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Abstract

Low-Thrust Assisted Angles-Only Navigation

by

Robert W. Gillis, Master of Science

Utah State University, 2011

Major Professor: David K. Geller, Ph.D.
Department: Electrical and Computer Engineering

Traditional spacecraft proximity operations require large and expensive on-board sensors and sig-
nificant ground support. Relative angle measurements can be obtained from small, simple, and
inexpensive on-board sensors, but have not traditionally been used for proximity operations be-
cause of difficulty generating range information. In this thesis it is shown that useful relative range
data can be generated provided that the spacecraft is experiencing a small continuous thrust such
as would be provided by a low-thrust propulsion system. In previous work range observability was
shown with impulsive maneuvers. This thesis will expand this work to low-thrust spacecraft and
will show how range can be observed under normal operating conditions. The low-thrust methods
covered here may be particularly useful in higher orbits (such as GEO) where the gravity gradient
is relatively small. A computer simulation is used to develop and test guidance, navigation, and
control algorithms for such maneuvers. The capabilities and limitations of these techniques and

algorithms are then analyzed.

(99 pages)
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Chapter 1
Introduction

There are a wide variety of missions that are best accomplished using some type of proxim-
ity maneuvers. Many space missions and programs like Apollo and the International Space Station
would not have been possible without docking and other proximity maneuvers. Today there is a
growing interest in expanding proximity operations capabilities to new types of missions and crafts
[1]12][3]. In particular, there is considerable interest in autonomous satellites that monitor, inspect,
and service other spacecraft. Relative angle measurements can be generated from small inexpensive
sensors, but have not traditionally been used for proximity operations because of difficulty deter-
mining range [4|. Past research projects at Utah State University have worked on techniques to
gain range information from angle measurements. These studies show that, in some cases, impulsive
maneuvers can make relative range observable [5]. This study aims to not only expands this work
to low-thrust, but also to shows how range can be made observable under normal operating condi-
tions. For example, previous studies were inconclusive on whether station keeping directly below a
targeted spacecraft could produce range information [6].

The focus of this study is on generating range information using only angle measurements
and maneuvers achievable with low levels of thrust, such as would be provided by an electric
propulsion system. These systems have become increasingly common with literally hundreds now
operating in orbit [7]. These systems are characterized by a high specific impulse with low levels
of thrust. There characteristics can can potentially provide many benefits to a mission, including
increased payload, longer operational life, expanded operations, and launch vehicle class step-downs
[8]. Some of the electric propulsion systems are more scalable than conventional rockets, and can be
sized for small spacecraft that could not carry other types of propulsion systems. While the electric
systems cannot generate the level of thrust provided by traditional thrusters, they are capable of
firing continuously for long periods of time. This both allows and necessitates different types of
maneuvers for gaining navigation information. These same types of maneuvers would also be used

by a system with a low powered chemical or cold gas system.



Chapter 2
Thesis Statement

The purpose of this thesis is to determine if angles only navigation (AON) can produce signif-
icant range information when assisted by low continuous thrust. This is accomplished by developing
an orbital simulation tool that uses an extended Kalman filter (EKF) to estimate the relative po-
sition between a chaser and target spacecraft. Range errors and filter covariances are analyzed to
determine the level of range knowledge. Specifically, 3-c bounds on position are calculated from the
Kalman filter covariance matrix. With a correctly implemented Kalman filter the true position is
almost always within these bounds. If the 3-0 bounds in the line-of-sight (LOS) direction decrease
due to angle measurements taken during a low-thrust maneuver then it can be concluded that
angles-only navigation (AON) produced range information. This will be called low-thrust assisted
angles-only navigation.

The Awv of the maneuvers are also recorded in an attempt to gain some feel for how efficient
different maneuvers are in using propellants to obtain range information. In general though this
study does not attempt to find optimal maneuvers based on a particular criterion.

All simulations include six degrees of freedom (DOF) dynamics. White process noise is used
simulate unmodeled /expected accelerations such as errors in thruster knowledge, solar pressure,
higher gravity terms, and so forth. Camera measurements are also corrupted with white noise to
simulate measurement errors. The chief objective is to show the feasibility of low-thrust-assisted
AON for determining ranges information in the LOS direction. Performance studies for specific

spacecraft and more complex error models will be the focus of future research.



Chapter 3

Literature Survey

3.1 A Brief History of Proximity Operations

Angle measurements played an essential role in some of the earliest proximity operations.
Both Gemini [9] and Apollo [10] used angle measurements, acquired by the human eye, combined
with other instruments to determine the relative position. These missions also partially relied on the
human eye for relative attitude determination. This approach fit with the United States preference
for manual verses automatic control, and, without the need for as elaborate sensor and algorithm
development, allowed the United States to develop the ability to perform complex proximity oper-
ations more quickly than the autonomous approach taken by the Russians. This early achievement
of complex proximity operation may have been instrumental in winning the race to the moon [5].

Ags time went on spacecraft proximity operations techniques and hardware became pro-
gressively more complex. Though Russia took much longer to develop its far more autonomous
spacecraft, Soyuz has become known for its high level of dependability [5]. Soyuz relies on multiple
radars to determine range, range rate, relative angle, and relative attitude [11]. The Space Shuttle
primarily uses radar for relative navigation, and is also equipped with a laser ranging device and a
center-line camera. Unlike Soyuz, Space Shuttle proximity operations are flown manually [12]. The
radar based systems used on Soyuz and the Space Shuttle are too heavy and power intensive for
many smaller spacecraft. Soyuz requires active communication and cooperation from the targeted
spacecraft, and the methods used by the Space Shuttle to capture non-cooperative satellites are
done manually.

A series of experimental spacecraft have been launched in an attempt to develop new tech-
nology for proximity operations that would be more fitting for smaller unmanned spacecraft. The
XSS-11 (eXperimental Satellite System-11) was a micro-satellite (dry/wet weight 105/145 kg) used
to successfully demonstrate rendezvous and proximity operations (RPO) with various derelict (no
way of assisting XSS-11) resident space objects (RSO). The XSS-11 system primarily uses LIDAR

(light detection and ranging) for relative position measurements [1]. The Demonstration of Au-
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tonomous Rendezvous and Technology (DART) spacecraft was a modified Pegasus fourth stage
equipped with an Advanced Video Guidance Sensor (AVGS), which had a camera and used a laser
to illuminate reflectors strategically placed on the target [2]. The intent was for DART to use AVGS
to perform proximity operations around a Multiple Paths, Beyond-Line-of-Sight Communications
(MUBLCOM) satellite. Unfortunately software errors and inadequacies in the GN&C systems
caused DART to crash into MUBLCOM before it could accomplish its mission objectives [13]. A
third rendezvous experiment, Orbital Express was equipped with the three cameras that made
up the Autonomous Rendezvous and Capture Sensor System (ARCSS), and the same laser based
AVGS system used on DART and a laser range-finder [3]. Orbital Express was able to successfully

complete several proximity and docking maneuvers.

3.2 Angles-Only Navigation for Proximity Operations

In 1801 Carl Friedrich Gauss used angle measurements to successfully determine the orbit of
the planetoid Ceres [14]. This proved that as few as three pairs of angle measurements taken close
together can accurately determine all orbital elements [15]. Relative-angle-navigation has also been
shown to be a viable solution for satellite navigation [16]. However at closer ranges (< 100 km)
Gauss’s method runs into difficulty. For two spacecraft near each other with similar orbits, there
exist whole families of possible relative trajectories that share nearly the same angular measurements
and differ only by range [4]. This makes it impossible to determine range information from unassisted
angle measurements [17]. There have been several attempts to overcome this limitation. When the
chaser is close enough it has been shown that range can be determined by measuring the angle
between optical beacons placed on the target spacecraft or other target features [18][19]. It has also
been shown that range can be determined if angle measurements to the target are taken from two
cooperating spacecraft [20]. There has also been attempts to improve angles-only navigation by
changing the coordinate system [21|, and to combine angle measurements with other measurements
[22]. All these methods have there advantages and disadvantages. The focus of this study is on
using maneuvers executed by the chaser to enhance range detectability. In 2001 Raja Chari and
David Geller used linear covariance to show that range information could be generated from angle
measurements alone if assisted by appropriate maneuvers [4]. In 2008 Dave Woffinden expanded

on this work by creating a six degree-of-freedom simulation with angles-only navigation. This
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simulation modeled a maneuvering chaser spacecraft that used angle measurements to achieve range
information to a target spacecraft [23]. In 2010 Jason Schmidt examined the effect of accelerometer

measurement error, accelerometer bias, misalignment, and noise, on the range observability problem

[6].

3.3 A Brief Introduction to Low-Thrust Propulsion

Electric propulsion systems use electric and/or magnetic fields to accelerated propellant.
Because they are not limited by the amount of energy stored in a fuel they can achieve a much
higher Av with the same amount of propellant. While electrical systems can be very fuel efficient,
thrust is limited by the amount of electric power the spacecraft can provide. Electric propulsion
systems were first tested in space in the 1960s [24]. Since then the number and diversity of electric
propulsion systems has grown and there are now hundreds in use [7|. There are a wide variety of
electric propulsion systems each best suited for different missions or tasks. lon propulsion systems
have had significant success in deep space exploration missions such as NASA’s Deep Space 1 and
Dawn spacecraft [25]. Here very high efficiencies allow for missions with high total Av [26]. Work to
develop more advanced ion thrusters for even more ambitions missions is on going [27]. Hall effect
thrusters are commonly used for spacecraft station-keeping [28]. Some types of electric propulsion
systems such as pulsed plasma thrusters (PPT) [29], field emission electric propulsion (FEEP) [30],
and colloid thrusters [31] can be used on small scales where more traditional propulsion systems

would be impractical.

3.4 Motivation for Proposed Work

The maneuver assisted angles-only navigation studies discussed above have focused on ma-
neuvers executed with thrusters that give relatively high levels of thrust over a short time period
or burst. No studies have looked at the effect of nominal operational maneuvers or low-thrust
maneuvers on range observability.

This project aims to expand on past work by investigating maneuvers and filtering techniques
that may generate range information when combined with low levels of continuous thrust as would
be produced by an electric thruster. Continuous thrust can be used to gradually move from one
orbit to another or to modify or displace orbits [32] (like hovering directly below a another spacecraft

etc.). This study will focus in particular on range information that can be gained from one of these
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modified /displaced orbits. Many of the maneuvers and filtering techniques explored here may also

be appropriate for a a low powered chemical or cold gas propulsion system.



Chapter 4

Orbital Relative Motion

In many space applications it is convenient to express position and velocity relative to a
point other than the central body. For relative motion problems it is often particularly useful to
center the coordinate system on the target. The Clohessy-Wiltshire (CW) are a linearization of
orbital motion of the chaser in target centered coordinates. This allows the various relative motion
trajectories used in this thesis to be analyzed much more intuitively than would be possible in Earth
centered coordinates.

This chapter begins by defining three important reference frames used in this thesis. Then
the CW equations will be developed. Finally key relative orbital paths will be defined using the

CW equations.

