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ABSTRACT 

 
 

Using Species Distribution Models to Assess Invasion Theory and Provide Management 
 

Recommendations for Riparian Areas in the Eastern Columbia and Western  

Missouri River Basins 

 
by 

 
 

Diane R. Menuz, Master of Science 
 

Utah State University, 2011 
 

Major Professor: Dr. Karin M. Kettenring  
Program: Ecology 
 
 

Invasive plant species impact ecosystems by altering native plant community 

composition and modifying ecosystem properties such as fire and nutrient cycles. We 

used species distribution models to address both theoretical and applied questions 

regarding invasive plants in an ecosystem particularly vulnerable to invasion, riparian 

areas. In our first study, we asked whether a native species is closer to equilibrium than a 

functionally similar invasive species and determined drivers of invasion for an aggressive 

invader of riparian areas, Phalaris arundinacea (reed canarygrass). We modeled the 

presence of P. arundinacea and a comparable native species using four techniques and 

compared model fit between species and between models with and without dispersal 

processes incorporated. Non-dispersal model fit for our invasive species was lower than 

for the native species and improvement in fit with the addition of the dispersal constraint 

was greater for the invasive species than the native species. These results provide 
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evidence that invasive species are further from equilibrium than native species and 

suggest that dispersal processes should be considered when modeling invasive species. In 

our second study, we addressed whether there was a set of site traits that make some sites 

more prone to invasion by non-native plants than others. We used Random Forests to 

individually model the presence of 11 invasive plant species that are designated as 

noxious weeds in our study area. We used model results to identify general patterns of 

invasion and to provide management recommendations for the study area. We found that 

a particular site type was more likely to be invaded by the majority of study species: hot, 

dry sites with high grass or shrub cover near roads with high nutrient levels and high 

stream baseflow values. Management recommendations to combat invasion by P. 

arundinacea in particular and invasive species in general are the same: limiting species’ 

spread along roads, lowering site nutrient levels, and anticipating increased spread with 

climate change. 

  
 (100 pages) 
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PUBLIC ABSTRACT 

 
Diane Menuz 

Globalization has created opportunities for plant and animal species to be transported to 
novel ecosystems. A subset of these species become invasive species, which are able to 
persist and spread rapidly to become influential components in their new ecosystems. 
Invasive species are often able to out-compete co-occurring native species and can alter 
fundamental ecosystem properties, such as soil nutrient availability or time between 
wildfires in a region. The United States is estimated to lose $34 billion per year to 
invasive plant species through costs to control unwanted species and lowered crop and 
forage production.  
 
We used statistical models to better understand invasive plant species in our study region, 
the eastern Columbia and western Missouri river basins. These models, referred to as 
species distribution models, relate site attributes, such as proximity to roads or climatic 
conditions, to the presence or absence of the species of interest. One assumption of these 
models is that species are absent from sites for reasons that can be captured by predictor 
variables, such as cold temperatures or too little rain, rather than by the species’ inability 
to disperse to the sites. Our first objective was to determine whether models performed 
better at predicting the presence of native species than the presence of invasive species 
since the latter have had limited time to spread in the area where they have been 
introduced. We also wanted to determine whether including a measure of the distance to 
nearby sites occupied by the focal invasive species increased model performance by 
capturing some of the regional dispersal potential. In our second study, we modeled the 
distributions of 11 plant species designated as noxious weeds by state regulatory agencies 
within our study area. Our objective was to determine the site attributes most frequently 
associated with invasion so we could make recommendations for management action to 
lower invasion risk in our study area. 
 
We found that model performance was lower for the invasive species than for the native 
species and that including a measure of nearby occupied sites increased performance 
more for the invasive species than for the native species. We recommend that researchers 
consider dispersal limitations as part of their species distribution modeling process. Our 
results may improve the ability of distribution models to accurately predict invaded areas. 
In our second study, we found a particular site type that was more likely to be invaded by 
the majority of study species: hot, dry sites with high grass or shrub cover near roads with 
high soil nutrient levels and fluctuating stream water levels. Monitoring efforts should 
focus on sites that fit this description. Management actions that may limit invasion 
include limiting species’ spread on roads, adjusting soil nutrient levels to favor native 
species over invasive species, and preparing for increased invasion with climate change. 
Research results will be shared with the Forest Service Rocky Mountain Research Station 
to be disseminated to land managers in our study region. Project results should help lower 
the rate of spread of invasive species and make species’ control efforts more cost 
effective by focusing on the most vulnerable sites. 
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CHAPTER 1 

INTRODUCTION TO BIOLOGICAL INVASION IN RIPARIAN AREAS, SPECIES 

DISTRIBUTIONS MODELS, AND STUDY QUESTIONS 

 Invasive plant species cause substantial economic and ecological harm throughout 

the world (Simberloff 2001). Biological invasion occurs when a species rapidly becomes 

a dominant component of a community where it was not found previously, either because 

the species is introduced to a new environment or because environmental conditions are 

altered in such a way that the species is at a competitive advantage (Valery et al. 2008). 

We limit the term invasive species to species not native to a particular area. Invasive 

plant species are estimated to cost the United States at least $34 billion per year 

(Pimentel, Zuniga & Morrison 2005) and almost half of the imperiled species in the 

United States are threatened by invasive species (Wilcove et al. 1998). Invasive plant 

species can dramatically alter ecosystems; for example, studies have found that invasive 

plant species can decrease native plant and invertebrate species diversity (Gerber et al. 

2008), change nutrient availability (Ehrenfeld 2003), and alter disturbance regimes 

including fire cycles (Mack & D'Antonio 1998).  

 Riparian areas are particularly vulnerable to invasive plant species due to both 

high potential for ecological harm and high susceptibility to invasion. Riparian vegetation 

plays an important role in determining nutrient levels, sedimentation processes, bank 

stability, and water temperatures in adjacent streams (Richardson et al. 2007). Riparian 

vegetation also supports high levels of terrestrial biodiversity (Poff et al. 2011). Changes 

in riparian vegetation via plant invasion can lead to changes in stream and terrestrial 

functioning (Tickner et al. 2001; Gerber et al. 2008; Urgenson, Reichard & Halpern 
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2009). Riparian areas are often found to be more heavily invaded than adjacent upland 

areas (DeFerrari & Naiman 1994; Stohlgren et al. 1998; Hood & Naiman 2000). Invasion 

may occur in part because streams can act as dispersal corridors, carrying propagules to 

downstream habitat once a species is introduced locally (Johansson, Nilsson & Nilsson 

1996; Tabacchi et al. 2005). Flood events can further aid invasion by opening up 

resources such as space and light that allow species to establish (Pysek & Prach 1993; 

Parendes & Jones 2000). Management tools for dealing with invasive species in riparian 

areas are critically needed. 

 Species distribution models can be an important tool for combating invasive 

species (Peterson 2003). These models build a statistical relationship between the 

presence of a focal species and underlying environmental conditions at sites where the 

species is found. For invasive species, these models can help prioritize sites for 

monitoring and control efforts by predicting areas that are most likely to be invaded. For 

example, Hoffman et al. (2008) created maps of the potential distributions of five 

invasive plant species along the North Platte River and found that susceptibility was 

higher in the eastern part of the river. Distribution models can also be used to identify 

factors that promote invasion, leading to management recommendations. For instance, 

Loo (2009) found that the aquatic invasive grass Glyceria maxima in Australia is 

associated with high soil nutrient content which suggests that site nutrient management 

may help limit spread of this species. 

 In this thesis, we addressed both theoretical and applied aspects of invasion 

ecology using species distribution models. We used riparian vegetation data from streams 

in the eastern Columbia and western Missouri river basins for analysis. In Chapter 2, we 
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evaluated the extent to which species distribution models are appropriate for modeling 

invasive species and then used the results to better understand factors associated with 

invasion by the riparian invader Phalaris arundinacea L. (reed canarygrass). Species 

distribution models assume that modeled species are at equilibrium with their 

environment (Elith & Leathwick 2009). This may not be true for invasive species because 

they have had limited time to spread throughout their introduced range. Recent work has 

incorporated measures of dispersal potential into distribution models of invasive species 

to account for this problem (Allouche et al. 2008; Václavík & Meentemeyer 2009). 

However, it is unknown if the issue of non-equilibrium is more of a problem for invasive 

species than for native species. We compared model accuracy of distribution models with 

and without a dispersal constraint for the invasive riparian plant P. arundinacea and the 

functionally similar native Calamagrostis canadensis to evaluate whether the invasive 

species appears to violate the assumption of equilibrium. We also used the models to 

better understand factors related to invasion by P. arundinacea because of this species’ 

recognized importance as a threat to riparian and wetland areas (Galatowitsch, Anderson 

& Ascher 1999; Lavergne & Molofsky 2004). We identified drivers of invasion at the 

landscape scale for this species in order to inform management decisions and new 

experimental research. 

 In Chapter 3, we looked at what makes some sites more susceptible to invasion 

than other sites. A variety of characteristics have been linked to site invasibility, 

including changing fire regimes (Keeley, 2006), novel grazing pressure (Diez et al. 

2009), and natural or anthropogenic differences in nutrient levels (Bakker & Berendse 

1999; Maron & Jefferies 1999). An understanding of these characteristics can help 
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prioritize areas for monitoring and control efforts and determine appropriate management 

actions to lower site invasion risk (Hobbs & Humphries 1995; Pyšek & Richardson 

2010). Much of the previous work on the relationship between site characteristics and 

invasion risk has looked at only one or a few invasive species (Evangelista et al. 2008; 

Ibáñez et al. 2009b; Loo et al. 2009), looked at only one or a few factors related to 

invasion (Wilson et al. 1992; Matthews et al. 2009), or modeled richness and/or 

abundance of all exotic species as a function of site attributes (Ohlemüller, Walker & 

Wilson 2006, Ibáñez et al. 2009a; Catford et al. 2011). In contrast to this previous work, 

we used species distribution models to look both at generalities associated with site 

invasibility and species-specific habitat relationships. We modeled species individually 

and then looked for a region-wide pattern to determine if site characteristics associated 

with invasion were conserved across a suite of species. We modeled the distributions of 

11 invasive plant species along riparian areas in the northwestern United States using 

Random Forests. Variables related to climate, disturbance, nutrient and soil conditions, 

land cover, and site hydrology were included in the models. Model results informed both 

invasion theory as well as provided management advice for the study region.  
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CHAPTER 2 

DO DISPERSAL CONSTRAINTS IMPROVE SPECIES DISTRIBUTION MODELS?  

TESTS WITH AN INVASIVE AND NATIVE RIPARIAN PLANT SPECIES 

Summary 

1. Species distribution models assume that modeled species are at equilibrium with their 

environment. Introduced invasive species may frequently violate this assumption because 

they have had limited time to disperse to all suitable habitat within their introduced range. 

Recently, some researchers used measures of dispersal potential in species distribution 

models to account for this problem. However, their work has not explicitly determined if 

the issue of non-equilibrium is more of a problem for invasive species than for native 

species. 

