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ABSTRACT

Modeling the Evolution of Insect Phenology with Particular Reference to Mountain

Pine Beetle

by

Brian P. Yurk, Doctor of Philosophy

Utah State University, 2009

Major Professor: Dr. James Powell
Department: Mathematics and Statistics

Climate change is likely to disrupt the timing of developmental events (phe-

nology) in insect populations in which development time is largely determined by

temperature. Shifting phenology puts insects at risk of being exposed to seasonal

weather extremes during sensitive life stages and losing synchrony with biotic re-

sources. Additionally, warming may result in loss of developmental synchronization

within a population, making it difficult to find mates or mount mass attacks against

well-defended resources at low population densities. It is unknown whether genetic

evolution of development time can occur rapidly enough to moderate these effects.

The work presented here is largely motivated by the need to understand how

mountain pine beetle (MPB) populations will respond to climate change. MPB is

an important forest pest from both an economic and ecological perspective, because

MPB outbreaks often result in massive timber loss. Recent MPB range expansion

and increased outbreak frequency have been linked to warming temperatures.



iv

We present a novel approach to modeling the evolution of phenology by allowing

the parameters of a phenology model to evolve in response to selection on emergence

time and density. We also develop a temperature-dependent phenology model for

MPB that accounts for multiple types of developmental variation: variation that

persists throughout a life stage, random variation, and variation due to the MPB

oviposition mechanism. This model is parameterized using MPB development time

data from constant temperature laboratory experiments.

We use Laplace’s method to approximate steady distributions of the evolution

model under stable temperatures. Here the mean phenotype allows for parents and

offspring to be oviposited at exactly the same time of year in consecutive generations.

These results are verified numerically for both MPB and a two-stage model insect.

The evolution model is also applied to investigate the evolution of phenology

for MPB and the two-stage model insect under warming temperatures. The model

predicts that local populations can only adapt to climate change if development time

can adapt so that individuals can complete exactly one generation per year and if the

rate of temperature change is moderate.

(166 pages)
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CHAPTER 1

INTRODUCTION

Understanding the evolution of insect phenology (the timing of developmental

events, such as oviposition or adult emergence) is a crucial step toward predicting

how insect populations will respond to climate change. It is particularly important to

understand how climate change will affect pollinators and eruptive insects due to their

economic and ecological importance. One such eruptive insect that will be considered

in detail here is the mountain pine beetle (Dendroctonus ponderosae Hopkins). There

are strong selective pressures on insects to maintain appropriate phenology, including

synchrony with resources and within populations. Insect phenology changes as yearly

temperature changes, because the time necessary for an insect to complete its life cycle

is largely dependent on temperature [47]. This link has been observed in populations

around the globe; recent phenology shifts [31] and range expansions [10] have been

linked to changing temperatures in multiple populations including mountain pine

beetle populations. The response of development time to temperature varies within

and between populations and has been shown to be heritable [5]. Describing this

variation is critical in developing a model of the evolution of phenology since natural

selection acts on heritable variation. In this work we present novel approaches to

modeling variation in insect phenology and its evolution in response to selection on

phenology–a response that previously was not well understood. This work is largely

motivated by the need to understand how mountain pine beetle populations will

respond to global warming, and the phenology models developed are parameterized

using mountain pine beetle development data.

An individual’s fitness is highly dependent on its phenology relative to the timing
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of abiotic factors and the phenology of other organisms. In order to be successful,

development must be timed to avoid extreme weather during sensitive life stages, less-

ening the risk of desiccation in the summer and cold-induced mortality in the winter

[27]. For example, the northern extent of the mountain pine beetle range is thought

to be largely determined by exposure to cold temperatures [6]. An individual’s fitness

may also be highly dependent on synchrony between its phenology and that of its

biotic resources. This is apparent in plant-pollinator systems, where the timing of

pollinator flight activity must coincide with the timing of flower production [29], and

in plant-herbivore systems, where the timing of certain developmental stages must

coincide with resource availability. For example, winter moth (Operophtera brumata)

fitness is highly dependent on the coincidence of egg hatching with oak (Quercus

robur) bud break [46].

Developmental synchrony within a population can also be an important determi-

nant of fitness, especially at low population densities. Finding mates can be difficult

when there are few individuals within a population with overlapping reproductive

periods [9]. Developmental synchrony within a population of herbivorous insects may

also be necessary at low population densities to overwhelm resource defenses. For

example, mountain pine beetles have short periods of flight activity during which

they must attack pine trees in large enough numbers to result in tree mortality [7].

Both the need for reproductive synchrony to find mates and the need for developmen-

tal synchrony to mount mass attacks result in Allee effects [1], where the fitness of

an emerging individual at low population densities increases with emergence density.

However, interspecific competition for resources becomes the dominant effect at high

emergence densities, and increasing emergence density reduces fitness [7].

Temperature plays a major role in determining the phenology of poikilothermic

organisms such as insects. Although some insects possess physiological mechanisms
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using cues other than temperature to control phenology (e.g. diapause or photoperiod

sensitivity) [47], for others, phenology is directly controlled by the dependence of

development time on temperature [13]. The body temperature of poikilotherms is

not internally regulated; instead their body temperatures, and consequently their

metabolic rates, depend on ambient temperature, causing them to develop at different

rates at different temperatures [15, 41]. Increasing temperature speeds metabolism

at low to moderate temperatures, resulting in a shorter time period required for

development. However, increasing temperature can be counterproductive at high

temperatures, resulting in longer development time [4]. Consequently, the response

of phenology to temperature is a highly plastic trait, i.e. phenology can change in

response to yearly temperature change with no underlying molecular evolution. The

dependence of development time on temperature varies between developmental stages.

This can have a strong synchronizing effect on a population; at low temperatures

development can effectively halt for individuals in one stage allowing individuals in

earlier stages to catch up [19].

Laboratory experiments have measured development time at various constant

temperatures for many insect species (e.g. [4, 15, 17, 28, 41]). We are careful to

make the distinction between development time, the time it takes for an insect to

develop through a life stage or life cycle, and phenology, the timing (i.e. time of

year) of developmental milestones. In laboratory experiments, insects are held at a

constant temperature and allowed to develop through a life stage. The time it takes

to complete the stage (development time) is recorded. These experiments are carried

out at many different temperatures for each life stage. Empirical models (discussed

in detail later) are then developed to describe the dependence of development time

on temperature in each stage. These models are used to predict development time
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under both constant temperatures and varying temperatures in the laboratory and

in the field.

The work presented here is largely motivated by the need to understand how

mountain pine beetle phenology depends on temperature, how that dependence varies

within a population, and how it might adapt to climate change. The mountain pine

beetle (MPB) is an eruptive bark beetle found in western North America that spends

most of its life cycle beneath the bark of host pine trees. Development from egg to

adult occurs within host trees, after which the beetles emerge to mate and attack new

hosts where they lay the next generation of eggs (see [39] for a review of mountain

pine beetle biology). These attacks have resulted in massive timber loss (see, for

example, www.for.gov.bc.ca), making mountain pine beetle an important insect from

both an ecological and economic perspective. Mountain pine beetle fitness is highly

dependent on phenology [26]; they are found in areas where temperatures can be lethal

to certain life stages, so developmental timing is an important factor in population

viability [6, 27]. In fact, exposure to cold temperatures is likely the most important

mortality factor for mountain pine beetle [12]. Furthermore, recruitment depends

on the beetles’ ability to overwhelm tree defenses and kill at least a portion of the

host tree, necessitating a sufficient density of simultaneously emerging attackers [7].

At low population densities this can only occur if emergence is highly synchronized

within the population.

The response of insect populations (including mountain pine beetles) to global

warming has been the focus of many recent studies, e.g. [10, 27, 29, 31, 46]. Shifting

phenology (e.g. [31]) and range expansion (e.g. [10]) have been linked to temperature

change in several natural populations. Since changing temperature shifts phenology

and insect fitness is highly dependent on phenology, it follows that global warming

will result in strong selection on development time. Predicting how populations might
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evolve to cope with global warming requires a mechanistic understanding of how

phenology depends on temperature before the evolution of that dependence can be

modeled.

One approach to understanding phenology is to use developmental rate curves

to describe the development of the median individual in a population. Previous

phenology models (e.g. [4, 27, 34]) use temperature-dependent developmental rate

curves to predict development time of the median individual (developmental rate is the

reciprocal of development time). These rate curves are typically fit to the reciprocal

of development time data from constant temperature laboratory experiments (e.g.

[27, 34]). The curves are then integrated to determine development time under either

constant or variable temperatures.

Our approach to modeling phenology is based on fitting curves to development

time rather than developmental rate. Bentz et al. [4] showed that fitting develop-

mental rate curves to the reciprocal of laboratory development time data results in

large errors when the curves are used to predict development time, especially at low

temperatures. This error is due to transformation of the error variance that results

from using the reciprocal of the laboratory data and does not occur when curves are

fit directly to development time data. Within populations of insects whose phenology

is under direct temperature control, developmental synchronization is attributed to

long development times at cold temperatures [19]. Since developmental synchrony

can be an important determinant of fitness, it is critical to accurately predict de-

velopment time at low temperatures in these populations. Phenology models fit to

laboratory development times rather than rates offer a clear advantage in this case

due to greater accuracy at low temperatures.

In addition to fitting development time curves to laboratory development time

data, our approach to modeling phenology is unique in that it is directly based on de-
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velopment time curves rather than developmental rate curves. Although curves were

fit to development time data in [4] and subsequent studies (e.g. [27]), the phenology

models developed in those papers were based on reciprocal curves (developmental

rate curves), largely because rates fit more naturally into previous phenology mod-

eling frameworks. In addition to necessitating transformation of laboratory data to

parameterize the model, these rate-oriented phenology models require transformation

of field data to obtain boundary conditions for simulations (e.g. [17]). In contrast,

our parameters and initial conditions are directly related to laboratory and field mea-

surements.

The mountain pine beetle development time data that we use for model pa-

rameterization incorporate previously published data [4, 25, 27] as well as previously

unpublished data that include development times at temperatures not observed in

previous experiments. We expect that inclusion of these new data will result in more

accurate phenology predictions at these temperatures, especially in the teneral adult

stage. Previous phenology models for MPB have assumed that development halts in

this stage at temperatures below 17◦C [27, 35]. The new data show that development

occurs at temperatures as low as 8◦C in the teneral adult stage. This has important

implications for mountain pine beetle phenology. In particular, the warm develop-

mental threshold in the teneral adult stage that was imposed in previous models may

result in predictions of later emergence and more developmental synchrony than a

model without this threshold.

Previous models of mountain pine beetle phenology give useful predictions of

how populations will respond to climate change. However, since these models do

not account for evolution of development time, their predictions are only valid in the

absence of evolution. These models predict that developmental synchrony within a

population can only be maintained within a narrow range of mean annual temper-
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atures; this range spans approximately 2.5◦C for mountain pine beetle, and a 2◦C

increase in mean annual temperature (well within current estimates of climate warm-

ing within the mountain pine beetle range [11]) would push temperatures outside of

this range [27]. In addition to losing developmental synchrony outside of this range

of temperatures, populations that do not evolve cease to be strictly univoltine (one

generation per year), which is likely to result in maladaptive developmental timing

relative to weather extremes [27]. On the other hand, even if temperatures do allow

developmental synchrony within the population, there is no guarantee that the tim-

ing of developmental events will be adaptive. For example, over the 2.5◦C range that

mountain pine beetle is predicted to maintain developmental synchrony, its emergence

time is predicted to advance by 60 days [27]. It is unlikely that such a large degree of

phenology advancement could be adaptive, especially since fitness is highly dependent

on developmental timing relative to weather extremes. These predictions reinforce

the idea that evolution of the temperature-dependence of development time will be

necessary for populations to successfully adapt to changing climate, and indicate the

need to develop a mechanistic understanding of the evolution of phenology.

The dependence of development time on temperature varies within and between

populations of insects [5]. This variation arises due to genetic variation in traits that

affect development time (e.g. size at maturity), maternal effects (e.g. egg size), and

environmental variation (e.g. resource quality at the oviposition site or variation in

micro-habitat). Variation is expressed in both the laboratory and the field. In the

laboratory, variation may also arise due to fluctuations in experimental conditions

(e.g. small temperature oscillations in the thermal cabinet). Since variation affects

timing and synchrony, it must be accounted for if we are to predict how climate change

will affect insect populations. Furthermore, understanding variation in development

time is essential to modeling the evolution of insect phenology; in order for natural
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selection to cause evolution of development time within a population there must be

heritable variation in that trait within the population [18]. An interesting consequence

of variability in development time is the potential for reproductive isolation within

a population. In particular, insects with short development times will emerge before

insects with long development times, and since reproduction occurs shortly after

emergence, individuals with similar phenotypes may be more likely to mate than

individuals with very different phenotypes.

Variability in the dependence of development time on temperature has been

observed in mountain pine beetles both within a single population [17] and between

distinct populations that are adapted to different local environments [5]. One study

by Bentz et al. [5] showed this variability to be heritable in mountain pine beetles;

this study revealed a similar pattern of variation in body size between mountain

pine beetle populations, although variation in body size between populations exceeds

variation within populations. Since smaller insects generally complete development

faster than larger insects under the same environmental conditions [38], variation in

body size may provide a more easily measured surrogate for variation in development

time (at least between populations) in the future.

Some previous phenology models have accounted for variation in phenology

[17, 25, 40, 44]; Several of these models are discussed in [17]. The models describe

variation in developmental rates and predict temporal variation in developmental

milestones by solving a partial differential equation [17] or by direct application of a

distributional model that results from assumptions about developmental rate distri-

butions [25, 40, 44]. The partial differential equation model developed by Gilbert et

al. [17], which they call the Extended von Foerster model, is an advection-diffusion

equation in which the drift coefficient is the median development rate in a popu-

lation and the diffusion coefficient is related to the variance in development rates.
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The shape of the distribution of developmental rates is irrelevant in the Extended

von Foerster model. This simplifies efforts to describe developing insect populations,

because less information is required to parameterize the model. However, the ability

to adapt the shape of phenology distributions to reflect laboratory or field data is

lost. Fortunately, the Extended von Foerster model does a good job at predicting

the shape of mountain pine beetle emergence distributions observed in the laboratory

at constant temperatures [17]. In implementing the Extended von Foerster model,

Gilbert et al. assume that variation in developmental rate is constant [17], though

this is not essential to the model formulation.

The distributional model developed by Sharpe et al. [40] assumes that varia-

tion in developmental rates at constant temperature is the result of variability in the

concentration of rate controlling enzymes. To extend their model to varying temper-

atures, Sharpe et al. assume that developmental rate variance is proportional to the

mean developmental rate [40]. The shape of phenology distributions predicted by the

Sharpe et al. are dependent on the shape of the distribution of developmental rates,

so more information is required to parameterize this model than the Extended von

Foerster model. However, this model affords more flexibility in specifying the shape

of phenology distributions.

Neither the Extended von Foerster model nor the Sharpe et al. model provide

a natural framework for studying the evolution of development time in response to

natural selection on phenology. In particular, there is no clear way to identify and

track individual developmental phenotypes in either model, so it is impossible to iden-

tify how selection impacts individual developmental phenotypes. Since they consider

populations in aggregate, neither the Extended von Foerster model nor the Sharpe

et al. model will reveal temporal structure in the distribution of phenotypes. For

example, neither model would be able to predict that individuals that develop slowly
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due to their genotypes will emerge later than individuals that develop quickly. The

ability to predict such patterns is important in modeling the evolution of development

time, because individuals that emerge at different times will be exposed to different

selective pressures.

We develop a phenology modeling framework that explicitly accounts for varia-

tion in development time while allowing phenology distributions of individual pheno-

types to be tracked. This is achieved by introducing a developmental phenotype that

scales some base temperature-dependent development time curve. This phenotype

is assumed to vary within a population, and development is simulated separately

for insects with different phenotypes. Hence, temporal structure in developmental

phenotype and the effects of phenology selection on different phenotypes can be ac-

counted for explicitly. This model also differs from the models of Gilbert et al. and

Sharpe at al. in that it directly describes variation in development time rather than

developmental rates. As a consequence of our approach, variation in development

time is proportional to mean development time–a simple pattern that is supported

by laboratory observations, but is not achieved by either the Sharpe et al. model or

the Extended von Foerster model because they are formulated in terms of develop-

mental rates. Like the Extended von Foerster model, our approach is based on a

partial differential equation formulation and allows random variation in development

time (due to environmental noise) to be incorporated into a diffusion term. However,

our approach retains the flexibility of the Sharpe et al. model to specify the shape of

developmental distributions.

We take a maximum likelihood approach to determine phenology model parame-

ters using constant temperature laboratory development time data for mountain pine

beetle. This is different than previous developmental parameterizations for mountain

pine beetle, in which a curve was fit directly to the median development rates or times
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at each constant temperature (e.g. [4, 27]). The maximum likelihood approach has

two major advantages when fitting phenology models to laboratory development time

data. First, temperatures at which fewer observations were made have less weight

in fitting development time curve parameters. This is especially important if few

observations are made at some temperatures, since fitting a development time curve

directly to the median development times would give equal weight to these tempera-

tures. Second, the maximum likelihood approach allows us to explicitly incorporate

variation in development time and to simultaneously fit development time curve and

variance parameters.

Our phenology model, which incorporates phenotypic variation in development

time, is easily extended to study the evolution of development time in response to

selection on phenology. Our approach inherently assumes that development time is a

continuous trait (also known as a quantitative or multifactorial trait) as a opposed to

a discrete trait (see [21, 23]). This is justified, because development time is affected

by many aspects of physiology and environment and is likely influenced by many

genes, whereas a discrete trait is controlled by few genes. Consequently, development

time varies continuously within a population. We are unaware of any published

quantitative genetic model that explicitly describes the evolution of phenology.

Quantitative genetic models describe how selection affects variation in quantita-

tive traits and how that variation is inherited by successive generations [20, 42, 43].

Selection acts on heritable traits through differential fitness, so that phenotypes asso-

ciated with higher fitness are better represented in the next generation. The simplest

quantitative genetic model is the Breeder’s Equation. This model states that the

change in mean phenotype in successive generations is equal to the product of the

the change in the mean of the earlier generation following selection and the heritabil-

ity of the trait. This model is insufficient for studying the evolution of development
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time, because it is restricted to describing the change in the mean phenotype. The

Breeder’s equation does not allow for phenotypic mating structure (e.g. temporal

structure in the case of development time), as there is the inherent assumption that

every individual in the population is capable of breeding with every other individ-

ual. This assumption is violated for development time, since individuals with similar

phenotypes are more likely to mate than individuals with dissimilar phenotypes. For

example, slow developers are more likely to mate with other slow developers, because

they are more likely to be in their reproductive phases at the same time (late in the

reproductive season). In other quantitative genetic models assumptions are typically

made about the shape of the phenotype distribution within a population (e.g. nor-

mality [21]), and the models describe how selection and reproduction affects the mean

and variance of the phenotype distribution for the next generation [42].

We take a direct approach to modeling the evolution of insect development time

in response to selection on emergence time. Development is tracked and the emergence

time distribution is predicted for each phenotype. A selection function is then applied

that assigns fitness based on emergence time and density (individuals emerging on

the same day have the same fitness regardless of phenotype). The phenotypes of

offspring laid as eggs on a particular day are assumed to be normally distributed with

the same mean as their parents and variance related to their parents’ phenotypic

variance, consistent with [42]. A clear benefit of this approach is that it allows a

fairly complex evolutionary scenario (indirect, density-dependent selection on a highly

plastic, temporally structured quantitative trait) to be represented in a fairly simple

way. Additionally, the simplicity of this approach admits analysis using classical

tools of applied mathematics. The model can also be easily extended to study even

more realistic (more complicated) scenarios. For example, it could be extended to

account for direct correlations between development time and fitness (larger insects
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take longer to develop but are capable of producing more offspring). The major

drawback of our approach is that it is computationally complex, development must

be tracked for many phenotypes, potentially over many generations.

In this manuscript we begin by developing and analyzing a general mathematical

model of the evolution of phenology that is under direct temperature control. Vari-

ation in development time is accounted for by a parameter that scales temperature-

dependent development time curves, and a well-established phenology model [34] is

used to describe the effect of this variation on phenology (emergence time) within a

population. We model natural selection on emergence time and emergence density

with an Allee effect. These selection pressures indirectly affect the variation in the

dependence of development time on temperature (i.e. an individual’s phenotype). In-

heritance of this variation through sexual reproduction is represented by assuming

that offspring inherit the mean parent phenotype plus some small random deviation.

Our evolution model is made up of phenotype-dependent development, selection, and

reproduction mappings composed. We characterize this seemingly complex map by

its effect on a few simple population characteristics: the density, mean phenotype,

and phenotypic variance of insects that are oviposited at each time of year. We use

this characterization to find an asymptotic approximation for the evolution model

using Laplace’s method, which is employed to demonstrate the existence of steady

phenotype distributions. These distributions have means approximately equal to the

phenotypes that allow for parents and offspring to be oviposited at the same time

of year and predictable variances. We numerically validate the approximation re-

sults and demonstrate other dynamics of the evolution map for a model insect whose

phenology is qualitatively similar to a large class of insect species.

