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Abstract

Architecture, Modeling, and Analysis of a Plasma Impedance Probe

by

Magathi Jayaram, Doctor of Philosophy

Utah State University, 2010

Major Professor: Dr. Chris Winstead
Department: Electrical and Computer Engineering

Variations in ionospheric plasma density can cause large amplitude and phase changes

in the radio waves passing through this region. Ionospheric weather can have detrimental

effects on several communication systems, including radars, navigation systems such as the

Global Positioning Sytem (GPS), and high-frequency communications. As a result, creating

models of the ionospheric density is of paramount interest to scientists working in the field

of satellite communication.

Numerous empirical and theoretical models have been developed to study the upper at-

mosphere climatology and weather. Multiple measurements of plasma density over a region

are of marked importance while creating these models. The lack of spatially distributed ob-

servations in the upper atmosphere is currently a major limitation in space weather research.

A constellation of CubeSat platforms would be ideal to take such distributed measurements.

The use of miniaturized instruments that can be accommodated on small satellites, such as

CubeSats, would be key to acheiving these science goals for space weather.

The accepted instrumentation techniques for measuring the electron density are the

Langmuir probes and the Plasma Impedance Probe (PIP). While Langmuir probes are

able to provide higher resolution measurements of relative electron density, the Plasma
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Impedance Probes provide absolute electron density measurements irrespective of spacecraft

charging.

The central goal of this dissertation is to develop an integrated architecture for the PIP

that will enable space weather research from CubeSat platforms. The proposed PIP chip

integrates all of the major analog and mixed-signal components needed to perform swept-

frequency impedance measurements. The design’s primary innovation is the integration

of matched Analog-to-Digital Converters (ADC) on a single chip for sampling the probes

current and voltage signals. A Fast Fourier Transform (FFT) is performed by an off-chip

Field-Programmable Gate Array (FPGA) to compute the probes impedance. This provides

a robust solution for determining the plasma impedance accurately.

The major analog errors and parametric variations affecting the PIP instrument and

its effect on the accuracy and precision of the impedance measurement are also studied.

The system clock is optimized in order to have a high performance ADC. In this research,

an alternative clock generation scheme using C-elements is described to reduce the timing

jitter and reference spurs in phase locked loops. While the jitter performance and reference

spur reduction is comparable with prior state-of-the-art work, the proposed Phase Locked

Loop (PLL) consumes less power with smaller area than previous designs.

(97 pages)
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Chapter 1

Introduction

The central goal of this dissertation is to develop an integrated architecture for the

Plasma Impedance Probe (PIP) that will enable space weather reserach from CubeSat [1]

platforms. The PIP is an instrument that belongs to the broad domain of impedance

spectroscopy and uses the swept-frequency technique. It measures the impedance of a

probe immersed in an ionospheric plasma environment. Studying these impedance curves

help in determining ionospheric plasma characteristics like the upper hybrid frequency,

electron-neutron collision frequency, and the plasma’s electron density [2, 3].

The closest, naturally occurring plasma to the surface of the earth is the ionosphere.

Although the ionosphere contains only a fraction of the atmospheric material, it is crucial

to study its characteristics due to its influence on the radio waves passing through them.

Most of the ionosphere is electrically neutral, but when solar radiation strikes the chemical

constituents of the atmosphere, electrons are dislodged from atoms and molecules to produce

the ionospheric plasma [4–6]. At high latitudes there is another source of ionization called

the aurora. The aurora is a display of light caused by electrons and protons striking the

atmosphere at high speed [4–6]. The presence of these charged particles makes the upper

atmosphere an electrical conductor, which supports electric currents and affects radio waves.

1.1 Need for Spatially Distributed Measurement

The ionosphere varies greatly due to the changes in the two sources of ionization and

because it responds to changes in the neutral part of the upper atmosphere in which it

is embedded. This region of the atmosphere is known as the thermosphere. Since it re-

sponds to solar radiation, the ionosphere varies over the 24-hour period between daytime

and night time and over the 11-year cycle of solar activity. During a geomagnetic storm
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the auroral source of ionization becomes much more intense and variable, and expands to

lower latitudes. Further, the energy input at high latitudes produces waves and changes

in thermospheric winds and composition. This produces both increases and decreases in

the electron concentration. Hence, the ionosphere varies significantly over an hourly basis.

These variations in ionospheric plasma density can cause large amplitude and phase changes

in the radio waves passing through this region [4–6]. Ionospheric weather can have detri-

mental effects on several communication systems, including radars, navigation systems such

as the Global Positioning System (GPS) and other high-frequency communication systems.

As a result, creating models of the ionospheric density is of paramount interest to scientists

working in the field of satellite communication [6].

Numerous empirical and theoretical models have been developed to study the upper

atmosphere climatology and weather. These models range from capturing climatological

behavior from historical data to real-time estimators that reconstruct the ionosphere from

live measurements in specific locales. The accuracy of these empirical models largely depend

on the quality and quantity of the observations with which they are driven. Hence, multiple

measurements of plasma density over a region is of marked importance while creating these

models. The lack of spatially distributed observations in the upper atmosphere is currently a

major limitation in space weather research [7,8]. A constellation of CubeSat platforms would

be ideal to take such distributed measurement [9]. The use of miniaturized instruments that

can be accomadated on nano satellites, such as CubeSats, would be key to acheiving these

science goals for space weather.

1.2 CubeSat Specifications

The term “CubeSat” represents nano-satellites that adhere to the standards described

in the CubeSat design specification [1]. The 10 × 10 × 10 cm, 1kg CubeSat standard has

evolved to become the basis for nanosatellite designs. The 10× 10× 10 cm basic CubeSat

is often called a “1U” CubeSat, meaning one unit. CubeSats are scalable in 1U increments

and larger CubeSats such as a “2U” CubeSat (20 × 10 × 10 cm) and a “3U” CubeSat

(30× 10× 10 cm) can also be built.



3

Power is the next primary consideration after launch restrictions. CubeSats are pri-

marily powered by solar cells mounted on the external faces of the satellite. As surface

size is the primary factor in solar power collection, physical size of the CubeSat defines the

maximum power collection ability of the system. Most CubeSats are placed in sun-sync

orbit allowing them to constantly collect solar power. The power subsystem also includes a

battery to stabilize the power generated by the solar collectors. The total power available

for the necessary performance of the electric system and the scientific payload of a CubeSat

varies based on the type of solar cells mounted and the type of secondary power provided.

Solar panels are currently made of Silicon (Si), Gallium-Arsenide (GaAs), or Gallium-

Arsenide triple junction cells. Only a limited number of cells can fit on the CubeSat. Nickel

Cadmium (NiCd), Nickel Hydrogen (NiH2), and Li-Ion batteries are becoming more and

more common in space applications to provide the secondary power. The reported power

available for a 1U CubeSat varies from 5W to 20W and the estimated power available for

the payloads varies from 0.5 W to 4 W [1, 10–12]. Consequently, the number of payloads

on each CubeSat depends on the power consumed in each payload.

1.3 Background

Recent research in Impedance Spectroscopy (IS) has led to the development of com-

pact, fully-integrated impedance spectroscopy systems [13–19]. These circuits are based on

the frequency response analyzer approach for IS, which are best suited to the slow changing

parameters measured by many sensors. These existing fully-integrated systems are unsuit-

able for the rapid changes in the ionospheric plasma density and the ionospheric frequency

range (100 KHz to 20 MHz) under consideration. Existing PIPs are made from off-the-shelf

components and/or bench-top instruments. Their volume and power requirements inhibit

them from being used in the tightly constrained CubeSats.

1.3.1 Impedance Spectroscopy

Impedance Spectroscopy is a versatile tool used to characterize the intrinsic properties

of any material and its interface. It is used in many macro-scale applications such as



4

monitoring electrochemical reactions [20–22], testing batteries [23], geological mapping [24,

25], testing coatings [26] and many other applications [27,28]. Recently, IS is being applied

to micro-scale applications across a wide variety of applications. It is especially gaining

popularity for biological and medical applications [29–36].

Applications

IS is being used extensively for investigating human tissue. Kun et al. have published a

series of papers [29–33] on detecting tissue ischemia (lack of oxygen and nutrients eventually

resulting in the death of the tissue). Although, their work is not on the micro-scale, the

ability to implement on-chip IS might greatly expand the applications of this work. For

example, Othman et al. [34] shows that IS can detect ischemia leading to organ failure in

the intestine. For this to be a practical application, an embedded sensor with a low power,

compact impedance spectrometer would be necessary. Additionally, IS has been applied for

the detection of skin cancer [35] and skin irritation [36].

IS has been coupled with on-chip fluidics for particle detection. This helps in differ-

entiating different particle types [37], monitor particle position [38], and measure the size

of the particles [39]. One unique application is the testing of neural probes. IS is used to

inspect the probes and detemine the state of their coatings [40]. The use of IS in on-chip

fluidics leads to the need for on-chip IS instrumentation circuitry.

IS has also been used to detect and sort blood cells [41] based on abnormalities in

the cell. This can be used for cancer screening [42, 43]. Work has been published showing

the ability to inspect cell’s membrane and cytoplasm [44] and detecting bacterial viability

[45] using IS. Yotter and Wilson [46] state that IS will become an important technique in

impedance-based single cell measurements. Some of the issues restricting the use of IS is

the size and sensitivity of the IS instruments. Hence, on-chip IS instrumentation circuitry

would help address these issues.

Biological sensors are a key application area for IS. It has been used for DNA sensors,

immunosensors, and biocatalytic enzyme-based biosensors [47–49]. Another vital biosensor

application is the use of proteins bonded to electrodes. As the proteins react to specific
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chemicals, the reactions can be measured using IS [50–52]. An on-chip IS system would be

applicable for all of the above applications.

1.3.2 Existing IS Instrumentation

Nearly all of the applications described above attach on-chip probes to bench-top in-

struments (either a PC with a DAQ or some sort of network analyzer) to do the actual

impedance measurement. While this could prove useful for initial research, it presents

some serious limitations as well. Bench-top equipment can be expensive and severely limits

large scale production and deployment of IS systems. Some of the applications listed above

present exciting possibilities for in-vivo or portable applications, however the size and power

requirements make this impossible.

There have been a number of IS systems that have been developed that rely on com-

puters for most of the computation, while using discrete components on a PCB to perform

measurements [53]. Computer-based solutions suffer from all the same limitations of bench-

top instruments listed above. Some more compact solutions have also been presented.

Carullo et al. [26] replace the computer with a commercial digital signal processor. Using

off-the-shelf components on a PCB will still not allow these instruments to be used for

in-vivo or portable applications where the power and size are tightly constrained.

Arnold and Manck [13] discuss a fully on-chip system but give very few details as to the

implementation. Hassibi and Lee [14] discuss an on-chip sensor array system for biomolec-

ular detection, however the system only has programmable amplifiers and no IS is actually

done. On-chip IS is a relatively new field and recently a fully on-chip system capable of

computing complete impedance data has been developed by Yang, Rairigh, Liu, and Ma-

son [15–18]. Their on-chip IS system targets detecting impedance information in the 1mHz

to 100kHz frequency range in gas sensors. Analog Devices has made available AD5933 [19],

a new system-on-chip fully integrated electrical impedance spectrometer, which might allow

the implementation of minimum-size instrumentation for electrical bioimpedance measure-

ment in the 1mHz to 100kHz frequency range. Some of the disadvantages of using this

chip in the configuration suggested by the manufacturers are the need for additional mea-
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surement for calibration, the lack of constant output resistance and possibility of spectrum

leakage while determining the Discrete Fourier Transform(DFT) [54]. Thus existing on-chip

IS systems are unsuitable for measuring the ionospheric plasma impedance as the frequency

range under consideration is 100KHZ to 20 MHz.

1.3.3 Previous PIP Instruments

The PIP instruments have undergone numerous design iterations and changes over

the last fifty years. In the 1960s, Oya and Obayashi [55] applied a bridge circuit to the

impedance probe and realized an accurate measurement of the absolute electron density.

Since then, the impedance probe technique has been applied to many sounding rockets and

satellite observations [56].

Steigies et al. [57] reported a design in 2000 that measured the magnitude of the plasma

impedance while sweeping over a wide range of frequencies. A schematic diagram of the

instrument used is shown in Figure 1.1.

The signal is generated by the Direct-Digital Synthesizer (DDS). The sensor box con-

tains a capacitance bridge, wide-band amplifiers, and signal detection. The Impedance

Probe (IP) sensor represents one component of the capacitance bridge and the output

signal is proportional to the impedance of the sensor. The instrument is controlled by a

programmable logic device (PLD) that also reads the analog-to-digital (A/D) converter and

communicates with the telemetry (TM). Although the IP is digitally programmed to give

fast, accurate results, the upper limit of the accessible electron density in this approach

is limited by the DDS clock frequency of 25MHz. The IP sensor unit consists of a base

plate on which the strip antenna connected to the pre-amplifier and release mechanisms

are mounted. Figure 1.2 shows the IP sensor unit. The sensor circuit is also made from

surface mount components. This severely restricts large scale development. Though the

power consumed is not reported, it is unlikely that it would satisfy the tightly constrained

power budget of CubeSats.

Blackwell et al. [3] described a plasma impedance probe in 2005 to measure absolute

electron density. A small spherical probe was used in conjunction with a network analyzer,
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Figure 4. The IP mechanics. The IP sensor unit consists of a base
plate on which the IP pre-amplifier and the release mechanism are
mounted. The strip antenna is connected to the pre-amplifier
(visible in the background), stowed in 1 1

2
turns on a reel and

secured at the release mechanism (foreground).

mode. It was desired that the relative accuracy of the

electron density measurement should be in the range of

!ne/ne < 5%. This requirement, together with the spatial

resolution and the rocket velocity define the minimum

number of data points per sweep and the sweep rate.