2. We compared the accuracy of an ensemble of distribution models with and without a 

variable accounting for dispersal constraints for the invasive riparian plant Phalaris 

arundinacea and the functionally similar native Calamagrostis canadensis to evaluate 

whether the invasive species violates the assumption of equilibrium. We also used the 

models to understand factors related to P. arundinacea invasion because of this species’ 

recognized importance as a threat to riparian and wetland areas.  

3. We predicted that (1) models without dispersal constraints would fit the native species 

better than the invasive species and (2) the addition of dispersal constraints would 

improve fit for the invasive species more than fit for the native species. We used logistic 

regression, classification trees, Random Forests, and Boosted Trees to model 

distributions and used two accuracy metrics to evaluate model fit. 
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4. Both of our predictions were validated: (1) model fit was higher for the native species 

in models without dispersal constraints and (2) incorporation of dispersal constraints 

improved fit more for the invasive species than the native species. Phalaris arundinacea 

was associated with warm sites that were drier in winter and wetter in summer. Presence 

was also higher at ungrazed sites with high nitrogen levels near roads. 

5. Synthesis and applications. Invasive plant species appear to be less likely to meet the 

distribution modeling assumption of equilibrium than native species. Including dispersal 

processes in distribution models should increase their utility for managing invasive 

species. Model results indicate that climate change preparation, nutrient management, 

and road monitoring will help lower site susceptibility to P. arundinacea invasion. 

Introduction  

 Species distribution models are an important tool for understanding landscape-

level patterns of invasion (Peterson 2003). These models use environmental variables 

from surveyed sites to build statistical relationships between those variables and the 

presence of the species of interest. They can be used to identify factors associated with 

invasion such as high soil nutrient levels (Loo et al. 2009), low forest cover (Allen & 

Shea 2006), or areas of high human population density (Nielsen, Hartvig & Kollmann 

2008). Distribution models can also inform monitoring and control efforts by generating 

predictions of areas most vulnerable to invasion (Hoffman et al. 2008; Jarnevich & 

Reynolds 2011). 

 A major assumption of species distribution models is that modeled species are at 

equilibrium with their environment (Elith & Leathwick 2009). This means that species 

are limited by environmental variables such as climate or soil conditions, rather than by 



10 
dispersal ability. Invasive species may frequently violate this assumption because they 

have had limited time to disperse to all suitable habitat within their introduced range 

(Václavík & Meentemeyer 2009). Recently, researchers have proposed incorporating a 

measure of dispersal potential into distribution models of invasive species to address this 

issue and improve model fit (Allouche et al. 2008; Dullinger et al. 2009; Václavík & 

Meentemeyer 2009). These dispersal constraints are a function of each site’s proximity to 

known occupied sites and serve as an estimate of nearby propagule pressure. Previous 

research has focused on improving model fit for invasive species without considering the 

extent to which the problem of non-equilibrium also exists for native species. Here, we 

compare accuracy of distribution models with and without dispersal constraints for the 

introduced invasive plant species Phalaris arundinacea L. (reed canary grass) and the 

functionally similar native species, Calamagrostis canadensis (Michx.) P. Beauv. 

(bluejoint) to assess the importance of dispersal constraints for model fit. This approach 

allows us to evaluate if non-equilibrium is an issue of specific concern for invasive 

species or is more general to models of all species. 

 We use riparian areas in the northwestern United States as our study region. 

Riparian vegetation both provides habitat for terrestrial animals (Poff et al. 2011) and 

regulates in-stream processes (Richardson et al. 2007). Riparian areas are subject to high 

levels of anthropogenic disturbance (Goodwin, Hawkins & Kershner 1997), which can be 

accompanied by accidental or intentional introduction of new species. Frequent natural 

disturbance via flooding can further exacerbate invasion potential (Parendes & Jones 

2000). Plant invasion in riparian areas can alter vegetation composition and thus both 

terrestrial and stream functioning (Richardson et al. 2007). 
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 We chose P. arundinacea as our model invasive species because of its recognized 

importance as a threat to riparian and wetland areas and because of its use as a model 

system for the study of biological invasions (Galatowitsch, Anderson & Ascher 1999; 

Lavergne & Molofsky 2004). This species can lower native plant diversity (Green & 

Galatowitsch 2002; Werner & Zedler 2002), lower native diversity of some insect groups 

(Hansen & Castelle 1999) and change sedimentation patterns and hydrologic processes of 

invaded streams (Lavergne & Molofsky 2004). Researchers have studied P. arundinacea 

extensively in experimental settings to examine how light availability, flood levels, 

nutrients, grazing, and sedimentation affect its establishment, growth and competitive 

abilities (Green & Galatowitsch 2002; Maurer & Zedler 2002; Kercher & Zedler 2004; 

Perry & Galatowitsch 2004) and to compare the effectiveness of different control 

methods and restoration practices on limiting its spread (Kilbride &  Paveglio 1999; 

Adams & Galatowitsch 2006). Much less work has investigated larger-scale patterns of 

P. arundinacea invasion, and these studies have focused on one or a few drivers of 

invasion, such as dams and reservoirs (Rood, Braatne & Goater 2010), general 

disturbance (Ringold, Magee & Peck 2008), land cover (Jakubowski, Casler & Jackson 

2010), or nutrients and urbanization (Matthews et al. 2009). Besides the study by 

Ringold, Magee and Peck (2008), which covered the western United States, these studies 

were confined to single river systems or portions of individual states. In contrast to 

previous work, in this study we examined a wide range of factors controlling the 

distribution of P. arundinacea across a large section of the western United States. Such 

landscape-level work is important for identifying potential drivers of invasion that could 

inform new experimental research and provide management recommendations. 
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 The objectives of our study were to 1) determine if dispersal processes are more 

important for models of invasive species than native species and 2) understand factors 

that regulate the distribution of P. arundinacea. To address our first objective, we 

compared fit for models of P. arundinacea and C. canadensis with and without dispersal 

constraints. We predicted that 1) models without dispersal constraints would fit the native 

species better than the invasive species because invasive species are less at equilibrium 

with their environment and 2) incorporating dispersal constraints would improve fit for 

the model of the invasive species and have minimal effect on the model of the native 

species. We used an ensemble of distribution models to address our second objective to 

determine natural and anthropogenic drivers of P. arundinacea. Our results provide a 

better understanding of when non-equilibrium needs to be considered for distribution 

modeling as well as management recommendations for an aggressive invasive riparian 

plant species. 

Methods 

Study Species 

 Phalaris arundinacea is a rhizomatous grass species that is predominantly found 

in wetland or riparian areas (http://plants.usda.gov). It has been repeatedly introduced to 

North America from Europe for erosion control and cattle feed, with the earliest 

introductions in the mid-1800s (Lavergne & Molofsky 2004). We selected the native 

grass species C. canadensis for model comparison because this species’ dispersal 

mechanisms and functional role are similar to P. arundinacea. Both species occur 

throughout the United States and Canada, almost exclusively in wetland and riparian 

areas (http://plants.usda.gov). They both reach about 1.5 m in height and can regenerate 
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vegetatively with rhizomes and with seeds, with seed dispersal considered an important 

component of spread (http://www.invasive.org/weedcd/pdfs/tncweeds/phalaru.pdf, 

Lieffers, Macdonald & Hogg 1993). Based on seed weight and lack of other dispersal 

characteristics, dispersal for both species is probably primarily through wind or 

unassisted (Hughes et al. 1994). Some dispersal may also occur through animal ingestion, 

adhesion to animals via mud, or in streams (Balgooyen & Moe 1973; Vivian-Smith & 

Stiles 1994; Boedeltje et al. 2004). However, water dispersal is probably not the primary 

means of P. arundinacea dispersal because its seeds have a relatively short float time 

(Coops & Velde 1995) and lower germination rates when stored in wet versus dry 

conditions (Comes, Bruns & Kelley). Information about C. canadensis water dispersal 

potential is not available. 

Distribution data and study region 

 We used species distribution data from the U.S. Forest Service’s (FS) 

PACFISH/INFISH Biological Opinion Effectiveness Monitoring Program (PIBO) 

(Henderson et al. 2005). PIBO collects data on riparian vegetation on FS and Bureau of 

Land Management (BLM) land in the eastern Columbia and western Missouri River 

Basins along 80 to 500-m long stream segments (Fig. 2.1). This area encompasses a 

diverse range of vegetation, including dry forest (Pseudotsuga menziesii, Pinus 

ponderosa and Abies spp.), cold forest (Tsuga mertensiana, Pinus albicaulis, Pinus 

contorta and Larix lyallii) and dry shrub (Purshia tridentata, Artemisia tridentata, and 

Juniperus spp.) (Quigley & Arbelbide 1997). A small portion of the study area is in the 

northwestern Great Plains. Each stream segment, or site, will be visited at least once 

every five years, though currently most sites have not had repeat surveys. Vegetation data 
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at each site are collected from a variable number of 20-cm x 50-cm Daubenmire quadrats 

placed along the greenline, the first place upslope from the stream with at least 25% 

perennial plant cover. We used data from the first 40 quadrats at each site to maintain a 

standard number of samples. We considered a species present at a site if it was found in 

at least one quadrat during at least one PIBO survey between 2003 and 2009. There were 

a total of 1146 sites in the Columbia River Basin and 193 sites in the Missouri River 

Basin used in our study. 

Predictor variables 

 We identified 20 non- or weakly correlated (Pearson correlations <|0.70|) 

environmental variables that represent climatic, land cover, disturbance, hydrological, 

and soil factors expected to be important to the distribution of plant species (Table 2.1). 

Data extraction was conducted in ArcMap 10 and Geospatial Modelling Environment 

0.5.2 (www.spatialecology.com/gme). We extracted 30-year mean climate values from 

PRISM (Daly et al. 2008) including mean precipitation of the driest month of the year, 

mean precipitation of the wettest month of the year, mean temperature of the coldest 

month of the year, mean temperature of the warmest month of the year, and mean number 

of days per year between the first and last freeze. Distance to the nearest road and density 

of roads in a 1-km buffer around sites were calculated from TIGER/lines shapefiles (U.S. 

Census Bureau 2009) or FS or BLM road data (unpublished data), depending on data 

accuracy at each site. We used FS and BLM spatial data on grazing allotments 

(unpublished data) to calculate the presence/absence of grazing allotments at sites and the 

percent of 1-km buffers around sites that contain grazing allotments. We used fire 

perimeter data from Monitoring Trends in Burn Severity to create a categorical variable 
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to distinguish between burned and unburned sites for sites that were burned within 10 

years of the most recent PIBO survey (Eidenshink et al. 2007). We included two 

measures of hydraulic conditions at sites: slope and baseflow. Stream segment slope, 

which is positively related to flood intensity, was calculated from 30-m DEMs (Gesch et 

al. 2009). Baseflow, the percentage of total stream flow that comes from groundwater 

discharge, was extracted from USGS Base-flow Index Grid (Wolock 2003). Cover of 

forest, shrubland, grassland, and other (e.g. development, agriculture, standing water) 

was calculated in 200-m buffers around each site, based on data from a national 

vegetation map (LANDFIRE National Existing Vegetation Type layer from U.S. 

