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ABSTRACT 
 
 

Increased Functionality of Floodplain Mapping Automation: 

Utah Inundation Mapping System (UTIMS) 
 
 

by 
 
 

Brian K. Stevens, Master of Science 

Utah State University, 2009 

 
Major Professor:  Dr. Sanjay S. Chauhan 
Department:  Civil and Environmental Engineering 
 
 
 Floodplain mapping has become an increasingly important part of floodplain 

management.  Floodplain mapping employs mapping software and hydraulic calculation 

packages to efficiently map floodplains.  Modelers often utilize automation software to 

develop the complex geometries required to reduce the time to develop hydraulic models.  

The Utah Inundation Mapping System (UTIMS) was designed to reduce the time 

required to develop complex geometries for use in floodplain mapping studies.  UTIMS 

reduces the time required to develop geometries used in floodplain management studies.  

The automated geometries developed include: flood specific river centerlines, bank lines, 

flow path lines, cross sections, and areal averaged n-value polygons.  Utilizing this robust 

and easy-to-operate software within the GIS environment modelers can significantly 

reduce the time required to develop accurate floodplain maps.  Modelers can thus spend 
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less time developing complex geometries and more time modeling and analyzing 

floodplains. 

(189 pages) 
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CHAPTER 1 

INTRODUCTION 

Floodplain mapping has become a highly specialized area of expertise within 

engineering relying heavily on the art of geographic data processing and hydraulic 

modeling for effective floodplain management.  Floodplain management relies on 

hydrologic and hydraulic studies to investigate flood risk.  Previous to the 1960’s in 

the United States large flood control structures were built to reduce flood damage.  A 

shift in focus in policy by the federal government nearly 40 years ago now focuses on 

non-structural measures to mitigate flood damage.  These non-structural measures 

focus on determining the flood risk in specific zones, as viewed on floodplain maps, as 

described by the National Flood Insurance Program (NFIP).  While the NFIP focuses 

on non-structural methods of managing the floodplain, managing the risk posed by 

current and proposed dams is also a vital part of floodplain management.  Dam safety 

analyzes the risk that dams pose to society.  The area of dam safety risk management 

seeks to bring the risk that dams pose to society under tolerable levels.   

One of the important inputs into dam safety risk analyses is the extent that 

flooding occurs in connection with the various ways of dam operations or failures.  

The federal government has specified specific hydraulic models which may be used in 

floodplain mapping.  The standard for hydraulic modeling software is provided by the 

Army Corps of Engineers’ Hydraulic Engineering Corps (HEC).  In 1985 HEC 

released HEC-2, which is a one-dimensional hydraulic engine to calculate water 

surface profiles for river analysis for both steady and unsteady flow.  In subsequent 

releases HEC has developed a graphical user interface and released the software 
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package known as HEC-River Analysis Software (HEC-RAS).  This software has 

become the standard to which all new hydraulic models are measured. 

The development of HEC-RAS projects requires geometric data, flow data and 

plan files to delineate flooding extents.  The large amount of time taken to produce 

complex river geometries within HEC-RAS prompted HEC to develop the software 

HEC-GeoRAS.  HEC-GeoRAS handles geometries digitized by users within 

geographic information systems (GIS), located in layers, to create geometric input files 

which are imported into HEC-RAS to create a HEC-RAS geometry file.  HEC-

GeoRAS also handles output data from HEC-RAS to map flooding extents, depth and 

velocity.  This modeling aid in the area of geometric file development was the first of 

its kind.   

For complex riverine systems the development of these layers used by 

GeoRAS may take significant amounts of time to digitize by hand within a geographic 

information system.  Although GeoRAS is effective in aiding users to develop 

geometric files and view output, other softwares have been developed to reduce the 

time required by modelers to perform these tasks by automating much of the process.  

Along with geometric file setup automation these new softwares have also sought to 

automate the setup of steady flow and plan files to create a complete hydraulic model.  

These softwares allow modelers the ability to significantly reduce the time required to 

map flood profiles. 

 The newly developed softwares often use GIS in developing and analyzing 

data. Geographic information systems provide a convenient utility to create, manage 

and analyze data.  ESRI’s ArcGIS has become a central figure in the realm of 
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geographic information systems due to its ability to create process and analyze large 

amounts of data in several formats.   

This thesis describes a new floodplain mapping software which significantly 

increases the mapping capabilities of modelers in hydraulic analysis.  This automation 

software significantly facilitates the correct characterization of the floodplain and 

reduces the time required in developing flood extents used for vital input into dam 

safety risk analyses and NFIP rate maps.  The focus of this software is to facilitate the 

efficient development of reasonable RAS geometries so that a hydraulic modeler can 

focus their efforts on hydraulic modeling and analysis.  Therefore the overarching 

focus of this software developed is on the reasonableness and efficiency from the 

practical application point of view, not necessarily on the exactness from a physics 

point of view.  This thesis describes the reasoning and methodology of this new 

floodplain mapping software.  Current floodplain mapping protocols and techniques 

with regard to hydraulic modeling are also discussed.  
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CHAPTER 2 

STATE OF AUTOMATED FLOODPLAIN MAPPING 

Floodplain Management Through Mapping 

Historically water has been stored in reservoirs by utilizing dams to be used by 

society and provide a level of safety from flooding.  While dams provide a level of 

benefit to society they also pose a hazard to property and life.  Occasionally dams have 

failed releasing stored water causing economic damage and loss of life.  As the 

knowledge of sound dam design and construction has improved the level of required 

safety of dam owners has been increased, and dam safety has become a vital part of 

the construction and maintenance of dams.  Dam owners are held liable for losses or 

damages resulting from dam failure.  In recent years the area of risk assessment and 

management in the area of dam safety has become increasingly important.  Dam 

owners can assess the risk their dams pose to the surrounding population by 

considering the possible damages their dams may cause to impacted areas due to 

various events.  Hazards which threaten dams include: extreme precipitation, 

earthquakes, landslides and internal erosion (piping) failures.   

The area of risk assessment analyzes the complete spectrum of each hazard 

which a dam faces to identify the risk associated with dams.  For all modes of possible 

damage to dams or complete failure the risk associated with the full spectrum of 

magnitudes of precipitation, earthquakes, landslides and internal erosion are identified.  

This allows professionals to accurately understand the risk that a dam poses, and 

allows owners to quickly identify and take appropriate steps to minimize the risk their 
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dams pose.  In the case of precipitation, not only the probable maximum flood (PMF) 

but the full spectrum of possible inflows from threshold flood to PMF is considered, 

where the threshold flood is the minimum flow that can cause failure of the dam. 

A critical input into dam safety risk assessment is economic damage and life 

loss estimates due to flooding.  These estimates are acquired through floodplain 

mapping, which describes the extent, depth and velocity of flood waters.  For 

estimation of economic damages and life loss modelers are often interested in key 

locations of flooding in the downstream areas affected by flooding water.  These key 

locations may include population centers and/or bridges.  Due to these critical points 

of interest in the downstream floodplain modelers will often place critical cross 

sections at these locations to accurately identify the extent of flooding in these 

sensitive areas.  More details concerning the methods of dam break floodplain 

mapping will be discussed in the later portion of this document entitled “Extreme 

Flows.”  

The National Flood Insurance Program (NFIP) provides property owners in 

communities that participate in compliance to regulations the ability to purchase 

insurance for protection against flood losses.  The compliance with which 

communities must meet is to take action to prevent future flood losses by effectively 

managing the community’s flood zones.  Flood zones are displayed on Flood 

Insurance Rate Maps (FIRMs) and describe the possible hazards of flooding in 

specific areas.  The NFIP is managed by the Federal Emergency Management Agency 

(FEMA), from which property owners may purchase flood insurance.  The standard 

for the insurance plan has been identified as the one-percent-annual-chance flood, also 
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known as the 100-year or “Base Flood.”  This level of risk provides Federal agencies 

and most States a standard with which to govern floodplain management programs.   

Flood Insurance Studies (FISs) were instituted to designate the flood risk posed 

in specific areas of communities.  Floodplain boundaries are shown on the FIRM for 

the 100-year flood, and possibly the 500-year flood.  Base flood elevations (BFEs) are 

used in developing flood insurance rate maps (FIRMs).  FIRMs geographically show 

the results of an FIS, in determining flood hazards in various areas.  An FIS along with 

a FIRM provide the basis for flood management, mitigation and insurance information 

as described by the NFIP.  An FIS provides the basic information for the determination 

of flood insurance rates along with providing communities a floodplain management 

plan.  The floodplain boundary is delineated using the water surface elevations at 

specific cross sections.  

Hydraulic Model Development 

Hydraulic model development requires geographic data and flow information 

to define the areas inundated by a flow.  Hydraulic models can take significant time to 

develop, specifically if complex geometries are being studied and an iterative process 

is required in analyzing extremely large flows.  To develop complete hydraulic models 

modelers must consider the magnitude of flow to be studied to correctly define the 

spatial extent which geometries must cover.  The geometry development for relatively 

low and extreme flows may be quite different.   

The U.S. Army Corps of Engineers River Analysis System (HEC-RAS) was 
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developed by the Hydrologic Engineering Center (HEC) for the purpose of performing 

one-dimensional hydraulic river analysis.  HEC-RAS is the result of the further 

development of the precursor HEC-2, to which a user interface was added along with 

some new functionalities to produce HEC-RAS.  HEC-RAS supports steady and 

unsteady flow analyses.  In conjunction with steady and unsteady flow studies, there 

are capabilities within HEC-RAS for performing floodway encroachment, scouring at 

bridge, stable channel design, sediment transport, dam break, levee overtopping and 

breaching, navigation dams, pump station and river profiles at confluences analyses.  

HEC-RAS provides an efficient manner in which to manage data, enter and edit data, 

perform hydraulic calculations, analyze data input and display results in tabular and 

graphical form.   

All complete HEC-RAS projects are defined by four types of files which 

include: a project file (“.prj”), geometric file (“.g01”), flow file (either “.f01” for 

steady or “.u01” for unsteady flow) and a plan file (“.p01”).  For each project file there 

may be many geometry, flow and plan files to select from to perform hydraulic 

computations.  For more than one geometric, flow or plan file HEC-RAS utilizes a 

digit increment file scheme which defines files by the type and number of file 

associated with a particular project.  This is done by adding numbers to the end of the 

file type to indicate which file it is, for example beginning with “.g01” and increasing 

by one up to “nn” number of files (“.gnn”) for subsequent files.  The content of 

geometry files will be focused on hereafter, however, for an interested user the content 

of flow and plan files are discussed in USACE (2008).  The geometry file contains all 

the physical data defining the passageway of flow, such as cross sections, bridges, 
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levees, culverts, weirs, gated spillways, river ice cover and storage areas. 

The required geometries to develop a floodplain inundation map are: river 

centerlines, cross sections, bank lines and flow path lines.  River centerlines represent 

the centerline of flow for the level of flow that is contained within the river banks.  

Cross sections are the primary geometric data used in determining water surface 

profiles.  This is because they not only represent the channel through which flow is 

passed, but also describe the friction factors that HEC-RAS uses in determining water 

surface profiles.  The two bank lines (left and right) for a given river reach define the 

main channel and the right and left overbank areas.  The three flow path lines (main, 

left and right) for a given river reach define the centerline of the flow path and the 

flow path lengths within the main channel and left and right overbank areas. 

The correct development of geometric data comprising the basic cross section 

data is critical in developing an accurate hydraulic model, because cross sectional data 

is the basis with which HEC-RAS performs hydraulic computations.  Cross sections 

should represent the perpendicular to river flow profile and are required to be oriented 

from left to right when looking in the downstream direction.  Each cross section is 

defined by a unique river station on a specific river reach.  River station values can 

range from a minimum of zero, if it were located at the bottom of a river reach, and a 

maximum of the length of a river reach, if the cross section was at the furthest 

upstream position.  Therefore the river station represents how far from the downstream 

end of a river a cross section crosses the river reach centerline.  The river station for 

each cross section is an identifier for the cross section.  The points along a cross 

section, defining the shape of a cross section profile, are known as cross section 
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stations.  For each cross section station there is an associated elevation which 

completes the shape of the cross section profile by defining the two-dimensional view 

of a cross section.  Thus the cross section becomes the perpendicular profile of a river 

flow path.  Two of the stations along the profile are designated as “main channel bank 

stations,” which are used by HEC-RAS in channel and overbank computations.  Along 

with the station and elevation data are associated friction values (either n or K-values) 

which are used by HEC-RAS in determining conveyance through the cross sections.  

A cross section is divided into a maximum of 20 segments to define the distinct 

friction value for that segment of the cross section.  Values for overbank and main 

channel lengths are also specified in the geometry file.  The overbank and main 

channel lengths are determined for a specific cross section by calculating the distance 

from itself to the next cross section in the downstream direction.   These distances 

represent the degree of turn or meandering in the reach between the current and 

subsequent cross section.  For each cross section there are also contraction and 

expansion coefficients used in the calculation of energy loss through the cross section.   

Due to HEC-RAS being a one-dimensional hydraulic model when flooding 

spreads out over floodplain areas hydraulic modelers will often need to create cross 

sections which essentially approximate the two-dimensional nature of the flow for  

one-dimensional modeling by HEC-RAS.  These cross sections may take the form of 

arcs extending outward from the direction of flow (convex downstream) or the form of 

“dog-legs,” which are often utilized when expanding flood wave fronts fan out into the 

floodplain.     

To facilitate the creation of geometric files for use by and the viewing of 
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output from HEC-RAS the software package HEC-GeoRAS was created to manage 

the passage of geographic information between the GIS environment and HEC-RAS.  

HEC-GeoRAS is a utility toolbar that is available to be loaded within the GIS 

environment, which can be downloaded free from the HEC website 

(www.hec.usace.army.mil/software/hec-ras).  HEC-GeoRAS facilitates the 

development of geographic features to be stored in GIS layers.  Users edit the layers 

by digitizing or loading pre-existing data into these layers in preparation to developing 

a geometric file for use by HEC-RAS.  The basic data HEC-GeoRAS utilizes in 

developing geometry files include a digital terrain model (DTM), in the form of a 

GRID or triangulated irregular network (TIN), and geographic features located in GIS 

layers.  HEC-GeoRAS handles these layers and by utilizing the digital terrain model 

creates an input file, which HEC-RAS accepts as an input for the creation of a 

geometry file.  Upon completion of hydraulic computations HEC-RAS allows for the 

export of water surface profile data into an output file.  With the output file HEC-

GeoRAS creates new GIS layers representing water surface extents, velocity grids, and 

depth grids which can be viewed and analyzed within GIS. 

HEC-GeoRAS supports the creation of several types of geometric data for 

input into HEC-RAS including: stream networks, bank lines, flow path centerlines, 

cross sections, bridges, culverts, ineffective flow areas, blocked obstructions, land use 

areas, levees, inline structures, lateral structures and storage areas.  The basic 

information required to develop an input file for HEC-RAS is digital terrain data, 

stream network, cross-sections, bank lines, flow path lines and n-value assigned land 

use polygons.     
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The stream centerline layer plays an important role in the setup of the input file 

for HEC-RAS.  This is due to the fact that the river centerline is used as a guide, along 

with elevation data and possibly contour lines, in placing cross sections.  Cross 

sections are required to be perpendicular in orientation to the river flow path.  The 

stream centerline generally describes the centerline of the flow path, particularly for 

the levels of flow contained within the river banks, thus the stream centerline is used 

as a guide in placing cross sections.  HEC-GeoRAS accepts pre-existing stream 

networks or allows users to digitize a river network within GIS.  For each river reach 

of a river network a name for the river and reach are required, connectivity is tested 

and verified by creating junction nodes and reach lengths are calculated.. 

  The cross section layer holds the polylines which are used along with digital 

terrain data to describe cross section profiles to be used by HEC-RAS.  HEC-RAS 

computations rely upon the cross section profiles, which provide the elevation profile, 

main channel and overbank lengths to the next cross section, along with representative 

n-values for segments of each cross section in determining river surface profiles.  

Therefore the creation of cross sections is vitally important for correct representation 

of river hydraulics within HEC-RAS.  Correct cross sections should be perpendicular 

to the direction of flow, are oriented from left to right when looking in the downstream 

direction, should not intersect, must cross a stream centerline only once, and must be 

contained within the extent of the digital terrain model.  Cross sections may be either 

digitized using the Editor in GIS or created with the automated cross section 

placement tool located on the HEC-GeoRAS toolbar. 

The bank layer used by GeoRAS describes the general position of bank 
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stations in relation to the river centerline.  With this layer bank stations are calculated 

along a cross-sectional profile.  Left and right banks are used for each reach of a river. 

  The flow path layer describes the center channel, left overbank and right 

overbank flow lines.  This layer is used in calculating the center, left overbank and 

right overbank distances between subsequent cross sections down a river reach.  These 

values are used within HEC-RAS to represent the degree of turning or meandering in a 

river  reach.   

The land use layer is used to determine n-values for segments of cross sections, 

for use as friction factors by HEC-RAS.  The land use layer is comprised of polygons 

representing various land use areas.  The land use theme must cover the extent of the 

cross sections.  Upon completion of the polygons a user develops a land use name – n 

value specific table which HEC-GeoRAS utilizes to assign n values to segments of 

cross sections according to the type of land use type exhibited by the land use polygon 

layer. 

For other layers that are available to be constructed to develop geometric input 

file, the reader is referred USACE (2005). 

In hydraulic modeling, modelers must consider the scale of flow being 

analyzed.  Flows which are relatively low will often remain in a well defined channel.  

Flows which surpass a well defined channel and extend into the surrounding flood-

plain have been termed “extreme” in nature.  Examples of these “extreme” types of 

events include dam break and probable maximum flood.  These types of events 

generally produce flows which leave the well defined channels and overflow into the 

overbank areas. 
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 When flows are expected to go beyond their well defined river banks, 

significant overbank flooding occurs and thus special consideration to develop the 

required geometric features must be taken.  As flows over bound the river banks, the 

river centerline will less accurately describe the centerline of the flow path.  This is 

more particularly the case with extreme meandering river reaches on relatively flat 

terrain experiencing extreme flows.  In this case for cross sections to be accurately 

described as perpendicular to the flow path, their placement must  be perpendicular to 

the flow centerline rather than being perpendicular to the original river centerline.  

In cases of extreme flooding geometry manipulation to accurately describe the 

flow path of large flows requires an intuitive decision making process to determine  

the orientation of cross sections relative to the original river centerline.  Cross sections 

must be oriented perpendicular to the flow path of the river, thus care must be taken to 

carefully analyze the floodplain and its terrain including obstructions, storage areas 

and critical points that flow must pass.  The process of cross section placement in this 

case becomes an art and can be difficult to develop.    

In analyzing extreme flows and the associated flooding extents a modeler may 

iteratively make several changes to the initially assumed cross section placement after 

hydraulic computation to accurately describe flooding extents of particular level of 

flows being analyzed.  Thus the mapping of extreme flows becomes iterative in nature.  

Modelers must analyze output results to determine if sufficient convergence has been 

met and that the utilized geometries have produced an accurate flood polygon.  Thus in 

this iterative process of extreme flow modeling there exists a flow specific river 

centerline for each iteration which accurately describes the flow path of specific 
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extreme flows being modeled.   

When flows are expected to remain within a narrow well defined channel the 

HEC-RAS model requires no special attention to geometry changes to develop the 

hydraulic model.  The specified original river centerline sufficiently represents the 

main channel flow path for the flows and straight lined cross sections can be placed 

perpendicular to the river centerline to adequately model the flows. 

 
Review of Time Requirements for Model Development 

Development of the geographic features required for the development of an 

inundation study using HEC-GeoRas takes considerable amounts of time when 

digitized within the GIS environment.  The time required to determine the correct 

placement and orientation of geographic features to be utilized by HEC-GeoRAS is 

often the critical factor in the total time of developing geometry files for use by HEC-

RAS.  The most vital of the basic geographic features required are the cross sections.  

These are required to lie perpendicular to the flow path and be spatially independent 

from each other and cross a river centerline only once.  The development of 

appropriate cross sections for in-stream flow conditions is relatively simple and 

straight forward in nature.  Extreme flow modeling, for reasons discussed in previous 

section, is of  more rigorous, iterative and time intensive nature in developing 

appropriate cross sections.  A case study was performed to determine the general time 

requirements to develop a basic geometry file for use within HEC-RAS.   

The Utah Division of Water Rights (DWRi) led by the State Engineer is an 

agency of Utah State Government within the Department  of  Natural Resources which  
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regulates the dams located within the state of Utah for the purpose of protecting public 

safety.   For the proposed research, in consultation with DWRi, the Millsite Dam and 

Reservoir on  Ferron Creek was identified as a case study.   

Ferron creek is located in eastern central Utah and provides water to the Ferron 

municipality, local industries and agricultural land.  The creek is fairly straight in its 

upper portions; however, in the bottom half of the creek it meanders greatly.  The 

headwaters of Ferron Creek are located west of Ferron, Utah, near the top of Ferron 

Canyon, in the Manti-La Sal Mountains.  The creek travels several miles down the 

canyon into Millsite Reservoir.  Upon passing through Millsite Reservoir Ferron Creek 

continues three more miles down into Ferron City.  Ferron Creek then travels in a 

generally northeast direction for 24.8 miles before it joins Huntington creek and 

Cottonwood creek to form the San Rafael River.  The San Rafael River then travels in 

a general southeast direction until it drains  into the Colorado River in southeastern 

Utah.  Figure 2-1 shows Ferron Creek and its accompanying digital terrain data. 

The flow type taken into consideration was in-stream conditions where the 

flow path would be described by the river centerline.  The general process of 

developing geographic data, as described by the GeoRAS User’s Manual, within HEC-

GeoRAS was followed, digitizing all features by hand.  The process prescribed by the 

GeoRAS User’s Manual is to digitize the stream network with guidance from contour 

lines created using digital terrain data.  Therefore contour lines (at 5-feet interval) were 

developed within GIS.  Then the river centerline was digitized by hand using the GIS 

Editor.  The time required to perform this process for Ferron Creek was 45 minutes.  

