see” and interact with its environment to till or harvest

crops completely unaided.

Another feasible application now apparent is the detailed mapping of watersheds that

feed water to many of the normally arid regions that dominate the western half of the United

States. Many water sheds have already been geologically mapped and soil construction and
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formations in these areas are well documented. Using this information, researchers and

hydrologists have generated models of water flow and sediment transport to forecast the

amount of water available from the land’s reserves and the effect of heavy rain during

flooding seasons. Now a system of networked loggers that can be directly accessed to

ascertain the saturation levels of the soil increasing the reliability of said predictions.
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Chapter 2

Subject Review

This chapter discusses in detail the background issues presented in section 1.2. It will do

this by presenting documented examples of current methods used in environmental sensing

projects. Common models used to estimate environmental properties will then be presented

followed by a discussion illustrating the need for more collaborative analysis efforts. Finally,

a survey of commonly used products used to measure and store data for these projects will

be presented and their features discussed. These discussions will illuminate the apparent

need for a new product.

2.1 Current Methods of Subsurface Property Estimation

The two methods commonly used to estimate soil properties using ET are ground-

based weather stations and remote sensing. Ground stations, termed the conventional

approach in fig. 2.1, measures the ET potential and calculate a new estimated ET value

based on a previous soil moisture value. Remote sensing uses satellite imaging to observe

surface moisture flux and a previous value for soil moisture to arrive at the estimated ET.

This resulting ET value is then inserted into a model and a new soil moisture value is

obtained [1,5]. Possible models available to extrapolate soil moisture from ET are classified

as budget [6], semi-dynamic [7], and dynamic [8]. Any ET-based estimates always have

a processing lag inherently associated with its final output. This delay is caused by the

need to acquire the previous ET value. Processing also is not done on site because the

algorithms are to computationally complex to run on these power limited devices. This

offsets the moisture solution by an entire interval. One ET interval is about one day for the

conventional method and three to fourteen days for the remote sensing approach [9]. Using

the best ET methods to date, the best accuracy attained after extensive data processing
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Fig. 2.1: Two common approches to extract soil moisture from ET (figure proccured from
Bernard et al. [1]).

still reflects 6% error [4]. The model inaccuracies coupled with the lag and interval delays

introduce too much error for some to grow crops or to report solid scientific numbers using

these methods. However, Verhoest et al. [4] claims that more ground data is needed to

continue refining their subsurface property estimation models.

2.2 Current Methods of Environmental Property Determination

The basic building block to any ground system designed for data acquisition is the single

site measurement and control device commonly termed in the literature as a “datalogger.”

The term datalogger refers to many device classes from weather station controllers to a

freezer temperature recorder. Some of their features include but are not limited to analog

and digital measurement capabilities, onboard data storage, and basic RS-232 or advanced

communications links like the GOES satellite data-link. Dataloggers form the backbone of

most weather stations and can be interfaced with sensors to measure the subsurface proper-

ties directly [10,11]. For a small scale network of loggers (e.g., less than 20 devices), wired

systems using RS485 or 900MHz point-to-multipoint radio connections are most common.

Many of these systems can be found at USU and other universities. In particular, Greenville
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farm, located in Logan, Utah, has a system that falls under this category that uses point-

to-multipoint radios to tie six weather stations together [12]. T.W Daniel’s Research Forest

site, situated in the mountains above Bear Lake, Utah, interconnects sixteen dataloggers

using RS485 [13].

On a large scale, systems are connected using TCP/IP, satellite telemetry, or long

distance data radios. The Internet provides the ability to connect sites from many different

places around the world. Any system desiring to use this link needs only conform to

the TCP/IP specification and operate as a web-application or web-database. Campbell

Scientific Incorporated sells the NL100 Ethernet Adapter to enable their products to be

accessed using a TCP/IP network or Internet [14]. In more remote areas of the globe

where the Internet is not accessible, satellite telemetry (e.g., Iridium, GOES, etc.) is used.

One use for Iridium satellites are Dart-II buoys for oceanic weather and tsunami warning

systems [15]. The Snotel system used by the NRCS uses Meteor-Burst radios that use VHF

band radio waves that bounce waves off of the Ionosphere. This technology is capable of

transmitting over 1,000 km [16]. As of June 2003, over 660 Snotel sites were in operation

[11]. Organizations like the National Oceanic and Atmospheric Administration (NOAA)

collect environmental data from various sources using all of the above mentioned means.

NOAA supplies meteorologists and scientists with current weather data through a web

database [17].

2.3 The ZigBee Protocol

The methods mentioned above are sufficient to satisfy the need for spatially variant data

in the presence of external infrastructure. However, in rural areas the current technologies

support localized wired networks or wireless networks with topologies more suited for devices

ten miles or more apart [18]. ZigBee, a derivative of IEEE 802.15.4, is a wireless protocol

that focuses on highly reliable mesh networks optimized for low data rates and a device

grid-size of less than a mile. The protocol was first established in 2001 [19]. In 2006, the

first commercail ZigBee compliant radio modules were released. Moving towards 2008, these

modules are becoming a popular interface for remote sensors [18].
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These new radios are filling the void left by other protocols in medium scale, low-

power networking. Devices using ZigBee need little work to setup a self-healing, scalable

network [20]. This leaves the host device interfacing with these radios needing only to be

programmed with data management and database routines, leaving the network topology

to the protocol. The maximum network size is limited by the protocol to be less than 64,000

nodes [19].

2.4 Missing Analysis Opportunities

Sensor networking is the practice of taking sensors and embedding them with intelli-

gent wireless data-links. An artifact of sensor networking is data fusion [21]: the combining

of multiple measurements and data types to infer an attribute generally beyond a single

source or source type. Some algorithms developed in data fusion include localization and

directed diffusion algorithms, distributed tracking in wireless ad hoc networks, and dis-

tributed classification using local agents [22, 23]. Data fusion algorithms can be used to

increase accuracy of noise-prone sensors [24]. Common algorithms use least mean square

(LMS) censuses [25], Bayesian [23, 26], and Kalman filter and Dempster-Shafer evidence

theory [27]. All of these algorithms provide ways of extrapolating meaningful indicators

that can be used in automation and to advance analysis or modeling efforts [28].

2.5 Survey of Existing Product

Various companies specializing in creating products to collect environmental data have

produced dataloggers which offer many of the features described in section 1.3. Four of these

businesses and their currently available products will be discussed in sections 2.5.1-2.5.4.

All of these loggers work well and have established their place in providing services to their

respective target communities. All of theses products will be reviewed using section 1.3.

2.5.1 Campbell Scientific Incorporated

Campbell Scientific [29], a company based in Cache Valley, Utah, is a world renowned

maker of rugged data logging and measurement equipment. They have offices and produc-
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Fig. 2.2: Figure of the Campbell Scientific’s CR200 series datalogger.

tion facilities in Utah, Washington DC, and Canada. They are also the closely partnered

with other well known companies in the fields of environmental data systems and comput-

ing (e.g., Decagon, Apogee Instruments, and Juniper Systems). Their interests are broad

and they provide over 200 different products. Upon inspection of Campbell’s exhaustive

data logger portfolio, the logger selected as the closest candidate to satisfy the requirements

discussed in section 1.3 is the CR200 series datalogger.

The CR200 series logger, as seen in fig. 2.2, was designed by Campbell to be their

smallest logger and therefore well-suited in cost and size for remote measurements. It can

store up to 32,000 data points and hold six kilobytes of program code. CRBasic or Edlog are

Campbell’s programming languages that are cross-compiled and sent to the loggers. The

CR200 series uses Campbell’s proprietary PakBus OS that supports addressable networking

through a wired or wireless physical layer. It features five digital or single-ended (SE) analog

ports with 12-bit voltage measurement ports, each with a 0-2500mV maximum range and

0.6mV resolution. It also has two pulse measurement ports, one SDI-12 port, two 2.5V

or 5V excitation ports and one switched port for battery voltage. All units come with

an integrated 12V lead-acid battery charger and a RS-232 communication port. Select

units have integrated 900 MHz and 2.4 GHz ISM spread-spectrum radios (’206, ’211, ’216).