Department of the Interior, Geologic Survey, http://gisdata.usgs.net/website/landfire). 

Only percent shrubland and grassland cover were used in the final analysis because forest 

cover was highly negatively correlated with grassland cover and cover in the “other” 

category was uncommon. 

 We included both direct and indirect measures of nutrient availability and soil 

conditions in our models. We calculated soil pH and percent organic matter from the U.S. 

General Soil Map STATSGO (http://soildatamart.nrcs.usda.gov). We used several 

proxies for nitrogen and phosphorous availability, the two minerals generally most 

limiting to plant productivity. Rock phosphorous and nitrogen at each site were derived 

from maps of bedrock percent phosphorous and nitrogen composition (J. Olson, Utah 

State University, unpublished data) based on the Preliminary Integrated Geologic Map 

Databases for the United States (Ludington et al. 2007). The percent of area with woody 

nitrogen fixing species was calculated as the proportion of a 200-m buffer around sites 

where nitrogen fixing plants were listed as occurring in a national vegetation map 
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(LANDFIRE Map of Biophysical Settings from U.S. Department of the Interior, 

Geologic Survey, http://gisdata.usgs.net/website/landfire).. Atmospheric nitrogen 

deposition data were extracted from the US Environmental Protection Agency 

Atmospheric Modeling and Analysis Division Watershed Deposition Tool (Schwede, 

Dennis & Bitz 2009). Abbreviations used in subsequent text for all predictor variables are 

listed in Table 2.1.   

Dispersal measure 

 We calculated dispersal constraint as the squared inverse cumulative distance 

between a given site and known occupied sites. This measure has been effective in recent 

work (Allouche et al. 2008). Furthermore, though we use presence and absence data in 

our study, this measure can also be used with presence-only data (Václavík & 

Meentemeyer 2009), increasing its potential utility in other applications. The dispersal 

value ܦ௜ at site i is the summation of the inverse squared Euclidean distance, ݀௜௝, between 

site i and all known occupied sites j: 

௜ܦ ൌ ෍
1

ሺ݀௜௝ሻଶ

ே

௝ୀଵ

 

Model methods 

 We used an ensemble of 4 models, including generalized linear models (GLM), 

classification trees (CT), Random Forests (RF), and Boosted Trees (BT), to identify 

environmental factors associated with the distributions of our study species. Each of these 

methods has performed well in recent comparative studies (Segurado & Araujo 2004; 

Cutler et al. 2007; Guisan et al. 2007). Ensemble approaches to distribution modeling 
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have been increasingly favored as a way to minimize uncertainties and distinguish 

between model signal and noise (Araújo & New 2007). Furthermore, because we were 

interested in comparing model accuracy between species, we did not want to rely on a 

single model form in case the underlying algorithm of that form fit one species better 

than the other. For example, simple logistic regression without interactions could model 

one species better than another if one species had more linear relationships with predictor 

variables than the other. We optimized model parameters and selected a parsimonious set 

of predictor variables to create a habitat-only model for each model form before adding 

the dispersal variable. All analyses were done in R 2.12.1 (R Development Core Team 

2010).  

GLM are extensions of linear models that allow for both user-specified 

distributions for model error terms and for link functions to connect the mean response to 

the predictor variables. We used the logistic model with a binomial error distribution and 

a logit-link function. We used a combination of forward and backward model selection 

with the step function in R, as has been done in other distribution modeling studies that 

were primarily exploratory (Collingham et al. 2000; Dullinger et al. 2009). We 

considered adding quadratic terms and interactions to models but determined that they 

added unnecessary complication to model interpretation with marginal benefit to model 

accuracy. The dispersal model of C. canadensis exhibited quasi-separation of the data 

points. This is different from full separation, when a value of a predictor variable splits 

the data perfectly into two homogenous groups. With quasi-separation, a predictor 

variable value splits the data into one homogenous group and the other group remains 

heterogeneous. Robust parameter estimates cannot be obtained when there is quasi-
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separation of the data. To account for this, we used the Firth penalized likelihood method 

(Firth 1993) with the R package logistf (http://CRAN.R-project.org/package=logistf) for 

the dispersal model of C. canadensis. 

CT use predictor variable values to partition data into groups that are increasingly 

homogenous in regards to response variable values. For example, the first split in a tree 

could create two groups of sites divided by a threshold value of summer precipitation, 

with mostly presence records in one group and mostly absence records in the other. Trees 

are grown with a large number of splits and then pruned to an optimal number of splits 

that balances correct classification and inclusion of interactions with prevention of over-

fitting. We used rpart (http://CRAN.R-project.org/package=rpart) to produce 

classification trees after weighting data to have an equal number of presence and absence 

sites for each species. We pruned final trees to the modal number of splits that had an 

error rate within 1 SE of the lowest 10-fold cross-validation misclassification rate across 

50 model runs (De'ath & Fabricius 2000). To avoid over-fitting, we created the dispersal 

model by selecting a new optimal number of splits after adding the dispersal constraint to 

the variables selected in the final habitat-only model. 

RF average results from many un-pruned classification trees to create a more 

stable and accurate model (Cutler et al. 2007). Each tree is built with a bootstrapped 

sample of the data, and the variables used for each split are selected from a random 

subset of the total predictor variables. We used randomForest (http://cran.r-

project.org/doc/Rnews/Rnews_2002-3.pdf) with 1000 trees in each model. We used 

default values for the bootstrapped sample size and number of predictor variables 

selected at each split. We performed variable reduction to increase model accuracy and 
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eliminate variables that lacked strong predictive power, generally following the methods 

laid out in Genuer, Poggi, and Tuleau-Malot (2010). Variables were ranked in importance 

by determining the mean values of the mean decrease in accuracy obtained from 50 

model runs. We then ran a series of models from the most complex with 20 variables to a 

single variable model, each time eliminating from the remaining variables the one with 

the lowest importance ranking. We calculated two accuracy statistics, the true skill 

statistic (TSS) and area under the receiver operating characteristic curve (AUC), across 

50 runs of each model and selected as the final model the most parsimonious model 

within 1 SE of the highest accuracy value.  

BT is another ensemble method for combining many classification trees into a 

final model. Each tree is built with iteratively reweighted data, with cases incorrectly 

classified in the previous tree more heavily weighted in the subsequent tree to improve 

prediction for harder-to-predict cases. We used package gbm (http://CRAN.R-

project.org/package=gbm) in R, setting the number of nodes in each tree to two and the 

out-of-bag fraction to 0.75 after some initial parameter exploration (Elith, Leathwick & 

Hastie 2008). We set the learning rate to 0.001 for P. arundinacea and 0.003 for C. 

canadensis to ensure that the optimal number of trees in each model was between 3000 

and 5000 to balance model stability with decreased processing time. We used gbm.step 

and gbm.simplify functions developed by Elith, Leathwick and Hastie (2008) for initial 

parameter exploration and for variable reduction. Gbm.simplify determines error rates for 

a series of models, with the least important predictor variable dropped in each subsequent 

model. Mean error rates and standard errors for each model are calculated across the 

folds of a 10-fold cross-validation. We selected the smallest model within 1 SE of the 
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lowest cross-validation error rate as our final BT model. We selected a new optimal 

number of trees when we added the dispersal constraint for the final dispersal model. 

Model evaluation and comparison 

  We used 10-fold cross-validation to calculate accuracy statistics for each model 

(Fielding & Bell 1997) with the final model parameters and predictor variables 

determined in the initial model-fitting stage. We used mean values obtained over 10 

separate cross-validation runs to obtain more stable accuracy metrics. We focused on two 

accuracy measures for model comparison, TSS and AUC. TSS is the sensitivity (percent 

of presences correctly predicted) + specificity (percent of absences correctly predicted)-1 

of model predictions (Allouche, Tsoar & Kadmon 2006). TSS requires a threshold to 

convert predicted probabilities to 0s and 1s. We used species observed prevalence in the 

study area as the threshold of conversion (Freeman & Moisen 2008), except for CT, 

which had a threshold of 0.5 because these models were created with weighted data. TSS 

includes information about both false presence and false absence rates in a single 

measure and is less affected by species prevalence rates than other measures (Allouche, 

Tsoar & Kadmon 2006). AUC evaluates model accuracy using a plot of sensitivity versus 

1 minus specificity at all possible thresholds for converting probabilities to 0s and 1s 

(Fielding & Bell 1997). As the threshold value increases, a good model will have an 

increasing number of true positives while maintaining a low false presence rate until the 

point where almost all presences are correctly modeled. AUC values of 1 indicate perfect 

fit whereas values near 0.5 perform no better than random. 
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Variable importance 

We qualitatively assessed the uniformity of variable selection across model 

methods for each species as well as the direction of the relationship between selected 

variables and species presence. Variables found in the majority of models with consistent 

relationship directions were considered the most robust. We used the sign of parameter 

estimates to determine the direction of the relationship in GLM. We interpreted tree splits 

in CT to determine if the variable relationship was positive or negative. In RF and BT, we 

examined the general trend in partial dependence plots, which are plots of the marginal 

effect of a predictor variable when other variables are held constant. We focused our 

interpretation on the plot area between the first and tenth deciles of data to avoid the 

influence of outliers. Relationships that were not clearly positive or negative in the partial 

plots were left unidentified. We used bivariate partial dependence plots to determine 

whether there were strong interactions in the BT and RF models. 

Results 

Comparison of model performance 

 All models performed at acceptable (AUC>0.70) or excellent (AUC>0.80) levels 

(Hosmer & Lemeshow 2000) except for both CT models of P. arundinacea (Table 2.2). 

The median AUC and TSS values of habitat-only models were higher for C. canadensis 

than for P. arundinacea (Fig. 2.2), though GLM performance was marginally better for 

P. arundinacea. Fit improved with the addition of the dispersal variable with the 

exception of the AUC value for the CT model of C. canadensis (Table 2.2). Model fit 

with the dispersal variable showed more improvement for P. arundinacea than for C. 

canadensis (Fig. 2.2).  
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Relationships of predictor variables to species’ presence 

 Final models without dispersal constraints showed consistency in the selected 

final predictor variables and the direction of the relationship between predictor variables 

and the presence of the species of interest (Table 2.3, Figs. A.1-A.4). Most models 

predicted greater P. arundinacea presence at warmer sites with longer growing seasons, 

higher nutrient levels, and lower stream slopes. There was also evidence suggesting 

greater presence at sites wetter in summer, drier in winter and closer to roads. 

Calamagrostis canadensis occurred at wet, cool, acidic sites further from roads with 

higher organic soil content and lower stream slopes. Some models also showed a negative 

relationship between the presence of C. canadensis and grazing, shrub cover, and nutrient 

levels. The dispersal variable was positively associated with presence for both species 

(data not shown).  