Even after spending this time to digitize the river by hand it still did not precisely 
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match the original river centerline.  Ferron creek has many meandering portions, 

making digitizing by hand difficult, therefore the centerline was loaded into the river 

network within ArcCatalog.  Using the load feature significantly reduced the time it 

took to digitize the river centerline by hand.  The time taken to correctly load one river 

centerline was five minutes.   

The bank lines layer require two banks, left and right, for each reach of a river.  

Again the process of loading pre-existing features was used within ArcCatalog to 

populate the two geometries for the bank lines.  The original river centerline was 

loaded into the bank lines layer and then was offset to create bank lines.  The bank 

lines were offset 5 meters on either side of the original river centerline to create bank 

stations.  An offset distance of 5 meters was chosen as the offset distance to keep the 

banks within narrow land form passages in the downstream reaches of Ferron Creek.  

This distance also worked well by not placing the bank lines in a position to overlap 

Figure 2-1.  Ferron Creek. 
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any portions of the river centerline, particularly with respect to meandrous portions of 

the river.  This process took ten minutes to complete. 

The flow path centerlines layer requires a left, main channel and right flow 

path polylines for each reach of a river.  These were again supplied by loading the 

original river centerline within ArcCatalog into the flow path feature class and offset 

10 meters using the Editor within ArcMap.  Again this distance was used to keep these 

lines within the narrow downstream overbanks of the Ferron Creek.   This distance 

also did not create any overlapping between the left and right flow paths and the river 

centerline.  This process took ten minutes to complete.  Figure 2-2 shows the Ferron 

Creek (River), and the created bank and flow path lines.  As can be seen they follow 

the general shape of the actual river center line. 

The process of placing correct cross sections was somewhat tedious and much 

 

Figure 2-2.  Offset banks and flowpaths  
used by HEC-GeoRAS. 
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more care in their exact placement was taken.  The capability of HEC-GeoRAS to 

automatically place cross sections was utilized, by selecting the interval of placement 

and the width of the cross sections.  HEC-GeoRAS, though, places cross sections with 

no regard to overlapping cross sections and cross sections crossing the river centerline 

multiple times.  An interval of 100 meters and a width of 1000 meters were selected to  

place the cross sections  along the river centerline.  This distance and width were 

decided upon after visual inspection of the terrain over which the assumed floodplain 

would lie and the fact that in-stream flow was assumed to be modeled.  Many of the 

created cross sections overlapped each other and the river centerline several times.   

Figure 2-3 shows how GeoRAS placed the cross sections automatically.  As 

can be seen they overlap and will not be accepted when the features are processed to 

create the input file for HEC-RAS.  Figure 2-4 shows a close-up view of the lower 

reaches of Ferron Creek where many meanders exist.  

Cross sections that either overlapped each other or crossed the river centerline 

more than once were deleted using the Editor within ArcGIS.  Additional cross 

sections were added by digitizing using the following process.  To satisfy the 

requirements of HEC-GeoRAS that no two cross sections cross each other and each 

may only cross the river centerline once  the digital terrain data, contours and river 

centerline were observed in placing the cross sections in a perpendicular orientation to 

the river centerline going from left overbank to right overbank direction when looking 

the downstream direction.  The process of placing cross sections took ninety minutes 

to complete.   



19 
 

 

The capabilities of HEC-GeoRAS in placing cross sections in comparison to 

UTIMS are discussed in the section entitled “Comparison of Softwares To UTIMS.”  

Figure 2-5 shows the corrected cross sections for the Ferron Creek.  Figure 2-6 shows 

the meandrous portion of the Ferron Creek with the modified cross sections. 

Land use polygons were obtained from the Utah state agency charged with 

handling GIS data for the state of Utah, the Utah Automated Geographic Reference 

Center (AGRC), which provided polygons depicting land use types.  This data was 

again loaded into the land use layer created by GeoRAS.  All similar land uses were 

merged to make a smaller land use – n value table.  An extra polygon was extracted to 

fill in the gaps between polygons that had no land use data.  This process took 20 

minutes. With the completion of the land use theme a manning’s n-value table was 

Figure 2-3.  Automated placement of cross sections 
by HEC-GeoRAS. 
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created to describe each land use an associative n-value.  This process took 2 minutes 

to complete.  

With the basic geometric data created to construct the input file for HEC-RAS, 

the various processes of assigning elevation values, lengths, n-values, connectivity, 

station values was completed.  This process was internally computed by GeoRAS and 

took two minutes to complete. 

Table 1 shows the time taken by each step and  percent of total time to develop 

each geographic feature layer for use by HEC-GeoRAS.  Figure 2- 7 shows the 

representative time taken to create the basic geometric data for use in GeoRAS.   

  

 

Figure 2-4.  Automated placement of cross sections in 
meanders of Ferron Creek. 



21 
 

 

 

 

Figure 2-5.  Modified cross sections digitized after  
using HEC-GeoRAS cross section placement. 

 

Figure 2-6.  Close up view of modified cross sections. 
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Figure 2-7.  GeoRAS setup time requirement. 

Table 2-1.  GeoRAS setup requirement time 
 

 
Feature Digitized or Loaded  Time (minutes)       % of Total 
 
 
Stream Network 5 3% 
Banks 10 7% 
Flow Paths 10 7% 
Cross Sections 90 66% 
Land Use Polygons 20 15% 
N-Value Assignment 2 2% 
Total 137 = 2 hrs. 17 mins.      100% 
 

GeoRAS Setup Time Requirement

Stream Network

Banks

Flowpaths

Cross Sections

Landuse

n‐value table
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The total time taken to develop a basic HEC-GeoRAS set of geographic 

features for the case study was 2 hours and 17 minutes.  It is to be noted that the 

process was somewhat simplified due to the assumption of in-stream flow.  For an 

extreme flow case with significant over bank flows, the process would take 

significantly more time and perhaps several iterations to obtain a reasonable set of 

geographic features.  Many of the steps taken were although automated but actually 

added some more steps to the process, such as modifying the automated cross sections.  

As can be seen the placing of cross sections took the majority of the time to complete 

with about 66% of the total time.   

For modelers it  is essential to calibrate and examine  hydraulic computations 

to develop reasonable flood inundation results.  Therefore, if the time taken to develop 

accurate geographic features could be reduced then the modelers could spend their 

efforts on hydraulic modeling and analyzing the results rather than on digitizing 

geographic features. 

Literature Review of Automation Process Softwares 

GIS has become the standard in the United States of America with which 

floodplains are mapped and analyzed in the process of floodplain management.  Four 

main relationships have been described in Babu,Thirumalaivasan and Venugopal 

(2006) which ties the GIS environment to the modeling environment, both of which 

are required in developing floodplain maps.  Dependence upon industry standard GIS 

or creation of an “in-house” type of mapping system generally separates the softwares 
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which seek to automate hydraulic model development.  The first two relationships 

tying GIS to model are called embedded coupling.  These two types of relationships 

are incorporating the GIS environment functionalities within the model and 

incorporating model functionalities within a GIS environment.  The last two 

relationships tying GIS to models are coupling the modeling and GIS environment by 

data exchange files (loose coupling), and using the GIS environment to develop a 

complete modeling system by developing user defined modeling libraries within the 

GIS environment (tight coupling). 

The first type of relationship between GIS and the modeling environment is the 

incorporation of GIS functionalities within a model thus creating a single modeling 

package.  With this approach of data handling the mapping utilities of a GIS 

environment are utilized, which promotes the post-processing nature of GIS.  The 

complete functionalities of a full GIS environment are not utilized, however, as the 

basic mapping of output data is performed with this first type of relationship. 

The second type of relationship is to incorporate the modeling environment 

within the GIS environment.  This methodology provides an add-in environment in 

which increased hydrologic and/or hydraulic capabilities are added to the GIS 

environment.  This basically provides users the ability to rely on the powerful analyst 

tools within company standard GIS environments in conjunction with a few added 

functionalities to more adequately analyze hydrologic and/or hydraulic studies.  An 

example of this type of system is the ArcHydro data model developed to aid in water 

resources studies (Maidment 2008).    

Loose coupling has been the traditional method in which geographic 
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information is passed into hydraulic model in floodplain studies.  By this method a 

communication forum is provided to pass information back and forth between 

company standard GIS packages and hydraulic models.  This takes into use the import 

and export nature of several of the hydraulic models currently available.  Geographic 

information is stored in data exchange files, usually in ASCII files, and passed into the 

hydraulic model, which uses a standard data format scheme to read the ASCII files to 

describe the geographic information in a geometric file.  In this method the GIS 

environment and modeling environment act independently of each other, but rely on 

the exchange files to pass information back and forth.  Several software packages 

employ this method of data processing, such as HEC-GeoRAS.  These software 

packages prepare the input files for use in a hydraulic modeling package such as HEC-

RAS and read the output files from hydraulic computations to create new geographic 

features. 

The tight coupling of GIS and models provides developers the methodology of 

having a central processing center which manages the passage of data back and forth 

between models and the GIS environment by writing process specific model libraries.  

This allows the model libraries to utilize the powerful tools located within GIS along 

with managing the overall modeling process.  To utilize the tools located within GIS 

strict methods must be in place in designing the feature classes which are used by GIS 

tools.  A partial tight coupling designation is given to applications which act 

independent of each other, but are managed by one overarching regulator of data 

passage.  This allows user control, along with utilizing the power of the GIS 

environment. 
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The Watershed Information System (WISE) is a product of Watershed 

Concepts Software, which provides several tools for managing water resources 

information.  The functionality of these modules lends themselves to integrate several 

sources of data to develop and manage large sets of data used for floodplain modeling 

including hydrology and hydraulics modules.  The GIS-model relationships that WISE 

exhibits are both the add-in capability and the loose coupling, where a data exchange 

file is utilized between HEC-RAS and WISE, and GIS functionalities are provided 

within the software.  WISE though does not operate within ArcMap.  It provides its 

own mapping and analysis tools.  The system is comprised of ten modules written in 

Visual Basic which utilizes ESRI’s MapObjects, ArcObjects and SDE technology.  

The hydrology module provides tools to prepare and export data to be used in 

conjunction with HEC-1 and TR-20.  The hydraulics module allows users the ability to 

handle geometry data in the modeling of floodplains.  WISE allows users to delineate 

watersheds, river centerlines, and land use files to create input files for HEC-RAS 

within the WISE window.  The WISE window is similar to the viewing window of 

ArcMap.  This setup is all contained within a HydraMax model within WISE.  Upon 

hydraulic computations being performed within HEC-RAS, WISE uses the output file 

to create new geographic features representing flooding extents (Watershed Concepts 

2008a).  

  Elevation data is effectively handled by WISE allowing users the ability to 

handle and blend digital terrain data along with original survey data.  Survey data is 

handled in its original ASCII format.  Users can select several terrain data including 

survey data, allowing higher priority to specific data, with which WISE creates a new 
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digital terrain model.  This functionality allows users to create a better digital terrain 

model based on prioritized elevation data to create hydraulically correct cross sections.  

Survey data can also be handled to define several structures including bridges, culverts 

and dams.  Users can also add structure specific data such as culvert elevations and 

road elevations, to define them more adequately in developing the hydraulic geometric 

file Watershed Concepts (2008b). 

Streams can be digitized and checked for connectivity within WISE.  Streams 

may also be defined using digital terrain data and methods in stream centerline 

delineation.  These delineated streams are generally used for un-gauged basins.  

Stream networks can have connectivity checked and completed if need be.  Stream 

meandering can also be removed by selecting a limit to a reach distance for meander 

removal Watershed Concepts (2008b). 

Channel and overbank area n-values are determined within WISE by user 

defined polygon geometries in a land use shapefile.  An overbank polyline shapefile, 

containing left, main and right polylines, is utilized to determine left, main channel 

and right overbank distances between subsequent cross sections Watershed Concepts 

(2008b). 

       WISE allows users several options in the placement of cross sections.  Cross 

sections can be viewed in the WISE display as they are created.  Surveyed cross 

sections can also be handled within WISE.  Cross section placement intervals can also 

be specified along with distances above stream confluences at which to place cross 

sections.  Cross sections may also be added (by digitizing), deleted and edited within 

WISE Watershed Concepts (2008b). 
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Cross section placement is automated by utilizing the steepest point within the 

overbank area within a specified searching distance.  The process is begun by placing 

a virtual line perpendicular to the streamline.  A sweep angle parameter then indicates 

to WISE how far to expand a search in the upstream, downstream and away from the 

end point directions, thus creating a triangle.  This triangle is then searched to find the 

point with the steepest slope.  This is done with both end points and the two points are 

connected to create the cross sections Watershed Concepts (2008b). 

The hydraulic model setup capabilities also allow a user to create flow and plan 

files.  Flow files (only steady files in the current WISE version) can be developed by 

specifying river stations and associated flows for various flow profiles defined by the 

user.  Plan files can be created which specify various hydraulic modeling parameters 

along with steady flow file and geometry file.  Floodway encroachment studies can 

also be setup with WISE Watershed Concepts (2008b). 

WISE allows users the ability to make any corrections to cross sections, n 

values and other feature data in preparation to export geographic to HEC-RAS.  WISE  

reads HEC-RAS output data to develop floodplain boundaries, flood profiles and base 

flood elevations.  Upon viewing the output a user can modify any geographic data to 

re-import into HEC-RAS.  This allows users to graphically come to a solution after 

several computations within HEC-RAS Watershed Concepts (2008b). 

The Watershed Modeling System (WMS) is a software package developed to 

be a complete graphical modeling environment for hydrologic and hydraulic modeling.  

WMS can also be classified along with WISE into a cross over between the GIS add-in 

and loose coupling GIS-model relationship.  WMS does not operate within ArcMap, 
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rather it supplies its own viewing and functionality tools.  WMS utilizes a data 

exchange file to pass information to and from HEC-RAS.  In the hydraulic modeling 

portion of the program a user may digitize a river centerline, bank lines and cross 

sections, with the ability to view a TIN or image file as a background.  Land use 

polygons are defined by selecting polygons as delineated by the polylines digitized 

such as between the river centerline and the bank.  Each polygon is assigned a specific 

n-value (WMS, 2002). 

Upon completion of digitizing of features and specifying n-values, WMS 

launches HEC-RAS and loads the geometry file.  The user can then enter flow data 

and create a plan file and run a HEC-RAS computation.  In the post-processing stage 

WMS creates flood extent, flood depth and flood impact maps (WMS, 2002). 

AMEC Earth and Environmental has developed a full hydrologic and hydraulic 

analysis tool pack to develop floodplain maps.  This complete package (AFG) 

automates the setup and geographic information output process in generating 

floodplain maps.  AFG exhibits the characteristics which fit in the partial loose 

coupling category of the GIS-model relationship.  The software is a plug-in to GIS, 

which utilizes defined model libraries in conjunction with utilizing a data exchange 

file to communicate between itself and HEC-RAS.  Therefore the AFG takes the role 

of overseeing the modeling process in conjunction with the company standard 

softwares of ArcGIS and HEC-RAS.  Same as  WISE and WMS, the AFG also 

develops hydrologic information, including delineated streams and hydrologic 

information useful for modeling.  The hydraulics portion of the AFG is split into three 

processes: PreRAS, RunRAS, and PostRAS.  The hydraulic component of the AFG 
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software initially runs PreRAS generating cross sections, flow and bank lines from 

stream lines and digital terrain data (AMEC, 2007). 

In PreRAS a user defines critical data for channel widths and specifications for 

cross section extractions.  A user may specify cross section spacing and width.  If the 

channel is a uniform shape, such as trapezoidal, a user may specify appropriate 

parameters for the width and side slopes of the channel, where channel top width 

defines the bank lines.  A flow path buffer is also available to be set.  In RunRAS a 

user may generate several floodplains (generated from individual geodatabases) in 

batch mode, or run a single stream floodplain delineation which can then be merged 

with an existing floodplain model.  PostRAS generates a water surface TIN from the 

output of HEC-RAS.  Multiple floodplains may be generated for several HEC-RAS 

profiles in a single batch run.  In the Interactive Floodway Editor encroachment 

stations may be moved to more correctly model the floodplain in subsequent 

applications of RunRAS (AMEC, 2007).  
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CHAPTER 3 

UTIMS METHODOLOGY 

UTIMS Capabilities 

The process of floodplain delineation requires precise geometric data 

development to accurately map floodplain inundation.  The software described in this 

thesis is called the UTah Inundation Mapping System (UTIMS).  This software 

package is designed to be an add-in to the ArcGIS environment which relies upon the 

multitude of functionalities GIS provides for developing geographic features.  UTIMS 

provides users an easy to use automation process (as shown in Figure 3-1) to create the 

appropriate geographic features for use by HEC-RAS and easily interpret the output 

from hydraulic calculations within the GIS environment to create new geographic 

features such as flooding extent polygons.  UTIMS streamlines the process of 

floodplain mapping simplifying it for modelers to develop complex geometries for use 

within HEC-RAS without spending large amounts of time.  UTIMS strengths lend 

themselves specifically useful in the area of extreme flow modeling, where an iterative 

process is utilized to efficiently define the floodplain and n-value assignment for use 

by HEC-RAS.  This time saving is extremely useful in developing the flood magnitude 

specific geometries which can then be utilized in modeling the specific level of floods.  

This aids a modeler in moving away from the bias introduced in  extreme flow 

modeling by  the assumption that one set of geometries can be used to model various 

levels of flow magnitudes.  In practice, various scenarios for dam breach modeling  

such as PMF-no failure, PMF-failure, sunny day failure, and breach of smaller 
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sections, including cases where uncertainty in breach sizes are considered, need to be 

developed.   The UTIMS  can be used to tailor the development of the required 

geometries to these specific modeling cases.  The UTIMS automation facilitates 

development of these flow specific geometries for various flow magnitudes in 

significantly reduced time.  UTIMS provides powerful tools to a modeler in 

developing flood magnitude specific flow path centerlines, cross sectional placement 

and creation, and n-value assignment from land use data for use in floodplain 

mapping.  Other features of UTIMS include: an easy to understand user interface (as 

shown in Figure 3-42), effective data management by creating folders in an iterative 

process, storing UTIMS project information in a UTIMS file (“.uif”), progress display, 

checking and completing river network connectivity, point specific cross section 

placement to monitor convergence status at user selected critical locations, specify 

change in flow at river stations, automated creation of bank and flow path lines, and 

the ability to directly write HEC-RAS geometry and project files.  While other 

softwares provide many automation process tools, UTIMS adds several powerful 

capabilities in providing modelers tools they need to easily and correctly determine 

flooding extents without sacrificing large amounts of time.   

UTIMS allows users the ability to conduct in-stream as well as extreme flow 

studies.  UTIMS provides a powerful set of tools to modelers to easily and accurately 

describe an extreme flow path centerline through an iterative and generalization 

process.  As was discussed previously, the original river centerline may not accurately 

describe the flow path centerline of an overbank flow in case of extreme flood 

modeling.  For this fact UTIMS has been designed to aid a modeler in developing the 
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flow path centerline of a flood.  This capability of UTIMS is  available to modelers to 

choose as an option between an in-stream or extreme flow model development.   

In the case of extreme flows the flow path centerline is initially unknown. 

UTIMS approximates an initial flood polygon by utilizing the user specified trial 

upstream and trial downstream depths for a specific flood magnitude.  UTIMS 

approximates the extents of the flood polygon by linearly interpolating trial flood 

depths along the river centerline at user specified cross-section intervals and identifies 

a trial flood extent at each point along a river centerline to derive an initial flood 

polygon.  UTIMS then approximates the centerline of this initial flood polygon and 

uses this as an approximation for the flow specific flow path centerline.  For the 

subsequent iterations the flood specific river centerline is derived from  HEC-RAS 

output.  UTIMS identifies the flood specific river centerline by approximating the 

centerline of the flood polygon acquired from HEC-RAS output.  In this manner the 

flow path centerline of a flood can easily and effectively be identified by iterating the 

process of passing geographic information to HEC-RAS, analyzing the flood polygon 

output to develop a new flow path centerline and passing new geographic information 

to HEC-RAS until user specified convergence at the user specified critical locations 

has been reached.  The convergence in floodplain mapping is treated to have reached 

when the change in water surface profile elevations from successive HEC-RAS 

computations at the user specified critical locations is less than the user specified value 

for the convergence criteria. 

UTIMS provides users a reasonable method to assign n-values for use by HEC-

RAS in hydraulic computations.  The cross sections hold profile data as well as n-
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values for the segments of the cross section.  The cross section profile represents the 

changing terrain  through which flow must pass.  The n-values associated with the 

segments of the cross section represent the change in land use.  Through several steps 

UTIMS defines the extent within which each cross section represents the change in 

land use by creating a proximity map identifying the closest areas to each segment of a 

cross section.  Therefore for each segment of a cross section the land use area defines 

the land use that the specific segment must represent in its n-value.  UTIMS integrates 

this seamless process into the overall UTIMS automation process by employing a 

computation method developed by Maged Aboelata, as described by Nanadoum 

(2005).  This capability is extremely useful in floodplain delineation by allowing 

modelers to assign reasonable n-values for cross sections. 

User control of UTIMS is simple and allows easy data input to setup a basic 

hydraulic model.  UTIMS provides buttons to allow users the ability to browse for the 

appropriate data required by UTIMS.  The data required by UTIMS include: a river 

network shapefile, raster dataset layer, TIN dataset layer, National Land Cover Dataset 

(NLCD) layer and a text file containing a table of NLCD grid code values and the n-

values associated with them.  Additional information required includes a process 

output folder, a project name, project units and the river network shapefile fields 

which provide a river’s name and reach name, and a few user defined parameters used 

in developing geographic features.  An additional label entitled “Output Location:” 

displays to users the specific folder into which UTIMS is saving shapefiles and other 

output files.  The current iteration (for use in the iterative nature of UTIMS) is also 

displayed in a label entitled “Iteration.”  Buttons on the main interface allow users the 
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ability to load a river network into UTIMS, load a UTIMS file (“.uif”) containing 

project specific information, save a UTIMS configuration into a UTIMS file (“.uif”), 

begin the UTIMS processing, assign required cross section information, read HEC-

RAS output and begin the iterative process of UTIMS.  A check box is also available 

to indicate to UTIMS to keep the cross sections from the current iteration to the next – 

thus preserving cross sections that a user feels are appropriate for the magnitude of 

flow being analyzed.  