Next we extend the phenology model to describe different sources of develop-

mental variation and parameterize the model using constant temperature laboratory
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data for mountain pine beetles. Additional random variation in development time is

incorporated into the model by adding a diffusion term, resulting in a Fokker-Planck

development equation. The Fokker-Planck development equation is solved under con-

stant temperatures and fit to development time data. The models are then used to

simulate mountain pine beetle phenology using phloem temperatures measured in

the field and field counts of beetle attacks on successfully colonized lodgepole pine

trees; the emergence distributions predicted by the phenology models are compared

to emergence measured in the field.

Finally, we investigate the evolutionary dynamics of mountain pine beetle phe-

nology under selection on emergence time. The evolution model is implemented using

developmental parameters for mountain pine beetle, and the selection scheme is based

on a model that links phenology and demography for MPB developed by Powell and

Bentz [33]. We verify that the steady distribution results hold for mountain pine

beetle populations under stable climate conditions, even with additional phenology

variation due to distributed oviposition. We also simulate warming by shifting tem-

peratures from a phloem temperature series measured in central Idaho to a phloem

temperature series measured in southern Utah. We show that populations can adapt

to warming only if they retain the ability to complete one generation per year and if

the warming rate is moderate.
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CHAPTER 2

MODELING THE EVOLUTION OF INSECT PHENOLOGY1

2.1 Introduction

Can evolution moderate the disruptive effects of global warming on phenology,

the timing of developmental milestones such as emergence or oviposition, in insect

populations? There are strong selective pressures on insects to maintain appropriate

phenology, including developmental synchrony with resources and within populations.

Insect phenology changes as yearly temperature changes, because the time necessary

for an insect to complete its life cycle is largely dependent on temperature [47]. This

link has been observed in populations around the globe; recent temperature change

has been linked to shifting phenology [31] and range expansion [10] in multiple

populations. It is not well understood how evolution of temperature-dependent de-

velopment time may moderate the effects of increasing temperature on phenology. In

this paper we present a novel approach to modeling the evolution of temperature-

dependent development time in response to selection on phenology.

An individual’s phenology relative to the timing of abiotic factors and the phenol-

ogy of other organisms has a major effect on its fitness. It is essential that development

is timed to avoid the coincidence of sensitive life stages with extreme weather to lessen

the risk of desiccation in the summer or cold-induced mortality in the winter [27].

An individual’s fitness may also be highly dependent on synchrony between its phe-

nology and the phenology of its biotic resources. This is apparent in plant-pollinator

systems, where the timing of pollinator flight activity must coincide with the timing

1This chapter is reprinted from Brian Yurk and James Powell, Modeling the evolution of insect
phenology, Bulletin of Mathematical Biology 71 (2009), 952-979.
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of flower production [29], and in plant-herbivore systems, where the timing of certain

developmental stages must coincide with resource availability. For example, winter

moth (Operophtera brumata) fitness is highly dependent on the coincidence of egg

hatching with oak (Quercus robur) bud break [46].

Developmental synchrony within a population can also be an important determi-

nant of fitness, especially at low population densities. Finding mates can be difficult

when there are few individuals within a population with overlapping reproductive

periods [9]. Developmental synchrony within a population of herbivorous insects

may also be a necessity at low population densities to overwhelm resource defenses.

For example, mountain pine beetles (Dendroctonus ponderosae Hopkins) have short

periods of flight activity during which they must attack pine trees in large enough

numbers to result in tree mortality [7]. Both the need for reproductive synchrony,

and the need for developmental synchrony for mass attack result in an Allee effect, in

which the fitness of an emerging individual at low population densities increases with

the emergence density [1]. However, interspecific competition for resources becomes

the dominant effect at high emergence densities, and increasing emergence density

reduces fitness.

Temperature plays a major role in determining the phenology (and hence the

fitness) of poikilothermic organisms such as insects. The body temperature of poikilo-

therms is not internally regulated; instead their body temperature and consequently

their metabolic rate depend on ambient temperature, causing them to develop at

different rates at different temperatures [15, 41]. At low to moderate temperatures

increasing temperature speeds metabolism resulting in a shorter time period required

for development. At high temperatures, however, increasing temperature can be

counterproductive, resulting in longer development time [4]. We make the distinction

between development time, the time it takes for an insect to develop through a life



17

stage or life cycle, and phenology, the timing (i.e. time of year) of developmental

milestones. Many insects possess physiological mechanisms using cues other than

temperature to control phenology, such as diapause or photoperiod sensitivity [47].

However, for some insects phenology is directly controlled by the dependence of de-

velopment time on temperature [13]. For these insects, the response of phenology to

temperature is a highly plastic trait, i.e. phenology can change in response to yearly

temperature change with no underlying molecular evolution.

Previous phenology models describe the plastic response of phenology to temper-

ature for systems in which phenology is under direct temperature control (e.g. [13]).

This response is particularly well-understood for mountain pine beetle. Although

presented in a general context, our evolution model is based on generalizing models

of mountain pine beetle phenology (see for example [19]). These models, described in

detail in §2.2.1, predict that developmental synchrony within a population can only

be maintained within a narrow range of mean annual temperatures; this range spans

approximately 2.5◦C for mountain pine beetle, and a 2◦C increase in mean annual

temperature (well within current estimates of climate warming within the mountain

pine beetle range [11]) would push temperatures outside of this range [27]. In addition

to losing developmental synchrony outside of this range of temperatures, populations

that do not evolve cease to be strictly univoltine (one generation per year), which is

likely to result in maladaptive developmental timing relative to weather extremes [27].

On the other hand, even if temperatures do allow developmental synchrony within

the population, there is no guarantee that the timing of developmental events will be

adaptive. For example, over the 2.5◦C range that mountain pine beetle is predicted

to maintain developmental synchrony its emergence time is predicted to advance by

60 days [27]. It is unlikely that such a large degree of phenology advancement could



18

be adaptive, especially if it occurs in a population in which fitness is highly dependent

on synchronization with the phenology of a biotic resource.

Genetic evolution may allow insect phenology to adapt to changing selective

pressures as temperatures increase. In order for natural selection to cause evolution

of a trait within a population there must be heritable variation in that trait within

the population [18]. Variability in the dependence of development time on tempera-

ture has been observed in mountain pine beetle both within a single population [17]

and between distinct populations that are adapted to different local environments [5].

Laboratory experiments have shown this variability to be heritable [5]. The same

study revealed a similar pattern of variation in body size between populations; gener-

ally, smaller insects complete development faster than larger insects under the same

environmental conditions [38]. In the future, variation in body size may provide a

more easily measured surrogate for variation in development time (at least between

populations). An interesting consequence of variability in development time is the

potential for reproductive isolation within a population. In particular, insects with

short development times will emerge before insects with long development times, and

since reproduction occurs after emergence, individuals with similar phenotypes may

be more likely to mate than individuals with very different phenotypes.

The dependence of insect development time on temperature varies continuously

within a population. It is affected by many aspects of physiology and environment

and is likely influenced by many genes. Hence, it is best regarded as a quantitative

(multifactorial) trait [21, 23], as opposed to a discrete trait that is controlled by few

genes and varies in a discrete manner. Quantitative genetic models describe how

selection affects variation in quantitative traits and how that variation is inherited

by successive generations [20, 42, 43]. Typically some assumption is made about the

shape of the phenotype distribution within a population (e.g. normality [21]), and
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the quantitative genetic model describes how selection and reproduction affects the

mean and variance of the phenotype distribution for the next generation [42]. We

are unaware of any published quantitative genetic model that explicitly describes the

evolution of phenology.

In this paper we develop and analyze a general mathematical model of the evolu-

tion of phenology that is under direct temperature control. Variation in development

time is accounted for by a parameter that scales temperature-dependent development

time curves, and a well-established phenology model [34] is used to describe the ef-

fect of this variation on phenology (emergence time) within a population. We then

model natural selection on emergence time and emergence density with an Allee ef-

fect. These selection pressures indirectly affect the variation in the dependence of

development time on temperature (i.e. an individual’s phenotype). Inheritance of

this variation through sexual reproduction is represented by assuming that offspring

inherit the mean parent phenotype plus some small random deviation. Our evolution

model is made up of phenotype-dependent development, selection, and reproduction

mappings composed. We characterize this seemingly complex map by its effect on a

few simple population characteristics: the density, mean phenotype, and phenotypic

variance of insects that are oviposited at each time of year. We use this characteri-

zation to find an asymptotic approximation for the evolution model using Laplace’s

method, which is employed to demonstrate the existence of steady phenotype dis-

tributions. These distributions have means approximately equal to the phenotypes

that allow for parents and offspring to be oviposited at the same time of year and

predictable variances. Finally, we numerically validate the approximation results and

demonstrate other dynamics of the evolution map for a model insect whose phenology

is qualitatively similar to a large class of insect species.



20

2.2 Model development

2.2.1 Temperature-dependent
phenology model

The temperature-dependent phenology model that forms the foundation of our

evolution model was originally developed to predict mountain pine beetle phenology

[34], but is easily adapted to describe any insect whose development time depends

directly on temperature. For such insects, let ρi(T ) be the time required for an

individual to complete development through its ith life stage at constant temperature

T . These development time curves are typically U-shaped [45]. Development time

is minimized at some optimal temperature (often approximately 20◦C) and increases

as temperature get cooler or warmer [41]. In practice, τi(T ) is approximated by

measuring development time at constant temperatures in a laboratory, then fitting

an appropriate curve to the data [4]. A piecewise exponential curve captures the

U-shaped dependence of development time on temperature:

τi(T ) =

 a+ exp[b− cT ], T < θ,

a+ exp[b− θ(d+ c) + dT ], T ≥ θ.
(2.1)

To maintain the appropriate U-shape and to avoid zero and negative development

times, the parameters a, c, d are positive. An example of a development time curve

with this formulation is shown in Figure 2.1.

These curves are used to predict phenology for insects under variable temper-

atures. Define T (t) to be the temperature at time t and a(t) to be the proportion

of a life stage that an insect has completed at that time, a dimensionless quantity

taking values between 0 and 1. Since an insect takes τi(T ) days to develop through

the entire life stage at constant temperature T , the simplest developmental model
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Fig. 2.1: An example of a development time curve. An insect’s development time is
the duration of a life stage at a certain temperature.

predicts it will take ∆t = τi(T )∆a days to develop through a fraction ∆a of the life

stage at that temperature. If the relationship ∆a/∆t = 1/τi(T ) holds for arbitrarily

small values of ∆t, i.e. da/dt = 1/τi(T (t)), then development through stage i for an

insect that began at time t0 is described by the initial value problem

da

dt
=

1

τi(t)
, a(t0) = 0, (2.2)

where τi(t) = τi(T (t)). The differential equation (2.2) is integrated to determine the

insect’s age at time t,

a(t) =

∫ t

t0

ds

τi(s)
.

In particular, the time that an insect will complete stage i if it began at time t, gi(t),

satisfies

1 =

∫ gi(t)

t

ds

τi(s)
. (2.3)
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When an insect completes a stage it begins the next stage; for example, an insect

that enters stage 1 at time t will complete that stage and enter stage 2 at time g1(t).

The same insect will complete stage 2 at time g2(g1(t)) = (g2 ◦ g1)(t). If G(t) is the

time that an insect completes its life cycle when it began at time t, then for an insect

with an m-stage life cycle

G(t) = (gm ◦ gm−1 ◦ . . . ◦ g2 ◦ g1)(t); (2.4)

a typical G function is shown in Figure 2.2.

Fig. 2.2: a. An example of a G function. Given the oviposition time t of an insect, its
emergence time is G(t). G(t)− 365 is plotted to show the time of year of emergence
relative to the time of year of oviposition. b. A developmental circle map and its
fixed point dynamics. The circle map is the solid curve, and the fixed point line
G(tno ) = tno is dashed. As the map is iterated oviposition time converges (arrows) to
stable fixed points that occur at intersections of the two curves intersect where the
slope of the circle map curve is less than one.

Previous work has focused on the G function to understand the plastic response

of phenology to temperature [27, 35]. If temperatures are periodic with the same

variation each year (which is roughly true in natural systems), then the G function
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viewed modulo 365 days results in a periodic circle map between tno , the time of year

that an individual in generation n is oviposited, and tn+1
o , the time of year that its

offspring are oviposited in generation n + 1. Univoltine (one generation per year)

fixed points of the circle map are times of year at which the oviposition times of an

insect and its offspring are separated by exactly one year, i.e. tno = G(tno )−365. These

fixed points dominate the dynamics of the circle map when it is iterated over multiple

generations [35], since oviposition times rapidly converge to these points regardless of

initial oviposition time (see Figure 2.2). Hence, univoltine fixed points can synchro-

nize phenology within a population, and the timing of these fixed points relative to

biotic and abiotic factors can have a profound effect on the average fitness of a popu-

lation. The existence of fixed points is structurally stable; fixed points are maintained

under small perturbations of development time curve parameters or the underlying

temperature series [35]. This stability plays an important role in the dynamics of our

evolution model, because individuals with slightly different phenotypes have slightly

different G functions.

2.2.2 Development time as a
quantitative trait

We model variation in development time by allowing a single developmental

parameter, α, to vary continuously within a population. Let α scale some base devel-

opment time curve τk(T ) so that the development time in stage k for an individual

with phenotype α is ατk(T ). Variance in α corresponds with realistic variance struc-

ture in development time; the same variation in α results in more variation at longer

development times than at shorter development times as is often observed in develop-

ment data. This means, for example, that an individual with phenotype α = 2 takes

twice as long to develop as an individual with phenotype α = 1 at the same constant
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temperature. Variation in α may be linked to variation in insect size at maturity.

The extension of our phenology model to account for α is straightforward: the time

that an insect with phenotype α completes stage k given that it began at time t,

gk,α(t), satisfies

1 =

∫ gk,α(t)

t

ds

ατk(s)
,

similar to (2.3). For illustration purposes, we let development time vary within a

single life stage. In this case, the emergence time of an individual with phenotype α

that was oviposited at time t (its G function (2.4)), is

Gα(t) = (gm ◦ gm−1 ◦ . . . ◦ gk+1 ◦ gk,α ◦ gk−1 ◦ . . . ◦ g2 ◦ g1)(t).

Figure 2.3 shows examples of Gα(t) for various values of α.

Under periodic temperatures, Gα(t) taken modulo 365 provides a circle map for

each value of α, and this map may have univoltine fixed points. Conversely, given

an oviposition time t there may be a phenotype, αt, that results in a univoltine fixed

point at time t, i.e. t = Gαt(t)−365, (see Figure 2.3). If we differentiate the definition

of αt with respect to t, upon rearrangement,

α̇t =
1− ∂

∂t
[Gα(t)]|α=αt

∂
∂α

[Gα(t)]|α=αt

,

where ‘·’ indicates differentiation with respect to t. Increasing α increases develop-

ment time, so the denominator is positive. If t is a stable fixed point of Gαt , then

∂
∂t

[Gα(t)]|α=αt
< 1, so that the numerator is also positive, making α̇t > 0. Similarly,

α̇t < 0 whenever t is a unstable fixed point of Gαt . Stability of the univoltine fixed

points in Figure 2.3 can therefore be determined by the slope of αt. Univoltine fixed

points play a crucial role in organizing the dynamics of development within a popu-



25

lation with developmental variability, since oviposition times are attracted to stable

fixed points and repelled by unstable fixed points.

Fig. 2.3: a. The Gα function for various values of α. Given the oviposition time t of
an individual with phenotype α, the individual’s emergence time is Gα(t). Although
α varies continuously within a population, this plot shows only a few representative
curves. b. Given an oviposition time t, αt is the unique phenotype that results
in a univoltine fixed point for the Gα function at time t, i.e. Gαt(t) = t + 365.
These fixed points are stable ( ∂

∂t
[Gαt(t)] < 1) where αt is increasing and unstable

where αt is decreasing (see text). The arrows point to the same unstable (solid) and
stable (dotted) univoltine fixed points in both parts of the figure for individuals with
phenotype α = 1.4.

2.2.3 Evolution map

In this section we describe how the phenotype-dependent phenology model is

incorporated into a model of the evolution of phenology within a population. Let

pno (α, t) be the density of insects in generation n with phenotype α and oviposition

time t; the evolution model maps pno (α, t) to pn+1
o (α, t). If selection acts only on

emergence time and emergence density, then there are no selective pressures acting

on the population during development, and the evolution map can be broken into two

components: development and selection/reproduction (see Figure 2.4). Development
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maps the oviposition distribution for generation n to the emergence distribution for

generation n, i.e. pno (α, t)
D−→ pne (α, t). Selection and reproduction occur when the

population emerges, mapping the emergence density for generation n to the oviposi-

tion distribution for generation n+ 1, i.e. pne (α, t)
S,R−→ pn+1

o (α, t).

The Evolution Map

pno (α, t) - pne (α, t) - pn+1
o (α, t)D

Development

S,R

Selection/
Reproduction

Oviposition
gen. n

Emergence
gen. n

Oviposition
gen. n + 1

Fig. 2.4: A diagram of the evolution map. Development (D) maps the oviposition
distribution to the emergence distribution for generation n. Selection/reproduction
(S,R) maps the emergence distribution for generation n to the oviposition distribution
for generation n+ 1.

Now we derive an explicit representation for the development map in terms of

the phenology model, leaving discussion of the selection and reproduction maps for

§§2.2.4-2.2.5. If the number of insects is conserved during development (no mortal-

ity or immigration), then insects emerging between times t1 and t2 were oviposited

between times G−1
α (t1) and G−1

α (t2);

∫ t2

t1

pne (α, t)dt =

∫ G−1
α (t2)

G−1
α (t2)

pno (α, t)dt. (2.5)

Changing variables results in

∫ t2

t1

pne (α, t)dt =

∫ t2

t1

pno (α,G−1
α (t))

∂

∂t

[
G−1
α (t)

]
dt.
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Since this equation must hold for all choices of t1 and t2, it follows that

pne (α, t) = pno (α,G−1
α (α, t))

∂

∂t

[
G−1
α (α, t)

]
. (2.6)

Both forms of the conservation law (2.5 and 2.6) explicitly define the development

map.

2.2.4 Natural selection

We discuss natural selection on emergence time and emergence density. In both

cases, selection affects phenotypic variation indirectly, because insects with the same

emergence time have the same fitness regardless of phenotype. In the first selec-

tion model, truncation selection acts on emergence time. If S1(t) is the fitness of

individuals emerging at time t (the number of female eggs per female adult), then

S1(t) =

 γ1, t ∈ [tearly, tlate),

0, otherwise.
(2.7)

This selection function models the need for some insect species to emerge within a

certain time interval to coincide with resource availability or to avoid lethal tempera-

tures. We require that 365 ≤ tearly < tlate ≤ 730, which confines cohorts to emerging

within a single calendar year (univoltinism). Univoltinism is often necessary for a

population to maintain adaptive seasonality [27].

In the second selection model the fitness of an emerging individual depends on

its emergence time and the density of simultaneous emergers. The emergence density

at time t in generation n is

Nn
e (t) =

∫
pne (α, t)dα. (2.8)
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The fitness of individuals emerging at time t, S2(t), has the following form:

S2(t) =

 F (Nn
e (t)), t ∈ [tearly, tlate),

0, otherwise,
(2.9)

where F describes how fitness depends on emergence density. Here,

F (N) =
γ2N

N2 + b2
, (2.10)

where γ2 and b are positive parameters. F (N) increases for N < b and decreases for

N > b, giving an Allee effect, since fitness increases with emergence density at low

densities. F also accounts for saturation at high densities (F (N)→ 0 as N →∞).

2.2.5 Sexual reproduction

Whereas the selection model determines the number of offspring produced per

emerging female, the reproduction model determines their phenotypes. For simplicity,

we assume that mating occurs immediately following emergence and results in the

immediate production of S(t) female eggs per female emerging at time t. Hence

mating only occurs between insects that emerge simultaneously, and the densities of

parents and their offspring are related by

Nn+1
o (t) = S(t)Nn

e (t), (2.11)

where Nn+1
o (t) is the density of eggs oviposited at time t. We assume that the

phenotypes of eggs laid at time t are normally distributed, so that the oviposition
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distribution in generation n is given by

pno (α, t) =
Nn
o (t)√

2πνno (t)
exp

[
−(α− µno (t))2

2νno (t)

]
, (2.12)

where µno (t) and νno (t) are the mean phenotype and phenotypic variance for the eggs

laid at time t. The assumption of phenotypic normality is common in the quantitative

genetic literature (e.g. [21, 23, 43]). By using a normal distribution of phenotypes,

we introduce negative and unbounded phenotypes into the population, but this effect

is negligible if the mean phenotype is sufficiently large relative to the phenotypic

variance.

We assume that progeny inherit their mean parent phenotype plus some error

with zero mean and fixed variance σ2
ε . This is similar to the approach introduced by

Slatkin [42]. The reproductive variance is assumed to be small (σ2
ε � 1) and accounts

for the combined effects of different sources of variation including heterozygosity [42],

maternal effects, environmental variability, and mutation. The phenotypes of females

and males emerging simultaneously can be thought of as random variables F and M .

Then, the phenotype of their eggs is also a random variable, O, and

O =
F

2
+
M

2
+ ε,

where ε is the reproductive error. If F and M are identically and independently

distributed, with mean µe and variance νe, then O has mean µo = µe, due to linearity

of the mean, and variance νo = νe/2 + σ2
ε , due to bilinearity of the covariance. Since

most phenotypic variance can be attributed to reproductive variance [42], we rescale

the phenotypic variance to obtain the order 1 quantity ve = λνe, where λ = 1/σ2
ε .