4.1. Mechanical considerations

In earlier IP designs a telescopic sensor was used [6]. For

the present experiments, such a sensor type could not be

integrated into the existing boom system, where it would

have introduced an intolerably high dynamic imbalance.

Instead, the sensorwas designed as a light-weight steel ribbon

(1.2 m × 16 mm × 0.16 mm; 14 g). The ribbon was

formed into a u-shaped cross section to provide stiffness in

the deployed position.

The sensor strip is fixed at the top of the sensor box

(see figure 4) in the immediate vicinity of the capacitance

bridge. This arrangement is necessary to minimize the input

stray capacitance. For the same reason, the sensor box is

manufactured of dielectric materials only: the frame is made

of delrin and the front and back lid consist of fibre glass

printed circuit board material from which the copper layer

was removed.

The strip antenna is stowed in 11
2
turns on a reel

consisting of two printed circuit board rings with eight

bobbin-shapedmetal spacers that support the antenna ribbon.

To minimize the stray capacitance in the stowed position,

the reel is mounted on dielectric supports. At the end of

the strip antenna a small additional weight (9 g) is attached,

that unwinds the ribbon under the action of the centrifugal

force of the spinning rocket. In the stowed position, the end

weight is secured with a finger mechanism that is released

by a spring after actuating a pyro-electric wire cutter. For

redundancy, a second wire cutter is supplied. The release

mechanism is positioned just opposite the sensor box. In this

way mechanical balancing can be achieved.

Figure 5. A block diagram of the IP instrument. The signal is
generated by the DDS. The sensor box contains a capacitance
bridge, wide-band amplifiers, and signal detection. A PLD
controls frequency synthesis, the A/D converter (ADC) and the
TM interface.

The functionality of the IP can be tested in the stowed

position by means of a resonant LC circuit that is connected

to one of the carrier bobbins. The parallel resonance of

this circuit simulates the plasma impedance. When the strip

antenna is deployed the contact to the test circuit is lost and

the disappearance of the test signal can be used to verify

proper deployment.

The entire sensor unit rests on a ring-shaped aluminium

base plate that leaves a central hole which is sufficiently large

to accommodate the lower end of the foldable boom system

that carries the other sensors. The impedance probe unit is

integrated before the foldable boom is assembled.

4.2. Electronics design

For the sake of conserving space and weight in the sensor

unit, the design of the sensor circuit required using only

surface mounted device components. A schematic diagram

of the instrument is shown in figure 5. The sensor box

contains the capacitance bridge, field effect transistor inputs,

wide-band amplifiers, active rectifiers and an instrumentation

amplifier with differential input. The IP sensor represents

one component of the capacitance bridge. The concept of

splitting the signal processing into an identical pair of signal

channel and reference channel is capable of compensating for

the stray capacitance of the sensor. Combining the signals

after rectification eliminates the thermal drift of the detector.

At last the output signal is proportional to the impedance of

the sensor. The output signal was calibrated with a set of

known capacitances.

The remaining electronics is contained in a detached

electronics box. The frequency sweep is realized by a

direct digital synthesis oscillator (DDS) that generates a

sine wave output. A ‘sweep’ consists of 256 frequency

steps. The frequency values are stored in an EPROM. The

instrument is controlled by a programmable logic device

(PLD) that also reads the analogue–digital (A/D) converter

and communicates with the telemetry (TM). The PLD can be

reprogrammed externally, which allows last-minute changes

to the instrument after assembly. The electronic box also

houses the dc–dc converter (28 V → +5 V, +12 V, −12 V)
and housekeeping electronics.

408

Fig. 1.1: Block diagram of the impedance probe instrument.

as shown in Figure 1.3, to determine the impedance of the probe-plasma system over a

wide range of frequencies. Impedance curves were in good agreement with accepted circuit

models but several sources of errors were listed by Blackwell et al. [3]. The use of a network

analyzer to determine the impedance restricts the large scale production and deployment

of this instrument. It is also unsuitable for CubeSat platforms.

Rowland et al. [58] developed a plasma impedance spectrum analyzer (PISA) at NASA

GSFC in 2006 that included a white noise generator that stimulated a wide range of frequen-

cies simultaneously, allowing the instrument to send down the entire impedance frequency

spectrum every few milliseconds. This allows identification of all resonance frequencies,

including the series resonance which depends on temperature. The PISA, as shown in Fig-

ure 1.4, weighs about 3kg and was developed for FASTSAT, a microsatellite which is 39.5

inches in diameter and weighs 90 Kg. Hence, the PISA would not conform to the CubeSat

specifications described in Section 1.2.

Trotignon et al. [59] reported a Mutual Impedance Probe (MIP) design in 2007 that

relies entirely on the capacitive coupling of two antennas, to gain insight into the plasma

characteristics around comets. The MIP was designed to measure the plasma density,
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Figure 4. The IP mechanics. The IP sensor unit consists of a base
plate on which the IP pre-amplifier and the release mechanism are
mounted. The strip antenna is connected to the pre-amplifier
(visible in the background), stowed in 1 1

2
turns on a reel and

secured at the release mechanism (foreground).

mode. It was desired that the relative accuracy of the

electron density measurement should be in the range of

!ne/ne < 5%. This requirement, together with the spatial

resolution and the rocket velocity define the minimum

number of data points per sweep and the sweep rate.

4.1. Mechanical considerations

In earlier IP designs a telescopic sensor was used [6]. For

the present experiments, such a sensor type could not be

integrated into the existing boom system, where it would

have introduced an intolerably high dynamic imbalance.

Instead, the sensorwas designed as a light-weight steel ribbon

(1.2 m × 16 mm × 0.16 mm; 14 g). The ribbon was

formed into a u-shaped cross section to provide stiffness in

the deployed position.

The sensor strip is fixed at the top of the sensor box

(see figure 4) in the immediate vicinity of the capacitance

bridge. This arrangement is necessary to minimize the input

stray capacitance. For the same reason, the sensor box is

manufactured of dielectric materials only: the frame is made

of delrin and the front and back lid consist of fibre glass

printed circuit board material from which the copper layer

was removed.

The strip antenna is stowed in 11
2
turns on a reel

consisting of two printed circuit board rings with eight

bobbin-shapedmetal spacers that support the antenna ribbon.

To minimize the stray capacitance in the stowed position,

the reel is mounted on dielectric supports. At the end of

the strip antenna a small additional weight (9 g) is attached,

that unwinds the ribbon under the action of the centrifugal

force of the spinning rocket. In the stowed position, the end

weight is secured with a finger mechanism that is released

by a spring after actuating a pyro-electric wire cutter. For

redundancy, a second wire cutter is supplied. The release

mechanism is positioned just opposite the sensor box. In this

way mechanical balancing can be achieved.

Figure 5. A block diagram of the IP instrument. The signal is
generated by the DDS. The sensor box contains a capacitance
bridge, wide-band amplifiers, and signal detection. A PLD
controls frequency synthesis, the A/D converter (ADC) and the
TM interface.

The functionality of the IP can be tested in the stowed

position by means of a resonant LC circuit that is connected

to one of the carrier bobbins. The parallel resonance of

this circuit simulates the plasma impedance. When the strip

antenna is deployed the contact to the test circuit is lost and

the disappearance of the test signal can be used to verify

proper deployment.

The entire sensor unit rests on a ring-shaped aluminium

base plate that leaves a central hole which is sufficiently large

to accommodate the lower end of the foldable boom system

that carries the other sensors. The impedance probe unit is

integrated before the foldable boom is assembled.

4.2. Electronics design

For the sake of conserving space and weight in the sensor

unit, the design of the sensor circuit required using only

surface mounted device components. A schematic diagram

of the instrument is shown in figure 5. The sensor box

contains the capacitance bridge, field effect transistor inputs,

wide-band amplifiers, active rectifiers and an instrumentation

amplifier with differential input. The IP sensor represents

one component of the capacitance bridge. The concept of

splitting the signal processing into an identical pair of signal

channel and reference channel is capable of compensating for

the stray capacitance of the sensor. Combining the signals

after rectification eliminates the thermal drift of the detector.

At last the output signal is proportional to the impedance of

the sensor. The output signal was calibrated with a set of

known capacitances.

The remaining electronics is contained in a detached

electronics box. The frequency sweep is realized by a

direct digital synthesis oscillator (DDS) that generates a

sine wave output. A ‘sweep’ consists of 256 frequency

steps. The frequency values are stored in an EPROM. The

instrument is controlled by a programmable logic device

(PLD) that also reads the analogue–digital (A/D) converter

and communicates with the telemetry (TM). The PLD can be

reprogrammed externally, which allows last-minute changes

to the instrument after assembly. The electronic box also

houses the dc–dc converter (28 V → +5 V, +12 V, −12 V)
and housekeeping electronics.

408

Fig. 1.2: Impedance probe sensor unit.

temperature and drift velocity, and also act as a receiver for high-frequency waves (above

10 kHz). The MIP is part of the Rosetta Plasma Consortium (RPC) which consists of four

additional instruments. An alternating current, I, with a frequency lying in the range that

contains the plasma frequency resonance, was driven through a transmitting electrode. The

induced difference in voltage, V, measured on open circuit between two receiving electrodes

is fed into a high-input impedance amplifier. The mutual impedance, Z, which is then

computed on-board, is equal to the ratio of V to I. As Z depends essentially on the properties

of the surrounding plasma, the frequency response of the mutual impedance probe is used for

plasma diagnosis. The mutual impedance probe instrumentation consists of an electronics

board for signal processing in the 7 kHz to 3.5 MHz range and a sensor unit of two receiving

and two transmitting electrodes mounted on a 1-m long bar. The RPC instrument schematic

is shown in Figure 1.5. The MIP sensor has a mass of 0.370 kg and the MIP electronics,
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C. Experimental setup

The Space Physics Simulation Chamber at the Naval Re-

search Laboratory has been described in several earlier

experiments.
15
A very large vacuum vessel (!2 m diameter

by 5 m length) is filled to a pressure of p!10!4 Torr argon
and surrounded by a weak magnetic field "B0!3 G# such
that !e"# ,#pe. A uniform, weakly ionized "n!107!109#
plasma is created with a large array of glowing tungsten

filaments biased at !100 V. The electron and ion tempera-

tures are typically Te!0.5 and Ti!0.05 eV. The electron
density is measured with a heated Langmuir probe mounted

in proximity to the sphere. A drawing of the experiment is

shown in Fig. 8.

IV. SOURCES OF ERROR

The principle source of error in the impedance measure-

ment is incorrect calibration of the network analyzer arising

from unwanted phase shift or loss from either the cables or

from poor terminations. Several iterations of probe shaft de-

signs, coax cables, and matched loads had to be tried before

we could reproduce an expected vacuum characteristic of the

sphere impedance. Particular emphasis should be placed on

choosing sufficiently shielded coax cables so that the imped-

ance characteristics are not changed as cables are moved

around during the experiment. Another source of error was

FIG. 9. Experimental curves of the real and imaginary parts of the imped-

ance Z=R+ jX for a plasma with ne!6$107 cm!3, neutral pressure of 3.4
$10!4 argon, 1.5 G magnetic field, and Te!0.5 eV. The changes in sign of
the imaginary part are the solutions from Eq. (6).

FIG. 6. Setup for measurement of #pe using the plasma oscillation method.

FIG. 7. Spectrum analyzer data of the signal picked up by the sphere with

no driving rf applied and a !100 V electron beam injected into the back-

ground plasma using an emissive probe in close proximity. The bump in the

spectrum is the electrostatic oscillation associated with the two stream in-

stability. The electron density is varied in the range 107–108 cm!3 by chang-

ing the source filament heater voltage from 50 to 58 V. The magnetic field

is 1.5 G and the neutral pressure is 3.4$10!4 Torr argon.

FIG. 8. Illustration of experimental setup in the SPSC plasma.

023503-4 Blackwell, Walker, and Amatucci Rev. Sci. Instrum. 76, 023503 (2005)

Downloaded 23 Feb 2010 to 129.123.67.10. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp

Fig. 1.3: Experimental setup used to measure the plasma impedance.

which are shared with the other instruments have a mass of 3.291 kg. This instrument

suffers from all the same drawbacks listed above for the design developed by Steigies et

al. [57].

In 2006, Hummel [60] reported a PIP instrument that used the quadrature technique

to measure both the magnitude and phase of the probes impedance. In this method, two

high speed analog-to-digital converters were used to sample the current signal and the drive

voltage signal at the frequency of the drive signal, but one quarter of the period delayed

from each other. The magnitude and phase were extracted using an envelope detector and

a phase-locked loop, respectively. Figure 1.6 depicts the block diagram of the quadrature

PIP and the quadrature PIP electronic board.

In 2007, Sanderson [61] performed a detailed analysis of the quadrature PIP design

and its performance on sounding rocket flights. The instruments reliability was limited by

various transient errors that upset the stability of the quadrature design. The quadrature
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Fig. 1.4: The PISA instrument.

design also relied on the DDS to produce a precise sinusoidal stimulus for the probe. The

quadrature PIP’s accuracy and stability were adversely affected by the timing and delay

errors generated by imperfections in the DDS oscillator and noise and stability problems

associated with the wide band trans-impedance amplifier. The instrument was made from

off-the-shelf components. Maximum power was consumed by the DDS. The power dissipated

by each DDS was about 650mW at 5V supply and 180 MHz clock. Further, the peak-to-

peak (p-p) output jitter of the DDS was measured to be 250 ps, when a 40 MHz 1V p-p

input sine wave clock generation configuration was used. The dimensions and the power

consumption along with the other disadvantages listed above make the quadrature PIP

ill-suited for CubeSats.