Lastly the device has an ESD rating of 15KV, temperature ratings of -20 and 70 Celsius
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and has been proven by years of field work.

Addressing the requirement list discussed in section 1.3, this logger does support mul-

tiple power modes that enables it to conserve battery life. Its power modes are as follows:

.2mA inactive, 3mA active with no radio, and 20mA to 75mA active with radio. These are

satisfactory power specifications. The logger also satisfies the integrated radio specification

and database requirements as well. However, the logger fails the ease of use stipulation. To

use a Campbell logger, one must know basic electrical principals and wire up the system

based on these principals. Then one must learn the CRBasic or Edlog programming lan-

guages. To establish a wireless network, the user must then manage the PakBus protocols

on every logger in the system. All of these tasks are technical in nature. This device does

not have a built-in user interface. This logger also fails the ruggedness requirement because

it isn’t weatherproof, and requires a separate enclosure to ensure continued operation in any

of the rated conditions. Finally, it fails on cost. A user must purchase the logger and the

proprietary software to interface to the logger and other Campbell Scientific devices. The

logger cost is $630 (2007), together with batteries, enclosure, and software is over $1,400.

Software costs only apply to the first system, so the site cost of a system using a CR200 is

around $1000 per node, falling outside the stated cost requirement.

2.5.2 Sutron Systems

This Virginian company [30] is also a world renowned maker of rugged data logging

and measurement equipment. They specialize in building very rugged datalogging plat-

forms that communicate using high power RF and satellite communication. Some of the

equipment manufactured by this company has been deployed in harsh environments such

as the Himalayas, South American rain forests, and Antarctica. Sutron manufactures six

different logging platforms with various sensor interfaces most of which were designed for

large amounts of instrumentation at one location.

The 8210 logger (see fig. 2.3) was selected as the closest match for this application. It

boasts 62,000 to 190,000 volatile measurement readings possible and an external PCMCIA

to expand memory size to a gigabyte. One of three methods can be used to program
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Fig. 2.3: Picture of Sutron’s 8210 datalogger.

this device. One is by using the front panel. A simple 1 X 40 character display and six

buttons are available to navigate the device’s basic configurations. There is the GUI Xpert

software that is an easy and convenient method to adjust configurations and download data.

There is also the option to use the Tiny Basic programming language for more specialized

programs that are beyond the standard configurations. The 8210 logger comes with twenty

digital IO, five counter inputs, and eight 13-bit analog inputs with five volt SE or 2.5 volt

differential options. Ports are available for SDI-12 interfacing and five volt and twelve

volt excitation. The logger comes with a 12V, 6.5Ah internal battery capable of ninety

days of unattended operation. It also has charge regulators for direct interfacing to a solar

panel. One externally accessible and two internally accessible communications ports are

also available on this model. This way, a user could communicate with a satellite, a local

wireless network, and a PC simultaneously. The device has a temperature rating of -50 to

60 C.

The above stated capabilities make this system is a fantastic system for logging just

about everything anywhere around the world. Its capabilities allow it to operate an entire

weather station singularly and to take advantage of satellite telemetry. However, the types

of application and possible markets target by this study do not need all the versatility

provided by this device. This system has an integrated user interface and a PC interface,
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but the integrated display is only used to display status and generic operations. To access

the system’s complex feature set, a programming language and computer must be used.

The logger can be battery powered for an extended duration, qualifying it in terms of the

low-power requirement. The 8210 does have radio options, but to use them one must have

the technical expertise to know what kind of wireless connection he/she wants and how to

tell the logger how to do it. The logger is enclosed and is rated for harsh environments

satisfying the ruggedness requirement. One logger costs $2000-$5000 and therefore falls

significantly outside the desired cost requirement. In summary, this is a great system that

satisfies every requirement except simplicity and cost.

2.5.3 Automata Incorporated

Automata Inc. [31], a company located in California, designs and manufactures devices

that incorporate data logging, telemetry, software interfaces, and sensors. For their radio

units they offer satellite, infrared, narrow-band, and spread spectrum radios. They also

offer RS-232, telephone, and fiber optic communications. Automata has been in business

for 32 years and have received many consumer awards for their Mini series and FC Field

Controller units.

The product from this company selected for review is the Mini-SS Logger (see fig. 2.4).

It was designed with a multi-nodal network in mind. This datalogger is one that closely

resembles an irrigation controller except for the added features of being able to log data. For

this reason devices come standard with little onboard log memory. In addition, an extra

128K of volatile memory can be added to improve the storage capacity above standard.

Sensors can be measured and recorded based on the following methods: timer (interval

based), event, and interrogation (on demand). The system comes with four digital IO ports

that can source enough current to actuate a valve or be used as a pulse counter. The

logger has four 10-bit SE 5V or 0-1mA or 0-20mA measurement ports. No other interfaces

exist. This device has one communications port that supports RS232, SPI, and I2C at 1200

though 19,200 Baud. For power, this device uses a 12V battery with the option of solar

power.
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Fig. 2.4: Figure showing Automata’s Mini-SS logger.

This system compares favorably to the desired specifications. It is simple to use and

configure. However, the radio and database requirements fail because the logger has no

inherent support for an automatic multi-node network of loggers or controllers. Although

one can easily setup local measurements, the effort and expertise required to setup a wireless

network with data storage/routing management would be a job for a technician, not a

producer. The logger comes with a qualified enclosure and therefore satisfies the ruggedness

constraint. It satisfies the power requirement because it uses only 5mA when active and

.2mA when sleeping. However, the system can only operate on battery power for two

months unattended with the standard battery supplied at purchase. This system also fails

the interface requirement. It only has analog sensor interfaces and does not support digital

or SDI-12. The system costs $875 and is therefore on the borderline of the stated cost

requirement.
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Fig. 2.5: The Em50R from Decagon Devices.

2.5.4 Decagon Devices Incorporated

Decagon Devices Inc. [32], based in Pullman, Washington, has developed over 30 dif-

ferent devices, sensors, and controllers/loggers alike. This company specializes in providing

quality products at a competitive cost. Decagon has products available for the following

fields: food and pharmaceutical science, geotechnical and civil engineering, environmental

research, and commercial irrigation.

Decagon has three loggers in its repertoire designated as Em50, Em50R, and the EM5b.

The Em50 and Em50R are identical except for the integrated radio on the EM50R. The

EM5b is meant to be an ultra low-cost solution for single site monitoring. After inspecting

these loggers, the Em50R, seen in fig. 2.5, was selected as the most applicable candidate

for multi-nodal data collection network. It comes in a NEMA rated enclosure to protect it

from the weather. The Em50R has ability to store 33,000 non-volatile sensor logs enabling

the logger to run for twelve months without overwriting old data. The logger has no

direct interface, but the PC interface is very easy to use and configuration can be setup

relatively quickly. The radio option for this logger requires further setup and coordination.
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The Em50R operates on five AA batteries for a duration of five to six months. Its sensor

interface is limited to SE 12-bit analog. A stereo head-phone jack with excitation, signal,

and ground is the standard hardware interface for sensors. This requires that the Em50R

use Decagon’s sensors only. The cost of the system is anywhere from $400 to $600 making

it a very reasonable solution cost-wise.

The Em50R does appear to be an excellent solution for multi-site monitoring. As seen

above, the logger satisfies the low-power, cost, ruggedness, and radio requirements. It does

not satisfy the necessary interface capability because it does not support SDI-12 or digital

sensors. It also does not allow for any other sensors to be used with this system. Lastly,

it does not support any data-basing features like automatic data routing and storage. A

significant effort in design is required to make centralized storage possible.

2.6 Summary of Product Reviews

Various products from several manufactures that specialize in the collection of agri-

cultural data have been evaluated. All systems were compared to the list of specified

requirements. Every one of the products discussed in sections 2.5.1-2.5.4 satisfies the power

requirements and all can interface to a type of radio. However, none of these products

deliver a complete networked system with all the features expressed in section 1.3. All of

these loggers work well and have their place in providing services to their respective target

communities. However, no currently available product supports all the required set of fea-

tures for distributed networking at the desired cost point. Although all the products offer

various forms of wireless communication, none of them establish a network, create data

routing paths, or store data in a central location automatically. Therefore, a need exists to

develop a system that has been targeted to distributed networking.
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Chapter 3

Product Definition

This chapter includes details on how the product requirements were further refined from

section 1.3 and how the design of a new DataManager was approached and decomposed

into various sub-components.