Hence, if the mean phenotype and rescaled phenotypic variance of parents emerging

at time t in generation n are µne (t) and vne (t), then the mean phenotype and rescaled
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phenotypic variance of their offspring are

µn+1
o (t) = µne (t), (2.13)

vn+1
o (t) = vne (t)/2 + 1. (2.14)

2.2.6 Characterization of the
evolution map

The normality assumption (2.12) and the relationships between the densities

(2.11), mean phenotypes (2.13), and rescaled phenotypic variances (2.14) of parents

and offspring define the selection/reproduction component of the evolution model,

mapping the emergence distribution for generation n to the oviposition distribution

for generation n + 1. Hence, the evolution map (e.g. Figure 2.4) is characterized by

these relationships and how development maps the density, mean phenotype, and

rescaled phenotypic variance from oviposition to emergence:

{Nn
o (t), µno (t), νno (t)} D−→ {Nn

e (t), µne (t), νne (t)} S,R−→ {Nn+1
o (t), µn+1

o (t), νn+1
o (t)}.

In the remainder of this section we provide the details of this characterization.

The oviposition distribution for generation n (2.12) is

pno (α, t) =

√
λ

2π

(
Nn
o (t)√
vno (t)

)
exp

[
−λ(α− µno (t))2

2vno (t)

]
, (2.15)

Following development (2.6), the emergence distribution for generation n is

pne (α, t) =

√
λ

2π

(
Nn
o (G−1

α (t)) ∂
∂t

[G−1
α (t)]√

vno (G−1
α (t))

)
exp

[
−λ(α− µno (G−1

α (t)))2

2vno (G−1
α (t))

]
. (2.16)
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For notational simplicity we define the following functions of α:

ft(α) =
Nn
o (G−1

α (t)) ∂
∂t

[G−1
α (t)]√

vno (G−1
α (t))

, (2.17)

and

ht(α) =
(α− µno (G−1

α (t))2

2vno (G−1
α (t))

. (2.18)

Then, the emergence distribution (2.16) is given by

pne (α, t) =

√
λ

2π
ft(α) exp [−λht(α)] .

The development map is characterized by the following integrals that give the density

of individuals in generation n emerging at time t, their mean phenotype, and their

rescaled phenotypic variance:

Nn
e (t) =

√
λ

2π

∫ ∞
−∞

ft(α) exp [−λht(α)] dα, (2.19)

µne (t) =

√
λ

Nn
e (t)
√

2π

∫ ∞
−∞

αft(α) exp [−λht(α)] dα, (2.20)

vne (t) =
1

Nn
e (t)
√

2πλ

∫ ∞
−∞

(α− µne (t))2ft(α) exp [−λht(α)] dα. (2.21)

Following development, the selection/reproduction map is applied giving,

Nn+1
o (t) = S(t)Nn

e (t),

µn+1
o (t) = µne (t),

vn+1
o (t) = vne (t)/2 + 1.

The preceding six equations completely characterize the evolution map.
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2.3 Analytical results

We use Laplace’s method (a special case of the method of steepest descent) to

approximate each of the integrals defining the development map (2.19-2.21) by the

leading order term of its asymptotic expansion as λ→∞ (see [8, 14] for a discussion

of the method). The results are used in §2.3.2 to approximate steady distributions

in which the temporal structure of the mean phenotype and phenotypic variance

are invariant under the evolution map with periodic temperatures. These steady

distributions represent populations that are well adapted to stable climate conditions

and are important in understanding the dynamics of the evolution model in general.

2.3.1 Approximation of the
development map

Asymptotic expansions of development
integrals

Applying Laplace’s method to (2.19) results in the asymptotic expansion

Nn
e (t) =

ft(α
?
t ) exp[−λht(α?t )]√

h′′t (α
?
t )

+O

(
exp[−λht(α?t )]

λ

)
,

as λ → ∞, where α?t is the value at which ht(α) achieves a (in this case unique)

minimum. Using an asymptotic expansion as λ→∞ is reasonable if the reproductive

variance is small (i.e. σ2
ε � 1), since λ = 1/σ2

ε . Truncating after the first term results

in an approximation for the emergence density,

Nn
e (t) ≈ ft(α

?
t ) exp[−λht(α?t )]√

h′′t (α
?
t )

. (2.22)
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A similar approach gives the asymptotic expansion for the mean phenotype (2.20)

µne (t) = α?t +O

(
1

λ

)
,

as λ→∞, provided that ft(α
?
t ) 6= 0. The leading order term gives an approximation

for the mean phenotype at emergence,

µne (t) ≈ α?t (2.23)

For the rescaled phenotypic variance we must use a higher order expansion (see

[14]), since the first two terms in the asymptotic expansion for (2.21) are zero. Con-

sequently,

vne (t) =
1

h′′t (α
?
t )

+O

(
1

λ

)
.

Truncating after the first term gives

vne (t) ≈ 1

h′′t (α
?
t )
. (2.24)

Critical points of ht(α)

To find α?t that minimizes ht(α), we seek α?t such that h′t(α
?
t ) = 0 and h′′t (α

?
t ) > 0,

where primes denote derivatives with respect to α. First, note that

h′t(α) =
α− µno (G−1

α (t))

2[vn(G−1
α (t))]2

(
2vn(G−1

α (t))

(
1− µ̇no (G−1

α (t))
∂

∂α
[G−1

α (t)]

)
(2.25)

−
(
α− µno (G−1

α (t))
)
v̇n(G−1

α (t))
∂

∂α
[G−1

α (t)]

)

where ‘·’ denotes a derivative in time. In order for α?t to be a critical point of ht(α),

either factor in (2.25) must be zero when α = α?t . Setting the first factor in (2.25)
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equal to zero gives

α?t − µno (G−1
α?t

(t)) = 0. (2.26)

Setting the second factor in (2.25) equal to zero gives

0 = 2vn(G−1
α?t

(t))

(
1− µ̇no (G−1

α?t
(t))

∂

∂α
[G−1

α (t)]

∣∣∣∣
α=α?t

)

−
(
α?t − µno (G−1

α?t
(t))
)
v̇n(G−1

α?t
(t))

∂

∂α
[G−1

α (t)]

∣∣∣∣
α=α?t

.

Here we focus on the first case, in which α?t = µno (G−1
α?t

(t)), since it is consistent with

numerical steady distribution results and leads to the simplest analysis. In this case,

we know that ht(α) achieves a minimum at α?t , since

h′′t (α
?
t ) =

(
1− µ̇o(G−1

α?t
(t)) ∂

∂α
[G−1

α (t)]
∣∣
α=α?t

)2

v(Gα?t
(t))

> 0. (2.27)

2.3.2 Steady distributions of the
evolution map

Under stable conditions we expect that a well-adapted population will achieve

some level of equilibrium with the local climate. To find equilibrium states we seek

oviposition distributions with structure that is invariant under the evolution map with

periodic yearly temperatures. Non-trivial steady states of the evolution map under

periodic yearly temperatures may not exist if selection acts directly on emergence

time and not on emergence density. Instead, steady distributions are sought in which

the phenotypes of eggs oviposited at a particular time of year are invariant under

the evolution map. These distributions are characterized by invariance of the mean
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phenotype and rescaled phenotypic variance, i.e.

µn+1
o (t+ 365) = µno (t), (2.28)

vn+1
o (t+ 365) = vno (t). (2.29)

These conditions can be rewritten exclusively in terms of the development map, since

µn+1
o (t + 365) and vn+1

o (t + 365) are given in terms of µne (t + 365) and vne (t + 365)

by the reproductive map (2.13-2.14). The results are the following conditions for a

steady distribution:

µne (t+ 365) = µno (t), (2.30)

vne (t+ 365) = 2vno (t)− 2. (2.31)

Approximate steady distributions

We use the approximations generated using Laplace’s method to characterize

steady distributions at leading order. In particular, we replace µne (t+365) and vne (t+

365) in the steady distribution conditions (2.30-2.31) by their approximations (2.23-

2.24), giving

µno (t) = α?t+365, (2.32)

2vno (t)− 2 =
1

h′′t (α
?
t+365)

. (2.33)

Recall that α?t+365 minimizes ht(α) if (2.26) is satisfied, i.e. if

α?t+365 = µno

(
G−1
α?t+365

(t+ 365)
)
.



36

Substituting into (2.32) yields

µno (t) = µno

(
G−1
µno (t)(t+ 365)

)
, (2.34)

a sufficiency condition for the mean phenotype at a steady distribution.

Note that (2.34) is satisfied if G−1
µno (t)(t+ 365) = t, which occurs, by definition, if

µno (t) = αt. (2.35)

In this case the mean phenotype at time t results in a univoltine fixed point of Gα.

We expect such a steady distribution to be stable when t is a stable fixed point of

Gα, because emergence times are attracted to these points.

A condition for vno (t) when µno (t) = αt can be derived by working directly with

(2.33). However, it is more informative to assume that the mean has reached its

steady state µno (t) = αt, and consider the evolution of vno (t). Given the periodicity of

αt and (2.27), the Laplace approximation for the rescaled variance (2.24) becomes

vne (t) ≈ vno (t)(
1− α̇t ∂

∂α
[G−1

α (t)]
∣∣
α=αt

)2 . (2.36)

Taken together, these give an approximation for the rescaled phenotypic variance

when µno (t) = αt. The squared quantity in the denominator has a particularly simple

representation. Differentiating t = G−1
αt (t) with respect to t gives

1 = α̇t
∂

∂α
[G−1

α (t)]

∣∣∣∣
α=αt

+
∂

∂t
[G−1

α (t)]

∣∣∣∣
α=αt

.
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This implies that the denominator in (2.36) is
(
∂
∂t

[G−1
α (t)]

∣∣
α=αt

)2

, so that

vne (t) ≈ vno (t)

(
∂

∂t
[Gα(t)]

∣∣∣∣
α=αt

)2

, (2.37)

using the fact that

∂

∂t
[G−1

α (t)]

∣∣∣∣
α=αt

=

(
∂

∂t
[Gα(t)]

∣∣∣∣
α=αt

)−1

.

The effect of the reproduction map on the rescaled phenotypic variance is given

by

vn+1
o (t) =

vne (t)

2
+ 1.

Substituting the Laplace approximation (2.37) for vne (t) gives

vn+1
o (t) ≈ vno (t)

2

(
∂

∂t
[Gα(t)]

∣∣∣∣
α=αt

)2

+ 1.

Repeated application of the evolution map under periodic temperature conditions

results in the following:

vn+m
o (t) ≈ vno (t)[x(t)]m + [x(t)]m−1 + [x(t)]m−2 + . . .+ x(t) + 1,

where

x(t) =
1

2

(
∂

∂t
[Gα(t)]

∣∣∣∣
α=αt

)2

.

Assuming that x(t) < 1, the first term on the right hand side vanishes as m → ∞.

Hence,

lim
m→∞

vn+m
o (t) ≈

∞∑
m=0

[x(t)]m.
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This geometric series converges to the limit 1
1−x(t)

for values of t where x(t) < 1. This

gives us the following result:

lim
n→∞

vno (t) =
1

1− 1
2

(
∂
∂t

[Gα(t)]
∣∣
α=αt

)2 ,

for values of t where

∂

∂t
[Gα(t)]

∣∣∣∣
α=αt

<
√

2. (2.38)

A quick check shows that

vno (t) =
1

1− 1
2

(
∂
∂t

[Gα(t)]
∣∣
α=αt

)2 , (2.39)

satisfies the steady state condition (2.33).

Oviposition density dynamics at a
steady distribution

We investigate the dynamics of the oviposition density, Nn
o (t), at a steady dis-

tribution where µno (t) = αt. The Laplace approximation (2.22) for the oviposition

density at this steady distribution becomes

Nn
e (t) ≈ ft(αt)√

h′′t (αt)
, (2.40)

where (2.17) gives

ft(αt) =
Nn
o (t)√

vno (t) ∂
∂t

[Gα(t)]|α=αt

.

Substituting the expression for h′′t (αt) from (2.37) into equation (2.40) results in

Nn
e (t+ 365) ≈ Nn

o (t).
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This gives us the relationship between the oviposition densities for generations n and

n+ 1,

Nn+1
o (t+ 365) = S(t+ 365)Nn

o (t). (2.41)

The resulting dynamics are remarkably simple, since development and reproduction

can be ignored at a steady distribution where µno (t) = αt. The oviposition density

is determined by the time of year and the density at the same time of year in the

preceding generation. In the case of density dependent selection (2.9), Nn+1
o (t) =

H(Nn
o (t)), where H(N) = NF (N). The result is a discrete dynamical system, with

dynamics characterized by properties of the function H(N). In particular, oviposition

density dynamics are determined by fixed points of H(N) and their stability.

Summary and implications of steady
distribution results

The analytical results suggest that populations experiencing periodic tempera-

tures may evolve to steady distributions at times that are stable fixed points of the Gα

function. We expect the temporal structure of the mean phenotype to evolve toward

stable univoltine fixed points Gα as these points attract nearby emergence times. Our

results also predict the phenotypic variance at steady distributions. The oviposition

densities at stable fixed points of Gα are described by a simple dynamical map, H,

from the oviposition density in one generation to the oviposition density in the next

that is determined only by the selection function. We are careful here to distinguish

between the three different types of steady state behavior that are important in the

dynamics of the evolution model: steady distributions of the evolution map where

the mean phenotype and phenotypic variance at oviposition is maintained from one

generation to the next, fixed points of Gα where oviposition times are the same
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for parents with phenotype α and their offspring, and fixed points of H where the

oviposition density of progeny is the same as the emergence density of their parents.

Although the structure of a steady distribution at unstable fixed points of Gα is

not examined analytically, we expect it will be largely determined by the phenotypes

of individuals leaked from nearby stable fixed points. For example, individuals with

large phenotypes (large αs) will leak from late stable fixed points to unstable fixed

points that are later in the year. Hence, large phenotypes will probably dominate at

these unstable fixed points. Due to the repulsive effect of unstable fixed points of Gα

on emergence times, we expect emergence densities to be lower than at stable fixed

points.

2.4 Numerical simulations

We numerically simulated the evolution of phenology for a model insect with

two life stages. The purpose of these simulations was twofold: to verify our analytical

results and to provide examples of dynamics of the evolution model. However, we do

not intend to present a comprehensive analysis here of all possible dynamics. Instead

we restrict our attention to two long-term periodic temperature experiments with

different selection functions and one short-term warming experiment with shifting

resource phenology. A detailed description of the numerical implementation of the

evolution map is given in the appendix.

2.4.1 Two-stage model insect

The two-stage (egg and adult) model insect used here was constructed to have

qualitatively similar phenology to most insects with temperature-dependent develop-

ment. Since a two-stage life cycle has similar developmental dynamics to life cycles

with more than 2 stages [34], our results generalize to more complicated systems.
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Table 2.1: Development time curve parameters for 2-stage model insect used in nu-
merical simulations.

Stage a b c d θ

Egg 81.000 6.899 0.156 0.101 25
Adult 28.036 8.658 0.351 1.022 25

The model insect has piecewise exponential development time curves (2.1) shown in

Figure 2.5 with parameters in Table 2.1. Realistic parameters were obtained by fit-

ting development time data for two mountain pine beetle life stages [4], then scaling

the curves to allow the model insect to be univoltine. Genetic variation in develop-

ment time occurs in the adult stage. The development time of an adult is obtained

by scaling the base adult development time curve by its phenotype, α. The repro-

ductive variance for the model insects is set at σ2
ε = 0.001, which is consistent with

developmental variation observed in mountain pine beetle populations.

Fig. 2.5: Development time curves for the two-stage model insect. These curves are
scaled mountain pine beetle development time curves.
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2.4.2 Simulations: periodic
temperature

To numerically investigate the structure of a population that is well-adapted

to stable climate conditions and to test our analytical steady distribution approxi-

mations, we performed two periodic temperature simulations with different selection

functions. The periodic temperature series is a cosine curve such that the mean

annual temperature is 8◦C, the seasonal variation is 18◦C, and the minimum temper-

ature occurs on January 1, i.e. T (t) = 8− 18 cos(2πt/365). In both simulations, only

insects emerging within a 100 day time window produce offspring (emergence time

dependent truncation selection). In the first simulation this is the only selection that

occurs, so that selection is modeled by (2.7). In the second simulation selection also

depends on emergence density with an Allee effect according to (2.9-2.10). Selection

parameters for both periodic temperature experiments are listed in Table 2.2. In the

first simulation, we normalize the oviposition distribution at the beginning of each

generation, because there is no density dependence to restrict population growth or

decline. Given the parameter choices used in the second simulation (see Table 2.2),

the emergence densities N = 0 and N = 40, 000 are stable fixed points of H(N),

and N = 10, 000 is an unstable fixed point of H(N) = NF (N). Hence, when emer-

gence density drops below 10,000 the next generation’s oviposition density declines,

and when emergence density is above 10,000 the next generation’s oviposition den-

sity is attracted to 40,000. The initial oviposition distributions are uniform over the

phenotype-time rectangle R = [0.8, 2.0] × [0, 365], with p0
o(α, t) = 105 if (α, t) ∈ R,

and p0
o(α, t) = 0 otherwise. Simulations are run for 1000 generations, after which

N1000
o (t), µ1000

o (t), and v1000
o (t) are computed for each time t and compared to the

approximate steady distribution obtained by the Laplace method.
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Table 2.2: Parameters for the selection functions in the periodic temperature sim-
ulations. In simulation 1 there is emergence time dependent truncation selection.
In simulation 2 there is emergence time dependent truncation selection and density
dependent selection with an Allee effect. The values listed for tearly and tlate are for
generation n.

Simulation Parameter Value

1 & 2 tearly 365n+ 100
1 & 2 tlate 365n+ 200

1 γ1 1
2 γ2 50,000
2 b 20,000

The results of the first periodic temperature simulation with no density depen-

dent selection are shown in Figure 2.6. After 1000 generations there is negligible

change in the shape of the oviposition distribution in successive generations sug-

gesting that a steady distribution is achieved. Most insects are oviposited at stable

univoltine fixed points of Gα (see Figure 2.6a). At these points, the mean phenotype

closely follows the phenotype that allows a univoltine fixed point of the Gα function

(see Figure 2.6b). Hence, near stable fixed points the mean agrees with the steady dis-

tribution prediction that µno (t) ≈ αt. Furthermore, except near marginal (semistable)

fixed points the rescaled variance closely matches the corresponding steady distribu-

tion prediction (2.39) at stable fixed points of Gα (see Figure 2.6c). At unstable fixed

points, the numerical results do not match the steady distribution predictions. How-

ever, the oviposition density at these points is very low-the number of misbehaving

insects is small relative to the total population.

The results of the second periodic temperature simulation with density-dependent

selection are shown in Figure 2.7. Similar to the first simulation, a steady distribu-

tion is reached within 1000 generations and the validity of the steady distribution

predictions depend on the stability of fixed points of Gα. At stable fixed points, the

mean phenotype and rescaled phenotypic variance agree well with the phenotype that
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Fig. 2.6: Results after 1000 generations of the first periodic temperature simulation
with truncation selection on emergence time. The time of year of oviposition is
shown on the horizontal axes. a. Oviposition density. Most mass occurs at stable
fixed points (between arrows). b. Mean phenotype (solid) and αt (dashed), the
phenotype that makes t a univoltine fixed point of Gα. Consistent with analytical
results, µno (t) ≈ αt at stable fixed points. The prediction fails at unstable fixed
points, where there is little mass and the population structure is mainly determined
by the phenotypes of individuals leaked from nearby stable fixed points. c. Rescaled
phenotypic variance (solid) and vp(t) (dashed), the predicted rescaled variance at a
steady distribution where µno (t) = αt. Numerical rescaled variance results also agree
with analytical predictions at all but the earliest and latest stable fixed points. The
prediction does not hold at unstable fixed points where there is little mass.

results in a univoltine fixed point and the corresponding prediction for the rescaled

variance (see Figure 2.7b-c). Near stable fixed points of Gα, the emergence density is

reasonably close to the expected emergence density of 40,000 (see Figure 2.7a). The

emergence density declines at unstable fixed points but much less rapidly than in the

first simulation, due to density dependent selection pushing it upward.

It is not surprising that the approximation µno (t) ≈ αt fails near unstable fixed

points at a steady distribution; the emergence times of individuals with phenotypes

close to αt are actually repelled by these points, so it is unlikely that the population

could evolve toward them. The steady state approximations do allow us to under-

stand the structure of steady distributions at unstable fixed points. Near marginal
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Fig. 2.7: Results after 1000 generations of the second periodic temperature simu-
lation with selection on emergence time and emergence density. The time of year
of oviposition is shown on the horizontal axes. a. Oviposition density (solid) and
the predicted density (dash-dot) at a steady state where µno (t) = αt (40,000 is the
non-trivial fixed point of H(N)). Most mass occurs at stable fixed points (between
arrows). More mass is leaked to the unstable fixed points in this experiment than in
the first periodic temperature experiment. This mass persists due to positive pressure
from density dependent selection. b. Mean phenotype (solid) and αt (dashed), the
phenotype that makes t a univoltine fixed point of Gα. Consistent with analytical
results, µno (t) ≈ αt at stable fixed points. The prediction fails at unstable fixed points,
where the population structure is mainly determined by the phenotypes of individu-
als leaked from nearby stable fixed points. c. Rescaled phenotypic variance (solid)
and vp(t) (dashed), the predicted rescaled variance at a steady distribution where
µno (t) = αt. Numerical rescaled variance results also agree with analytical predictions
at stable fixed points, but not at unstable fixed points.