Several commercial probe systems [62–64] are also available to measure a wide range

of plasma parameters such as plasma density, uniformity, and electron temperature distri-

bution. Nearly, all of them attach probes to bench-top instruments like a computer to do
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Fig. 1.5: RPC instrument schematic.
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Fig. 2.5: PIP standard channel.

Using the antenna drive signal as a reference, in-phase and quadrature samples are

taken by the A/Ds. This is accomplished by clocking one A/D with the antenna drive

signal and another A/D with a signal 90 degrees out of phase given by A ∗ sin(ωt). An

in-phase (SI) and a quadrature (SQ) sample of the signal is retrieved from the A/Ds. Using

equations 2.1 and 2.3, the magnitude and phase of the impedance ZA can be expressed as

|ZA| =
RfA√
S2

I + S2
Q

, (2.5)

and

! ZA = − arctan(
SQ

SI
)− α, (2.6)

where α is due to the unwanted time delays in clocking the A/D converters.

The configuration of fig. 2.5 is used to perform two different operations. Its primary

function is a Sweeping Impedance Probe (SIP). Discrete frequencies are applied at the

antenna from which phase and magnitude measurements of the plasma are gathered. A

plot similar to that of a network analyzer is reconstructed from this data and used to

analyze the plasma the antenna is immersed within.

52

Fig. 4.1: Plasma impedance probe electronics board.

4.1.1 DCP Channels

The DCP has been functionally verified by attaching resistive loads in place of the

DCP antenna. This was accomplished by attaching them between the DCP drive signal

and the board ground in a similar fashion to that shown in fig. 4.2. An oscilloscope was

used to probe the board and take voltage readings. The DCP drive signal is providing

2.993 VDC and the DCP guard is sourcing 2.991 VDC. A 10 MΩ load results in a low

gain measurement of 0.081 V which compares well to the design value of 0.077 V. The high

gain channel results in 3.185 V which also compares well to the design value of 3.24 V.

Calibration of the instrument will ensure accurate DCP measurements.

4.1.2 SIP Magnitude Channel

The SIP magnitude channel produces a backup measurement of the SIP standard

channel. Four resistive loads were attached to the SIPM as shown in fig. 4.2 and the four

Fig. 1.6: Quadrature PIP.
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the actual impedance measurement. These existing commercial systems are inadequate for

the highly constrained dimensions and power budget of nanosatellites.

1.4 Motivation for the New PIP Instrument

Most of the PIP and IS instruments currently available attach on-chip probes to bench-

top instruments (either a PC with a DAQ or some sort of network analyzer) to do the actual

impedance measurement. While this could prove useful for initial research, it presents some

serious limitations as well. Bench-top equipments are expensive and severely limits the

large scale production and deployment of these systems. Further, the few existing on-chip

impedance spectrometers are unsuitable for the frequency range under consideration while

the existing PIP instruments are unsuitable for CubeSat applications due to the power,

bandwidth, and volume requirements of the CubeSat platform. Hence a miniaturized, low-

power solution is required. In this dissertation, an integrated architecture for the PIP

that will enable space weather research from CubeSat platforms is developed. The PIP

chip integrates all of the major analog and mixed-signal components needed to perform

swept-frequency impedance measurements. By integrating these components onto a single

chip, the weight and volume of the PIP instrument is drastically reduced. This resulting

instrument will be capable of long-term, low-cost, multi-point deployments in nanosatellite

applications.

1.5 Contributions of This Thesis

A new integrated electronic design for the PIP, suitable for CubeSat platforms, is

presented in Chapter 2. To the author’s knowledge, no other fully integrated PIP has

been explicitly reported in literature. The major analog errors and parametric variations

affecting the PIP instrument and its effect on the accuracy and precision of the impedance

measurement are studied. A novel behavioral verification methodology is also presented in

Chapter 2. In Chapter 4, a new low-power, low-jitter clock generation circuit is proposed.

Performance comparisons between the author’s custom phase locked loop (PLL) and existing

PLLs for clock generation are examined in Chapter 4. The advantages and viability of the
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new design for CubeSat platforms are also analyzed in Chapter 4.

The new integrated PIP instrument developed for CubeSats, would help in realizing

an accurate ionospheric plasma density model with spatially distributed measurements.

Though this instrument is mainly developed for measuring the plasma impedance, the

system architecture could be extended to develop a fully on-chip IS system that could be

used for a wide variety of biological and medical applications. The novel clock generation

circuit though ideal for the integrated PIP instrument can be optimally used in general

purpose analog-to-digital converters (ADCs) to provide a low- jitter clock.

1.6 Outline of This Thesis

Chapter 2 describes the system architecture for the integrated PIP and its advantages

over existing systems. The top-down design methodology adopted is discussed in detail.

The behavioral verification strategy and the impedance curves generated are also presented.

Finally, the custom ADC developed for the PIP and the need for ADC clock optimization

are summarized.

In Chapter 3, the need for a new clock generation circuit is presented. The PLL

system operation is explained briefly. The sources of noise in the PLL are discussed and the

relationship between integrated phase noise and jitter is defined. Various existing methods

for reducing jitter and reference spurs are also presented.

Chapter 4 presents an introduction to Muller C gates. A novel PLL using Muller C

elements to reduce jitter and reference spurs is proposed. The theory and implementation

details are discussed. Finally, a performance metric for the PLL is defined and the Muller

C PLL is compared with other existing PLL designs.

Chapter 5 summarizes the main contributions of this dissertation.
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Chapter 2

Proposed PIP Design: Architecture, Modeling, and Results

In this chapter, a single-chip electronic system for a PIP suitable for nanosatellite in-

strumentation will be described. The PIP chip integrates all of the major analog and mixed-

signal components needed to perform swept-frequency impedance measurements. Unlike

previous PIP designs described in Section 1.3, the integrated PIP performs direct voltage

current sampling on the probes terminal. A Fast Fourier Transform (FFT) is performed

by an off-chip FPGA to compute the impedance of the probe and plasma. By performing

analog-to-digital conversion as early as possible in the signal flow chain, the design is made

less sensitive to variability in analog components. By using an FFT operation, the PIP

instrument is made less sensitive to transient spikes that proved disruptive in previous PIP

designs [60]. Further, integrating all the analog/mixed signal components onto a single chip,

drastically reduces the weight and volume of the PIP instrument.

2.1 Proposed PIP Design

The new electronic PIP design samples the probes current and voltage signals directly.

This approach eliminates the PIPs requirement for a pure sinusoidal stimulus, and greatly

relaxes the error tolerance for the DDS. The new design eliminates analog signal processing

wherever possible, thereby eliminating several sources of error and instability from the

system. The impedance magnitude and phase are extracted by a FFT, which is performed

off chip in a complementary FPGA device. The FFT operation is insensitive to transient

errors and increases the noise immunity of the system.

2.1.1 System Architecture

The proposed system architecture is shown in Figure 2.1. The probe is simulated by a
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sinusoidal voltage waveform generated by the DDS. A transimpedance amplifier replicates

the DDS signal on both of its terminals. The probes current passes through the feedback

impedance, ZF , so that the op amps output signal is VDDS + IZF . The DDS voltage signal

is then subtracted from the amplifiers output to produce a signal proportional to the probes

current.

A pair of matched ADCs are used to sample the DDS voltage signal and the signal

proportional to the probes current. The sampled VDDS and IZF signals are then sent to

the FPGA for digital signal processing. The FPGA performs a FFT operation on each

of the sampled signals at a frequency corresponding to the fundamental frequency of the

DDS voltage signal. The two FFT outputs are then divided to produce the impedance.

The FPGA contains control logic which coordinates a frequency sweep from 100 kHZ to

20MHZ, and delivers impedance data to other system components (e.g. a telemetry data

transmitter).

2.1.2 Advantages

The system has a high tolerance to common analog errors such as nonlinear distortion,

clock jitter, and transient spikes or glitches. The spectral effects of these errors tend to

appear away from the fundamental component. So they can be effectively filtered out by

the FFT operation. For the same reason, the DDS signal can be any periodic waveform,

not necessarily a sinusoid. This decreases the instruments sensitivity to imperfections in

the probes stimulus waveform. In addition, the use of symmetric differential sampling helps

in eliminating nonlinear distortions. This increases the noise immunity of the system.

The use of matched ADCs to sample the probes current and voltage signals decreases

the instruments sensitivity to variations in the probes stimulus waveform. Since precise

sinusoids are not required, a low-power, low-resolution DDS design can be used. After

eliminating most of the analog signal processing, the proposed system requires only two

precision components, the transimpedance amplifier and the ADC.
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Fig. 2.5: Proposed PIP instrument.

vx ≈ Vp + ipZf , (2.10)

vz ≈ Zf ip =
(

Zf

Za

)
VDDS , (2.11)

where VDDS is the DDS output voltage, and Zf is the transimpedance feedback impedance

which consists of a parallel RC circuit. The amplifier’s output voltage is subtracted from the

DDS voltage through a difference amplifier to isolate ipZf at the ADC input. This signal

as well as the DDS signal are both sampled by matched ADCs, and are then passed to the

FPGA for further signal processing. In contrast to previous PIP designs, the integrated PIP

samples the probe’s current and voltage directly. This procedure relaxes error tolerances

and eases the requirement of pure sinusoidal waveforms from the DDS. This allows us to

tolerate low resolution and moderate jitter in the DDS design. The off-chip FPGA performs

a Fast Fourier Transformation (FFT) operation on both of the signals at the fundamental

frequency (DDS output frequency). The two outputs are then divided to generate the

Fig. 2.1: Proposed PIP system architecture.

2.2 Design Methodology

Our design approach for the new PIP system is strongly focused on analog errors and

variations. Revisions are costly in fully-integrated designs, so the design must be thoroughly

characterized and verified before fabricating any prototypes.

To evaluate the error tolerances in the PIP chips integrated parts, we ask two funda-

mental questions for each component.

• What are the major errors and parametric variations associated with the component?

• For each error or variation, what is its effect on the accuracy and precision of the

impedance measurement?

These questions are addressed using a top-down design strategy in which every effect is

evaluated within the context of a full system simulation. A complete system framework

is created using Matlab/Simulink [65]. This framework includes physical probe/plasma



18

models, the DDS, transimpedance amplifier, ADCs, FFT, impedance computation, and

control logic.

To evaluate the impact of errors and variations, the Simulink framework is disturbed

by inserting a component error model. We then evaluate the errors effect on the impedance

calculation. For random parametric variations, Monte Carlo simulations are performed.

The variations impact is quantified by calculating the statistical variance in the measured

impedance.

By evaluating each error and variation, design effort can be focused on reducing the

most significant error sources. The top-down strategy also allows us to simulate errors and

variations in groups, so that we can quantify the accuracy and precision of the PIP under

the influence of all errors and variations. This assessment reveals the value and limitations

of the PIP as a scientific instrument.

2.3 Transistor-level Design

The top-down design strategy is useful for system modeling and for transistor-level

component design.The central problem in integrated system design is behavioral verification:

the entire design hierarchy must function together as a cohesive instrument.

Our component design/verification strategy is illustrated in Figure 2.2. For integrated

component design, we use the Cadence chip design tools. Within Cadence, the PIP chipss

complete design hierarchy is built using the Verilog-AMS language. Verilog-AMS is a be-

havioral language for modeling analog/mixedsignal components. Verilog-AMS simulations

allow for a mixture of models at several levels of abstraction, including:

• Intermediate level: semi-ideal circuit models, including timing behavior, parasitics

and other electrical characteristics;

• Transistor level: actual circuit simulation with physical device models;

• Post-layout: extracted circuit models from a physical chip layout.

Cadence and Matlab recently introduced a cross-link capability that allows Cadence com-

ponents to be simulated within Simulink models. Consequently, all Verilog-AMS models
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are tested within the Simulink system framework. By maintaining a top-down environment

throughout the design process, we can fully quantify the precision of the PIPs impedance

measurements across its entire spectral range.

2.4 Behavioral Verification of the PIP Instrument

The PIP instrument is heterogeneous in nature as it integrates analog, digital, and RF

hardware, as well as software components. Hence, its design, verification, and modeling

is complicated. Further, each top-level circuit simulation can consume CPU time ranging

from hours to days to weeks. This invariably means speeding up the top-level verification

with the help of behavioral models written using a higher level language. These models can

be either basic models that are used to verify the functionality or complex models that are

used to predict the system performance. This section describes the modeling of the PIP

instrument performed using various languages and tools.

2.4.1 Modeling with Matlab/Simulink

A complete PIP framework was built using Matlab/Simulink by Hamoui [65]. This

frame work included the physical probe/plasma models, the DDS, transimpedance ampli-

fiers, ADCs, FFT, impedance computation, and control logic. Further details about this

work can be found in Hamoui [65].

2.4.2 Modeling with Verilog-AMS

Behavioral modeling and simulation, using Verilog-AMS for the PIP chip makes system

level analysis much more efficient and accurate [66]. The key challenge faced during verifi-

cation was in ensuring that the behavioral Verilog-AMS model represents the functional as

well as parametric (when desired) behavior of the block being modeled. Apart from this, it

is also critical to ensure that the connectivity of the analog blocks matches between circuit

schematics and behavioral models.
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electrical characteristics. 
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physical device models. 

• Post-layout: extracted circuit models from a 

physical chip layout. 
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capability that allows Cadence components to be 

simulated within Simulink models. Thanks to this new 

capability, all transistor-level component designs can be 

tested within the Simulink system framework. 

 

Figure 2: Levels of abstraction and tools used for 

functional verification of the PIP chip design. 

 

By maintaining a top-down environment throughout the 

design process, we can fully quantify the precision of 

the PIP’s impedance measurements across its entire 

spectral range. Precise impedance measurements were 

not necessarily the primary goal of previous PIP 

instrument designs, which were typically interested in 

locating resonance frequencies and could tolerate 

uncertainty in the absolute impedance magnitude (e.g. 