3.1 Design Requirement Survey

Discussions between the author, Acclima, and other stakeholders resulted in a more

complete list of requirements for a new logger platform, enumerated below:

1. The device must be able to run on commonly available and inexpensive AA-, C-, or

D-cell battery power for a period of eight months to a year. The general consensus is

that is must last a growing season. For some producers in California, that is all year

round.

2. The device must support auxiliary power from external batteries or 6/12V solar

power. The device will therefore have a power input port that can handle at least

15VDC.

3. The device must support variable switched power terminals to supply sensors with

power. Many sensors need excitation voltages to perform measurements. Other sen-

sors need different voltage levels than what field site battery can supply. Still other

sensors can draw too much current if connected to a battery directly. Consequently,

“variable” is interpreted as being able to supply 6V, 9V, 12V, and 15V at 500mA.

4. A single device must not cost more than $800, with a target cost of $600.

5. Each device must come in a weather proof enclosure and have a built-in lock. This

requirement has two purposes. One is to reduce the cost of installation by not requiring



20

a separate enclosure. The second is to curb the damage done by rough handling or

vandalism.

6. The device must support all of the following interface options: one SDI-12 commu-

nication port, three analog input ports, and two digital I/O ports. The analog port

must support 0-20mA current measurement and an auto-ranging voltage measurement

capable of measuring zero to ten volts with 12-bit accuracy.

7. The device must support an RS232C serial interface so as to connect to a PC or long

distance radio. Some discussion was invested into incorporating a USB port instead

of an RS232 port. USB is fast becoming a more common interface then RS232, but

USB uses more power and was therefore discarded with the caviot that if a processor

could be found that supports USB, it could be added as another supported interface.

8. The device must contain a real-time clock (RTC) with battery-backup for unbroken

operation for longer than five years of shelf life.

9. The device must support programmable logging intervals with one minute resolution.

All sensors are expected to be able to measure at or within this interval.

10. The device must support a common flash memory card interface for extended memory

applications and virtual device networking (VDN).1

11. The device must have an embedded ZigBee Mesh radio to support a scalable inter-

device network for automatic data routing for centralized data storage. The device

must support multiple network personalities to make possible the easy integration

of this device anywhere in the network. The ability to change the radio’s function

eliminates the need for Acclima to provide specific coordinator, router, or endpoint

loggers.

12. The device must have two easy-to-use methods for configuring the device. One of these

ways is to use a LCD driven user interface as a direct way to access device function

1VDN is a way to view key files form multiple devices without actually connecting to the real-time

network. An image of the device is stored to the memory card.
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Fig. 3.1: Depiction of the general hardware design.

and to verify correct device operation. This requirement coupled with the memory

card requirement allows an operator to forgo using a computer to download data and

adjust device settings. The other way is through the PC software. This software

should be able to interface to a logger or a network of loggers and be designed to

database the data collected by all nodes in a given system.

Good design practice dictates the use of separation of concerns and simplification or elab-

oration of requirements in the design to achieve a solution that meets all the above stated

requirements. The rest of this chapter will discuss in detail how the design specifics were

defined through analysis and elimination.

3.2 Hardware Platform Breakdown

Figure 3.1 gives a high level modular decomposition of the logger hardware. Modularity

helps minimizes the impact of design changes by iterative revisions through localizing the

impact of changes to individual modules. Each module is required to be as self-contained as

possible. A module’s interface is restricted to simple interface points, through which data

exchange occurs. There is a common power bus for the entire logger that is not represented
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here. All modules depicted in fig. 3.1 directly tie to the controller and were specifically

selected to satisfy the requirements listed in section 3.1. Specifics on the elaboration of the

requirement on a module-to-module basis will be shown in sections 3.2.1 - 3.2.1.

3.2.1 Power Supply Module

The purpose of the Power Supply Module is to interface with external power and

reliably provide power to the rest of the platform’s subsystems. It must satisfy requirement

1, 2, 3, and 8. To do this, the module must accept a 3.0-6.0VDC at 600mA battery input,

an auxiliary power input required to tolerate up to 15VDC at 600mA, and a 3.3VDC backup

battery input. The output requirements consist of: controller logic power with 3.3-3.6VDC

at 300mA, SDI-12 communications power with 5.0VDC at 20mA, and 6.0, 9.0, 12.0, and

15.0VDC at 500mA sensor power. This module must support unbroken power to a real-

time clock (RTC) for at least five years. The module must switch between its three inputs

seamlessly and be able to detect power failures. The entire power supply must consume less

than 20µA when in sleep mode and 0µA in backup power mode.

3.2.2 Controller Module

The Controller Module is the most complex of all the hardware modules in the device.

For large embedded systems, this module could consist of 10,000 processors. However, to

balance the cost vs. performance requirements for the DataManager, the size and scope of

the controller subsystem must be limited to a single microcontroller unit (MCU) solution.

An MCU contains a processor core or CPU and a wide variety of peripherals like battery

supervisory circuits, timers, RAM and ROM memory, and I/O ports.

After some considerable analysis, the designers concluded with the following subset of

the general requirements. This module must support:

1. A RTC that uses less than 5µA. This feature must interface directly with the power

module’s backup battery. 5µA will sustain the RTC for longer then five years without

power.
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2. High- and low-frequency crystal support with dynamic clock rate selection. The pro-

cessor’s clock rate is one of the biggest contributors to power draw. The ability to turn

off crystals and/or cores or even to slow down their speed is crucial in a low-power

design.

3. At least 48K of flash memory. The designers calculate that this application’s code

will fit in this memory size. Flash was selected because of its wide availability and its

ability to be reprogrammed in system. This last feature makes it the perfect selection

for non-volatile configuration storage and supporting code that can be re-flashed with

an upgrade.

4. At least 2K of RAM. It is difficult to find an 8-bit or 16-bit MCU supporting more

than 2K of RAM and 60K of Flash. A better solution would consist of a processor

with more RAM which still satisfies the other requirements.

5. At least four general purpose timers to realize communication, event, and interval

timing requirements.

6. At least 60 general purpose I/O pins with an additional 14 capable of raising externally

generated interrupts, an additional six capable of 12-bit analog-to-digital capturing,

and an additional three capable of event capture or direct compare with timers.

7. At least two Universal Synchronous Asynchronous Receiver Transmitters (USARTs)

for RS-232 communication and two Serial Peripheral Interface (SPI) ports with sep-

arate pins for operation. These are necessary for interfacing to on-board memory,

external memory, RS-232 computer port, and the radio module.

8. The cost of the controller module must be less than $10.00. This cost includes the

MCU, two crystals, and supporting components.

3.2.3 SDI-12 Communications Module

The SDI-12 module is the first out of three installments that aim to satisfy the general

interface requirement. This module must meet SDI-12 V1.3 specifications [33]. Therefore,
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12VDC power, ground, and a 5V-TTL bidirectional data port must be supported. The

SDI-12 module must support nine sensors while using the standard set of device addresses

(universal 0 and 1-9). The device must support one port and have individual configurations

for all nine sensors. These configurations must support multiple power settings and start

up delay parameters.

3.2.4 Analog Measurement Module

The analog module is the second installment that aims to satisfy the general interface

requirement. It must have two different measurement modes: current loop and single-ended

(SE) voltage measurement modes. In current loop mode, this module will need to reliably

measure 0-20mA with 2µA accuracy. In SE voltage mode, the module must support an

auto ranging voltage input capable of measuring the following ranges: 0-1.5V, 0-2.5V, 0-

6V, and 0-10V. The module will consist of three powered measurement ports. Individual

configuration for the three ports must support multiple power settings and start up delay

parameters. There will be no extra support for differential voltage, high resolution, or

pre-amplified measurements.