(semistable) fixed points individuals with certain phenotypes are leaked from stable

to unstable fixed points. For example, individuals with large phenotypes (large αs)

oviposited at late stable fixed points will emerge later the next year on unstable fixed

points. Hence, the phenotypes at unstable fixed points in a steady distribution are

largely determined by the phenotypes of individuals leaking from nearby stable fixed

points. This is apparent in Figures 2.6b and 2.7b, where the phenotypes of individuals

oviposited at times to the right (left) of the region of stable fixed points have larger

(smaller) phenotypes than individuals oviposited at nearby marginal points. These
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results hold for a wide range of temperatures and parameters, except in the case

where there are two or more disjoint regions of stable fixed points within the emer-

gence time window. In this case, other numerical simulations show that the steady

distribution approximation holds for the earliest region, but later regions tend to also

be impacted by individuals leaked from the earlier stable fixed points. We expect that

this discrepancy is due to the asymptotic nature of approximation, since as λ gets

large reproductive variance gets small and there is less mixing between neighboring

oviposition times. Hence the approximation becomes worse as there is more mixing

between regions of stable fixed points due to higher reproductive variance.

Our periodic temperature results suggest that variation in development time and

phenology persist in a well-adapted population under stable climate conditions, both

of these are observed in natural populations and in laboratory reared insects. Our

analytical prediction that the mean phenotype at a steady distribution results in a

univoltine fixed point of Gα agrees with numerical results at stable fixed points and

is useful in understanding the population structure at nearby unstable fixed points.

An interesting consequence of the structure of steady distributions is reproductive

isolation of individuals with substantially different phenotypes. For example, individ-

uals with large phenotypes emerge later than individuals with small phenotypes at

a steady distribution causing their reproductive periods to be disjoint. This creates

the potential for rapid local evolution if a disturbance during the emergence period

removes early or late phenotypes.

2.4.3 Simulation: increasing
temperature and advancing
resource phenology

As an example of the dynamics of the evolution model under global warming,

we simulated the evolution of a population of two-stage model insects with increasing
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Table 2.3: Parameters for the selection functions in the warming temperature simu-
lations. There is truncation selection on emergence time with a shifting emergence
window. There is also density dependent selection with an Allee effect. The values
listed for tearly and tlate are for generation n.

Parameter Value

tearly 515 + (365− 24/100)n
tlate 535 + (365− 24/100)n
γ2 50,000
b 20,000

mean annual temperature and advancing resource phenology (emergence window).

The mean annual temperature is increased 6◦C over 100 years by adding 6/100◦C

per year to the temperature series used in the preceding simulations: T (t) = 8 −

18 cos(2πt/365)+(6/100)n, where n is the number of calendar years that have passed

at time t since the beginning of the simulation. This amount of warming is at the

high end of current projections for some regions [11], but the results generalize to

less drastic scenarios. Selection depends on emergence time and density according

to (2.9-2.10) with parameters in Table 2.3. The density dependence is the same

as in the second periodic temperature experiment. In this simulation, individuals

must emerge within a 20 day time window that advances 24 days over 100 years

at a constant rate in order to reproduce, modeling changing resource phenology.

This rate of phenology advance is similar to that observed in [29]. The simulation

begins with a population that is well-adapted to temperatures at the beginning of

the experiment; the initial oviposition distribution is the from 1,000th generation in

the second periodic temperature simulation. The increasing temperature simulation

was run for 100 generations (100 years), and the number of insects oviposited in each

generation,
∫ 365(n+1)

365n
Nn
o (t)dt, was tracked.

The results of this simulation are shown in Figure 2.8. The population declined

slowly at first, but remained fairly large. After about 60 generations, the popu-
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lation dropped dramatically with zero insects remaining after 83 generations. The

steep population decline coincides with a loss of stable fixed points within the shifting

emergence time window (see Figure 2.9). As temperatures increase, the time intervals

over which Gα has stable fixed points change. The population evolves toward phe-

notypes that allow it to track changing stable fixed points as temperature increases,

but when these fixed points do not overlap with the emergence time window the

population rapidly declines. Outside of the region of stable fixed points individuals

are pushed out of the emergence time window. The Allee affect keeps the population

from rebounding if the system later evolves so the emergence time window overlaps

with stable fixed points.

Fig. 2.8: Number of eggs laid per generation in the increasing temperature simu-
lation. The generation number appears along the bottom horizontal axis, and the
corresponding temperature shift appears along the top horizontal axis. In this sim-
ulation, mean annual temperature increases by 6◦C over 100 years, and a 20 day
long emergence window advances 24 days over 100 years. Density dependent selec-
tion is also imposed. The steep population decline between generations 60 and 73
corresponds to a loss of stable fixed points inside of the emergence time window.
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Fig. 2.9: A diagram of the stability of univoltine fixed points of the Gα function under
different shifts of the temperature series T (t) = 8−18 cos(2πt/365) and the emergence
time window for the increasing temperature simulation (between thick black lines).
For the two-stage model insect there is a phenotype α that makes each emergence
time a univoltine fixed point of the Gα map. The stability of these fixed points is
indicated in the diagram, with stable fixed points occurring in white regions and
unstable fixed points occurring in gray regions. Note that after the temperature shift
reaches 4.1◦C there are no stable fixed points within the emergence time window.
The loss of stable fixed points coincides with population collapse in the increasing
temperature simulation.

Our results show that genetic evolution may allow populations to persist for much

longer than populations without evolution under global warming. To see this, we com-

pare our results to the dynamics of a population with no developmental variation and

no evolution of development time that experiences the same warming temperatures

and shifting emergence window. Without evolution or variation of the plastic re-

sponse of development time to temperature, populations can only remain viable if a

stable fixed point of the G function is contained in the emergence time window. For

example, if the entire population has phenotype α = 1.4 and does not evolve, then
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the population will persist for approximately 20 generations under the temperature

conditions in this simulation, since beyond this G1.4 does not have a univoltine stable

fixed point within the emergence window. This is much shorter than the evolving

population persists (approximately 80 generations). Hence, our results show that

evolution may allow a population to persist, but there is a limit; populations can

only persist as long as the emergence time window overlaps with stable fixed points.

Although we focus on a single scenario here, Figure 2.9 can be used to predict pop-

ulation viability for the two-stage model insect under multiple scenarios of climate

warming and resource phenology shifts. Plotting the corresponding emergence win-

dow, the population is expected to decline rapidly as the window leaves regions of

stable fixed points.

2.5 Summary and future directions

The evolution model presented here extends previous temperature-dependent

phenology models by introducing heritable variation in their parameters. The model

is presented in a general manner that is applicable to many insect species. Variation

in development time is allowed to evolve in response to indirect selection acting on

phenology instead of the development parameters themselves. The evolution map is

characterized by its effects on the temporal variation of density, mean phenotype, and

phenotypic variance at oviposition. We used this characterization and the Laplace

method to approximate the evolution map and to identify important steady distribu-

tions where the mean phenotype allows for a univoltine fixed point of Gα.

Our analytical results suggest (and our numerical results verify) that populations

that are well-adapted to stable climate conditions are organized by stable univoltine

fixed points of Gα. Populations rapidly adapt to track these points through evolution

of the temporal structure of mean phenotype and phenotypic variance. The result is
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a population in which heritable variation in development time is maintained across

successive generations. The stationary temporal structure of phenotypic variance

at stable fixed points of Gα is determined by the slope of Gα. Steady distribution

dynamics at unstable fixed points are largely determined by the population at neigh-

boring stable fixed points, as individuals are leaked from stable to unstable fixed

points depending on their phenotypes.

The numerical results also predict that populations may evolve to remain syn-

chronized with resources as temperatures increase. However, this ability to adapt

may disappear as overlap between stable univoltine fixed points of Gα and the timing

of resource availability is lost. Unfortunately, this may cause sudden and otherwise

unexpected local extinctions as observed in our numerical simulations.

The evolution dynamics presented here will provide a basis of comparison for

future work in which more complex systems are analyzed. Our model is easily gener-

alized by using different selection functions, phenology models, mating assumptions,

or allowing different or multiple developmental parameters to vary. Variation in a

scaling parameter results in variance in development time that is proportional to the

square of mean development time. For simplicity, we ignored the effects of other

types of developmental variance in this work. In the future we will incorporate ad-

ditional variance structures into a phenology model for mountain pine beetle using a

Fokker-Planck equation (the phenology model without variation in development time

presented here can be formulated as an advection equation). We will compare the

evolution of phenology with additional random environmental noise to the analytical

predictions presented here.
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CHAPTER 3

DEVELOPMENTAL VARIATION AND INSECT PHENOLOGY1

3.1 Introduction

Describing variation in the link between temperature and insect phenology (the

timing of developmental events such as oviposition, or adult emergence) is a crucial

step toward predicting how insect populations will respond to climate change. The

time required for an insect to complete a life stage (development time) depends on

its thermal environment [47]; this response varies within and between populations [5].

Variation in development time within a population can be divided into persistent and

random variation. We define persistent variation to be developmental variation that

persists throughout a life-stage, including genetic variation in traits that affect de-

velopment time (e.g. size at maturity), maternal effects (e.g. egg size), and persistent

environmental variation (e.g. variation in resource quality across oviposition sites).

Random variation in development time is due to random environmental fluctuations

(e.g. due to variation in micro-habitat). Random variation may also arise in labo-

ratory development experiments due to fluctuations in experimental conditions (e.g.

small temperature oscillations in the thermal cabinet). Predicting how climate change

will affect insect phenology must take both of these factors into account. In this paper

we present three phenology models incorporating increasing amounts of developmen-

tal variation, while explicitly separating persistent and random variation. The models

are fit to data from constant temperature laboratory experiments for mountain pine

beetle (MPB), Dendroctonus ponderosae Hopkins [Coleoptera: Scolytidae], an eco-

1Coauthored by Brian Yurk and James A. Powell.
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nomically important pest insect. The parameterized models are used to simulate

MPB phenology using temperatures measured in the field, and phenology predictions

are compared to field observations.

The response of insect populations to global warming has been the focus of many

recent studies, e.g. [10, 27, 29, 31, 46]. Temperature change has been linked to shifting

phenology [31] and range expansion (e.g. [10]) in several natural populations. Insect

fitness is highly dependent on phenology; development must be timed to coincide with

favorable weather conditions and resource availability. In some populations develop-

ment must also be synchronized; Synchronous emergence improves mating chances

in small populations and, in the case of MPB, is necessary to overwhelm defended

host trees (see Chapter 2). Since temperature change shifts phenology, global warm-

ing will result in strong selection on development time. Predicting how populations

might evolve to cope with global warming requires a mechanistic understanding of

how phenology depends on temperature before the evolution of that dependence can

be modeled.

The work presented here is largely motivated by the need to understand how

MPB phenology depends on temperature, how that dependence varies within a pop-

ulation, and how it might adapt to climate change. MPB is an eruptive bark beetle

found in western North America that spends most of its life cycle beneath the bark of

host pine trees. Development from egg to adult occurs within host trees, after which

the beetles emerge to mate and attack new hosts where they lay the next generation

of eggs (see [39] for a review of MPB biology). These attacks have resulted in massive

timber loss (see, for example, www.for.gov.bc.ca), making MPB an important insect

from both an ecological and economic perspective. MPB fitness is highly dependent

on phenology [26]; they are found in areas where temperatures are lethal to certain life

stages, so developmental timing is an important factor in population viability [6, 27].
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In fact, exposure to cold temperatures is likely the most important mortality factor

for MPB [12]. Furthermore, recruitment depends on the beetles’ ability to overwhelm

tree defenses and kill at least a portion of the host tree, necessitating a sufficient

density of simultaneously emerging attackers [7]. At low population densities this

can only occur if emergence is highly synchronized within the population.

Many insects possess physiological mechanisms that use environmental cues to

control phenology, such as diapause or photoperiod sensitivity [47]. However, some in-

sects, such as MPB, lack direct physiological mechanisms for determining phenology;

instead they rely on temperature control of development time to achieve appropri-

ate seasonality and developmental synchrony [4, 13]. Since the body temperature

of poikilotherms is not internally regulated, their metabolic rates depend on ambient

temperature [15, 41]. At low to moderate temperatures warming speeds development,

while at high temperatures warming can be counterproductive and slows development

[4]. Low temperatures can have a strong synchronizing effect on a population of in-

sects, as development effectively stops for a large proportion of individuals in a certain

life stage, possibly allowing individuals in earlier stages to catch up.

We develop a phenology modeling framework that describes temperature-dependent

development and explicitly accounts for persistent and random variation in develop-

ment time. Various models have been developed to describe temperature-dependent

development. Some of these have focused on tracking development of the median

individual (e.g. [34]), while others have accounted for variation in phenology using

distributional models [17, 25, 40, 44]. These models either ignore developmental vari-

ation or do not separate the effects of persistent variation from random variation. It

is important to model both sources of variation in order to accurately predict phenol-

ogy in laboratory experiments and under field conditions. Genetic variation in traits

that affect development time is present in both laboratory and field populations,
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contributing directly to persistent variation. In the laboratory, efforts are made to

control random environmental fluctuations in temperature and other environmental

factors. However, these controls are not perfect (e.g. temperature controllers still al-

low small but significant fluctuations in ambient temperature), so a phenology model

that quantifies random variation may better describe laboratory development data.

Uncontrolled variation in temperature and other environmental factors abounds in

the field. Since sources of random variation will differ from case to case, whereas

persistent variation will not, parsing these sources of variance is essential to making

accurate predictions.

Previous phenology models rely on temperature-dependent developmental rates

to predict development time (developmental rate is the reciprocal of development

time) [4, 17, 27, 34, 41]. Temperature-dependent phenology models are typically fit

to data from laboratory experiments in which development time is measured at mul-

tiple constant temperatures. Bentz et al. [4] showed that fitting developmental rate

curves to the reciprocal of laboratory development time data results in large errors

when the curves are used to predict development time, especially at low tempera-

tures. This error is due to transformation of the error variance that results from

using the reciprocal of the laboratory data and does not occur when curves are fit

directly to development time data. Within populations of insects whose phenology

is under direct temperature control, developmental synchronization is attributed to

long development times at cold temperatures [19]. Since developmental synchrony

can be an important determinant of fitness, it is very important to accurately predict

development time at low temperatures in these populations. Phenology models fit to

laboratory development times rather than rates offer offer a clear advantage in this

case due to greater accuracy at low temperatures.
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In addition to fitting development time curves to laboratory development time

data, our approach to modeling phenology is unique in that is directly based on de-

velopment time curves rather than developmental rate curves. Although curves were

fit to development time data in [4] and subsequent studies (e.g. [27]), the phenology

models developed in those papers were still based on the reciprocal curves (develop-

mental rate curves), largely because rates fit more naturally into previous phenology

modeling frameworks. In addition to necessitating transformation of laboratory data

to parameterize the model, these rate-oriented phenology models require transfor-

mation of field data to obtain boundary conditions for simulations (e.g. [17]). In

contrast, our parameters and initial conditions are directly related to laboratory and

field measurements.

We take a maximum likelihood approach to determine parameters using constant

temperature laboratory development time data for MPB. This is different than previ-

ous developmental parameterizations for MPB, in which a curve was fit directly to the

median development rates or times at each constant temperature (e.g. [4, 27]). Using

a maximum likelihood approach has two major advantages when fitting phenology

models to laboratory development time data. First, temperatures at which fewer ob-

servations were made have less weight in fitting development time curve parameters.

This is especially important if few observations are made at some temperatures, since

fitting a development time curve directly to the median development times would give

equal weight to these temperatures. Second, the maximum likelihood approach allows

us to explicitly incorporate variation in development time and to simultaneously fit

development time curve and variance parameters.

The MPB development time data that we use for model parameterization incor-

porate previously published data [4, 25, 27] as well as previously unpublished data

that include development times at temperatures not observed in previous experiments.
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We expect that inclusion of these new data will result in more accurate phenology

predictions at these temperatures, especially in the teneral adult stage. Previous

phenology models for MPB have assumed that development halts in this stage at

temperatures below 17◦C [27, 35]. New data show that development occurs at tem-

peratures as low as 8◦C in the teneral adult stage. This has important implications

for MPB phenology. In particular, the warm developmental threshold in the teneral

adult stage that was imposed in previous models may result in predictions of later

emergence and more developmental synchrony than a model without this threshold.

In this paper we discuss how insect phenology depends on temperature and de-

velop a model for tracking the development of an individual through a life stage.

Next population phenology is modeled ignoring variation in development time using

an advection equation. The model is extended to incorporate persistent variation by

introducing a developmental phenotype that varies within a population; this pheno-

type is a parameter that scales the transient speed coefficient of the advection equa-

tion. Finally, random variation is incorporated into the model by adding a diffusion

term, resulting in a Fokker-Planck development equation. The Fokker-Planck devel-

opment equation is solved under constant temperatures and fit to development time

data. The models are then used to simulate MPB phenology using phloem tempera-

tures measured in the field and field counts of beetle attacks on successfully colonized

lodgepole pine trees; the emergence distributions predicted by the phenology models

are compared to emergence measured in the field.
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3.2 Model development

3.2.1 Temperature-dependent
individual phenology

We begin by developing a simple mathematical description of the temperature-

dependent development of an individual insect through a single life stage. Let τi(T )

be the time required for an individual to complete development through its ith life

stage at constant temperature T . Development time is often U-shaped with a mini-

mum at some developmentally optimal temperature (often 20− 25◦C) and increases

at cooler and warmer temperatures [41, 45]. In practice, τi(T ) is approximated by

measuring development time at constant temperatures in a laboratory, then fitting

an appropriate curve to the data [4, 24, 28]. Development time curves are used to

predict phenology for insects under variable temperatures. Let T (t) be the tempera-

ture at time t and a(t) be the proportion of a life stage that an insect has completed

at time t. Then a is between 0 and 1 and can be thought of as the insect’s physi-

ological age [24]. Since an insect takes τi(T ) days to develop through the entire life

stage at constant temperature T , the simplest developmental model predicts it will

take ∆t = τi(T )∆a days to develop through a fraction ∆a of the life stage at that

temperature. If the relationship ∆a/∆t = 1/τi(T ) holds for arbitrarily small values

of ∆t, i.e. da/dt = 1/τi(T (t)), then development through stage i for an insect that

began at time t0 is described by the initial value problem

da

dt
=

1

τi(t)
, a(t0) = 0, (3.1)

where τi(t) = τi(T (t)). The differential equation (3.1) is integrated to determine the

insect’s age at time t,

a(t) =

∫ t

t0

ds

τi(s)
.
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Let Γi(∆a, t) be the time that an insect completes ∆a units of age given that it began

at time t, defined by

∆a =

∫ Γi(∆a,t)

t

ds

τi(s)
. (3.2)

Note that the time an insect will complete stage i if it began at time t is Γi(1, t), and

Γi(0, t) = t for all times t. If the function Γi is known for each life stage for an indi-

vidual, the timing of any developmental event (phenology) is completely determined

for that insect.

3.2.2 Population phenology (no
variation in development time)

The individual phenology model is extended to track phenology within a popula-

tion of identical individuals. Let p(a, t) be the density of individuals achieving age a

at time t, so
∫ t2
t1
p(a, t)dt is the number of individuals achieving age a between times

t1 and t2. We will show that development of a population with no developmental

variation satisfies the advection equation

∂

∂a
p(a, t) +

∂

∂t
[τi(t)p(a, t)] = 0. (3.3)

Since an individual develops from age a at time t to age a+∆a at time Γi(∆a, t),

we expect the same number of individuals to achieve age a + ∆a between times

Γi(∆a, t1) and Γi(∆a, t2) as achieved age a between time t1 and t2 if there is no

mortality during development. This results in the conservation law

∫ t2

t1

p(a, s)ds =

∫ Γi(∆a,t2)

Γi(∆a,t1)

p(a+ ∆a, s)ds, (3.4)
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which holds for all choices of ∆a such that 0 ≤ a+ ∆a ≤ 1. Changing variables gives

∫ t2

t1

p(a, s)ds =

∫ t2

t1

p(a+ ∆a,Γi(∆a, s))
∂

∂t
[Γi(∆a, s)] ds.

Since this holds for all choices of t1 and t2, it follows that

p(a, t) = p(a+ ∆a,Γi(∆a, t))
∂

∂t
[Γi(∆a, t)] . (3.5)

Note that differentiating (3.2) with respect to t and solving for the time derivative

yields

∂

∂t
[Γi(∆a, t)] =

τi (Γi(∆a, t))

τi(t)
.

Consequently, the conservation law (3.5) can be rewritten as

τi(t)p(a, t) = τi (Γi(∆a, t)) p(a+ ∆a,Γi(∆a, t)). (3.6)

This implies that the product of development time and population density is constant

along the characteristic curves t(a) = Γi(a, t0), where t0 is any stage initiation time.

