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ABSTRACT 
 
 

Estimating and Verifying Household Potential to Conserve Water 
 
 

by 
 
 

Francisco J. Suero, Master of Science 
 

Utah State University, 2010 
 
 

Major Professor:  Dr. David E. Rosenberg 
Department: Civil and Environmental Engineering 
 
 

This thesis identifies impacts of behaviors and technology on residential indoor 

water use and conservation efforts. We use pre-existing detailed end-use data collected 

before and after toilets, faucets, showerheads, and clothes washers were retrofitted in 

96 owner-occupied, single-family households in Oakland, California; Seattle, 

Washington; and Tampa, Florida between 2000 and 2003.  

Water volume, duration of use, and time of use were recorded and 

disaggregated by appliance for two weeks before and four weeks after appliances were 

retrofitted. For each appliance, we compare observed differences in water use before 

and after retrofits to water savings predicted by analytical engineering, semi-analytical 

engineering, and econometric regression methods.  

Results show that observed and predicted distributions of water savings are 

skewed with a small number of households showing potential to save more water. 

Results also show the relative and significant influence on water saved of both 
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technological (flow rates of appliances) and behavioral (length of use, frequency of use) 

factors. Additionally, the number of residents, and the performance and the frequency 

of use of the appliance are the key factors that distinguish households that save the 

most water from households that save less. Study results help improve engineering 

methods to estimate water savings from retrofits and allow water utilities to better 

target subcategories of households that have potential to save more water. 

(43 pages) 
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CHAPTER 1  

 
INTRODUCTION 

 
 

Urbanization and growing populations are placing increased demands on scarce, 

limited, municipal water supplies. Compared to expensive supply-side options to expand 

municipal or regional water infrastructure, residential water conservation can cost 

effectively help demands match available supplies. Conservation can include 

technological changes, such as replacing old toilets, faucets, showerheads, dishwashers, 

and laundry machines with newer and more efficient appliances mandated by the 1992 

federal U.S. Energy Policy Act (EPA). Newer appliances use less water per flush, per 

minute, or per wash cycle, can reduce or fix associated leaks, and contribute to 

significant water savings, such as a 31% reduction in demand (Wallander, 2009). 

However, to include water conservation in water supply/demand planning, it is 

important to correctly forecast both (i) water demands and (ii) the volume of water 

potentially saved by conservation actions. 

Planners and water managers have long tried to forecast water demand and 

estimate reductions in water demand and water savings from conservation programs 

and measures (Berk et al., 1993; Buchberger and Wells, 1996; Kenney et al., 2008; 

Michelsen, McGuckin, and Stumpf., 1999; Renwick and Archibald, 1998; Walski et al., 

1985). To determine the effectiveness of water conservation measures, the 

effectiveness of each measure must be determined (Walski et al., 1985). For example, 

low flow showerheads and toilet dams were distributed among Hamilton Township 
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residents in 1978; subsequently customers were surveyed to identify the number of 

devices actually installed, and coefficients obtained from this data were used in an 

algorithm to predict water savings (Walski et al., 1985). Data loggers have been installed 

on the supply line for single family residences, recording the total instantaneous water 

demand of the household (Buchberger and Wells, 1996). Models to estimate household-

level water demands have been developed as a function of price, weather, house and 

household characteristics, as well as other policy restrictions and interventions during 

the study periods (Kenney et al., 2008).  Water conservation program planners can also 

probabilistically describe the volume of water saved from conservation actions by 

delineating ranges of values for costumer demographic, behavioral, and technological 

parameters influencing water savings and describing how those parameters combine 

(Rosenberg, 2007). To make a precise estimate of water savings, it is necessary to 

analyze and model the performance of the plumbing fixtures and the use of these 

fixtures (Wallander, 2009).  

Having more efficient appliances does not provide a direct way to estimate 

savings because human behaviors also play an important role—the duration and 

frequency of appliance use.  Additionally, when people know they are using a water-

conserving appliance, they may use the appliance longer or more frequently. This 

increased use may swamp expected water savings (Campbell, Johnson, and Hunt, 2004).  