 Bivariate partial dependency plots of Pmin with Tmin (Fig. 2.3a) and among 

Tmin, Tmax, and Gdays (data not shown) showed that the effect of any one of these 

climatic variable became less noticeable at high values of any of the other variables, 

indicating, for example, that either high Pmin or high Tmin was adequate to predict a 

high probability of P. arundinacea presence. In contrast, high Tmax (Fig. 2.3b) or Gdays 

(data not shown) only moderately increased the probability of presence unless there was 

also high Pmin. Interactions for C. canadensis were not as pronounced as those for P. 

arundinacea and are not reported. 
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Discussion 

Dispersal processes in native versus invasive species 

 Our study is the first we know of that compares distribution models for native and 

introduced species to determine the extent to which dispersal processes contribute to 

model accuracy. Our results support the hypothesis that introduced species are further 

from equilibrium than native species. Two important insights are highlighted by our 

results. First, overall improvement in model fit with the dispersal constraint was 

relatively low. The lack of a stronger effect could mean that habitat-only models are 

adequate for distribution models of introduced species, particularly in studies like this 

one that 1) incorporate predictor variables such as road density that may be proxies for 

dispersal and 2) involve a species that has been introduced to the study area for a 

relatively long time (in this case, over 100 years). Conversely, the fact that we found a 

dispersal signal despite the coarseness of our dispersal variable could mean that dispersal 

processes are more important in affecting distributions than implied by our results. We 

may have detected a stronger effect if we were able to include data on all occupied sites 

rather than only the sampled sites or if we were able to include data on wind patterns or 

landscape features that may affect dispersal. These two possibilities should be explored 

further through comparisons of models of recently and historically introduced species and 

comparisons of the effectiveness of different methods of quantifying dispersal potential.  

The second insight from our study is that incorporation of dispersal constraints can 

improve model results for both native and introduced species. Our native study species, 

C. canadensis, improved almost as much as our invasive study species, P. arundinacea, 

with the addition of the dispersal constraint. Several recent studies suggest that plant 
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species may in general be more limited by environmental rather than dispersal factors 

(Araújo & Pearson 2005; Moore & Elmendorf, 2006). However, the relative degree to 

which these factors control distributions probably varies among species (Leathwick 

2009), suggesting that some native and invasive species may show greater improvement 

than that seen in this study. 

 The dispersal variable we used in our study is only a coarse measure of site 

propagule pressure. We do not have data on all potentially occupied sites in our study 

area. Instead, we used an estimate of relative regional propagule pressure by taking a 

summation of the weighted distance to known sources. We believe this measure is an 

adequate approximation of regional propagule pressure because our data is from 

randomly selected sites across a large region. We also assume that dispersal for our study 

species occurs primarily as a function of the Euclidean distance between sites instead of 

taking into account the roles of waterways and landscape barriers in affecting dispersal. 

This assumption is supported by research that shows that gene flow for riparian plant 

species does not occur in a unidirectional (i.e. downstream) manner (Honnay et al. 2010). 

Furthermore, seeds of our study species are probably predominantly wind rather than 

water dispersed. Seed dispersal by wind is likely a function of Euclidean distance from 

source as well as additional landscape and wind pattern factors not considered in this 

study. Development of less coarse methods for modeling dispersal processes in regional-

scale distribution models may lead to greater predictive ability and more robust estimates 

of site vulnerability to invasion.  

 Differences in model accuracy between species can potentially be caused by 

factors other than lack of equilibrium. Species with small range sizes or narrow 
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environmental requirements are modeled more accurately than generalist species 

(Segurado & Araujo 2004; Elith et al. 2006; Guisan et al. 2007). We selected study 

species with similar North American distributions and growth requirements 

(http://plants.usda.gov/) to help account for this potential issue. Species could also be 

differentially affected by ecological processes missing from models, such as biotic 

interactions or unmeasured environmental factors (Fielding & Bell 1997). We cannot rule 

out the possibility that we did not include a predictor variable important to one, but not 

the other, species. However, our use of two strongly competitive species (Wetzel & Valk 

1998; Hangs, Knight & Van Rees 2002) and use of a wide variety of predictor variables 

lowered the risk of excluding environmental factors important to one or both species. The 

fact that the dispersal constraint improved model fit for the invasive species more than for 

the native suggests that initial model differences may in fact be due to differences in the 

degree to which these two species are at equilibrium.  

Factors related to P. arundinacea invasion 

 Our results revealed several previously unreported relationships between P. 

arundinacea and site characteristics that have important implications for the future 

distribution of this species. Though P. arundinacea is reportedly adapted to cool, moist 

areas (Lavergne & Molofsky 2004), we found that this species is more common in 

warmer areas with adequate summer rainfall within our study area. Phalaris arundinacea 

also appears to be cold-limited, though these results may be strain-specific. A study near 

Anchorage, Alaska found that some source populations of P. arundinacea were 

extremely winter-tolerant, although the majority of populations exhibited low to no 

winter survival (Klebesadel & Dofing 1991). The phenotypic variability found in that and 
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other studies (Sahramaa & Jauhiainen 2003; Lavergne & Molofsky 2007) suggests that 

the climatic relationship we observed cannot necessarily be extrapolated to populations 

beyond our study area where different strains of the species may have been introduced. 

Climate change could potentially have a positive, negative or neutral effect on our study 

species because our study area is predicted to see both increased temperatures and 

decreased summer precipitation (Karl, Melillo & Peterson 2009). 

 Another important management implication of our study is that any increase in 

nitrogen availability, including from natural sources, may make sites more susceptible to 

P. arundinacea invasion. Experimental research has shown that the growth and 

competitive ability of P. arundinacea increases with increased levels of available soil 

nitrogen (Wetzel & Valk 1998; Green & Galatowitsch 2002; Kercher & Zedler 2004). 

These studies have generally been undertaken to address the effect of agricultural runoff 

on wetland invasion. Our study shows that even in areas removed from agricultural 

runoff, other sources of nitrogen can increase invasion success. Phalaris arundinacea 

was more common at sites with higher nitrogen deposition, even though deposition levels 

were at the lower end of the range of levels expected to affect some ecosystems in the 

western United States (Fenn et al. 2003). The presence of native communities of nitrogen 

fixers may also increase the risk of P. arundinacea invasion. Careful species selection, 

including use of native species with low nitrogen content and avoidance of nitrogen-

fixers, may be vital for riparian restoration projects that seek to limit P. arundinacea 

invasion. 

 The degree to which P. arundinacea requires disturbance for invasion is 

unknown. Restored and natural wetlands in Wisconsin and Oregon have similar levels 
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(cover and percent of wetlands occupied, respectively) of P. arundinacea invasion 

(Ashworth, 1997; Magee et al. 1999), suggesting that disturbance may not be required in 

those systems. Ringold, Magee and Peck (2008) found that P. arundinacea was more 

common near disturbances in western riparian areas. This latter study included sites with 

more urban and agricultural influence than sites in our study area. Our results suggest that 

some disturbance may be important for invasion. Roads may be associated with P. 

arundinacea invasion because vehicles on roadways spread seed or because roads are 

indicators of other disturbances near sites, such as construction or logging (Parendes & 

Jones 2000). Sites disturbed by livestock grazing, on the other hand, had a lower 

likelihood of containing P. arundinacea, similar to findings in riparian areas in 

Wisconsin (Paine & Ribic 2002). These results contrast with experimental grazing 

manipulations that suggest that grazing either has no impact (Hillhouse, Tunnell & 

Stubbendieck 2010) or actually increases the biomass of P. arundinacea (Kercher & 

Zedler 2004). The relationship between P. arundinacea and livestock grazing merits 

further evaluation. 

Conclusions and recommendations 

 Our study supports the idea that introduced species are less likely to meet the 

distribution modeling assumption of equilibrium than native species. Although the effect 

for our study species was not large, species more recently introduced or more dispersal-

limited may benefit greatly from incorporating dispersal processes into models. The use 

of dispersal variables should be evaluated further to determine situations where they 

provide the greatest benefit for models of both introduced and native species. 

Furthermore, a broader suite of dispersal indices should be tested. Development of more 
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refined dispersal variables should lead to greater model improvement and thus more 

management utility. We also recommend the use of predictor variables that relate directly 

to dispersal processes, such as road density and grazing pressure, because interpretation 

of models with these variables has the potential to provide direct management 

recommendations. 

 The fact that distribution models are correlative and not mechanistic can limit the 

inference we can draw from them and make it difficult to extrapolate results to new areas. 

Nonetheless, relationships found in models can be useful for providing management 

guidelines in the absence of other data and for suggesting areas for future research. 

Within our study area, monitoring for P. arundinacea should be focused on areas near 

roads and with higher nitrogen levels. Managers should also anticipate the potential for 

increased invasion with climate change induced temperature increases, though this may 

be modulated by decreased summer precipitation. We also recommend research on strain-

specific climatic tolerances and the distribution of strains across the United States in 

order to better understand how climate change will affect this species.  
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Table 2.1. Predictor variables used in species distribution models. Range and measurement units listed for continuous variables. 
 
Variable Description Range Units
Continuous variables   
Pmin mean monthly precipitation of the driest month of the year 7-96 mm 
Pmax mean monthly precipitation of the wettest month of the year 28-273 mm 
Tmin mean monthly temperature of the coldest month of the year -18.8--3.1 °C 
Tmax mean monthly temperature of the hottest month of the year 15.5-31.9 °C 
Gdays mean number of annual growing days (days between first and last freeze) 10-176 days 
Grazing1k percent of 1-km buffer around site with grazing allotments 0-100 % 
Rd1k length of roads in 1-km buffer around site 0-30408 m 
RdNear distance from site to nearest road 0.3-19220 m 
RockP percent phosphorous in the underlying bedrock at sites 0.07-3.1 % 
RockN percent nitrogen in the underlying bedrock at sites 0-0.07 % 
Nfixer cover of woody nitrogen fixing species at site 0-100 % 
Ndep atmospheric nitrogen deposition 1-5.3 kg/ha
OM percent of fines composed of organic matter 1.2-10.8 % 
pH pH of site 5.1-8.5  
Shrub cover of shrubland at sites 0-92 % 
Grass cover of grassland at sites 0-100 % 
Slope slope of site stream segment 0-25.5 % 
Baseflow stream flow attributed to ground-water discharge into streams 31-89 % 
Categorical variables   
Fire presence/absence of fire within last 10 years at site   
GrazingSite presence/absence of grazing allotments at site   
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Table 2.2. Accuracy measures and number of variables in final models of Calamagrostis 

canadensis and Phalaris arundinacea presence. Model methods include generalized 

linear models (GLM), classifications trees (CT), Boosted Trees (BT), and Random 

Forests (RF). Habitat-only models include an optimized subset of predictor variables 

whereas dispersal models incorporate dispersal constraints into the habitat-only model. 

See Methods for a description of AUC and TSS, the accuracy metrics used. 