To derive the developmental advection equation (3.3), we differentiate (3.6) with

respect to ∆a giving

0 = τi(Γi(∆a, t))
∂

∂a
[p(a,Γi(∆a, t))]

∣∣∣∣
a=a+∆a

+
∂

∂t
[τi(t)p(a+ ∆a, t)]

∣∣∣∣
t=Γi(∆a,t)

∂

∂∆a
[Γi(∆a, t)] . (3.7)

Differentiating (3.2) with respect to ∆a and solving for the derivative yields

∂

∂∆a
[Γi(∆a, t)] = τi (Γi(∆a, t)) .
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Hence, (3.7) can be rewritten as

∂

∂a
[p(a,Γi(∆a, t))]

∣∣∣∣
a=a+∆a

+
∂

∂t
[τi(t)p(a+ ∆a, t)]

∣∣∣∣
t=Γi(∆a,t)

= 0.

Setting ∆a = 0 (recall Γi(0, t) = t) gives the developmental advection equation (3.3),

∂

∂a
p(a, t) +

∂

∂t
[τi(t)p(a, t)] = 0.

3.2.3 Persistent variation

We model persistent variation in development time by scaling a base temperature-

dependent development time curve by a parameter α that varies within a population.

If τi(T ) is the base development time curve for stage i, then an individual with

phenotype α has development time ατi(T ). This is consistent with the model of de-

velopmental variation presented in Chapter 2. We assume each individual maintains

its phenotype throughout the life stage, which is consistent with our definition of

persistent variation. Consequently, an advection equation similar to (3.3) describes

the development of individuals with phenotype α,

∂

∂a
p(a, t;α) +

∂

∂t
[ατi(t)p(a, t;α)] = 0. (3.8)

In this case, p(a, t;α) is the density of individuals with phenotype α achieving age a

at time t.

In practice we assume some distribution of phenotypes in the population f(α),

which is either fit to laboratory data or allowed to evolve. Tracking α explicitly allows

us to monitor the temporal distribution of phenotypes in a population, an important

feature for studying the evolution of phenology.
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3.2.4 Random variation

We model the effect of random environmental variation on population phenology

by adding a diffusion term to the advection equation (3.8). The result is a Fokker-

Planck equation [16, 32], which we derive from first principles,

∂

∂a
p(a, t;α) +

∂

∂t
[ατi(t)p(a, t;α)] =

ν

2

∂2

∂t2
p(a, t;α). (3.9)

This model arises because individuals with the same phenotype may develop at dif-

ferent rates due to random differences in environmental conditions. Equation (3.9)

along with knowledge of how α is distributed within a population allows us to predict

phenology in the presence of persistent and random developmental variation.

Derivation of the age-oriented Fokker-
Planck development equation

We consider individuals with a single phenotype α and attempt to describe de-

velopmental variation among individuals with that phenotype. Dependence of p on α

is suppressed to simplify notation in this and the following section. Hence, p(a, t) is

a probability density function giving the probability that an individual insect (with

phenotype α) achieves age a at time t.

We derive the Fokker-Planck equation following Risken [37]. DefineK(a1, t1|a0, t0)

to be the transition probability density function describing the probability that an

individual will be age a1 at time t1 given that it was age a0 at time t0. If development

is a Markov process, i.e. the distribution of times that any age is achieved is com-

pletely determined by the distribution times that any previous age is achieved (no

memory effects), then the distribution of times for age a determines the distribution
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of times at some later age a+ ∆a,

p(a+ ∆a, t) =

∫ +∞

−∞
K(a+ ∆a, t|a, t′)p(a, t′)dt′. (3.10)

Define the nth moment of K at age a and time t′ to be

Mn(a,∆a, t′) =

∫ +∞

−∞
(t− t′)nK(a+ ∆a, t|a, t′)dt.

For example, M1(a,∆a, t′) is the mean time required to age from a to a+ ∆a for an

individual that is age a at time t′. We change variables in (3.10), letting τ = t − t′,

and expand the integrand in a Taylor series,

p(a+ ∆a, t) =
∞∑
n=0

1

n!

(
− ∂

∂t

)n
p(a, t)

∫ +∞

−∞
τnK(a+ ∆a, t+ τ |a, t)dτ (3.11)

Reversing the change of variables reveals that the integrals on the right hand side are

moments of K. Noting that the 0th moment is unity, (3.11) becomes

p(a+ ∆a, t)− p(a, t) =
∞∑
n=1

1

n!

(
− ∂

∂t

)n
p(a, t)Mn(a,∆a, t). (3.12)

Applying Taylor’s theorem again,

p(a+ ∆a, t)− p(a, t) = ∆a
∂

∂a
p(a, t) +O(∆a2),

and substituting into (3.12) yields,

∆a
∂

∂a
p(a, t) +O(∆a2) =

∞∑
n=1

1

n!

(
− ∂

∂t

)n
p(a, t)Mn(a,∆a, t). (3.13)
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Each moment is also expanded in a Taylor series,

Mn(a,∆a, t) = ∆a
∂

∂∆a
[Mn(a,∆a, t)]

∣∣∣∣
∆a=0

+O(∆a2). (3.14)

Here we used the fact that Mn(a, 0, t) = 0. Define

D(n)(a, t) =
∂

∂∆a
[Mn(a,∆a, t)]

∣∣∣∣
∆a=0

.

Then, from (3.14),

Mn(a,∆a, t) = ∆aD(n)(a, t) +O(∆a2). (3.15)

Substituting this into (3.13), dividing by ∆a, then taking the limit as ∆a approaches

0, gives the Kramers-Moyal expansion [22, 30],

∂

∂a
p(a, t) =

∞∑
n=1

1

n!

(
− ∂

∂t

)n
[D(n)(a, t)p(a, t)]. (3.16)

The series is truncated after two terms to obtain the one-dimensional Fokker-Planck

equation,

∂

∂a
p(a, t) = − ∂

∂t
[D(1)(a, t)p(a, t)] +

1

2

∂2

∂t2
[D(2)(a, t)p(a, t)]. (3.17)

Note that if we set D(2)(a, t) = 0, then (3.17) becomes an advection equation.

Hence, the Fokker-Planck equation (3.17) withD(2)(a, t) = 0 should be identical to the

advection phenology model (3.3) if development progresses at a rate that depends on

temperature alone (the same assumption that was made in the deriving the advection

model (3.3)). So, by extension, we set D(1)(a, t) = τi(t). For simplicity, we assume

that D(2)(a, t) is constant, and set D(2)(a, t) = ν. We show in §3.3 that ν is the
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variance in development time at constant temperature. Substituting τi(t) and ν for

the coefficients in (3.17) and reinstating dependence of p on α gives the Fokker-Planck

development equation (FPDE),

∂

∂a
p(a, t;α) +

∂

∂t
[ατi(t)p(a, t;α)] =

ν

2

∂2

∂t2
p(a, t;α).

3.2.5 Summary of phenology models

We have derived three population phenology models, each incorporating different

levels of developmental variation. The simplest model does not account for variation

in development time. In this case, development is described by an advection equation,

∂

∂a
p(a, t) +

∂

∂t
[τi(t)p(a, t)] = 0.

This model is easily extended to account for persistent variation in development time

by introducing the phenotype α that scales the base development time curve. This

phenotype has some distribution within the population. In this case, development is

described by an α-dependent advection equation,

∂

∂a
p(a, t;α) +

∂

∂t
[ατi(t)p(a, t;α)] = 0.

Note that if every individual in the population has phenotype α = 1, then this model

reduces to the simpler advection model. Finally, additional developmental variation

due to random effects is incorporated into a phenology model by adding diffusion

term to the previous model. The result is the most complex of the three population

phenology models, the Fokker-Planck development equation,

∂

∂a
p(a, t;α) +

∂

∂t
[ατi(t)p(a, t;α)] =

ν

2

∂2

∂t2
p(a, t;α).
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In the case that every individual with phenotype α has the same development time

(i.e. ν = 0), then the Fokker-Planck development equation becomes the α-dependent

advection equation. Hence, the three models are nested.

For both the advection and the phenotype-dependent advection models, the dis-

tribution of times that insects will complete a stage can be determined analytically if

the distribution of times that begin the stage is known. Unfortunately, a similar so-

lution has not been found for the Fokker-Planck development equation under varying

temperature conditions.

3.3 Constant temperature solution

Laboratory development experiments are often carried out at constant temper-

atures [15, 28, 45]. A cohort of insects is held at a constant temperature, and the

length of time required for each individual to complete the life stage is recorded. The

experiment is repeated for other cohorts at multiple constant temperatures result-

ing in data that show how development time depends on temperature and how that

response varies within the sample group of insects. Solving the FPDE at constant

temperatures (constant coefficients) and assuming normality of the distribution of

phenotypes within a cohort allows us to fit the nested phenology models to exper-

imental data. Since each individual in a cohort begins the stage at the same time

(t = 0) the FPDE is solved with the initial condition p(0, t;α) = f(α)δ(t), where

f(α) is the distribution of phenotypes in the cohort, given by

f(α) =
N√
2πσ2

exp

[
−(α− µ)2

2σ2

]
, (3.18)

and δ(t) is the delta distribution.
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To solve the FPDE (3.9) at constant temperature T , we make the variable

changes z = t− ατi(T )a and q(a, z;α) = p(a, z + ατi(T )a;α). Then (3.9) becomes a

diffusion equation, and the initial condition is unchanged,

∂

∂a
q(a, z;α) =

ν

2

∂2

∂z2
[q(a, z;α)], (3.19)

q(0, z;α) = f(α)δ(z). (3.20)

The solution of this equation is

q(a, z;α) =
f(α)√
2πνa

exp

[
− z2

2νa

]
.

Reversing the change of variables,

p(a, t;α) =
f(α)√
2πνa

exp

[
−(t− ατi(T )a)2

2νa

]
.

Consequently, the distribution of stage completion times (a = 1) for individuals with

phenotype α, given an initial pulse of f(α) insects entering the at t = 0, is normally

distributed with mean τi and variance ν,

p(1, t;α) =
f(α)√

2πν
exp

[
−(t− ατi(T ))2

2ν

]
. (3.21)

Stage completion times are measured in the laboratory, but phenotypes cannot typi-

cally be measured directly. The distribution of completion times is

E(t) =

∫ ∞
−∞

p(1, t;α)dα.



68

From (3.21) and (3.18), it follows that the distribution of stage completion times is

E(t) =
N√

4π2νσ2

∫ ∞
−∞

exp

[
−(α− µ)2

2σ2
− (t− ατi(T ))2

2ν

]
dα.

Upon integration, we obtain

E(t) =
N√

2π(ν + σ2τi(T )2)
exp

[
− (t− µτi(T ))2

2(ν + σ2τi(T )2)

]
. (3.22)

Hence, the model predicts development time at constant temperature T to be nor-

mally distributed with mean µτi(T ) and variance ν + σ2τi(T )2. The fact that the

mean development time is the product of the mean phenotype and the base develop-

ment time is no surprise. It is more interesting that the variance in development time

is the sum of the variance contributed by random variation in development time and

the product of the square of the base development time and the persistent variance.

This means that as development time increases so does its variance, a pattern that is

observed in experimental data (see Figure 3.1).

3.4 Mountain pine beetle parameter
estimation

We fit development time curves τi(T ) and variance parameters ν and σ2 to devel-

opment time data for each stage of the MPB life cycle. The MPB life cycle consists

of seven developmental stages and an ovipositional stage. MPB eggs are oviposited

in vertical galleries beneath the bark of host trees. Ovipositional females construct

egg galleries at a rate that depends on temperature [2], so that the oviposition times

of a single female’s eggs are distributed in time and temperature-dependent. The

next seven developmental stages, including egg, four larval instars, pupa, and teneral

adult, also occur beneath the bark of host trees. At the completion of the teneral
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Fig. 3.1: Mean MPB egg development times measured at various constant temper-
atures. Error bars indicate ± one standard deviation. Notice that the standard
deviation of development time generally increases with development time.

adult stage, beetles emerge to attack new hosts, mate, and begin ovipositing the next

generation.

The dependence of development time on temperature is well-studied for MPB.

Development time has been measured in constant temperature laboratory experi-

ments for each of the seven MPB developmental stages [4, 25]. Individuals from

populations in central Idaho and northern Utah were collected from multiple trees in

the field and reared at various constant temperatures. The time necessary for each

individual to complete each developmental stage (development time) was recorded.

Details of the experimental methods are given in [4]. These experiments were carried

out between 1982 and 2005. Roughly 75% of the developmental data that we used to

parameterize the phenology models presented in this paper were previously published

by Logan and Amman [25], Bentz et al. [4], and in subsequent studies (e.g. [27]).
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The remaining 25% of the data (collected in 2005) were not previously published.

Most notably, these new data include development times for MPB teneral adults at

8, 12, and 15◦C; previous phenology models for MPB have assumed that teneral

adults cannot develop at these temperatures [27, 35]. Laboratory populations were

usually observed daily during development experiments, so the number of insects that

completed development through a stage between observation times are known. Since

these experiments measured the development time of multiple individuals at constant

temperature in each stage, the data are useful in estimating the variance structure of

development time. The rate of egg gallery construction (cm/day) at different constant

temperatures has also been measured in the laboratory [2].

For each developmental stage we simultaneously fit a development time curve and

variance parameters to development time data from constant temperature laboratory

experiments. The development time curve was either the sum of decreasing and

increasing exponentials,

τi(T ) = c1 + exp[c2 − c3T ] + exp[c4 + c5T ], (3.23)

where c3 and c5 are positive, or a decreasing exponential,

τi(T ) = c1 + exp[c2 − c3T ], (3.24)

where c1 and c3 are positive. The first curve (3.23) captures the U-shaped dependence

of development time on temperature that is often observed in insects [41, 45], while

the second (3.24) is useful when the data do not support an increase in development

time at high temperatures.

We take a maximum likelihood approach to fitting developmental parameters to

laboratory data. To derive the likelihood function, a normal distribution of pheno-
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types is assumed with mean µ = 1 and variance σ2, so stage completion times are

modeled by (3.22). In this case, qi,j, the probability of a beetle completing a particu-

lar stage at the jth constant temperature Tj between observation times ti,j and ti−1,j,

is given by

qi,j =

∫ ti,j

ti−1,j

1√
2π(ν + σ2τ(Tj)2)

exp

[
− (t− µτ(Tj))

2

2(ν + σ2τ(Tj)2)

]
dt, (3.25)

if the base development time curve τ(T ) and the variance parameters σ2 and ν are

known. In practice these are unknown, so qi,j depends on the five development time

curve parameters, c1 through c5, and the variance parameters, i.e. qi,j = qi,j(θ), where

θ = [c1, c2, c3, c4, c5, σ
2, ν].

If ni,j is the number of beetles completing a stage between observation times ti,j

and ti−1,j at constant temperature Tj, then the probability of observing a particular

completion time distribution in the laboratory, {n1,j, n2,j, . . . nNj ,j}, where Nj is the

number of times that observations were made at constant temperature Tj, is given

by the multinomial distribution

Qj(n1,j, n2,j, . . . nNj ,j; θ) =
mj!∏Nj
i=1 ni,j!

Nj∏
i=1

(qi,j(θ))
ni,j ,

where mj is the total number of observations at temperature Tj. Since development

times of the different groups exposed to different constant temperatures in the labora-

tory are independent of each other, the probability of observing a particular complete

set of emergence times (i.e. at all temperatures) is given by the product of the Qj’s

taken over all of the temperatures at which observations were made. Hence, the neg-

ative log-likelihood of the parameter vector θ, given the array of observed completion
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counts {n1,j, n2,j, . . . nNj ,j}, for j = 1 . . . J (J is the number of temperatures), is

LL(θ) = −
J∑
j=1

log (mj!) +

Nj∑
i=1

(ni,j log(qi,j(θ))− log(ni,j!))

 . (3.26)

The development time curve parameters and variance parameters were fit for

each stage by minimizing the negative log-likelihood function with respect to θ us-

ing standard optimization tools in Matlab. For some life stages we failed to reject

simpler developmental models in favor of models with additional parameters using

the likelihood ratio test with 5% significance level. If the more complicated U-shaped

development time curve (3.23) did not result in a better fit than the less complicated

decreasing development time curve (3.24), the simpler curve was chosen. In some

stages c1 6= 0 did not provide a better fit, so we set c1 = 0. Most importantly, ν > 0

did not improve the fit in most stages; in these we set ν = 0. The parameters that

minimized the negative log-likelihood function are shown in table 3.1 for all of the

MPB developmental stages. The corresponding development time curves are shown

in Figure 3.3 along with the mean development times measured in the laboratory

experiments. Figure 3.2 also shows the observed standard deviation in development

time and the predicted standard deviation in development time for MPB eggs. These

development time curve parameterizations can be applied to all three of the popu-

lation phenology models, since in the two simplest models, the extraneous variance

parameters can be treated as nuisance parameters.

It is important to note that in all but the fourth larval instar, incorporating

random variance (ν > 0) did not improve the fit of the model, and in that stage ν

was extremely small. This suggests that random variation in temperature and other

environmental factors that affect development time in the laboratory (e.g. variation in

phloem thickness) were well controlled in the developmental experiments for MPB and
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Table 3.1: Parameterization for MPB development time curves and variance param-
eters for each life stage (egg-teneral adult(TA)). L1 − L4 indicate larval instars 1-4.
These parameters were fit to data from constant-temperature laboratory experiments.
The parameterization for MPB burrowing time curve is also shown (OA). These pa-
rameters were also fit to data from constant-temperature laboratory experiments.
The negative log-likelihood (LL) is shown for the best fit parameters. In the cases
that 5 development time parameters (ci) are listed, the development time curve was
the sum of decreasing and increasing exponential functions. In the cases that 3 de-
velopment time parameters are listed, the development time curve was a decreasing
exponential function. Note that in all developmental stages but the fourth larval
instar, incorporating a diffusion term (random variation) did not improve the fit.
stage c1 c2 c3 c4 c5 σ2 ν LL

egg 0 4.802 0.154 -2.573 0.139 0.017 0 188
L1 -18.01 4.961 0.133 0.850 0.074 0.232 0 248
L2 4.744 9.196 0.499 - - 0.324 0 185
L3 0.016 6.670 0.244 -12.334 0.553 0.237 0 145
L4 0 5.332 0.149 -18.386 0.799 0.129 0.006 108
pupa 4.240 10.577 0.509 - - 0.030 0 92.7
TA 0 5.260 0.113 - - 0.343 0 258
OA 0 1.003 0.085 - - - 0.057 -0.475

that most of the variance observed in laboratory development time can be attributed

to persistent sources (e.g. genetic variation).

We used a similar method to fit a negative exponential model (3.24) to the time

required for an ovipositional adult to construct 1 cm of gallery at different constant

temperatures. However, in this case variance in burrowing time was not strongly

related to the magnitude of burrowing time (Figure 3.4), so a normal distribution

with mean τi(T ) and variance ν was used to model the probability of observing a

particular burrowing time. The resulting parameterization is shown in table 3.1, and

the burrowing time curve is shown in Figure 3.4.
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Fig. 3.2: Base development time curve fit to MPB egg development times measured
at various constant temperatures (solid curve). Base development time ± the pre-
dicted standard deviation of development time (sdp) is also plotted (dotted curves).
Observed mean development times are plotted (dots), as well as error bars indicating
± one standard deviation about the sample mean. Note that the likelihood fitting
procedure employed here does not fit curves directly to mean development times (see
text).

3.5 Simulation of MPB phenology
and comparison to field data

3.5.1 Field data

In early June of both 2001 and 2002 seven approximately 30cm DBH trees were

selected at two sites in the Sawtooth National Recreation Area of central Idaho, at the

headwaters of the Salmon River. This region had recently experienced an outbreak

of MPB population (see [35]). Selected trees were in apparent good health, with no

broken limbs, significant damage to the bole, or obvious symptoms of disease. Trees
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Fig. 3.3: Base development time curves fit to MPB development times for each devel-
opmental stage. Two means were plotted when there were two separate development
experiments performed at the same temperature. Note that the likelihood fitting
procedure employed here does not fit curves directly to mean development times (see
text). The means are not equally weighted by the fitting algorithm. For example, the
mean development time for the third larval instar at 10◦C has relatively little weight
in the fit, because four beetles were observed at that temperature, whereas 29 and 42
beetles were observed at 16◦C and 20◦C.
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Fig. 3.4: Burrowing time curve ρ(T ) for MPB ovipositional adult (solid curve) fit to
burrowing times measured in constant-temperature laboratory experiments (dots).
Burrowing time is the time necessary for a MPB female to construct on centimeter
of gallery at a given temperature.

were all partially shaded, sheltered by nearby trees but near the edge of stands for

ease of access. Study locations were at approximately 2100 meters in elevation.

Thermocouples were inserted into the phloem at 4 feet above ground level on

both northern and southern aspects of each tree. Temperature data from the phloem

were recorded hourly (see [3] for details of phloem temperature monitoring tech-

niques). Fourteen months later the data was downloaded, giving a complete picture

of temperatures in the developmental environment under the bark (e.g. Figure 3.5).

On each tree a counting area was taped off between two feet and six feet above

ground level, after which each tree was baited with a pheromone lure (Pherotech, Inc.).

The pheromone lure remained on the tree until four successful attacks were recorded

in the counting area, at which point the lure was removed. Each day thereafter the

census area was inspected for new attacks; stick pins of differing colors were inserted

next to each burrow during each count to avoid repeat counting. Daily
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Fig. 3.5: Average of north and south side temperatures measured hourly in the phloem
of tree 1 at site V from 2001 until 2002.

counts were continued until no new attacks appeared for three days, after which trees

were inspected on a weekly basis.