UTIMS’ effective data management is handled in two manners.  Firstly 

UTIMS allows users the ability to store project information used in a UTIMS project 

in a special UTIMS file (*.uif).  This file stores the file paths to access required 

geographic data (shapefiles, terrain and land use data), project information (project 

name, units, etc.), river network specific parameters (information describing stream 

generalization, cross section placement, etc.), and general parameters for use by 

UTIMS.  The  UTIMS project file is created in a main output folder, as selected by 

users, having the name ”[project name].uif”.  The “UtIms File” allows users the ability 

to load a past project configuration and save new UTIMS project configurations.  The 

second manner of data management lies in UTIMS design of a folder system for data 

storage.  UTIMS employs a numbered system for the output of geographic data and 

storage of HEC-RAS projects.  For each of UTIMS iterations it creates “Data” and 

“Run” folders.  “Data” folders hold shapefiles created to hold geographic data and 

“Run” folders are created to hold HEC-RAS files.  This process begins with UTIMS 

creating a “Data1” folder and a “Run1” folder in the main output folder selected by the 

user.  Then to iterate the process UTIMS creates a “Data2” & “Run2” folder in the 
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output folder selected by the user to hold a new set of geographic data and HEC-RAS 

files for the second iteration and so on.  

Progress  is displayed within the ArcMap progress bar.  This allows modelers 

the ability to monitor the progress of UTIMS while it is running.  The overall process 

as well as smaller task process progress is displayed to modelers.  The lower left 

progress bar displays what process is being performed and the progress bar on the 

lower right displays the percentage of the overall process completed.   

UTIMS checks, and completes if necessary, the connectivity of the river 

network provided.  Upon completion of checking and verifying the connectivity of the 

river network UTIMS determines upstream and downstream connectivity of the river 

network and assigns nodes within the connectivity framework of the network.  This 

process of network checking and validation ensures that a complete hydraulic model is 

developed for use within HEC-RAS. 

UTIMS provides modelers the ability to specify points (locations along the 

stream network) at which to monitor changes in water surface elevations.  This allows 

modelers the ability to monitor the convergence  of the iterative process at the 

locations of interest in determining a correct flood polygon in extreme flood cases.   A 

user may provide paths to a shapefile on the main user interface for the critical points 

of interest at which to create cross sections.  UTIMS will monitor the changes in water 

surface elevations at these cross sections to aid modelers in determining whether or not 

a convergence tolerance has been met in the mapping process.  This capability, in 

conjunction with the capability of creating a new river centerline from HEC-RAS 

output flood polygons, provides modelers an enhanced process of floodplain mapping 
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specifically in the area of extreme flood modeling. 

UTIMS also allows users the ability to specify a shapefile containing change in 

flow point locations.  In case a modeler may need to specify a change in flow at a 

particular location, UTIMS will create cross sections at these points.   

UTIMS automates the creation of bank and flow path lines.  Bank lines are 

placed an offset distance from the actual river centerline supplied by the user at the 

beginning of  iteration.  Flow path lines are automatically developed by calculating the 

centroid of the left and right overbank areas and then connecting successive overbank 

area centroid points to derive the left and right overbank flow path lines. 

 UTIMS, though automates much of the input development process, it does 

require user judgment and intervention to complete the modeling process.  The 

software seeks to put a user in position to reduce the time required to develop complex 

geometries for use in particularly for extreme flow hydraulic modeling.  Therefore 

there is a learning curve required to become accustomed to and expert in using the 

software.  The learning curve is although very manageable  and a UTIMS User manual 

(Stevens and Chauhan, 2009) is prepared to facilitate this process. 

Process Walkthrough 

To demonstrate the iterative nature of UTIMS Figure 3-1 displays the path of 

data processing and handling by UTIMS.  UTIMS initiates the process by requiring 

five layers (elevation grid dataset, TIN dataset, river network, critical points and 

National Land Cover Dataset layer) and a tab delimited table representing the National 
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Land Cover Dataset – n value relationship table in a text file.   

As is depicted in Figure 3-1 the path of geographic data processing begins with 

 
 

Figure 3-1.  UTIMS iterative process. 
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the actual river network.  As shown in the “Initialize Process” portion of Figure 3-1 

UTIMS is capable of performing a generalization of the pre-existing river network to 

more accurately describe an extreme flow case.  UTIMS also verifies river network 

connectivity, completing it if necessary.   

As shown in the “Preprocessing” column the initial river centerline is used as a 

template to create bank lines by simply offsetting the river centerline by a user 

specified distance.  Flow path lines are constructed by calculating the centroid of each 

overbank area for each cross section.  Cross sections are also created and areal 

averaged n-values are assigned to segments of the cross sections.  The geometric data 

is passed into HEC-RAS to perform a flow calculation to obtain the first flood polygon 

as shown in the “Run HEC-RAS” column.  UTIMS then takes the flood polygon and 

approximates the flood polygon flow path centerline.  The flood polygon flow path 

centerline is used as an approximation for the flow path centerline in the next iteration 

of the process.  Therefore it is passed into the “Preprocessing” stage and the same 

process is performed again using this first flow path centerline.  HEC-RAS is run 

again and a second flood polygon is analyzed to determine the change in water surface 

elevation at the user specified critical points.  If the change in water surface elevation 

is too large (i.e. greater than the user specified tolerance), then a second flood polygon 

flow path centerline is derived from the second flood polygon. 

The process begins again by UTIMS sending the second flow path centerline 

into the “Preprocessing” stage and the process is repeated again.  The process ends  

when the change in water surface at the user supplied point(s) is within the 

convergence tolerance.  
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Sloping Plane Analysis to Identify Flow Specific Centerlines 

UTIMS aids modelers in defining a flow specific river centerline for extreme 

flows in floodplain management studies.  This process utilizes some initial 

calculations made by a modeler on the upstream and downstream depths expected for 

a certain flow magnitude.  Some initial calculations may be employed to calculate 

these upstream and downstream expected flow depths by using  the  upstream and 

downstream cross sectional areas and the peak flow to calculate “trial upstream” and 

“trial downstream” depths.  UTIMS uses these trial depths to derive an initial sloping 

flood polygon.  This sloping plane is derived using the terrain and the trial depths to 

approximate an initial polygon resulting from the peak flow.  The process of deriving 

the sloping flood polygon plane and associated initial river centerline will 

subsequently be discussed.  This analysis, though, is subject to user input, and is only 

performed as specified by the user.   

The required geographic inputs for this sloping plane analysis include two 

layers.  Firstly an actual river centerline is used to query points along the flow path, 

and secondly a digital terrain model in GRID format which represents the terrain 

elevations held in pixel cells.  The actual river centerline is used as a guide for 

defining the flow specific centerline in the sloping plane analysis.  The GRID format 

digital terrain model, also commonly referred to as a terrain raster, is used in raster 

calculations to extract appropriate elevation data in the sloping plane analysis.   

In summary the sloping plane analysis begins by taking the actual river 

centerline and using the “trial upstream” and “trial downstream” depths UTIMS 
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assigns linearly interpolated trial depths to thalweg points at a user specified interval 

along the actual river centerline.  With the specified trial depths UTIMS identifies trial 

depth points (using the elevation at the queried thalweg points and their associated trial 

depths) which are elevated up off the initial river centerline.  UTIMS uses these trial 

flood depth points and queries the closest points on the terrain on the left and right 

hand sides of the actual river centerline.  These closest points located on the terrain to 

the trial flood depth points are termed terrain query points.  UTIMS utilizes the terrain 

query points as an initial approximation of the flooding extents on the left and right 

hand sides of the actual river centerline derived at specific intervals down the initial 

river centerline.  UTIMS then uses these terrain query points to construct an initial 

flood polygon.  UTIMS utilizes the initial flood polygon to approximate the flow path 

centerline as the centerline of the initial flood polygon.  The approximated flow path 

centerline is then used in placing cross sections and is used as the main channel flow 

path centerline.  

To illustrate how the sloping plane analysis is used in developing a flow 

specific centerline Figure 3-2 shows a three-dimensional view of a river centerline 

located in the thalweg of a terrain model.  There are three reaches shown in Figure 3-2 

each with a different slope to help illustrate how the trial flood depths are influenced 

by the underlying terrain.  Figure 3-2 shows the thalweg elevations decreasing as the 

river proceeds to the bottom of the terrain data with the direction of flow going from 

left to right. 

Trial flood depths are used by UTIMS to approximate the extents of an initial 

flood polygon.  These trial depths are shown in Figure 3-3.  As shown in Figure 3-3 
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trial flood depths are linearly interpolated along the actual river centerline to elevate 

the actual river centerline.   

Combining the elevated river centerline shown in Figure 3-3 and the three 

dimensional terrain shown in Figure 3-2 yields a three-dimensional sloping river 

centerline as depicted in Figure 3-4.  The river centerline is shown lifted up out of the 

thalweg of the terrain at depths linearly interpolated along the river centerline.  This 

methodology leads to developing a flow specific river centerline in cases of extreme 

flow modeling where flow bypasses meanders in the actual river centerline.  Thus by 

elevating the centerline out of the thalweg a flow specific centerline can be 

constructed. 

 

Figure 3-2.  Three-dimensional view of river centerline. 
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Figure 3-4.  Elevated river centerline. 

 

Figure 3-3. Trial upstream and downstream depths. 
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Figure 3-5 shows a cross section profile of the uppermost portion of the terrain 

shown in Figure 3-2.  The depicted thalweg point is at an elevation of 1240 feet.  

Assuming that a user supplied a “trial depth” at the upstream portion of the river of ten 

feet UTIMS identifies a point at a depth of ten feet above the thalweg point.  This trial 

depth point shown in Figure 3-5 represents the first sloping plane elevation. 

In order to accurately determine the closest point on the terrain to the trial 

depth point UTIMS constructs a contour line at the trial depth point elevation.  As 

shown in Figure 3-5 the elevation of the trial depth point is 1250 feet.  UTIMS uses 

this elevation to construct a contour line to identify the closest point on the terrain at 

the trial depth elevation, shown in Figure 3-5 as the terrain query point.  UTIMS thus 

 
 

Figure 3-5.  Cross section view of terrain with  
trial depth point assuming 10 foot increase. 
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constructs a contour line for each cross section by using terrain data and the trial flood 

depth. 

UTIMS constructs these contour lines internally for each point queried along 

the river centerline.  In order for UTIMS to take into account an appropriate extent of 

terrain data UTIMS creates an extent polygon with which to extract elevation data to 

create contour lines.  UTIMS utilizes the river centerline and creates a buffer polygon 

around the river centerline.  The polygon edge is located at a user specified distance 

away from the river centerline.  The buffer polygon is used to clip the terrain GRID for 

use in creating contour lines.  This is done in order to utilize only an appropriate extent 

of elevation data in constructing contour lines and reducing the size of data UTIMS 

uses to define the contour lines.  This derived clipping mask polygon is stored on disk 

space to be utilized in developing a clipping mask raster for use in raster calculations.  

For multiple river centerlines UTIMS will create individual clipping mask feature 

classes with numbers at the end of the clipping feature class file representing the order 

of river centerlines processed starting with “0” (zero).  The first polygon feature class 

is stored in the user specified output folder with the name of “Mask_Polygon0.shp.”     

For each point queried along the river centerline to identify the closest points 

on the terrain UTIMS creates a clipping GRID raster from the masking polygon with a 

value of “0” (zero).  For each point a clipping grid is used and is named appropriately 

for the  river it was created from and the  point it represents along the river centerline.  

This grid is stored using the following naming methodology.  For the first point on the 

first river encountered requiring the sloping plane analysis UTIMS creates 

“mygrid_0_0” and stores it in the specified output folder.  The second point analyzed 
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along the river would yield a grid entitled “mygrid_0_1” where “0” represents the first 

river being analyzed and “1” (one) for the second point analyzed.  Thus the naming 

terminology is “mygrid_rivernumber_pointnumber” for the clipping grid UTIMS 

utilizes to clip the digital terrain model for use with the sloping plane analysis.  This 

clipping grid raster is utilized primarily to reduce the size of grids resulting from this 

analysis. 

UTIMS performs a raster calculation by adding the digital terrain model to the 

clipping mask raster to obtain a clipped digital terrain model.  UTIMS utilizes this 

clipped digital terrain model to obtain a specific contour.  Figure 3-6 shows an 

example of a clipped elevation grid. 

Figure 3-6 displays a 5x5 grid representing a portion of a clipped digital terrain 

 

Figure 3-6.  Clipped digital terrain data.
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model.  Each pixel in the grid holds a representative elevation for that grid cell portion 

of the actual terrain. 

To create a contour line at the trial depth point elevation UTIMS uses the raster 

extraction operator to “extract” the elevations located within the clipped grid which are 

less than or equal to the elevation of the trial depth point.  The “extraction” returns to 

UTIMS an internal raster  

Figure 3-7 shows an example of the clipped elevation data with a river 

centerline identifying the path the river may take on the clipped elevation grid.  The 

“query point” shown in Figure 3-7 represents the “From” point, or uppermost point, of 

the river centerline.   

UTIMS extracts elevation data beginning with the uppermost point on a river 

 

Figure 3-7.  Terrain data with river centerline. 
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centerline.  UTIMS uses the trial upstream flood depth as an increase in elevation to 

identify a contour line at the increased elevation.  Taking for example the clipped 

elevation grid shown in Figure 3-7 if a user had specified a trial upstream depth of “2” 

(two) units UTIMS would take the clipped elevation data and extract all the elevation 

grid cells less than or equal to “7” (seven) units.  A value of “5” comes from the 

elevation grid cell value for the “query point” and the “2” due to the trial upstream 

flood depth as specified by the user thus an elevation of seven units will be used for 

the elevation extraction, as indicated in Figure 3-8.  Figure 3-9 displays the grid cells 

from the grid shown in Figure 3-7 which would be identified by a grid extraction 

which have cell values less than or equal to the trial depth point elevation at the 

specified “query point.” 

All the grid cells with a value less than the increased elevation value of “7” 

(seven) were selected as the extraction set.  UTIMS takes the extracted cells and 

converts them into a polygon to be able to identify the “7” unit contour line.  The 

created polygon represents the areas within the clipped elevation model which have an 

elevation less than or equal to the elevation of the trial depth point.  UTIMS utilizes 

the edge of the created polygon to create the appropriate contour line.  Figure 3-10 

shows the polygon resulting from the extraction.   

As can be seen in Figure 3-9 UTIMS creates a polygon from the extracted data 

cells.  Due to the nature of the trial depth used in the extraction process the resulting 

polygon extends further upstream than the initial query point on the river centerline.  

The increased elevation polygon would continue past the downstream end of the river 

centerline.  If there are more than one polygon created by the conversion from grid to 
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polygon type UTIMS unites all the polygons to identify the outermost edges of the 

increased elevation polygon.  UTIMS names the polygon shape file based on the same 

naming convention as explained above for naming the grid i.e. 

“polygon_rivernumber_pointnumber.shp.” UTIMS identifies the first river and first 

point queried with the number “0” (zero), therefore the resultant polygon from the first 

point queried on the first river centerline would be stored in the appropriate output 

folder with the name “polygon_0_0.shp.” 

zHaving created the increased elevation polygon UTIMS uses the river 

centerline to cut the increased elevation polygon into a left and right increased 

elevation polygon.  Using the left and right polygons UTIMS performs a difference 

operation between the boundary of both the left and right polygons (removing the river 

 

Figure 3-8.  Calculation of trial depth point elevation. 
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centerline edge from the left and right polygon boundaries) to obtain the left and right 

portions of the contour line at the trial depth point elevation.  Using these left and right 

contour lines for a given elevation UTIMS queries these contour lines to find the 

closest point on both the left and right portions of the contour line to identify the 

terrain query point as shown in Figure 3-5.  As indicated in Figure 3-8 the query point 

is the base query point for this operation for identifying the closest points on the 

terrain.   

Figure 3-11 displays the contour line for “7” units which was shown in Figure 

3-10 as the increased elevation polygon.  The polygon is converted to a polyline from 

the polygon without smoothing the polygon boundary, thus preserving the shape of the 

queried polygon. 

 

Figure 3-9.  Elevation extraction cells. 
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Figure 3-10.  Elevation extraction polygon. 

 

 

 

Figure 3-11.  Created contour line. 
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Using the contour line for 7 units, as shown in Figure 3-11 UTIMS queries the 

contour line to identify the closest point on both the left and right sides of the contour 

line to find the closest point on the terrain to the trial depth point.  Figure 3-12 shows 

the two points queried on the left and right sides of the contour line.  These two points 

represent the closest points on the terrain to the trial depth point which are utilized in 

creating an initial flood polygon. 

Using the user specified distance to query points along the river centerline for 

the sloping plane analysis UTIMS continues down the river centerline by querying 

more points on the river centerline to again find the trial depth point and develops the 

appropriate elevation contour line to develop an initial flood polygon.  

 

Figure 3-12.  Queried points on contour line. 
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Figures 3-13 displays a second point queried on the river centerline and the 

associated contour line at an elevation of “5” (five) units.  UTIMS utilized the second 

query point and constructed the “five” (five) unit contour line to identify the closest 

points to the second query points trial depth point on the five unit contour line.  This 

second pair of points represents the closest points on the terrain to the second trial 

depth point.  The contour line for 5 units was constructed by using the point value in 

the base elevation grid of “3” (three) for the second query point and added a value of 

“2” (two) to get the trial depth point elevation of “5” (five) units.  Trial flood depths 

are linearly interpolated from the trial upstream and downstream depths.   

Figure 3-14 displays a third query point on the river centerline, and the 

associated contour line for “4” (four) units and the terrain query points identified.  The 

 

Figure 3-13.  Second set of queried contour points. 
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four unit contour was developed by using the base grid value of “2” (two) for the third 

query point and a trial depth of “2” (two) was applied to get an elevation of “4” (four) 

units. 

Figure 3-15 shows how the initial flood polygon is developed using the three 

sets of the terrain query points.  The flood polygon is constructed by adding the 

segments between the points to a polygon feature.  In this manner UTIMS not only 

creates a flood polygon but has control of which points are in order from top to bottom 

in the polygon.  Figure 3-15 indicates that there are more points downstream to be 

added as terrain query points, but only the first three sets of terrain query points are 

shown.  UTIMS continues down the river centerline identifying terrain query points 

 

Figure 3-14.  Third set of queried contour points. 
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and constructs the initial flood polygon utilizing the left and right side terrain query 

points. 

To aid in extreme flow modeling of meandrous portions of river reaches 

UTIMS ensures that the terrain points derived from query points below a certain 

station on the river centerline do not lie in the initial flood polygon already 

constructed.  This ensures that in meandrous portions of a river reach a complete initial 

flood polygon is constructed which does not have overlapping paths forming the edge 

of the polygon. 

Figure 3-16 shows the three dimensional view of the terrain with the trial depth 

points which are “elevated” off the thalweg of the terrain at depths equal to the trial 

depth linearly interpolated along the river centerline given the upstream and 

 

Figure 3-15.  Initial three-dimensional flood polygon. 
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downstream trial depths.  Figure 3-16 also shows the terrain query points which have 

been determined to be the closest points on the terrain to the trial depth points.  

UTIMS utilizes these terrain query points to construct a three dimensional polygon by 

connecting the terrain query points as the boundary of the initial flood polygon.  

Figure 3-17 shows the constructed initial flood polygon. 

The initial flood polygon shown in Figure 3-17 represents an initial flood 

inundation polygon which is utilized to approximate the flow path centerline of a 

certain magnitude of flow.  As can be seen any meandering in the thalweg of the 

terrain is in essence removed by elevating points out the thalweg and connecting 

 
 

Figure 3-16.  Nearest terrain query points. 



57 
 

 

terrain points to form an elevated flood polygon and approximating the centerline of 

the  polygon.  This process proves extremely useful when modelers may not know the 

flow path centerline of an extreme flow in extreme flow modeling case studies.  

UTIMS aids users in approximating the centerline of the flow path so that cross 

sections can be placed perpendicular to the flow path centerline and essentially reduce 

the time in developing geometries for extreme flow modeling case studies. 

Flood Polygon Centerline Approximation 

UTIMS creates a flood specific river centerline for use by modelers in cases of 

extreme flow modeling.  UTIMS approximates the flood specific river centerline as 

 

Figure 3-17.  Constructed initial flood polygon. 
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the centerline of an initial flood polygon derived by utilizing terrain data and the user 

input trial upstream and trial downstream depths.  For subsequent iterations, UTIMS 

also performs this approximation of a flood polygon centerline by finding the 

centerline of the  flood polygons read into UTIMS from HEC-RAS. 

 Several techniques to approximate flood polygon centerlines were tested to 

identify a reasonable approximation of the flood polygon centerlines.  The first 

technique investigated was to cut the flood polygon into many parts by cutting the 

polygon into successive halves until the area of each small polygon reached a 

minimum area.  Then by taking the center points of each of the smaller flood polygon 

parts and connecting them to construct the flood polygon centerline.  This method did 

not create uniform smaller polygons, therefore when the smaller polygon center points 

were connected the centerline did not represent the centerline of the flood polygon. 

 The second technique investigated was to isolate the left and right paths of the 

flood polygon and cut them up into equal number of segments.  Taking the first two 

segments (the first on the left and the first on the right) the “from” points of each 

segment were connected and a “midpoint” was created in memory at half the distance 

of the connected line.  Then the second pair of segments were identified and the 

“from” points of these two segments were connected and a “midpoint” was identified 

along the connected line at half the connected line length.  This process was continued 

down the left and right paths of the flood polygon.  These “midpoints” were then 

connected to construct an approximation of the flood polygon centerline.  This 

technique proved useful when the left and right paths of the flood polygon were of 

approximately the same length.  However, when the left and right path lengths varied 
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greatly the created “midpoints” were created outside of the flood polygon itself.  

Therefore this technique did not prove useful to be included in UTIMS. 

 The third technique was to take query points along the left path of the polygon 

and then query the closest points on the right side of the polygon to each of the points 

along the left path of the polygon.  For each left path point and its closest right path 

point a line was constructed and the midpoint of the connected line  was identified.  By 

taking these “midpoints” and stringing them together an approximate flood polygon 

centerline was constructed.  This method proved useful when the left and right paths of 

the flood polygon were uniform in length and very nearly mirrored each other.  When 

the left and right paths of the flood polygons varied greatly in length and expanded 

away from each other the constructed centerline crossed out of the flood polygon due 

to great variances in lengths of the left and right paths. 