  Calamagrostis canadensis Phalaris arundinacea 
 Model 

method 
# 

variables AUC TSS 
# 

variables AUC TSS 

Habitat- 
only 

models 

GLM 10 0.779 0.411 11 0.781 0.425 
CT 6 0.740 0.400 1 0.647 0.372 
BT 9 0.811 0.479 7 0.769 0.382 
RF 14 0.819 0.503 12 0.771 0.396 

Dispersal 
models 

GLM 11 0.787 0.428 12 0.792 0.449 
CT 1 0.704 0.427 2 0.686 0.373 
BT 10 0.820 0.484 8 0.785 0.408 
RF 15 0.830 0.516 13 0.800 0.442 
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Table 2.3. Direction of relationships between species presence and predictor variables. 

Model methods include generalized linear models (GLM), classifications trees (CT), 

Boosted Trees (BT), and Random Forests (RF). + indicates positive, - indicates negative 

and ? indicates unclear relationship with presence. 

                    Species and Model Method 
  Calamagrostis canadensis  Phalaris arundinacea 
  CT GLM RF BT  CT GLM RF BT 
Pmin + + + +    + ? + 
Pmax     + +    - -   
Tmin   - - -  + + + + 
Tmax     -      + + + 
Gdays - - - -    + + + 
GrazingSite            -     
Grazing1k   - -        -   
Rd1k     ?        +   
RdNear   + + +    - -   
Fire   +              
RockP     - -      +   
RockN                  
Nfixer            +   + 
Ndep +   -      + + + 
OM + + + +          
pH   - - -      ?   
Grass                  
Shrub   -        -     
Slope - - - -    - - - 
Baseflow     +            



 
 

 

 

Figure 2.1. Study area and sampling locations for the USFS PIBO Effectiveness Monitoring Program. All sites are located on 

federally owned Bureau of Land Management and Forest Service land. 
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Figure 2.2. Comparison of model accuracy for habitat-only models (a, b) and change in 

model accuracy with the addition of dispersal constraints (c, d) for models of the 

distributions of the native Calamagrostis canadensis and the invasive Phalaris 

arundinacea. Accuracy measures compared include AUC and TSS; see Methods for 

explanations. Boxplots show accuracy measures across four model forms, with 

boundaries of boxes indicating the first and third quartiles, solid lines marking the 

medians and whiskers indicating data beyond 1.5 times the interquartile range.



 

 

 

Figure 2.3. Bivariate partial dependence plot of Pmin and Tmin (a) and Pmin and Tmax (b) in the final Random Forest model of 

Phalaris arundinacea presence. See Table 2.1 for variable description.  
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CHAPTER 3 

CLIMATE CONDITIONS AND RESOURCE AVAILABILITY DRIVE INVASIVE 

PLANT ESTABLISHMENT IN RIPARIAN AREAS IN THE COLUMBIA AND 

MISSOURI RIVER BASINS 

Abstract 

1. Understanding the natural and anthropogenic characteristics that make sites more 

susceptible to invasion can inform monitoring and control efforts and help determine 

appropriate management actions to lower invasion risk. Research on site invasibility has 

frequently either focused on individual species or on overall levels of sites invasion by 

looking at abundance or richness of invaders.  

2. In contrast, we simultaneously looked for region-wide patterns of site invasibility and 

species-specific habitat relationships. We modeled the distributions of 11 invasive plant 

species along riparian areas in the northwestern United States using Random Forests. 

Variables related to climate, disturbance, nutrient and soil conditions, land cover, and site 

hydrology were included in the models.  

3. We found that climate, soil, and nutrient variables were more important for predicting 

the distribution of invasive plant species than land cover or factors related to disturbance. 

We also found that there was a general pattern related to invasion for almost all species, 

with invasion more likely to occur at hot dry sites near roads with high grass or shrub 

cover and high nutrient levels along streams with lower baseflow values.  

5. Synthesis and application. We recommend nutrient management, monitoring and 

control measures along roadways, and long-range planning for climate change as three 
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important management actions in our study area. Our approach should be applied to 

additional regions to see if discrete patterns of invasibility emerge in other areas. 

Examining patterns across a broad range of regions could help suggest general 

mechanisms of invasion as well as provide region-specific management 

recommendations. 

Introduction 

 Non-native plant species become invasive when they can both establish self-

sustaining populations and spread across the landscape to new sites (Richardson et al. 

2000; Theoharides & Dukes 2007). Anthropogenic disturbances such as changing fire 

regimes (Keeley 2006; Vicente et al. 2010), increased grazing pressure (Kercher & 

Zedler 2004; Diez et al. 2009), and nutrient addition from agricultural runoff or 

atmospheric nitrogen deposition (Bakker & Berendse 1999; Brooks 2003) can increase 

the establishment success of invaders. Variability in background nutrient levels (Maron & 

Jefferies 1999; Prieur-Richard et al. 2002), natural disturbance regimes (Stohlgren et al. 

1998; Hood & Naiman 2000), and other ecosystem characteristics can also influence site 

susceptibility to invasion. Site attributes may also determine how easily invasive species 

spread. Dispersal of invasive species may be higher in areas near roads (Parendes & 

Jones 2000; Hansen & Clevenger 2005) or at sites that have novel grazing pressure 

(Hobbs & Huenneke 1992; Bartuszevige & Endress 2008). 

 Understanding both the anthropogenic and natural site traits that increase site 

susceptibly to invasion can inform monitoring and management decisions. Sites with 

traits that increase risk of invasion can be targeted for early detection and rapid response 

programs (Pyšek & Richardson 2010). Furthermore, managing site attributes related to 
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invasion may be more effective than managing individual species if site conditions are 

such that reinvasion with a variety of species is likely to occur following control efforts 

(Hobbs & Humphries 1995). For instance, if invasion occurs at sites with high nitrogen 

levels, restoration projects can use soil amendments or plant bridge species to lower 

invasion risk (Vasquez, Sheley & Svejcar 2008). Also, identifying region-specific 

relationships between grazing and site invasibility may be helpful since studies have 

found that livestock grazing has both positive and negative effects on invasion risk, 

depending on the study and region (Alpert, Bone & Holzapfel 2000). An understanding 

of site traits associated with invasion may be particularly important in the face of climate 

change as areas previously perceived as resistant to invasion may become more 

vulnerable (Pauchard et al. 2009). 

 Empirical work looking at site characteristics associated with invasion has 

generally looked at associations for one or a few invasive species (Evangelista et al. 

2008; Ibáñez et al. 2009b; Loo et al. 2009), looked at one or a few factors related to 

invasion (Wilson et al. 1992; Matthews et al. 2009), or modeled richness and/or 

abundance of all exotic species as a function of site attributes (Ohlemüller, Walker & 

Wilson; Ibáñez et al. 2009a; Catford et al. 2011). However, studies of the abundance of 

exotic species provide information about dominance of invaders, not initial establishment 

and regional spread. In contrast to other work, in this study we simultaneously looked for 

region-wide patterns of site susceptibility and species-specific habitat relationships. We 

wanted to understand both the types of factors most important for predicting where 

invasion occurs and whether drivers of invasion were similar across a group of invasive 

species. Our research addressed two primary questions: (1) What types of variables (e.g. 
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climatic, nutrient-related, disturbance) are important for predicting the distribution of 

invasive plant species? and (2) Are there specific factors that make sites susceptible to 

invasion by a range of species or is invasion susceptibility species-specific? We modeled 

species distributions for 11 invasive species in riparian areas in the northwestern United 

States with predictor variables related to climate, disturbance, nutrient and soil 

conditions, land cover, and site hydrology. We used model results to provide a better 

understanding of what makes some sites more prone to invasion and to provide 

management advice for our study region. 

Methods 

Study area and species data 

 The data we used to build our models was collected by the U.S. Forest Service’s 

(FS) PACFISH/INFISH Biological Opinion Effectiveness Monitoring Program (PIBO) 

(Henderson et al. 2005). PIBO collects data on randomly selected stream segments on 

federally owned lands in the eastern Columbia and western Missouri River Basins, a 

region that includes parts of eastern Oregon and Washington, northern Utah and Nevada, 

and much of Idaho and Montana (Fig. 3.1). These stream segments range in length from 

80 to 500 m, with a mean of 191 m. Vegetation data at each site are collected in 20-cm x 

50-cm Daubenmire quadrats placed along the greenline, the first location with at least 

25% perennial vegetation cover, and in cross-sectional transects that extend 9.5 meters 

from the stream edge. Only sites with at least 27 cross-sectional and 40 greenline 

quadrats were included in the analysis. A species was considered present at a site if it was 

found in at least one quadrat during at least one survey. There were a total of 1138 sites 
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in the Columbia River Basin and 191 sites in the Missouri River Basin included in this 

analysis. 

Study species 

We focused our study on all plant species listed as noxious weeds in at least one 

of the states in our study area (http://plants.usda.gov) except for those species occurring 

at <15 sites. We excluded these low occurrence species because of concerns that there 

was too little data to effectively model their distributions. State noxious weeds are non-

native species that, due to their perceived economic, ecological, and/or socio-political 

importance, are regulated by law and prioritized for prevention and control programs 

(Skinner, Smith & Rice 2000). Bromus tectorum L. (cheatgrass), though not listed as a 

noxious weed, was also included in the study because it is a species of particular 

management concern in the study region. Our final species list included one annual 

grasses, two perennial grasses, and eight perennial or biennial forbs (Table 3.1). 

Predictor variables 

 We selected predictor variables based both on factors expected to influence the 

spread and establishment of invasive species and on the availability of data across the 

study area. We reduced our exploratory set of predictor variables to a set of 20 with 

Pearson correlations <|0.70|. Data was extracted in ArcMap 10 and Geospatial Modelling 

Environment 0.5.2 (www.spatialecology.com/gme). Climatic variables were extracted 

from PRISM data (Daly et al. 2008) and chosen to represent the extremes of conditions 

that species have to tolerate, including mean precipitation of the driest month, mean 

precipitation of the wettest month, mean temperature of the coldest month, mean 



46 

 
 

temperature of the warmest month, and mean number of days per year between the first 

and last freeze. 

 Road, grazing, and fire history data were used as indicators of site disturbance. 

Distance to the nearest road and density of roads in a 1-km buffer around each site were 

calculated using road data from TIGER (U.S. Census Bureau 2009) and from 

unpublished FS and Bureau of Land Management (BLM) spatial data. The least 

conservative road value was used at each site since readily available road data is often 

under-representative of true road density (Hawbaker & Radeloff 2004) and this trend was 

observed in a random sample of sites examined in Google Earth. Grazing information 

was obtained from FS and BLM spatial data based on the location of grazing allotments. 

We included both a categorical variable for grazing presence or absence at sites as well as 

the percent of a 1-km buffer around sites with grazing allotments. Fire data was extracted 

from Monitoring Trends in Burn Severity (Eidenshink et al. 2007). Sites were considered 

recently burned if they experienced a fire anytime between 1993 and 2008.  

 We looked at two measures of hydraulic conditions at sites. The slope of the site 

stream segment was calculated using 30-m digital elevation models (Gesch et al. 2009). 