Steigies
2
). Our PIP design is intended to support a new 

generation of plasma instrumentation and research in 

which precise impedance measurements will be 

essential for studying an expanded set of plasma 

characteristics. 

CONCLUSIONS 

In this paper, we have outlined the electronic system 

design for a fully-integrated Plasma Impedance Probe 

using the FFT technique. By using matched ADCs to 

sample the probe’s current and voltage signals, we have 

decreased the instruments sensitivity to variations in the 

probes stimulus waveform.   

The sensitivity to transient spikes, that proved 

troublesome in previous designs, has been improved by 

using the FFT technique. Further, integrating the analog 

components on a single chip miniaturizes the system 

and allows the customization of key components, 

thereby increasing the overall system efficiency.  
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Cadence

Simulink
! Plasma and probe models.
! Control logic.
! Performance/Accuracy analysis.

Verilog-AMS

! Behavioral component models.
! Mostly ideal circuit models.
! Isolate non-ideal behaviors.

Incisive Simulator

! Physical circuit simulation.
! Functional verification of 
transistor-level schematics 
and physical layouts.

Fig. 2.2: Levels of abstraction and tools used for the functional verification of the PIP chip
design.

Verilog-AMS Features

Verilog-AMS hardware description language (HDL) defines a behavioral language that

can be used for analog as well as mixed-signal systems. Since Verilog-AMS combines Verilog-

HDL as well as Verilog-A, as shown in Figure 2.3, it inherits the ability to process both

digital and continuous time analog signals. It also processes analog discrete-event signals.

Verilog-AMS makes it more straightforward to write behavioral models for mixed-signal

blocks and brings strong event-driven capabilities to analog simulation, allowing analog

event-driven models to be written that perform with the speed and capacity inherited from

the digital engines [67].
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Applied Modeling Methodology

Verilog-AMS supports multi-level and multi-domain simulation as shown in Figure 2.4.

Hence, it was used to model various components of the PIP-chip, including the ADC, the

transimpedance amplifier and the PLL used in the DDS. The methodology used was based

on the following elements:

• The use of Verilog-AMS to describe the functionality of the analog/mixed signal blocks

including the transimpedance amplifier, the ADC and the PLL;

• The use of Cadence Virtuoso environment to combine analog and digital signals in a

single environment;
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• The use of Virtuoso AMS Design Simulator as the mixed abstraction level simulator.

When using the top-down methodology for developing the PIP chip, there are various

needs for mixed-signal models. Initially during the architectural phase, the blocks were

represented abstractly, a single block describing the complex analog and digital functionality.

Verilog-AMS was used to describe this complex system. As the design is specified in more

detail, it can be partitioned into analog only, digital only or mixed-signal. Figure 2.5 shows

the proposed mixed-signal modeling framework.

Modeling Implementation

Transimpedance Amplifier: The operational amplifier configured as a transimpedance

amplifier, exhibits analog behavior. The non-ideal opamp model is straightforward and was

modeled using Verilog-AMS. Figure 2.6 shows the well-commented Verilog-AMS code used

to model the opamp.

PLL: The DDS system consists of a clock divider, a digital counter, a read only mem-

ory (ROM), and a digital-to-analog converter (DAC). These signals are generated from a

stable and accurate clock source. This referenced clock is generated using a phase-locked

loop (PLL). The PLL block diagram is shown in Figure 2.7. The Phase-Frequency Detector

(PFD) detects the difference between the input reference frequency and the output fre-

quency of the Voltage Controlled Oscillator (VCO). This voltage signal proportional to the

difference is exported and drives the charge pump (CP) circuit. The output current of the

CP is converted into smooth voltage by the loop filter (LP). This voltage controls the VCO,

and eliminates the frequency error. The CP, VCO, and loop filter are all circuits that exhibit

analog behavior while the PFD and frequency divider are purely digital. The CP, VCO,

and LP were modeled using Verilog-AMS while Verilog HDL was used to model the PFD

and the frequency divider(FD). The top-level PLL design was modeled using Verilog-AMS.

ADC: There are several well-known ADC architectures [68]. For our PIP design, a

1.5 bits/stage, 16-bit pipelined ADC was chosen, as the PIP needs to operate at input

frequencies up to 20 MHz while still maintaining high accuracy. In addition, system accuracy
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Fig. 2.4: Verilog-AMS: Scope for description.

requirements can be relaxed by using digital error correction. Figure 2.8 shows the block

diagram for the modeled pipelined ADC and the ADC description domain.

The pipeline ADC is a cascaded array of N individual stages where each stage consists of

a Sample-and-Hold (S/H) block, an m-bit low-resolution stage-ADC, an m-bit low-resolution

stage Digital-to-Analog Converter (DAC), an analog subtractor, and a 2m gain-amplier.

The S/H, samples the input voltage Vin at each clock cycle. It then holds the final sampled

value. This sampled value is passed on to the input of the stage-ADC to produce a low-

resolution digital output word. The stage-DAC then converts the digital output word to its
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Fig. 2.5: Proposed mixed-signal modeling framework.

equivalent analog voltage. This voltage is then subtracted from Vin to yield the residue.

This is done in order to ensure that all stages of the pipelined ADC use the same input

voltage range.

On the next clock cycle, the residue of each stage is applied to the next stage for

further quantization. This process continues until full quantization of the sampled voltage is

achieved. Then the digital outputs from each stage are passed to the digital error correction

algorithm, which performs addition by using a series of full adders to form the final digital

output word Dout. Since no digital correction can be done after the last stage, the least
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`define dB2dec(x) pow(10,x/20)
module opamp(vinp,vinm,vdd,vss,voutp,voutm);
 inout vinp,vinm,vdd,vss;
 inout voutp,voutm;
 electrical vinp,vinm,vdd,vss,voutp,voutm;

 parameter real gain = 100 from (0:inf),      // open loop gain in dB
                three_dB_freq  = 1M from (0:inf), // 3dB frequency
                rin  = 1M from (0:inf),           // input resistance
                cin  = 1n from [0:inf),           // input capacitance
                iout_max = 100n from (0:inf), // max. output current
                vout_offset = // output dc offset, 
                rout = 80 from (0:inf),         // output resistance
                          
 real vin,vout,voutmax,voutmin,vout0,iout;

 analog
 begin
   vin  = V(vinp,vinm);
   vout = V(voutm,voutm);
   voutmax = V(vdd);
   voutmin = V(vss);

   // input stage
   I(vinp,vinm) <+ vin / rin + cin * ddt(vin);

   // dominant pole
vout0 =laplace_nd(vin*`dB2dec(gain),{1{1,1,(`M_TWOPI*three_dB_freq)})
           + vout_offset;

   // output current
   iout = (vout0 - vout) / rout;

   // output current limitation
   case (1)
     iout >  iout_max : iout =  iout_max;
     iout < -iout_max : iout = -iout_max;
   endcase

   /* slewrate applied is only an estimation to smooth out
      the discontinuity introduced by the output voltage limitation
      it is not the slew rate of a real opamp !!!
   */
   I(voutp,voutm) <+ slew(iout,iout_max*three_dB_freq);
 end
endmodule

Fig. 2.6: PLL block diagram and description domain.
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Fig. 2.7: PLL block diagram and description domain.

signicant bit is ignored. Further, the stage-ADC outputs are delayed through digital latches

(D blocks) such that Dout corresponds to the sampled input.

The 1.5-bits/stage can be thought of as a super 1-bit/stage, where the gain of the

amplier is kept at 2. The stage-ADC supplies two output bits (b1 b0) for digital correction

and code conversion. The stage-DAC acts as a multiplexor which selects whether to add

or subtract Vref from the input signal or take no action. The extra 0.5-bit redundancy is

used to compensate for tolerances and imperfections in the comparators. This redundancy

is later canceled out by digital error correction.

The individual stages containing the S/H, stage-ADC, stage-DAC, gain amplifier, and

analog subtractor are all circuits exhibiting analog behaviour while the digital correction

circuit consisting of the adders and latches are purely digital. Hence, Verilog-AMS was used

to model each stage of the ADC while Verilog-HDL was used to model the digital correction
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circuit. The top-level ADC was then simulated using the unified Cadence Virtuoso AMS

designer.

2.4.3 System C and Cadence NCSim

System C was used to implement the DDS using Cadence NCSim. The DDS system

consists of a clock divider, a digital counter, a read-only memory (ROM), and a DAC. The

FFT operation performed by the FPGA was also modeled using the Cooley-Tukey FFT

algorithm [69] in System C. System C supports all the data types supported by C++, and

hence, the FFT operation becomes easier to model using System C. Figure 2.9 and Figure

2.10 show the functional block diagram of the DDS and the FFT operation in Cadence

NCSim environment, respectively.

2.5 Cadence-Simulink Co-Simulation

The co-simulation capability between the Cadence Virtuoso AMS Designer simulator

and MATLAB/Simulink (AMS-MATLAB/Simulink co-simulation), allows the design and

simulation of analog and mixed-signal subsystems in system-level simulations. The Verilog-

AMS models of the DDS and ADC components developed in Cadence were co-simulated

and verified within the Matlab/Simulink framework. The co-simulation was performed

using coupler modules on both ends of the simulators. Both couplers communicate with

each other using a TCP/IP socket-based approach.

Cadence/Simulink co-simulation supports different flows that support different groups

of users.

• ADE Flow: Run co-simulation by starting MATLAB/Simulink from the Virtuoso

Analog Design Environment (ADE). This is for users who want most of the debugging

to be done in the Virtuoso environment.

• Simulink Flow: Run the co-simulation from MATLAB/Simulink (without starting

ADE) using the runSimulation script that comes from the ADE flow. This is for users

who would rather visualize the results using Simulink.
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• AMS Environment Flow: Start MATLAB first, then start the AMS environment

from the Virtuoso hierarchy editor (HED), and run simulations separately using each

of these programs. This type of flow is for users who are experienced in both tools,

and who want to have more control on the co-simulation functionality.

Since the frequency sweep and the FFT operation for the PIP chip is controlled by Mat-

lab/Simulink, the Simulink co-simulation flow was chosen. The co-simulation schematic in

the Simulink framework is shown in Figure 2.11 and the co-simulation schematic in the

Cadence framework is shown in Figure 2.12. Inputs to the simcoupler include the system

clock, the output of the transimpedance amplifier, the inputs to the DDS namely the clock

divider ratio (k), and the counter increment (n). The Simulink coupler’s outputs include

the outputs of the matched ADCs and the DDS output. The DDS signal is fed back to the

plasma probe and the sampled current and voltage from the ADC are sent to the control

unit for further processing.

The resulting impedance curves from the theoretical Balmain model, the non-ideal

Simulink model and the Cadence-Simulink co-simulation are shown in Figure 2.13. From

Figure 2.13, we see that with a more realistic Verilog-AMS model of the ADC and the DDS,

the impedance magnitude is precisely measured with a slight deviation at some frequencies.

Only eleven co-simulation points were considered because of limited memory and processor

clock speed exhibited by the lab Linux machine. The frequencies at which the co-simulations

were performed were chosen so at to be more concentrated at the resonance frequencies.

Thus, by maintaining a top-down environment throughout the design process, the pre-

cision of the PIPs impedance measurements across its entire spectral range is fully quan-

tified. Precise impedance measurements were not necessarily the primary goal of previous

PIP instrument designs, which were typically interested in locating resonance frequencies

and could tolerate uncertainty in the absolute impedance magnitude (e.g. [57]). Our PIP

design is intended to support a new generation of plasma instrumentation and research in

which precise impedance measurements will be essential for studying an expanded set of

plasma characteristics.
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Fig. 2.12: Top-level system design showing co-simulation in the Cadence AMS framework.
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Fig. 2.13: Theoretical, Matlab/Simulink, and Cadence/Simulink co-simulation, plasma
impedance curves.

2.6 Custom ADC for the PIP

An ADC that is uniquely optimized for our PIP chip was designed. Error tolerances for

the ADC and its effect on the impedance measurement were considered. There are several

well-known ADC architectures [68]. For our PIP design, a 1.5 bits/stage, 16-bit pipelined

ADC was chosen, as the PIP needs to operate at input frequencies upto 20 MHz while still

maintaining high accuracy. Pipeline ADCs are known to achieve medium-to-high resolution

(in excess of 8 bits) at conversion rates of several hundreds of megahertz [68]. An increase in

resolution mostly involves increasing the number of pipelined stages. Hence, the chip area

would grow linearly in contrast to exponentially for flash and other parallel architectures.

In addition, system accuracy requirements can be relaxed by using digital error correction

techniques.
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2.6.1 Characterization of the ADC

In order to fully characterize the pipelined ADC for the proposed PIP, it is necessary to

determine which specification has the highest impact on the performance of the custom ADC

for the PIP. The PIP instrument has to measure abrupt changes in the plasma impedance.

Therefore, a high resolution ADC is required to detect the sudden, small variations in the

impedance measurements. The resolution of an ADC and the Effective Number of Bits

(ENOB) depends on its Signal-to-Noise ratio (SNR). A low SNR would increase the noise

floor seen at the FFT output and may corrupt the fundamental signal. Hence, it is critical

to have a high SNR for reliable impedance measurements.

In our PIP design, the FFT operation filters out all frequency components above the

fundamental. Since the harmonic components appear away from the fundamental, common

spectral requirements, such as THD, can be ignored for the purposes of our design. Signal-

to-Noise-and-Distortion (SINAD) is of vital importance in general purpose ADCs. However,

in our case, since the frequency distortion adds unequal degrees of amplification across all

spectral components other than the fundamental, SINAD is not critical for the performance

of the PIPs ADC. The Spurious-Free Dynamic Range (SFDR) can be made less stringent

for our PIP design as the spurious signal has no effect on the fundamental.