4.1 Reference Frames
Depending on which is most appropriate to a given task, three different reference frames
may be used. Earth centered inertial (ECI) frame is defined with the origin at the center of the

earth. Unit vectors describing the ECI axis are defined as:

i, = unit vector parallel to mean equinox

i, = unit vector parallel to Earth’s spin axis (4.1)

Ty =1y X Ig

The local vertical local horizontal (LVLH) frame is defined with the origin at the target

spacecraft. Unit vectors describing the LVLH axis are defined as:

- T
1, = ﬁ (local vertical direction)
Tt



- re X U
iy = M (cross-track direction) (4.2)
’ re X Ut’

iy =1y x i, (local horizonal direction)

where 7 is the vector from the center of the Earth to the target, and v, is the velocity vector of the
target.
The boresight frame is defined with the origin at the chaser spacecraft. Unit vectors de-

scribing the boresight frame are defined as:

g _ frel
v ‘Frel’
g:EpXFrel (43)
Y ’hp X ﬁ«el‘
T = Ta Xy
where:
Trel = Te — Tt (4.4)
in =Tt X UVt (45)

Coordinate transformations
Often it will be necessary to transform vectors coordinatized in one reference frame into
another reference frame. If only position vectors need to be transformed this can be done by the

rotation matrix:



(@2,)"

Rease1 = (ggy)T (4.6)

(@2,)"

sc2 2

sc2
where 757, lety

and 7.7, are unit vectors describing the cl coordinate system axes coordinatized in

the ¢2 frame. Position vectors can then be rotated into the new coordinate system using:

?761 = ch_mlfd (4.7)

This rotation matrix can also be used to transform any vector in ¢l to ¢2. However, the time
derivative of vectors must be handled differently. Regardless of what frame a vector is coordinatized
in, its time derivative as viewed in cl, is related to its time derivative as viewed in ¢2, through the
following relationship.

%\d = %\fﬁ + Wegje1 X b (4.8)
where Wey /.1 is the rotation of the ¢2 frame relative to the cl frame. When b is a position vector,

the above equation is:

Vel = Ue2 + ch/cl X T (49)

where 0. is the derivative of the position vector 7 as observed from the ¢l frame and v, is the deriva-
tive of 7 as observed from the ¢2 frame. The vectors in this expression can then be coordinatized

in the frame cl:

—cl __ =cl —cl —cl

Ucl = UCQ + wCQ/Cl Xr (410)
or in frame c2:

—c2 __ =c2 —c2 —c2

UC]. = UCQ + wc2/cl Xr (411)

Combining Equations 4.7 and 4.10 gives:
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7761 fCQ Rc2—>cl 03&83 7762

= Lc2—cl = (412)
~cl ~c2 —cl ~C2
vgl vg2 |:wcg/61 X} Reoe1 Reasel UEQ

where [wXx] is the cross-product matrix:

0 —W3 ()
—cl
[wiz/cl X} =lws 0 —w (4.13)
—Ww9 w1 0

4.2 Derivation of the Clohessy-Wiltshire Equations

When dealing with the relative motion between two spacecraft, it is often convenient to
work in a coordinate system fixed to one of the vehicles, such as the LVLH coordinate system. The
Clohessy-Wiltshire (CW) equations are a linearization of the relative motion dynamics in the LVLH
coordinate system. This allows many relative orbital motion problems to be solved directly in LVLH

coordinates.

4.2.1 Time Derivatives in a Rotating Frame
Let Sp be an inertial frame and S be a frame rotating with angular velocity @w. For clarity
in this section only, subscript Sy and S will be used to indicate which frame a derivative is being

observed from. For example (%) S is the derivative of the vector 0 as observed from the inertial

frame Sp, and (%)S is the derivative of 0 as observed from the rotating frame S.
Let & & &3 be a set of orthonormal unit vectors fixed in the rotating S frame. The

derivative of each unit vector as observed from the inertial Sy frame can be expressed as:

<d‘%> =w X e (4.14)

A vector @ can be expressed as 4 = ), u;€;. The time derivative of @ as observed from Sy can now

be written as:
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du du; de;
<dt>$0 : dt6+zi:“ (dt)so (4.15)

Recognizing that the first summation is the derivative of « as observed from § and substituting in

Equation 4.14:

du du
— = — 0 X U 4.16
<dt>30 (dt>s+wxu (4.16)

To apply these results to the relative orbital motion problem, let 7,..; be the vector from a
target spacecraft to a chaser spacecraft. Using Equation 4.16, the derivative of 7, as observed from
Sp (i-e. the velocity of the chaser relative to the target as observed from an inertial frame) can be

expressed as:

drre AT e L _ o
< dtl>80:< dtl>8+wxrml:vrel—l—wxrml (4.17)

where v, is velocity of the chaser relative to the target as observed from the rotating frame S.

Applying Equation 4.16 again:

d>7 .
( d:;;d) = Gpel + W X Trel + 20 X Vg + @ X @ X T (418)
So

where a,¢; is acceleration as observed from the rotating frame S.
4.2.2 Linearization of Relative Orbital Motion

Agssuming a point mass gravity model, the chaser’s and target’s orbital dynamics can be

expressed as:

" T
Te=—/ 703 + Qthrust (419)
|7l
. T
o= -t (4.20)
72|

where 7. and 7 are the position of the chaser and target spacecraft relative to the earth’s center,
and G¢pypyst 18 the thrust produced by the chaser’s engines. Letting 7,.; be the vector from the target

to the chaser. The chaser’s position can then be expressed as:
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Te =Tt + Tre (421)

Substituting Equation 4.21 into Equation 4.19:

Tt + Trel

K= —_ 3 + Qthrust (422)
|rt + rrel|

T+ Trel = —

Expanding Equation 4.22 as a Taylor series and neglecting the higher order terms:

_ = =l
T+ Trel = —M77t3 -—3 |:I3$3 - 3tt2:| Trel + Qthrust (423)
7™ |7l 74|

and substituting in Equation 4.20:

= =T
. M T _ _
Trel = -3 |:I3$3 - 31:2:| Trel + Qthrust (424)
7] 74|

4.2.3 The Clohessy-Wiltshire Equations

Substituting Equation 4.18 into Equation 4.24 gives:

-
H Ty | - _ _ P o _ o
- ’7 ’3 13333 -3 |7 |2 Trel + Qthrust = Qrel T W X Trel + 200 x Upel + W X W X Tpej (425)
Tt Tt

where @ in now the target’s orbital angular rate vector. If a circular orbit is assumed: w = 0 and

lof® = \FMIS = constant, then the above equation can be written as:
t
2 Ty | _ _ o o
— |w\ [ngg, — SW Trel + Qthrust = Orel + 20 X Uyl + @0 X W X Trel (4.26)
Tt

Expressing all the vectors in the equation above in LVLH coordinates:

€l
Il

Trel = y|> Urel = ul Qrel = K =10 1> w | Qthrust = ay




yields three scalar equations:

T = —2wz+ ay

. 2
Y =—wy+tay

zZ= 3w22—|—2w:t—|-az

13

(4.27)

(4.28)

(4.29)

where a;, ay, and a, are the components of the chaser thrust @s,ust. These are the Clohessy-

Wiltshire equations.

In the absence of any thrust accelerations (a, = ay, = a, = 0), the CW equations can also

be written as:

220

2(0) = 020+ 20| sin )+ | 220 o (wt) — B + ]+ [0 — 2

v (©) = ol os ) + | 2] sin et
(1) = [iﬂ sin (wt) — [3,20 n 23’;0] cos (wt) + [4;;0 + 250]

T (t) = [6wzo + 4] cos (wt) — [220] sin (wt) — [6wzo + 3]

¥ (t) = [9o] cos (wt) — [wyo] sin (wt)

Z (t) = [20] cos (wt) + [Bwzo + 240 sin (wt)

4.3 Relative Orbital Trajectories

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

In this thesis, several types of relative orbital motion are used to analyze the effectiveness
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of angles only navigation. Proximity operations are often described in terms of the R-bar (radial
vector) and V-bar (velocity vector) directions. In LVLH coordinates the R-bar (the z position) is in
the local-vertical direction and the V-bar (the x position) is in the local-horizontal direction. The
chaser is said to be on the V-bar or R-bar if it is only displaced from the target in that direction.
For example, if the chaser is “on the V-bar” this is equivalent to saying it is only displaced in the

local horizontal direction relative to the target.

4.3.1 Station-Keeping

Several cases will be considered where the chaser is station-keeping relative to the target in
LVLH coordinates. By setting the first and second derivatives in Equations 4.27, 4.28, and 4.29
to zero, the necessary thrust needed to maintain a constant position in LVLH coordinates can be

calculated as:

az =0 (4.36)
ay = w?y (4.37)
a, = —3w?z (4.38)

It can easily be seen from the above equations that if the chaser is station-keeping on the V-bar
(y = 0 and z = 0) then no thrust is required to maintain position (though thrust still may be

required to correct disturbances).

4.3.2 Co-elliptic Approach

In a co-elliptic approach the chaser’s local vertical position is constant, z (t) = z9. Looking
at Equation 4.32 it can be seen that this happens when g = —%wzo and Zp = 0. Applying these
assumptions to the Clohessy Wiltshire equations for the local vertical and horizontal positions and

velocities gives:

x(t) = —-wzot (4.39)
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z (t) = zp = constant (4.40)
. 3
x(t) = QWA = constant (4.41)
Z (t) = 0 = constant (4.42)

4.3.3 Football Orbit

Another type of relative orbital motion is a football orbit. If the chaser is placed close to the
target and put in an orbit with the same period but slightly different eccentricity than the target
the relative motion will trace out a 2x1 ellipse around the target over the course of one orbit. This

is illustrated in Figure 4.1.

Relative Football
“Orbit”

Fig. 4.1: Chaser in football orbit around target.
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This relative orbit requires no thrusting by either spacecraft and can be analyzed in terms of
Equations 4.30 through 4.35. For example if the chaser is starting directly below the target, xg = 0,
with no local vertical velocity, z9p = 0, and a local horizontal velocity &9 = —2wzg then Equations
4.30 and 4.32 simplify to:

x (t) = —2zp sin (wt) (4.43)

z (t) = 2o cos (wt) (4.44)

which will trace out a zg by 2z ellipse. To get velocity, the same assumptions are applied to
Equations 4.33 and 4.35.

& (t) = —2zpw cos (wt) (4.45)
z (t) = —zow sin (wt) (4.46)

Alternately, thrust can be used to modify the football motion, either to change the rate at which

the chaser goes around the target, modify the football shape, or both.
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Chapter 5
Simulation Development

A Matlab/Simulink satellite rendezvous simulation is used to determine whether or not
low-thrust assisted angle measurements can determine relative range. The simulation models a
maneuvering chaser spacecraft and a target spacecraft in earth orbit. The chaser attempts to use
angle measurements and maneuvers to determine the range to the target. The simulation includes
6 degrees of freedom vehicle dynamics, star camera, gyro, and line of sight camera models, as well
as reaction wheels, and thruster models. The focus of this project will be on developing a Kalman
filter appropriate for determining relative position from angle measurements. Simple translational
and pointing control laws are also be included. An overview of the chaser in Simulink can by seen
in Figure 5.1.

The Flight Computer uses sensor
data to estimate current state and

calculate actuator commands to
accomplish a given mission

Actuator Dynamics
models the chaser’s
actuators.

Propagates the chaser’s
“truth” state

Use environmental/dynamic data with similar data from the
passive spacecraft (ExternalData)to simulate the sensors

Fig. 5.1: High level model of the chaser in Simulink.
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5.1 Environmental Model

The environmental model includes a point mass gravity model. White process noise is used
to simulate unmodeled acceleration perturbations such as higher order gravity terms, solar pressure,
aerodynamic drag, Lunar perturbations, and so forth. Higher fidelity models of these disturbances

are not required for this study.

5.2 Vehicle Dynamics

Translational Dynamics
The spacecraft orbits are propagated in ECI coordinates using an Runge-Kutta fourth order

integrator, and the dynamics:

Ty = U
U = Qg (5.1)
e = Uc
Ve = G

The target and chaser accelerations are calculated using:

Tt

ay = T— 3 + wproc (52)
|7
_ T _ _
Qe = ﬁ + Tbodyﬁlagggg + Wihrust (53)
c

where Geom, is the force that would be produced by perfect thrusters, Wi, s 18 process noise added
to simulated thruster errors, and Tj,q,— 1 is the transformation from body to inertial frame. It has
been shown previously that, for simulation relative motion, placing all of the process noise (@pyoc)

on the target is exactly the same as placing process noise on both vehicles [6].
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Rotational Dynamics

Rotational dynamics are propagated using Euler’s equation and a Simulink integrator. An-

gular velocity (@) is calculated by integrating the angular acceleration, which is given by:

w=I"T-ox ) (5.4)
where the inertia is:
1 00
0 0 1

1.,
q= 59 (@)q (5.6)
where ¢ is the rotational position and:
—[wox] @
Q@) = (5.7)
—w 0
0 —w3 Wy
[wx] = w3 0 —-w (5.8)
—wy Wi 0

The quaternion derivative is then integrated to obtain the attitude quaternion q.