3.2.5 Digital Measurement Module

The digital module is the third and final installment in the design’s attempt to satisfy

the general interface requirement. Two ports must be supported by this module. Both

ports must support separate input sampling with a timer reference, one power port, and

have transient and over-voltage protection and be 5V-TTL tolerant. The module must

support separate configurations for both ports.

3.2.6 Switched Power Module

The Switch Power Module controls the output and timing of all the power ports. This

module satisfies the general requirement that all sensors can be powered by the device.

One port must be associated with every SDI-12 and analog port, as well as one for the two

digital ports. All ports must be capable of outputting 6-15VDC with an output current of
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500mA at 6VDC and 200mA at 15VDC. P-channel open-drain outputs must be used on all

switches.

3.2.7 Serial Communications Module

The general requirements state that the device must be configurable by PC or by

long distance data radios. The Serial Communications Module must therefore support this

function. The common RS-232C specification [34] is widely used today. To support this

protocol, a translator IC must be included to generate RS-232 voltage levels. Such an IC can

use a lot of power, so any chip selected to perform this operation must be power-wise and

support a micro power mode when no cable is connected. When there is a cable connected

to the device, a cable detect signal must be sent to the MCU. The device must support

standard baud rates between 9.6k and 115.2k baud.

3.2.8 ZigBee Communications Module

The ZigBee Communications Module is present to satisfy the requirement for an em-

bedded ZigBee Mesh radio. For this design, due to the imposed time limit and development

costs, it was determined that the purchase of an existing ZigBee platform was appropriate.

This reinforces wireless interface-ability by starting the design with a working radio. This

module must communicate through a UART or SPI port. The module must be FCC ap-

proved and able to communicate up to a mile. It also needs to be power conscious, using

less then 30mA when receiving data. Finally, the module must support firmware changes

enabling the swapping of network personalities.

3.2.9 External Flash Module

The purpose of this flash module is to provide space for non-volatile memory storage

for logs and other critical files. This module must be able to store at least 40,000 data

points. This will allow a device with six sensors measuring at one hour intervals to measure

up to nine months. It also must have at least 250 Kbytes for other data. The actually IC

selected must communicate using SPI.
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3.2.10 Removable Flash Memory Module

This module is present to satisfy the requirement that a common flash memory card

interface be supported in this project. Possible memory cards available for consideration

are: CF, MS, SD/MMC, and xD. The type of memory card used must support an auto-

detect feature when cards are inserted in the memory slot, capacities of 128MB to 2GB,

and interface using SPI. The selected card type should be easily accessible by the public

and cost less than $30.00 dollars. Lastly, the card type needs to support hot-insertion and

removal.

3.2.11 User Interface Module

The general requirements state that the device must have an LCD-driven user interface

that simply and quickly allows a user verify correct operation and access device configu-

rations. In conjunction with the display, 10 push buttons must be included to navigate

through screens. These buttons must support push/hold button interpretation for slow-fast

behavior for scrolling and field editing. The screen must be easy to read/interpret and avoid

cryptic readouts. Consideration must be taken for future multi-language support.

3.3 Firmware Breakdown

The design of the firmware was also done in a modular fashion. However, the delimita-

tion of the firmware modules was not done strictly based on a functional breakdown of the

system requirements. Instead, it was based on how much hardware detail was needed to

execute an operation or perform a specific function. The varying amounts of detail placed

different operations into different layers. These layers, depicted in fig. 3.2, are as follows:

hardware abstraction layer (green), memory management layer (blue), networking layer

(yellow), operating system layer (red), and the application layer (purple). The purpose

for a design like this is portability. The code written for this project can be used in the

future for other projects. This frees up a future designer to pick hardware without strongly

considering previous projects. Specifics of these layers and how they help satisfy the overall

design requirements is contained in sections 3.3.1 to 3.3.7.
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Fig. 3.2: Depiction of the general firmware design.

3.3.1 Hardware Interface Layer

The Hardware Interface Layer consists of modules that form the basic building blocks

of the entire firmware set. This layer should answer how a specific operation called by high

level tasks resolve into hardware action. All platform specific detail must be contained

herein to promote portability.

System Power Management

The purpose of the power management driver is to provide low-level support for in-

telligent power supply handling and system clock handling. It must provide a means of

registering speed and power needs of the device and intelligently activating or deactivating

the appropriate resources. The module must shutdown the entire device when no needs are

registered.

RTC

The RTC functions as the heart beat of the entire system. It must not be stopped at

anytime during the product’s lifetime. This code must utilize a timer resource with interrupt

capabilities, time register(s), and a periodic interrupt service handler that updates the time
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register(s) appropriately.

Device Drivers

The device drivers represent most of the device specific code in the firmware. Support

for all hardware features are found here. The only requirement for this module is that the

feature functions correctly with as little resource use as possible. Below is the list of drivers

that must be elaborated on:

1. Serial Communications- Driver must contain handlers for transmitting and receiv-

ing using one of the MCU’s UARTs. Drivers must support low-overhead interrupts

to accomplish full-duplex data transfers. This driver is allowed one static buffer to

store received data. The drivers are responsible for encapsulating messages with cyclic

redundancy checks (CRC) for error detection.

2. ZigBee Communications- This driver must handle the low-level UART communi-

cations supported by the MCU. It must also format and interpret any messages to be

used by a ZigBee radio. Other support for radio commands and radio updates must

also be defined.

3. Removable Flash Memory Disk Controller- This driver must contain all the

necessary disk I/O functionality so that the file system layer can access the disk. This

may include functions to activate, deactivate, read, write, erase, and format the disk.

4. SDI-12 Communications- Driver must support message passing compliant to the

SDI-12 V1.3 specification.

5. Analog Measurement- This driver must operate all hardware necessary to convert

analog signals to digital values.

6. Digital Measurement- This driver must operate all hardware necessary to charac-

terize digital signals. This may include timer and capture/compare hardware manip-

ulation.
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7. LCD Screen- This driver must support functions like activate and deactivate display,

initialize screen, write characters, move curser, and clear screen.

8. Push Buttons- This driver handles the de-bouncing and behavior of the buttons.

The final output of this driver is that a particular button was pressed. This result is

found by integrating a timer and external interrupts. Finally, the driver must support

multi-rate button responses.

9. Internal Flash Memory Controller- This driver enables access to code memory

space. This is used for firmware updates and non-volatile configurations storage. The

driver must support writing and erasing on memory sizes smaller the one flash block.

10. Serial Flash- This driver must handle the low level USART communications sup-

ported by the MCU. All memory operations (reading, writing, erasing, checking sta-

tus, etc.) must be accessible. This drive must format and interpret data packets

appropriately.

3.3.2 Memory Management Layer

The Memory Management Layer abstracts the specifics of the memory drivers and

promotes memory access to a file level. Not all of the existing memory in system is required

to be under the control of this layer. Only memory that is available for application use or

is meant to be externally visible must be managed here. There must be two different file

types specified for this system. The first is part of a low-overhead, proprietary file system

used by Acclima. The second is standard FAT16/32 file types [35].

Acclima File Type Support

There are a number of files that are specified for this layer. Following is a brief intro-

duction to these files and their purpose:
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1. Factory Configuration- This file contains the information about factory settings,

calibrations, and product creation. It is located in the internal flash of the MCU and

is 256 bytes long.

2. Device Configuration- This file contains the information about the current settings

for the device. Active sensors, passwords, owner information are also contained in this

file. It is located in internal RAM and takes up 512 bytes. This file also has a shadow

file located in Internal Flash. It is not externally accessible and is used to verify

correct device operation even during power failures.

3. Firmware Update- This file is located in external flash and is 64 Kbytes long. It is

used to hold a copy of a firmware revision that will be copied into the MCU’s main

program space during a program update sequence. The contents of this file must pass

an extensive verification processes before it is allowed to update the device.

4. ZigBee Firmware- This space consists of three files, a coordinator image, a router

image, and an endpoint image. These three files are all 64K each and are located in

external flash. The same verification process used in the firmware update file will be

used here as well.