 The fourth technique was a modification of the third technique mentioned 

above.  This technique followed the third technique where base query points are taken 

on the left and the right paths of the polygon with a limit on where the closest points 

along the opposite paths of the polygon could be found.  This method proved sufficient 

in approximating the centerline of the flood polygons in cases where the left and right 

paths were nearly the same length as well in cases where the paths differed greatly in 

length.  This method was accepted as the method with which UTIMS identifies a flood 

polygon centerline considering the scope of this thesis and the degree to which the 

flood polygon centerline must be truly in the center of the flood polygon at all times.  

Further elucidation of this method and its output is continued on page 61. 
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 A method to identify the centerline of a flood polygon through  partial 

differential equations was discussed by Chai, Miyoshi and Nakamae (1998)  The 

method described in Chai, Miyoshi and Nakamae (1998) shows how a true flood 

polygon centerline could be developed.  The research by Chai, Miyoshi and Nakamae 

(1998) describes the process through which a centerline which is both globally smooth 

and exactly simultaneous central to two bounding contour lines or polylines can be 

constructed by using gradient controlled partial differential equations.  The 

methodology is constructed by considering two contour lines which can be governed 

by partial differential equations.  By solving the partial differential equations and 

considering their gradient conditions a piecewise linear polygonal terrain surface is 

constructed.  Then by sampling on the constructed surface at an intermediate contour 

elevation a new contour line can be constructed. 

 Although the method as described by Chai, Miyoshi and Nakamae (1998) 

would be useful in developing a true flood polygon centerline, but it was not pursued 

in UTIMS development.  UTIMS works in conjunction with HEC-RAS, a one-

dimensional modeling engine, to produce floodplain maps.  Therefore, it was not 

considered appropriate in UTIMS to implement a mathematically rigorous technique 

to identify “true” or “exact” flow path centerline, but a computationally efficient 

“reasonable” approximation of it and allow the user to do any necessary adjustments 

by visual inspection.    The following section describes the method that UTIMS uses 

for flood polygon centerline approximation.  
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UTIMS Flood Polygon Centerline Approximation 

UTIMS creates a flood specific river centerline for use by modelers in cases of 

extreme flow modeling.  UTIMS approximates the flood specific river centerline as 

the centerline of an initial flood polygon derived by utilizing terrain data and trial 

upstream and trial downstream depths.  For subsequent iterations, UTIMS also 

performs this approximation of a flood polygon centerline by finding the centerline of 

the  flood polygons which are read into UTIMS from HEC-RAS. 

The approximation UTIMS uses to derive the flood specific centerline relies 

upon the boundaries of the initial flood polygon.  UTIMS uses a proximity analysis of 

points along the left and right boundaries of a flood polygon.   Figure 3-18 displays 

 

Figure 3-18.  Query points on left and  
right sides of initial flood polygon. 
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how UTIMS identifies the left and right sides of the initial flood polygon and uses 

these to approximate the centerline of the flood polygon.  As can be seen in Figure 3-

18 a left and right query point on the appropriate boundary lines are used to initiate the 

analysis.  This type of analysis was chosen as an appropriate approximation due to its 

ability to efficiently characterize the centerline of the initial flood polygon. 

UTIMS uses the left and right query points to query the closest point on the 

opposite side of the polygon (i.e. the closest point on right path closest to the left query 

point).  Figure 3-19 shows the closest points identified on the opposite sides of the 

polygon closest to the initial query points.   UTIMS then connects the appropriate 

query point with its accompanying closest point on the opposite side of the polygon 

and queries the mid points of the two line constructed.  Figure 3-19 shows how 

 

Figure 3-19.  Closest points on opposite polygon path 
querying and polygon segmentation factor. 
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UTIMS connects the appropriate points on the left to right and right to left paths to 

create two connected lines.  UTIMS queries the midpoint of these connected lines and 

connects the two points found and takes the midpoint of the newly created line as a 

new vertex in the approximated flood polygon centerline.  The new polygon centerline 

vertex is shown in Figure 3-19 as an approximation of the center of a portion of the 

main flood polygon by utilizing closest point neighbors on opposite sides of the flood 

polygon. 

To continue the process in the downstream direction, UTIMS increments the 

stations of the closest points by a user specified distance to identify new base query 

points.  This distance is termed the “Polygon Segmentation Factor.”  This user 

specified distance has a role in how accurately a user wants UTIMS to identify the 

flood polygon centerline.  The value entered by the user is applied to the left path of 

the polygon and a value for the right path of the polygon is calculated as proportional 

to the “Polygon Segmentation Factor” based on the left and right path lengths.  

Another way in which UTIMS ensures that this process continues in downstream 

direction is that UTIMS only allows the closest points on the opposite side of the flood 

polygon to be at a station downstream of or at the base query point station.  As can be 

seen in Figure 3-19 where upstream portions of the left and right paths of the flood 

polygon  have been “grayed” out and are no more available.   

Figure 3-20 also shows the second pair of newly queried closest points to the 

new base query points.  Again the base query points are connected with their 

appropriate closest point neighbor.  The mid points of these newly create lines are 
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queried.  UTIMS again joins these two midpoints and queries this new line to obtain a 

new vertex in the centerline approximation process. 

Figure 3-20 shows the new base query points and the available portions of the 

left and right paths of the flood polygon with which to query opposite side points.  

Figure 3-21 shows the third set of base query points and their closest point 

queried on the opposite side of the flood polygon and a new vertex of the flood 

polygon centerline.   Figure 3-22 shows how the process continues downstream until 

the last points on the left and right paths of the flood polygon are used to complete the 

flood polygon centerline.   

This process proves useful in cases where a flood polygon does not have 

uniform left and right paths to query.  As seen in Figure 3-23a an example of left and 

right paths which are not uniform shows how UTIMS would approximate the 

centerline of the shown flood polygon.  

 

Figure 3-20.  Closest point analysis in uniform flood polygon.  
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Figure 3-21.  Continued closest point analysis. 
 
 
 
 
 
 

 
 

Figure 3-22.  Completed closest point analysis. 
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Figure 3-23b shows the approximated flood polygon centerline from the 

irregular flood polygon shown in Figure 3-23a.  As can be seen UTIMS handles the 

somewhat jagged left and right polygon paths well and stays mainly in the center path 

of the polygon.  In this process UTIMS ensures that the centerline continues in a 

downstream direction by limiting the available path length which can be queried when 

identifying the closest points on the opposite path from the base query points. 

 

 
 

Figure 3-23a. Irregular polygon shape flow path 
centerline determination. 
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 To further illustrate the pathway in which a flood polygon centerline is 

developed when the left and right path lengths vary Figure 3-24 shows a case in which 

the right path is longer than the left path.  As shown in Figure 3-24 the right path is 

jagged and the left path stays straight.  Due to the much longer length of the right path 

the segmentation factor for the right is longer than the one used for the left.  The 

paired left and right query points are similarly numbered (1, 2, 3, …) until the end of 

the polygon is reached.  As can be seen the presence of the jagged edge of the right 

path influences the centerline of the flood polygon in a small degree.  To handle the 

jagged edge on the right path UTIMS does place a query point on the right path in the 

 

Figure 3-23b.  Completed irregular flood polygon  
flow path centerline. 
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V-shape of the right path.  This point (in Figure 3-24 right point 4) queries the left path 

and finds the closest point available on the left path which is just next to the left query 

point on the left path (also numbered 4).  The left query point does not find a point in 

the V-shape of the right path as it finds the closest point on the right path which is at 

the top of the V-shape.  This aids in keeping the flow path centerline in the flood 

polygon.  In this manner UTIMS seeks to develop a flow path centerline which 

reasonably represents the path that water would flow through the flood polygon as 

shown in Figure 3-24.  Figure 3-24 also shows the final flood polygon centerline 

developed by UTIMS.  It is to be noted, that a mathematically “true” centerline would 

be inappropriate here, because most likely user will define some ineffective flow area 

on the right hand side.   

 

 
 

Figure 3-24.  Irregular right path flood 
polygon flow path centerline. 
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Line of Sight Analysis 

To aid construct a smooth flow path centerline UTIMS also utilizes a “line of 

sight” analysis to smooth the approximated flood polygon centerline for use in placing 

cross sections.  Due to the possibility of short kinks in the flood polygon centerline 

UTIMS smoothes the centerline by looking in the downstream direction for possible 

portions of the flood polygon centerline which can be short-circuited or removed.  

This is done to allow for cross sections to be placed normal to the flow path centerline 

and not be severely altered in orientation to the main direction of flow path by short 

kinks in the approximated flood polygon centerline. 

The degree to which the flood polygon centerline is generalized is user defined.  

This process is extremely useful when the floodplain opens up and is expansive in 

breadth where the flow path centerline should follow a general direction rather than 

have short kinks in its path.  UTIMS guards against over generalization in meandrous 

portions of terrain by not allowing the line of sight centerline intersect the terrain 

itself, thus keeping the general shape of meanders if they are defined by the terrain and 

the magnitude of flow under consideration. 

Figure 3-25 shows a short segment of a meandering flood polygon centerline 

which will be used to illustrate how the line of sight analysis operates on the 

approximated flood polygon centerline.  As can be seen in Figure 3-25 query points 

are placed along the centerline at a user specified distance.  The user specified distance 

is termed the “Line Of Sight Point Interval” and its value can impact the degree to 

which a centerline is generalized or short-circuited.   
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The query points as shown in Figure 3-25 are the possible vertices of the line 

of sight centerline.  The query points along the centerline are given an elevation 

increase to be used in the line of sight analysis.  These elevation increase values are 

assigned based upon a linear interpolation of the user specified upstream and 

downstream trial depths.  To begin the process UTIMS identifies the first point on the 

centerline as the base query point.  From the base query point UTIMS connects to the 

subsequent points along the centerline until one of the points cannot be “seen” or there 

is an obstruction impeding the viewing of subsequent points along the centerline.  

Figure 3-26 shows the connected lines from the first point to subsequent points 

along the centerline until an obstruction is encountered and UTIMS could not “see” a 

point downstream. 

 

Figure 3-25.  Line of sight points. 
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 As seen in Figure 3-26 UTIMS encountered no obstruction by the terrain in 

connecting the first point to the second, third, fourth, and fifth points.  Between the 

first and sixth points, though, there was an elevation encountered which impeded the 

line of sight.  To avoid causing the line of sight analysis to give new centerline that 

may intersect the terrain surface UTIMS does not take the last point seen as the second 

point to add to the line of sight centerline.  Instead, UTIMS selects the point at half the 

distance between the base query point and the last seen point.  Therefore, as seen in 

Figure 3-26, UTIMS accepts the third point as the next point in the line of sight 

centerline.  UTIMS then utilizes the third point as the new base query point. 

 Figure 3-27 shows the connected lines from the third point to the subsequent 

points which can be “seen” down the flood polygon centerline.  As shown in Figure 3-

 

Figure 3-26.  First set of line of  
sight analysis points. 
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27 UTIMS encountered an obstruction between the third and ninth point, therefore 

UTIMS selected the sixth point as the third point in the line of sight centerline.   

 As seen in Figure 3-28 UTIMS encountered no obstructions from the sixth to 

the thirteenth point.  To avoid too much generalization UTIMS requires a “Meander 

Correction Value” to be utilized in restricting how much length the line of sight 

analysis can remove from the flood polygon centerline.  Figure 3-29 shows that 

UTIMS could see past the meander correction value distance therefore, UTIMS takes 

the point which is at two-thirds of the distance which UTIMS could “see.”  Therefore 

the eleventh point was taken as the next vertex in the line of sight analysis centerline. 

 The meander correction value also tells UTIMS that a user wants the sloping 

plane analysis and line of sight analysis to be performed on the input river centerlines.   

Therefore the meander correction value plays a twofold part in the sloping plane 

analysis and the line of sight analysis.  If the meander correction value is zero then no 

 

Figure 3-27.  Second set of line of 
sight analysis points. 
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sloping plane analysis or line of sight analysis is performed, which may be useful in 

modeling in-stream flows.  However, if the meander correction value is greater than 

zero then UTIMS performs both the sloping plane analysis and line of sight analysis 

on the river centerline for the first iteration.  For subsequent iterations, instead of the 

sloping plane analysis, the maximum water surface polygon obtained from HEC-RAS 

output is utilized to generate a flow path centerline for the flood polygon.   

The line of sight analysis is also performed on the flood polygon centerline for 

the subsequent iterations.  

Figure 3-30 shows the line of sight centerline constructed from the polygon 

centerline depicted in Figure 3-25.  The line of sight analysis smoothes flood polygon 

centerlines providing a more representative flow centerline with which to place cross 

sections perpendicular to flow and to build HEC-RAS models.   

 

Figure 3-28.  Long segment of line of 
sight analysis considered.
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Figure 3-29.  Meander correction distance. 

 

 

Figure 3-30.  Line Of sight analysis completion. 
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Areal Averaged n-Value Assignment 

In the process of determining n-values for input to HEC-RAS, UTIMS 

completely automates the assignment of n values to segments of cross sections with 

the aid of standard land use data.  UTIMS automates the creation of n-value polygons 

which represent the n-value described by the spatial land use extent of each segment of 

a cross section.  The development of the appropriate areal extent to assign to a specific 

portion of a cross section ensures that an appropriate n-value is assigned to the correct 

portion of a cross section.  As cross sections represent the change in cross section 

profiles between the upstream and downstream cross sections the n-value must also be 

representative of the change in land use type and thus the  n-value from the upstream 

to downstream cross sections for each cross section.  UTIMS creates representative 

polygons derived from segments of each cross section by creating a proximity map.  

The proximity map utilized ensures that the n-value for each segment of a cross 

section more reasonably represents the actual spatially derived n-value based upon the 

land use types located within the extent of a cross section segment.  UTIMS uses  the 

National Landcover Dataset (NLCD) as the standard input with which  it calculates 

representative n-values for segment derived polygons.   

The process of assigning n-values to various segments of cross sections begins 

with the cross sections themselves.  Cross sections associated with a single reach are 

processed together at a time so that the spatial extent of segments based upon 

surrounding segments can be more accurately described.  The extent of the segments 

of cross sections is derived by using the Euclidean allocation method made available 
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by ArcMap.  The Euclidean allocation method is the same process as utilized in 

producing the Thiessen polygons.  The function can be performed on data sources of 

feature class and raster type. 

Input data sources into the Euclidean allocation contain what are known as 

“source” cells which hold source values.  The Euclidean allocation function uses 

source cells to find the boundaries of the closest areas to each source cell relative to 

the other source cells in the input data source.  The function is ultimately performed on 

only raster datasets, however if a feature class is input into the function then the 

function will internally convert the features within the feature class first to a raster 

dataset before performing the Euclidean allocation.  The basic premise of Euclidean 

allocation is shown in Figure 3-31.   

As is seen in Figure 3-31 the input data source contains what are known as 

“source” cells.  For each source cell there is an associated value.  The Euclidean 

allocation in essence scans the cells located within the input data source and for each 

cell the distance from itself to each source cell is calculated.  The closest source cells 

value is recorded as the scanned cell’s value.  As can be seen in Figure 3-31 the 

distances calculated is the hypotenuse or true Euclidean distance.  This distance is the 

distance from the center of each scanned cell to the center of the source cells. 

The Euclidean allocation produces an output raster which holds the cells which 

have been assigned the value of their closest source cell’s values.  Figure 3-32 depicts 

the output from a Euclidean allocation.  As can be seen in Figure 3-32 each cell has 

been assigned the value of the nearest source cells, as indicated by the various zones 

(the source cells are still indicated by the cells with bold white border). 
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In overview of the n-value assignment capabilities of UTIMS Figure 3-33 

shows the general pathways through which UTIMS travels to derive areal averaged n-

values.  There are two adjacent paths of data flow that occur during the assignment of 

n values to segments of the polylines created.  These paths are graphically shown in 

Figure 3-33.  The two paths are first the spatial extent path and second the land use 

determination path.  The first path, the spatial extent path, ultimately determines the 

Euclidean allocation feature boundaries for each cross section segment.  This first path 

of determining the spatial extent to be assigned to each segment of a cross sections 

generates the source cells used in the Euclidean allocation to determine the proximity 

 
 

Figure 3-31.  Euclidean allocation input. 
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map used in assigning areal average n-values.  The land use determination path defines 

the n-values possible within each Euclidean allocated polygon. 

Due to only a single collection of cross sections associated with one river reach 

being analyzed at a time UTIMS employs a numbering system which allows effective 

file handling.  For each dataset created UTIMS adds a special identifier number to the 

end of the file name.  The identifier number represents which river reach in the 

original river centerline shapefile the cross section collection belongs to.     For 

example, the first cross section collection, being associated with the first river in the 

original shapefile, would be given the ending “0” (zero) for each of the datasets 

created for that collection of cross sections.  The second collection would receive a “1” 

(one) and so forth until all the cross sections have been processed and assigned 

 
 

Figure 3-32.  Proximity map derived 
 from euclidean allocation. 
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average n-values.  The datasets described in the remainder of this section will be 

assuming the value of “0” (zero) at the end indicating a simulated first dataset being 

handled.     

The process of assigning n values to segments of cross sections handles a 

single collection of cross sections that are associated with a single reach.  These cross 

sections are located in the “Cross Sections.shp” shapefile located in the current output 

folder (“Data” & iteration number), indicating which iteration UTIMS is conducting.  

Figure 3-34 displays a sample set of four cross sections. 

UTIMS allows users the ability to specify how many segments each cross 

section should be divided into in determining n values.  From the specified number of 

segments for a specific reach UTIMS divides each cross section into a user specified 

number of segments.  Figure 3-35 shows how these four cross sections would be 

divided if they were divided into five segments each.  As per HEC-RAS requirement, 

the cross sections are to be oriented left to right when looking in the downstream 

direction.  Figure 3-35 indicates that indeed this is the case with the UTIMS process as 

the first segment (located on cross section one) is in the upper right hand corner of the 

figure.  The shapefile which holds the polyline segments in preparation for the 

Euclidean allocation is entitled “polylinesegments0.shp.”   

In preparation for Euclidean allocation, UTIMS converts the features located 

within the polyline segment feature class into a GRID format and stores them in the 

current iteration data output folder as “seg_raster0.”  The values for the cells in the 

GRID format hold the value of which segment it was derived from.  For example the 

first segment in the raster created would have the value of “1” (one), and so forth. 



80 
 

 

 

 

 
 

Figure 3-33.  Overview of areal average n-value assignment. 
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Figure 3-34.  Original cross sections. 
 
 
 
 

 
 

Figure 3-35.  Cross section segments. 
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The Euclidean allocation is performed on the grid format of the polyline 

segments, thus creating the required proximity map for use in assigning areal average 

n-values.  The Euclidean allocation creates an internal raster format of the output, 

which is stored in the data output folder as “EucRaster0.”  UTIMS converts the raster 

into a polygon shapefile for the purpose of associating each raster zone with an area 

averaged n-value.  The resulting shapefile containing the polygons created by the 

Euclidean allocation is stored as “euc_polygons0.shp.”  Figure 3-36 depicts how the 

Euclidean allocation would calculate the Euclidean polygons from the previously 

shown polyline segments  in Figure 3-35.  As can be seen in Figure 3-36 the created 

polygons extend to neighboring segments on the same cross section and then half-way 

between the previous and subsequent cross sections (upstream and downstream).  The 

extent for the Euclidean allocation raster environments settings for this step are 

extended 100 units both upstream and downstream to get  more representative 

polygons for the furthest upstream and furthest downstream cross sections. 

Thus constructing the Euclidean allocation polygons for each segment derived 

from each initial cross section UTIMS determines the extent under each cross section 

segment to assign an average n-value.  Figure 3-37 displays the proximity map or 

“window frame” with which to view and account for land use associated with a 

particular segment analysis extent.  Polygon 13 from the Figure 3-36 is shown as an 

example in Figure 3-37.   
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The proximity map derived from using the Euclidean allocation provides the 

extent with which to examine the land uses that define the area surrounding a segment 

of a cross section.  Up to this point UTIMS completes the first path of data handling 

which creates an appropriate proximity map.   

The second path of data handling utilizes the specific land use data source to 

determine areal average n-values.  UTIMS utilizes the standard and widely accessible 

National Land Cover Dataset as the input for n-value assignment. 

 

Figure 3-36.  Euclidean allocation polygons. 
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The National Land Cover Dataset is the product of many surveys compiled by 

the United States Geological Survey (USGS).  The values assigned to each grid cell in 

the dataset are an integer representation of the dominant land use type within the 

particular grid cell.  These integers representing land types range from 11 to 99.  

Figure 3-38 displays the representative integer and land use type for the 2001 National 

 
 

Figure 3-37.  Proximity map for  
example polygon 13. 
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Land Cover Dataset. 

Utilizing the National Land Cover Dataset a user can specify a land use – n 

value table relating each land use type to a specific n value.  This allows for 

representative assignment of n-values for large areas being studied.  Figure 3-39 shows 

a table as an example  for several land use types and associated n-values as input into 

UTIMS.  UTIMS requires a text (“*.txt”) file containing land use ID   on each line 

followed by a tab and a representative n-value for that specific land use type, as shown 

 
 

Figure 3-38.  National land cover dataset grid cell values. 
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in Figure 3-39.  In cases where there may be no data assigned or a user may wish to 

specify a specific n-value for all other land use types, the last value in the file has an 

ID of “999” and then a representative n-value for all other land use types or for no ID 

values in the grid.  Column titles of “ID” and “nVal” are required on the first line of 

the text file defining first the grid code values and then the n-values. 

UTIMS utilizes the National Land Cover Dataset (NLCD) by clipping the land 

use dataset to the extent of the collection of cross sections being considered.  UTIMS 

takes the cross sections specified by the user and constructs a polygon which encloses 

all the cross sections in a collection.  The polygon is constructed by using the end 

points of each of the cross sections to create a complete possible inundation polygon.  