5.3 Actuator Models
Because the purpose of this simulation is to explore navigation concepts and not attitude

control, the momentum wheels are assumed to give the commanded torque without delay and
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without error. The thruster model consist of 12 thrusters (two on each side of a cube, all equal
distance for the center of mass). Although this configuration of thrusters can be used to control
attitude, in this study attitude is always controlled with the momentum wheels. Thrusters are
only used for translational control, and two thrusters pointing in the same direction on opposite
sides of the spacecraft always fire with equal thrust and are perfectly coupled. This arrangement of
thrusters will also allow the chaser to accelerate in any direction. For most cases the thrusters and
momentum wheels will be considered perfect. The effect of thruster noise and angular acceleration

process noise will be studied briefly in Chapter 8.

5.4 Sensor Models

An on board star-camera gives the current attitude of the chaser in the form of a quaternion
and gyros provide the current angular velocity of the spacecraft in the form of a vector. A line-
of-sight camera returns the azimuth and elevation angles of the target in the body frame. The
camera model includes azimuth and elevation white noise to represent camera inaccuracies such as

measurement bias, misalignment, and pixelation.

Line-of-sight Camera
The line-of-sight camera provides elevation and azimuth angles corrupted by zero-mean

white noise negm.

R
Ocievation = Sin (Zrel,z) + Neam (59)
_ —1 [ trely
Oazimuth = tan — | + Necam (510)
lrel,x
where iye) 5, irely and ipe . are the x y z components of the unit vector ¢4 = 74"/ |F¢4™| and

mcam

ria™ is the vector from the chaser to the target in the camera frame.

Star-Tracker
For this simulation, a perfect star-tracker is used to define the orientation of the chasers

body frame. The effect of any non-zero tracker errors can be easily modeled as LOS-camera error.
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For this simulation, perfect gyros are used to measure the attitude rate of the body/chaser

frame. These measurements are used by the attitude control law. The attitude rate error in the

control law is the difference between the desired angular velocity, as given by the pointing algorithm,

and the attitude rate measured by the gyros.

5.5 Flight Algorithms (GN&C)

The chaser’s simulated flight computer must accomplish the following: translational guid-

ance; translational estimation; translational control; pointing; attitude determination; and attitude

control. Algorithms are implemented for each of these tasks. A summary of these task is given in

Figure 5.2.

The Mission Manager calculates desired
translational state and desired attitude
(Translational Guidance and Pointing)

l

" 20

I

EmData ACScommand

Attitude Control

Translational Control

ACStommand : }.  cinarida
A TorquaCom (2 »{MATorqueCom
D <228 stotes
ACS ActuatorCom
commands AcceiCom_Body M {8 coeiCom
AccelCom [1x3]
-%-Qdes AccelCom_ECI E3
TransCS Issue Actuator
Commands
(T
o B 5{16)
Tt bl P Conlrolier,
Goto3
5:6}'

1

(etdllldysensorteta 2884)_ . g
SensorData Slates

TP AccelCom

)

The Filter uses sensor data and
acceleration commands to estimate
the current state (Navigation)

Fig. 5.2: Flight computer in Simulink.

AcluatorCommands
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Translational Guidance

A summary of the translational guidance is given in Figure 5.3. The translational guidance
is based upon a preplanned relative path. The preplanned path is specified by a function that takes
time as an input and returns desired position and velocity. The simplest case is when the chaser is

commanded to station keep:

Floth — pllh - — constant (5.11)
gt — (5.12)
where 79", and FZ’ET are the initial and current desired relative positions in the LVLH frame, and

’Dgélsh is the desired current velocity in the LVLH frame.

Another type of preplanned path is the case where the chaser travels in a straight line
relative to the target (as observed from the LVLH frame). The equation for desired position can

then be written as:

—lvlh __ ;-lvlh —lvlh
Tdes — tvdes + Tstart (513)

The desired velocity is then the derivative of the desired position:

Pl = glvth, — constant (5.14)

It is sometimes desirable for the chaser to follow a linear path relative to the target, but at a
non-constant velocity. For example the chaser may start in a natural co-elliptical approach, use
thrust to accelerate its approach (still following the same path), and then decelerate at the end to
station-keep below the target. This more complex maneuver requires that a few more parameters
and stages be added to the above equations. The maneuver will be divided into three stages; the
“acceleration stage,” the “main stage,” and the “deceleration stage.” The acceleration stage runs
while ¢ < Tgecer Where Tyeeer 18 the length of the acceleration stage. The desired velocity for this

stage is:
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CirParam.T2 P12

Elliptical Path
Clock1 l »

]
Star_Pos_LVLH  [pp 5
f -] delta_pos 2
LineParamVstart  |=p{Vs delta_pos
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LineParam.Taccel —{Ta 3
delta_vel -
LineParam.Tdecel |—{Td vo_des_LVLH
endtime il
Linear Path
Fig. 5.3: Translational guidance in Simulink.
_lolh _ —lvlh t (i ik
Vdes = Ustart + (Umain - vstart) (515)
accel
where 0%, and ol*!" “are the desired initial and main stage velocities. It can be seen that Equation
lvlh

5.15 will return v at the beginning of the simulation and then gradually increase the desired

int

Slolh _ llh

velocity until v,/ = 0,71 at t = T,ecer at which point the chaser enters in to the main stage. The

desired velocity during the main stage is then given by:

T)ilvlh — @lvlh (516)

es main
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The chaser enters the deceleration stage when t > 74... The desired velocity for this stage is given

by:

_llh _ ~lvlh (t = Tdec) (1ot —tin
Udl;s = Ungain + (tf — Tde( ) (Uf’%nal - ngain) (517)
ec

The desired positions for each stage is then given by the integrals of the above equations with the

appropriate constants of integration. Desired position during the acceleration stage is given by:

t2

—lvlh __ 4=lvlh —lvlh —lvlh —lvh

Tdes = 752}315@7"% + 27 : (Umain - Ustart) + Tstart (518)
acce

Desired position during the main stage is given by:

—lvh __ =lvh Taccel (—lvh —lvh
T'des = ZL’vmain + 92 <Ustart - Umain) (519)

And finally desired position during the deceleration stage is given by:

Pdes = C1Umain + C20finat + C30ary (5.20)
where:
% — Tdec 7_3 Taccel
co=t—1t - cc — (5.21)
tf —Tgee  2(tf — Tiec) 2
t 2
5 — T T
0y =2 dec (5.22)
tf — Tdec 2 (tf - Tdec)
T,
3 = accel (5_23)
2
If pllh, = plvlh -~ — T;ﬁlélal, then these equation simplify to Equations 5.13 and 5.14 above. It

is worth noting that, depending on the values the variables are set to, the chaser can decelerate in
the “acceleration stage” and accelerate in the “deceleration stage” as easily as the other way around.

A third type of preplanned path considered is an elliptical path. Once again the translational
guidance is a function that takes time as an input and returns desired position and velocity in LVLH.
Also, once again, this maneuver with be divided into stages. In this case there will be an initial

stage, an acceleration stage, and a final stage. This will represent an ellipse that maintains one speed
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for a while, accelerates/decelerates to another speed, and then maintains that speed. Additionally,
this type of path can be set us so that the chaser will spiral in towards the target. This is done by
adding a variable that gradually decreases the dimensions of the base football orbit.

Let ages be the the desired angular position relative to the target, as observed from the

LVLH frame. The initial stage desired angular position and rate can then be written as:

Qdes = Winit (524)

Oldes = tWinit (5.25)

where winq is the initial desired angular velocity. For the acceleration stage the equation is then

written as:

To — t t—1
Qdes = —— init + - W final (526)
try — 5t 312 —t7y
Qdes = ﬁwinit + ﬁwﬂnal +c (5.27)

where 71 and 7 are the beginning and ending time of the acceleration stage, and ¢; is a constant

of integration and is given by:

12 1.2
TITy — 577 3T
€] = —————Winit + Winal + T1Wingt (5.28)
Ty — T Ty —T1

For the final stage, the desired angular positions and rates are given by:

Oges = Weinal (529)

Udes = twfinal +c1+c (530)

where the second integration constant is given by:

2 Winit + =——————Wfinal — T2W final (531)
T1 1
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When the size of the ellipse is held constant, the desired positions and velocities are given by:

Sk lolh - lolh
Tdes = Tminor COS (Qtdes) iy " + Tmagor SN (Qtges) ) (5.32)
Slvlh : : Slolh | . “lolh
Uges = —CdesTmin SIN (Qdes) Ty + QdesTmagjor COS (Qdes) zy” (5.33)
where i"!" and %“lh are unit vectors in the LVLH local vertical and local horizontal directions, and

Tminor and Tpajor are the magnitudes of the ellipse the chaser is moving in (rmajm« = 2T minor). If
the chaser is spiraling in towards the target, the above values are modified. The chaser starts in
an ellipse and then accelerates in the relative radial direction. This radial acceleration stage can be

expressed as:

2
_lvlh (t —7s1) ik
lezas = (1 - 27—t - d'r’adial) rsze (534)
rans
_lvlh (t—7a)° _poin |, (8= Ts1) _lulh
Vdes = - 9 dradial Vpase T 7dradialrbase (535)
Ttrans Ttrans

where dqg4iq; has units of inverse seconds and determines how fast the ellipse gets smaller. For
example the chaser will follow a spiral path that decrease to half its original size over one 24 hour
period (86400s) if dyqqiar = 0.5/86500s. Here 712" and 9*"" are the position and velocity given by
Equations 5.32 and 5.33. In these equations, 74 is the beginning time of the acceleration stage and
Terans 18 the length of the acceleration stage. Once the chaser enters the final stage, the desired

position and velocity can be expressed as:

_ 1 _

rfilélsh = <1 - |:t — Ts1 — 2Tt7"ans:| dradial) rll)zls}; (536)
—lvlh 1 —lvlh —lvlh
Vdes = 1—|t—7a— iTtT‘ans dradial Vpase — dradialrbase (537)

Pointing
The pointing algorithm is a simple target tracking algorithm. This algorithm computes an

attitude command and attitude rate command to align the line-of-sight of the camera with the
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relative position of the target as estimated by the translational navigation Kalman filter. First a

commanded direction cosine matrix and commanded angular rate are calculated using:

(1)

Reom = (_'ecz') (5.38)

~

()

B (,Fteci o ,,:gci)

|F7"el|

(Feci X @SC'L’) X ;;ci

YT (Teet x mget) x agel|
;icz — g;cz % gzcz

B (,chi _ f(e:ci) X (5?Ci o 5§Ci)

o o\ |2
€Cl __ nect
Ty re ) ‘

(5.39)

com ’(

where Fi””‘, Floth  pluth Gtk are the position of the chaser, the position of the target, the velocity

of the chaser and the velocity of the target in ECI coordinates.

Navigation

Navigation is based on a Kalman filter and will be discussed in detail in Chapter 6. The
Kalman filter estimates 12 states, the position and velocity of chaser in the ECI frame and the
position and velocity of target in the ECI frame. The filter uses a point mass gravity model and
the acceleration commands given by the translational guidance algorithm to propagate the states,

and azimuth and elevation angular measurements to update the states.