5. Device Logs- This file must exist in the external flash chip. It must be at least 640

Kbytes in size. Device, error, and sensor logs must be stored in this file. The file must

also be circular meaning that the beginning and end of the file are not fixed at the

ends of the space. This enables the easy retention of older data without expensive

memory transfers. Although this file is circular, any external access to this file must

appear like a normal, linear memory access.

FAT16/32 Support

The incorporation of a FAT-based filesystem into this system is required if the re-

movable memory card is to function correctly in a PC. All files with this format are only

found on the removable flash device. To use a memory card with a file system correctly,
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supporting firmware must be in place to handle these file accesses. The generation of such

a module is beyond the scope and resources of this project. Therefore, file system code

must be obtained that will perform the appropriate memory operations. The code must be

conservative both in size and RAM usage.

3.3.3 Networking Layer

The Networking Layer is responsible for information routing between multiple devices in

a system. This could include a direct connection from a PC to a logger, a wireless connection

between multiple loggers, or a PC to Logger connection through the wireless network. To

facilitate a common multiple interface layer, all compatible devices must therefore be able to

communicate using the propritary Wrapped Acclima Serial Universal Protocol (WASUP).

WASUP contains a universal interface standard for use with serial RS-232, User Datagram

Protocol (UDP), and Transmission Control Protocol (TCP). WASUP must be expanded to

incorporate the ZigBee interface. Any WASUP message must either be processed by any

recipient or sent to its appropriate destination.

3.3.4 Operating System Layer

The OS layer is responsible for system management and responsiveness. An OS can

be a complex piece of management code exercising control over all system resources and

dictating their access permissions. The root of any OS is its scheduler. The scheduler is the

portion of the OS that dictates how to allocate the processor(s). Many styles and methods

of schedulers have been developed to meet the needs of embedded system. Cooperative vs.

preemptive, dynamic vs. static, priority vs. round robin, and table-based vs. link-list task

queues, just to name a few.

This device requires a scheduler that will be able to manage multiple operations or

tasks. The completion time of these tasks vary from less than 50ms to one minute. Af-

ter weighing the performance and size specifications of the existing OS platforms, it was

deemed that they either required too much memory to operate or provided services that

were unnecessary for this device. Therefore, it was determined that a new OS would be
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created for this design. The new OS would have the following requirements:

1. The scheduler must be table-based. Table-based schedulers use a fixed amount of

memory known at compile time. They are also deterministic, helping to guarantee

the timeliness of any given response.

2. The scheduler must select tasks cooperatively. While this does minimize OS complex-

ity, this requirement can reduce the overall response time of a externally triggered

task. Therefore, external event handling must be treated as an exception to handle

time-critical responses.

3. All operations deemed time-critical must take less than one millisecond. Tasks must

also report to the scheduler the worst case execution time of the currently running

task. This will allow the OS to report to an external request the duration of time to

wait before assuming a request failure.

4. All tasks must use a shared address space. Therefore all tasks are required to cleanup

utilized memory. The OS is not required to define any form of memory protection.

5. All operations taking longer than one millisecond or using a key system resource must

be designated as a task and must run in conjunction with other tasks as dictated by

the scheduler.

6. The OS must support variable levels of activity. These may include sleep, reduced

operations, and full operations mode. The OS must utilize the Power Management

Module to correctly perform this function.

3.3.5 Application Layer

The application layer is the most coupled layer to the environment. It handles the

behavior of the device and dictates responses based on stimuli percolating from the layers

previously discussed. This layer contains the logger abstraction. It utilizes OS tasks as well

as using fast interrupts to respond to external stimuli to encapsulate the device’s overall

behavior.
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Atomic Handlers

The interrupts of an MCU must be used to handle communication transfers, to queue

up tasks called on by the devices environment, and to service an internal device need. All

of these operations must be fast (< 1ms) and must not be interruptible. The events that

fall under this designation are:

• ZigBee Communications- Any form of communication between the ZigBee Radio

and this device must use this handler. This routine must work with this interface

on the byte and packet level. When a packet is ready to be serviced, it must then

schedule the appropriate task to service the packet.

• Serial Communications- Any form of communication coming through the serial

port must use this handler. This routine must work with this interface on the byte

and packet level. When a packet is ready to be serviced, it must then schedule the

appropriate task to service the packet.

• Serial Cable Detect- When a valid connection is made using a serial cable, this

handler must ready the processor for communications by registering required power

modes with the system. When the cable is disconnected, this handler must remove

the imposed power modes and allow the system to sleep.

• Removable Flash Detect- When an insertion or ejection event is detected, this

handler must be called to either setup or clean up the card and file system status

registers.

• Push-Button and De-bounce- When a button press is detected, this handler must

observe the triggered signal for a reasonable de-bounce period after which it must

schedule the appropriate task with the OS.
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Scheduled Operations (Tasks)

This section illuminates the tasks required to satisfy the general requirements for this

device. The priority ratings and their corresponding task assignments are: low (31-63),

medium (15-30), and high (0-14).

Tasks that must be designated high priority are:

• ZigBee Network Initialization- To save battery power, the ZigBee radio will not be

powered all the time. This task must be called every time the radio needs to establish

its network. When this task is allowed to run, it must activates the radio and detect

the radio’s current network function. If the radio detects it is a router or endpoint,

then the initialization task exits. If the radio detects that it is the coordinator, the

device must retrieve any new data from all members of the network.

• ZigBee Communication- This task must handle any traffic that comes through the

ZigBee radio to this device. This traffic could consist of network initialization packets

or general WASUP communications.

• Serial Communications- All communications from and to the serial port must be

routed though this task.

• User Interface- Any calls to change or update the LCD screen via the push buttons

must be done in this task.

Tasks that must be designated medium priority are:

• System Status- This task must periodically update system status information. This

information is then accessible for recording or viewing at will.

• Removable Memory Initialization- This task must register that the memory card

has been inserted into the system, validate card properties, and verify that a FAT file

system is in place.

Tasks that must be designated low priority are:
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• Sensor Measurement- Since this device is functioning as a data logger, it requires

a range of sensor measurement tasks. All measurement tasks must be scheduled

independently; therefore a task is required by every sensor.

• Configuration Backup- System configurations must be periodically saved in a

“shadow file” to increase system fault recovery. If a fault is detected, the backup

will replace the corrupted configurations.

• Device Sleep- This task has the lowest priority and must be scheduled when no

other task is ready. It can shutsdown all parts of the device based on the current

operating requirements.

3.4 Enclosure

From the device features listed in section 3.1, the enclosure must be weather proof

and have a lock. The enclosure must be made of ABS plastic that has UV inhibitors that

reduce the breakdown of the plastic in sunlight. It must incorporate the LCD screen, radio

antenna, removable memory card slot, and buttons. Figure 3.3 shows a computer generated

model of the prototype enclosure.
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Fig. 3.3: Artistic depiction of the Acclima DataManager’s enclosure and front panel.
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Chapter 4

Implementation

This chapter discusses the implementation path taken during the course of this research

and project development. The requirements and elaborations expressed in Chapter 3 were

used to guide the selection of available hardware components. The selected components were

then assembled and specific operations verified. Once the verification process is complete,

the resulting device’s performance and functionality was tested. These test results are

shown in Chapter 5.

4.1 Hardware Analysis and Selection

The analysis of constraints or requirements that took place to realize a satisfactory

hardware solution is contained in this section. The implementations of all the modules

depicted in Figure 3.1 are discussed here. Primarily, this section focuses on the tradeoffs

made during this phase.

4.1.1 Power Supply

To realize the hardware input and output requirements of this module, multiple IC’s

and technologies needed to be combined. Figure 4.1 shows the selected combination of

components. On the input side of this module, there are two separate input sources. Both

could supply power at any given instance, therefore the reverse voltage protection (RVP)

circuit must guarantee that each supply does not interfere with the other. All components

directly connected to the RVP circuit must normally operate in a range of 3.0-15.0V. These

devices include a 3.3V low drop out (LDO) linear regulator, a 3.3V switching regulator,

an adjustable-output switching regulator, and a battery supervisor circuit. The 5.0V LDO

is connected to the output of the variable switcher, and therefore must be able to operate
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Fig. 4.1: Diagram of the power subsystem.

with inputs ranging from 6.0-15.0V. The switchers have the ability to be deactivated using

control lines. The battery supervisor circuit sends a digital signal when the power after

the RVP circuit drops below a minimum threshold. In sleep mode, the entire power supply

consumes 13.2µA.