 
 

Figure 3-39.  NLCD dataset n-value assignment relationship. 
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This polygon is stored in a shapefile entitled “inundationpoly0.shp” located in the data 

output for the current iteration, “0” for the first collection in a set of cross section 

collections.   

UTIMS uses the inundation polygon to create a single raster band which has 

the value of “1.”  This raster is saved in the data output folder as “mask_0.”  Using this 

raster a raster calculation is performed by multiplying the mask raster having a value 

of “1” and the NLCD dataset.  The resulting output is a clipped NLCD layer which 

represents the extent of the cross section collection being considered.  The clipped 

NLCD dataset is store as “clippednlcd0.”  Figure 3-40 displays a clipped portion of a 

much larger NLCD dataset, derived from clipping the larger dataset by the extent of an 

inundation polygon.  The clipped NLCD dataset is then converted into a polygon 

shape file containing polygons holding the values of the appropriate land use grid 

values from the clipped NLCD dataset.  This shape file is entitled “lu0.shp” and is 

located in the data output folder for the current iteration. 

UTIMS then utilizes the n-value/NLCD grid value table by joining the 

appropriate n-value from the relationship to each polygon, based on the NLCD grid 

code value in the polygon shapefile fields, in the “lu0.shp” shape file as shown in 

Figure 3-41.  The joined n-value/NLCD grid code value polygons are stored in a new 

shape file entitled “n_lu0.shp.”  UTIMS converts this joined n-value shape file into a 

raster, whose cell values contain the n-values associated with each of the polygons 

derived from the original clipped NLCD dataset.  The resulting n-value raster is 

entitled “nvalraster0.” 
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UTIMS utilizes the created “nvalraster0” n value raster and the 

“euc_polygons0.shp” shapefile containing the Euclidean allocated polygons to 

perform a zonal statistics calculation.  This calculation considers all the n value cells in 

the n value raster located within each of the allocated polygons to calculate the areal 

 
 

Figure 3-40.  Clipped NLCD layer within polygon 13. 
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averaged n-value within each polygon.  For example, for Figure 3-41 the zonal 

statistics function would ultimately calculate the average n-value within polygon 13.  

The zonal statistics table generated is stored in the iterative output folder as 

“zonalstats0.dbf.”  Among several other statistical values calculated the zonal statistics 

function calculates the average n-value within each Euclidean allocated polygon.  

Equation 3-1 shows how the zonal statistics function calculates the areal average n-

value.  Table 3-1 displays the values used in defining the areal average n-value for 

polygon 13.  For each land use type located within each Euclidean allocated polygon 

zonal statistics takes the land use area (specified by n-values in the n value raster) and 

multiplies each area by it associated n-value, sums these values and then divides by the 

total area to calculate the areal average n-value.  

The polygons which were derived by the Euclidean allocation are joined to 

their appropriate areal averaged n-value and are stored in a new shapefile entitled 

“zones0.shp.”  These areal average n-value polygons are then converted into a raster 

format to be easily read when assigning n-values by HEC-RAS.  The final n-value 

raster is stored as “nRaster0” in the iterative output folder.  

Therefore, as explained above, the process of determining areal averaged n-

values relies upon the cross sections being utilized and the standard NLCD layers to 

calculate areal averaged n-values.  These n-values more reasonably  describe the land 

use and associated n-values because standard land use data is utilized and the 

assigning of n-values takes into account the extent of each segment of a cross section 

to which n-values are assigned. 
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where n is the number of land use types within a Euclidean allocated polygon. 

 

 

 
 

Figure 3-41.  Joined land use code – n value polygon shapefile. 
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Comparison of Softwares with UTIMS 

The comparison of the various softwares’ capabilities is displayed in Table 3-2.  

The various software capabilities are compared under following headings.   

Runs within ArcMap 

The ability for softwares to operate within ArcMap provides robustness to the 

data preparation and analyzing within floodplain mapping.  The softwares GeoRAS, 

AFG and UTIMS provide similar data preparation and loading capabilities for working 

with river networks.  These three allow a user to load pre-existing river centerlines into 

Table 3-1.  Average n-value calculation 

 

NLCD Grid  n Value Area (m2) (n-Value)*Area 
Code Value 

 

21 0.021 25 0.525 
23 0.025 40 1 
31 0.031 10 0.118 
43 0.038 10 0.38 
52 0.034 5 0.17 
81 0.028               10              0.28    
 
                                Sum of Area = 100 

                                      Sum of (n-Value)*Area = 2.473 
 

                                  Average n Value = 2.473/100 = 0.0247 
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the software to be utilized to create cross sections, etc., and then pass that information 

on to HEC-RAS.  UTIMS and AFG allow users to directly supply the shapefiles 

containing river centerlines to be handled.  GeoRAS, however, requires users to either 

digitize by hand, or load the data within ArcCatalog, which can take extra time to 

perform, as recorded earlier in this report this step took five minutes for one stream 

centerline, this time could be much larger depending on the reach length and the 

stream network.  UTIMS and AFG both allow for easy integration of the river network 

shapefiles into use to be modeled.  The WISE and WMS systems perform all of their 

viewing and data handling within their own GIS framework.  While this is similar to 

working within ArcMap, this may hinder the number of functionalities usable in 

modeling data preparation and interpreting which ArcMap does provide. 

River network handling 

As has just been noted, GeoRAS, AFG and UTIMS allow for river networks to 

be uploaded easily from shapefiles.  The WISE system also allows for easy integration 

of shapefiles with hydraulic modeling.  The WMS system, though, requires users to 

digitize river centerlines.  A user digitized river centerline may not provide the 

required detail of a river network into HEC-RAS. Seamlessly loading pre-existing 

river networks is not only time efficient and convenient but also avoids any loss of 

resolution introduced by the manual digitization. 

Develop flood specific centerlines 

The UTIMS software is the only software package which develops flood 
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specific flow paths.  The other softwares require users to modify cross sections by 

digitizing, rather than delineating a new river centerline/flow path centerline from 

HEC-RAS output.  This process of developing flood specific flow paths gives UTIMS 

its iterative nature. 

Automated cross section placement 

As placement of cross sections is pivotal to floodplain mapping, automated 

cross sections should not be placed blindly, and the automation process should be 

carefully monitored.  All the softwares, besides WMS, allow for automated cross 

section placement.  GeoRAS allows for users to specify the interval and width of cross 

sections.  This is simple, but the process can create cross sections that overlap each 

other and cross other river centerlines, which may be outside the study reach.  In the 

time required to develop cross sections earlier in this document it was recorded that 

the process took 90 minutes.  Most of this time was spent deleting and checking for 

overlapping cross sections.  Then additional cross sections were digitized to make up 

for the  deleted cross sections.  Therefore GeoRAS is helpful, but is not the most 

efficient in placing cross sections.  The WISE, AFG and UTIMS systems create 

spatially independent cross sections (both from other cross sections and other river 

centerlines).  Both UTIMS and WISE allow users to specify specific point at which 

cross sections are to be placed.   UTIMS accepts as input a point shapefile to 

determine where to place cross sections.  WISE allows users to provide survey data for 

cross section profiles.  WISE also allows for users to specify distances from 

confluences to place cross sections.  This is important when modeling confluences.  
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The WMS system requires users to digitize cross sections and will not automate cross 

section placement.   

Flood specific clipped cross sections 

The only software which provides the ability to clip flood specific cross 

sections is UTIMS.  UTIMS allows users the ability to specify for each river reach the 

interval between cross sections and their initial widths.  Flood specific cross sections 

are created by using a trial upstream depth and trial downstream depth to capture the 

expected extent to which cross sections are required to  represent the terrain  for the 

flow under consideration.  The cross sections are clipped using the linear interpolated 

trial depth and the terrain to capture the extents of flow footprints expected.  This 

extends UTIMS capabilities into easier and faster delineation of cross sections, as the 

trial flood depths puts a modeler in the range of extent of cross sections required to 

pass the flood. 

Land use n-value polygon development 

The GeoRAS, WISE, WMS and AFG softwares extract “n” values based on 

user-defined land use polygons.  As this is simple enough, the user defined land use 

polygons may not accurately describe the n-value for the area that the cross section 

itself represents.  UTIMS, in contrast, develops its land use polygons automatically 

from NLCD layer data, with n-values associated to NLCD grid code values.  These 

aerially averaged n values calculated by UTIMS more accurately represent the n 

values for the area that the cross sections represent themselves.  When working with 
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GeoRAS the process took 20 minutes to perform which was a quick approximation of 

various land types, and was not developed in any standard method.  UTIMS provides a 

more realistic approach for developing n values. 

Effective data management 

To maintain model order some method of data management must be utilized to 

store shapefiles and information regarding HEC-RAS model development.  The 

GeoRAS, WISE, AFG and UTIMS systems have various methods of data 

management.  The WMS system does not create shapefiles or manage output from 

HEC-RAS.  GeoRAS, WISE and AFG manage data in somewhat of an iterative 

process.  These three allow users to develop and store both input geometries, to be 

passed to HEC-RAS, and flood polygons, passed back out from HEC-RAS.  Therefore 

WISE, AFG and GeoRAS use a  geographic feature base, which can be modified by 

the user in light of what the flood polygon looks like from HEC-RAS.  UTIMS goes 

through a different route in developing new geometries.  UTIMS starts with a base set 

of geographic data, but then creates new features to be worked with in a set of “Data” 

and “Run” folders which hold iterative information.  WISE, AFG and UTIMS store 

project specific data in their own file system such as layer paths and parameter values. 

Progress display 

All the softwares provide progress display in some fashion.  GeoRAS, WISE 

and WMS only show when processes are completed.    The AFG and UTIMS systems 

progress display shows major and minor progress levels showing the main process and 
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the sub-process being performed. 

River connectivity checked/completed 

To correctly describe a river network within HEC-RAS a user must ensure 

river connectivity.  WISE, AFG and UTIMS will check and complete river network 

connectivity.  GeoRAS will only tell a user if a river network is complete and leaves 

completing network connectivity up to the user. 

Generalization of river centerline 

The generalization of river centerlines is done to cut down the time in extreme 

flow cases.  UTIMS and WISE are the only softwares which performs this function.  

WISE utilizes a “maximum distance to remove” in removing meanders.  UTIMS, 

though, utilizes this maximum distance to remove as well as a “line of sight” analysis 

in removing meanders.  This is due to the emphasis that it places on helping modelers 

iteratively define the flood polygon.  The other softwares essentially require users to 

modify the river centerlines by hand to fit the expected  river centerline. 

Point specific cross section placement 

UTIMS and WISE are the only systems which allow users to identify specific 

points at which to place cross sections without digitizing by hand.  UTIMS allows 

users to provide a shapefile containing points at which to place cross sections, which 

may be for example critical locations at which the user wants to monitor convergence.  

WISE allows users to provide survey data, assuring the specific placement of cross 

sections. 
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Automated banks/flow paths creation 

GeoRAS, WISE, and WMS require users to supply digitized bank and flow 

path geometries by digitizing by hand.  UTIMS is the only software that provides the 

capability of automating the creation of bank and flow path geometries.  Initially when 

using GeoRAS the time taken to develop the bank lines and flow paths required 20 

minutes.  This was done by copying and offsetting the river centerline to develop the 

two bank lines and three flow path lines.  Without being able to load the features in a 

feature class the process would have taken significantly longer to digitize by hand.  

UTIMS development of the bank lines and flow path lines significantly cuts down the 

time to develop these lines.  UTIMS essentially makes this process automatic as it 

takes over in offsetting the river centerline to create the bank lines and the user only 

needs to provide offset distances in the river reach specific data area of the input 

interface.  To create flow path lines UTIMS uses the center line of the flood polygon 

and centroid of the left and right overbanks.   

Writing HEC-RAS files directly 

By directly writing HEC-RAS files and not working with interchange files a 

system can add more detail to HEC-RAS files when they are created in an automated 

fashion.  GeoRAS and WMS exchange data back and forth between themselves and 

HEC-RAS completely with interchange files.  UTIMS directly writes HEC-RAS 

geometry and project files.  Though UTIMS does not automate the writing of flow and 

plan files, but once these are created UTIMS uses them for subsequent iterations of the 

HEC-RAS models.  The WISE and AFG systems automate the complete hydraulic 
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model setup by writing geometry, project, and flow and plan files. 

Use of multiple DTM data 

The use of multiple sources of terrain data allows a modeler to merge base 

digital terrain model (DTM) data with more accurate data such as survey data in the 

development of cross sections.  GeoRAS allows for modelers to utilize multiple DTM 

data sources, but will not import survey data.  WISE is the most versatile in this area 

as it allows for several DTM sources along with survey data.  This capability lends 

itself to blend multiple terrain data sources and get a more accurate terrain 

representation.  The higher resolution provided by the surveyed data is more 

appropriate in case of in-stream flow modeling, while the UTIMS focus is more on 

extreme (overbank) flow modeling. 

Convergence analysis 

UTIMS is the only software which provides complete aid in monitoring 

convergence.  This is particularly due to its unique feature of  keeping track of past 

iterations and the change in water surface elevations at specific point locations.  This 

feature may be very useful in fine tuning the results for specific critical locations such 

as population centers, road crossings, etc.  The other softwares allow for somewhat of 

a convergence analyses by allowing users to modify base data for a re-run within 

HEC-RAS, but do not keep track of past iteration results for key locations. 

Structures placement and parameters 

GeoRAS and WISE are the only softwares which provide users the ability to 
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design hydraulic structures to be included within a geometry file outside of the HEC-

RAS geometry editor.  GeoRAS allows users to specify lateral structures (levees, etc.) 

and inline structures (bridges, etc.).  WISE allows users to provide data on bridges, 

culverts and dams to be included in the writing of the geometry files for HEC-RAS. 

Cross section view 

When creating cross sections it is helpful to be able to see the cross section 

profile when placing cross section cutlines.  GeoRAS, WISE and AFG provide the 

ability to see the cross section profile when placing cross sections.  This allows users 

the ability to ensure that cross sections correctly represent a complete cross section and 

not a sloping profile that does not contain a true thalweg.   

Cross section to confluence distance  
use in placing cross sections 

This value is helpful in the automated placement of cross sections when there 

are confluences being analyzed.  This value represents the distance upstream and 

downstream from a confluence on a river centerline to place cross sections.  WISE is 

the only software package that allows for the setting of this value.   

Displays flooding extent polygons 

A softwares ability to accurately map flood polygons allows modelers to 

determine the extent and depth of flooding in analyses.  All the softwares discussed 

here display the flood polygon from the output of HEC-RAS.  This allows users the 

ability to develop the important inputs for dam safety to evaluate the risks posed by 
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specific dam breach scenarios, and to develop maps for emergency action plans etc. 

Main channel shape defined 

This ability is especially important for in-stream types of studies.  The AFG 

system is the only software that allows users to specify channel type.  

Table 3-2.  Softwares comparison 
 

 
Software Capabilities UTIMS` GeoRAS WISE WMS AFG 
 
 
Runs within ArcMap Yes Yes No No Yes 
Load River Network Automatically Yes Yes Yes No Yes 
Develop Flood Specific Centerlines Yes No No No No 
Automated Cross Section Placement Yes Yes Yes No Yes 
Flood Specific Clipped Cross Sections Yes No No No No 
Land Use Polygons Defined by: Automatic User User User User 
Easily Understood User Interface Yes Yes Yes Yes Yes 
Effective Data Management Yes Yes Yes No Yes 
Checking/Completing Network Yes No Yes No Yes 
Generalization of River Centerlines Yes No Yes No No 
Point Specific Cross Section Placement Yes No Yes No No 
Automated Banks/Flow Paths Creation Yes No No No No 
Writes HEC-RAS Project Files Yes No Yes No Yes 
Writes HEC-RAS Geometry Files Yes No Yes No Yes 
Writes HEC-RAS Flow Files No No Yes No Yes 
Writes HEC-RAS Plan Files No No Yes No Yes 
Use of Multiple DTM Data No Yes Yes No No 
Convergence Analysis Yes No No No No 
Structures Placement and Parameters No Yes Yes No No 
Cross Section View No Yes Yes No Yes 
Cross Section to Confluence Distance No No Yes No No 
     Use in Placing Cross Sections  
Displays Flood Polygons  Yes Yes Yes Yes Yes 
     From HEC-RAS  
Main Channel Shape Defined No No No No Yes 
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Programming Tools 

ESRI ArcObjects are the tools which GIS developers use to enhance the GIS 

experience.  This set of tools allows developers to internally handle geographic 

information, allowing an expanded use of the tools to develop applications within 

ArcGIS.  ArcObjects is an object-oriented toolset which consists of several object 

models.  These object models graphically show the abstract classes, coclasses and 

classes along with their properties and methods, which can be instantiated to control 

many of the processes within ArcGIS.  For example these instantiations allow GIS 

designers the ability to define and store new geometries and control how those 

geometries are displayed by ArcMap.   

UTIMS  primarily utilizes the geometry object model to process geographic 

information and to create new geometric features.  The geometry object model defines 

the attributes and methods by which new geometries are created such as polygons, 

polylines and points, along with their spatial reference which defines how the 

geometries are to be displayed appropriately in ArcMap to depict their actual spatial 

location.  These are defined as high level geometries and are supported by the creation 

of lines and segments.  UTIMS also utilizes ArcObject models to create new feature 

classes and rasters. 

Several programming languages can be used to control ArcObjects.  UTIMS 

utilizes Visual Basic for Applications (VBA) to handle ArcObjects.  VBA is an easily 

understood yet powerful programming language. 

 



102 
 

 

User Input 

 The UTIMS interface is simple to use and operate.  There are several input text 

boxes, drop down menus and buttons to select and identify appropriate data for use by 

UTIMS.  Figure 3-42 displays the main user interface for UTIMS.  There is one page 

available upon startup of UTIMS.  Depending on the number of river reaches located 

in the original river network to be analyzed UTIMS will appropriately create several 

more pages for user input.  The different sections of the main user interface allow for 

the selection of a digital terrain data, river network and monitoring points, land use 

data, data file management, units, and several values UTIMS uses in its processing.  

There are several buttons on the main screen which allow for  various steps in 

developing geographic data with UTIMS.  Indication is also made as to where data 

output is to be stored and which iteration UTIMS is currently working on. 

 Figure 3-43 displays a second page which lists various values, which will be 

discussed at a later point, which UTIMS uses in developing geographic data.  

Depending on the number of river reaches in a river network UTIMS creates extra 

pages to hold twelve rivers per page.  This allows for easy dynamic data entry for 

many river reaches in a river network.  For each river centerline feature within the 

river network UTIMS will display the name of the river and the reach name as directed 

by the user on selecting the appropriate fields within the river network identifying 

these names.   
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Figure 3-42.  Main UTIMS interface. 
 

 

Figure 3-43.  River reach specific data interface. 
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UTIMS also verifies input data as part of the input process.  The various data 

inputs and buttons will be discussed in the immediately following pages describing 

what types of data files can be utilized and what values can be input into UTIMS.   

Digital elevation data 

Beginning with the first two text boxes and buttons on the main UTIMS 

interface UTIMS allows a user to specify a raster/GRID and a triangular irregular 

network (TIN) model for digital terrain models.  A raster/GRID format utilizes a pixel 

block within ArcObjects, whereas TINs are surfaces therefore the ISurface interface is 

used to obtain surface elevation values.  Surfaces are more representative of the actual 

terrain, so a TIN is more desirable as an input for terrain data.  Due to terrain data 

models being the main source of profile data for cross sections only high resolution 

digital terrain data should be used.  Upon selecting the appropriate digital terrain 

model data UTIMS places the full path and name of the digital terrain model in the 

appropriate text boxes. 

 The reason that both a grid and TIN layer format are required is that UTIMS 

utilizes these two data formats for different purposes.  UTIMS utilizes the grid 

formatted data in raster calculations, whereas UTIMS utilizes the TIN layer for cross 

section profile development for use by HEC-RAS. This is due to the fact that TIN 

layers will create more uniform cross section profiles for use in writing geometry files 

used by HEC-RAS.  

 



105 
 

 

River network 

The next portion of the user interface allows a user to select appropriate river 

and point shapefiles.  The buttons immediately to the right of the text boxes allow for 

users to identify the location of the shape files to be used by UTIMS.  The river 

network describes the actual centerline of each of the rivers and reaches desired to be 

studied in the floodplain delineation.  The river network input must contain a 

continuous river network containing rivers, with appropriate reaches, including 

tributaries to be studied.  The point shape files function in the same manner by 

identifying the points along a river network where UTIMS automatically places cross 

sections for either critical location observation purposes or flow change locations.   

The shape file containing the river network must be of polyline type and 

contain two fields identifying firstly river names and secondly reach names.  Correct 

orientation (going in the downstream direction) of reaches is also checked within the 

processing of the river network.  The connectivity of the river network is also checked 

in the pre-processing of the river network before any action is taken to define cross 

sections.  The connectivity of the river network ensures that cross sections placed 

accurately describe the terrain over which the modeling will be taking place. Upon 

finding any non-connective segments of the river network the program queries the 

nearest point on the main river channel and connects the tributary.  Users can ensure 

that the correct river network paths are laid out by carefully inspecting the river 

network and connectivity before proceeding with the pre-processing of the river 

network.   

 Upon selecting a river network by navigating to its location, UTIMS loads all 
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the names of the fields located in the river network shapefile.  UTIMS allows a user to 

select the appropriate fields which hold the river name and reach name in developing 

complete geometric files for use by HEC-RAS.   

Critical river station points 

Critical river station points located in the critical points shapefile provide 

UTIMS points at which a user defines for a cross section to be placed to monitor 

convergence.  A user may choose not to provide  point shapefile for the critical points.  

This feature class is used primarily in cases of extreme flow modeling where the 

process of convergence upon a final flood polygon is to be employed.  This feature 

class is important because it allows users to monitor the change in water surface 

elevations at specific points along the river centerline such as large population centers.  

UTIMS will store the water surface elevations in a table located in the main data 

output location for each of the points in this shapefile.  

Flow points 

 To allow users the ability to specify any flow change locations in a river 

network, other than the uppermost cross section on a river reach, UTIMS allows users 

to specify a shapefile holding points representing the location along a river at which to 

place a cross section to allow a user to specify within HEC-RAS a flow change at a 

specific location.   