Attitude Determination
The attitude determination algorithm uses a star-tracker directly (no processing) to deter-

mination attitude. Gyros are used directly for attitude rate determination.
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Translational Control

A linear quadratic regulator (LQR) is developed for translational control [33]. Many of the
maneuvers that will be used in this study will often take place over time frames on the order of
an orbital period with relatively low levels of thrust. It is therefore desirable to use a controller
that takes orbital mechanics into account. As it is shown below, an LQR controller uses knowledge
of the system dynamics (in the form of dynamic constraints) to determine the appropriate gains.
While minimizing Av is not the primary goal of this thesis, it is desirable to keepAv low so that it
can be better estimated how useful the maneuvers may be. Being derived from optimization theory,
an LQR control should produce fuel efficient control profiles. The LQR controller is the solution to

the following optimization problem:

minimize: J = / ((x —xp) A (x —xp) + uTBu> dt (5.40)
0

where xp, is the planned state, x is the current state, and u is the thrust control, subject to the

dynamic constraints:

x =Fx+ Gu (5.41)

The LQR is a good fit for the problems explored here, because it attempts to minimize the
integral of the control a. This is important because the type of thrusters studied here tend to have
very low maximum thrust levels and because it is desirable to minimize the total Av. The LQR
also takes orbital dynamics into account via the dynamic constraints. This is particularly important
since the low powered maneuvers used here can often span whole orbital periods, giving plenty of
time for orbital dynamics to affect the trajectory and the control acceleration is often the same
order of magnitude as the relative gravity acceleration.

For this application, xp is the planned/desired relative position and velocity in LVLH coor-

dinates:

—lvlh
Tdes

Xp = (5.42)

=lvlh
Vdes

and x is the relative position and velocity in LVLH coordinates:
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—=lvlh
Trel

X = (5.43)

=lvlh
Urel

and the control u is the thrust acceleration iyt
During proximity operations, the relative motion of 2 vehicles in near circular orbits is given

by the Clohessy-Wiltshire (CW) equations [34].

oo = FiTrel + FyUrel + Gihrust (5.44)
where: _ .
0 0 0
Fo=10 w2 0 (5.45)
0 0 3w?
0 0 —2w
FE=10 0 o (5.46)
2w 0 0

Thus the F' and G matrices in Equation 5.41 are given by:

0323 1343
F= (5.47)
F F,
0323
G = (5.48)
I3:3

One strategy for selecting the LQR weights|33] is to make them diagonal matrices using:
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1

where max (x — xp), is the maximum allowable error in state, and max u; is the maximum desirable

control. The solution to this optimization problem is:

ayh () = —B7rGT Sy (x(t) — xp(t)) (5.51)

where Sy is computed via the algebraic Riccati equation:

0= —SoF — FTSy+ SoGB™'GTSy — A (5.52)

The thrust command is then rotated into body coordinates using:

_body —[vlh
Uhrust = Rlvlh%badya’thrust (553)

where Rjyin—body 1 defined as in Equation 4.6.

Attitude Control

The chasers attitude dynamics are simpler than the translational/orbital dynamics. Also
the momentum wheels do not use fuel/Av . For these reasons a simple position-derivative (PD)
controller was implement. The torque command for the momentum wheels is given by:

T — Kpk%% + K piae™ (5.54)

com

where kg is the attitude error and wg is the attitude rate error. The gains are given by:

Kp = IW?

n

(5.55)

Kp = Iw’¢ (5.56)
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where [ is the inertia matrix. The damping ratio ¢ is set to 0.707 to create a system that responds
quickly and has a reasonable overshoot. The controller frequency wy, is set to 27/2000 rad/s so
that the controller is stable at the nominal 100 second step sized used. Both the desired and actual
attitudes are represented by quaternions in the simulation to avoid singularity issues associated with
other attitude representations. An error quaternion is calculated from these and then converted to
a rotation vector. The angular rotation rate error is just the difference between the desired angular

rate computed by the pointing algorithm and actual angular rate as measured by the gyros.
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Chapter 6
Kalman Filter Design

The chaser will use an extended Kalman filter (EKF) to generate estimates of relative po-
sition and velocity from angle measurements [35]. There are several different varieties of Kalman
filters that have been developed to deal with different types of problems and situations. The con-
ventional Kalman filter requires a linear system. The extended Kalman filter (EKF) was developed
to extend the conventional Kalman filter to deal appropriately with many non-linear systems, like
the one dealt with here. There are also separate Kalman filter formulations depending on whether
the system dynamics and measurements are continuous or discrete. The EKF developed here is a

hybrid that uses continuous system dynamics and discrete measurements.

6.1 Overview of the Kalman Filter

Figure 6.1 is a graphical representation of the Kalman filter. A Kalman filter is used to
estimate a predetermined set of system states. These states can be any variable of interest such as
position, velocity, bias, etc. The Kalman filter stores the current state estimates as elements in the
state vector X. The Kalman filter also maintains a state covariance matrix P that represents both
how good the current estimate is and how changes in one state co-vary with other states. Upon

initialization the Kalman filter has to be given an initial estimate of the system state Xo and a

In|t|z:.1l state and. Measurement and
covariance matrix measurement covariance
x,, P p
030 Zz+151?7+1

L

x.P | Propagatestateand |z p_ Isa %.,.P, | Updatestateand |z p
= covariance matrix —>  measurementy ——> covariance matrix il i
. . i )
forward in time available? Yes using measurement

N0|

Fig. 6.1: Basic Kalman filter algorithm.
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covariance matrix Py associated with it. The Kalman filter then updates and maintains the state
estimate and covariance matrix with a two step process.The first step is to propagate the state
vector and covariance matrix in time using a model of the system dynamics. As the state vector is
propagated it will tend to drift away from the true state. This is due both to imperfections in the
original state estimate and unknown/unmodeled effects in the system dynamics. The covariance
matrix will also be propagated to reflect the reduced accuracy of the state estimates. The second
step process any measurements and updates the state and covariance. The Kalman filter is given
noise covariance terms to represent inaccuracies in the measurements. The filter combines the
current state estimate with the information gained from the measurements to generate a new and
better estimate. When generating the new estimate, the filter uses the state covariance and the
sensor noise levels to weight the estimate towards the more accurate source. The Kalman filter does
this in such a way that, at least for Gaussian linear systems, the resulting state estimate is optimal
with respect to virtually any criterion that makes sense. The Kalman filter is summarized in Figure

6.2. More details for each of these steps will be given below.

Update state and
covariance with
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‘\& res —.-{:
P chat 2
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S 12 12 -y o _minus Slates
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Fig. 6.2: Kalman Filter in Simulink.
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6.2 Filter States and State Covariance

The EKF used here maintains the state vector:

b3
Il
—
>
—
S—

L 41221

which is composed of the current estimate of the position of the chaser, the velocity of the chaser, the
position of the target, and the velocity of the target, all in earth centered inertial (ECI) coordinates.
The EKF also maintains a state covariance matrix P that represents the level of uncertainty in the

state estimate. The covariance matrix P is given by:

0% P120102 ... P1n010n
2 .
T P£120102 g5 :
P=E (x—)?:)(x—fc)]: (6.2)
2
P1n010n O‘n

where FE is the expectation operator (note that here 6 is used to represent the estimated/expected

value) and:

o7 = E [627] = the variance of dz; (6.3)

1

where dx; = x; — &; = the error between the true state x; and the estimated state Z; and:

oij = E'[dz;0x] = the covariance of dx; and dx; (6.4)

O'ij
003

pij = = the correlation of dz; and dx; (6.5)
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Here it is clear that the diagonal elements represent the variance of the state estimates. For example,
if o; is ten times as large as oj, then the estimate Z; is expected to be on the order of ten times
as accurate as the estimate ;. The correlation p;; tells us how the errors in x; are correlated to
x;; i.e. if knowledge in z; will tell us anything about z;. The correlation ranges between -1 and 1.
A positive correlation means that the two errors tend to move together, and a negative correlation
means that the two errors tend to move opposed of each other. A correlation of zero (p;; = 0)
means that information about z; or z; reveals nothing about the other variable. A correlation of
1 (|pij| = 1) means x;and x; are perfectly correlated and that any information about one variable
reveals just as much about the other. In other words if z; is determined, then z; is known just as

well.

6.2.1 Filter Dynamics and Sensor Models:

The filter design is based on a set of design models. These models account for the dynamics
of the chaser and target spacecraft, as well as camera measurements. Process noise is used in
the velocity channel to account for any unmodeled accelerations and any uncertainties in thruster

acceleration. The filter state dynamics model can be expressed as:

X = f(X> C_Zcom) +w (6.6)
where w is the process noise, and:
,Dgci
—gci _
_:Uflfc‘:s + Gcom
f (Xa acom) = (67)
T)fci
,,:teci
M3
I7e] 1221

Notice that the commanded acceleration vector @eon, in the state dynamics equation. Adding the
thruster generated acceleration is important not only for accurately propagating the chaser state,
but it is also essential for determining the range to the target. For example, if the chaser is station

keeping directly below the target, the level of thrust required is directly related to how far the chaser
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is below the target. The chaser can determine whether it is directly below the target from angle
measurements, and adjust its thrust levels based on whether it is falling behind or moving ahead of
the target. As the chaser position stabilizes, the required thrust should indicate how far the chaser
is from the target. This is illustrated in Figure 6.3.

The sensor model can be expressed as:

z=h (X) + Neam (6-8)

Here h is the true relative azimuth and elevation angles as would be given by a perfect sensor and

Nqm 18 sensor noise on the camera. Using a small angle approximation, h can be written as:

Target

If the chaser is close
only a small thrust
is needed to
maintain position.

Actual / ' Chaser desired
position 3- . positionand
initial filter

bounds ’ 4
\ estimate

If the chaser
'* farther away larger
thrustis needed

Fig. 6.3: Determining range from commanded thrust.
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eazimuth Dy /px
h = ~ (6.9)
Helevation Dz /px
where p“™ is the relative position vector from the target to the chaser in camera fixed coordinates:

ﬁcam = Reci—>cam (rfc’i - TeCi> (610)

c

where the ECI to camera rotation matrix is determined from the ECI to camera quaternion:

Reci—scam = Reciscam (qgin) (6.11)

ect
cam

and ¢S is given by the star tracker and the body to camera rotation.

6.2.2 State and Covariance Propagation
Before considering the extended Kalman filter propagation step, it is useful to take a moment
to review the conventional Kalman filter propagation step. The conventional Kalman filter was

derived for linear systems. These systems can be represented by the matrix equation:

x = Fx+ Bu+ Gw (6.12)

where x is the true state u is the control input and w is process noise and F, B, and G are specified
by the associated dynamics. The same dynamic system can also be expressed in terms of a state

transition matrix:

tit1 tiv1
Xi+1 = @ixi —|-/ (I)Z‘BadT +/ @ZGW dr (613)
t; t;

where At is the discrete time step, and ®; is given by:

F2A¢t2 N F3NAE3

RN VAN 2N )

..... (6.14)

The Kalman filter state can then be propagated using either the differential equation or the

state transition form of the system dynamics. If the differential form is used for state propagation,
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the Kalman filter will integrate the following differential equation forward in time:

x = FX + Bu (6.15)

Using Equation 6.13 and the theory of stochastic processes, the state covariance can be propagated

as follows:
Py = 0,0 + Quy (6.16)
where:
tiv1
Qai = / o,GwGToT dr ~ GQGT At (6.17)
t
At = (tiy1 — t;) (6.18)

and (@ is the strength of the process noise.

The dynamics represented by Equation 6.7 are not linear however. The process outlined
above will have to be modified to “extend” it to a nonlinear case. The state estimate can still be
propagated using the dynamic model directly. Fach time step, the Kalman filter propagates its state

estimate by integrating the state differential equation using a fourth-order Runge-Kutta integrator:

X = f(f{, &com) (6-19)

where f is given by Equation 6.7. Propagating the covariance matrix still requires linear equations

though, thus linearized system dynamics are used to propagate the covariance matrix. Using:

o [ r 1 30 1 3. 1 3 .
— | —= | =—=lsa3 —r—5—— = —=sl33 +r—5%, = —5l3.3 — —=iri 6.20
ar (w) R e L T P (6:20)

the partial of the dynamics with respect to the state can be calculated as:
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0323 I3:3 0323 0323
of | F”|3 (325‘” (ich)” — 13x3) 0323 0323 0323
a0 | (6.21)
0x
0323 0323 0323 I3
© ~eci (Feci\ T
0323 0323 =73 (3% (i) — sts) 0323
L I7:l 112212

The vectors 7%, 7€ are the unit vectors of r¢ ret respectively. Using Equation 6.14 and the F
matrix, the state transition matrix can be computed and used to propagate the state covariance

matrix as in Equation 6.16.