Slope is a strong predictor of unit stream power, which is indicative of flooding force 

(Bendix 1997). Baseflow values were extracted from the USGS Base-flow Index Grid for 

the Conterminous United States (Wolock 2003). Baseflow is the percentage of total 

stream flow that comes from ground water discharge as opposed to rainfall events and is 

often used as an indicator of low-flow conditions (Smakhtin 2001). Large baseflow 

values indicate little fluctuation in stream water levels and little responsiveness to large 
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rain events, while low baseflow values indicate large water level fluctuations and more 

contribution of seasonal rain events to stream flow.  

 The percent of each site with grass, shrub, and tree cover as the dominant over-

story vegetation was calculated from a national vegetation map (LANDFIRE National 

Existing Vegetation Type layer from U.S. Department of the Interior, Geologic Survey, 

http://gisdata.usgs.net/website/landfire). Development and agriculture were not included 

in our analysis because these land cover types were absent at sites and relatively rare in 

the vicinity of sites. Only grassland and shrubland cover were used in the final analysis 

because forest and grassland cover were highly correlated (Pearson correlations <-0.9). 

We used a variety of data to provide both direct and indirect measures of nutrient 

availability and soil conditions at sites. We extracted pH and percent soil organic matter 

from the U.S. General Soil Map STATSGO2 (http://soildatamart.nrcs.usda.gov). Rock 

phosphorous and nitrogen at each site were derived from maps of bedrock percent 

phosphorous and nitrogen composition (J. Olson, Utah State University, unpublished 

data) based on the Preliminary Integrated Geologic Map Databases for the United States 

(Ludington et al. 2007). The total cover of nitrogen fixing species at each site was 

calculated from PIBO vegetation data. All species in the Fabaceae family and species in 

the genera Alnus, Ceanothus, and Elaeagnus were considered nitrogen fixers. 

Atmospheric nitrogen deposition data were extracted from the US Environmental 

Protection Agency Atmospheric Modeling and Analysis Division Watershed Deposition 

Tool (Schwede, Dennis & Bitz 2009). Abbreviations used in subsequent text for all 

predictor variables are listed in Table 3.2. 
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Modeling methods and variable assessment 

 We created distribution models for each species using Random Forests with the 

randomForest package in R 2.12.1 (Liaw & Wiener 2002; R Development Core Team, 

2010). This model form has performed well for distribution modeling in recent work 

(Cutler et al. 2007; Thomaes, Kervyn & Maes 2008) and automatically includes 

interactions between variables in models. Random Forests averages results from many 

un-pruned classification trees to create models that are more stable and accurate than 

single classification trees (Cutler et al. 2007). Each tree is built with a bootstrapped 

sample of the data, and the variables used at each split are selected from a random subset 

of the total predictor variables. We used 1000 trees in each model and the default package 

values for the bootstrapped sample size and number of predictor variables selected from 

each split. Random Forests calculates the mean decrease in accuracy for each variable as 

the normalized difference in classification accuracy between models with the original 

values for the variable of interest and models where that variable is randomly permuted. 

Higher values indicate that a variable contributes more towards classification accuracy. 

We obtained variable importance values by averaging the mean decrease in accuracy for 

each variable and species combination across ten model runs. For every species, we 

divided each predictor variable’s importance value by that species’ highest variable 

importance value. This provided us with a scaled variable importance index, where the 

most important variable has a value of 1.00 and a variable with an index value of 0.50 has 

half the importance of the top variable. We used this variable importance index to 

compare the contribution of predictor variables among species. We used partial 

dependence plots to determine the relationship between variables and presence of each 
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species, focusing in particular on the area between the first and tenth deciles of data to 

avoid relationships strongly influenced by outliers. These plots show the marginal effect 

of a predictor variable when other variables are held constant. Relationships were 

identified as positive, negative, or flat, or left unidentified if unclear. 

 We obtained accuracy measures for distribution models using 10-fold cross 

validation (Fielding & Bell 1997), taking the average across ten runs to obtain more 

stable results. We report percent correctly classified (PCC), sensitivity, specificity, and 

area under the receiver operating characteristic curve (AUC). The first three measures 

require that predicted probabilities of occurrence are converted to 0s and 1s. We used 

species’ observed prevalence in the study area as the threshold for conversion (Freeman 

& Moisen 2008). PCC is the percent of all sites where the model prediction is correct. 

Sensitivity is the percent of presences correctly classified and specificity is the percent of 

absences correctly classified. AUC is the area under the curve of a plot of the sensitivity 

versus 1 minus the specificity at all possible thresholds. As the threshold value increases, 

a good model will have an increasing number of true positives while maintaining a low 

false presence rate until the point where almost all presences are correctly modeled. An 

AUC value of 1 indicates perfect model fit and 0.5 indicates no better than random. 

Results 

Model evaluation 

All models performed at acceptable (AUC >0.7) or excellent (AUC>0.8) levels 

(Hosmer & Lemeshow 2000), except for the model of C. arvense which had an AUC of 

0.662 (Table 3.3). PCC values ranged from 58.6% for C. arvense to 76.1% for H. 

perforatum, with a mean of 68%. Sensitivity, with a mean of 72.6%, was higher than 
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specificity, with a mean of 67.6%, for all species except E. repens, meaning that models 

generally were better at predicting presence than absence. 

Variables important for predicting species’ distributions 

 Variables related to climate were the two most important model variables for all 

species (Table 3.4). Precipitation and temperature variables generally had higher 

importance values than Gdays and had the four highest median variable importance 

indices of all variables (Fig. 3.2). Variables related to soil and nutrient conditions ranked 

as the next highest contributors to model performance, though the importance of these 

variables varied more among species and by the specific variable. The top variable in 

each of the remaining categories–disturbance, land cover, and hydrology–had similar 

median variable importance indices to one another. Variables in these categories showed 

considerable heterogeneity in importance indices between species. For example, Grass 

(land cover variable) had a variable importance index of 0.81 for B. tectorum and 0.29 for 

H. perforatum (Table 3.4). Most species had at least one disturbance variable with 

relative importance at least half that of their most important model variable, except for R. 

acris and H. perforatum, where all disturbance variable importance values were less than 

0.44. Fire was considerably more important for three species–B. tectorum, C. vulgare and 

E. repens–than for all the other species, where this variable made close to no contribution 

to model performance.  

Factors related to site susceptibility 

 Over 60% of the species had a positive relationship with Gdays, Tmin, and Tmax 

and a negative relationship with Pmin and Pmax (Table 3.4, Figs. B.1-B.11). P. 
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arundinacea, T. vulgare, and H. perforatum were the only species that showed a positive 

relationship with Pmin and/or Pmax. Noxious weeds were also consistently associated 

with higher nutrient levels. All species had a positive relationship with Nfixer and RockN 

and most with RockP and Ndep. OM and pH did not have consistent patterns across 

species. Grass and Shrub had a positive relationship with presence for all species except 

H. perforatum, which showed a flat relationship. Six of the 11 species had a negative 

relationship with Baseflow, though many species also had an unclear relationship with 

this variable. Nine of 11 species had positive relationships with Fire and Rd1k and 

negative relationships with RdNear. One species, H. perforatum, was more likely to be 

present in areas with fewer roads. There were about the same number of species with a 

positive association with grazing as those with a negative association, with several 

species showing no relationship. 

Discussion 

Variables important for predicting species’ distributions 

 Abiotic environmental factors related to climate and soil and nutrient conditions 

were more important for predicting the distribution of invasive plant species than land 

cover or factors related to disturbance. This fits with several recent frameworks that 

discuss invasion as a series of stages with filters determining progress from one stage to 

the next and climate and/or abiotic conditions serving as the first filters after a species is 

initially introduced to a broad region (Richardson et al. 2000; Richardson & Pyšek 2006; 

Theoharides & Dukes 2007; Milbau et al. 2009). In contrast to what we found, Catford et 

al. (2011) found that whether or not a site had at least one exotic species was more 

strongly predicted by disturbance and biotic factors than it was by climatic variables. The 
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difference in results may indicate that disturbance and biotic factors have a more 

consistent relationship with invasion success while tolerance to climatic factors varies 

more between species. Though abiotic drivers were the initial filters, disturbance still had 

a relatively important role in the distribution of almost all species. The influence of 

disturbance did not appear to differ between species introduced over 300 years ago (e.g. 

T. vulgare) and species of more recent origin (e.g. C. biebersteinii) (see Table 3.1). 

Disturbance itself and not just its role as an indicator of propagule pressure may be 

playing a role in creating opportunities for species establishment. 

Factors related to site susceptibility 

 Our study is distinctive because it addresses a wide range of factors 

simultaneously and individually for a suite of species, revealing a region-wide pattern. 

Invasion was more likely at hot dry sites near roads with high grass or shrub cover and 

high nutrient levels along streams with lower baseflow values. This corroborates other 

studies that have found that warm, dry environments (Wilson et al. 1992; Pyšek, Jarošík 

& Kucera 2002; Sobrino et al. 2002; Ohlemüller, Walker & Wilson 2006), sparsely or 

unforested areas (Allen & Shea 2006), high nutrient sites (Jefferies & Maron 1997; 

Bakker & Berendse 1999; Alpert, Bone & Holzapfel 2000; Brooks 2003; Colautti, 

Grigorovich & MacIsaac 2006; Loo et al. 2009), and areas near roads (Parendes & Jones 

2000; Gelbard & Harrison 2003; Hansen & Clevenger 2005) are more heavily invaded. 

This also agrees with a meta-analysis that found that anthropogenic activity, disturbance, 

and resource availability were all positively related to the establishment and spread of 

non-native species (Colautti, Grigorovich & MacIsaac 2006). An approach undertaken in 

southeastern Australia modeling the presence or absence of at least one non-native 
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species at sites also found more invasion in areas drier and hotter in summer, closer to 

roads, and with higher soil fertility (Catford et al. 2011). 

 Roads may promote invasion both by increasing dispersal opportunities and 

providing conditions that aid establishment. Road traffic can transport seeds and other 

propagules to new sites (Lonsdale & Lane 1994) and roadsides frequently have suitable 

conditions for species’ establishment, such as low competition and high light levels 

(Coffin 2007). The roadside pool of invaders can serve as a reservoir for species to move 

into adjacent areas when conditions are favorable. Roads may also be indicators of other 

disturbances near sites, such as construction, logging, or higher rates of foot traffic 

(Parendes & Jones 2000). 

 We propose two potential explanations for why we found a suite of traits (high 

nutrients, low baseflow, low precipitation, high temperatures) associated with invasion 

for most of our study species. First, these traits may relate to processes that make sites 

more invasible. Community ecology theory points to the importance of resource 

opportunities for the establishment of new species, including invasive species (Shea & 

Chesson 2002). High nutrient levels combined with pulsing stream flow and rare rain 

events in our study area may periodically free up resources to create opportunities for 

establishment, as predicted by the fluctuating resource hypothesis (Davis, Grime & 

Thompson 2000). Alternatively, species adapted to these conditions may have been more 

frequently introduced to the region and thus it would be more likely that some would 

become invasive (propagule pressure, sensu Colautti, Grigorovich & MacIsaac 2006). 