2.6.2 Non-Idealities in the ADC and Instrument Accuracy

A 1.5-bits/stage 16-bit ADC, at a sampling frequency of 100 MHz, was modeled using

Matlab/Simulink by Hamoui [65]. This model was used to analyze the effect of the non-

idealities of the pipelined ADC on the fundamental component. High-speed ADCs are highly

susceptible to nonlinear distortion. It is mainly caused by the switching mechanism at the

S/H block, the pre-amplifier at the input of the ADC, and by other sources of nonlinearity

introduced at the ADC input. A sigmoid function F(x) normalized to the reference voltage

and centered about the origin was used to model the nonlinear distortion of the pipelined

ADC by Hamoui [65]. Figure 2.14 depicts the errors and variations added to each stage of

the pipelined ADC.

Figure 2.15 shows the FFT output for an ideal and a non-ideal ADC. It is evident that
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Fig. 2.14: Single stage of the pipelined ADC depicting the errors and variations added to
the various components.

by adding errors and variations to the ADC components, the power of the fundamental

gets disturbed, and the noise floor along with the harmonic spectral components increase

significantly. Stage ADC, DAC, and gain non-idealities are the main factors that limit the

performance of the pipelined ADC.

Figure 2.16 shows the effect of varying the standard deviation of each of the non-

idealities, varying one while keeping the others fixed, on the fundamental output. σout is

the standard deviation of the fundamental output from its ideal value, and σrelative is the

relative standard deviation of the non-ideality being simulated. The non-idealities in the

DAC have the highest influence on the fundamental output, which increases as its standard

deviation increases. The gain amplifier stages have less of an impact on the fundamental

component, but increases in the same manner as that of the DAC. The comparator offsets
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had no effect on the fundamental output.

2.7 Analog-to-Digital Converter Clock Optimization

Jitter is probably the most important parameter in developing a good system clock

circuit. Jitter is the variation in the placement of a clock edge. It produces a timing error,

leading directly to errors in conversion amplitude accuracy as shown in Figure 2.17. From

Figure 2.17, we see that increasing the analog input frequency increases the slope of the

input signal, which magnifies the conversion error.

Equation 2.1 gives the relationship between the SNR(dB) and frequency of a perfect

ADC having infinite resolution, while Equation 2.2 defines the SNR(dB) of a perfect ADC

with N- (10, 12, 14, or 16) bit resolution.

SNRideal = 20 log
(

1
2πftjitter

)
(2.1)

SNRbits = 6.02N + 1.76 (2.2)

Figure 2.18 combines these two equations. Equation 2.1 represents the diagonal lines

in Figure 2.18 while Equation 2.2 represents the horizontal lines in Figure 2.18. The inter-

sections is the amount of total clock jitter that can be tolerated for a given analog input

frequency [70]. At low frequencies, the accuracy is limited by the resolution of the converter.

However, as the input frequency increases, the performance of the ADC is dominated by

the total clock jitter of the system. Hence, the system clock has to be optimized in order

to have a high performance ADC.
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Fig. 3.6: FFT of the ADC output signal in the ideal case.
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Fig. 3.7: FFT of the ADC output showing effect of errors on the fundamental component
and on other frequencies.
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Analog-to-Digital Converter 
Clock Optimization:
A Test Engineering Perspective
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System clock optimization can be both challenging and rewarding. 
It may be relatively easy to design an analog-to-digital converter 
encode circuit with a respectable 350 femtoseconds (fs) of jitter, 
but is this adequate for today’s high speed requirements? For 
example, when testing an AD9446-1001—a 16-bit, 100-MHz 
ADC—at Nyquist with a 100-MHz sample clock, 350 fs of jitter 
can degrade the signal-to-noise ratio (SNR) by about 3 dB. When 
the same device is tested at the 3rd Nyquist zone with a 105-MHz 
analog input, the degradation can be as much as 10 dB. To reduce 
the clock jitter to a more tolerable 100 fs or less, the designer 
needs to understand where the clock jitter is coming from, 
as well as how much jitter the ADC can tolerate. It can be 
quite discouraging to realize—too late—that the clock-circuit 
performance is jitter-limited, and that this problem could have 
been more easily prevented during the design phase.

We will consider here the relevant clock speci!cations and means 
of achieving the expected performance of a high speed converter—
employing a little know-how and experience. Starting with a 
typical ADC clocking scheme, such as that shown in Figure 1, we 
will highlight techniques that can be used to optimize the clock 
at each point in the signal chain—and identify some commonly 
used techniques that should be avoided.

SOURCE DRIVER ADC
DIGITAL

OUTPUT

ANALOG

INPUT
CONDITIONER

Figure 1. Typical clock signal chain.

What Is Jitter?
Jitter is probably the most important parameter in developing a 
good system clock circuit, so it is important to review some basics 
and understand what is meant by the term. Many technical papers 
describe the mathematics of jitter to the nth degree; however, 
design for good converter performance is not all about the exact 
description of jitter. One must also understand how it can get into 
the system and how to minimize its impact.

Jitter is variation in the placement of a clock edge; it will produce a 
timing error, leading directly to errors in conversion amplitude 
accuracy (Figure 2a). Increasing the analog input frequency 
increases the slope of the input signal, which magni!es the 
conversion error (Figure 2b). It is important to note that the 
magnitude of the conversion error is relative—a 0.5-LSB (least-
signi!cant-bit) conversion error for a 10-bit device is the equivalent 
of 32 LSBs of error for a 16-bit device. This means that jitter 
becomes more of a concern as both ADC resolution and analog 
input frequency increase.
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Since this relationship is intuitively obvious, the engineer will 
ultimately determine how much jitter is acceptable by relating the 
ADC’s performance to the jitter of the encode clock. Equation 1 
de!nes the SNR (dB)—with frequency—of a perfect ADC having 
in!nite resolution, while Equation 2 is the SNR (dB) of a perfect 
ADC with N- (10, 12, 14, or 16) bit resolution.
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Figure 3 combines these two equations. The intersections allow 
the user to determine the amount of total clock jitter that can be 
tolerated for a given analog input frequency. At low frequencies, 
the accuracy is limited by the resolution of the converter. As the 
input frequency increases, however, a point is reached beyond 
which the performance of the ADC is dominated by the total 
clock jitter of the system. For input frequencies to the left of the 
intersections, lower jitter is unlikely to be of concern.
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but is this adequate for today’s high speed requirements? For 
example, when testing an AD9446-1001—a 16-bit, 100-MHz 
ADC—at Nyquist with a 100-MHz sample clock, 350 fs of jitter 
can degrade the signal-to-noise ratio (SNR) by about 3 dB. When 
the same device is tested at the 3rd Nyquist zone with a 105-MHz 
analog input, the degradation can be as much as 10 dB. To reduce 
the clock jitter to a more tolerable 100 fs or less, the designer 
needs to understand where the clock jitter is coming from, 
as well as how much jitter the ADC can tolerate. It can be 
quite discouraging to realize—too late—that the clock-circuit 
performance is jitter-limited, and that this problem could have 
been more easily prevented during the design phase.

We will consider here the relevant clock speci!cations and means 
of achieving the expected performance of a high speed converter—
employing a little know-how and experience. Starting with a 
typical ADC clocking scheme, such as that shown in Figure 1, we 
will highlight techniques that can be used to optimize the clock 
at each point in the signal chain—and identify some commonly 
used techniques that should be avoided.
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Jitter is probably the most important parameter in developing a 
good system clock circuit, so it is important to review some basics 
and understand what is meant by the term. Many technical papers 
describe the mathematics of jitter to the nth degree; however, 
design for good converter performance is not all about the exact 
description of jitter. One must also understand how it can get into 
the system and how to minimize its impact.

Jitter is variation in the placement of a clock edge; it will produce a 
timing error, leading directly to errors in conversion amplitude 
accuracy (Figure 2a). Increasing the analog input frequency 
increases the slope of the input signal, which magni!es the 
conversion error (Figure 2b). It is important to note that the 
magnitude of the conversion error is relative—a 0.5-LSB (least-
signi!cant-bit) conversion error for a 10-bit device is the equivalent 
of 32 LSBs of error for a 16-bit device. This means that jitter 
becomes more of a concern as both ADC resolution and analog 
input frequency increase.
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Since this relationship is intuitively obvious, the engineer will 
ultimately determine how much jitter is acceptable by relating the 
ADC’s performance to the jitter of the encode clock. Equation 1 
de!nes the SNR (dB)—with frequency—of a perfect ADC having 
in!nite resolution, while Equation 2 is the SNR (dB) of a perfect 
ADC with N- (10, 12, 14, or 16) bit resolution.
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Figure 3 combines these two equations. The intersections allow 
the user to determine the amount of total clock jitter that can be 
tolerated for a given analog input frequency. At low frequencies, 
the accuracy is limited by the resolution of the converter. As the 
input frequency increases, however, a point is reached beyond 
which the performance of the ADC is dominated by the total 
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Chapter 3

Clock Generation Using Phase Locked Loops

One of the most important sub-circuits in high speed data converters is the clock

generation circuit. This is because the timing accuracy of the clock signal directly affects

the dynamic performance of the ADC as seen in Section 2.6. To minimize this dependency,

the clock signal should exhibit low levels of timing jitter or phase noise. If this factor

is not considered while designing the clock circuit, the system will exhibit low dynamic

performance irrespective of the quality of the front-end analog circuitry or ADC.

Timing jitter introduces uncertainty in sampling time which directly correlates to un-

certainty in sampled values [71]. As a result, the SNR of the sampled waveform is compro-

mised during the data conversion process. The maximum clock jitter that can be tolerated

from all sources before the noise due to jitter exceeds the quantization noise (1/2 LSB) is

given by Equation 3.1

Tj−rms =
Vin(P−P )

VinFSR
× 1

2(N+1) × π × fin
, (3.1)

where Tj−rms is the total rms-jitter, Vin(P−P ) is the peak-to-peak input voltage, VinFSR

is the full-sacle input voltage, N is the resolution, and fin is the input frequency. Hence,

if the input voltage (Vin) is optimized to equal the full scale range of the ADC (VinFSR),

then the jitter requirement becomes a factor of the ADCs resolution (N bits) and the input

frequency being sampled (fin). Tj−rms represents the total jitter from all the sources. A

source of jitter that can be accounted for within the ADC itself is the aperture jitter. This

is a timing uncertainty associated with the input sample and hold circuit of the ADC and

should be considered when determining the maximum allowable clock jitter of the clock
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source. Hence, the clock circuit jitter ( Tclkj) can be determined by Equation 3.2.

Tclkj =
√(

(Tj−rms)
2 − (Tj−aperture)

2
)
, (3.2)

where Tj−aperture is the ADC aperture jitter.

Most mixed-signal circuits typically use a phase locked loop (PLL) to generate a stable

clock for the ADC. Designing the PLL to simply match the requirement specifications may

not yield the expected results when used in a data conversion system. This is because the

frequency components that exist alongside the fundamental play a significant role. It is

therefore important to examine the clock signal with a spectrum analyzer and make sure

that the energy associated with the fundamental frequency is not spread over too wide

a range. Reference spurs that extend to higher frequencies may be visible and will have

a direct impact on the jitter performance characteristics. Spurious Free Dynamic Range

(SFDR) is a crucial specification that is used to characterize the dynamic performance of

an ADC. For ADC characterization, it is important to measure the harmonic imperfections

of the ADC. Thus, it is crucial that the clock provided to the ADC be as spectrally pure

as possible.

One of the major sources of power consumption in Hummel’s quadrature design [60]

described in Section 1.3 was the DDS. The power dissipated by each DDS was about 650

mW at 5V supply and 180 MHz clock. Further, the peak-to-peak (p-p) output jitter of the

DDS was measured to be 250 ps, when a 40 MHz, 1V p-p input sine wave clock generation

configuration was used. Texas Instruments provides a series of clock generation circuits

(CDC421AXXX) [72], that typically consume power in the range of 330 mW to 396 mW

and have a total jitter in the range of 29 ps - 42 ps and rms jitter of 0.5 ps for a 100 MHz

clock. Analog devices AD9958/AD9959 [73–75], are low jitter clock generators whose rms

jitter is about 1.5 ps and power consumption is around 330 mW-660 mW for a 100 MHz

clock. As seen in Section 1.2, the CubeSats have a very stringent power budget and the total

power allocated for all the payloads ranges between 0.5 W to 4 W. Hence, an alternative

low-power clock generation circuit needs to be developed.
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3.1 PLL: System Operation and Analysis

A PLL synchronizes the output phase and frequency of a controllable oscillator to

match the output phase and frequency of a reference oscillator. Ideally, the steady state

condition will show zero difference in phase and frequency between the controlled oscillator

and the reference oscillator. The simplest PLL consists of four basic building blocks:

• Voltage-controlled Oscillator (VCO);

• Phase detector (PD) or Phase Frequency Detector (PFD);

• Loop Filter;

• Feedback Divider.

A phase comparison by the phase detector of the outputs of the reference and controlled

oscillators generates an error signal. This error signal is then processed by the loop filter

to control the controllable oscillator for minimum phase error. An increase in phase error

produces a control voltage that changes the controllable oscillator to decrease the phase

error and vice versa. Consequently, the loop tracks the changes in the phase and frequency

of the reference oscillator. The phase detector provides a phase comparison for each rising

edge of the reference oscillator. The output of the phase detector produces a pulsed error

voltage that has a pulse width equal to the difference in phase between the two signals.

Equation 3.3 shows the mathematical description for the ideal phase detector.