Despite much water conservation work and study, demand forecasting and 

conservation estimation methods can be improved in several ways. First, water saving 

estimates need to be empirically verified. More carefully gathering and storing 
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observations of water use and pairing them to estimates can help with empirical 

verification (Walski et al., 1985). Second, household heterogeneity needs to be more 

explicitly considered (Whitcomb, 1990; Rosenberg, 2007). Studies typically include a 

wide variety of explanatory variables (such as income, household size, lot size, age of 

house, etc.) to characterize household heterogeneity, but use only one aggregate 

dependent variable--monthly billed water use (Kenney et al., 2008). Using more-detailed 

end use data for each water appliance can add more specificity. Third, technological and 

behavioral factors influencing water savings can be better described and disentangled. 

For example, the duration and frequency each resident in a household uses an appliance 

may differ. At the same time, the flow, flush, or use rate of an existing appliance can 

depend on numerous factors including when the appliance was manufactures and 

whether it has been maintained. Similarly, the flow, flush, or use rate of a retrofitted 

appliance set by the manufacture may differ from the installed or actual rate. Thus, 

water use and savings depend on both technological and behavioral factors acting 

together.  

To improve methods to forecast demands and estimate the water saved when a 

household implements a water conservation action, this study presents analytical, semi- 

analytical, and regression models to estimate the water saved when retrofitting water 

appliances. Model variables include pre-existing and retrofitted flush and flow rates of 

water appliances, such as toilets, showerheads, faucets and clothes washers. Also, the 

models use behavioral variables such as the duration and frequency of appliance use. In 

this way, the models separate technological and behavioral factors affecting water use 
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and savings. The study also identifies households with the potential to conserve the 

most water. Models are built from and results verified against detailed water end-use 

data collected at 10-second intervals and disaggregated by appliance for 96 households 

in Oakland, CA; Seattle, WA; and Tampa, FL between 2000 to 2003 (USEPA, 2004). The 

dataset includes several weeks before and after each household was retrofitted with 

water efficient toilets, faucets, showers, dishwashers, and clothes washers. Herein, the 

analysis methods used for the analytical, semi analytical, and regression models are 

presented, as well as the methodology used to calculate the actual water savings. 

Models results are shown by appliance and we highlight ways water utilities can target 

retrofits to households with potential to save the most water. 
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CHAPTER 2  
 

OBJECTIVES OF THE RESEARCH 
 
 

This study aims to improve engineering methods to estimate water savings and aid 

water utilities to better target subcategories of households with larger potential to save 

water.  The objectives can be summarized as follows: 

1. Develop models to estimate household water conservation potential. 

2. Identify variables that most influence the volume of water conserved. 

3. Differentiate household potential to conserve water based on household 

technological and behavioral characteristics. 

4. Identify households with the most potential to conserve water. 
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CHAPTER 3  
 

THE DATA SET 
 
 

This work uses end-use data previously collected by Aquacraft, Inc in a project 

funded by the U.S. Environmental Protection Agency (USEPA, 2004). Aquacraft collected 

water use data from 96 single-family houses in Seattle, WA, East Bay Municipal Utility 

District (EBMUD), and Tampa, FL., between 2000 and 2003 for two weeks before and 

four weeks after each household was retrofitted with water efficient appliances. 

Aquacraft recorded water use by placing data loggers on each participating household’s 

water meter. The data logger recorded water flow through the meter at 10 seconds 

intervals and flow signals were post processed to determine the duration, water 

volume, and frequency of household leaks, outdoor, and indoor water uses (including 

toilets, showers, clothes washers, faucets) (USEPA, 2004). 

The houses selected for the study used more than 60 gallons per capita per day 

and were representative of households in the three cities. Participating homes averaged 

46 years in age. Old homes are less likely to have water-conserving appliances. 

Aquacraft, Inc. also collected additional socio-demographic data on each participating 

household, including persons per household, children per household, number of 

bedrooms, number of bathrooms, floor area, and price paid for water.  

Water use data collected for the two weeks before the retrofit constituted the 

base line water use for each household. Next, water appliances were retrofitted with 

more efficient ones, i.e., existing toilets were replaced with low flush volume toilets. The 

1992 Energy Policy Act (EPA) instituted federal restrictions on the maximum flow rates 
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for all plumbing fixtures sold in the U.S. as a way to reduce water demand. Table 1 

shows the restrictions applied by the EPA to the appliances used in this study. 

One month after the retrofit, water use was again recorded for two weeks. 

Finally, six months after the retrofit, water use was logged for two more weeks to 

identify behavioral changes and the persistence of water savings from the retrofits.  

In general, households reduced the water use after they were retrofitted with the new 

appliances (Table 2). Tampa households had the highest use pre retrofit and were 

retrofitted with the most efficient appliances, which explain why those houses had the 

biggest water savings. 