In fall the entire census area was enclosed in rectangular nylon mesh emergence

cages (see [3] for details). Bark at cage edges was shaved to even the surface and the

cages continuously stapled to the bark around their perimeter to keep beetles from

escaping. Each cage had a funnel base leading to a collection bottle. In the subsequent

year emerging MPB were collected in the catch tubes and counted every two days.

Thus, for several trees over two years we collected input and output distributions

and temperatures controlling development times underneath the bark – all the data

necessary for validation of the distributional models above.

3.5.2 Simulations

We used the phenotype-dependent advection model parameterized with data

from constant-temperature laboratory experiments (table 3.1) to simulate MPB phe-

nology under the temperature conditions measured in each of the seven trees ob-
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served in the field. The simpler phenotype-dependent advection model was chosen

over the FPDE for two reasons. First, incorporating random variance in the FPDE

did not improve fits to laboratory data. Second, even without the diffusion term,

the phenotype-dependent advection model tended to over-predict variance in a single

tree under field conditions. Simulations were performed with the average of north and

south side phloem temperatures measured at each of the seven trees. Initial condi-

tions for the simulations were the attack time distributions counted at the same trees.

The phenology model was used to predict emergence time distributions for each tree,

and the results were compared to the observed emergence time distributions.

Successful attack of a host tree is followed by initiation of egg gallery construction.

We assume that 20 female eggs are laid in each gallery, a number that is consistent

with MPB field demographic data [36]. Eggs were laid at a rate of 1 female egg per

centimeter within the gallery [36]. The position of the median egg was chosen to fit the

mean predicted oviposition times to the observed means for the 7 trees at which data

were collected, giving 70cm as the position of the median egg, although the median

egg in the field is likely laid significantly earlier. Temperature-dependent burrowing

was simulated one centimeter at a time using the advection model with no variance

(3.3) with the burrowing time curve shown in Figure 3.4 and initial condition given by

the measured attack time distribution. This resulted in a distribution of completion

times for each of the 20 centimeters of gallery in which a female egg was laid after an

observed attack on a tree. These distributions were summed to obtain an oviposition

time distribution for the entire tree.

Following oviposition, development was simulated consecutively through each de-

velopmental stage (egg through teneral adult) using the phenotype-dependent popu-

lation phenology model. The initial condition for each stage was the completion time

distribution from the previous stage. The initial distribution of phenotypes (α’s) was



79

assumed to be normal with mean 1 and variance σ2, parameterized using data from

constant-temperature laboratory experiments (see table 3.1). There was no temporal

structure in phenotypes at the beginning of each stage and the distributions of pheno-

types in different stages were assumed to be independent. Temperatures used in the

simulation models were the average of north and south side temperatures measured

hourly at each tree. We used a finite volume characteristic method (described in the

appendix) with 1 age step per stage to solve the phenotype-dependent advection equa-

tion (3.8). Solving the partial differential equations, the population distributions were

tracked using a daily temporal discretization, although characteristics were computed

using hourly temperatures. The equations were solved at each of 50 equally spaced

α-nodes ranging from 0.04 to 2.0. The resulting stage completion time distributions

at each phenotype node were summed with weights according to the initial phenotype

distribution to obtain a phenotype-independent completion time distribution. This

distribution became the initial condition for the next developmental stage.

The predicted emergence distributions and the observed emergence distributions

are plotted in Figure 3.6 for all seven trees. The models generally over-predicted the

emergence time variance. Although the position of the median egg within the egg

galleries was chosen to fit the predicted mean emergence time to the observed mean

emergence time, the agreement between the predicted and observed means is still

notable. Since the value of this parameter was chosen to fit the means to the data

for all seven tree simultaneously, it is significant that the predicted mean emergence

times fit the mean observed emergence times at each tree fairly well (see Figure 3.6).

3.6 Discussion and conclusion

Our results suggest that the phenotype-dependent advection model (3.8) pro-

vides the best description of MPB phenology in the laboratory and in single trees
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Fig. 3.6: Plots of predicted (solid) and observed (dotted) emergence distributions
for seven trees from central Idaho in 2002 and 2003, along with R2 values. Data
was collected at 2 sites, V and NP, where hourly phloem temperatures, attack time
distributions and emergence time distributions were measured. Predicted emergence
time distributions were obtained using the phenotype-dependent advection model.
Note that the position of the median egg in the egg gallery was chosen to fit the mean
emergence time predictions to the observed means.
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in the field. This model accurately represents the variance structure of development

times from constant temperature laboratory experiments, and the incorporation of a

diffusion term (resulting in the FPDE model (3.9)) does not significantly improve the

fit. It is also clear from the simulation results that incorporating additional (random)

variation would worsen agreement between emergence time predictions and observa-

tions at single trees in the field, because the phenotype-dependent advection model

generally over-predicts variance in the field.

There are several reasons that the phenotype-dependent advection model, param-

eterized using laboratory development time data, might over-predict variation in the

field for MPB. The model does not allow for interactions between individuals beneath

the bark of the host that may act to synchronize emergence. Also, it is likely that

mountain pine beetles do not enter the pupal stage until phloem temperatures exceed

a specific temperature threshold (Barbara Bentz, personal communication April 21,

2009); this threshold is not incorporated into the phenology model but could act to

synchronize emergence. Finally, the phenology model does not account for mortality

beneath the bark of the tree, which may reduce field emergence densities, especially

in the tails of the emergence distribution due to sampling effects.

Incorporating new development time data for MPB teneral adults in parameter-

izing the phenology models caused the time required to develop through that stage

to be significantly shorter than in previous MPB phenology simulations using field

temperatures. As a consequence, it was necessary to let oviposition occur farther

down the egg gallery than in previous simulations. It may not be realistic for MPB

to lay their median egg in the 70th centimeter of the gallery. This suggests that fur-

ther investigation of temperature dependent development of MPB may be required,

particularly in the teneral adult stage.
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Solving the phenotype-dependent advection equation is much simpler than solv-

ing the more complicated FPDE or phenology models that rely on a diffusion term

alone to capture developmental variation, such as the extended von Foerster equation

presented in [17]. Although the phenotype-dependent advection equation, the FPDE,

and other diffusion models can be solved analytically at constant temperatures, only

the phenotype-dependent advection equation has been solved analytically at varying

temperatures. Furthermore, the phenotype-dependent advection equation is much

simpler to solve numerically under varying temperatures than diffusion-based phe-

nology models. The phenotype-dependent advection model is the differential form

of a conservation law; the integral form of this law (7.4) can be used directly for

numerical solution of the model (see Appendix). Diffusion-based phenology models

must be solved using more complicated numerical schemes, typically requiring much

more computation time.

The phenotype-dependent advection model also offers flexibility in describing the

shape of the distribution of development times. Throughout this paper we have as-

sumed that phenotypes are normally distributed within a population at the beginning

of a life-stage. This assumption can be easily modified without affecting the analyti-

cal or numerical solvability of the equation. For example, it may be desirable to use a

phenotype distribution with positive support, such as a log-normal or truncated nor-

mal distribution. It is difficult, if not impossible, to achieve such a distribution using

a phenology model that relies on a diffusion term alone to describe developmental

variation.

Another advantage of the phenotype-dependent advection model is that it can be

easily extended to study the evolution of phenology, since it explicitly incorporates

persistent variation in development time. The evolution of phenology of a simple

model insect was presented in Chapter 2; in that chapter the integral form of the
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phenotype-dependent advection model was used to describe persistent variation in

development time within a single life-stage.

The importance of the FPDE in modeling insect phenology should not be dis-

counted. As a model that explicitly separates persistent and random variation, it may

be useful in describing the development of laboratory populations of a wide range of

insects. This is particularly true if random sources of developmental variance cannot

be well controlled. The FPDE may also be a better model of insect phenology in

the field if the population is observed over multiple trees in a stand, while ambient

temperatures are only available from a single site. In these cases, the diffusion term

may allow the model to capture developmental variance resulting from differences

between trees or due to variation between ambient and phloem temperatures.
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CHAPTER 4

EVOLUTION OF MOUNTAIN PINE BEETLE PHENOLOGY1

4.1 Introduction

Understanding the evolution of insect phenology (the timing of developmental

events, such as oviposition or adult emergence) is a crucial step toward predicting

how insect populations will respond to climate change. It is particularly important

to understand how climate change will affect outbreak insects due to their economic

and ecological importance. There are strong selective pressures on insects to maintain

appropriate phenology, including synchrony with resources and within populations.

Insect phenology changes plastically (without underlying genetic evolution) as yearly

temperature changes, because the time necessary for an insect to complete its life cycle

is largely dependent on temperature [47]. This plastic response may be insufficient to

maintain adaptive phenology within some populations given the degree of temperature

change predicted to occur over the next 100 years. Instead, these populations must

migrate, adapt through genetic evolution, or face extinction. In order for development

time to evolve in response to selection on phenology, there must be heritable variation

in that trait. Heritable variation in development time within and between populations

has been shown experimentally by Bentz et al. [5]. In this article we extend and

apply a model of phenology evolution (see Chapter 2) to investigate the evolution of

mountain pine beetle (an important outbreak insect) development time in response

to natural selection on emergence time, particularly how mountain pine beetles might

evolve to cope with climate change.

1Coauthored by Brian Yurk, James A. Powell, and Barbara J. Bentz.
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The fitness of an individual insect depends on its phenology relative to the tim-

ing of biotic and abiotic factors as well as the phenology of other individuals in the

population. It is essential that development is timed to take advantage of the phe-

nology of biotic resources and to avoid the coincidence of sensitive life stages with

extreme weather to lessen the risk of desiccation in the summer and cold-induced

mortality in the winter [27]. Developmental synchrony within a population is another

phenology-driven determinant of fitness. Finding mates at low densities may require

a high degree of reproductive synchrony (i.e. a high proportion of the population

with overlapping reproductive periods) [9]. The need for developmental synchrony in

a population means that fitness increases with emergence density (at low population

densities); this is known as an Allee effect [1].

Temperature plays a major role in determining the phenology of poikilothermic

organisms, such as insects, whose body temperatures depend on ambient tempera-

tures. Shifting phenology has been linked to temperature change in several natural

populations [31]. Although some insects possess physiological mechanisms that use

cues other than temperature to control phenology (e.g. diapause or photoperiod sen-

sitivity) [47], for others, phenology is directly controlled by the dependence of de-

velopment time on temperature [13]. Since their metabolic rates depend on ambient

temperature, insects develop at different rates at different temperatures [15, 41, 45].

Increasing temperature speeds metabolism at low to moderate temperatures, resulting

in a shorter time period required for development. However, increasing temperature

can be counterproductive at high temperatures, resulting in longer development time

[4]. Consequently, the response of phenology to temperature is a highly plastic trait

(phenology can change in response to yearly temperature change with no underlying

molecular evolution). The dependence of development time on temperature varies

between developmental stages. This can have a strong synchronizing effect on a pop-



86

ulations; at low temperatures development can effectively halt for individuals in one

stage allowing individuals in earlier stages to catch up [19]. Since changing tempera-

ture shifts phenology, and insect fitness is highly dependent on phenology, it follows

that global warming will result in strong selection on development time.

Predicting how populations might evolve to cope with global warming requires

a mechanistic understanding of how phenology depends on temperature before the

evolution of that dependence can be modeled. Laboratory experiments have mea-

sured development time at various constant temperatures for many insect species

(e.g. [4, 15, 17, 28, 41]). We are careful to make the distinction between develop-

ment time, the time it takes for an insect to develop through a life stage or life

cycle, and phenology, the timing (i.e. time of year) of developmental milestones. In

these experiments, insects are held at constant temperatures and allowed to develop

through a life stage. The time it takes to complete the stage (development time) is

recorded. These experiments are carried out at many different temperatures for each

life stage. Empirical models (discussed in detail later) are then developed to describe

the dependence of development time on temperature in each stage. These models

are used to predict development time under both constant temperatures and varying

temperatures in the laboratory and in the field.

In order for a trait like development time to evolve it must vary within a popu-

lation, and some portion of that variation must be heritable [18]. Development time

can be considered to be a continuous trait (also known as a quantitative or multifac-

torial trait) as a opposed to a discrete trait (see [21, 23]). This is justified because

development time is affected by enzyme kinetics and environmental variation and

therefore likely influenced by many genes, whereas a discrete trait is controlled by

only a few genes. Consequently, we assume development time varies continuously

within a population.
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Quantitative genetic models describe how selection affects variation in quantita-

tive traits and how that variation is inherited by successive generations [20, 42, 43].

Selection acts on heritable traits through differential fitness, so that phenotypes asso-

ciated with higher fitness are better represented in the next generation. The simplest

quantitative genetic model is the breeder’s equation (see e.g. [18]). This model relates

the change in the mean phenotype in the next generation (the response to selection)

to the difference between the mean phenotype of individuals that reproduce and the

the mean phenotype of all individuals in this generation (the selection differential).

The breeder’s equation does not allow for phenotypic mating structure (e.g. temporal

structure in the case of development time), as there is the inherent assumption that

every individual in the population is capable of breeding with every other individ-

ual. This assumption is violated for development time, since individuals with similar

phenotypes are more likely to mate than individuals with dissimilar phenotypes. For

example, slow developers are more likely to mate with other slow developers, because

they are more likely to be in their reproductive phases at the same time (late in the

reproductive season). In other quantitative genetic models assumptions are typically

made about the shape of the phenotype distribution within a population (e.g. nor-

mality [21]), and the models describe how selection and reproduction affects the mean

and variance of the phenotype distribution for the next generation [42].

Yurk and Powell (see Chapter 2) took a more direct approach to modeling the

evolution of insect development time in response to selection on emergence time.

Development was tracked and emergence time distributions were predicted for each

developmental phenotype, in this case the individual development time relative to

a base development time. A selection function was then applied, assigning fitness

based on emergence time and density (individuals emerging on the same day have

the same fitness regardless of phenotype). The phenotypes of offspring laid as eggs
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on a particular day were assumed to be normally distributed with the same mean as

their parents and variance related to their parents’ phenotypic variance, consistent

with [42]. A clear benefit of this approach is that it allows a complex evolutionary sce-

nario (indirect, density-dependent selection on a highly plastic, temporally structured

quantitative trait) to be represented in a fairly simple way. Additionally, the simplic-

ity of this approach admits analysis using classical tools of applied mathematics (see

Chapter 2).

The Yurk and Powell evolution model was applied to study the evolution of a

model two-stage insect (see Chapter 2). Asymptotic analysis of the model led to

analytic approximations of evolutionary steady distributions under periodic temper-

ature conditions (no change in the yearly temperature series from year to year). At

these steady distributions, the temporal structures of population density, mean phe-

notype, and phenotypic variance of emergent adults are invariant across generations.

It was demonstrated analytically and numerically that populations of model insects

will evolve so that the mean phenotype at any emergence time is the one that allows

completion of exactly one generation per year (strict univoltinism), with predictable

temporal structure for emergence densities and phenotypic variances. In particular,

the populations evolve so that emergence occurs at times of year that are stable fixed

points of a developmental circle map (described in detail later). They also demon-

strated the importance of these steady distributions under warming temperatures; if

adaptation does not allow for stable fixed points, the population rapidly goes extinct.

In this article, we use these methods to study the evolution of mountain pine

beetle phenology in response to selection on emergence time. The mountain pine

beetle (Dendroctonus ponderosae Hopkins, MPB) is an eruptive bark beetle found in

western North America that spends most of its life cycle beneath the bark of host

pine trees. MPB outbreaks have resulted in massive timber loss (see, for example,
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www.for.gov.bc.ca), making MPB an important insect from both an ecological and

economic perspective. Recent MPB range expansion and increased outbreak fre-

quency have been linked to climate change [10]. For MPB, development from egg to

adult occurs within hosts, after which the beetles emerge to mate and attack new

hosts where they lay the next generation of eggs. In order to reproduce successfully

MPB must kill at least part of their host, which requires a high attack rate (a mass

attack) to overwhelm the resin response mechanism of the tree [7]. Mounting mass at-

tacks requires a sufficient density of beetles to simultaneously complete development

and emerge from their hosts to find and attack new ones, resulting in an Allee effect

[1] for MPB. On the other hand, intraspecific competition becomes the dominant

effect at high emergence densities, and increasing attack density reduces fitness [7].

Additionally, it is important that MPB emergence is timed so that they are in the

appropriate stage to survive cold fall and winter temperatures. In fact, the northern

extent of the MPB range is thought to be largely determined by exposure to cold

temperatures [6, 12]. A comprehensive review of MPB biology is presented in [39].

Previous models of MPB phenology that do not account for evolution of devel-

opment time predict that developmental synchrony within a population can only be

maintained within a narrow range of mean annual temperatures, spanning approxi-

mately 2.5◦C [27]. An increase of 2◦C (well within current projections in the MPB

range [11]) would push temperatures outside of this range [27]. Without evolution,

populations will lose developmental synchrony and be exposed to extreme weather

conditions in sensitive life stages [27]. These predictions reinforce the idea that evo-

lution of the temperature-dependence of development time will be necessary for local

populations to successfully adapt to changing climate and indicate the need to un-

derstand how phenology might evolve.
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Variation in development time within MPB populations has been observed in the

laboratory (e.g. Chapter 3 and [17]) and in the field (see Chapter 3). Bentz et al.

[5] showed that variation in development time exists between MPB populations and

is heritable through breeding experiments involving individuals from populations in

central Idaho and southern Utah.

We extend the Yurk and Powell model to study the evolution of MPB phenology.

The current treatment is novel because the evolution map is founded on a phenology

model that has been parameterized for MPB (see Chapter 3). We also use a more

realistic selection function that is based on a fecundity model developed by Powell

and Bentz [33] to study the relationship between MPB phenology and demography.

Additionally, we implement an oviposition mechanism that incorporates distributed

oviposition (female MPB lay one egg at a time within their egg galleries at a rate that

depends on temperature), an important source of phenology variability (see Chapter

3).

We address the evolution of MPB phenology under both stable, periodic temper-

atures and warming temperatures. One goal of this work is to predict whether MPB

populations will evolve to steady distributions under stable periodic temperatures.

This is addressed by numerically simulating the evolution of phenology in response

to many generations of natural selection on emergence time and density under stable

phloem temperatures measured in the field at MPB infestation sites in central Idaho

and southern Utah. Another goal is to determine if MPB can adapt to warming tem-

peratures and to discover possible limitations to the rate of adaptation–an idea that

was not addressed in Chapter 2. Warming is simulated by uniformly shifting from

the central Idaho phloem temperatures to the southern Utah phloem temperatures.

This shift is implemented over different numbers of generations to simulate different

warming rates, and a population that is well adapted to central Idaho temperatures
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is allowed to evolve under the different warming scenarios so that limits on the rate

of adaptation can be determined.

4.2 Model development

4.2.1 Temperature-dependent
development time curves

The phenology model that we develop is based on development time curves.

These curves describe how long it takes an individual to complete a life stage at

different constant temperatures. Typically, development time is U-shaped with a

minimum at some developmentally optimal temperature (often 20 − 25◦C); devel-

opment time increases as temperatures become cooler or warmer than the optimum

[41, 45]. In practice, the curves are constructed by measuring development time at

various constant temperatures in the laboratory, then fitting an appropriate curve to

the data [4, 24, 28].

Development time curves for each MPB life stage (Figure 4.1) have been fit to

constant temperature development time data using a maximum likelihood approach

(see Chapter 3). The individuals measured in the experiment were collected from

multiple trees at MPB infestation sites in central Idaho and northern Utah . Details

of the experimental methods are given in [4] and the data are described in Chapter

3 and [4, 25]. The rate at which female adult MPB construct their egg galleries (the

number of centimeters constructed per day) also depends on temperature, and gallery

construction can be treated as a life stage. The length of MPB gallery constructed

per day at different temperatures has been measured in laboratory experiments [2].

This data was transformed to find the time required to complete one centimeter of

gallery at each temperature (burrowing time), and a curve (Figure 4.2) was fit to the

transformed data (see Chapter 3).
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Table 4.1: Parameterization for MPB development time curves for each life stage (egg-
teneral adult). The parameterization for MPB burrowing time curve is also shown
(ovi. adult). L1 − L4 indicate larval instars 1-4. These parameters were fit to data
from constant-temperature laboratory experiments. In cases that five parameters
(ci) are listed, the development time curve was the sum of decreasing and increasing
exponential functions. In the cases that three parameters are listed, the development
time curve was a decreasing exponential function.
stage c1 c2 c3 c4 c5

egg 0 4.802 0.154 -2.573 0.139
L1 -18.014 4.961 0.133 0.850 0.074
L2 4.744 9.196 0.499 - -
L3 0.016 6.670 0.244 -12.334 0.553
L4 0 5.332 0.149 -18.386 0.799
pupa 4.240 10.577 0.509 - -
ten. adult 0 5.260 0.113 - -
ovi. adult 0 1.003 0.085 - -

We define τi(T ) to be the time required for an individual to complete development

through its ith life stage at constant temperature T (its development time curve). The

development time curve fit to each MPB life stage (including egg gallery construction)

is either the sum of decreasing and increasing exponentials,

τi(T ) = c1 + exp[c2 − c3T ] + exp[c4 + c5T ], (4.1)

where c3 and c5 are positive, or a decreasing exponential if the data does not support

an increase in development time at high temperatures (see table 4.1),

τi(T ) = c1 + exp[c2 − c3T ], (4.2)

where c1 and c3 are positive.
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Fig. 4.1: Base development time curves fit to MPB development times for each de-
velopmental stage. Two means are plotted at the same temperature if there were two
separate development experiments performed at that temperature.
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Fig. 4.2: Burrowing time curve ρ(T ) for MPB ovipositional adult (solid curve) fit to
burrowing times measured in constant-temperature laboratory experiments (dots).
Burrowing time is the time necessary for a MPB female to construct on centimeter
of gallery at a given temperature.