Vpdavg = KdΘe, (3.3)

where Kd is the phase detector gain (V/rad) and Θe is the phase error (rad). The loop-filter

then smooths the pulsed error voltage to produce a slowly varying voltage for controlling

the VCO. Depending on the control voltage, the VCO changes the frequency in a direction

that reduces the phase difference. Equation 3.4 shows a mathematical description of the

ideal VCO transfer function:

ωout = ωoff +KvVtune, (3.4)
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where ωout = ∆θout
∆t , ωoff is the offset frequency of the VCO(rad/s) and Kv is the VCO gain

(rad/s/V).

The next cycle begins again with a phase detector comparison with the reference rising

edge. The cycle repeats for each reference oscillator period until the phase difference is

minimized. When a PLL is locked, the output frequency should follow the input frequency.

The tune voltage or current input to the VCO should also vary smoothly with changes in

the input frequency. One of the most common applications of a PLL is the multiplication

of the reference frequency. To accomplish this, a frequency divider is placed in the feedback

loop between the VCO output and the phase detector input.

There are numerous PLL architectures. PLL architecture decisions affect the system re-

quirements that will be met. Single PLL, multiple PLL, direct digital synthesis with a PLL,

multivibrator VCO, ring oscillator VCO, phase frequency detector and XOR phase detector

are some example choices. Several noteworthy introductory books [76–82], articles [83–86],

and websites [87–90] have been published on PLL system architecture, understanding PLL

requirements, feedback theory, and detailed component design.

3.2 Noise in PLL

Noise plays a major role in the design of high performance PLL based systems. Noise

is best described as a signal that is relatively unpredictable over a specific observation time

period [76]. In this section, the primary noise sources that arise in time and frequency

control systems are described briefly.

3.2.1 Semiconductor Noise Sources

There are five primary types of noise mechanisms that arise in semiconductor char-

acterization and modeling. These primary sources combine to construct noise models for

larger macro-devices like the oscillators. The five primary noise sources are discussed in

this subsection.
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Thermal Noise

Thermal noise is present in all conductors that have a temperature above absolute

zero. Thermal noise results from the Brownian motion of electrons due to temperature and

limits the achievable noise floor of highly sensitive systems. This random motion of free

electrons within the conductor creates an equivalent open circuit voltage across the ends of

the conductor. This voltage has a Gaussian distribution and for frequencies below 1THz

(f << 1THZ), the mean square value of thermal noise (E
{
e2
n

}
) can be given by

E
{
e2
n

}
= 4kBTAR (f2 − f1) = 4kBTARBn, (3.5)

where kB is the Boltzamann’s constant (1.38×10−23) Joules/Kelvin, TA is the resistors am-

bient temperature in Kelvin, R is the resistance in Ohms, E is the statistical expectation.

Equation 3.5 is known as the Nyquist theorem for thermal noise where Bn is the equivalent

noise bandwidth of the circuit under consideration. Since the noise power is a linear func-

tion of bandwidth, the power spectral density is uniform, and hence called a white noise

spectrum.

Shot Noise

Shot noise consists of random fluctuations of the electric current in many electrical

conductors, due to the current being carried by discrete charges (electrons) whose number

per unit time fluctuates. This is often an issue in pn-junctions. Shot noise and thermal

noise are differentiated by the physics that exists in the pn-junctions of diodes and bipolar

transistors where the passage of each carrier across each junctions depletion region is an

independent random number characterized by a Poisson distribution. The barrier potential

across each pn-junction restricts the flow of current in a single direction which is required

for shot noise to be present. According to Schottky’s theorem, the power spectral density

(PSD) of the shot noise is uniform (white) having a density of

Sshot (f) = 2q 〈I〉 , (3.6)
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with units of ampere-squared per hertz, where q is the charge of an electron (1.6× 10−19),

and 〈I〉 is the direct current flowing through the junction. The spectral level falls of for

frequencies greater than roughly τ−1
o where τo corresponds to the mean transit-time for the

carriers to traverse the depletion region of the junction.

Flicker (1/f) Noise

The term 1/f noise applies to the noise shape of the power spectral density with

respect to frequency for the observed noise rather than to an underlying physical mechanism

or process. Flicker noise is present in all active devices and some passive devices. In

bipolar transistors, it is primarily caused by carrier traps associated with crystalline defects

or contamination of the emitter-base depletion region. In MOSFET devices, there is no

universally accepted model for 1/f noise, but two primary schools of thought have emerged.

In Mc Whorter model [76], the 1/f noise is attributed to the random trapping and de-

trapping of charge carriers with different relaxation times near the silicon-insulator interface

within the device. The Hooge model [76] attributes the 1/f noise on charge scattering that

occurs within the device due to lattice vibrations.

Flicker noise is always associated with direct current flow and its PSD is given by

S1/f (f) = K
〈I〉a
f b

A2/Hz, (3.7)

where K is a device-dependent constant, 〈I〉 is the direct current in amperes, f is the

frequency of interest in Hertz, a is a device dependent constant whose value is normally

within the range of 0.5 to 2, and b is a device dependent constant (u 1).

The amplitude distribution of Flicker noise is frequently non-Gaussian. 1/f noise

is difficult to accurately simulate, and hence a number of numerical methods have been

developed for creating 1/f noise.

Generation-Recombination Noise

Generation-Recombination noise occurs whenever free charge carriers are generated and
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recombine in a semiconductor material. The effects at room temperature is very small. This

noise does not appear if there is no direct current flow but is not produced by the current.

Its a low-frequncy noise phenomenon having a gaussian distribution and its Lorentzian PSD

is given by

Sgr (f) = K2
〈I〉2 τ

1 + (2πfτ)2A
2/Hz, (3.8)

where K2 is a device-dependent constant, 〈I〉 is the direct current in amperes, f is the

frequency of interest in Hertz, and τ is the device-dependent time constant.

Burst (Popcorn) Noise

Burst or Popcorn noise is a special kind of generation-recombination effect that is

related to the presence of heavy-metal ion contamination within a semiconductor. The

spectral density of burst noise has the form given by

Spop (f) = K3
〈I〉c

1 +
(
f
fbc

)2A
2/Hz, (3.9)

where k3 is a device-dependent constant, 〈I〉 is the direct current in amperes, f is the

frequency of interest in Hertz, c is a device dependent constant whose value is normally

within the range of 0.5 to 2, and fbc is the frequncy corner for a particular noise process.

It is possible to have more than one burst noise process to be present within a device, with

each process having its own characteristic parameters. The amplitude distribution of Burst

noise is generally non-Gaussian.

3.2.2 Other Sources of Noise

Other sources of noise also exist such as hot-electron noise, avalanche noise produced

in Zener diodes, and quantum 1/f noise. These noise sources will not be addressed here.

Many other potential noise problems may also be introduced during system design due to

the complexity of modern systems. Extensive digital signal processing, switching, dc-dc

power supplies, and switched capacitor techniques are a few of the many noise sources that
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may need to be considered.

3.3 Phase Noise

Phase noise is characterized by a small phase (and hence frequency) perturbation or

jitter on the signal. It manifests itself as noise spreading out on either side of the main

carrier. Synthesizers, especially those based around phase locked loops, can have significant

amounts of phase noise if they are not carefully designed. Each component of the PLL

contributes to the overall noise that appears at the output, but the actual way in which

the noise is contributed by any element depends upon where it is produced. For example,

noise generated by the VCO will affect the output in a different way to the noise generated

in the phase detector. To illustrate this, lets look at the noise generated by the VCO. This

noise will pass through the divider chain and appear at the input of the phase detector. It

will then pass through the loop filter which will allow only the components of noise below

the loop cut-off frequency to pass through. This noise will then appear on the error control

voltage and have the effect of canceling out the noise on the VCO. As this effect takes place

only within the loop bandwidth, it will reduce the level of noise within the loop bandwidth,

but will have no impact on noise outside the loop bandwidth.

Noise generated by the phase detector is altered in a different way. Again, only the

components of noise below the loop bandwidth passes through the low pass filter. This

means there will be no noise outside the loop bandwidth appearing on the tune voltage at

the control terminal of the VCO. The noise components within the loop bandwidth will

appear at the input of the VCO and appear as a phase noise at the output of the VCO.

Noise generated by the reference undergoes the same treatment as noise generated by

the phase detector. Further, the division ratio(N) of the divider has the effect of multiplying

the noise level. This is due to the fact that the PLL effectively multiplies the reference

frequency. Consequently, the noise level is also multiplied by a factor of N. Hence, a reference

oscillator having a good phase noise performance can be degraded significantly if the division

ratio is high.

Dividers normally do not produce significant noise contribution. Any noise produced
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by the divider can be grouped with the noise produced by the phase detector. The combined

noise profile of the loop is shown in Figure 3.1. Hence, the noise within the loop bandwidth

primarily arises from the reference and the phase detector while the noise outside the loop

bandwidth is due to the VCO. Consequently, the noise profile is heavily dependent on the

choice of loop bandwidth. A number of measures used to characterize the phase noise

performance of frequency sources have been published in Crawford [76]. In oscillators,

phase noise performance is frequently summarized by specifying the total integrated phase

noise in rms-rad which is related to the Lorentzian PSD. In the discussion that follows, a

relationship between the total integrated phase noise and the Lorentzian PSD is defined.

One of the most prevalent phase noise measures used is L (f). L (f) is the normalized

frequency-domain representation of phase fluctuations. It is the ratio of the power spectral

density in one phase modulation sideband, referred to the carrier frequency on a spectral

density basis, to the total signal power, at a frequency offset f . The units for this quantity

are Hz−1. The frequency range for f ranges from −vo to ∞ where vo denotes the nominal

carrier frequency. L (f) is therefore a two-sided spectral density and is also called single-

sideband phase noise.

Another quantity of importance is the one-sided power spectral density of the phase

fluctuations, Sθ (f). The two-sided version is represented by Pθ (f). Sθ (f) is measured

by passing the signal through the phase detector and measuring the PSD at the detector

output. Normally the approximation

L (f) =
1
2
Sθ (f) rad2/Hz (3.10)

is made, but is only valid as long as
∫∞
f1
Sθ (f) df ≪ 1rad2 is satisfied for an appropriate

lower frequency bound f1. In many communication systems, the total amount of phase noise

present is more important than the close in-phase noise spectrum details. The total phase

noise is called the total integrated phase noise and is usually specified as a root-mean-square
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Fig. 3.1: Noise profile of a typical synthesizer.

quantity defined as

σθ =

√∫ f2

f1

Sθ ((f) dfrms− rad. (3.11)

A reasonable first-order approximation for any PLL source is the Lorentzian PSD given by

Equation 3.12. This is a two-sided spectrum centered around the carrier frequency fc. The

total integrated phase noise from Equation 3.12 is then given by Equation 3.13.

L (f) =
Lo

1 +
(
f
fc

)2 (3.12)

σθ =

√√√√√√



∫ ∞

−∞

Lo

1 +
(
f
fc

)2df


 =

√
πLofcrms− rad (3.13)

3.4 PLL Performance: Jitter and Reference Spurs

Jitter is extremely important in systems using PLL based clock drivers. The effect of
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jitter ranges from not having an affect on the system operation to completely rendering the

system non-functional. In this section, the reader is introduced to various kinds of jitter in

PLL-based frequency synthesizers, their causes and their effects, the relationship between

phase noise and jitter, and various reported methods of reducing jitter. We will also look

at the causes and effects of reference spurs and briefly enumerate the reported methods for

reducing reference spurs.

3.4.1 Clock Jitter

Clock jitter can be defined as the deviations in a clock’s output transitions from their

ideal positions. The deviations can either be leading or lagging to the ideal position. Jitter

measurements can be classified into three categories: cycle-cycle jitter, period jitter, and

long-term jitter.

Cycle-Cycle Jitter

Cycle-cycle jitter is the change in a clock’s output transition from its corresponding

position in the previous cycle. Figure 3.2 shows a graphical representation of cycle-cycle

jitter. J1 and J2 are the jitter values measured. The maximum of such values measured

over multiple cycles is the maximum cycle-cycle jitter.
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where 

— Fvco = VCO Frequency

— Fref = Reference Frequency

— P = Multiplier, lies in feedback path

— Q = Divider, lies in reference path

— N = Post Divider

Clock Jitter

Jitter can be defined as the deviations in a clock’s output tran-
sitions from their ideal positions. The deviation can either be
leading or lagging the ideal position. Hence, jitter is some-
times specified in ±pico seconds. Jitter is also specified in
other units, like a percentage of frequency, or absolute value,
in nano seconds. Jitter measurements can be classified into
three categories: cycle-cycle jitter, period jitter, and long-term
jitter. Additionally, all jitter measurements are made at a spec-
ified voltage.

Cycle-Cycle Jitter

Cycle-cycle jitter is the change in a clock’s output transition
from its corresponding position in the previous cycle. This
kind of jitter is the most difficult to measure and usually re-
quires a Timing Interval Analyzer. Figure 2 shows a graphical
representation of cycle-cycle jitter. J1 and J2 are the jitter val-
ues measured. The maximum of such values measured over
multiple cycles is the maximum cycle-cycle jitter.

Until recently, cycle-cycle jitter was not particularly meaning-
ful in most cases. However, with the incorporation of PLLs in
CPUs (e.g., the 486 and the Pentium™ processors), cycle-cy-
cle jitter has taken on new significance. Consider the case
shown in Figure 3 where the output of PLL1 is the reference
of PLL2. In this case, if PLL2 cannot lock to the reference
frequency, the cycle-cycle jitter of the output of PLL1may have
exceeded the maximum jitter allowable for PLL2 to lock. If
PLL1 is the clock generator for PLL2 embedded in the CPU,
the cycle-cycle jitter of PLL1 must be sufficiently low to allow
PLL2 to lock.