Geographic data units 

 To aid in converting units from one unit system to another in passing data back 
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and forth between UTIMS and HEC-RAS UTIMS requires that the user select the base 

geographic units which represent the units of the raster data and river network, etc. 

Land use data 

UTIMS allows users to select grid formatted layer representing the land use 

data grid defined as an NLCD layer.  Upon selecting the NLCD layer UTIMS places 

the path name and file name of the NLCD layer in the appropriate text box.   The 

NLCD dataset is available for download in the public domain from the USGS 

(http://seamless.usgs.gov). 

Land use – n-value table 

 UTIMS provides a text box and a button to the side of it to select the 

appropriate text file holding a tab delimited relationship of NLCD grid values and 

associated n-values for use in assigning n-values to segments of cross sections.  This 

text file must hold four different critical features.  First, the first column in the file 

must be entitled with a short title for the grid code values such as “ID.”  Second, the 

second column should be spaced one tab away on the same first line of the text file and 

must have a short title for n values such as “nValue.”  UTIMS uses these column 

headings to assign appropriate n-values to associated grid cell values in the NLCD 

dataset.  The third critical feature is that the second line of the file must contain an 

NLCD grid cell value followed by a tab and then an associated n-value.  Other rows 

may follow, but they must each start with a grid cell value in the NLCD grid scheme 

followed by a tab and then the associated n-value.  The fourth and last critical feature 
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of the text file is that the last “ID” value must be “999.”  UTIMS utilizes this value as 

the default value for any grid cells encountered in the n-value assignment which are 

not specified in the n-value text file.  The “999” must then be followed by a tab and 

then a default n-value desired for use in the n-value assignment process. 

Output folder 

 UTIMS allows users to specify an output folder location, in which UTIMS will 

save all output.  A new folder will be created in the specified output location to hold 

data output.   The button provided in the main user interface allows users to specify the 

desired output location. 

Project name 

 The project name text box allows a user to specify the name of the output 

folder to be created within the location specified in the output folder text box.  This 

project name also becomes the name of the HEC-RAS project and geometry files.  If a 

new UTIMS process is started and the same output folder is detected then UTIMS will 

ask if the user would like to overwrite the existing data files.  If yes then UTIMS will 

delete the existing output folders and begin the iterative processing.  If, however, the 

user does not select to overwrite the pre-existing output folders, then UTIMS allows a 

user to select a new project name, and thus a new project output folder. 

RAS project units 

 The RAS project units are also available to be selected in the main user 

interface window.  These units represent the units which define the units of the HEC-
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RAS geometry and project files  to be written by UTIMS. 

Line of sight point interval 

 The line of sight point interval text box allows a user to specify the distance to 

place points along a river centerline in the line of sight analysis.  The number provided 

by the user can be of type double.  An appropriate distance depends upon the 

resolution of the digital terrain model being used and the impact that possible tributary 

areas may pose in the generalization process.  A suggested value for this interval, 

though, is three to four digital terrain model grid cell lengths. 

Flood polygon segmentation distance 

 The flood polygon segmentation distance text box allows a user to determine 

the distance to be utilized in determining the flow path centerline of a flood polygon 

both in the initial sloping plane river centerline process and the iteration nature of 

UTIMS where new river centerlines are derived from HEC-RAS output data.  A small 

value may cause a long processing time, whereas a large value may not capture 

enough details  of a flood polygon.  If a large value is entered, over generalization may 

take place, misrepresenting the accurate shape of the original river centerline.  The 

polygon segmentation factor is of double type.  A suggested value is two to three times 

the raster grid cell height, but the value should be small enough to represent the 

accurate centerline of flood polygons. 

Convergence criteria 

 The convergence criteria text box allows a user to specify the resolution which 
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the program uses to identify whether sufficient convergence has been reached.  

UTIMS monitors the change in water surface elevations at user defined points to 

determine when convergence has taken place in extreme flow studies.  .  If UTIMS 

finds that successive HEC-RAS computations cause a change in water surface 

elevations at a critical station cross section smaller than the criteria specified by the 

user UTIMS will alert the user to the fact that convergence has occurred.  A user can 

then review the convergence table to view the actual difference in the water surface 

elevation at the critical cross-sections and may discontinue the iteration process. 

Proximity distance for point shapefiles 

 In determining where to place cross sections at critical station points or at flow 

change locations along a river centerline UTIMS allows a user to specify the 

maximum distance a user specified point can be away from the desired river centerline 

line.  This value ensures that the right points are associated with the correct river 

centerline despite  a user digitizing a point and not getting the point directly on the 

desired river centerline.  This value should be large enough to account for any user 

error in digitizing the critical station point on the original river centerline.  A suggested 

value is the user supplied raster’s grid cell height. 

Load rivers button 

The button titled “Load Rivers” utilizes the shapefile specified as the river 

network in the river network text box and loads all the features into new pages within 

the user interface.  Figure 3-43 displays the new page available within the user 
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interface when the “Load Rivers” button is pressed.  UTIMS places twelve rivers on a 

page, therefore if the specified river network contains fourteen river reaches then two 

additional pages will be created to hold the data for the first twelve rivers on the first 

page and the remaining two rivers on the next page.  Pressing the “Load Rivers” 

button displays several values which UTIMS utilizes when creating new geographic 

features for use in writing the HEC-RAS geometry file. 

 The various fields presented in the “Rivers” pages of the UTIMS interface, 

when the “Load Rivers” button is pressed, provide the values which UTIMS requires 

to complete the geographic feature development.  They include: meander correction, 

trial upstream and downstream depths, bank line offset distance, distance between 

cross sections, cross section widths, the number of segments to divide cross sections 

into when assigning n-values, and the optional dog-leg information of angle and length 

of dog-leg extensions. 

Save configuration  button 

 To allow users to save a UTIMS configuration including specified geographic 

feature layers to use and values in deriving geographic features.  UTIMS saves all the 

values and file information within a UTIMS “*.uif” file which is specified on the main 

user interface along with all the river network information which a user denotes in the 

additional “Rivers” pages.  The saved file is titled the same name as the project name 

specified in the main user interface.  Users can load a UTIMS file upon saving it. 
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Load UTIMS file button 

 UTIMS allows users the ability to load a pre-existing UTIMS file for use in 

UTIMS computations.  When pressed this button will load all the locations and values 

of all the feature layers specified when the user saved the UTIMS file earlier.  The 

loading of data in the UTIMS file includes river network information, as shown in 

Figure 3-42.    

Prepare input  geometries 

 The button titled “Begin” initiates the process of creating geographic feature 

with which to write the HEC-RAS geometry file.  This button initiates the UTIMS 

processing of the river network by verifying river connectivity, performing any 

generalization processes on the river network, creating cross sections, and creating 

bank and flow lines.   

Write data files 

 The button titled “Write Data Files” begins the process of writing the geometry 

file to be used by HEC-RAS.  This process begins initially with UTIMS verifying that 

each cross section only crosses one river centerline and does not cross other cross 

sections.  UTIMS also checks that cross sections cross their appropriate bank and flow 

path lines once.  Upon verifying that cross sections are appropriate to proceed UTIMS 

begins the process of determining the areal average n-values, as described earlier in 

this document.  Upon completing this process UTIMS writes the geometry file along 

with the project file for use by HEC-RAS.  When the iteration label reads more than 
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one, meaning that the user has iterated the process, UTIMS will copy the flow files 

from the previous iteration into the new “Run” folder holding the geometry and project 

files.  UTIMS changes the stations for boundary conditions, though, taking the furthest 

upstream and furthest downstream stations to assign to the appropriate upstream and 

downstream boundary conditions. 

Read output 

 The button titled “Read Output” directs UTIMS to read the GIS output file 

from HEC-RAS containing water surface profile information to be imported back into 

the GIS environment.  UTIMS identifies the output location of the GIS output file 

from HEC-RAS and creates the flood polygons as described by the output file.  This 

button also initiates the process of UTIMS approximating the flow path centerline of 

each profile found within the HEC-RAS output file.  These features are stored in the 

appropriate “Data” folder for the current iteration.  Upon viewing the output 

geometries and noticing something from the HEC-RAS model output seems awry a 

user can make changes within their hydraulic model and press the “Read Output” 

button again.  This allows a modeler to interactively change their hydraulic model to 

ensure they have the newest and best hydraulic data output going from iteration to 

iteration.  If the read output button is pressed a second time UTIMS verifies with the 

user that they do indeed wish to delete the geometries just created and reload data from 

HEC-RAS to prohibit any errant deleting of created geometries. 
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Iterate 

 The button titled “Iterate” directs UTIMS to begin a new iteration of the 

UTIMS process.  UTIMS takes the flood polygon flow path centerlines and create new 

cross section lines and new left and right overbank lines.  New output folders titled 

“Data” and “Run” will be created in the specified output location with appropriate 

iteration numbers at the end of each folder name for effective data management.  An 

option to keep the previous iterations cross sections is also available to be selected. 

River reach parameters 

 UTIMS allows users to specify parameters for each river reach being 

considered in creating geometries to be used by HEC-RAS.  As shown in Figure 3-43 

they include: meander corrections, trial upstream and downstream depths, bank line 

offset values, distances between cross sections, cross section widths, number segments 

to divide cross sections into, and the optional dog-leg parameters of angle and length. 

 The meander correction value is a critical value in developing accurate 

geographic features for use by HEC-RAS.  This is due to the fact that the meander 

correction value indicates to UTIMS whether extreme flows are expected, thus 

inducing the sloping plane analysis to be performed,  otherwise in-stream flows are 

expected for the  river reach.  If the user enters a “0” (zero) in the meander correction 

text box for a river then UTIMS will not alter in any way the path of the original river 

centerline which may be appropriate for in-stream flow modeling.  If, however, a user 

enters a value greater than “0” (zero) then UTIMS performs the operations on the river 

centerline to approximate a flood magnitude specific flow path centerline to be used in 
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creating cross sections.  For in-stream as well as extreme flow cases bank lines are 

created by offsetting the initial river centerline a user specified distance.  Also for in-

stream as well as extreme flow cases the left and right  flow path lines are created 

utilizing the bank lines and the iteration specific cross sections to create overbank area 

centroid representative overbank lines.  The iteration specific flow path centerline is 

utilized as the main channel flow path line.  The meander correction value can be of 

double type.  A suggested value for the meander correction value is a value that is 

representative of the floodplain flow path in question.  For large open floodplains a 

half a mile may be appropriate, however, for quite meandrous portions the meander 

correction may be quite a bit smaller. 

 The trial upstream and downstream depths represent for each river the increase 

in elevation from the thalweg point elevation for the creation of geographic features.  

A user must enter values greater than zero for both the upstream and downstream trial 

depths, even if extreme flow handling is not to be performed on a river centerline, 

because UTIMS uses the trial upstream and downstream depths to linearly interpolate 

an increase in elevation when clipping cross sections into a digital terrain model, 

therefore an overestimation is preferred.  Trial upstream and downstream depths can 

be of double type, and be approximated by taking into account the peak flow to be 

modeled and the cross-sectional area and slope of the river reach under consideration. 

 The bank offset values represent the distances away from the actual river 

centerline to place left and right bank lines.  These values can be of double type.  A 

suggested value for bank offset values is 50 feet for large open floodplains and a value 

of 10 feet for quite meandrous reaches. 
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 The distance between cross sections value for each river reach define the 

interval at which UTIMS places cross sections along a river centerline.  This distance 

is also utilized by UTIMS in the sloping plane analysis as the distance at which to 

place query thalweg points along the river centerline in identifying an initial flood 

polygon in extreme flow cases.  The distance between cross sections can be of double 

type. 

 The cross section width value (“XS Width”) available to be specified on the 

additional pages for river reach parameters defines the main body length of cross 

sections to be placed.  The widths for cross sections define the extent of terrain data to 

be utilized in defining profile data for use by HEC-RAS.  The cross section width 

value also defines the distance used in creating the buffer zone used to clip digital 

terrain data in the sloping plane analysis.  The cross section width defines how far 

away from the river centerline to create a buffer which is utilized in the sloping plane 

analysis to identify contour lines at specific elevations in creating the initial flood 

polygon for extreme flow cases.  The cross section width value can be of double type.  

A suggested value for the cross section width value is a value much longer than 

expected for meandrous reaches and for large open floodplains a value which is two-

thirds the width expected where flow could go so that dog-legs can be attached 

appropriately. 

 The optional dog-leg parameters are used by UTIMS to create dog-legs at the 

end points of cross section lines to aid in the one-dimensional flow modeling of flows 

when for flows being modeled may fan out into a wide expanding floodplain.  Dog-

legs are created in a convex downstream orientation and are created at an angle to the 
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upstream face of a cross section at an angle and distance as specified by the user in the 

river reach specific parameters page.  Additional information concerning the creation 

of dog-leg portions of cross sections will be discussed in the cross sections handling 

section.  Dog-leg values should extend the cross section well past the expected flood 

polygon width so the clipping process can define the extent of the flow appropriate 

cross sections. 

 For further information concerning the input values and how to operate UTIMS 

the reader is referred to UTIMS user manual (Stevens and Chauhan, 2009). 

Geometry Handling and Creation 

Effective folder/data management 

UTIMS effectively creates and manages the geographic information created in 

order to monitor the stepwise progression that it takes to convergence in a flood study.  

On the initial user interface users may specify an output folder which will hold all 

output and the accompanying HEC-RAS project.  This allows users the ability to go 

back to a set of geographic information and continue with the iterative process or 

carefully monitor the progression the iterative process took to completion.  For each 

launch of HEC-RAS from within UTIMS a new project is created, taking the name of 

the project title called for in the initial user interface.   

For each run of creating geographic information in developing the geometric 

input file for HEC-RAS, UTIMS creates a new folder within the output folder 

specified.  This new folder holds such items as the shapefiles which holds all created 
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geometries along with the rasters and tables created.  This allows a user to carefully 

investigate the process UTIMS takes by analyzing the stream centerlines, cross 

sections, land use data and n-value proximity maps to clearly see where geographic 

information has come from.  This new folder is called “Datai” where i=1 for the first 

run and increases by one for subsequent runs. 

For each hydraulic computation of HEC-RAS a new geometric output file is 

created and is stored in a new output folder.  This new folder is called “Runi” where 

i=1 for the first run and increases by one for subsequent runs.  Thus for a “RunN” 

where i = N, the user can review the data and the associated output in “DataN” and 

“RunN” folders, respectively. 

River centerline 

 The river network handling by UTIMS is performed in two manners – either to 

perform the sloping plane analysis or to use the actual river centerlines as the flow 

path centerlines to be used in placing cross sections and determining flow path lines.  

UTIMS can handle any size of river network for floodplain mapping purposes.  In the 

process of river network handling UTIMS verifies river network connectivity, and if 

necessary completes any missing river network connectivity.  UTIMS also completes 

any river non-connectivity issues in the iterative process a user goes through to final 

convergence.   

 As discussed previously in the section describing the sloping plane analysis 

UTIMS has the ability to modify a river centerline to approximate the flow path 

centerline in cases of extreme flow modeling.  UTIMS modifies a river centerline 
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using trial upstream and downstream depths and the topography to better approximate 

a flood specific river centerline to be utilized in extreme flow cases.  UTIMS also 

performs a line of sight analysis on all river features which pass through the sloping 

plane analysis.  This is done in an attempt to smooth out any portions of a sloping 

flood polygon centerline which may have kinks because of tributary areas influencing 

the sloping flood polygon centerline.     

Bank lines 

Bank lines are used to define bank stations along a cross section profile.  

UTIMS allows users to specify an offset value for bank lines for each individual river 

reach.  Bank lines are created utilizing the actual river centerlines supplied by the user 

in the river network.  The actual river centerlines are used to create the bank lines, in 

contrast to any derived flow path centerline, to aid users in knowing where the actual 

river centerline thalweg is located along a cross section profile.  Therefore, for 

example, in the third iteration the bank lines are created  using the bank lines from the 

first iteration.  Bank lines are determined by offsetting the actual river centerline at a 

user specified distance.  This is done by creating a buffer zone around the river 

centerline, at the user specified distance.  Figure 3-44 displays a river centerline and a 

buffer created around the river centerline which has been cut into several segments by 

the upper and lower most cross sections.  

UTIMS creates bank lines by querying lines normal to the upstream and 

downstream portions of the centerline on both the left and right sides.  UTIMS cuts the 

boundary of the buffer polygon and identifies the left and right bank lines from the cut 



120 
 

 

portions of the buffer polygon.  Figure 3-44 displays how UTIMS identifies the left 

and right bank lines. 

 UTIMS creates internal cross sections to “cut” the buffer to create left and right 

bank lines.  In this manner bank lines are created in such a way to ensure no bank line 

overlap, specifically in meandrous reaches 

Flow path lines 

 Flow path lines represent the approximate path of flow for each of the three 

main portions of a cross section, i.e.  the left overbank, main channel and right 

 
 

Figure 3-44.  Left and right bank lines determination. 
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overbank areas.  These flow path lines are used to calculate the distances between 

subsequent cross sections.  The flow path centerline is utilized as the main channel 

flow path line.  The left and right overbank flow path lines are created to represent the 

location of the centroid of the overbank areas in both the left and right overbank areas.  

Figure 3-45 displays the cross section areas of left overbank, main channel, and right 

overbank areas. 

As seen in Figure 3-45 the thalweg point lies at the lowest point in the cross 

section with bank station points dividing the left and right overbank areas from the 

main channel area of the cross section.  The flow paths within the left and right 

overbank areas should represent the approximate path  of flow within these areas of 

 

Figure 3-45.  Identification of left overbank, main channel, 
and right overbank areas. 
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the cross section.  Therefore UTIMS approximates the location of the vertex of the 

flow path lines within the cross section as the point which best represents the centroid 

of the area within the left and right overbank areas.  To identify the centroid of the 

overbank areas UTIMS divides the left and right overbank areas into slices as shown 

in Figure 3-46.  

The distance between the slices that UTIMS uses in splitting the overbank 

areas is the dimension of the cells from the digital terrain grid data supplied to 

UTIMS.  This distance was chosen to take into account each pixel cell under the cross 

sections.  As seen in Figure 3-47 UTIMS utilizes each slice within an overbank area to 

calculate the centroid of the area.  Equation that UTIMS utilizes in calculating the 

 

Figure 3-46.  Slicing of overbank areas for 
flowpath centroid calculations. 
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centroid of each overbank area is shown as Equation 2.  As shown in equation 2 for 

each slice UTIMS multiplies the change in elevation from the interpolated trial flood 

depth for the cross section to the terrain elevation (elevation change) by the distance 

the query point is away from the respective bank point (x).  Figure 3-47 displays an 

example slice from the left overbank area where for a slice the change in elevation 

from the top of the interpolated trial flood depth for the  cross section to the terrain 

elevation underlying the query point and the distance away from the left bank point are 

identified. 

 Using equation 2 UTIMS calculates the distance away from the appropriate 

bank point where the area’s centroid is located.  Figure 3-48 illustrates where the thus 

 

Figure 3-47.  Centroid identification calculation. 
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computed 

centroid points would lie for the overbank areas.  Figure 3-48 also shows the centroid 

points projected onto the terrain surface.  Thus performing this process for each cross 

section there will be one vertex for each cross section in each overbank area  

 

for the flowpath features.  The lengths of these flowpaths are likely to be shorter than 

the main channel flow line, as they more reasonably describe the location of the path 

of flow lines within the overbank areas than manually digitizing the flow path lines 

within GIS.   

(2)  
1

∑ ∆
∆

 

Figure 3-48.  Centroid placement and projection. 
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Cross sections 

Cross sections represent the basis for hydraulic modeling within HEC-RAS.  

UTIMS allows users the ability to automate the placement of cross sections as well as 

the ability to modify any cross sections which have been automatically placed before 

UTIMS writes the HEC-RAS geometry file.  There are two ways with which UTIMS 

allows users to specify the placement of cross sections.  The first way is by utilizing 

the critical river station point or flow point shapefiles, which identify specific stations 

along the river centerline at which to place cross sections.  The second way is by 

specifying the distance  between cross sections along the flow path centerline.   

Cross sections are placed perpendicular to the flow path centerline oriented left 

to right when looking in the downstream direction (which is a requirement of HEC-

RAS).  Cross sections are created at a length equal to the user specified “XS Width” 

distance located in the additional rivers pages of the user interface.  If dog-legs are 

called for by the user they are placed after placing the cross section normal to the flow 

path centerline.  Figure 3-49 displays how a cross section is placed perpendicular to 

the flow path centerline. 

 Cross sections are clipped, or shortened, to “fit” within the confines of the 

terrain, which creates cross sections that UTIMS utilizes in determining areal average 

n-values for segments of cross sections.  Figure 3-50 displays how cross sections are 

clipped to fit within the confines of the terrain specified by a digital terrain model.  

UTIMS begins at the cross (intersection) point between the cross section and the flow 

path centerline.  UTIMS identifies the elevation defined by the digital terrain model at 

the cross point and adds the interpolated trial flood depth (by linearly interpolating an 
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increase in elevation for the cross section along the actual river centerline based upon 

the trial upstream and trial downstream depths specified by the user) to define the 

maximum elevation that any point along the cross section can have.  This maximum 

elevation is termed the threshold elevation by UTIMS.   

UTIMS begins searching first on the left side of the cross section from the 

cross point out away from the river centerline to identify the point at which the point 

elevation along the left side of the cross section goes above the threshold elevation and 

uses that point as the new cross section’s left point.  UTIMS then performs the same 

 

Figure 3-49.  Cross section placement. 
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type of search on the right side of the cross section. 

Once UTIMS identifies the new left and right points for a cross section  it 

creates the new cross section line by connecting those  points.  If dog-legs are 

specified internal vertices are also kept.  Figure 3-51 displays the clipped cross section. 

By using trial upstream and downstream depths to clip cross sections it is 

important to realize how these depths may affect the modeling process within HEC-

RAS.  In HEC-RAS if flow exceeds the  maximum extent of the cross section then it 

assumes that it can continue to fill the cross section using the end points of the 

specified cross section as vertical walls.  In this case where flow exceeds the capacity 

of a cross section the cross section needs to be  further extended  into the overbank 

areas so that the flow being modeled is fully contained within the specified cross 

section.   