4.2.2 Simple individual phenology
model

Development time curves are used to predict development time under varying

temperatures. We define a(t) to be the proportion of a life stage that an insect has

completed at time t; a takes values between 0 and 1 and can be thought of as the

insect’s physiological age [24]. Since an insect takes τi(T ) days to develop through

the entire life stage at constant temperature T , the simplest developmental model

predicts it will take ∆t = τi(T )∆a days to develop through a fraction ∆a of the life

stage at that temperature.

Under varying temperatures, let T (t) be the temperature at time t. If the rela-

tionship ∆a/∆t = 1/τi(T ) holds for arbitrarily small values of ∆t, then development

through stage i for an insect that began at time t0 is described by the initial value

problem

da

dt
=

1

τi(t)
, a(t0) = 0, (4.3)



95

where τi(t) = τi(T (t)). We integrate the differential equation (4.3) to determine the

insect’s age at time t,

a(t) =

∫ t

t0

ds

τi(s)
.

In practice, it is useful to be able to predict the time that a developmental milestone

occurs. To this end, define Γi(∆a, t) to be the time that an insect completes ∆a units

of age given that it began at time t. Then Γi(∆a, t) satisfies

∆a =

∫ Γi(∆a,t)

t

ds

τi(s)
. (4.4)

If the function Γi is known for each life stage of an individual, the timing of any devel-

opmental event (phenology) is completely determined for that insect. An important

special case is Γi(1, t), the time an insect completes stage i if it began at time t; we

define gi(t) = Γi(1, t). Then gi(t) satisfies

1 =

∫ gi(t)

t

ds

τi(s)
. (4.5)

4.2.3 The G-function

The individual phenology model is easily extended to describe development

through an entire life cycle. We define G(t) to be the time that an insect lays the

next generation of eggs if it was oviposited at time t. At present, we ignore the dis-

tributed nature of MPB oviposition (for the sake of clarity) and let G(t) be the be the

oviposition time of the median egg; this restriction will be relaxed later. For MPB,

which has an 8-stage life cycle (counting oviposition as a life-stage),

G(t) = (g8 ◦ g7 ◦ . . . ◦ g2 ◦ g1)(t), (4.6)
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because upon completing a life stage the insect enters the next stage. A G-function

for MPB is shown in Figure 4.3.

Fig. 4.3: a. An example of a G function (solid) for MPB. Given the oviposition time
t of an insect in generation n, the oviposition time of its median egg in generation
n+ 1 is G(t). G(t)− 365 is plotted to show the time of year of emergence relative to
the time of year of oviposition. Also plotted is the fixed point line (dashed); times
at which the G function intersects the fixe point line (fixed points) correspond to
times of year where oviposition occurs at exactly the same time of year in successive
generations. b. A developmental circle map for MPB and its fixed point dynamics.
The circle map is the solid curve, and the fixed point line G(tno ) = tno is dashed. The
circle map corresponds to the G function in the left panel. As the map is iterated,
oviposition times converge (arrows) to stable fixed points (fixed points that occur
where slope of the circle map curve is less than one).

In previous work the G function has been employed to understand how phenology

depends on temperature [27, 35]. Under stable yearly temperatures, the G-function,

taken modulo 365 days, is a periodic circle map between the time of year that an

individual in generation n is oviposited and the time of year that its offspring are

oviposited in generation n + 1. The dynamics of the circle map are dominated by

univoltine (one generation per year) fixed points of the circle map, where the ovipo-

sition times of an insect and its offspring are exactly one year apart. Oviposition
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times rapidly converge to stable fixed points as the circle map is iterated over mul-

tiple generations (see Figure 4.3). As a consequence, stable univoltine fixed points

synchronize phenology within a population and play an important role in insect fit-

ness (see Chapter 2). A fixed point of the G-function is stable if dG
dt
< 1 there; this

makes sense from a biological perspective, because individuals that are oviposited

earlier than such a fixed point (but sufficiently close to it) will produce offspring that

are oviposited later in the next generation. On the other hand, individuals that are

oviposited later than the fixed point will produce offspring that are oviposited earlier

in the next generation.

4.2.4 Population phenology model

We now extend the phenology model to track development time within a pop-

ulation of identical individuals (no variation in development time). Later, this will

be extended to account for developmental variation. Let p(a, t) be the density of

individuals that achieve age a at time t; then
∫ t2
t1
p(a, t)dt is the number of individ-

uals that achieve age a between times t1 and t2. According to (4.4), an individual

that was age a at time t will be age a + ∆a at time Γi(∆a, t). Consequently, the

same number of individuals will achieve age a + ∆a between times Γi(∆a, t1) and

Γi(∆a, t2) as achieved age a between time t1 and t2, assuming there is no mortality

during development. This gives the conservation law

∫ t2

t1

p(a, s)ds =

∫ Γi(∆a,t2)

Γi(∆a,t1)

p(a+ ∆a, s)ds, (4.7)

which can also be written in differential form as an advection equation (see Chapter

3),

∂

∂a
p(a, t) +

∂

∂t
[τi(t)p(a, t)] = 0. (4.8)
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Solutions of the advection equation are of the form

τi(t)p(a, t) = τi (Γi(∆a, t)) p(a+ ∆a,Γi(∆a, t)); (4.9)

here, the product of development time and population density is constant along the

characteristic curves t(a) = Γi(a, t0), where t0 is any stage initiation time (see Chapter

3). In particular, the density of insects exiting a stage is related to the density of

insects entering by the equation

τi(t)p(0, t) = τi (gi(t)) p(1, gi(t)), (4.10)

or equivalently by the conservation law

∫ t2

t1

p(0, s)ds =

∫ gi(t2)

gi(t1)

p(1, s)ds. (4.11)

4.2.5 Development time as a
quantitative trait

We model variation in development time by allowing a single developmental

parameter, α, to vary continuously within a population. This parameter relates

individual development time to a standard development time for all temperatures.

For simplicity, we allow variation within a single life stage (the teneral adult stage).

Although developmental variation exists in all life stages, variation in earlier stages

may be less important than in the teneral stage due to the synchronizing effects of

low temperatures [34] decreasing phenology variation. Bentz et al. [5] showed that

variation in MPB development time is heritable for MPB.

Let α scale a base development time curve τ7(T ) for the teneral stage (e.g. the

mean development time curve) so that the development time for an individual in
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the teneral stage with phenotype α is ατ7(T ). Then an individual with phenotype

α = 2 takes twice as long to develop through the teneral stage as an individual with

phenotype α = 1 at the same constant temperature. The temperature-dependent

phenology model is easily extended to account for the developmental phenotype α.

Define g7,α(t) to be the time that an insect with phenotype α will complete the teneral

stage if it began at time t. Then,

1 =

∫ g7,α(t)

t

ds

ατ7(s)
,

similar to (4.5). We also generalize the G-function (4.6) to incorporate α in the

teneral stage; let Gα(t) be the time that an individual with phenotype α that was

oviposited at time t in generation n oviposits its offspring in generation n+ 1. Then,

Gα(t) = (g8 ◦ g7,α ◦ g6 ◦ . . . ◦ g2 ◦ g1)(t).

Figure 4.4 shows examples of Gα(t) for various values of α.

Similar to the G-function, Gα(t) taken modulo 365 provides a circle map under

periodic temperatures for each phenotype, and each map may have univoltine fixed

points. Conversely, given an oviposition time t there may be a phenotype, αt, that

results in a univoltine fixed point at time t (see Figure 4.4). This new function is

defined by the relationship

t = Gαt(t)− 365. (4.12)

The function αt has an important effect on organizing the dynamics of the Gα map;

as the map is iterated over multiple generations the individuals that are attracted

to a particular oviposition time t will have phenotype αt if t is a stable fixed point

of Gαt . Differentiating the definition (4.12) with respect to time and solving for the



100

derivative of αt gives

α̇t =
1− ∂

∂t
[Gα(t)]|α=αt

∂
∂α

[Gα(t)]|α=αt

,

where ‘·’ indicates differentiation with respect to t. Since increasing α increases

development time, the denominator is positive. If t is a stable fixed point of Gαt ,

then ∂
∂t

[Gα(t)]|α=αt
< 1, so that the numerator is also positive, making α̇t > 0.

Similarly, α̇t < 0 whenever t is an unstable fixed point of Gαt . Therefore, stability of

the univoltine fixed points in Figure 4.4 can be determined by the slope of αt. This

relationship makes sense from a biological perspective; since individuals oviposited

at a time later than a stable fixed point take less than one year to develop, only an

increase in development time can can cause those individuals to complete development

in exactly one year; this is achieved by increasing the phenotype (α). Hence, locally,

phenotypes that result in later stable fixed points are larger than phenotypes that

result in earlier stable fixed points.

An advection equation similar to (4.8) describes the development of individuals

with phenotype α through the teneral stage,

∂

∂a
p(a, t;α) +

∂

∂t
[ατ7(t)p(a, t;α)] = 0. (4.13)

In this case, p(a, t;α) is the density of individuals with phenotype α achieving age a

at time t. In other stages, the development time of an insect with phenotype α does

not depend on α. Consequently, development through stage i for an individual with

phenotype α is described by the advection equation

∂

∂a
p(a, t;α) +

∂

∂t
[τi(t)p(a, t;α)] = 0. (4.14)

for i 6= 7. In order to track development of the entire population through the complete
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Fig. 4.4: a. The Gα function for MPB for various values of α. An individual with
phenotype α that was oviposited at time t in generation n will lay its median egg at
time Gα(t) in the next generation. Although α is assumed to vary continuously within
a population, this plot shows only a few representative curves. Also plotted is the
fixed point line. Note that individuals with different phenotypes have different fixed
points. b. Given an oviposition time t, αt is the unique phenotype that results in a
fixed point for the Gα function at time t, i.e. Gαt(t) = t+ 365. These fixed points are
stable ( ∂

∂t
[Gαt(t)] < 1) where αt is increasing and unstable where αt is decreasing (see

text). The arrows point to the same unstable (solid) and stable (dotted) univoltine
fixed points in both parts of the figure for individuals with phenotype α = 1.0.

life-cycle, the distribution of phenotypes in the population must be known at oviposi-

tion. This can be estimated using development time data from constant temperature

laboratory experiments, since development times are monitored for multiple individ-

uals (see Chapter 3). Variation in development time in the teneral stage (and in the

other MPB life stages) has been quantified in Chapter 3. Specifically, if a normal

distribution of phenotypes (α’s) is assumed in the teneral stage, the phenotypic vari-

ance (fit to development time data from multiple constant temperature experiments)

is 0.343 (see Chapter 3).
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4.2.6 Evolution map

The phenotype-dependent phenology model is incorporated into a model of the

evolution of phenology similar to the one introduced in Chapter 2. We define pno (α, t)

to be the density (with respect to time) of insects in generation n with phenotype α

and oviposition time t, and pne (α, t) to be the corresponding density at emergence. We

also define Nn
o (t) and Nn

e (t) to be the (phenotype-independent) oviposition density

and emergence density in generation n at time t, obtained by integrating pno (α, t) and

pne (α, t) over all phenotypes, e.g.

Nn
o (t) =

∫ ∞
0

pno (α, t)dα.

These quantities are important because selection acts on phenology and not directly

on α and is defined in terms of these quantities. We assume that all selective forces act-

ing on phenology can be described in terms of selection on emergence time and density

(e.g. winter mortality of offspring can be can be attributed to emergence at the wrong

time of year by their parents); this is consistent with the phenology-demography

model proposed by Powell and Bentz [33]. Then the evolution model can be broken

into 3 consecutive processes: development (from egg to emergent adult), selection

(on emergence time and density), and reproduction. Development is described by the

phenotype-dependent phenology model. Selection determines the net-fecundity of in-

dividuals that emerge at a particular time. The reproduction model determines the

phenotypes and oviposition times of offspring. Since MPB net-fecundity is described

in terms normalized emergence density and not the absolute number of emergers [33],

we focus here on capturing the evolution of normalized oviposition and emergence

distributions (e.g.
∫∫

pne (α, t)dαdt = 1).
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Development through each life stage before the teneral stage is described by

the advection equation (4.13), whereas development through the teneral stage is de-

scribed by the phenotype-dependent advection equation (4.14). To track development

through the entire life-cycle for each phenotype the advection equations are solved

consecutively for each life stage. The initial condition for the first stage is taken to

be the oviposition distribution pno (α, t), and the initial condition for each later stage

is taken to be the distribution of completion times (at a = 1) for the preceding stage.

Figure 4.5 shows the effect of the development map on an oviposition distribution.

For clarity, the figure shows only the phenotype-independent oviposition and emer-

gence densities, although the oviposition and emergence densities do, in fact, depend

on α.

4.2.7 Natural selection

In MPB populations natural selection acts on both emergence time and emer-

gence density. We define Nn
s (t) to be the density of females emerging in generation

n+ 1 that are produced by females emerging in generation n at time t, which we call

the post-selection density. Then the effects of natural selection can be quantified in

terms of the function S(t), defined by

S(t) =
Nn
s (t)

Nn
e (t)

.

As such, S(t) is proportional to the net fecundity of females emerging at time t. A

reasonable selection function for the MPB is

S(t) =

 γmax (Nn
e (t)− A′, 0) , t ∈ [152, 245],

0, otherwise.
(4.15)
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Fig. 4.5: An example of the effects of the development map on an oviposition distribu-
tion. Development maps an oviposition distribution to an emergence distribution for
the same generation according to the phenotype-dependent phenology model. Note
that although the oviposition and emergence distributions depend on phenotype, only
the phenotype-independent distributions are shown for clarity.

This selection function is based on a model of phenology-dependent MPB effectiveness

presented by Powell and Bentz [33]. It reflects the need for MPB to emerge within

a reasonable time window between June 1 and August 30 (JD 152 and 245) in order

to be in the appropriate life stage to survive cold fall and winter temperatures [6].

The model also simulates the need for MPB to emerge with sufficient density (above

attack density threshold A′) to overwhelm host tree defenses. The parameter γ gives

the net fecundity of an “effective” beetle (an individual that survives a successful

attack that has emerged within the emergence window) in terms of the number of

emergers it will produce in the next generation. It is important to emphasize that

this selection function affects phenotypic variation indirectly, because insects with the
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same emergence time have the same fitness regardless of phenotype. An example of

the effects of selection on an emergence distribution is shown in Figure 4.6.

Fig. 4.6: An example of the effect of natural selection on emergence time and density
(Nn

e (t)). Beetles that do not emerge at densities greater than the attack threshold
(A′) or within the emergence time window (i.e. beetles that emerge within the gray
regions in the left panel) do not reproduce successfully. The post-selection density
(Nn

s (t)) is shown in the right panel. The post-selection density is the density of
females in generation n+ 1 produced by females emerging in generation n at time t.

The attack density threshold parameter A′ and the net fecundity parameter γ are

combinations of different parameters in the Powell and Bentz phenology-demography

model [33]. In terms of their parameters, A′ is given by the ratio of the number

of emerging MPB on a daily basis required to overwhelm host tree defenses to the

number of adults that emerge from one successfully attacked tree (their A divided by

their sf). The parameter γ is the same as their parameter α1. Powell and Bentz used

eight years of MPB infestation data from an outbreak in central Idaho to estimate



106

sf and α1 [33]; the best-fit parameter values that they obtained using the average

of north and south side phloem temperatures were sf = 13, 000 and α1 = 6.45.

They chose A = 250 to correspond with the number of beetles necessary to achieve

the threshold of 40 MPB/m2 [36]. Based on these values, we set the attack density

threshold at A′ = 250/13, 000, or A′ = 0.0192.

One assumption of the Powell and Bentz model [33] is that each successfully

attacked host tree produces a fixed number (sf) of emerging mountain pine beetles

(regardless of the number of attackers in the previous generation); this allows the

dependence of MPB success on phenology to be cast in terms of density of emergers

instead of absolute numbers of emergers. In their article, Powell and Bentz incor-

porate the beetle effectiveness model into a demography model for MPB that also

accounts for variation in host tree populations due to MPB infestation [33]. In the

present treatment, we ignore host population effects; this is reasonable if we track

probability density functions of emergence times instead of numbers of emergers and

as long as there remains at least one host that is available for attack. Given that our

model does not allow for host depletion and assumes that successfully attacked trees

produce a fixed number of emerging MPB, extinction (zero emergence in the next gen-

eration) can only occur if the emergence density in this generation does not exceed the

attack density threshold A′ at any time within the emergence window. Consequently,

this model inherently underestimates extinction risk in real MPB populations.

4.2.8 Sexual reproduction

Whereas the selection model determines the net fecundity of females emerging at

a particular time, the reproduction model determines the phenotypes and oviposition

times of their eggs. We assume that mating and egg gallery initiation occur imme-

diately upon emergence so that mating only occurs between individuals that emerge
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simultaneously. This is reasonable, because the flight period for an individual MPB is

very short–less than two days for individuals that do not leave the stand [39]. Female

MPB construct egg galleries, burrowing at a rate that depends on temperature and

laying eggs at roughly two eggs per centimeter. The reproduction model developed

here captures both the breeding structure due to the temporal isolation of emergers

and the distributed nature and temperature dependence of MPB oviposition.

Phenotypes of offspring

The phenotypes of females and males emerging at a particular time can be

thought of as random variables F and M . Then, the phenotypes of their eggs is

also a random variable, S. If progeny inherit their mean parent phenotype plus some

error with zero mean and constant variance σ2
ε , then

S =
F

2
+
M

2
+ ε,

where ε is the reproductive error, which accounts for variation due to the combined

effects of sources of variation including mutation, heterozygosity, and maternal effects.

If F and M are identically and independently distributed (i.e. males and females in

the population have the same phenotype distributions and mate independently of

phenotypes at any particular emergence time), with mean µe and constant variance

νe, then the offspring phenotype, S, has mean

µs = µe, (4.16)

due to linearity of the mean, and variance

νs = νe/2 + σ2
ε , (4.17)
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due to bilinearity of the covariance. This approach to describing offspring phenotype

was used in Chapter 2 and is similar to the approach developed by Slatkin [42]. The

assumption of identical and independent male and female phenotype distributions

allows us to focus exclusively on the females in the population.

Since the mean phenotype and phenotypic variance may differ for each emergence

time, we treat both as functions of time. Let µne (t) and νne (t) be the mean phenotype

and phenotypic variance of adults emerging at time t in generation n. To compute the

mean phenotype and phenotypic variance at a particular emergence time, evaluate

the integrals

µne (t) =
1

Nn
e (t)

∫ ∞
0

αpne (α, t)dα, (4.18)

and

νne (t) =
1

Nn
e (t)

∫ ∞
0

(α− µne (t))2pne (α, t)dα. (4.19)

Then the mean phenotype of offspring laid by females that emerge at time t in gen-

eration n is

µns (t) = µne (t),

and the phenotypic variance is

νns (t) = νne (t)/2 + σ2
ε ,

by (4.16) and (4.17). We assume that the phenotypes of eggs laid by females that

emerge at time t in generation n are normally distributed, with mean µns (t) and

variance νns (t). Assuming a normal distribution of phenotypes is common in the

quantitative genetic literature (e.g. [21, 23, 43]) and reflects the fact that variation in

quantitative traits is attributed to the combination of several additive effects, i.e.
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the aggregation of the effects of genetic variation across multiple loci and multiple

environmental effects.

Combining the assumption of phenotypic normality following reproduction with

the selection model gives the (phenotype-dependent) post-selection distribution,

pns (α, t) =
Nn
s (t)√

2πνns (t)
exp

[
−(α− µns (t))2

2νns (t)

]
, (4.20)

which is the normalized phenotype-dependent density of females emerging in gener-

ation n + 1 that are produced by females emerging in generation n at time t. The

post-selection distribution is analogous to the oviposition distribution in Chapter 2,

because oviposition was assumed to occur immediately upon emergence (there was

no oviposition stage) in that paper.

Here we set σ2
ε = 0.1 for MPB; although the true value of σ2

ε is unknown, this

value is consistent with laboratory data for MPB, because the best-fit value for phe-

notypic variance in the teneral adult stage is 0.343 (see Chapter 3), and Yurk and

Powell (Chapter 2) predicted that the phenotypic variance for well-adapted adults

emerging on a single day should be 1-2 times σ2
ε . Since all of the individuals reared in

the laboratory did not emerge simultaneously in the field, their phenotypic variance

(0.343) should be greater than the predicted variance among simultaneous emergers

(1-2 times σ2
ε). Hence, σ2

ε = 0.1 is a reasonable estimate, and is probably within an

order of magnitude of the true value.