Reverse Voltage Protection Circuit

This circuit traditionally is a diode placed in series between the positive input and the

voltage regulation devices. An inherent characteristic of diodes that can be problematic in

low power applications is that diodes have a forward voltage drop of 0.7-1.5V. This reduces

the total available voltage from the battery pack, thus reducing operational lifetime. This

is not so crucial for the auxiliary power port, but it is a concern for when operating from

the battery pack.

In an effort to extend the life of this product, the designers searched for ways to get

around this dilemma. A resolution was found by using two HexFET power transistors [36]

in series with their gates tied together. This resulted in a circuit with a switch-able diode-

like behavior with a 50mV drop. Figure 4.2 illustrates the back to back transistors with

supplementary BJT transistors that serves as an auto-select feature when the “power select”

signal is eithier not driven or is tied low. If the control line is driven high, the circuit switches

off the path from VBAT to VIN. Comparing this drop to a standard diode, the battery life
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Fig. 4.2: A schematic representation the reverse polarity protection circuit.

was extended an estimated three weeks to two months. The ability to switch the circuit’s

behavior from an open circuit to a diode also allows both ports to be powered at the same

time. When the power on the auxiliary port is 4.5V or above, the battery pack will cutout

and the auxiliary port will supply all power needs. If power on the auxiliary falls below

4.2V, the battery pack will be switched back in with no power glitches.

Low-Power LDOs

The LDO regulator chosen here is TI’s TPS715XX [37]. It comes in a regulated

3.3/5.0VDC output at 50mA. The regulator’s quiescent current is 3.2µA. Reasons for

this selection are that it matched performance requirements, low cost, and was already in

Acclima’s stock.

3.3V Switcher

After extensive review, TI’s TPS62110 [38] synchronous buck switcher was selected to

perform this function. It is rated to be 95% efficient within the operating ranges of this

device and has a quiescent current of 2µA.
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Variable Output Switcher

This device by far took the most energy in this module. The complexity in this decision

stems from the need to produce 6, 9, 12, and 15V when the input voltage could drift above

or below the output voltage. This device must therefore step up and step down voltages.

The three types of switchers that can regulate above, at, or below the input voltages are

buck-boost, fly-back, and SEPIC1 regulators. A buck-boost regulator has an advantage if

the application needs a negative output voltage. Fly-back regulators can be used in the

DC converter mode or as an AC transformer. Both modes are subject to very high voltage

spikes. SEPIC converters do not invert the power signal and provide a true “power off”

state with no leakage.

The SEPIC converter was selected as the regulator of choice. Finding one that per-

formed with the desired input, performance, sleep, and output specifications turned out to

be very difficult. The solution taken in the end was to use the LTC1871 [39]. This device is

80% efficient but does not satisfy the sleep requirement because its sleep current is 10µA.

To meet power requirements, a power switch was added to the input power line to this

device to completely remove it from calculations.

Battery Voltage Supervisor Circuit

This circuit posed a challenge in finding parts that operated at less than 7µA. Most

were 15µA parts with desirable features like hystorisis and a wide input voltage range. The

part selected to supervise the battery voltage was the TPS3803-01 [40]. This chip has an

internal reference, a difference amplifier, and an active low open drain output. This device

uses an incredible 2µA to operate. However, the input sensing voltage maxes out at 6V.

The device also has a 30mV hystorisis. Both these apparent drawbacks were resolved by

using the TPS3803-01 as a part of a hystorisis generating circuit. This circuit modifies the

input voltage and adds a variable amount of swing to the voltages to trip the supervisor’s

reset signal. The total circuit uses 4.7µA.

1Single-Ended Primary Inductor Circuit.
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4.1.2 Controller

The selection of an MCU requires much study and analysis of the design needs. Two

items of note when selecting an MCU is that there is an inherent tradeoff in power and

performance, and there is a general cost increase as the MCU grows in pins, peripherals, or

data-path size (8-, 16-, 32-, or 64-bit).

There are as many as 30 manufactures and thousands of different MCUs to choose from.

Therefore, it is critical to filter out MCUs with unnecessary features. The first step was to

remove any devices with higher power and performance ratings than required. The next

filter applied focused on power saving features and low power use options. This practically

removes all devices with 32- and 64-bit cores and restricts this design to 8- and 16-bit cores.

The drawback to this restriction is that most 8/16-bit MCUs have an internal memory map

(Flash + RAM) based on 64K bytes max. So the application must fit in a space less than

60K bytes. This was accepted as a reasonable limitation for this application in the initial

phases of desgn.

The residual list of processors was still varied. So parameters like cost, required pe-

ripherals, and memory size were included in the search criteria. This adequately reduced

the number to three specific microcontroller families: Microchip’s PIC18, Atmel’s ATmega,

and Texas Instrument’s MSP430. Based on previous experience, the designers rejected the

PIC18 family because the memory architecture used banks instead of having a unified mem-

ory map. This complicates development and reduces the performance of a processor. The

ATmega64 MCU has an 8-bit AVR core that attains nearly 1MIPS while running at 1MHz.

The MSP430F14X has is a 16-bit RISC core that also boasts 1MIPS at 1MHz.

Both MCUs have all necessary features designated for this project. The major difference

and one of the key reasons that the MSP430 was chosen is that the MSP430 can potentially

do twice as much work as the ATmega64 while consuming half the power. The MSP430 uses

approximately 500 µA when running at 1MHz. Another reason the MSP430 was chosen is

that it had an internal 1.5V and 2.5V analog reference that was rated to 1% accuracy. It

also has a 12-bit SAR-cored ADC. The ATmega64 has a 10-bits SAR. Finally the MSP430
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was chosen because the designers already had experience using it and no extra expenses

would be necessary to acquire the tool suite necessary to develop with this processor.

The selection of the MSP430F14X [41] does have two drawbacks. First, the code size

is limited to 60K bytes. The data manager application is moderately complex, but the

engineering team estimated that this application will not exceed 60K bytes. Second, the

largest chip size available is 64 pins. This does not directly satisfy the I/O requirements.

Therefore, all control signals must be routed though multiple latching octal-line drivers.

4.1.3 SDI-12 Communications

The SDI-12 specifications require a 12V power line, a 5V bidirectional digital commu-

nication line, and a ground line. The power line comes directly from the SEPIC switcher

through a power switch. The SDI-12 protocol specifies using an asynchronous 1200 baud

signal with seven data bits, even parity, and one stop bit in a byte packet. The selected

MCU does not have a spare UART to run this communication sequence. Therefore, the

message passing will be done using a timer assisted capture/compare port (CCP). This

port set a logic output or sampled a logic input based on a 1200 baud time. The only other

element to consider is that the MCU ports operate on 3.3V and the SDI-12 line needs to

operate at 5V. To rectify this discrepancy, the SN74LVC1T45 [42] is a 1-bit, dual-supply,

bidirectional line driver was used to step up or step down the line voltage. Over voltage

protection was also included.

4.1.4 Analog Measurements

The analog ports were implemented using the MCU’s internal ADC and references as

well as other external parts. The physical terminal comes with power, ground, and signal

connectors. The power connector receives its power from directly from the SEPIC switcher

through a power switch. The signal port is protected from over-voltage and reverse-voltage

using a zener diode. The signal then passes through a conditioning circuit. This circuit

can be configured to interpret the incoming signal as a 0-20mA current loop signal or as a

voltage signal. If it is a voltage signal, the signal will be processed with hardware to range
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the converter appropriately. This feature realizes the required auto-ranging capabilities of

this port. If the port is configured incorrectly or the signal is outside the measurable range

of the device for any particular setting, the port also has shunt diodes to remove the excess

charge before it reaches the MCU.

4.1.5 Digital Measurements

The digital ports were implemented using a CCP and timer pair inside the MCU, and

a line driver. The line driver is the SN74LVC1T45 [42] used in the SDI-12 module. The

digital ports have hardware support to sample on request, record on event, measure pulse-

widths, and pulse-frequency. This port is protected from over-voltage and reverse-voltage.