 

 

Table 1. Energy Policy Act - mandated performance standards for water appliances 

Appliance Maximum Water Use 

Gravity Tank Type Toilets (gallons per flush) 1.6 

Faucets (gallons per minute) 2.5 

Showerheads (gallons per minute) 2.5 

Dishwasher and Clothes washer None specified 
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Table 2. Summary of average savings by location and appliance 

 

 

But averages can hide distributions among users. In the USEPA (2004) data, six 

homes did not save any water after retrofits, while other households saved more than 

200,000 gallons per year (Figure 1). Overall, 93% of the households saved water, 

showing that retrofits can be effective. The distribution also shows that utility 

companies can have successful conservation programs with reduced effort if they can 

target programs to households on the right tail with the most potential to conserve 

water. 

Herein, we use the end-use data collected in the USEPA (2004) study to develop 

models to estimate water savings. Estimated water savings are verified against observed 

Location/  
Appliance

Water Use 
Pre-Retrofit 

[gal/hh/year]

Water Use 
Post-Retrofit 
[gal/hh/year]

Water Saved      
[gal/hh/year]

EBMUD 65,266            44,195             21,071            
- Toilet 16,930            8,000               8,929               
- Shower 10,598            9,394               1,204               
- Clotheswasher 28,724            18,078             10,646            
- Faucet 9,014               8,723               291                  
Seattle 57,632            37,315             20,317            
- Toilet 16,007            6,837               9,170               
- Shower 7,483               7,331               152                  
- Clotheswasher 26,912            16,563             10,350            
- Faucet 7,230               6,585               645                  
Tampa 82,760            30,822             51,938            
- Toilet 17,780            7,460               10,320            
- Shower 11,450            9,417               2,032               
- Clotheswasher 26,567            7,460               19,108            
- Faucet 26,963            6,485               20,478            
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savings and also we show how to identify households with the potential to conserve the 

most water. 

 

 

Figure 1. Distribution among households of water saved by retrofitting toilets, showers, 
faucets, and clothes washers. 
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CHAPTER 4  
 

ANALYSIS METHODS 
 
 

Analytical and regression methods are used to estimate water saved and 

estimates are compared to the actual water saved by households participating in the 

USEPA study. The methods used in this research have as an objective to predict the 

savings observed. Below, the methods to calculate actual savings and develop analytical, 

regression, and semi-analytical models are described. 

4.1 Actual Savings 

First, actual water savings were calculated by subtracting the volume of water 

used by each appliance during the pre-retrofit period from the volume used during the 

post-retrofit period. Since the pre-and post-retrofit periods were different lengths of 

time, we used average daily use values and then extrapolated average daily savings to a 

per household per year basis. 

4.2 Analytical Models 
 
 

Second, an analytical model was developed for each appliance retrofitted. The 

analytical model calculates water savings from first principles and multiplies the 

expected change in water volume per use associated with the appliance retrofit by the 

frequency of appliance use and by the number of people in the household. The 

expected change in water volume per use is calculated by subtracting the post-retrofit 

flow rate (gallons per use) from the pre-retrofit flow rate. A separate analytical model 



11 
 

was developed for each appliance.  For example, the analytical model to estimate the 

water saved by retrofitting a showerhead was:  

 

( ) ( )[ ] 365**cdbaWanalytical −=                                                                         (1) 

where: 

Wanalytical = water saved by the appliance (in this case by the showerhead) as 

estimated using the analytical model [gal/household/year]. 

a= Persons per Household. Permanent residents in the homes at the time the 

study was done [persons/hh] 

b= Average flow rate of appliance pre-retrofit [gal/min] 

c= Average shower time per person per day [min/person/day] 

d= Average flow rate of appliance post-retrofit. [gal/min] 

 

Average flow rates were calculated by dividing the total water use by the shower 

during the pre- or post-retrofit period by the total time it was used during that same 

period. The average shower time is the total use time over the pre and post retrofits 

periods divided by the number of residents in the house and the number of days of the 

pre- or post-retrofit period. The pre- and post-retrofit use frequencies were different for 

toilets and clothes washers, hence, the term “c” couldn’t be taken out of the 

parenthesis for those appliances; in those models, the use terms were combined with 

the flow rates as part of the difference term. Since some appliances weren’t used every 
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day during the study period, the use per day is calculated only taking into account days 

that the appliance was actually used.  