Py = ®;P®] +Qq (6.22)
where Qg is given in Equation 6.17.
6.2.3 State and Covariance Update

When a real measurement z; is received from the sensors, a predicted measurement and a

Kalman gain are calculated:

ﬁy/ﬁx fcam _ fcam
N A c t
o _ Tt 6.23
Z’L bl p |fc - rﬁt ( )
P2/Dz
2x1
_ _ —1
K; =P H! (H;PT H + R)) (6.24)

where the measurement sensitivity matrix H is given by:

o, ohop | b O
o (] P . pz Pz '
i 8.%'2 = 813 a$Z = Tecz—)cam _1'3$3 03:23 I3x3 O3m3 (625)
_ bz 1 3212
p% 0 Pz

3x3
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The state and state covariance are then updated using:

+ K; (EZ — il) (6.26)

P = (Isg3 — KiH;) P (Isg3 — K;H;)" + KR KT (6.27)

where R = E[ngy,nk,

cam) 18 the variance of the camera measurements, and where the Joseph form

for the update equation was chosen for its increased numerical stability over the standard Kalman

Filter update equation [36].
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Chapter 7
Results - Proof of Concept

To determine the effect of thrust assisted angles-only navigation on range observability
several different scenarios were run. Natural motion cases are also run for comparison. The natural
motion cases include football orbits, co-elliptic approaches, and V-bar station-keeping. The thrust-
modified-trajectories include modified football orbits (modified speed and/or shape), modified co-
elliptic approaches (non-natural approach speed and/or displaced in the cross track direction), non-
V-bar station-keeping, and spiral approaches. The resulting navigation filter state uncertainties are
analyzed to determine the effectiveness of low-thrust assisted angles-only navigation in determining

the LOS range to target.

7.1 Metrics

The covariance matrix is used to derive 3-0 bounds on relative position. These 3-0 bounds
are used as a metric to determine the quality of range information generated by the chaser. The
Av used by the chaser is also be recorded.

The covariance matrix used by the Kalman filter is used to determine how well the chaser

is able to determine relative position. Relative position can be calculated from the state vector by:

Xpel = HperX (71)

where H, = This transformation centers the coordinate system on

I3:3 0353 —1I323 0323

the target. The covariance associated with this relative position estimate can be calculated as:

Prel = HrelPHZ;[ (72)

In order to gain a more intuitive understanding of the problem X, and P, are also rotated into

the LVLH and boresight frames. This is done by creating a rotation matrix:



Reci—>frame = (EECZ) T

(gecz‘) T
z
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(7.3)

where iz, i,, and i, unit vectors that describe either the LVLH or boresight coordinates as defined

in Section 4.1. The relative states and associated covariance matrices can then be transformed in

LVLH or boresight coordinates.

lvlh __

s sect
Xrel - Reci%lvlhxre[

Plvlh _

eci T
rel — Reci%lvlhprel (Reci—>lvlh)

sbore __ s
Xpel = Reci%borexrel

bore eci T
Prel - Reci%borepre[ (Reci%bore)

(7.4)

(7.5)

(7.6)

(7.7)

The 3-0 values derived from these relative covariance matrices are used as metrics to determine

the quality of relative position information obtained by the chaser’s filter. It can be recalled from

Section 6.2 that a covariance matrix can be represented by:

2
pPO201 05

po’no'l e o« e [ g

2
i

2
01 po102 poi0y - PO10p

(7.8)

where: o7 = F [53}?] = the variance of dx;. Since dx; is the error in the estimate of the state,
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the standard deviation o; represents how close the estimate is likely to be to the true value. The
standard deviation has the same units as its respective state estimate, and it can be shown that the
estimate Z; will be within one standard deviation, (#; — 0;) < z; < (Z; + 0;), approximately 68%
of the time. However, rather than using the standard deviation directly here, 3-0 values are used.
The 3-0 value of a variable is three times the standard deviation (3-0 = 3 x ;). If the Kalman
filter is properly constructed the estimate Z; will be within the 3-0 bounds (43-0) of the true value
approximately 99.7% of the time

The Av used during maneuvers is also recorded. While no attempt has been made to

minimize fuel use according to any specific criterion, the Av used should give some idea of the

practicality of using these maneuvers to generate range information for fuel limited mission.

7.2 True State and Filter State Initialization

While the values of the initial conditions will vary from scenario to scenario, the method of

generating them will largely stay the same. Let X¢“ represent the estimate of chaser’s state (position

and velocity) and X{“ be the estimate of the target’s initial state. Also let X¢% = (x§* — x¢*). The

initial estimate of the target state in ECT coordinates % is a given point (position and velocity)
in geosynchronous orbit. The desired initial relative position and velocity (the relative state the

controller will try and drive the system to) as observed and coordinatized in LVLH, referred to here

as }Acgélg, is determined by the scenario that will be run. This is either a constant desired relative

position and velocity for a station-keeping mission or the desired relative position an velocity of the
first point of a nominal relative trajectory.
To determine the initial filter state, the initial desired relative state is transformed into ECI

sect

coordinates using Xg°' = ﬂvlhﬁeciﬁg’g where the transformation matrix is defined as outline in

Section 4.1. Then, the initial chaser state estimate used by the filter is given by:

sect __ sect sect
Xe =X +Xdes (79)

The covariances for the target and chaser are also initially defined in LVLH. Standard

lvlh

i

deviations o,”*" and correlations pé?lh are selected according to the scenario and are used to populate

the state covariance matrix P and P}''". These covariance matrices are then transformed into

ECI coordinates using:
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ect

c/t — Tlvlh—>ecif)lvlh (T’lvlh—wd)T (710)

The initial filter state estimate and state covariance are then given by:

Xe
X = (7.11)
}A(?ci
P Ogag
P = (7.12)
06356 Pteci

True states are then generated by adding random error to the estimated states. These
random errors must be selected so that the true states will lie in their respective covariance ellipses
in a way that would be expected by the probabilistic definition of the covariance matrix. Any
covariance matrix is diagonal when coordinated in a principle axis. Here that frame will be referred
to as a “prime” frame. The axes of a prime frame are the eigenvectors of the respective covariance

matrix. A rotation from ECI to the prime frame can be written as:

—eeinT
€ect
(e5*)
—eeinT
€ect
(e57)
Teci—>prime = (713)
—eeinT
€ect
(en )
where €1, és, ... €, are the unit eigenvectors of the covariance matrix. Let €1, €3, ... €, be the

eigenvalues associated with the eigenvectors. To generate a set of random state errors, a random
vector with a mean of zero and a variance of one is created. Each element is then multiplied by one
of the eigenvalues. This creates an random vector, P that lies appropriately in the covariance
ellipse in the prime frame. This vector is then rotated into inertial coordinates using:

eci  __ T _prime __ rime
Xerror = (Teci%prime) Xgrror - TPM'ml?ﬁeCiXchrror (714)
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The true states of the chaser and target are then calculated using:

ect __ sect ect

Xc - Xc + Xc,err‘or (715)
eci __ gsect ect

Xy =X + Xt,error (716)

7.3 Process Noise

When studying orbital relative motion, adding acceleration perturbation in the form of
process noise to one spacecraft is equivalent to putting a lesser amount of noise on both spacecraft|6].
It was empirically determined that adding zero-mean white process noise with a covariance matrix:
Qq = (1.014pm/s?)?I3,3 on the velocity of the target every 100 s causes the relative position to
increase by approximately 300 m 3-0 every orbit if uncorrected by measurements. This was done
by running the simulation with zero initial errors and an zero initial filter covariance. The line of
sight camera was turned off so that the resulting state covariance would be purely the result of the
filter process noise. This process noise was then selected so that after 5 days simulation time the
final filter covariance would have 1500 m 3-¢ in its local horizontal direction.

Figure 7.1 shows that uncertainty in the local horizontal direction increases much faster than
in the cross-track or local vertical direction. Based on orbital mechanics, this is as to be expected.
The process noise is just as likely to create a disturbance in any direction; however, once there is
some uncertainty in the local vertical direction there is a possibility that the target is in a higher or
lower orbit that the current estimate. If the target is in a higher or lower orbit it will gradually fall
behind or move ahead of the estimated position because lower orbits move faster than higher ones.
This can be observed mathematically using the CW equations.

It can be clearly seen from 4.30 through 4.35 that any differences between the estimate and
actual state will create cyclic or constant errors in that are bounded by the size of the initial error.
However, the equation for local horizontal position z (t) has a term [6wzg + 3Zo|¢ that is that is
proportional to time. Thus an error in the estimate of either zy or &y will create secular error in
the estimate of z (¢). In Figure 7.1 the gradual accumulation of uncertainty in the local vertical
direction due to process noise then creates a constantly growing uncertainty in the local horizontal

direction that quickly outpaces the magnitude of the uncertainty for the other states.
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Filter Errors and 3-6 Bounds (Ivih)
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Fig. 7.1: Filter errors and 3-0 bounds while station-keeping 500m behind over 5 days (no measure-
ments).

7.4 LQR Weights

Asg explained in Section 5.5, the LQR control law is created by selecting maximum allowed
position and velocity errors and maximum allowed control accelerations. The goal in setting the
weights for the LQR controller is to stay as close a possible to the desired trajectory, while not
waisting to much Av tracking noise.

For the scenarios studied below, the maximum desired acceleration was generally set to be a
little larger than the thrust levels that would be needed to perform the desired maneuvers. The max-

imum allowable position error was set to be on the same order as the position uncertainty for most

of the run. The allowable maximum velocity was then set to max vye; = \/(maac Trel i) (Max a;).
A notable exception to the above method is the second fixed throttle case in Section 7.6.2.
Because of the relatively high minimum thrust in that case the maz a; had to be raised quite a bit

in order to maintain a similar position error to the other station-keeping cases. This was necessary
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so that the commanded acceleration would be higher than the thruster minimum impulse.

Some trial an error was used in selecting these parameters. Each case was first run with a low
gain, low bandwidth controller. The case would then be re-run with higher and higher bandwidth
controllers until theAv started increasing significantly due to noise tracking. The values of the LQR

weights for each scenario are summarized in Table 7.1.

Table 7.1: LQR Controller Parameters

Scenario MAT Tyl | AT Vpel max a;

V-bar Station-Keeping 20m 0.02m/s 20 pim /s

Below Station-Keeping (Throttleable) 20m 0.02m/s 20 1,/ s?
Below Station-Keeping (Low Minimum Impulse) 20m 0.02m/s 20 i/ s2
Below Station-Keeping (High Minimum Impulse) 20m 2m/s 0.002m/s?
Natural Football 10m 0.001m/s | 0.1um/s?

Accelerated Football 10m 0.01m/s 10 um/ 52

Rounded Accelerated Football 10m 0.0032m/s | 1um/s?

Forced Linear Approach 10m 0.0316 10 pm/s?

Spiral Approach 10 0.01m/s 10 pum/ 52

7.5 Other Important Parameters

Unless otherwise stated all scenarios used the parameters given in Table 7.2.

7.6 Station-Keeping

Missions often require one spacecraft to station-keep with respect to another. If the chaser’s
station-keeping position is not on the targets V-bar, then a small amount of thrust will be required
to maintain position. Here it will be shown that this thrust can make range to the target detectable.
It will also be shown that while angle measurements alone cannot generate new range information
without some sort of thrust, they can slow the growth of the range covariance by helping to better

estimate relative velocity.