Cross sections are clipped based upon their station and interpolated trial depth.  

Therefore in order to extend the cross section either it  must be moved to a different 

location along the  stream or the trial depth must be increased.  Thus underestimation 

of trial depths within UTIMS may cause misrepresentation of flooding extents within 

the HEC-RAS model if the flow being modeled exceeds the capacity of the cross 

section.  On the other hand, an overestimation of these trial depths may  result in 

unreasonably wider  overbank flow path centerlines for the first iteration, but it is not 

as limiting in nature as underestimation of the trial depths.  Therefore if a user is to err 

on one side then overestimation of the trial depths is to be chosen.  In subsequent 

iterations of UTIMS the flood polygon obtained from HEC-RAS output is used to 

compute flow path centerlines thus the error introduced by over estimation of the trial 
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flood depth by the user in the first iteration is nullified.  This allows users the ability to 

automate the capture of cross section extents required by expected flow depths for a 

given flood magnitude. 

UTIMS allows users the ability to specify dog-leg information for the creation 

of dog-legs on the ends of cross sections to approximate the flow modeling by HEC-

RAS (one-dimensional model) in situations where the flow fans out in a floodplain.  

Placing dog-legs is optional, and is only suggested when they are warranted in a flood 

study.  Figure 3-53 displays how dog-legs are created.  Users can specify the length of 

 

Figure 3-50.  Clipping cross section. 
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the extension for dog-legs and also the angle from the main portion of the cross section 

from which to orient the dog-legs. 

Upon completion of placing cross sections automatically by UTIMS the 

control of UTIMS is passed back to the user.  Upon which a user can inspect the cross 

sections created to verify if they sufficiently represent the path of flow.  This allows 

for easy placement of cross sections, thus cutting down the time required to digitize 

each and every cross section by hand, while still providing the user an opportunity to 

inspect and modify the cross sections, if required. 

 
 

Figure 3-51.  Clipped cross section. 



130 
 

 

 UTIMS verifies that cross sections do not overlap any other cross section, cross 

a river centerline only once and cross their appropriate bank and flow path lines.  If 

any of these problems are identified UTIMS informs the user of the cross section 

causing problems and allows the user to modify any of the geographic features so that 

accurate and complete geometry files can be constructed for use by HEC-RAS.  

Land use/n-value polygons 

Areal averaged n-values are calculated using  NLCD layer, NLCD grid code/n-

Value table relationship file, and utilizing the cross sections for each river reach under 

 
 

Figure 3-52.  Dog-leg placement. 
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consideration in a flood study.  The specific methods and output schemes and names 

are described in the earlier section titled  Areal Averaged n-Value Assignment. 

 

UTIMS Output 

Flood polygons 

The GIS output file from HEC-RAS (“*.RASexport.sdf”) contains water 

surface profile data, which is used to develop the flood polygons within GIS.  UTIMS 

constructs three-dimensional flood polygons for each profile found in the GIS output 

file from HEC-RAS.  For each time a user selects the “Read Output” button the on 

UTIMS main user interface UTIMS creates a new shapefile entitled “Flood Polygons” 

in the appropriate “data” output folder.  Appropriate name for the flood polygon, 

defined by the name of profiles in the output file, is assigned in the created shapefile, 

as well as the area of the flood polygon is provided.  A single flood polygon is 

constructed for each profile and river found in the GIS output file.  These three-

dimensional flood polygons can be viewed in ArcScene in three-dimensional space. 

Flood specific river centerlines 

 UTIMS approximates the flow path centerline of each flood polygon created 

when UTIMS reads the GIS output file from HEC-RAS.  The process described in the 

section entitled “Flood Polygon Centerline Approximation” is used to approximate the 

new flow path centerline for the next iteration.  The newly derived flow path centerline 

shapefile is titled “Flood Polygon Centerlines” and is located in the appropriate 
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iteration “data” output folder.  The resulting centerlines are approximations of the 

centerline of each flood polygon defined in the GIS output file.  Before being stored 

the flood polygon centerlines are passed through the line of sight analysis to smooth 

any kinks in the derived flood polygon centerlines. 

Interpolated cross sections 

 UTIMS reads interpolated cross sections being passed to UTIMS by HEC-RAS 

and stores them in the appropriate data output folder in the shapefile titled 

“Interpolated Cross Sections.”  These cross sections allow for a more accurate flood 

polygon and thus provide a better resolution of the flooding extents. 

Convergence criteria handling 

 UTIMS aids modelers in determining when convergence upon a final flood 

polygon has been achieved.  This is performed by monitoring the water surface 

elevation changes in flood polygons at user specified locations  along a river centerline 

from subsequent HEC-RAS computation iterations.  UTIMS monitors the convergence 

process by holding the “ID” value for each location  in the critical point shapefile 

along with the water surface elevation for the current iteration and the change in water 

surface elevation between the current iteration and the previous iteration.   

When the change in water surface elevation from subsequent iterations of  

UTIMS is less than the convergence criteria value entered on the main UTIMS user 

interface page the user will be alerted to the fact that convergence has been achieved .  

This tracking of changes in water surface elevations from iteration to iteration is stored 
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in a “*.dbf” or table file entitled “Elevation Table” located in the main output folder.  

A user can easily  monitor the changes in water surface elevations from iteration to 

iteration by inspecting the contents of this table file. 
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CHAPTER 4  

INUNDATION MAPPING AUTOMATION PROCESS 

 A case study was performed to demonstrate the capabilities and functionalities 

of UTIMS by developing an inundation map for Millsite Dam.  The Millsite Dam and 

Reservoir are located in east central Utah.  The Millsite Reservoir is formed by the 

damming of Ferron Creek which travels 24.8 miles from the downstream of Millsite 

Reservoir until its confluence  with Huntington Creek and Cottonwood Creek to form 

the San Rafael River.  A preliminary breach hydrograph was considered in the study, 

as an example of an extreme type of flow where flow is expected to flood overbank 

areas. 

 The preliminary breach hydrograph, HEC-RAS files, and GIS inundation map 

files were obtained from NRCS (Todea, 2008).  The preliminary dam breach 

hydrograph was developed by NRCS using the USDA NRCS Technical Release 60 

(“Earth Dams and Reservoirs” which can be downloaded from 

http://www.wsi.nrcs.usda.gov/products/W2Q/H&H/tech_info/TR_TP.hml).  The 

USDA NRCS Technical Release 66 (“Simplified Dam-Breach Routing” which can be 

downloaded from http://www.wsi.nrcs.usda.gov/products/w2q/H&H/Tools_Models/ 

other/TR66.html) was used by the NRCS to model  the breach, and the breach 

hydrograph was obtained approximately 1000 feet downstream of the dam.  The peak 

flow at the upstream boundary condition was approximately 226,000 cfs.  Routing of 

the breach hydrograph was done for two and a half hours, thus ensuring that the peak 

flow passed the downstream portions of the Ferron Creek. 
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 The input data for UTIMS was gathered from several online sources supplying 

GIS data.  Digital elevation data in GRID format was downloaded from the Utah 

Automated Geographic Reference Center (AGRC) for the entire Emery County.  The 

grid cell size was 10 meters.  To model with 10 meter grid data makes cross sections 

non-uniform in shape, therefore a TIN was created using ArcMap’s 3D Analyst using 

a tolerance of 1.  The TIN created provided a much better surface to model with.  The 

National Land Cover Dataset (NLCD) data was downloaded from the United States 

Geological Survey (USGS) site (http://seamless.usgs.gov).   The grid cell size of the 

downloaded NLCD data was 10 meters.  

 River centerlines for the entire Emery County, UT, were downloaded from the 

AGRC.  From the downloaded features Ferron Creek was isolated from the many 

features supplied by the AGRC.  Ferron Creek was then trimmed so that the upstream 

portion of the actual centerline was downstream of the downstream face of the dam 

(approximately matching the location of the breach hydrograph obtained from the 

NRCS) and the furthest downstream portion extended far enough downstream past 

Ferron, UT, so that the downstream boundary condition did not influence the results at 

the most downstream location of interest. 

 The NLCD layer was investigated to identify appropriate  critical station points 

to monitor convergence near  Ferron, UT.  Three critical station points were placed 

near Ferron City and two points  further downstream to monitor the convergence 

process along the river centerline.  Figure 4-1 shows Ferron Creek along with the 

critical station points placed along the actual river centerline.   
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Figure 4-2 shows the NLCD layer for the area surrounding Ferron Creek.  

Figure 4-3 shows a close up view of Ferron City with the critical station points placed 

along the actual river centerline.  The critical station points near Ferron City were 

placed at major road crossings although no bridges or other structures were modeled in 

this study (same as in the NRCS study) as they were expected to be washed out.   

The grid format raster, the TIN layer and the NLCD layer were selected on the 

main UTIMS screen by browsing for the data sets on the hard drive.  Their appropriate 

paths and file names were loaded into the appropriate text boxes.  A river network 

containing Ferron Creek was loaded and the appropriate field titles were selected in 

the river name and river reach combo boxes.  The appropriate critical river stations 

shapefile was also selected.   

 

Figure 4-1.  Ferron Creek and critical station points. 
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Figure 4-2.  NLCD layer surrounding ferron creek. 

 

 

Figure 4-3.  Critical station points placed near Ferron, UT. 
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Geographic data units of “Metric” were selected due to the spatial reference of 

the geographic layers being loaded into UTIMS.  A text file containing two columns 

containing NLCD grid code values and representative n-values was also selected.  The 

NLCD – n value relationship (Nanadoum, 2005) is shown in Table 4-1.  An output 

folder was browsed for using the output folder button and an appropriate project title 

was selected.  The units selected for this project for use by HEC-RAS were “US 

Customary” the same as in NRCS study. 

A line of sight interval of 20 meters was selected due to it being roughly two 

times the dimension of the pixel cells within the grid format digital terrain data.  A 

polygon segmentation distance of 10 meters was chosen to develop an accurate flood 

polygon centerline.  A convergence criteria of 1.0 foot was selected as the 

convergence tolerance.   A critical point station proximity distance of 50 meters was 

selected due to there being one river centerline being modeled.  Figure 4-4 displays the 

main UTIMS interface with the loaded layers and various input values. 

  The reach of Ferron Creek considered did not exhibit heavily meandrous 

portions, therefore  a rather large value for the meander correction value was chosen at 

500 meters.    

To investigate trial upstream and trial downstream depths the slope 

immediately downstream of the most  upstream and  most downstream cross sections  

on Ferron Creek were examined.  Profile views of the furthest upstream and furthest 

downstream areas of Ferron Creek were made utilizing the 3D Analyst within ArcGIS.  

The friction slope for the downstream boundary was approximated by observing the 

profile view.  Then using approximate peak flow (Q peak = 145,000 cfs at downstream 
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from the NRCS study)  the normal depths were calculated for both the upstream and 

downstream portions of Ferron Creek.  The approximated normal depth for the 

upstream and downstream portions of Ferron Creek were  17.2 meters and 11.1 

meters, respectively.  Utilizing these values approximate trial depths of 20 and 12 

meters were entered on the “Rivers” page in the UTIMS interface.   

The user is advised to enter these values based on the approximate peak flow to 

be modeled at the upstream boundary and the estimated attenuated flow at the 

downstream boundary.  These trial depth values need not be precise, an overestimate is 

Table 4-1.  NLCD grid code – n value relationship 
 

 
NLCD Grid Code n-Value 
 
 
11  0.035 
21  0.06 
22  0.08 
23  0.11 
31  0.025 
32  0.04 
33  0.04 
41  0.12 
42  0.15 
43  0.1 
51  0.07 
61  0.055 
71  0.035 
81  0.035 
82  0.05 
83  0.04 
85  0.045 
91  0.1 
92  0.01 
999  0.07 
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suggested because as explained earlier these values are used to approximate an initial 

flood polygon and are also utilized in clipping cross sections. 

Bank lines were placed 25 meters away from the actual river centerline.  This 

was due to a relatively open plain that flow must travel through.  It is to be noted that 

for an extreme flow model the precise definition of the stream banks is usually not 

significant because the area of flow within the stream banks is usually insignificant as 

compared to the total area of flow. 

Cross sections were placed 300 meters apart, which is roughly a fifth of a mile.  

The main cross section width was approximated around 3000 meters with dog-leg 

lengths at 1000 meters at 150 degrees.  The number of cross section segments for land 

use n-value polygon development was eight, to allow for interpolation within HEC-

 

Figure 4-4.  Main UTIMS interface loaded. 
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RAS without exceeding the limit of 20 n-values per cross section.  Figure 4-5 shows 

the “Rivers” page holding all the appropriate reach specific parameters.  As shown in 

Figure 4-4 and Figure 4-5 UTIMS is now ready to process the input data.  Thus the 

“Begin” button was pressed.  By pressing the “Begin” button UTIMS generates a flow 

specific centerline, places cross sections, develops bank lines and flow path lines.  

Upon completion of the UTIMS processing of the input data, the cross sections 

were visually examined to investigate if sufficient cross sections were placed to 

capture the trial flood polygon.  Having verified that sufficient cross sections were 

placed the “Write Data Files” button was pressed. 

Upon completing the task of checking the connectivity of the flow path lines 

and bank lines to cross sections, n-value polygons were developed by UTIMS.  The 

sloping analysis, line of sight analysis, cross section placement, bank and flow path 

line development and n-value polygon development took about 12 minutes to 

complete.  HEC-RAS was then launched and the geometry file was inspected to see if 

any bank stations needed to be moved and if any levees needed to be placed.  Bank 

stations coming from UTIMS follow the actual river centerline path, with a simple 

offset, therefore the placement of bank stations along a cross section indicate where 

the actual river centerline was located along the cross section, which is helpful 

particularly if there are multiple dips in the cross section profile.   
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 Upon correcting any bank station placement in relation to the cross section 

thalweg, dummy levees(with zero heights) were also added to ensure that HEC-RAS 

placed the flow in the main channel and did not split it unreasonably in a low area 

captured by the cross sections, unless the elevation at which a dummy levee was 

placed was exceeded.  Flow data was entered and the plan file created.  Upon 

completing hydraulic computations, using an appropriate cross-section interpolation 

interval (in this case 100 feet) and other computation tolerances and setting, the flood 

profile and flooding extents were checked for reasonableness of results.  Upon 

verification of the hydraulic computations the “Export GIS Data” was selected from 

the HEC-RAS File menu dropdown list to export results to GIS.  The maximum water 

surface was exported (titled “MaxWS”) along with the accompanying interpolated 

 
 

Figure 4-5.  Rivers page values for Ferron Creek. 
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cross sections.  Upon pressing this button UTIMS reads the flood polygon extents and 

stores the interpolated cross sections and the maximum water surface polygon in their 

respective output shapefiles.  UTIMS also derives the flood polygon centerline.  This 

flood polygon centerline is also stored in its appropriate output shapefile.  At this time 

the water surface elevations for the critical point cross sections were stored into the 

“Elevation Table” in the main output folder.  Upon the completion of deriving the 

flood polygon centerline UTIMS enables the button titled “Iterate” to allow the user to 

begin a new iteration using the derived flood polygon centerline as the next iteration 

flow path centerline.  New cross sections were desired to better approximate the 

orientation of the derived flow path centerline, therefore the check box below the 

iterate button was not checked to keep the previous iterations cross sections and the 

“Iterate” button was pressed.  

 By pressing the iterate button UTIMS created new cross sections using the 

derived flood polygon centerline as the new flow path centerline, therefore cross 

sections were placed normal to the new flow path centerline.  Bank lines were kept 

from the initial iteration as being offset from the actual river centerline, and flow paths 

were created using the new cross sections and the banks lines.  Again the button titled 

“Write Data Files” was pressed to create new n-value appropriate land use polygons 

and write a new HEC-RAS geometry file.  The unsteady flow file was copied into the 

new “Run” folder and a new project file was written.  Therefore upon launching HEC-

RAS the only data to modify before performing hydraulic computations was to inspect  

the placement of bank stations for stable computations and the placement of dummy 

levees. 
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 Upon performing the unsteady flow analysis the flood extent profile was 

inspected to verify that the computations were performed reasonably.  Upon verifying 

that the computations were performed appropriately the maximum water surface 

profile was exported along with the interpolated cross sections by pressing the “Export 

GIS Data” option within HEC-RAS.  On the UTIMS interface the “Read Output” 

button was pressed.   

 UTIMS read the HEC-RAS output file and created the flood polygon, its 

appropriate centerline, interpolated cross sections and stored the critical point cross 

sections water surface elevation.  Having read the HEC-RAS output file UTIMS read 

the “Elevation Table” with values stored for the first two iterations and notified 

through a message box that convergence was achieved for critical location points one, 

two and three.  Therefore noting that convergence was almost reached and visually 

inspecting the cross-sections for their reasonableness with respect to the flood 

polygon, the box for keeping the current iteration cross sections for the next iteration 

was checked and the “Iterate” button was pressed. 

 The cross sections from the second iteration were kept for the third iteration 

and new flow path lines were created by UTIMS based on the new flood polygon 

output from HEC-RAS.  The button titled “Write Data Files” was pressed to develop 

new land use polygons and to write a new geometry file.  Flow files were copied by 

UTIMS to the new run folder and a new HEC-RAS project file was written.   

 Again, in HEC-RAS bank station placement was inspected and dummy levees 

were added.  The unsteady flow analysis was completed and water surface extents 
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were verified for reasonableness.  The maximum water surface elevation profile data 

along with the interpolated cross sections were again exported to GIS. 

 The “Read Output” button was again pressed on the UTIMS interface to store  

the interpolated cross sections, flood polygons, flood polygon centerlines, and the 

critical point cross section water surface elevations in their appropriate files.  UTIMS 

notified through message boxes that convergence had been achieved for all critical 

point cross sections.  Thus the convergence process was completed and UTIMS was 

exited to view the final output.   
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CHAPTER 5  

RESULTS AND DISCUSSION 

 For the extreme flow modeling case described in chapter 4 the appropriate data 

was input as discussed in Chapter 4.  For the first iteration UTIMS performed the 

sloping plane analysis, which took the actual river centerline and found the closest 

points on the terrain to queried trial flood depth points.  Combining these points into 

an initial flood polygon UTIMS constructed an approximation for the flood polygon 

for the first iteration.  Figure 5-1 displays the initial flood polygon along with the 

actual river centerline for Ferron Creek.   

 Having constructed the initial flood polygon by the sloping plane analysis 

 

Figure 5-1.  Actual river centerline with initial flood polygon. 
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UTIMS approximated the initial flood polygon centerline by performing the closest 

point analysis.  Figure 5-2 displays the initial flood polygon centerline as derived by 

UTIMS.  The initial flood polygon centerline for the first iteration is held in “Modified 

Flowpath” shapefile.  

 Upon deriving the initial flood polygon centerline UTIMS performed the line 

of sight analysis which in essence smoothes the kinks in the initial flood polygon 

centerline.  Figure 5-3 displays the initial flood polygon with the “Modified Flowpath” 

and the flood polygon centerline after the line of sight analysis held in the “Complete 

Flowpath Centerline” shapefile. 

 Figure 5-4 shows a close up view of a short portion of Ferron Creek. 

 The flow path centerline smoothed after line of sight analysis is utilized as the 

 

Figure 5-2.  Initial flood polygon and flow path centerline. 
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flow path centerline in placing cross sections and is also utilized as the main channel 

flow path centerline.  Figure 5-5 shows the cross sections which were placed normal to 

the flow path centerline.  Sixty-eight cross sections were placed and clipped by 

UTIMS. 

 Figure 5-6 shows the bank lines and flow path lines which were created.  The 

bank lines follow the path of the actual river centerline and the flow path lines were 

created as approximations of the centroid locations of the overbank areas. 

 Figure 5-7 shows the land use polygons which were created by UTIMS in 

assigning n-values for the cross section segments.  Labels located on the polygons in 

Figure 5-7 show the mean value of n-values for the first iterations average n-value 

polygons in the upper portion of Ferron Creek.  The n-values in the final iteration 

ranged from 0.025 to 0.15.   

 Figure 5-8 shows the initial flood polygon along with the first iterations flood 

polygon which was obtained from HEC-RAS.  It is to be noted that the initial polygon 

was intentionally made much wider by overestimating the trial flood depth for the 

reasons explained earlier under heading “Cross sections” in Chapter 3. 

 Figure 5-9 shows the flood polygon created from the HEC-RAS output from 

each of the three iterations.   

 Figures 5-10, 5-11 and 5-12 display a close up view of the upper, middle and 

lower portions of Figure 5-9, which shows the polygons from the first, second and 

third iterations obtained from HEC-RAS. 

 Figure 5-13 shows the overlaid flood polygon centerlines from each of the 

three iterations, each derived from the flood polygons obtained from HEC-RAS.  
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Figure 5-13 also shows the initial flood polygon centerline obtained in the first 

iteration using the sloping plane and line of sight analysis.  The actual river centerline 

for Ferron Creek is also shown. 

 Figure 5-14 shows the final flood polygon and flood polygon centerline (i.e. 

final flow path centerline) which was read from HEC-RAS from the third iteration. 

 Figure 5-15 shows the final UTIMS derived flood polygon with the NRCS 

flood polygon overlaid on top.   

 

 

Figure 5-3.  Initial flood polygon flowpath 
centerline and line of sight analysis line. 
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Figure 5-4.  Close up view of the initial flood  
polygon flowpath centerline and line of sight line. 

 

Figure 5-5.  Flow path centerline and cross sections. 
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Figure 5-6.  Created flow path and bank lines with cross sections. 

 

Figure 5-7.  Created land use areal averaged n-value polygons. 
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Figure 5-8.  Initial flood polygon  
and first iteration flood polygon. 

 
Figure 5-9.  Flood polygons from three iterations. 
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Figure 5-10.  Upper portion of overlaid  
flood polygons from three iterations. 

 
 

Figure 5-11.  Middle portion of overlaid  
flood polygons from three iterations. 
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Figure 5-12.  Lower portion of overlaid  
flood polygons from three iterations. 

 
 

Figure 5-13.  Overlaid flood polygon  
flow path centerlines from three iterations. 
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Figure 5-14.  UTIMS final flood polygon  
and overlaid flow path centerline. 