4.3 Regression Models 
 
 

Third, we also used several regressions methods to explain water savings as a 

function of different independent variables. Regression models use the same variables 

as the analytical models, but include coefficients to improve the fit between actual and 

estimated savings. These independent variables include the number of persons per 

household, pre- and post-retrofit volumes per use, and the frequency of use of each 

appliance.  The regression models can help disentangle technological (volume per use), 

behavioral (frequency of use), and economic factors (water price) and their relative 

influences on water use and water saved by retrofits. 

The water saved by retrofitting each household water appliances was estimated 

from variables describing the technological function of the water use appliance such as 

the flush rate of toilets, flow rates of shower and faucets, and gallons per load for 

laundry machines. Different regressions were tested: linear, log-log, semi-log, and semi-

log with location to test different model structures and simulate the water savings 

distribution. 

For example, a semi-log model is shown in Equation 2. 

 

ebxaxaxaxaWsemi +++++= 44332111log lnlnlnln
                   

(2)
 

where: 
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Wsemilog = actual water saved by the appliance (in this case by the toilet) 

[gal/household/year] 

an = Regression coefficients 

x1= Average pre-retrofit flow rate [gal/min] 

x2= Average post-retrofit flow rate [gal/min] 

x3= Persons per household [# of permanent residents] 

x4= Average use frequency [min/person/day] 

b = Intercept [gal/hh/year] 

e= Random effects not explained by model variables [gal/hh/year] 

 

For the semi-log models developed for shower and other water appliances, the 

natural log of the variables was calculated, and then the regression coefficients were 

identified using linear least-squares regression. 

The econometric regressions use variables related to socio-economic 

characteristics of the households, which were taken from the surveys performed by 

Aquacraft, Inc. With the econometric regression, the objective is to identify 

relationships between water use and water saved and variables such as the price paid 

per unit of water used and/or the size of the house. These regressions also allow us to 

identify and distinguishing high savers from low savers.  
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4.4 Semi-Analytical Regression Models 
 
 

Semi-analytical (log-log) models were developed for each appliance (Equation 3). 

These log-log regressions estimate savings using both technological and behavioral 

variables, a hybrid between analytical and regression models. They take the log of the 

analytical model (Eq. 1), then add coefficients to improve the fit (Equation 3).  

ebxaxaxxaWsemi ++++−= 4433211log lnln)ln()ln(
                       (3)

 

where: 

Ln(Wsemilog) = Natural log of actual water saved by the appliance (in this case by 

the toilet) [gal/household/year] 

an =Regression coefficients 

x1= Average pre-retrofit flow rate [gal/min] 

x2= Average post-retrofit flush volume [gal/min] 

x3=Persons per household [# of permanent residents] 

x4= Average use [min/person/day] 

b = Intercept [gal/hh/year] 

e= Random effects not explained by model variables [gal/hh/year] 

 

The semi-analytical model has the limitation of not being able to estimate 

negative savings (houses that did not save water), therefore households that did not 

save water were dropped from the analysis. Also, the use before and after retrofits was 

significantly different for toilets and clotheswashers, so both pre and post retrofits 
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frequency of use variables were included in the semi-analytical models for these 

appliances. 
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CHAPTER 5  
 

RESULTS 
 
 

Herein, results from the analytical, semi-analytical, and regression models are 

presented by appliance. For each regression model we developed, we report regression 

coefficient values, t-statistics, and the r2 showing the fraction of variation in the 

dependent variable (water saved) that is explained by the model variables. A 

Kolmogorov-Smirnov test was also used to compare resulting distributions of water 

saved by the analytical, semi-analytical, and regression models to the actual water 

saved. The Kolmogorov-Smirnov test (KS-test) tries to determine if the distribution of 

two datasets differ significantly, and makes no assumption about the distribution 

shapes or the sample size (Chakravarti, Laha, and Roy, 1967). The K-S test gives a D 

value, D being the maximum difference between the two cumulative density functions 

tested. The null hypothesis of no difference between distributions should be rejected if 

P is small (<0.05).  

5.1 Toilet Models 
 
 

Analytical and regression models were tried, with the analytical, semi-log and 

the semi-log with location models having the best fit, and therefore most effectively 

explaining water savings as a function of the independent variables use. Table 3 shows a 

summary of the regression models calculated for the toilet; with water savings given in 

gallons per household per year [gal/hh/year]. In these models (as in Equation 2 and 3), 
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‘a’ is the coefficient of each variable, ‘b’ is the intercept, and ‘ê’ is the effect not 

explained by the variables.  