7.6.1 V-bar Station-Keeping

In the first scenario the chaser is commanded to station-keep 500 m behind (local horizontal)
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Table 7.2: Simulation Parameters

Parameter Units
Integration step size 100 s
Optical camera process noise 3 mrads 3-0/axis
Optical camera bias 0 mrads 3-0/axis
Star-camera noise 0 mrads 3-0/axis
Gyro noise 0 deg//hr 3-0 /axis
Thruster noise strength 0 m?/s® 3-0/axis

Dynamics process noise strength | 1.0282 x 107 14m?/s? 3-0/axis

Gravitational constant 398600 km3/s?
Filter Propagation step size 100 s
Measurement frequencies 100 s

the target. Because the chaser is on the V-bar, thrust is needed only to correct position and velocity
errors. In this example the initial relative position errors are 75 m 3-o in the local horizontal
direction, 3 m 3-0 in the cross track and local vertical directions, and the velocity errors are 3 cm/s
3-0 in each component of velocity.

Even though the filter starts with a good estimate of relative cross-track and local-vertical
directions, it is able to improve its estimate in these directions very quickly because these directions
are perpendicular to line-of-sight. Figure 7.2 shows the cross-track filter error and 3-obounds for the
first 10,000 seconds of the simulation. For the first 100 seconds the variance and estimate increase
due to process noise. However, after the first angle measurement at 100 seconds the filter is able
to quickly refine its estimate in this direction. Figure 7.3 shows all three components of the filter

error.

Filter Errors and 3-6 Bounds (lvlh)
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Fig. 7.2: Cross-track filter position error and 3-0 bounds while station-keeping 500m behind.
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Filter Errors and 3-6 Bounds (Ivih)
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Fig. 7.3: Filter position errors and 3-o bounds while station-keeping 500m behind over 24 hours.

Because the filter can detect errors in non-boresight directions, the chaser uses some thrust
to correct initial errors. Figure 7.4 shows small but significant accelerations due to these corrections.
After these initial errors are corrected, the thruster acceleration drops almost to zero as would be
expected for V-bar station-keeping. Because the chaser is executing small correction maneuvers at
the beginning of the simulation, the filter is able to glean some range information. As can be seen
in Figure 7.3, the local-horizontal 3-0 decreases a little at the very beginning of the simulation.
However once the chaser stops thrusting to correct initial errors at about 10,000 seconds into the

simulation the filter stops gaining any more information in this direction.
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Fig. 7.4: Total acceleration while station-keeping 500m behind over 24 hours.

Even though the filter is not able to reduce the LOS 3-0 bounds after the initial improve-
ments, it is able to keep the range 3-0 bounds from growing significantly. This is because whereas
only two relative position states are detectable, all three relative velocity states are detectable. Fig-
ure 7.5 shows that the filter is able to estimate all elements of relative velocity. Cross-track and
local-vertical can of course be detected by measuring the resulting change in cross-track and local-
vertical position. Similarly, a different velocity in the relative local-horizontal direction means the
target is in an orbit with a different eccentricity. This different eccentricity means that the target

will soon be moving in the local-vertical direction relative to the chaser, making local-horizontal

Table 7.3 summarizes the results of this scenario. The filter was able to significantly improve
the initial estimation of all relative states except for local-horizontal position. However, even in this
case, the filter was able to keep the error in its estimate from growing too much due to the accuracy

of the horizontal velocity estimate.
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Fig. 7.5: Filter velocity errors and 3-0 bounds while station-keeping 500m behind over 24 hours.

Table 7.3: Filter Error 3-0 Bounds While Station-Keeping 500 Meters Behind for 24 Hours

Initial | After 24 hr
Horizontal 3-0 Bounds (m) 75 45
Cross-track 3-0 Bounds (m) 3 0.4
Vertical 3-0 Bounds (m) 3 0.4
Horizontal Velocity 3-c Bounds (m/s) 0.03 0.0003
Cross-track Velocity 3-0 Bounds (m/s) | 0.03 0.0002
Vertical Velocity 3-0 Bounds (m/s) 0.03 0.0002
Av (m/s) — 0.07

To further investigate the ability of relative angle measurements to control covariance growth

the above scenario was re-run, but this time the LOS camera was shut off at 10,000 seconds simula-
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tion time. Figure 7.6 shows that as soon at the camera is turned off the filter estimate 3-0 bounds

begin to grow like they did in the no measurements scenario.

7.6.2 Station-Keeping Below

If the chaser is commanded to station-keep 500 m below (local vertical) the target, it will
require a small thrust to hold its position. This displacement allows range information to be
extracted from angle measurements. In this scenario the initial relative position errors are 75 m 3-o
in the local vertical direction, 3 m 3-0 in the cross track and local horizontal directions, and the
initial velocity errors are 3 cm/s 3-0 in each component of velocity. The thrust profile for this case is
illustrated in Figure 7.7. The initial thrust is on the order of 10-35 um/s? as the controller corrects

the initial random errors. After about 10,000 seconds the thrust stabilizes to about Sum/s?.
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Fig. 7.7: Thruster acceleration (24 hr) while station-keeping 500m below.

Figure 7.8 shows how the filter errors and 3-¢ error bounds evolve over the first 7200 seconds

(2 hours) of the simulation.
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The errors and uncertainty in the local horizontal and cross track direction drop very dra-
matically after the first relative angle measurement. This is expected since relative position in these
directions can be directly calculated from angle measurements. Relative range, which in this case
happens to be in the local vertical direction, takes longer to determine, but the filter is able to
gradually remove errors and uncertainty here as well, though at this point they still may be largely
due to the initial error correcting thrust. However, as time goes on, the filter continues to refine its
estimates as it receives additional measurements as shown in Figure 7.9. In this case, the range un-
certainty stabilizes at less than 1 percent of the total range after about 10 hours of station-keeping.
The filter can then maintain this level of range knowledge indefinitely as long as the chaser is con-
tinuing to thrust and hold this position. This is illustrated in Figure 7.10. A comparison of the

final errors is shown in Table 7.4.

Table 7.4: Filter Error 3-c Bounds While Station-Keeping 500 Meters Below for 24 Hours

Initial | After 2 hr | After 24 hr
Vertical Error (m) 75 23 4
Cross-track Error (m) 3 0.4 0.4
Horizontal Error (m) 3 0.6 0.5
Av (m/s) — 0.17 0.80

Thus far every scenario has been run with variable throttle thrust. This means the chaser’s
thrusters are able to provide any level of thrust commanded by the flight computer. The above sim-
ulation was repeated with two levels of fixed throttle thrusters instead of variable throttle thrusters.

The first had a minimum impulse of 1 mm/s and the second has a minimum impulse 10 cm/s. The
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Fig. 7.9: Local-vertical filter errors and 3-0 bounds while station-keeping 500m below over 24 hours.
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Fig. 7.10: Filter errors and 3-0 bounds while station-keeping 500m below over 24 hours.

initial state and uncertainties were exactly the same as the above case. The variable thrust and
the two fixed thrust cases all produced very similar range detectability characteristics. Figure 7.11
and Table 7.5 show that the low minimum impulse case is nearly identical to the variable thrust
case. The higher minimum impulse requires more Av to maintain position, and the time history
of the LOS 3-0 error bounds has a jagged appearance since each high impulsive thrust generates
more range information, but the uncertainty then grows as the chaser coasts between impulsive
maneuvers. Nonetheless, the 3-0 error bounds for the high impulsive case are still very close to the

variable and low impulsive cases.
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Table 7.5: Filter Error 3-0 Bounds While Station-Keeping 500 Meters Below for 6 Hours (Variable
vs Fixed Thrust)

Fixed Thrust
Initial Variable Low High
Error Thrust Minimum | Minimum
Impulse Impulse

Vertical Error (m) 75 5.2 5.3 5.0
Cross-track Error (m) 3 0.4 0.4 0.4
Horizontal Error (m) 3 0.5 0.4 0.4
Av (m/s) 0.21 0.2 12

Range Observability Fixed Vs Variable Thrust
80 \ \

—Variable Thrust

E‘ 50 ==-High Minimum Impulse Fixed Thrust|
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g _ \
c L ! il
S ‘Ef 40 \\
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Fig. 7.11: Filter error 3-0 bounds while station-keeping 500m below over 6 hours (variable vs. fixed

thrust).

Table 7.6 shows that these results still hold when the simulation is run for longer periods of
time. After 24 hours of simulation time all the relative position information from all three thrust
types is almost identical. The only real difference between these cases is the much higher Av for
the 10 ¢cm/s minimum impulse case. Since there seems to be no significant difference in navigation
performance between the low impulsive and variable thrust cases, only the variable thrust case will

be considered in further cases.
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Table 7.6: Filter Error 3-0 Bounds While Station-Keeping 500 Meters Below for 24 Hours (Variable
vs Fixed Thrust)

Fixed Thrust
Initial Variable Low High
Error Thrust Minimum | Minimum
Impulse Impulse

Vertical Error (m) 75 4 4 4
Cross-track Error (m) 15 0.4 0.4 0.4
Horizontal Error (m) 15 0.4 0.5 0.4
Av (m/s) 0.73 0.73 44

7.7 Football Orbits

Many mission may require the chaser to move around the target in some manner. It may
be necessary to look at multiple side of the target for an observation/inspection mission, or to get
on the same side as a port for a docking/service operation. Football orbits can be very useful for
these situations. They can also be useful for staying in the general area of the target with out using

much fuel.

7.7.1 Natural Football Orbit Motion

In Figure 7.12 the chaser is in a football orbit around the target starting 250 meters below
the target in the local vertical direction. The initial chaser 3-0 errors are 30 m in the local vertical
direction and 3 m in the cross-track and local horizontal directions. The initial velocity errors are
6 mm/s 3-0 in every direction. The thrusters were turned off for this first case. Due to the initial
errors and process noise, the chaser did not come back to the initial position after one orbital period
as it would in the ideal case. As can be seen in Figure 7.13, no range information was gained in this
case.

The same case was run again but the chaser was allowed to use its thrusters to correct
trajectory errors as indicated by the navigation filter. Using about 6 mm/s of Av, the chaser was
able to follow an almost perfect football orbit around the target. As can be seen in Figure 7.14,
most of the Av was expended at the beginning of the run to counteract the initial trajectory error.
The final line-of-sight filter error in this case is 24 m 3-0 which is slightly less than the previous

case. This is again due to orbit correction generating range information.



In-Plane Relative Position 2D (lvlh)

400+

300+

200+

N

o

o
T

IR

o

o
T

Local Vertical (m)
e

-2001

-300+

-400+

Chaser True Position

——Chaser Estimated Position

-600 -400 -200

0

200 400

Local Horiz (m)

Fig. 7.12: A natural football orbit (no thrust) with errors.

Filter Errors and 3-G Bounds (Boresight)

— 100 T T T T T T T
£
E m
o Ok —
(%]
GLJ \//_\_/
@ | | | | | | |
-1
00O 1 2 3 4 5 6 7 9
5 x 10*
E
s |
£ o =
: T
£
5 | | | | | | |
0 1 2 3 4 5 6 7 9
4
= 9o T T T T T T T x10
€
g
e
3_- ok= ]
o) r
5
© | | | | | | |
0 1 2 3 4 5 6 7 9
Time (seconds) x 10*

Fig. 7.13: Filter errors and 3-0 bounds while in a football orbit (no thrust).

o8



29

7
gX 10 I
NA
<
Es6 -
c
Re
©
g4 7
©
Q
<
= ok -
g
o
|_
0 1 1 1
0 1 2 3 4 5 6 7 8 9
Time (sec) x 10*

Fig. 7.14: Corrective thrust for a football orbit with small initial uncertainty.