 
 

Figure 5-15.  UTIMS and NRCS final flood polygons overlaid. 
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Table 5-2.  Velocity at critical points (units in feet per second) 
 
 
Point UTIMS NRCS  
 
 
1 24.28 15.93 
2    9.55   12.5   
3    8.51 12.14  
4      2.6   2.88    
5  12.78 14.12  
 

Table 5-1.  Attributes of elevation table (units in meters) 
 

 
ID River Reach Profile Iteration WS Elev Change Elevation 
 
 
1 Ferron Millsite MaxWS 1 1815.72  0 
2 Ferron Millsite MaxWS 1 1807.47  0 
3 Ferron Millsite MaxWS 1 1798.49  0 
4 Ferron Millsite MaxWS 1 1729.86  0 
5 Ferron Millsite MaxWS 1 1695.95  0 
1 Ferron Millsite MaxWS 2 1815.65  0.07 
2 Ferron Millsite MaxWS 2 1807.17  0.30 
3 Ferron Millsite MaxWS 2 1798.48  0.01 
4 Ferron Millsite MaxWS 2 1729.35  0.50 
5 Ferron Millsite MaxWS 2 1695.25  0.70 
1 Ferron Millsite MaxWS 3 1815.72  0.07 
2 Ferron Millsite MaxWS 3 1807.18  0.01 
3 Ferron Millsite MaxWS 3 1798.52  0.04 
4 Ferron Millsite MaxWS 3 1729.10  0.25 
5 Ferron Millsite MaxWS 3 1695.45  0.20 
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As seen in Figure 5-1 the initial flood polygon mainly contains the actual river 

centerline supplied to UTIMS.  The actual river centerline briefly leaves the initial 

flood polygon near the bottom of the reach(towards right hand side), which was not 

expected, but can be explained for two reasons.  The intervals at which the sloping 

plane analysis was done may have been too long to catch that portion of the centerline.  

A shorter distance for placing cross sections, and thus the sloping plane analysis 

interval may have caught that problem.  The second reason is that UTIMS removes 

any points from the boundary of the initial flood polygon which goes back upstream 

when constructing the flood polygon, therefore a point which was placed on the terrain 

initially may have been removed due to this processing.  Overall the initial flood 

polygon looks adequate and fits the land form well for Ferron Creek and the overbank 

areas.   

 Figure 5-2 shows the initial flood polygon with the flood polygon centerline 

developed.  The flood polygon centerline follows the center of the polygon quite well 

and looks to be a good approximation of the flow path centerlines of the derived flood 

polygon.  As the trial depths were a bit overestimated from the calculated normal 

depths the flood polygon is expected to be larger than the final flood polygon.  

Therefore the flow path centerline is expected to change with subsequent iterations, 

but as shown in Figure 5-2 the initial flood polygon centerline looks to be a good 

representation of the flow path centerline.  As seen in Figure 5-2 the centerline follows 

the change in width of the polygon quite well and stays in the center of the polygon for 

the complete length of the flood polygon including in the more open floodplain areas 
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(in the middle) and in the more narrow neck of the flood polygon (near two thirds the 

way down the flood polygon).   

 Figure 5-3 shows the line of sight polyline on top of the derived flood polygon 

centerline.  The line of sight polyline stored in the “Complete Flowpath Centerline” 

shapefile follows the same general path that the derived flood polygon centerline 

follows.  This is due to choosing a meander correction value of 500 meters.  This value 

seemed to be an appropriate value as overgeneralization did not take place, but the 

centerline was smoothed to remove small kinks.  As seen in Figure 5-4 the line of sight 

polyline smoothed the  kinks in the derived flood polygon centerline.  Thus the line of 

sight polyline provides a much smoother flow path centerline for placing cross 

sections. 

 Figure 5-5 shows the placing of cross sections along the flow path centerline.  

The placement of critical station point cross sections is also shown.  As can be seen in 

Figure 5-5 there is some change in the orientation of the cross sections, but they are all 

perpendicular to the flow path centerline.  Some of the areas were not covered well 

with cross sections.  This is due to the fact that there is a hierarchy of placing cross 

sections by UTIMS.  The hierarchy goes in this order: end points > critical point 

stations > flow point stations > cross sections placed at intervals.  Thus the placement 

of previous cross sections either based upon the hierarchy or cross sections 

downstream which overlap cross sections upstream may not be allowed to be stored.  

Thus a user must inspect the cross sections to see if they sufficiently represent the 

terrain being described by the cross sections.  As was noted in Chapter 4 additional 

cross sections were added to sufficiently cover the terrain being represented by the 
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cross sections.  The placement of cross sections occurred relatively fast and followed 

the rule of being oriented normal to the flow path centerline.  Thus this is a very big 

improvement compared to the general technique of looking at contour lines and 

digitizing cross sections by hand.  The sloping plane analysis along with the line of 

sight analysis approximates the required orientation of cross sections to be normal to 

the path of flow, thus the automated placement of cross sections was found to be  

extremely helpful.  This feature is likely to be even more useful in case of modeling 

long reache. 

 The placement of bank lines as shown in Figure 5-6 shows that bank lines 

follow the path of the actual river centerline.  This is to help modelers know where the 

actual river centerline is located in the cross section viewer within HEC-RAS, it is to 

be noted that the flow path centerline may not lie between the bank lines.  Therefore 

by keeping the bank lines around the actual river centerline  modelers can make a good 

judgment on how to modify bank stations within HEC-RAS.   

 The development of overbank flow path lines as seen in Figure 5-6 shows how 

the left and right flow path lines move away from and come closer to the main channel 

flow path line in relation to the centroid of the overbank areas.  As can be seen in 

Figure 5-6 the left and right flow path lines always lie in the overbank areas.  When 

the cross sections get longer in much wider floodplain overbank areas the flow path 

lines move away from the flow path centerline when coming into the expanding areas, 

and return closer to the flow path centerline when the flow path approaches a bottle 

neck or meandrous areas.  This appears to be a good approximation of the expected 

flow paths in the overbank areas.  The main channel flow path line may lie in the 
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overbank areas because the flow path centerline is not restricted (and not expected) to 

lie in between the bank lines under extreme flow conditions.  As can be seen in Figure 

5-6 the main channel flow path line does indeed cross into the overbank areas.   

 The development of areal averaged n-value polygons is shown in Figure 5-7.  

As can be seen the constructed polygons truly follow the Euclidean allocation 

algorithm (also known as thiessen polygon algorithm) which associates each pixel cell 

with its closest source cell (here specified as cross section segments).  For the first 

iteration the minimum average n-value for the land use polygons was 0.034 and the 

highest n-value was 0.15.  As seen in Figure 5-7 the more red areas indicate higher 

average n-values.  The areas which are in the left overbank areas near the three most 

upstream cross section station points are most red, which is in relation to Ferron City 

being in the overbank areas.  Thus the n-values appear to be  reasonably derived 

spatially and by utilizing standard n-values and land use data. 

 After running HEC-RAS for the first iteration UTIMS created the first flood 

polygon from the HEC-RAS computations.  Figure 5-8 shows the first iteration flood 

polygon with the initial flood polygon.  It has been noted previously that the initial 

flood polygon is expected to be larger than the flood polygon from HEC-RAS because 

in the sloping plane analysis liberally higher trial depths were used.  Thus as seen in 

Figure 5-8 the flood polygon derived from HEC-RAS is smaller than the initial flood 

polygon derived from the sloping plane analysis.  The sloping plane analysis did a 

fairly good job in describing the main shape of the HEC-RAS flood polygon.  Thus the 

sloping plane analysis provides modelers a reasonable first approximation of the 

general shape for the flow path centerline for a particular magnitude of flows. 
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 Figure 5-9 shows the three flood polygons created from the three iterations of 

UTIMS.  As can be seen the first iteration flood polygon is not much different in shape 

than the second and third iteration polygon.  This indicates that the sloping plane 

analysis did a reasonable job in describing the flow specific flow path centerline and 

that the derived flow path centerlines from the HEC-RAS output flood polygons 

described the expected flow path centerline quite well.  The true measure for 

convergence, though, is if the change in water surfaces does not vary by much from 

iteration to iteration.  Figure 5-9 shows that there is not great change in flood polygon 

shape from iteration to iteration, indicating that UTIMS has done its job well in aiding 

a modeler in describing the flood polygon of an extreme flow from iteration to 

iteration. 

 Figures 5-10, 5-11 and 5-12 all show a close up view of the flood polygons 

(Figure 5-9) in the upper, middle and lower portions of the study area  As seen in 

Figure 5-10 the upper portion of Ferron Creek flood polygons do not vary by much, 

which is significant due to this being area where Ferron City is located.  This shows 

that convergence is very likely because as can be seen the flood polygons do not 

change in shape much in the area of the upper three critical station points.  The middle 

portion of the three flood polygons shown in Figure 5-11 shows minimal change in the 

flood polygon shapes.  The greatest change was in the first portions of the flood 

polygons (on the left hand side of Figure 5-11), but this was not too significant.  Near 

the fourth critical station point the three flood polygons do not change by very much 

and seem very near identical in shape in that portion of the flood polygons.  The lower 

portions of the three polygons as shown in Figure 5-12 indicate some change in the 
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flood polygon shapes, but again there is not great change in the flood polygon shapes.  

This is significant because the process has quickly (from the initial flood polygon to 

the third iteration flood polygon) provided a user with a representative flood polygon 

for the dam breach being modeled.   

 As seen in Figure 5-13 the flow path centerlines change very little after the 

sloping plane analysis is completed.  As shown, the actual river centerline shape is 

smoothed and moved slightly due to the modeling of an extreme flow case.  Once the 

sloping plane analysis was completed the general shape of the flow path centerlines 

did not change much.  This indicates that convergence was near because there was no 

great change in shape of the flow path centerline.  The flow path centerlines determine 

the orientation of the cross sections and are also used in calculating the main channel 

flow path lengths.  These influences can alter the general shape of the flood polygon, 

but as is seen in Figure 5-13 the general shape of the flow path centerlines did not 

change much from iteration to iteration, thus it was indicated that convergence was 

close. 

 Figure 5-14 shows the final flood polygon and flow path centerline, as defined 

by convergence being reached for all five points.  The general shape of the flood 

polygon and flow path centerline did not change much from iteration to iteration. 

 The reasonableness of the UTIMS software was verified by comparing the 

UTIMS derived flood polygon and an independently computed flood polygon by the 

NRCS.  The NRCS supplied along with the breach flow data a preliminary flood 

polygon for the breach of Millsite Dam.  Figure 5-15 shows the overlay of the UTIMS 

derived flood polygon and the NRCS derived preliminary flood polygon.  The general 
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shapes of the two polygons are very similar and basically mirror each other from the 

upstream to the downstream portions of the polygons.  This is significant because with 

very little GIS work by the user UTIMS has aided in modeling a fairly  long reach and 

allowed for the bulk of the time used in this study to be spent on hydraulic modeling.  

The differences in shape of the two polygons are likely due to  differences in the 

modeling techniques and the input data utilized, as discussed below. 

 1. The first significant difference in developing the flood polygons is that the 

NRCS utilized different cross sections than the once generated by UTIMS.  As was 

noted previously cross sections play major role in floodplain mapping.  Therefore, 

because different cross sections were utilized the flood polygons are expected to be 

slightly different.   

2. Another factor responsible for  any differences in shape is due to manner in 

which flow path lines are created.  UTIMS utilized a centroid approach to identify the 

center of mass of the overbank areas in placing flow path line vertices.  The flow path 

lengths in the main channel, and left and right overbanks can be significantly different 

in the final flood polygon than in case of NRCS, thus by utilizing a different approach 

in developing flow path lines UTIMS’ flood polygon may not exactly match the shape 

of the preliminary NRCS flood polygon.   

 3. Another factor which influenced the difference in flood polygon shape is the 

assigning of n-values.  UTIMS calculates the areal average n-values for each segment 

of cross sections.   For the third and final iteration UTIMS’ n-values for the land use 

polygons had values ranging from 0.025 to 0.15.  The NRCS study utilized a constant 

value of 0.05 for all the segments of the cross sections utilized.  This difference is 
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significant due to there being an urbanized area in the overbank areas, with likely 

higher roughness than used in NRCS model.  The n-values from upstream to 

downstream should be representative of the land use and is not reasonable to use a 

constant n-value throughout.  Thus UTIMS has added the spatially difference of land 

use into the model.  As seen in Figure 5-7 the n-values near Ferron City are much 

higher than in other portions of the overbank areas.   

 4. Yet another factor which influenced the difference in flood polygon shape is 

the downstream boundary conditions used.  As noted previously in identifying the 

downstream friction slope used in calculating normal depth, described in chapter four, 

a friction slope of 0.005455 was used in the UTIMS iterative modeling process.  The 

NRCS friction sloped utilized was 0.005.  Thus there was a difference in the boundary 

condition, which would have definitely impacted the lower portions of the flood 

polygons shapes.     

 Table 5-1 shows the convergence path with respect to the actual change in 

water surface elevation from iteration to iteration.  As shown in Table 5-1 the 

convergence process, for which tolerance was specified as 1.0 feet  in this case study, 

took three iterations to complete.  The units in Table 5-1 are in meters, thus 

convergence is achieved when the change in water surface is less than 0.3048 meter.  

As seen in the change in water surface elevation from the first to the second iteration 

for the first three critical point stations convergence was obtained.  This helped in the 

decision to keep the cross sections from the second to the third iteration.  When the 

cross sections were passed from the second to the third iteration care was taken to re-

orient any cross section which was not perpendicular to the new flowpath centerline.  
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In the third iteration convergence was achieved for all five critical point stations and 

the maximum change in water surface elevation was found to be 0.25 meters, which is 

about 0.82 feet (i.e. less than the convergence tolerance specified in this study). 

 Table 5-2 shows the maximum velocity at the critical points of the UTIMS 

process along with the corresponding point velocities provided in the NRCS model.  

As can be seen the velocities are similar.  As noted earlier the cross sections were not  

exactly same and the roughness values are different, therefore some differences are 

expected.  The UTIMS approach is more physically based and hence expected to 

provide more reasonable results.  The velocities along with flow depths are critical 

inputs into consequence (both economic as well as life loss) estimation for dam safety 

risk assessment studies which require that these should be as reasonable estimate as 

possible for the given flood magnitude being modeled. 

 Figure A-1 and A-2 compare the stage hydrographs obtained from the UTIMS 

and NRCS models for each critical location point.    As can be seen in these figures the 

stages obtained from the two models at these critical location points are very similar.  

The peaks are almost identical but they are shifted in time with the UTIMS 

hydrograph peaks occurring about 10 to 30 minutes sooner.  This difference is most 

likely due to the four factors discussed earlier in this section.   

 Figure A-3 compares the flow hydrographs at the critical location points 

obtained from the UTIMS and NRCS models.  Again the flow magnitudes are very 

similar but the UTIMS hydrograph peaks occurring 10 to 15 minutes earlier than the 

NRCS hydrographs..     



166 
 

 

 The first iteration of UTIMS to develop the geometries required by HEC-RAS 

to develop a flood polygon for Ferron Creek took 12 minutes to complete.  In 

comparison to approximately 2.5 hours (for a person with high level of GIS 

experience) to develop the required geometries using HEC-GeoRAS.  Therefore the 

use of UTIMS significantly reduced the time required to develop an inundation map.    

For a user having less familiarity with GIS, the time saving by using UTIMS can be 

even more significant, particularly if modeling a long river reach. 

 In conclusion, the general shape of the two flood polygons, developed by using 

UTIMS and obtained from the NRCS, is similar and the minor differences  in shape 

could be due to the four factors discussed above.  The stage and flow hydrographs 

shapes and peaks at the critical location points also compare well, only with UTIMS 

hydrographs peaking a few minutes earlier than the NRCS hydrographs.  Thus UTIMS 

has enabled significant time savings on the GIS side of developing the inputs and thus  

allowing the user to better spend their time on the modeling aspect of developing a 

flood inundation map. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

 As described in Chapter 5 the output from UTIMS significantly aided the 

modeling of the dam break flood of Millsite Reservoir.  This process was significantly 

aided by the sloping plane analysis, food polygon centerline approximation by the 

closest point analysis, line of sight analysis, automated placement of cross sections, 

placement of bank lines, placement of flow path lines, areal averaged n-value land use 

polygon development and the deriving of new flow path centerlines based upon flood 

polygons imported from HEC-RAS computation. 

 The sloping plane analysis performed quite well in deriving a flow specific 

flow path centerline.  This process was performed by making an initial assumption that 

the flood polygon follows a sloping plane down the river corridor.  The initial flood 

polygon was shown to be similar in shape to the flood polygon derived by modeling 

the breach flow within HEC-RAS.  The sloping plane analysis along with the closest 

point analysis delivered a flow path centerline which was indicative of the final flow 

path centerline for the extreme flow modeled. 

 The line of sight analysis created a smooth flow path centerline which was 

utilized in placing cross sections.   

 The automated placement of cross sections was performed seamlessly and took 

very little time and reasonably  described the orientation of the flow path.  The cross 

sections reasonably described the extent of overbanking flood waters by UTIMS 
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clipping the cross sections based upon trial upstream and downstream depths along a 

river centerline. 

 The development of bank and flow path lines significantly aided in the 

modeling process.  By utilizing the actual river centerline to develop bank lines 

UTIMS aided users in knowing where the actual river centerline is located along a 

cross section profile.  This was extremely useful in placing dummy levees and 

modifying bank station locations to accurately model  the unsteady flow.  The left and 

right overbank flow path lines were created by utilizing a computation which 

identified the centroid of the overbank areas.  This significantly aided in the modeling 

process, by eliminating the need for the user to manually digitize these lines. 

 Areal averaged n-values were assigned by taking into account the changing 

land use types from one cross section to the next.  This was performed by utilizing a 

standard land use type source of the NLCD layers and modeling standard n-values for 

the NLCD grid code values.  Thus by automating the development of n-value land use 

polygons UTIMS significantly aided in the n-value development for land use polygons 

by accounting for the change in land use. 

 The flow path centerline in extreme flow cases is ultimately defined by the 

flood polygon from HEC-RAS, therefore the capability of UTIMs to derive the flood 

polygon centerline as an approximation of the flow path centerline proved extremely 

useful.   

 UTIMS has been demonstrated to be a very useful tool in hydraulic model 

development.  With UTIMS a modeler can significantly reduce the time spent on 

developing the geometry files to be used by HEC-RAS, and thus utilize this time saved 
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on  HEC-RAS unsteady flow modeling to get an accurate flood polygon.  UTIMS adds 

significant capabilities to the arena of floodplain mapping automation.  UTIMS is 

simple to use, yet provides powerful tools to aid modelers to converge upon a final 

flood polygon to effectively and accurately manage the flood-plain. 

 Recommendations for further capabilities to be included within UTIMS will 

yet increase the modeling aid capabilities which UTIMS already possesses.  There are 

four main recommendations for further development of UTIMS capabilities. 

 The first is that several terrain data sources should be available to be utilized 

within UTIMS.  Survey data is extremely useful for in-stream flow modeling, so to 

bolster the strengths of UTIMS for in-stream flow modeling the capability of UTIMS 

to handle several terrain data sources need to be added. 

 The second recommendation is also related to increasing capabilities relating to 

in-stream flow modeling.  That is to include the option to specify channel shape such 

as trapezoidal, rectangle, etc., shapes with corresponding parameters for the channel 

shape.  By utilizing a thalweg and a channel shape the in-stream flow modeling 

capabilities will be improved. 

 The third recommendation for UTIMS is in regard to if users wish to keep a 

selected group of cross sections from one iteration to the next and replace the other 

cross sections.  This would be extremely useful in cases where ineffective flow areas 

could be retained along with bank station points and other cross section specific 

parameters for specific cross sections.  This would further reduce the time required in 

inundation  mapping as modelers would only need to alter bank station points as 
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needed, and add ineffective flow areas only for new cross sections from iteration to 

iteration.   

The fourth and final recommendation for UTIMS development is to include a 

cross section viewer within the UTIMS interface.  With a cross section viewer a user 

can visualize cross section profiles before they are passed to HEC-RAS, thus allowing 

a modeler to modify cross section orientation to accurately define the path of flow.   

 By adding these four functionalities UTIMS will further increase its usefulness 

to enhance the modeling capabilities of professional modelers by reducing their time 

on geometry file development, and thus allowing them to spend their time where it is 

needed most – in the modeling of flood waters to effectively manage the risk of 

flooding and the floodplain itself. 
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Figure A-1.  Critical point stages for points 1-3. 
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Figure A-2.  Critical point stages for points 4-5. 
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Figure A-3.  Critical point flows for UTIMS and NRCS. 
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GLOSSARY 

Areal Average n-Value Assignment  
A process where UTIMS develops land use polygons 
which have average n-value of the land use contained 
within the polygons assigned to them.  

 
Closest Point Analysis  

An analysis where a flood polygon flow path centerline 
is approximated by querying the left and right sides of a 
flood polygon to approximate the center line of the  
polygon. 

 
Convergence Criteria  

A value which designates if convergence has been 
achieved  by monitoring the change in water surface 
elevation from iteration to iteration. 

 
Extreme Flows  

Magnitude of flows which  exceed the capacity of well 
defined channels and flood into the overbank areas. 

 
Flood Polygon Segmentation Distance  

A distance which is used in the flood polygon centerline 
approximation process.  This distance is added to the 
station of the last closest point queried on the opposite 
side of the flood polygon which ensures that the flood 
polygon centerline determination continues in a 
downstream direction. 

 
Flow Path Centerline  

Represents the center of flow path.  Cross sections are 
placed perpendicular to the flow path centerline. 

 
In-Stream Flows  

Magnitude of flows which are contained within well 
defined channels. 

 
Meander Correction Value  

A value which UTIMS uses to designate that an extreme 
flow is expected and is also utilized as the maximum 
length of a flow path centerline which can be removed 
by the line of sight analysis. 
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Sloping Plane Analysis An analysis where an initial flood polygon and flow path 
centerline is developed by utilizing terrain data, trial 
flow depths and the actual river centerline. 

 
Line of Sight Analysis An analysis where a flow path centerline is smoothed by 

removing sections of a polyline by checking for 
visibility down a flow path centerline
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