In all models, both the technological and behavioral variables (i.e., flush volumes 

and frequencies of use) are significant and have the expected signs. The semi-log and 

semi-log with location models (models 1 and 2), show the best fit with the highest r2. In 

these models, both technological and behavioral variables have large influences. Since 

both regressions have the same fit, the only difference between them is adding the 

independent variable “location” to the second model. Results show that the location of 

the household is not a significant variable and does not alter household’s water savings 

by toilet use and retrofit.  

 
Table 3. Summary of technological regression models for water saved when retrofitting 

toilets 

 
**Significant at the 95% level. 

Model           Variable                                                                          Elasticity           t-stat    
1. Semi-Log, Wsemi-log = a1lnx1+ a2lnx2+…+ai lnxi+b+ê  (N=96; r2=0.88) 

Average Pre-Retrofit Flush Volume [gal/flush] 2.00 

 

21.25** 
Average Post-Retrofit Flush Volume [gal/flush] -0.87 

 

-4.96** 
Persons Per Household [# of permanent residents] 0.77 8.18** 
Average Flushes-Pre-Retrofit [#/person/day] 1.85 16.67** 
Average Flushes-Post-Retrofit [#/person/day] -0.89 -7.68** 

2. Semi-Log with Location, Wsemi-log location = a1lnx1+ a2lnx2+…+ai lnxi+b+ê (N=96; r2=0.88) 
Location 0.10 1.11 
Average Pre-Retrofit Flush Volume [gal/flush] 2.00 21.27** 
Average Post-Retrofit Flush Volume [gal/flush] -0.92 -5.08** 
Persons Per Household [# of permanent residents] 0.76 7.97** 
Average Flushes-Pre-Retrofit [#/person/day] 1.85 16.67** 
Average Flushes-Post-Retrofit [#/person/day] -0.89 

 

-7.67** 
3.Semi-Analytical, ln(Wsemi-analytical) =  a1ln(x1 x4-x2 x5)+ai lnxi+b+ê  (N=85; r2=064) 

Average Change in Water Use [gal/person/day] 1.78 11.41** 
Persons Per Household [# of permanent residents] 1.01 6.08** 
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Figure 2. Cumulative distribution among households of water saved by retrofitting 
toilets. 

 

Figure 2 presents the cumulative distributions of observed and modeled water 

savings among households. It shows the analytical, semi-log, and semi-analytical models 

predict distributions of savings among households similar to observed savings. The 

observations are confirmed by K-S tests (P ≥ 0.05 for all models; Table 4). The analytical 

and semi-log models have the smallest D values and are likely the most similar to the 

observed distributions of savings. The distributions of savings predicted by semi-

analytical model over estimates savings, which increases the difference (Figure 2). 

The regression and K-S test results show that the analytical and semi-log models 

can be effectively used to estimate residential savings when retrofitting toilets.  
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Table 4. K-S test results for toilet models 

 

 

5.2 Shower Models 
 
 

Table 5 shows the results for the regression models developed to estimate water 

saved by retrofitting showerheads. In this model the average shower length per person 

per day was used. Since the difference between showering time per person per day 

before and after the retrofits was not significantly greater than zero (t-stat= -0.59, P= 

0.55), this model used one average shower length per person. The technological 

variables, the appliance flow rate, and the number of permanent residents are 

significant. 

The semi-log model provides a fit of r2= 0.27. The elasticity values show what is 

expected: post retrofit showerhead flow rate variable reduces water use, and increases 

savings. Technological variables are significant at the 95% level for both regression 

models, while the behavioral component is only significant at the 95% level in the semi-

analytical model. According to the elasticity values shown on Table 5, technological 

factors have larger effect on savings than behavioral factors. For the semi-log model, the 

shower length variable is significant at the 52% level. 

Figure 3 shows the distributions of water saved among customers and reveals 

that distributions for the semi-log and semi-analytical models are shifted. The analytical 

Model K-S Stat (D) Significance (P)

Analytical 0.167 0.13

Semi -Log 0.167 0.13

Semi-Analytical 0.186 0.08
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and semi-log models are not able to match the tail (high savers) of the observed savings, 

while the semi-analytical model does a better job estimating high savings. 