To further investigate the range information gained by correcting initial errors, another case
was run with a larger initial velocity error, 60 mm/s 3-0. The only difference between this run
and the last is the greater uncertainty in initial velocity. Figure 7.15 shows that the chaser used
a maximum thrust about 10 times greater than in the previous case to correct trajectory errors
due to initial uncertainty. These higher levels resulted in a line-of-sight filter error of only 9.6 3-o.
Figure 7.16 and 7.17 show that the 3-0 error bounds dropped significantly at the beginning while
the chaser was experiencing the largest thrust. Once the initial errors were removed and the thrust

levels dropped to near zero, the uncertainty stopped improving and started increasing.

Table 7.7: Boresight Error 3-0 Bounds and Av After One Football Orbit (Various Initial Uncertainty
and Thrust Levels)

Final Error
Small In.1t1a1 Small Initial | Large Initial Small In.1t1a1
Uncertainty . . Uncertainty
With No Uncertainty Uncertainty Forced
Thrust With Thrust | With Thrust Motion
Bore-sight Error 31 24 9.6 3.4
3-0 (m)
Av (m/s) 0 0.006 0.04 0.1
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Fig. 7.17: Filter 3-0 bounds while in a football orbit (boresight, large initial uncertainty).

7.7.2 Accelerated Football

Range information can also be generated by using thrust to alter the football orbit. Starting
with the same initial uncertainty as the first case above (the “small uncertainty” case), the chaser
was forced to follow the path of a football orbit at 150% the natural speed. This maneuver used 0.1
m/s Av and reduced the final line of sight error to 3.4 m 3-0. Where the high-initial-uncertainty
case gains most of its range information early in the simulation, the more constant thrust needed
to force the chaser around the football orbit generates a more gradual decrease in uncertainty as

seen in Figure 7.18. Figure 7.19 illustrates the thrust profile required for this orbit.
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Fig. 7.18: Filter errors and 3-0 bounds while in an accelerated football (1.5X natural speed).

x10°

o]

o
|
|

N
—
|

Total Acceleration (m/sz)
N
1
|

| | | |
3 4 5 6 7

Time (sec) x10°

o

o
-
N

Fig. 7.19: Thruster acceleration while in an accelerated football (1.5X natural speed).

62



63

7.7.3 Rounded Accelerated Football

While running the accelerated football orbit scenarios, it was found to be significantly more
fuel efficient to command the chaser to follow a slightly rounded orbit. Figures 7.20 and 7.21 show
a forced 250x400 m modified football orbit. The period of this orbit and the initial uncertainties are
the same as the accelerated football above, but the Av is only about 0.06 m/s. However because
less thrust is used in this case, the filter is not able to determine quite as much range information.

Table 7.8 summarizes the LOS range uncertainty andAv of the football orbits investigated here.
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speed).
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Fig. 7.21: Thruster acceleration while in an accelerated rounded football orbit (1.5X Natural Speed).

Table 7.8: Boresight Error 3-0 Bounds and Av After One Football Orbit (Natural, Accelerated,
and Rounded)

Final Error
Accelerated
Natural Accelerated and Rounded
Bore-sight Error 24 3.4 6.9
3-0 (m)
Av (m/s) 0.006 0.1 0.06

7.8 Sample Mission

This section illustrates an example of how angles-only navigation and low-level-thrust can
be used to successfully approach a spacecraft through a series of maneuvers. Each thrusting ma-
neuver will move the chaser closer to the target and provide more range information. The chaser is
able to maintain reasonable navigation accuracy through all parts of the mission using only angle
measurements.

The chaser starts 20 km behind the target. A natural co-elliptic approach is used to move
to 10 km behind the target. The chaser then uses a forced co-elliptic approach to move directly
under the target. Finally a spiral approach is used to get closer to the target. An overview of the

mission is shown in Figure 7.22.
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Fig. 7.22: Mission Overview.

7.8.1 Between Maneuver Transitions

For simulation purpose this mission is divided into various phases. Each phase corresponds to
one of the sections below. For the first phase, the “Natural Linear Approach,” the initial conditions,
filter estimates, and 3-0 bounds are initialized using the same methods as the previous scenarios. The
true initial state is generated randomly from a given initial desired position and initial covariance.
However for each subsequent phase the initial conditions including filter variables are set equal to
the end conditions of the previous phase. This way the maneuvers string together to form one
mission that demonstrates how angles only navigation may be used by the chaser to approach the

target from over 20 km away all the way to within 20 m.

7.8.2 Natural Linear Approach

For the natural linear approach, the chaser is initialized 20 km behind and 1 km below
the target. This requires a relative velocity of & = %wgeo(l km) (see Equation 4.39). The starting
relative position errors are 1500 m 3-0/axis. Velocity errors are 3 m/s 3-0/axis. For approximately
one orbital period, the chaser approaches the target through a natural motion co-elliptic approach.
This moves the chaser to a point 10 km behind the target, and 1 km below.

It is worth noting that the 3-0 bounds in Figure 7.23 decrease as the chaser gets closer to
the target despite there being no significant thrusting. This is actually to be expected based on the
orbital dynamics and the shape of the 3-0 bounds in this problem. The position 3-0 error starts out

spherical, but as measurements are processed the 3-0 bounds quickly become a long ellipse. If the
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Fig. 7.23: Filter errors and 3-o bounds while in a natural co-elliptic approach from 20 km to 10 km
behind.

chaser position is closer to the target, it will also be have to be in a higher orbit, and if the chaser
is farther from the target, it will also be in a lower orbit. Possible chaser positions farther away
will in a sense catch up with a closer possible chaser positions. Even though the filter still can not
distinguish between the different possible relative positions of the target, these possible positions
move closer together so that the magnitude of the 3-0 bounds gets smaller. Despite the fact that all
3-0 bounds including range get smaller, no actual range information is gained. This is illustrated

in Figure 7.24.
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Fig. 7.24: Natural-motion evolution of the 3-0 bounds.

7.8.3 Forced Linear Approach

Once the chaser is 10 km behind it begins using thrust to accelerate its approach. Over
20,000 seconds of simulation time the chaser accelerates from the natural co-elliptic speed, %wgeo
(at 1 km below), to 4/3 the natural speed 2wge,. The chaser then maintains this speed, moving in
a straight line, until it is 1 km below the target. This approach takes a total of 71200 seconds or
just under 20 hours. As the chaser approaches the 1 km below position there is a decrease in local
vertical uncertainty. This is clearly seen in Figure 7.25.

In order to better determine how much of the variance decrease comes from thrusting and
how much is due to the effects of orbital motion described in Section 7.8.2, another simulation was
run where the chaser was allowed to approach the target at natural speed. As can be seen in Figure
7.26, there is no improvement in local vertical information the natural speed case. The chaser is
also less able to determine relative local horizontal position. Table 7.9 compares the natural and

forced co-elliptic approaches.
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Table 7.9: Filter Error 3-0 Bounds and Av for Natural and 4/3X Speed Co-elliptic Approaches

Start (m) | Natural Speed (m) | 4/3X Speed (m)
Vertical 47 48 11
Cross-track 3.3 0.6 0.6
Horizontal 474 4.9 0.8
Av (m/s) — 0.015 0.4

7.8.4 Spiral Approach

Once the chaser arrives at the position 1 km directly below the target from the 4/3X speed
co-elliptic approach it begins to spiral towards the target. As can be seen from Equation 4.45,
a natural 2x1 km football orbit would have the chaser traveling 2wge,(when 1km below) in the
local horizontal direction. This means that when the chaser arrives at the point 1 km below the
target it is already traveling the right speed and in the right direction for a natural football orbit.
However, rather than going into a natural football orbit, the chaser gradually accelerates its relative
angular speed to 20% faster than a natural football orbit. It takes the chaser 6 hours to reach the
maximum speed. Over this same period of time the chager also starts moving closer to the target.
This maneuver can by thought of as a football orbit that gets smaller over time, the exact path
being defined by Equations 5.34 through 5.37. Here the football decay rate is dyqgia1 = 0.875/(,0960,
the spiral is started immediately, 751 = 0, and maximum radial velocity is reached after 6 hours,
Ts2 = 6 hr = 21600 sec. This maneuver takes the chaser from 1000 m below to just about 10 m
above the target over about 110,000 seconds (just over 30 hours). This approach is illustrated in
Figure 7.27. With an initial range error of 11 m 3-¢, this phase starts with a very good estimate of
relative position. However, as is clearly shown in Figure 7.28, the filter is able to use this approach
to further refine its estimates and bring the range error down to 2.6 m 3-o. This phase uses about
0.26 m/s Av. Table 7.10 summarizes the relative position 3-o errors for each phase of this scenario.
Table 7.11 illustrates that the filter is also able to accurately estimate relative velocity over the

course of this scenario.
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Table 7.10: Filter Error 3-0 Bounds for Example Mission

Start (m) | After 20-10 km After 10 km After Spiral (m)
Co-elliptic (m) Co-elliptic (m)
Bore-sight 1500 476 11 2.6
In Plan 1500 4.6 0.6 0.026
Out of Plan 1500 3.3 0.8 0.021

Table 7.11: Boresight Errors 3-0 Bounds for Example Mission

Start After 20-10 km After 10 km After Spiral
(mm/s) Co-elliptic Co-elliptic (mm/s)
(mm/s) (mm/s)
Bore-sight 3,000 4.2 0.67 0.28
In Plan 3,000 1.3 1.6 0.39
Out of Plan 3,000 0.36 0.20 0.063
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Chapter 8
Results - Effects of Sensor and Actuator Error Sources

To determine the effect of sensor and actuator error sources on range observability sev-
eral different scenarios were run. The effectiveness of low-thrust assisted angles-only navigation
in dealing with error sources is then determined by analyzing the resulting navigation filter state

uncertainties.

8.1 Thruster Errors
The amount of thrust necessary to maintain a displaced orbit can be estimated from the
CW equations. For the 500 m below station-keeping case from Section 7.6.2 the necessary steady

state thrust can be calculated using Equation 4.29. Remembering that for this case £ = 0 and

W= 2rrad __ 2wrad
T 24hr T 86400 sec’

the required thrust can be calculated as a, = —3w?z = 8 um/s?. Taking into
account initial errors, measurement errors, and process noise, the simulation agrees very well with
this calculation, as shown in Figure 8.1.

Until now, all the scenarios have assumed perfect thrusters. Now the 500 m below station-
keeping case is rerun with thruster noise. An error equal to 10% of the steady state thrust
(Qa = (0.8 um/32)213x3) is added to the acceleration of the chaser every time step (100 s). Be-
cause of this extra source of noise, the filter is not able to estimate relative position quite as well
as before, as can be seen in Figure 8.2. Considering the level of thruster uncertainty added here,
the degradation of range information is relatively minor, and suggests that, even though some elec-
tric propulsion systems can track command thrusts very accurately [30], highly accurate thrusting
knowledge may not be strictly necessary for this type of navigation.

Adding thruster noise at this point is some what redundant because the simulation already
has process noise, and thruster noise is really just one type of process noise. To further illustrate
this point, the simulation is run with the process noise turned off and thruster noise set to the same
level as the process noise was before (Qa = (1.014pm/s%)?I3,3 and Qq = 035,;3) . As can be seen in

Figure 8.2 and Table 8.1, running the simulation with thruster noise instead of the process noise
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Fig. 8.1: Total acceleration while station-keeping 500m below for 24 hours.
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Fig. 8.2: Filter error 3-0 bounds while station-keeping 500 m below over 24 hours (process vs

thruster noise).
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Table 8.1: Filter Error 3-0 Bounds While station-keeping 500 Meters Below for 24 Hours (Process
and Thruster Noise, Variable-Thrust Case)

Initial Process Thruster Thruster
Error Noise Noise and Process
Only Only Noise
Vertical Error (m) 75 4.0 4.0 4.9
Cross-track Error (m) 3 0.37 0.37 0.40
Horizontal Error (m) 3 0.44 0.44 0.49
Av (m/s) — 0.73 0.73 0.73

used before is almost identical to running the simulation with just process noise, at least as far as
relative position detectability is concerned.