The majority of our study species were introduced as seed contaminant in crops or forage 

and therefore may be adapted to a similar suite of conditions. H. perforatum and L. 
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vulgare, both introduced as garden ornamentals rather than seed contaminants, showed 

the most anomalous relationships with the predictor variables. We recommend applying 

our multi-species modeling approach in other study areas to look more broadly for 

generalities and to help determine whether these traits are actually related to resource 

availability or to propagule bias.  

 While there was a general set of traits that made sites more susceptible to 

invasion, there was also important heterogeneity between species. The response to 

livestock grazing was almost equally divided between species more and less likely to be 

found near grazing allotments. This corroborates a recent review that found no consistent 

direction of relationship between richness of non-native species and grazing (Díaz et al. 

2007). Our results suggest that the effect of grazing on invasive species establishment and 

spread may be species-specific rather than region-specific. Responses of individual 

species may be mediated by each species’ evolutionary history with grazing (Milchunas, 

Sala & Lauenroth 1988) or by particular traits that confer resistance (Díaz, Noy-Meir & 

Cabido 2001). 

Management implications and conclusions 

 Three important region-wide management needs are evident from our study: 

nutrient management, monitoring and prevention measures along roadways, and long-

range planning for climate change. Our research suggests that nutrient management is 

important both at sites with increased anthropogenic sources of nutrient availability as 

well as at sites with higher natural background levels of nutrients. Nitrogen control such 

as planting bridge species that have low nitrogen content can be implemented after fires, 

heavy flood events, or other disturbances, or as part of restoration projects to reduce 
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invasion potential at sites (Vasquez, Sheley & Svejcar 2008; Perry et al. 2010). 

Monitoring and subsequent control efforts on roads can not only lower site risk of 

invasion, but also decrease potential for long-distance spread. Roadside invasive plant 

surveys can be more cost-effective than randomly placed surveys (Shuster et al. 2005), 

especially if combined with interior searches when target species are found (Abella et al. 

2009). Careful restoration of decommissioned roads (Grant et al. 2010) is important 

because even roads abandoned for over 20 years show heightened numbers of invaders 

(Parendes & Jones 2000). Roadless areas can also serve as important strongholds of 

native plant species (Gelbard & Harrison 2003). Risk of seed transport along roadways 

can be lowered by implementing wash stations, especially for vehicles at high risk for 

carrying seed (Bocking, Galway & Brooks 2008). 

 Unfortunately, climate change is not directly manageable and may provide novel 

challenges to land managers. Our study region is predicted to see temperature increases 

between 2 and 5°C by the end of the century, with increased winter precipitation, 

decreased summer precipitation, and more frequent extreme climatic events such as 

droughts, heavy rains, and heat waves (Karl, Melillo & Peterson 2009). Warmer 

temperatures and drier summers may favor many of our study species, making previously 

unsuitable sites more inhabitable. Furthermore, invasive species may be more adapted for 

rapid range shifts than native species due to favorable dispersal properties and close 

association with roads that could help transport them to suitable climates (Dukes & 

Mooney 1999). Managers can prepare for shifts in invasive species distributions by 

monitoring sites previously unsuitable to invasion and by surveying and treating invasive 

species along roadways, which may be the first means by which an invasive species will 
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reach new areas. Some control strategies could become less effective under changing 

climates, such as if there is a difference between how well biocontrol agents and the 

invasive species they target can adapt to novel climatic conditions (Hellmann et al. 2008). 

 Species-specific management strategies should be used to complement our 

recommendations in areas prone to particular species. While almost all species exhibited 

a positive relationship with fire, this variable was only important for B. tectorum, C. 

vulgare, and E. repens. Sites vulnerable to these species should be monitored after burns 

so early control efforts can be implemented. Three species are most likely to be found at 

grazed areas: C. vulgare, C. officinale, and L. vulgare. Grazing regimes at sites with these 

species may need to be modified in order to control these species. Last, the distributions 

of H. perforatum and R. acris were least influenced by distribution factors. For these 

species, modification of anthropogenic activity may be less important than direct species 

control. 

 Our study informs invasion theory by validating the concept of filters acting at 

different stages of invasion. Furthermore, we identified traits that make sites more 

vulnerable to establishment by a wide range of species considered noxious weeds. Based 

on these traits, we determined that nutrient management, road monitoring, and climate 

change preparation were important management actions for our study region. Our 

approach should be applied to additional regions to see if discrete patterns of invasibility 

emerge in other areas. Examining patterns across a broad range of regions could help 

suggest general mechanisms of invasion as well as provide region-specific management 

recommendations. 
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Table 3.1. List of species used in this study along with species code, growth form, date of introduction to the United States and 

western United States, means of introduction, and methods of reproduction. All information from USDA Forest Service Fire Effects 

Information database, http://www.fs.fed.us/database/feis/plants/index.html, unless otherwise noted. 

Species Code Growth Form 
U.S. (Western) 
Introduction Date Means of Introduction Methods of Reproduction 

Bromus tectorum BRTE annual grass mid-1800s contaminated crop seed, ship ballast seed only 

Centaurea biebersteinii CEBI biennial/perennial forb late 1800s (post-1920) contaminated crop seed, ship ballast primarily seeds, some lateral 
shoots 

Cirsium arvense CIAR perennial forb 1600s contaminated crop seed, ship ballast seed and lateral roots 

Cirsium vulgare CIVU biennial forb 1700s (late 1800s) contaminated crop seed seed only 

Cynoglossum officinale CYOF biennial forb mid-1800s contaminated crop seed seed only 

Elymus repens ELRE perennial grass 1600s1 contaminated crop seed 5 primarily rhizomes, some seed 

Hypericum perforatum HYPE perennial forb late 1700s (early 
1900s) 

intentional for garden cultivation seed and lateral roots 

Leucanthemum vulgare2 LEVU perennial forb (late 1800s) contaminated crop seed, intentional 
for garden cultivation 

seeds and rhizomes 

Phalaris arundinacea PHAR perennial grass 1850³ intentional for forage, wastewater 
treatment, bioenergy crop³ 

seeds and rhizomes 

Ranunculus acris RAAC perennial forb   seeds and rhizomes 

Tanacetum vulgare TAVU perennial forb 1600s (late 1800s) intentional for garden cultivation seeds and rhizomes 

1 http://www.invasivespeciesinfo.gov/plants 
2 all information for this species from http://www.nwcb.wa.gov/weed_info/Written_findings/Leucanthemum_vulgare.html 
3 Lavergne and Molofsky (2004) 
4 http://www.mt.nrcs.usda.gov/technical/ecs/invasive/technotes/InvasiveTN_27/index.html 
5 http://na.fs.fed.us/fhp/invasive_plants/weeds/quackgrass.pdf 
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Table 3.2. Variables used in species distribution models with range and units. Categorical variables have the number of sites with 

presence of the category listed instead of the range and units.  

Category Variable Description Range Units 

climate Pmin mean monthly precipitation of the driest month of the year 7-96 mm 
climate Pmax mean monthly precipitation of the wettest month of the year 28-273 mm 
climate Tmax mean monthly temperature of the hottest month of the year 15.5-31.9 °C 
climate Tmin mean monthly temperature of the coldest month of the year -18.8--3.1 °C 
climate Gdays mean number of annual growing days (days between first and last freeze) 10-176 days 

disturbance Fire presence of fire within last 10 years 191 of 1329 sites 
disturbance Grazing1k percent of 1-km buffer around site with grazing allotments 0-100 % 
disturbance GrazingSite presence of grazing allotments 783 of 1329 sites 
disturbance Rd1k length of roads in 1-km buffer around site 0-30408 m 
disturbance RdNear distance from site to nearest road 0.29-19220 m 
geology, soil, nutrient RockP percent phosphorous in the underlying bedrock 0.066-3.15 % 
geology, soil, nutrient RockN percent nitrogen in the underlying bedrock 0-0.65 % 
geology, soil, nutrient Nfixer cover of nitrogen fixing species at site 0-56 % 
geology, soil, nutrient Ndep atmospheric nitrogen deposition 1.05-5.31 kg/ha 
geology, soil, nutrient OM percent of fines composed of organic matter 1.16-10.78 % 
geology, soil, nutrient pH pH of site 5.083-8.46   
land cover Shrub cover of shrubland at site 0-92 % 
Land cover Grass cover of grassland at site 0-100 % 
hydrologic Slope slope of site stream segment 0-25.5 % 
hydrologic Baseflow stream flow attributed to ground-water discharge into streams 31-89 % 
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Table 3.3. Model performance for Random Forest models of the presence of 11 invasive plant species. See Table 3.1 for a list of 

species and Table 3.2 for variable descriptions. 

Accuracy 
Measure BRTE CEBI CIAR CIVU CYOF ELRE HYPE LEVU PHAR RAAC TAVU 

PCC 75.0 65.1 58.6 63.0 66.6 66.7 76.1 67.1 67.4 66.9 75.2 

Specificity 75.0 64.6 57.2 62.8 66.4 66.8 75.9 66.5 66.9 66.8 75.1 

Sensitivity 75.8 74.2 64.3 65.0 73.3 64.2 83.8 78.3 71.2 70.3 78.4 

AUC 0.823 0.769 0.662 0.701 0.790 0.706 0.873 0.803 0.764 0.728 0.835 
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Table 3.4. Relationship between presence of 11 invasive plant species and predictor variables based on Random Forest distribution 

models. Variable direction is based on visual assessment of partial dependence plots, with “+” indicating a positive relationship, “-“ 

negative, “f” flat and “?” unclear. The relative importance of each variable follows the variable direction in parenthesis. This 

measure is the mean decrease in accuracy of that variable divided by the highest mean decrease in accuracy value for that species. 

See Table 3.1 for a list of species and Table 3.2 for variable descriptions. 