 

Table 5. Summary of technological regression model for water saved when retrofitting 
showerheads 

** Significant at the 95% level. 

 

 

Figure 3. Cumulative distribution among households of water saved by retrofitting 
showerheads. 
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Model           Variable                                                                          Elasticity           t-stat    
1. Semi-Log, Wsemi-log = a1lnx1+ a2lnx2+…+ai lnxi+b+ê  (N=94; r2=0.27) 

Average Pre-Retrofit Flow Rate [gal/min] 4.17 4.47** 
Average Post-Retrofit Flow Rate [gal/min] -3.15 -2.05** 
Persons Per Household [# of permanent residents] 2.013 3.17** 
Average Shower Length [minutes/person/day] 0.31 0.70 

2.Semi-Analytical, ln(Wsemi-analytical) =  a1ln(x1-x2)+…+ai lnxi+b+ê  (N=58; r2=0.36) 
Average Change in Flow Rate [gal/min]        1.88 4.19** 
Persons Per Household [# of permanent residents]        0.82 3.13** 
Average Shower Length [minutes/person/day]        0.48 2.56** 
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Table 6. K-S test results for shower models 

 

 

When the K-S test was applied to the semi-log model a D value of 16% was 

obtained, but only significant at the 16% level, and results of the K-S test gave the 

analytical model a D value of 12% significant at the 40.3% level (Table 6). These results 

show that the distributions of savings estimated by the analytical and semi-log models 

are statistically similar to the observed distribution of savings. 

 
5.3 Clothes Washer Models 

 
 

Table 7 shows regression results for the semi-log and semi-analytical models. For 

both models, technological and behavioral variables are significant at the 95% level. 

In both models of water saved by retrofitting laundry machines, all the variables 

have the expected signs. The variables with the largest coefficient values are the 

Average Pre-Retrofit Load Volume, and the Loads Pre-Retrofit [#/person/day]. Again, 

both technological and behavioral factors affect water savings. Figure 4 shows the 

distributions for the models and for the observed water savings.  

 

 

 

Model K-S Stat (D) Significance (P)

Analytical 0.128 0.403

Semi -Log 0.160 0.166

Semi-Analytical 0.472 0.003
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Table 7. Summary of clothes washer technological regressions 

** Significant at the 95% level. 

 

 

 

Figure 4. Cumulative distribution among households of water saved by retrofitting 
clothes washers. 
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Model           Variable                                                                          Elasticity           t-stat    
1. Semi-Log, Wsemi-log = a1lnx1+ a2lnx2+…+ai lnxi+b+ê  (N=95; r2=0.91) 

Average Pre-Retrofit Load Volume [gal/load] 2.41 23.92** 
Average Post-Retrofit Flush Volume [gal/load] -1.83 -10.44** 
Persons Per Household 1.00 7.84** 
Loads- Pre-Retrofit [#/person/day] 2.81 23.85** 
Loads-Post-Retrofit [#/person/day] -1.82 -13.12** 

2.Semi-Analytical,  ln(Wsemi-analytical) =  a1ln(x1 x4-x2 x5)+ai lnxi+b+ê  (N=85; r2=0.79) 
Average Change in Water Use [gal/person/day] 1.32 

 

13.93** 
Persons Per Household 0.84 4.81** 
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Table 8. K-S test results for clotheswasher models 

 

 

A K-S test was performed to quantify the significance of fit (Table 8). Results for 

each model, P >0.05 indicating the modeled distributions of savings are likely similar to 

the observed savings. The semi-log model distribution is likely the most similar.  

Regression and K-S test results show that the analytical and semi-log models fit 

very well, while the semi-analytical model overestimates savings. Estimating water 

savings by clothes washers can be done in precise way using analytical and semi-log 

models, and provides an efficient way to estimate water savings by households based 

on technological and behavioral characteristics. 

 
5.4 Faucet Models 

 
 

The analytical model of faucet savings was similar to the one used for the 

analytical shower model. The faucet model also used average use time, since there 

wasn’t a significant difference between pre and post retrofit use time.  

The semi-log and semi-analytical regressions models have as independent variables the 

average flow rates pre- and post-retrofits, the number of residents, and the average 

length of use per person per day (Table 9).  

Model K-S Stat (D) Significance (P)

Analytical 0.105 0.644
Semi-Log 0.084 0.875

Semi-Analytical 0.190 0.07
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Table 9. Summary of faucet technological regressions 

** Significant at the 95% level. 

 

Semi-log model variables can explain 70% of the variations in water savings. 

Coefficients associated with each variable all have the expected sign and are significant. 