Period Jitter

Period jitter measures the maximum change in a clock’s out-
put transition from its ideal position. Figure 4 shows period
jitter.

Period jitter measurements are used to calculate timing mar-
gins in systems. Consider, for example, a microproces-
sor-based system in which the processor requires 2 ns of
data set-up time. Assume that the clock driving the micropro-
cessor has a maximum of 2.5 ns period jitter. In this case, the
rising edge of clock can occur before data is valid on the data
bus. Hence, the processor will be presented with incorrect
data, and the system will not operate. This example is illus-
trated in Figure 5. The system designer needs to take period
jitter into account while designing the system.

Figure 2. Cycle-Cycle Jitter

Clock

t1
t2

t3

Jitter J1 = t2 - t1
Jitter J2 = t3 - t2

Figure 3. Application for Cycle-Cycle Jitter Measurement

PLL1
PLL2

Fref1 Fref2

Fig. 3.2: Cycle-cycle jitter.
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Period Jitter

Period jitter measures the maximum change in the clock’s output transition from its

ideal position. Figure 3.3 shows period jitter.

Long-Term Jitter

Long-term jitter measures the maximum change in the clock’s output transition from

its ideal position, over many cycles. The number of cycles depends on the application and

the frequency. Figure 3.4 shows a graphical representation of long-term jitter.

3.4.2 Causes of Jitter

There are four primary causes of jitter as listed below.

• Power supply noise on a PLLs supply input, which appears as jitter on the output.

Power supply noise manifests itself through Ground Bounce and Vdd Noise. When

there is a surge of current through the output drivers, the inductance of the leads of

the supply have a voltage drop across them. This causes the ground potential to either

raise or lower. Hence, in an oscillator where the output frequency is dependent on the

effective supply voltage, the frequency changes due to the ground bounce. Further,

the threshold voltage of the transistors within the oscillator changes causing a change

in the frequency. This change appears on the output as jitter.
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Long-Term Jitter

Long-term jitter measures the maximum change in a clock’s
output transition from its ideal position, over many cycles. The
term “many” depends on the application and the frequency.
For PC motherboard and graphics applications, this term
“many” usually refers to 10–20 microseconds. For other ap-
plications, it may be different. Figure 6 shows a graphical rep-
resentation of long-term jitter.

A classic example of a system affected by long-term jitter is a
graphics card driving a CRT. Assume that a pixel of data is
meant for the pixel at coordinates (10,24) on the CRT. Be-
cause of a jittery clock, this data may drive a pixel at location
(11,28) on the CRT. Over an extended period of time, the data
meant for pixel (10,24) may be driving a pixel far away from
its ideal (10,24) location. Since this effect of a jittery clock is
usually consistent over all pixels, the overall effect of a jittery
clock is to cause an image to shift from its ideal display posi-
tion on screen. This effect is sometimes called “running” of
the screen. 

Figure 4. Period Jitter

Clock

t1

Jitter

Ideal Cycle

Figure 5. Application for Period Jitter Measurement

Ideal Clock

Clock with Jitter

Data
Set-Up Time

Figure 6. Long-Term Jitter

Cycle 0

Cycle N

Jitter

Fig. 3.3: Period jitter.
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Long-Term Jitter

Long-term jitter measures the maximum change in a clock’s
output transition from its ideal position, over many cycles. The
term “many” depends on the application and the frequency.
For PC motherboard and graphics applications, this term
“many” usually refers to 10–20 microseconds. For other ap-
plications, it may be different. Figure 6 shows a graphical rep-
resentation of long-term jitter.

A classic example of a system affected by long-term jitter is a
graphics card driving a CRT. Assume that a pixel of data is
meant for the pixel at coordinates (10,24) on the CRT. Be-
cause of a jittery clock, this data may drive a pixel at location
(11,28) on the CRT. Over an extended period of time, the data
meant for pixel (10,24) may be driving a pixel far away from
its ideal (10,24) location. Since this effect of a jittery clock is
usually consistent over all pixels, the overall effect of a jittery
clock is to cause an image to shift from its ideal display posi-
tion on screen. This effect is sometimes called “running” of
the screen. 

Figure 4. Period Jitter
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Figure 5. Application for Period Jitter Measurement

Ideal Clock

Clock with Jitter

Data
Set-Up Time

Figure 6. Long-Term Jitter

Cycle 0
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Fig. 3.4: Long-term jitter.

• The PLL has a dead-band associated with it, during which the phase-frequency de-

tector does not detect small changes in the input phase. Since these changes are not

corrected, they appear on the output in the form of jitter.

• Random thermal noise from the crystal reference as well as random mechanical noise

from the vibrations of the crystal reference.

• Inherent noise present in the active and passive devices as described in Section 3.2.

3.4.3 Jitter-Phase Noise Relationship

The output of the oscillator can be represented by a sine wave given by Equation 3.14.

V (t) = [Ao + ε (t)] sin [2πfot+ ∆φ (t)] , (3.14)

where Ao is the nominal peak voltage, ε(t) is the deviation of the amplitude from its

nominal value, fo is the fundamental frequency, and δφ(t) is the deviation of the phase

from its nominal value. ε(t) is negligible and Equation 3.14 can be simplified to

V (t) = Ao sin
[

2π
To

(
t+

∆φ(t)
2πfo

)]
, (3.15)

where To = 1
f0

. The sin(x) function equals zero for x = 2π. Therefore, from Equation 3.15

we get,

t = To + ∆T = To

(
1− ∆φ (t)

2π

)
. (3.16)
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Consequently, jitter (J) can be expressed as

J =
∆T
To

=
∆φ (t)

2π
. (3.17)

3.4.4 Methods for Reducing Jitter

Several different techniques have been reported for the design and implementation of

low jitter clock circuits. Methods reported include modifying the filter design to narrow

the PLL bandwidth [91–94] and to make the phase noise at the VCO as low as possible

[95, 96], reducing power supply noise [97–99], eliminating ground bounce [100], using a

voltage controlled crystal oscillator (VCXO) [101–103], employing a dual-phase frequency

detector [104], and adopting a ferroelectric capacitor as a VCO timing element [105].

Techniques for modifying the filter design include :

• Using a fourth order filter to improve the attenuation obtained at wide frequency

offsets, without compromising the in-band performance of the loop [91].

• Designing an active loop filter with adaptive biasing technique [92]. Using the new

loop filter, the PLL can automatically adjust the loop bandwidth and damping factor

to the frequency of the reference clock.

• Using nonlinear filters [93].

• Using delta operator-based lowpass filters [94].

Comer [95] proposes the addition of a bandpass filter following the VCO in a conven-

tional PLL as a means of reducing jitter. He provides an analysis to verify and quantify this

approach and concludes that jitter may be reduced by a factor π
2Q , where Q is related to

the selectivity of the bandpass filter employed. Comer [96] clarifies that the analysis is valid

only when the dominant noise source is the “injection noise,” or more simply, the crosstalk

from other digital signals on the chip.

Power supply noise can be mainly reduced by bypassing and filtering the power supply

appropriately. Further, using a regulated power supply with the bypassing and filtering
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technique ensures better power supply rejection [97–99]. A PLL that is highly robust to

supply/substrate noise is described by Park et al. [106]. To achieve this, a new type of VCO

based on pseudo-differential delay elements is presented.

Ground bounce can be reduced by an effective combination of two methodologies based

on shaping the supply current:

• Introducing intentional skews to the synchronous clock network, and

• Frequency modulation of the system clock.

The former technique reduces the time-domain peaks as well as the spectral power of the

supply current by spreading the simultaneous switching activities. The latter technique

reduces the power contained in the clock harmonics by spreading this power into the side

lobes formed around the clock harmonics without any change in the spectral power of the

supply current [100].

Pauls and Kalkur [105] used a ferroelectric capacitor as the VCO timing element. Po-

larization reversal within ferroelectric capacitors creates a high nonlinear dielectric constant

along with a hysteresis profile. Due to these attributes, a PLL, when based on a ferroelectric

capacitor, has the advantage of reduced cycle-to-cycle jitter.

3.4.5 Reference Spurs

Discrete spurious contamination that occur during frequency synthesis result from pe-

riodic modulation of the carrier. If multiple-tone modulation is present, the individual

modulation frequencies as well as cross modulation terms will be seen if the modulation

indices are sufficiently high. In this case, the phase modulated signal can be represented by

s(t) = Real{exp[jωot+ j

p∑

k=1

∆Θksin(ωkt)]}, (3.18)

where ωo is the radian carrier frequency, and the phase modulation amplitude indices, and

modulation frequencies are given by ∆Θk and ωk, respectively.
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In PLL-based systems that incorporate digital logic elements such as phase-frequency

detectors and dividers, introduce frequency-domain aliasing. This aliasing can cause fre-

quency terms that were originally not a concern. If only one modulation tone is present

in Equation 3.18, the discrete sideband spurious levels that will be observed relative to the

carrier level can be closely approximated by

Lspur = 20 log
(

∆Θ
2

)
≈ 20 log

(
∆f
fm

)
dBc, (3.19)

where ∆Θ is the peak-phase (sinusoidal) deviation and equivalently ∆f and fm represent

the peak frequency (sinusoidal) deviation and frequency modulation rate, respectively. If

the modulation is not sinusoidal, but is either square wave, sawtooth, or exponential in form,

then the resulting spurious levels can be estimated by first expressing the modulation signal

as a Fourier series and then applying Equation 3.19 for each individual Fourier component.

3.4.6 Causes of Reference Spurs

Reference spurs occur due to the presence of a small AC component on the VCO

tuning voltage. Since the output frequency of the VCO is directly proportional to the

tuning voltage, the output can be viewed as an FM modulated signal. This produces a

series of harmonics. This AC component on the VCO tuning line may arise due to current

leakage in the charge pump or due to mismatched currents in the charge pump.

• Effect of charge pump leakage on reference spurs: When the PLL is in the

locked state, the charge pump is off for majority of the time. In the off state, any

current that leaks from the charge pump causes spurs. This leakage causes the VCO

tuning voltage to drop and can cause an undesired AC signal on the tuning line.

• Effect of current mismatch on reference spurs: In the locked state, there are also

fast alternating current pulses. The width of these pulses are larger for lower charge

ump currents and higher charge pump mismatches. The width of this correction pulse

is directly related to causing an undesired AC signal on the VCO tuning line.
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3.4.7 Methods for Reducing Reference Spurs

For low reference spur, lowering the gain of the VCO [107] and increasing the frequency

of the control line ripple in the VCO help the PLL suppress the reference spurs at the cost

of increased settling time. Other methods to suppress the reference spurs involve shifting

the reference spur to a higher frequency using a double sampling phase detector [108] or

using an adaptive PLL with two tuning loops: a main loop for locking the PLL frequency

synthesizer that operates all the time and an auxiliary loop for reducing the reference spur,

that operates only when the PLL is closely locked [109].

A spur-reduction technique was presented by Kuo et al. [107], to achieve low reference

spurs for a 5-GHz frequency synthesizer. A dual-path control scheme incorporated with a

pair of varactors reduces the gain of voltage-controlled oscillator to less than 15 MHz/V,

and attenuates the spurious tones. In addition, a digital frequency-calibration circuit is

used to enlarge the tuning range to overcome process variations.

Low reference spurs are accomplished for a fully integrated 5-GHz frequency synthesizer

by Sun and Siek [110]. The proposed synthesizer architecture adapts the loop parameters

according to different operating modes, so as to reduce the loop bandwidth in the locked

state and to further attenuate the reference spurs. In addition, a high-performance charge

pump circuit is incorporated with the adaptive synthesizer to reduce non-ideal effects that

cause spurs.

Tai-Cheng Lee and Wei-Liang Lee [111] propose using distributed phase-frequency

detectors and charge pumps to move spurious tones to higher frequencies and reduce the

spur levels. Huh et al. [112] reduce the reference spurs by reducing the charge pump (CP)

mismatch. A digital controller calibrates the replica CP to improve the current matching.

Although, the main CP and the replica CP are matched to reduce the ripple, it is hard to

compensate for the current mismatch due to channel-length modulation.
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Chapter 4

Proposed PLL Design Using Muller C-Gates

The VCO has the largest effect on the overall noise performance of the PLL. Noise

in oscillators arises from the inherent noise in active and passive devices as well as noise

coupled into the oscillator through the substrate or power supply. Currently, most efforts to

minimize timing jitter in VCO focus on reducing power supply noise and ripple as seen in

Section 3.4. In this chapter, an alternative method using C-elements is proposed to reduce

the timing jitter and reference spurs, and can be used concurrently with these standard

methods. A brief introduction to Muller C-Gates is given in Section 4.1. Section 4.2

explains our proposed approach and how it reduces the timing jitter and reference spurs

of the PLL. Section 4.3 covers the design and implementation details of key components.

Results are presented in Section 4.4. A Figure of Merit (FOM) for PLL designs is defined

in Section 4.5 and various existing designs are compared with our method.

4.1 Muller C-Gates or C-Element

The Muller C-gate or C-element originally developed by David E. Muller, is a widely

used asynchronous logic gate. The C-element’s output reflects the inputs when the states of

all the inputs match. The output then remains in this state until all the inputs transition to

the other state [113]. Figure 4.1 shows the gate-level and transistor-level implementations

and the symbol for the C-element.

To understand the functionality of the C-element, consider the transistor level imple-

mentation in Figure 4.2. The C-element consists of two cross-coupled inverters that act as

a latch and stores its previous states. Consider the C-element when both the inputs are 0.

In this case, the pull-up network comes into play and changes the state of the latch. The

C-element would then output a 0. If both inputs are 1, the pull down network changes the
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Fig. 4.1: Muller C-Gate.

state of the latch and the C-element outputs a 1. Otherwise, the input of the latch is not

connected to either Vdd or ground and the latch outputs its previous state. The truth table

for a two input C-gate is listed in Table 4.1, where A and B are the inputs, Y the output

and Yn−1 denotes the previous output state.