These ports support one switch-able power port.

4.1.6 Serial Communications

To comply with RS-232C, a MCU UART communication port was selected to drive the

full-duplex asynchronous message passing. This was coupled with a MAX3221 [43] RS-232

level translator IC. Two excellent features the come with this chip include auto-shutdown

when no line is connected and a valid signal to alert the MCU that a device is connected

to the other end.

4.1.7 ZigBee Radio

The radio module selection process looked at ZigBee radios from Cirronet, Maxstream,

Radiotronix, and Aerocomm. These companies are the four leading developers using ZigBee

technology. The different companies vary in their base technology from Freescale’s two

chip ZigBee solution to Ember’s or Chipcon’s SoC ZigBee solution. Every one of these

companies offers distinctly unique solutions that target different end applications. However,

all four modules failed to fully satisfy the needs of this project. The SoC systems are recent

developments in the ZigBee market and boast power ratings of 300µA active, 27mA RX,

and 169mA TX. However, these solutions are not fully released to the public and bugs are

still being worked out of the products. The older and more stable Maxstream XBee-Pro
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Fig. 4.3: Picture of the Maxstream XBee-Pro radio module.

module used 30mA active, 55mA RX, and 215mA TX.

The crucial requirement that the radio’s network function (i.e., coordinator, router,

or endpont) be dynamically allocated led designers to select the Maxstream XBee-Pro [44]

(see fig. 4.3). Its power consumption makes is a non-ideal solution. However, Maxstream

has certified the DataManager and its development and given intellectual rights to allow

this device to reconfigure their radio. This level of cooperation and customer service also

encouraged the designers with this selection. However, as better ZigBee products become

available, the device will migrate to support a more ideal solution. The XBee-Pro uses a

standard UART to communicate to its host. Therefore, the second UART on the MCU was

dedicated to the radio.

4.1.8 External SPI Flash

The common sizes for inexpensive SPI flash are 2Mbit (256KB), 4Mbit (512KB), and

8Mbit (1MB). Two different chips were found that satisfied the operational and sleep mode

functional requirements. Both have similar interfaces and are 8Mb in size. One of these

devices is Atmel’s AT45DB081X [45]. It claims a 2-10µA sleep current and 4mA read and

15mA write current. The other device is Spansion’s S25FL008A [46]. This part has a .2-5µA

sleep current and a 1.5mA read and 7mA write current. Both chips cost about a $1.20. The

Spansion part was selected over the Atmel part. However, there were some reservations
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as to the stability of the Spansion part. So both chips were included in layout to provide

redundancy.

4.1.9 Removable Memory

Secure Digital [47] (SD) and Compact Flash [48] (CF) are two of the most popular and

widely available forms of removable flash memory. The other considerations for removable

flash memory were rejected because any implementation detail requires fees to be paid to

the individual flash memory institution. CF cards use a total of 60 pins to interface to a

host. Technically, only 20 are needed to interface in its smallest supported mode. It can

appear to operate as an IDE disk drive, memory-mapped storage, or I/O-mapped ports. A

big drawback in its basic operations is that is uses parallel address and data busses. This is

very fast, but the MCU cannot support this interface. The SD interface has nine pins and

supports five modes: SD0-SD3 and SPI. The SD0-SD3 modes support a 1- to 4-bit parallel

interface. The SPI mode is compliant with the SPI communications module supported by

the MCU. This is a three wire interface and all card features are still fully accessible.

The SD card was chosen as the preferred type of removable memory. Local stores

currently carry 512MB or 1GB for about $15. For some perspective, 1MB is enough memory

to hold three months worth of data generated by a device with six sensors sampled every

15 minutes. At this rate, 512MB could record data from an entire network of 32 loggers for

one year.

4.1.10 User Interface Module

Two types of screens were considered for use one this project: a custom LCD display,

or a LCD character display. Acclima has had experience in the past with making their own

custom glass. Figure 4.4 shows the first attempts at the artwork for the custom LCD. All

black symbols represent segments that would be activated individually. This screen would

need a 128-segment LCD controller. Power wise, custom glass would only use 1-2mA if all

the segments were active at the same time. The drawback to this method is that changes,

upgrades, or supporting other languages would be expensive and units already released
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Fig. 4.4: Custom LCD glass art generated for this project.

could not be upgraded.

Character displays come in many sizes and the contents of the display are incredibly

flexible. Four lines by twenty characters is the size of display that is of interest. It is big

enough to be informative and small enough to be comparable in price to custom glass. It

does, however, require 5VDC and 2.5mA to operate. Although the character display uses

more power, the flexibility of the display was desired. The TM204JAA7 [49] was the exact

part selected.

4.2 Construction

The construction of the designated alpha test units commenced May 2007. The alpha

units’ purpose was to verify the function of all hardware features and to build up the basic

device drivers and rudimentary OS. Only six devices were constructed. Details of the testing

and verification will be discussed in section 5.1. The alpha tests resulted in some changes

in the design and layout of the board. These changes were minor enough to move to the

beta phase of testing. This phase required the production of 75 units. During beta testing,

all features were to be implemented and tested. Further, 60 of these units were shipped to

a few producers and other interested parties for evaluation.
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Chapter 5

Testing

This chapter focuses on the system testing that took place May 2007 through October

2007. This period comprises the alpha and beta testing portion of the project. Testing took

place in Logan Utah, Meridian Idaho, and various locations in California and Washington.

5.1 Alpha Testing

The purpose of the alpha testing phase was to verify and measure the hardware’s

ability to performe within the specified requirements. All testing conducted here was done

individually with minimum influence from other modules. Figure 5.1 shows the assembled

hardware used in this phase.

5.1.1 Power Consumption

The testing revealed that the entire device sleeps less than 50µA, runs around 250µA

for reading sensors, 2.5mA when communicating with the PC, 8mA with the display on,

32mA with the radio active, and 217mA with the radio transmitting at full power. With

these power modes and a fictitious system with six Acclima SDI-12 sensors measuring every

hour and radios communication every 2.5 minutes, it is calculated that C-cell batteries with

an 8,000mAh capacity could power the system for just over a year.

5.1.2 Power Ports

The system has an auxiliary power input port that can withstand up to 30VDC. The

original figure required was 15VDC, but during the part selection process all parts related to

that input had higher ratings. Consequently, this port can now support 6V /12V /18V solar

power. The device also has one power port for direct battery draw and five other switch
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Fig. 5.1: A depiction of the test platform (circuit board shown).

power ports for sensors. The switched ports support 6VDC at 500mA through 15VDC at

200mA output.

5.1.3 Cost

The production cost per unit is around $150. This places the DataManager list price

around $650. This is below the required limit of $800.

5.1.4 Time

The device contains a real-time clock (RTC) with battery-backup for unbroken time-

keeping for longer than five years with no batteries. The system draws 3.4µA in backup

mode. With this draw and a 300mAh lithium coin cell, the device is estimated to have

backup battery lifetime of ten years.

5.1.5 Versatility

The device supports all of the following interface options: one SDI-12 communications
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port adhering to version 1.3, three 12-bit analog input ports with an auto-ranging voltage

input capable of measuring 0-10V and 0-20mA current loop measurements, and two digital

measurement and I/O ports. All sensors are capable of being configured separately and can

measure with one minute resolution.

5.1.6 Communication Interfaces

The device supports an RS232 serial interface and an embedded ZigBee Mesh radio

interface. Both interfaces are coupled with the WASUP message passing protocol which

supports inter-device networking through multiple physical mediums. In the case of ZigBee,

WASUP coordinates message passing and automatic routing for centralized data storage

and inter-device communications.

5.1.7 Removable Data Storage

The device supports a SD card interface for extended memory applications. The inser-

tion and removal of the card is detectable and permitted while the device has power. Card

sizes of 2GB and below are supported. Advanced security features of the SD card are also

not supported.