The average pre and post retrofit flow rate have the largest coefficient values and most 

influence faucet water savings. The semi-analytical model also has a similar r2, although 

this model only estimates positive savings due to the log-log formulation. These results 

suggest that technological and behavioral factors influence water savings, but that 

technological factors are more important in the case of faucet retrofits. 

As long as the behavioral components remain constant, savings depend mostly 

on the performance of the appliances, in this case, faucets. The frequency of use of 

faucets can be altered by the use of the appliance by non-residents, since visitors will 

mostly use faucets and toilets, instead of clotheswashers and showers. 

 

 

Model           Variable                                                                          Elasticity           t-stat    
1. Semi-Log, Wsemi-log = a1lnx1+ a2lnx2+…+ai lnxi+b+ê  (N=96; r2=0.70) 

Average Pre-Retrofit Flow Rate [gal/min] 3.98 8.40** 
Average Post-Retrofit Flow Rate [gal/min] -3.08 -7.40** 
Persons Per Household [# of permanent residents] 1.62 6.23** 
Average Use [minutes/person/day] 1.84 8.87** 

2.Semi-Analytical, ln(Wsemi-analytical) =  a1ln(x1-x2)+…+ai lnxi+b+ê  (N=83; r2=0.73) 
Average Change in Flow Rate [gal/min]        3.14 9.08** 
Persons Per Household [# of permanent residents]        0.76 4.56** 
Average Use [minutes/person/day]        0.99 

 

7.43** 
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Figure 5. Cumulative distribution among households of water saved by retrofitting 
faucets. 

 

Three houses located on the tail of the observed distribution of water savings by 

retrofits (Figure 5), had a very high use before the retrofit compared to the use after (a 

difference of more than 200 min/hh/day) which are associated with large behavioral 

change in those households. My belief is that uncommon uses were realized during the 

study period, or that faucet malfunction in these houses was logged as faucet events 

rather than leaks.  

K-S test results show that the distributions of savings among households 

predicted by the semi-log and semi-analytical faucet models are similar, while the 

analytical model is different than the observed distributions (Table 10). 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-40,000 10,000 60,000 110,000 160,000 210,000

Cu
m

ul
at

iv
e 

H
ou

se
ho

ld
s

Water saved [gal/hh/year]

Observed

Analytical

Semi-Log

Semi-Analytical



26 
 

All models do not account for visitors during the study period, a factor that can 

alter the frequency of use of appliances such as faucets. Water savings by faucet 

retrofits can be effectively estimated using semi-log and semi-analytical models. 

  

Table 10. K-S test results for faucet models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model K-S Stat (D) Significance (P)

Analytical 0.250 0.004

Semi -Log 0.156 0.175

Semi-Analytical 0.188 0.077
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CHAPTER 6  
 

TAIL ANALYSIS 
 
 

One of the purposes of this study is to identify households with the potential to 

save more water. These houses are located in the tails of the water savings distributions 

shown in Figures 2-5. Here we use survey data collected about the houses, to identify 

characteristics of households that will likely save the most water from retrofits. 

To do this, we rank households by water savings for each appliance, then 

separate the largest 20% savers (20 households) for each appliance from the rest. This 

breakpoint was chosen to have enough degrees of freedom to run regressions for each 

group. This segregation also means a certain household could be in the 20% group with 

highest savings for one appliance, but not for other appliances. Linear regressions were 

made for each group of households by appliance, using the variables on Table 11 against 

water savings. 

Households that saved the most water retrofitting toilets and clotheswashers 

had more residents than households that saved less water (Table 11). These two 

appliances have controlled volume in each of their uses, so the user cannot use a 

different amount of water with each flush or load of clothes. In case of the toilet, there 

is a significance difference in the frequency of use (flushes/person/day) between high 

water savers (7 flushes/person/day) and low water savers (4.5 flushes per person per 

day).  These results show how a high frequency of use combined with a water efficient 

appliance result in large savings. 
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Table 11. Comparing characteristics of households that save the most water to 
households that save less water 

 

 

For shower retrofits, household size was a significant factor that differentiated 

households that saved the most water from households that saved less water. Also, 

higher savers used the shower more frequently and, prior to retrofitting, had less 

efficient showerheads than lower savers.  

For faucet retrofits, households that saved the most water had significantly more 

residents than households that saved less water. As with the showerheads, households 

that saved the most water used faucets more frequently, and, prior to retrofits, had less 

efficient faucets than lower savers. Largest savers had more full and three-quarter 

bathrooms than lower savers, indicating that more appliances had the potential to save 

more water.  