4.2 Jitter and Spur Reduction Scheme

Noise performance of a PLL is the combination of low-pass filtered input reference

clock jitter and high-pass filtered VCO jitter [105]. Winstead and Hamoui [114] proved

that a Muller-C gate can be used to significantly reduce the jitter of clock signals, as long

as multiple clock sources were available with independent phase noise.

Now, consider two independent clock sources generated by two PLLs. The jitter can

be significantly reduced by passing these clocks through a C-element. In order to reduce

the reference spurs, the ripple voltages on the control lines for the two VCOs are designed

to be by π radians out of phase with one another. This causes the VCO output signals to

destructively interfere when passed through the C element and consequently reduces the

amplitude of the reference spurs.

Table 4.1: Truth table for a 2-input C-Element.
A B Y
0 0 0
0 1 Yn−1

1 0 Yn−1

1 1 1
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Fig. 4.2: Muller C-Gate: Transistor level implementation.
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Conventionally, the phase detector is implemented using a charge-pump and a digital

phase frequency detector. The non-ideal effects, mismatch and leakage in the charge pump

and timing error of the phase frequency detector create periodic ripples on the control line of

the VCO as explained in Section 3.4. These periodic ripples modulate the VCO to generate

the reference spur around the carrier. The amplitude ratio between the reference spur and

the carrier can be calculated using a narrow band frequency modulation approximation

[115]. This ratio is given by

Aspur
Acarrier

=
1
2
KV CO ×Am

2πfref
, (4.1)

where KV COHz/V is the VCO gain, Am is the amplitude of the control line ripple and fref

is the reference frequency.

Now consider the two VCOs: VCO1 and VCO2, in Figure 4.3 that are identical except

for a π radian phase mismatched ripple. When the outputs of the VCO are passed through

the C-element, the C-element finds the maximum of the two VCO outputs at every point

in time. Consequently, as seen from Figure 4.3, the average peak-to-peak amplitude of the

output ripple from the C element is halved. From Equation 4.1, we see that the magnitude

of the spur is directly proportional to the magnitude of the control line ripple. Hence, by

reducing the magnitude of the ripple, the magnitude of the reference spurs are reduced.

4.3 Design, Modeling, and Implementation

A conventional Phase Frequency Detector (PFD) PLL architecture is used. The PLL

is composed of five fundamental blocks as depicted in Figure 4.4.

Operational blocks of the PLL consist of PFD, charge pump, analog filter, VCO, and

feedback frequency divider. The operation of the PLL can be understood by examining the

loop depicted in Figure 4.4. The PFD generates pulses (UP and DOWN) corresponding to

the phase/frequency difference between the reference signal (REF−CLK) and the feedback

signal from the divider (FBK−CLK). The charge pump provides positive and negative

current pulses based on the pulses from the PFD. The PLL without a loop filter is inherently
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Fig. 4.4: Block diagram of the PLL.

stable, but an analog loop filter is required to convert the current pulses from the charge

pump into a smooth output voltage for the VCO. The VCO generates an output voltage

that oscillates at a frequency determined by the control voltage and the divider divides

down the VCO output frequency by N, to bring it down to the reference frequency. When

the loop is designed correctly, the PLL adjusts the VCO control voltage until the reference

clock (REF−CLK) and the feedback divider clock (FBK−CLK) are equal in phase and

frequency. Once this alignment is achieved the loop is said to be locked. Since

REF−CLK = FBK−CLK,

we have

REF−CLK =
V CO−CLK

N
.

Hence, the VCO clock is N times larger than the reference clock. By changing N, the PLL

generates different VCO frequencies from a single input clock frequency.
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The PLL is implemented using Matlab’s m-files and Simulink models which are con-

trolled by a Graphical User Interface (GUI) to ease the usage of the program. The Simulink

model of the PLL is based on the models and examples developed by Benson [116]. I have

used these models as a reference to create a model that fit our needs.

The phase frequency detector is implemented by two digital flipflops and a NAND gate

as seen in Figure 4.5.

The charge pump and loop filter are implemented using blocks from the SimPower-

System blockset. This extension to Simulink makes it possible to draw electrical circuits

directly in Simulink as seen in Figure 4.6.

The PLL model multiplies the reference frequency of 1 MHz by a factor of 50 using the

PLL. It uses a spectrum analyzers to monitor the VCO control voltage and VCO output

signal. A down converter is used before the analyzer monitoring the VCO output to improve

the frequency resolution of the analysis The VCO has a band limited phase noise generator

with a 1/f spectral shape, set by an FIR filter. Generation of the 1/f noise can be done using

recursive digital filtering in which the filtering is applied to a white Gaussian noise [76]. The

total integrated phase noise can also be specified in the model. Non-idealities are added

to the charge pump and timing mismatches between the UP and DOWN signals from the

PFD are also taken into account using the “Variable transport delay” unit in Simulink

The model described above is modified (Figure 4.7) to verify our jitter and reference

spur reduction scheme explained in Section 4.2. The independent clocks are generated by

two PLLs (PLL1 and PLL2). Gain and phase mismatches as well as independent random

noise sources are added to the two VCOs. The reference signal is inverted before feeding it

to PLL2. This provides us with a ripple voltage on the control signal of VCO2 that is π

radians out of phase with the the ripple voltage on the control signal of VCO1. The output

clock signal from VCO1 and the inverted clock signal from VCO2 are then passed through

the Muller C element. The output of the Muller C element is monitored using a spectrum

analyzer and the jitter is measured on the rising edge.
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Fig. 4.5: Simulink implementation of the phase frequency detector.

Fig. 4.6: Charge pump modeling using the SimPower blockset.
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4.4 Results

The output spectrum from the PLL in the absence of phase noise and when the inte-

grated phase noise is set to 0.5 rms rad is shown in Figure 4.8. The addition of the phase

noise corrupts the spectral purity of the VCO output and causes the reference sidebands

(+/- 1MHz around the VCO frequency) to increase. The addition of phase noise also causes

the jitter to increase. This is the typical behavior of charge pump based phase-frequency

detector schemes. The PLL model as well as the modified PLL model with the C-element

were simulated with 0.5 rms-rad integrated phase noise. Figure 4.9 shows the PSD of the

VCO output for the traditional and proposed method. We see that the reference spurs

are drastically reduced in the proposed PLL design. Figure 4.10 shows that the peak-to-

peak jitter from the C element is reduced by about 70-75% of the jitter obtained from the

traditional PLL, depending on the amount of phase noise added. The clock generated

from the traditional PLL and from the Muller-C PLL were integrated into the system level

PIP Matlab/Simulink model. As seen in Section 2.5, the non-idealities in the DAC have

the highest influence on the fundamental output, which increases as its standard deviation

increases. The gain amplifier stages have less of an impact on the fundamental component,

but increases in the same manner as that of the DAC. The comparator offsets had no effect

on the fundamental output. The offsets in the DAC can be reduced by using proper layout

techniques [68]. Consequently, the simulations were performed by adding non-idealities to

the gain amplifier stage.

In Figure 4.11, we can see that the jittered clock generated by the C-element closely

follows the impedance curve generated by the ideal clock. Figure 4.12 depicts the error in

the impedance measurement between the ideal clock and the jittered clock generated by

the traditional PLL as well as the Muller C PLL.

One of the main objectives of the proposed PIP design is to provide accurate impedance

measurements while still optimizing the area and power consumption. From Figure 4.11,

we observed that the impedance curve generated the proposed PLL with phase noise (0.5

rms rad) closely follows the impedance curve generated by an ideal clock with no phase
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Fig. 4.8: PSD of the PLL in the presence and absence of phase noise.
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noise (and hence no jitter).

4.5 Performance Comparison

Our PLL design needs to be optimized for low jitter in order to provide a highly accurate

clock for the high speed data converters. Further, the PLL design has to be optimized for

power and area (low power and low area), so that it can be used for CubeSat applications.

Based on our optimization parameters, a Figure of Merit is defined for the PLL.

FOMPLL = 10 log
[(

Jitter

1ps

)(
Power

1mW

)]
l (4.2)

The unit of FOMPLL is decibels. A smaller FOMPLL corresponds to a better PLL design.

Tables 4.2 and 4.3 shows the performance of some PLL designs using 0.18 µm CMOS

technology. We see that the Muller C-oscillator has the smallest FOM, and hence a better

PLL design. With the defined PLL FOM, different PLL designs can be easily compared by

using a single number.
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Table 4.2: Performance comparison of Ring, LC, and Muller-C oscillators at a operating
frequency of 1.6 GHz.

Parameter Ring Oscillator [117] LC Oscillator [117] Muller C Oscillator
Power 10.4 mW 22.1 mW 20.8 mW
Area 0.07 mm2 0.26 mm2 0.14 mm2

Jitter 91 ps 29 ps 22.75 ps
FOM 29.76 dB 28.06 dB 26.75 dB

Table 4.3: Performance comparison of Ring, LC, and Muller-C oscillators at a operating
frequency of 1.2 GHz.

Parameter Ring Oscillator [118] LC Oscillator [119] Muller C Oscillator
Power 10 mW 72.8mW 20 mW
Area 0.02 mm2 2.71 mm2 0.04 mm2

Jitter 60 ps 9.9 ps 15 ps
FOM 27.78 dB 28.57 dB 24.77 dB
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Chapter 5

Conclusions and Outlook

The theme of this thesis and its conclusion is that it is feasible to build a fully integrated

plasma impedance probe for nano-satellite applications while maintaining the same scientific

performance as past instruments.

The need for miniaturizing space environment instrumentation is emerging as a key

function for nano-satellite research. The PIP instrument has undergone numerous iterations,

and a variety of techniques on measuring the characteristics of the lower-altitude ionospheric

plasma have been reported in literature [55–59]. However, precise impedance measurements

were not necessarily the primary goal of previous PIP instrument designs, which were

typically interested in locating resonance frequencies and could tolerate uncertainty in the

absolute impedance magnitude. Our PIP design is intended to support a new generation

of plasma instrumentation and research in which precise impedance measurements will be

essential for studying an expanded set of plasma characteristics.

Most of the PIP and IS instruments currently available attach on-chip probes to bench-

top instruments (either a PC with a DAQ or some sort of network analyzer) to do the actual

impedance measurement. While this could prove useful for initial research, it presents some

serious limitations as well. Bench-top equipments are expensive and severely limits the

large scale production and deployment of these systems. Further, the few existing on-chip

impedance spectrometers are unsuitable for the frequency range under consideration while

the existing PIP instruments are unsuitable for CubeSat applications due to the power,

bandwidth, and volume requirements of the CubeSat platform.

The proposed PIP chip integrates all of the major analog and mixed-signal components

needed to perform swept-frequency impedance measurements. To the authors knowledge,

no other fully integrated PIP has been explicitly reported in literature. By integrating
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these components onto a single chip, the weight and volume of the PIP instrument are

drastically reduced. This resulting instrument will be capable of long-term, low-cost, multi-

point deployments in nanosatellite applications.

Unlike previous PIP designs, the integrated PIP performs direct voltage/current sam-

pling on the probes terminal. A Fast Fourier Transform (FFT) is performed by an off-chip

FPGA to compute the impedance of the probe and plasma. By performing analog-to-digital

conversion as early as possible in the signal flow chain, the design is made less sensitive to

variability in analog components. By using an FFT operation, the PIP instrument is less

sensitive to transient spikes that proved disruptive in previous PIP designs.

A new design methodology strongly focused on analog errors and variations was intro-

duced. By evaluating each error and variation, design effort was focused on reducing the

most significant error sources. The top-down strategy also allowed us to simulate errors and

variations in groups, so that we could quantify the accuracy and precision of the PIP under

the influence of all errors and variations. This assessment revealed the value and limitations

of the PIP as a scientific instrument. The top-down design strategy was also used for system

modeling and for transistor-level component design. As a result, the entire design hierarchy

could be tested together as a cohesive instrument. By maintaining a top-down environment

throughout the design process, the precision of the PIPs impedance measurements across

its entire spectral range was fully quantified.

A custom ADC was uniquely built for the PIP chip and its non-idealities and its effect

on the instruments accuracy were studied. The system clock was optimized in order to have

a high performance ADC. Several different techniques have been reported for the design

and implementation of low jitter clock circuits and to suppress the reference spurs as seen

in Chapter 3. Most efforts to minimize timing jitter in the VCO focus on reducing power

supply noise and ripple. In this dissertation, an alternative method using C-elements was

proposed to reduce the timing jitter and reference spurs, and can be used concurrently with

these standard methods.

One of the main objectives of the proposed PIP design is to provide accurate impedance
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measurements while still optimizing the area and power consumption. Based on our opti-

mization parameters, an unique Figure of Merit was defined for the PLL. With the defined

PLL FOM, different PLL designs were easily compared by using a single number. The

Muller C PLL performance was compared with some existing PLL designs [117–119] using

0.18 µm CMOS technology. The Muller C-oscillator had the smallest FOM, and hence was

found to be the better PLL design for our application.

In conclusion, the new integrated PIP instrument architecture developed for Cube-

Sats, would help in realizing an accurate ionospheric plasma density model with spatially

distributed measurements. The design methodology followed provides a “push-button” plat-

form for verifying the performance of future designs. Though this instrument was mainly

developed for measuring the plasma impedance, the system architecture could be extended

to develop a fully on-chip IS system that could be used for a wide variety of biological and

medical applications as seen in Section 1.3. The novel clock generation circuit though ideal

for the integrated PIP instrument can be optimally used in any general purpose high-speed

data converter to provide an optimized (low jitter, reduced reference spur) system clock.
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