5.1.8 User Interfaces

The device has two easy-to-use methods for configuring operations. One method is to

use a LCD driven user interface. No PC or handheld computer is necessary to access device

function and to verify correct device operation. With an SD card, data storage functions

are also fully available. The alternate method using PC software is able to interface to a

logger using the serial port. The software can also connect to a network of loggers using the

ZigBee network. The software handles the database operations on all the data collected by

all nodes in a given system.
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Fig. 5.2: Beta test hardware (covered by face plate).

5.1.9 Ruggedness

Each device comes in a weather proof enclosure and has a built in lock. All connection

ports are ESD protected. The device’s enclosure is not capable of handling submersion.

5.2 Beta Testing

The purpose of the beta testing phase was to test the devices various feature sets

together in varied stages of completeness. The beta testing was broken down into three

distinct phases. Phase one’s purpose was to test a stand-alone device supporting one SDI-

12 sensor, the scheduling framework, and basic WASUP communications to connect to the

PC. Phase two tested all sensor interfaces, the SD card, and LCD user interface. Phase

three tested the ZigBee radio network and advanced WASUP options. At the end of the

third phase, the testing of all features would be complete and the device would be ready

for its production review. Figure 5.2 shows the assembled circuit board cover inside the

enclosure that was used during this phase.
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5.2.1 Phase One

This is the first phase that others outside of Acclima were brought in to judge perfor-

mance and to help identify bugs. At this stage, the device need only support one SDI-12

sensor, the framework for the data logging scheduler, and basic WASUP communications.

Operations testing for SDI-12 devices included querying, change of address, adding, iden-

tifying, measuring, and removing one sensor. All this testing was done using the device

configurations and scheduler. Screen options allowed for configuring and reading the sen-

sor. The basic WASUP interface was also in place to permit the PC to adjust device

properties and configurations.

The major problem identified with the Data Manager at this phase was that 60% of all

units failed to add or read a sensor. The problem occured because the internal resistance

inherent in battery packs limited the instantaneous current surge required to charge up the

SDI-12 power line. This in turn caused the battery voltage to drop and the supervisory

circuit triggered a reset. This problem did not surface during alpha testing because the

device was being powered by bench power with sufficient supply. Three actions were taken

to remove this bug. First, the battery supervisor interrupt was momentarily disabled to

allow for these dips during a sensor power up sequence. Second, the power supply was

redesigned to limit the surge current to a greater extent than the batteries. Lastly, system

and error logs were created to aid in post-mortem analysis of device failures. This should

assist in the search process for other possible bugs.

5.2.2 Phase Two

At this stage, the device needed to support all designated sensor interface types and a

full complement of sensors, all LCD screens, and the SD card drive. The SDI-12 port was

expanded to handle the addressing of nine sensors. All analog and digital ports were also

fully integrated with the screens required to add, configure, and directly read sensors. The

SD card interface supporting a FAT file system also needed to be in place. The SD card

interface can format a drive and access and write to a directory structure that is recognized

by PCs.
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Two major problems arose during this phase. The first bug showed itself during the

first few days of testing. After operating for a full day or when an SD card was inserted

into the device, the system would crash. An easy fix for this is to trip the battery reset

and the system would start up again. But the system would then become sluggish and

non-responsive at times. After many attempts, the PC software retrieved the log file and

configuration file from the device. The logs were replete with sensor measurement errors.

The sensor causing the error was a previously un-configured digital port. However, looking

at the configuration file it became apparent that the last quarter of the file had become

corrupted. The culprit was some of the new code that was causing the stack to overflow

into the neighboring configuration file. This problem was fixed by optimizing the stack

usage and adjusting the global variables declared to reflect a more space-wise emphasis.

The allowed stack size grew from 376 bytes to 516 bytes. This is enough to guarantee no

further problems with the stack.

The second problem that surfaced during this phase was that the application reached

the code space limit of the MCU. The final code size came to 67K bytes with over 13,000

lines code. This means that the current platform has insufficient memory for all of the

desired functions this product. The radio functions and operation require about 10K bytes

more. For a short term resolution, the Data Manager will come with two possible firmware

applications. One supports all LCD screens and the other will support the radio. For long

term, a new microcontroller will need to be selected and a new platform redesigned around

this IC.

5.2.3 Phase Three

The final stage of testing required the product to support all radio operations. This

included network personality changing, automatic mesh network creation and device syn-

chronizations, computer-to-network pass through operations, and radio power management.

The novel ability to change the role of a particular network node is practically unattainable

for most ZigBee radio modules. This device contains images of the radio’s personalities

and re-flashes the radio as necessary. When a network starts up, the radios automatically
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establish their mesh hierarchy and the devices are all synchronized in relation to time and

the network heartbeat. Concluding the synchronization process is the data transfer that

automatically directs data to a universal collection node. A PC connected to a device can

then request to use the network and us this advanced connection to access other devices

in the network. Last of all, the radio’s signal strength is monitored and the transmitting

power is adjusted to reduce power consumption but keep a good connection.

The synchronizations and surfing of multiple devices using the radios took place mainly

in Logan Utah and Meridian ID during in-house tests. These features will be further tested

through the end of 2007. Once a few smaller bugs were dealt with, the device and radio

applications functioned correctly. It was observed that the radio network setup time was

on the order of two to thirty seconds. This is longer than desired, but these limitations are

imposed by the selected radio module. A future posibility is to actually design a custom

radio implmentation that will give the engineers full control of the entire set of ZigBee

network characteristics.



54

Chapter 6

Conclusions

This chapter concludes the thesis documentation for the DataManager project. A

summary of the project’s purpose and course will be reiterated. The end results produced

from this research and design effort will then be set forth. Finally, this document will close

with a discussion of future work in this research emphasis.

6.1 Project Summary

Interest groups like hydrological and soil scientists, agriculturalists, and large scale

agricultural producers want the ability to accurately and easily collect dense spatially-

representative data. No current methods could supply either desire jointly. Therefore,

a new product with an integrated intelligent radio platform was proposed to satisfy the

desires of these groups. This product, labeled the Acclima DataManager was the focus of

this development. The function and application of this product was designed and elaborated

upon in this document. By the completion of this development term, the product’s desired

functions and features were all tested and shown to investors and possible future customers.

They have all expressed their continued interest in future enhancements and developments

with this product.

6.2 Resulting Product

The final outcome of the DataManager design is too large to fit on its current hardware

platform. So the DataManager product, seen in fig. 6.1, therefore comes in two varieties: a

device with a radio or a device with an LCD screen. By December 2007, the new platform

with the needed enhancements will have replaced the older platform. This upgrade will

allow both currently conflicting features to cohabit the same hardware. However, both
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Fig. 6.1: Final DataManager product with enclosure actively measuring precipitation and
soil water content at a USU test site.

devices support SDI-12, analog, and digital sensors. The devices also support using SD

cards for memory storage. The batteries for this system will last a year without external

power. Solar panels or other forms of external power are also supported. The ZigBee radios

embedded in this product are easy to enable and use. The energy required for management

support of a large network of loggers has been significantly reduced. These properties allow

people with a non-technical background to easily setup and operate this system. All in all,

here is a device that can supply the research and the agricultural communities with a tool

in which new research or monitoring opportunities can be realized.

6.3 Recommendations and Future Work

The research and development of this thesis project has left the project with two

foreseeable venues for more research. First, new remote hardware units using the beta

hardware will be developed. The remotes will be ZigBee Endnodes and have a feature

set that is a subset if this development, making it possible for the remote’s firmware to
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use this MCU. The new device may not have a screen or as many sensor interface ports.

It is logical to Acclima Inc. to continue this thread of development in parrellel with the

full DataManager product. This will extend the device family to two products from this

expenditure. This secondary device will function as a true distributed sensor network with

the DataManagers as collection nodes.

The second area of possible future work is the interfacing of the Acclima’s database

with national databases for environmental sensing. There are many resources reaching the

internet now and an interpreter program would enable many institutions to publish findings

and to correlate data from other sources more effectively. With the new possibilities now

available because of this research, further work can now be conducted in the topics of spatial

water distributions and flux, correlating ET with subsurface data furthering refinements

in remote sensing, and providing a means to achieve a level of automation in precision

agriculture.
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