Generally, the largest savers faced lower water prices, although this result was 

not statistically significant. This result may occur because these households had a lower 

Appliance

Water 
Price

Residents
# Full 

Baths + 
3/4 Baths

Volume 
per Use

Frequency 
of Use

Water 
Price

Residents
# Full 

Baths + 
3/4 Baths

Volume 
per Use

Frequency 
of Use

Toilet 7.3 3.4 2.0 5.9** 7.0** 7.09* 2.53** 1.9 3.5** 4.5**
Shower 6.13** 3.7** 2** 2.6** 6.9** 7.4 2.5 1.9 2.0** 4.8
ClothesWasher 6.55 3.2 1.8 44.1 1.9 7.3 2.6** 2.0 35.9 1.9**
Faucet 5.91 3.4 2.2 1.2** 34.4** 7.5* 2.5** 1.9 1.0** 8.6**

** Significant at the 95% level.
* Significant at the 90% level.

Note: These are average numbers of the households in each group.

Largest Savers (n=20) Smaller Savers (n=76)
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financial incentive to conserve water prior to the retrofits (price did not change through 

the study period). 

CHAPTER 7  
 

DISCUSSION 
 
 

Analytical, regression, and semi-analytical regression models have been 

developed to estimate water savings by retrofitting toilets, showerheads, clothes 

washers, and faucets. Model results show and separate the effects of technological and 

behavioral factors on water use and water savings.  

The analytical models for toilets, showerheads, and clothes washers perform 

very well according to the Kolmogorov-Smirnov tests and estimated savings correspond 

well to observed savings (Figure 6). The analytical model for estimating water saved by 

retrofitting faucets performs less well  and often underestimates water savings. 
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Figure 6. Observed and analytical estimates of water saved by retrofitting toilets, 
showers, clothes washers, and faucets. 

 

 

Figure 7. Observed and semi-log regressions estimates of water saved by retrofitting 
toilets, showers, clothes washers, and faucets. 
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The regression model estimates better correspond to observed water savings 

(Figure 7). Most estimated savings are on or very close to the 1:1 line of observed 

savings. Some households stand out as outliers in both Figures 6 and 7 and suggest that 

neither model can accurately estimate savings for all households. These outliers have 

very different frequency of use and or technological performance before and after the 

retrofits. 

Toilets and clothes washers’ models worked best. Results show that when the 

person doesn’t have the option of regulating the flow rate used in indoor appliances it’s 

possible to segregate and identify low water savers based on technological and 

behavioral components. Appliances such as faucets and showerheads, where the user 

can modify the flow rate at the start and during each use, make estimating savings more 

difficult since that flow rate can vary significantly on the frequency of use. It’s important 

to point out that the models use as a variable the number of permanent residents, and 

do not account for visitors during the study period. Unobserved visitors could alter the 

frequency of appliance uses.  

 Larger savers faced, on average, lower water prices, than low savers. In general, 

high savings households had 3.32 residents, compared to 2.5 residents on households 

that save less water. Also, higher savers used the appliances more frequently and, prior 

to retrofitting, had less efficient appliances than lower savers.  
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CHAPTER 8  
 

CONCLUSSIONS AND RECOMMENDATIONS 
 
 

Analytical, regression, and semi-analytical models to estimate water savings 

were developed based on detailed, disaggregated water end-use data. Water savings 

result from a combination of the technology installed in the households and the use of 

these appliances.  

Semi-log regression models performed better than analytical and semi-analytical 

models, and provide a way to estimate indoor residential water savings based on 

technological and behavioral components. For all the appliances, technological and 

behavioral variables such as flow rates, durations, and use frequency are significant. 

Houses that saved more water had on average more residents than those who saved 

little to no water. They also used the appliances more frequently and, prior to 

retrofitting, had less efficient appliances than lower savers. 

 Although the houses that saved more water had a lower water price on average, 

this wasn’t statistically significant. The number of bathrooms did not show a clear trend, 

varying this from appliance to appliance; averaging the results the houses that saved 

more water had 1.93 full bathrooms compared to 1.88 of the rest of the sample. 

Study results help improve engineering methods to estimate water savings from 

retrofits. By calculating water savings with the presented models, utility companies can 

estimate savings in their region and motivate customers with more residents, less 

efficient appliances, and high use frequency, to replace old appliances for newer and 
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more efficient ones to conserve water. With these contributions, water conservation 

programs can save more water with less effort and lower costs. 
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