Variable BRTE CEBI CIAR CIVU CYOF ELRE HYPE LEVU PHAR RAAC TAVU 
Pmin - (0.98) ? (0.8) - (1) - (0.89) - (1) - (0.97) + (0.82) - (1) + (0.81) - (0.78) + (1) 
Pmax - (1) ? (0.74) - (0.98) - (0.89) - (0.89) - (0.88) + (0.69) - (0.78) - (0.73) - (0.81) + (0.94) 
Tmax + (0.98) + (1) + (0.9) + (1) + (0.7) + (0.75) + (0.66) + (0.84) + (1) + (0.94) + (0.85) 
Tmin + (0.9) + (0.83) f (0.8) f (0.88) + (0.67) ? (1) + (1) + (0.98) + (0.93) + (0.69) + (0.91) 
Gdays - (0.64) + (0.63) + (0.88) + (0.71) + (0.66) f (0.65) + (0.55) + (0.59) + (0.98) ? (1) + (0.61) 
Fire + (0.45) + (0.16) + (0.09) + (0.41) + (0.1) + (0.3) + (0.03) + (0.06) + (0.01) f (0.05) f (-0.04) 
Grazing1k f (0.37) - (0.53) f (0.26) + (0.53) + (0.53) f (0.31) - (0.25) + (0.54) - (0.71) + (0.34) - (0.59) 
GrazingSite + (0.33) - (0.37) f (0.23) f (0.28) + (0.4) + (0.15) - (0.21) + (0.46) - (0.49) + (0.29) - (0.55) 
Rd1k f (0.66) + (0.38) + (0.65) + (0.71) + (0.57) + (0.59) - (0.44) + (0.62) + (0.6) + (0.35) + (0.72) 
RdNear - (0.36) - (0.35) ? (0.51) - (0.66) - (0.5) - (0.52) ? (0.34) - (0.2) - (0.66) - (0.31) - (0.19) 
RockP + (0.34) ? (0.51) + (0.75) + (0.43) + (0.51) + (0.66) + (0.49) + (0.66) + (0.47) + (0.41) - (0.6) 
RockN + (0.16) + (0.23) + (0.26) + (0.06) + (0.13) + (0.86) + (-0.09) + (0.09) + (0.14) + (0.31) + (0.06) 
Nfixer + (0.37) + (0.54) + (0.33) + (0.18) + (0) + (0.28) + (-0.01) + (0.41) + (0.4) + (0.24) + (-0.04) 
Ndep - (0.75) + (0.7) + (0.9) - (0.72) f (0.88) - (0.73) + (0.78) + (0.32) + (0.83) + (0.51) + (0.61) 
OM f (0.61) - (0.58) f (0.62) + (0.37) + (0.77) - (0.63) + (0.72) + (0.68) - (0.3) - (0.12) + (0.7) 
pH + (0.77) f (0.72) f (0.57) + (0.73) + (0.82) - (0.73) - (0.65) f (0.9) f (0.62) + (0.78) + (0.57) 
Shrub + (0.56) + (0.44) + (0.63) + (0.49) + (0.28) + (0.37) f (0.29) + (0.47) + (0.5) + (0.18) + (0.03) 
Grass + (0.81) + (0.48) + (0.77) + (0.68) + (0.66) + (0.6) f (0.29) + (0.74) + (0.56) + (0.52) + (0.55) 
Slope + (0.33) + (0.24) - (0.49) + (0.33) + (0.25) ? (0.19) ? (0.43) + (0.48) - (0.73) - (0.47) ? (0.49) 
Baseflow + (0.58) ? (0.36) f (0.81) ? (0.67) - (0.79) ? (0.6) - (0.66) - (0.69) - (0.47) - (0.63) - (0.38) 
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Figure 3.1. Study area and sampling locations for the USFS PIBO Effectiveness Monitoring Program. All sites are located on 

federally owned Bureau of Land Management and Forest Service land. 
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Figure 3.2. Boxplots of variable importance of predictor variables across Random Forest 

distribution models for 11 invasive plant species. Variable importance values of 1.00 

indicate that a particular variable had the greatest contribution to the distribution model 

of a species, whereas values of 0.50 have half the contribution of the top variable. See 

Methods for more information about calculating these values. Boundary of boxes indicate 

the first and third quartiles, solid lines mark the medians, and whiskers indicate data 

beyond 1.5 times the interquartile range. 
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CHAPTER 4 

CONCLUSIONS 

This project set out to inform both theoretical and applied aspects of invasion 

ecology using species distribution models. In Chapter 2, we addressed the question of 

whether invasive species are less at equilibrium than native species and looked at drivers 

of Phalaris arundinacea invasion in order to inform management decisions for this 

aggressive invader. We evaluated the assumption of equilibrium by comparing model 

accuracy for distribution models with and without a dispersal constraint for the invasive 

riparian plant P. arundinacea and the functionally similar native Calamagrostis 

canadensis. Non-dispersal models of the native species were more accurate than models 

of the invasive species and incorporating a dispersal constraint improved model fit more 

for the invasive species than for the native species. Together these results support the 

hypothesis that introduced species are further from equilibrium than native species. Two 

insights were highlighted by our results. First, the overall improvement in model fit with 

the dispersal constraint was relatively low for both species. This may reflect the coarse 

nature of the dispersal constraint used in our models. Alternatively, niche-only models 

may be adequate for modeling the distribution of at least some invasive species. 

Comparison of the effectiveness of different methods for quantifying dispersal potential 

could help separate these possibilities. The second insight from our study is that 

incorporating dispersal processes can improve model results for both introduced and 

native species. There may be some native species that show greater improvement than 

that seen in our study since the degree to which environmental and dispersal factors 

control distributions probably varies among species (Leathwick 2009). 



70 

 
 

We used four different distribution modeling techniques to model our study 

species. Results from these models showed general consistency in the selected final 

predictor variables and the direction of the relationship between predictor variables and 

the presence of the species of interest. Phalaris arundinacea is more likely to be found in 

hotter areas, particularly if there is also adequate summer rainfall. Ongoing climate 

change may increase or at least shift the area susceptible to invasion. However, our 

results may be strain-specific since winter tolerance and other physiological traits can 

vary between source populations of P. arundinacea (Klebesadel & Dofing 1991; 

Sahramaa & Jauhiainen 2003). Another important relationship we found was that P. 

arundinacea is more likely to invade sites with increased nitrogen levels. This result 

agrees with experimental evidence (Wetzel & Valk 1998; Kercher & Zedler 2004) and 

extends this knowledge by showing a response to both natural nitrogen levels from 

nitrogen-fixing species and anthropogenic sources from nitrogen deposition. Restoration 

projects should employ careful species selection, including use of native species with 

high carbon to nitrogen ratios and avoidance of nitrogen-fixers, if they seek to limit P. 

arundinacea invasion. We found that one type of disturbance, namely roads, increased 

site susceptibility to invasion, while P. arundinacea was less likely to be found in areas 

with livestock grazing. Species control along roadsides could be a valuable tool for 

preventing the spread of this species. The relationship between P. arundinacea and 

grazing should be evaluated further since it agrees with other observational studies (Paine 

& Ribic 2002), but contradicts experimental work (Kercher & Zedler 2004).  

In Chapter 3, we examined what types of attributes make sites susceptible to 

invasion by 11 plant species in riparian areas in the northwestern United States and 
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whether the relationships between site attributes and invasion were species-specific or 

more general. We found that factors related to climate, soil, and nutrient conditions were 

more important for predicting the distributions of invasive plant species than land cover 

or factors related to disturbance. This validates the idea that invasion occurs as a series of 

stages with filters determining progress from one stage to the next and climate and/or 

abiotic conditions serving as the first filters after a species is initially introduced to a 

broad region (Theoharides & Dukes 2007). We also found that there was a general 

pattern related to invasion for most species. Invasion was more likely at hot dry sites near 

roads with high grass or shrub cover and high nutrient levels along streams with lower 

baseflow values. Roads may promote invasion both by increasing dispersal opportunities 

and providing conditions that aid establishment. The remaining attributes related to site 

invasibility may be related to resource opportunities, sensu Shea and Chesson (2002). 

Sites with high baseline nutrients levels, less shading, and occasional pulses of water 

from precipitation or stream flow may provide a window of opportunity for invaders to 

establish. There was some heterogeneity in how factors affected site invasion risk for 

particular species. For example, the response to livestock grazing was almost equally 

divided between species more and less likely to be found near grazing allotments. Based 

on our results, we identified three major management needs to help lower invasion risk in 

our study area: nutrient management, monitoring and prevention measures along 

roadways, and long-range planning for climate change. These management actions will 

help lower site susceptibility to invasion by most of our study species. Species-specific 

management strategies can complement our recommendations in areas prone to particular 

species. 
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In our studies, we demonstrated the utility of species distribution models to 

address both theoretical and applied questions. We found evidence that introduced 

species are less likely to be at equilibrium than native species, suggesting that dispersal 

processes and lag phases need greater emphasis in studies of invasion. We also found that 

similar characteristics make sites vulnerable to invasion by a suite of plant species, 

lending support to theories of site invasibility. Management recommendations for our 

model invasive species, P. arundinacea¸ and for the study region as a whole are similar. 

Actions that mitigate the effects of roads, nutrient levels, and climate change are likely to 

lower invasion risk in our study area.  
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Appendix A. Partial dependence plots for variables in the final Random Forest 
and Boosted Tree models of Calamagrostis canadensis and Phalaris arundinacea. 
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Figure A.1. Partial dependence plots for variables in the final Random Forest model of 

Phalaris arundinacea presence. Normalized variable importance measure follows 

variables units. Small ticks on the x-axis indicate deciles of the variables. See Table 2.1 

for variable descriptions. 
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Figure A.2. Partial dependence plots for variables in the final Boosted Tree model of 

Phalaris arundinacea presence. Relative percent contribution of each variable to 

predicting species presence follows variables units. Small ticks on the x-axis indicate 

deciles of the variables. See Table 2.1 for variable descriptions. 
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Figure A.3. Partial dependence plots for variables in the final Random Forest model of 

Calamagrostis canadensis presence. Normalized variable importance measure follows 

variables units. Small ticks on the x-axis indicate deciles of the variables. See Table 2.1 

for variable descriptions. 
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Figure A.4. Partial dependence plots for variables in the final Boosted Trees model of 

Calamagrostis canadensis presence. Relative percent contribution of each variable to 

predicting species presence follows variable units. Small ticks on the x-axis indicate 

deciles of the variables. See Table 2.1 for variable descriptions. 
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Appendix B. Partial dependence plots for variables in Random Forest models of 
11 invasive plant species. 

 
 
 

 
 

 
 
 
 
 



 

 
 

 
Figure B.1. Partial dependence plots for variables in the Random Forest model of Bromus tectorum presence. Small ticks on the x-

axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 
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Figure B.2. Partial dependence plots for variables in the Random Forest model of Centaurea biebersteinii presence. Small ticks on 

the x-axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 82



 

 
 

 

Figure B.3. Partial dependence plots for variables in the Random Forest model of Cirsium arvense presence. Small ticks on the x-

axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 83



 

 
 

 

Figure B.4. Partial dependence plots for variables in the Random Forest model of Cirsium vulgare presence. Small ticks on the x-

axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 84



 

 
 

 

Figure B.5. Partial dependence plots for variables in the Random Forest model of Cynoglossum officinale presence. Small ticks on 

the x-axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 85



 

 
 

 

Figure B.6. Partial dependence plots for variables in the Random Forest model of Elymus repens presence. Small ticks on the x-axis 

indicate deciles of the variables. See Table 3.2 for variable descriptions. 
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Figure B.7. Partial dependence plots for variables in the Random Forest model of Hypericum perforatum presence. Small ticks on 

the x-axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 
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Figure B.8. Partial dependence plots for variables in the Random Forest model of Leucanthemum vulgare presence. Small ticks on 

the x-axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 
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Figure B.9. Partial dependence plots for variables in the Random Forest model of Phalaris arundinacea presence. Small ticks on the 

x-axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 
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Figure B.10. Partial dependence plots for variables in the Random Forest model of Ranunculus acris presence. Small ticks on the x-

axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 90 



 

 
 

  

Figure B.11. Partial dependence plots for variables in the Random Forest model of Tanacetum vulgare presence. Small ticks on the 

x-axis indicate deciles of the variables. See Table 3.2 for variable descriptions. 
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