The simulation only adds thrust noise while the chaser’s thrusters are actually thrusting.
In the throttleable thrust case above, the thrust noise is always on since the thrusters are firing
continuously. However, with the 10 ¢cm/s minimum impulse case from Section 7.6.2, the thrusters
are only firing part of the time (see Figure 8.3). This case is re-run with the same thrust noise as
above (Qa = (0.8 ,um/s2)2 ng;;), but the noise is only added when firings occur. Figure 8.4 shows a
very similar effect to the above case. However, it appears that the thrust noise did not increase the
uncertainty in the range estimate quite as much as in the constant thrust case. This makes sense
since the the thrust noise term is only added some of the time here. To better understand the affect of
only adding the noise part of the time, this case was re-run with Q, = (1.014um/s?)?I3,3 and Qq =
03,3, identical to the “thrust noise only” case above, the difference being that the thrust noise will
only be on part of the time. It can be seen in Figure 8.4 and Table 8.2 that this significantly reduces

the range uncertainty.

Table 8.2: Filter Error 3-0 Bounds While Station-Keeping 500 Meters Below for 24 Hours (Process
and Thruster Noise, Low-Minimum Impulse Case)

Initial Process Thruster Thruster
Error Noise Noise and Process
Only Only Noise
Vertical Error (m) 75 3.9 3.0 44
Cross-track Error (m) 3 0.43 0.41 0.45
Horizontal Error (m) 3 0.37 0.34 0.39
Av (m/s) — 44.0 46.2 49.0
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Fig. 8.3: Total acceleration with fixed thrust while station-keeping 500m below for 6 hours.

While 0.8 um/s? is 10% of steady state thruster acceleration for the throttleable case, the
minimum impulse case generates much higher accelerations. It can be seen in Figure 8.3 that
the minimum none-zero acceleration is 1 x 1073m/s?. This is given by the minimum impulse
divided by the simulation time step: amin = Avmin/tstep = (0.1m/s)/100s = 1 x 1073m/s%.
The simulation is run again with the thrust noise set to one tenth the minimum acceleration
(Qa = (1 x 1074 m/32)213m3). It can be seen in Table 8.3 and Figure 8.5 that, unlike in the
throttleable case, the chaser is unable to estimate range well. The likely explanation is that in this
case the chaser control system is “chattering” a lot. The chaser first thrusts in one direction and
then has to thrust in the opposite direction to correct the excessive thrust due to the relatively high
minimum impulse, so that over time the average thrust is the same 0.8 um/s? as the throttleable
case. However, since the noise terms are uncorrelated they do not cancel out; making it impossible
for the filter to estimate what the true average acceleration is. It is worth noting that it is very
unlikely that a spacecraft would ever really try to station keep this way. The control is set very
tight in this case so that the chaser stays almost as close to the desired point as in the throttleable
case. A real spacecraft control system would have a dead-band and allow itself to drift away for a
little while, then thrust again to move back towards the desired position. This strategy would save
significant Av. With less thrusting the Kalman filter would have to deal with less thrust noise, and

the estimate and covariances would undoubtedly improve.
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Range Observability: Process Noise Vs Thrust Noise
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Fig. 8.4: Filter error 3-0 bounds while station-keeping 500 m below over 24 hours (process vs

thruster noise, low-minimum impulse case).

Table 8.3: Filter Error 3-0 Bounds While Station-Keeping 500 Meters Below For 24 Hours (Process
and Thruster Noise, High-Minimum Impulse Case)

Initial Process Process Noise and
Error Noise High Noise
Only Thrusters
Vertical Error (m) 75 3.9 55.7
Cross-track Error (m) 3 0.43 1.01
Horizontal Error (m) 3 0.37 1.01
Av (m/s) — 44.0 47.7

8.2 Angular Acceleration Process Noise

Thus far, all analysis has been done without any perturbations in the attitude dynamics.

The goal of this section is to investigate the effects of random rotational perturbations implemented

as white process noise. The desired to actual attitude quaternion can be written as:

cos (a/2)

sin (/2) cos (5,)
sin (cv/2) cos (By)

sin (a/2) cos (B.)
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Range Observability: Process Noise Vs Thrust Noise
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Fig. 8.5: Filter error 3-0 bounds while station-keeping 500 m below over 24 hours (process vs
thruster noise, high-minimum impulse case).

where « is the rotation angle and cos (;), cos (3y), and cos (f3,) are the direction cosines locating
the axis of rotation. The angular error between the desired and actual attitudes can then be written

as:

Qe = 2COS?1 (QU,e)

where qg . is the first element of the error quaternion ¢. (the quaternion representing the rotation
from the actual to desired attitude). The angular error for the 500 m below station-keeping case
from Section 7.6.2 is plotted in Figure 8.6.

Except for at the very beginning when the chaser is first “homing in” on the target, the
attitude control system is able to keep the chaser well within 0.1 degrees of the desired orientation.
Over this 12 hour segment the chaser uses .0.38 m/s Av and is able to lower the 3-0 bounds in the
boresight direction to 4.0 m.

When a random angular acceleration is added, the angular errors can be significantly larger.
Figure 8.7 shows the results when a random angular acceleration with o = le — 5rad/s? is added
to the dynamics. This makes it harder for the attitude control system to maintain the desired
orientation. However, as can be seen if Figure 8.8, despite the much larger orientation errors, there
is no significant difference in the filter 3-o bounds. In this case, the chaser again uses 0.38 m/s Av

and is able to lower the 3-0 bounds in the boresight direction to 4.0 m. There does not seem to be
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Fig. 8.6: Angular error without angular noise while station-keeping 500 m below over 12 hours.

any significant difference between this case and the previous when it comes to translational control
or relative position knowledge. This fact suggest that when angular knowledge is good, as it is in

this case, that precise angular control is not necessary for this type of angles-only navigation.

8.3 Star-Tracker Noise

All analysis thus far has assumed a perfect star-tracker. For many cases this may not be
far from the true. A good star-tracker is likely much more accurate than other sources of error
like the LOS camera. However, in many cases there may be reasons (cost, size, etc...) to use less
accurate attitude determination sensors. To explore the effect of decreased attitude certainty, the
500 m below, station-keeping case, from Section 7.6.2 is re-run with noise on the star-tracker.The
simulation is first run with 3 mrad 3-0 noise on the star tracker and a perfect LOS camera. Since
the chaser’s Kalman filter does not estimate attitude, this noise is accounted for by adding a new
noise term Ry to the covariance update equation associated with LOS camera measurements.
As expected, the uncertainty in the range direction is almost exactly the same as the base case
where the star-tracker is perfect and the LOS camera has 3 mrad 3-0 noise on it. This is seen in
Figure 8.9 and Table 8.4. The simulation is also run with both noise sources turned on. It can be
seen that both noises sources together produced a small but measurable decrease in range certainty.
While star-trackers can be very accurate, other forms of attitude measurements have significant

errors. Magnetometers are limited to accuracies of about half a degree [37] (0.5° = 8.7mrad). The
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Fig. 8.7: Angular error with angular noise while station-keeping 500 m below over 12 hours.
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Range Observability: LOS Camera Noise Vs Star-Tracker Noise
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Fig. 8.9: Filter error 3-0 bounds while station-keeping 500 m below for 12 hours (LOS camera and
star-tracker noise).

Table 8.4: Filter Error 3-0 Bounds While Station-Keeping 500 Meters Below For 12 Hours (LOS
Camera and Star-tracker Noise)

Initial | LOS Camera LOS Camera and Magnetometer
Error Noise Only Star-tracker Noise Level Noise
Vertical Error (m) 75 4.0 4.2 7.2
Cross-track Error (m) 3 0.37 0.49 2.0
Horizontal Error (m) 3 0.44 0.59 3.0
Av (m/s) — 0.73 0.75 0.77

simulation is run again with 3 mrad 3-0 noise on the LOS camera and with 30 mrad 3-onoise on
the “star-tracker” to simulate a less accurate attitude determination sensor like a magnetometer. It
can be seen in Figure 8.9 that, even though the final range estimate in this case is more uncertain
than in the lower noise cases, the estimate is still pretty good (under 10 m from 500 m away, less
than a 2% error in the range estimate). Figure 8.10 displays the same scenarios, but is zoomed in
to better illustrate the steady state 3-o bounds.

In addition to making accurate relative angle measurements more difficult, poor attitude
knowledge also produces thrust errors. This is due to the chaser not firing in exactly the commanded
direction. However, in this case the disturbance thrust due to inaccurate pointing is rather small.
The worse case is the “magnetometer” noise level case. Recalling that the steady state thrust for

this case is ~ 8 um/s? and using small angle approximation the variance of the disturbance thrust
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Range Observability: LOS Camera Noise Vs Star-Tracker Noise
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Fig. 8.10: Filter error 3-0 bounds while station-keeping 500 m below for 12 hours (LOS camera and
star-tracker noise, zoomed in).

can be calculated as: o4t = 0.01 (8 ,u,m/sz) = 0.08 ,um/32. This is well below the process noise
(1.014Mm/52) already included in the simulation. Because the added thruster noise was so much
lower than the base noise, the Kalman filter was able to work just fine. However, if this noise term
were to get significantly larger, maybe due to a higher thrust maneuver or even worse attitude

sensors, another noise term would need to be added to the propagation step in the Kalman filter to

account for it.
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Chapter 9
Conclusions and Future Work

When this study was first begun, it was believed that range information could be calculated
from angle information augmented by knowledge of the magnitude and direction of thrust needed
to maintain a desired angular position. The objective of this thesis was to prove that angles only
navigation (AON) can produce significant range information when assisted by low continuous thrust.

This hypothesis has been proved to be true. In the scenarios studied, the chaser was able
to determine relative range using LOS-angle measurements for a variety of low-thrust maneuvers,
including nominal operational maneuvers. Forced motion also enhances angles-only navigation. In
either case, it is clear that even small maneuvers provide good range detectability.

While this thesis focused primarily on geosynchronous orbit applications, low-thrust assisted
angles-only navigation is also expected to be equally valid in any orbit. Low-thrust assisted angles-
only navigation was also shown to work well for both throttable and fixed minimum-impulse case.
Additionally, it was shown that even without thrusting relative angle measurements can be used
to accurately estimate relative velocity. This can be particularly important for docking operations
where relative velocity must be well controlled to avoid damage to either the target or chaser.

In one scenario the chaser’s filter was able to accurately determine relative position at every
point of a multiple step mission that took the chaser from over 20 km away from the target to near
docking. Over this series of maneuvers the filter was also able to maintain a very accurate relative
velocity estimate. This shows that low-thrust assisted AON works over a wide variety of distances
and can potentially be used as a stand alone relative navigation solution.

The sensitivity of low-thrust assisted AON to error and perturbation sources was also in-
vestigated. When thruster/actuator errors were added to the thrust command the filter was not
able to estimate LOS-range as well as it did with perfect thrust. However, this decrease in estimate
accuracy was relatively small. Even when the thruster errors where equal to 10% of the total thrust,
the filter LOS-range estimate 3-0 bounds was still less 1% of LOS-range.

When angular acceleration disturbances were added to the attitude dynamics the error
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between the true and desired angular position increased significantly. However, the quality of
the relative position estimate was shown to be insensitive to these rotational disturbances. Even
when actual angular position was varying from the desired angular position by six or more degrees,
the relative position estimate 3-c bounds where essentially identical to the 3-0 bounds without
perturbations in the attitude dynamics.

When measurement errors were added to the star-tracker data, the filter relative position 3-
o bounds increased. However, when the star-tracker measurements where corrupted by noise levels
comparably to what would be expected from a magnetometer (1.5° 3-0 error), the Kalman filter
was still able to calculate a LOS range estimate with 3-o bounds that where less than 2% of the
LOS range.

Overall these findings suggest that low-thrust assisted angles-only navigation is a viable
candidate for relative navigation, whether as a primary solution or as a supplement and/or backup

to other navigation systems.
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