Distributed oviposition

We let gallery construction and oviposition proceed according to the model de-

veloped and parameterized for MPB in Chapter 3. MPB egg galleries are constructed

at a rate that depends on temperature [2]; this dependence is modeled by the bur-
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rowing time curve shown in Figure 4.2. As the model galleries are constructed, 20

female eggs are laid per successful female adult at a rate of 1 egg/cm [36] starting in

the 60th centimeter of the gallery. Yurk and Powell set the position of the median

egg at 70 centimeters to fit mean emergence times predicted by the phenology model

to mean emergence times observed at seven MPB infested trees in central Idaho (see

Chapter 3), although the median egg in the field is likely laid significantly earlier.

In the evolution model, gallery construction is implemented in the same way as

development through a life stage by treating oviposition of the jth egg in a gallery

as a developmental milestone. Each of the 20 eggs has its own Gα-function; the Gα-

function for the jth egg maps the oviposition time of a parent in generation n with

phenotype α to the oviposition time of its jth egg in generation n+ 1. Furthermore,

different eggs have different fixed points and different αt functions (recall that αt is the

phenotype that results in a fixed point at time t). The phenology model that describes

development through a life stage (4.8) is also used to describe gallery construction and

to predict the distribution of times that jth eggs are laid in a population. This maps

the post-selection distribution, pns (α, t), to an oviposition distribution for each of the

20 eggs (see Figure 4.7). The resulting oviposition distributions are summed and the

resultant distribution is divided by 20 (normalizing the distribution) to determine the

composite oviposition distribution, pn+1
o (α, t), for generation n+ 1 (see Figure 4.7).

4.2.9 Summary of the evolution map

In summary, implementation of the evolution map proceeds as follows:

1. The oviposition distribution for generation n, pno (α, t), is mapped to the emer-
gence distribution for generation n, pne (α, t), using the phenotype-dependent
phenology model (4.13-4.14). Details of the numerical implementation of the
development map are given in the appendix.

2. The normalized net fecundity of emerging individuals (the post-selection den-
sity, Nn

s (t)) is determined based on emergence time and density (i.e. Nn
e (t))
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Fig. 4.7: An example of the effect of the distributed oviposition map on a post-
selection distribution. The post-selection density Nn

s (t) is shown in the left panel).
Oviposition densities are shown for eggs 1 (dashed), 10 (dash-dotted), and 20 (dotted)
in the left panel. The composite oviposition distribution (solid) is also shown (the
entire oviposition distribution accounting for all 20 eggs, Nn+1

o (t)). Note that the
dependence of post-selection and oviposition densities on phenotype is suppressed for
clarity.

using the selection function, S(t) (4.15).

3. The mean phenotype, µne (t), and phenotypic variance, νne (t), are computed for
adults emerging at each time.

4. The phenotypes of offspring produced by individuals emerging at each time are
taken to be normally distributed with mean µns (t) and variance νns (t) according
(4.16) and (4.17). These and Nn

s (t) determine the post-selection distribution
(4.20).

5. Oviposition distributions are constructed for each of the twenty eggs by treat-
ing gallery construction as a developmental stage, and the overall oviposition
distribution for generation n + 1, pn+1

o (α, t), is determined by summing the
oviposition distributions of the individual eggs and dividing by 20 to normalize.
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4.3 Numerical results

4.3.1 Simulations: stable
temperatures

We investigated the evolution of MPB phenology under two different stable

temperature series. The first temperature series was obtained by measuring hourly

phloem temperatures at a MPB infestation site in the Sawtooth National Recreation

Area (SNRA) in central Idaho during 2001-2002. Methods for collecting phloem

temperature data are described in detail in Chapter 3. A second hourly phloem tem-

perature series was collected at an infestation site at Panguitch Lake, Utah (PAN)

that was collected during 1996-1997. Both temperature series represent the average

of north- and south-side phloem temperatures measured hourly at single trees. Min-

imum daily temperatures for both sites are show in the left panel of Figure 4.8. On

average, hourly temperatures were 2.56◦C warmer at the Panguitch Lake site than

at the central Idaho site.

Fig. 4.8: Minimum daily phloem temperatures observed at two MPB infestation sites:
the Sawtooth National Recreation Area (SNRA, left) in central Idaho and Panguitch
Lake, Utah (PAN, right). The hourly temperature series from which these figures were
generated is composed of the average of north- and south-side phloem temperature
measurements made at a single tree at each site.
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For each temperature series, the evolution map was implemented numerically for

1000 generations, so that a steady distribution was reached; this simulated evolution-

ary dynamics under stable climate conditions because the temperature series was not

changed from year to year. The initial condition was a MPB attack time distribution

measured in the field at the same tree that the SNRA temperature series was col-

lected with phenotypes distributed uniformly between 0.06 and 3.0 at each time. The

population was tracked at 49 evenly spaced phenotype values in this range on a daily

time grid (although development was tracked hourly). At the end of each generation,

the post-selection density was re-normalized, so the post-selection distributions pre-

dicted by the model can be thought of as probability density functions. This does not

affect the dynamics of the evolution map due to the fact that the selection function

(4.15) depends on the normalized emergence density rather than absolute numbers of

emergers.

Under both temperature series, the population densities, mean phenotypes, and

phenotypic variances at emergence converged to steady states. The steady post-

selection densities and mean phenotypes are shown in Figure 4.9 for the SNRA tem-

perature series and in Figure 4.10 for the warmer PAN temperature series. In both

cases population density is concentrated at times that are stable fixed points of the

Gα function for some value of α (see Figures 4.11 and 4.12).

It is interesting to note that at a steady state, the mean phenotype for the entire

population was 0.5463 for the SNRA temperature series and 1.4309 for the PAN tem-

perature series. This suggests that individuals that are well-adapted to Panguitch

Lake temperatures should take substantially longer to complete development than

individuals that are well-adapted to central Idaho temperatures under the same tem-

perature conditions. This is consistent with experimental results obtained by Bentz

et al. [5]; they reared individual MPB from both the Panguitch Lake population and
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Fig. 4.9: Post-selection density (top) and mean phenotype (bottom) for the SNRA
steady distribution. The evolution map was numerically implemented for 1000 gen-
erations with stable temperatures. The temperature series consisted of the average
of north- and south-side hourly phloem temperatures measured at a tree in the Saw-
tooth National Recreation Area in central Idaho. The mean phenotype for the steady
population is 0.5463.

the central Idaho population at the same constant temperatures and observed that

individuals from the Panguitch Lake population emerged significantly later and were

significantly larger than individuals from the central Idaho population.

Temporal variation in the mean phenotype at the steady distributions followed

a pattern similar to that suggested in Chapter 2 (although that model did not incor-

porate distributed oviposition). For both temperature series, the mean phenotype at

each emergence time took a value that was intermediate relative to the phenotypes

that resulted in univoltine fixed points at that time (αt) for each of the 20 eggs in

the model egg gallery. In fact, the mean phenotype closely followed αt for egg 10, in

particular. Figure 4.11 shows the mean phenotypes at the steady distribution along

with the phenotypes that result in univoltine fixed points (for eggs 1, 10, and 20)
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Fig. 4.10: Post-selection density (top) and mean phenotype (bottom) for the PAN
steady distribution. The evolution map was numerically implemented for 1000 gener-
ations with stable temperatures. The temperature series consisted of the average of
north- and south-side hourly phloem temperatures measured at a tree in Panguitch
Lake, Utah. The mean phenotype for the steady population is 1.4309.

at each emergence time for the SNRA temperature series. Figure 4.12 shows similar

plots for the PAN temperature series. Recall that regions where αt is increasing cor-

respond with stable fixed points of the Gα map, whereas regions where the function

is decreasing correspond with unstable fixed points.

These results suggest that it is sufficient to focus on the median egg in order

to understand the approximate behavior of the temporal variation of the mean phe-

notype with a full complement of eggs (at least at a steady distribution). Ignoring

distributed oviposition in favor of only tracking median egg phenology greatly sim-

plifies implementation of both the phenology and evolution models and allows for

direct application of the analytical results obtained by Yurk and Powell (Chapter 2),

since those results are based on a phenology model that does not incorporate dis-

tributed oviposition. That model predicts that the mean phenotype at oviposition
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Fig. 4.11: Mean phenotype for the SNRA steady distribution (Steady Mean, black)
and αt for eggs 1, 10, and 20 (gray). αt is the phenotype that results in a fixed point
at time t. Fixed points are stable where αt is increasing and unstable where αt is
decreasing.

Fig. 4.12: Mean phenotype for the PAN steady distribution (Steady Mean, black)
and αt for eggs 1, 10, and 20 (gray).
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time t should be αt; here we have demonstrated numerically that the mean phenotype

in a population with distributed oviposition follows αt for the median egg. On the

other hand, ignoring distributed oviposition and focusing on the median egg ignores

an important source of non-heritable variation in MPB phenology, which could affect

model predictions regarding the rate of phenology evolution.

4.3.2 Simulations: increasing
temperatures and rate of
adaptation

Next, we simulated the evolution of phenology in response to warming by nu-

merically implementing the evolution map with temperatures changing from central

Idaho temperatures to Panguitch Lake, Utah temperatures (see Figure 4.8). The

initial population was taken to be the steady population for the SNRA temperature

series shown in Figure 4.9. Temperature change was implemented at different rates, so

the rate of phenology adaptation could be studied. If TS and TP are the SNRA and

PAN hourly temperature series, then the difference between them is Tdiff = TP−TS

(each element of this vector is the difference between corresponding hourly phloem

temperatures at Panguitch Lake and the Sawtooth National Recreation Area). We

used a linear ramp from SNRA to PAN temperatures; if the temperature change oc-

curred over n generations, the temperature series in the mth generation (for m ≤ n)

was Tm = TS + (m
n

)Tdiff . After the nth generation, temperatures were kept stable

at the PAN temperature series.

We simulated warming over increasing numbers of generations, starting with a

one-generation ramp and increasing the number of generations in the ramp until the

population was able to persist for 1000 generations. For example, in the first simula-

tion, the SNRA stable population was immediately exposed to PAN temperatures (a

one-generation ramp) and went extinct after three generations. In the next simula-
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tion, the SNRA stable population was ramped up to the PAN temperatures over two

generations and went extinct after four generations. Here, extinction occurs when

there are no successful offspring produced by a generation of emergers (i.e. when the

emergence density does not exceed the attack threshold A′ at any time within the

MPB emergence window). The number of generations that the population persisted

before going extinct under different temperature ramps is shown in Figure 4.13. For

eight-generation ramps and greater, the population was able to adapt to the changing

temperatures and survive for at least 1000 generations.

Fig. 4.13: Number of generations before extinction under different rates of tempera-
ture change. The initial population distribution for each simulation was well-adapted
to SNRA 2001-2001 temperatures. Temperatures were ramped from hourly phloem
temperatures measured during 2001-2002 in the Sawtooth National Recreation Area
(SNRA) in central Idaho to hourly phloem temperatures measured during 1996-1997
at Panguitch Lake, Utah (PAN). Then temperatures were held at the Panguitch Lake
values. Measured hourly phloem temperatures average 2.56◦C warmer at the Pangui-
tch Lake site than at the central Idaho site. In successive simulations, the temperature
was ramped up over increasing numbers of generations (see text). The population
was able to adapt to Panguitch Lake temperatures if the ramp occurred over eight or
more generations.
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These results suggest that the rate of temperature change is an important fac-

tor in determining the ability of a population to adapt. In this case, for MPB that

are well-adapted to SNRA temperatures, adaptation to PAN temperatures requires

little adaptation of development time in the teneral stage; the range of phenotypes

that result in stable fixed points for at least one egg under SNRA temperatures is

not significantly separated from the corresponding range of phenotypes under PAN

temperatures (see Figures 4.11-4.12). In general, our results suggest that popula-

tions may be able to adapt to moderate rates of temperature increase, but the risk of

extinction increases with the rate of temperature change. Furthermore, model pop-

ulations were able to persist for short periods following drastic temperature change

(the population survived for 2 generations after a 1-generation ramp from SNRA

temperatures to PAN temperatures), suggesting that populations may remain viable

despite short-term climate perturbations. Such perturbations are common in natural

environments; for example, in the summer of 1993 summer temperatures in central

Idaho were the coldest on record [35] following the Pinatubo eruption. During that

summer, MPB populations were depressed in the Sawtooth Natural Recreation Area

but recovered as temperatures warmed in following years [35].

4.3.3 Regions of stable fixed points
and evolutionary consequences

Due to the importance of fixed points of the Gα-function and their stability in de-

termining the evolutionary dynamics of phenology, it is useful to investigate patterns

of fixed point existence and stability under different temperature regimes. To this

end, we constructed Gα-functions on an hourly time-grid for egg 10 MPB with various

values of α under different shifts of the SNRA temperature series. We focus on egg 10

because the stable temperature simulations suggest that the evolution of the popula-
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tion closely tracks αt for that egg. The shifted temperature series were obtained by

adding constant temperatures (from −6◦C to 6◦C) to each hourly temperature in the

SNRA series; in this manner 50 temperature series were generated with shifts evenly

spaced between −6◦C and 6◦C. Although it is highly unlikely that climate change

could proceed with such a uniform warming or cooling pattern, such an investigation

reveals useful qualitative information about the potential impact of climate change

on phenology. We restricted our attention to 49 values of α spaced evenly between

0.0612 and 3.0 (hence, the individual with the largest phenotype α = 3.0 takes ap-

proximately 49 times as long to develop through the teneral stage as the individual

with the smallest phenotype α = 0.06 at the same constant temperature). The range

of variation in α that exists or that is possible in natural populations is unknown,

but it is certainly limited by physical and physiological constraints on development.

Our lower-bound (α = 0.06) is likely lower than the true lower bound for α, whereas

the relationship of our upper-bound (α = 3.0) to the true upper-bound is unknown.

Fixed points of each of the 2500 Gα-functions were identified by searching for sign

changes in the quantity Gα(t)− t− 365, which indicates their presence. The stability

of each fixed point was evaluated by checking the derivative of the Gα-function; at

a stable fixed point the slope of Gα is less than one, and at an unstable fixed point

the slope of Gα is greater than one. The results are shown in Figure 4.14, where

each circle indicates the presence of a stable fixed point at a particular time under a

particular temperature shift. Fixed points are only shown within the MPB emergence

time window (from JD 152 to JD 245), because individuals that emerge outside of

this window do not yield emergent adults in the next generation.

An interesting results emerges from this exercise: Univoltine fixed points disap-

pear at high and low temperatures. Specifically, there are no fixed points for any

phenotype at temperature shifts less than approximately −2.6◦C or greater than
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Fig. 4.14: Diagram of stable univoltine fixed points of the Gα function for egg 10 under
different shifts of the SNRA 2001-2002 phloem temperature series. Only emergence
time that are adaptive are shown (i.e. inside of the MPB emergence window). For
each shifted temperature series, there may be a phenotype α that makes a particular
emergence day a fixed point of the Gα map. If so, that fixed point is either stable
or unstable. Note that at high and low temperatures there are no fixed points–at
these temperatures reasonable adaptation in the teneral stage cannot result in strict
univoltinism.

4.0◦C. At temperature shifts less than −2.6◦C, an individual that is oviposited at

any time within the emergence window takes longer than 365 days to complete devel-

opment through the pupal stage (the life stage before the teneral adult stage). Hence,

at these temperatures, even an individual with no teneral stage (α = 0) could not

complete development in one year; this results in the complete absence of fixed points

of the Gα functions at those temperatures. At temperatures warmer than 4.0◦C de-

velopment is rapid through the early stages, and there are no phenotypes less than

α = 3 that lengthen the teneral stage sufficiently for development to complete in a

single year. Hence, the loss of fixed points at high temperatures is due to the upper-

bound on the phenotype that we imposed. To illustrate this, Figure 4.15 shows the
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G3-function (the G-function for egg 10 with phenotype α = 3.0) for the temperature

shifts Tshift = 4.0◦C and Tshift = 4.3◦C. In the first case, the G3-function has fixed

points; in the second case G3-function has no fixed points.

Fig. 4.15: The G3 function for egg 10 under two different shifts of the SNRA temper-
ature series (Tshift = 4.0◦C and Tshift = 4.3◦C). Note that there are fixed points for
Tshift = 4.0◦C, but there are no fixed points for Tshift = 4.3◦C.

Yurk and Powell demonstrated numerically that populations rapidly go extinct

after stable fixed points are lost for a simple 2-stage model insect without distributed

oviposition. To determine if MPB population success under warming conditions can

be predicted based on the presence of stable fixed points of the Gα function for egg

10, we simulated the evolution of a population (with a full complement of eggs) as

temperatures increased from the SNRA temperature series to the SNRA series under a

6.0◦C shift. The initial population was well-adapted to the SNRA temperature series

(i.e. the stable distribution for the SNRA series). Temperatures were ramped up over

1000 generations to ensure that adaptation would not be limited by the warming rate.

After 714 generations, the population went extinct, corresponding with a temperature
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shift of 4.3◦C, the same temperature at which fixed points are lost for egg 10 (see

Figure 4.14). This result further suggests that the evolution of the population as a

whole tracks the evolution of the median egg. It also supports the hypothesis that the

presence of stable fixed points controls evolutionary dynamics, even under changing

temperature conditions.

If fixed points are in fact necessary for population success, the results presented

here suggest that evolution of phenology will allow populations to persist under a

significantly broader range of temperature conditions than if populations are limited

to responding plastically to climate change. The 6.8◦C range of temperature shifts

under which fixed points are present (assuming a maximum phenotype of α = 3.0)

is significantly broader than the 2.5◦C range predicted by Logan and Powell [27]

using a phenology model that did not account for variation in development time in

the teneral stage. The broad range of adaptive temperatures at which fixed points

occur is consistent with the fact that the MPB are successful in a broad range of

temperature conditions in nature (their range extends from northern Mexico into

Canada in western North America).

4.4 Summary and conclusion

In this paper we have developed a framework for modeling the evolution of MPB

phenology in response to selection on emergence time and density. This model in-

corporates realistic aspects of MPB phenology, including development and burrowing

time curves parameterized using data from constant temperature laboratory exper-

iments as well as a distributed oviposition mechanism. The evolution model also

reflects reasonable selection pressures on MPB phenology that are based on the re-

sults of a study that connected MPB phenology and demographics [33]. The model

predicts several qualitative patterns observed in real MPB populations, including
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longer time to complete the entire life cycle in southern populations than in northern

populations, persistence of populations despite short-term perturbations to yearly

temperatures, and a broad range of adaptive temperatures. The model also predicts

that populations will evolve to steady states where the distribution of phenotypes and

the timing of emergence do not vary across generations and that these steady states

are determined by the presence and stability of univoltine fixed points. Furthermore,

by studying the evolution of a population from SNRA temperatures to PAN temper-

atures, we were able to demonstrate that the rate of climate change is important in

determining whether a population will be able to adapt to changing climate.

Perhaps the most important and consistent result of this work is that evolutionary

dynamics are controlled largely by the existence and stability of univoltine fixed points

of the Gα-function. A similar pattern was also suggested by Yurk and Powell in

Chapter 2 based on a simpler phenology evolution model. We have also demonstrated

that the evolutionary dynamics of mean development time in the teneral stage can be

largely predicted using a simple median oviposition model rather than a distributed

oviposition model. However, additional variation injected by distributed oviposition

may affect the rate of adaptation.

The range of adaptive temperatures predicted by the evolution model depends

on the range of phenotypes possible in a population. The extent of the possible phe-

notype range is unknown for MPB. Hence, further laboratory study is necessary to

determine the degree of temperature change that will allow populations to adapt. A

factor that may affect the ability of MPB to adapt to changing temperatures that is

not considered here is the ability to complete two generations per year (bivoltinism)

or one generation every two years (semivoltinism). At low temperatures, populations

may be able to succeed by adopting semivoltine phenology, whereas at high tem-

peratures they may succeed by adopting bivoltine phenology. Neither is possible in
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the formulation of the evolution model presented here, but it could be extended in

the future to incorporate either scenario. Furthermore, our results underestimate ex-

tinction risk for MPB populations under warming temperatures due to the fact that

the model does not account for host population dynamics, which are coupled with

mountain pine beetle population dynamics in real populations. Without incorporat-

ing forest dynamics, this model best describes populations that have unlimited access

to host trees (e.g. populations expanding into new regions). Future work should in-

corporate host dynamics in order to better understand the evolution of phenology in

localized MPB populations.
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CHAPTER 5

SUMMARY AND CONCLUSION

In this dissertation we investigated the evolution of insect phenology in response

to climate change with particular attention paid to MPB. This is a topic of great

ecological and economic concern due to the importance of MPB as a forest outbreak

insect. Phenology is a major determinant of fitness in insect populations; success

depends on maintaining appropriate phenology relative to biotic and abiotic factors

and developmental synchrony with other individuals in the population. Since insect

phenology depends on temperature, populations will be forced to migrate, adapt, or

go extinct to cope with climate change.

We developed a framework for modeling the evolution of insect phenology. The

evolution model allows the distribution of a parameter that scales a base development

time curve to evolve within a population in response to natural selection on emergence

time and density. The evolution map was characterized by its effects on the temporal

variation of the density, mean phenotype, and phenotypic variance of a population

at oviposition. Using Laplace’s method we found approximate steady states of the

evolution map under stable (periodic) temperatures; at these steady states, the mean

phenotype at any oviposition time is the one that results in a fixed point of the Gα

circle map at that time. Biologically, this means that an individual oviposited at that

time with that mean phenotype will take exactly one year to complete development.

These results were verified numerically for a simple two-stage model insect. We also

simulated evolution of the two-stage insect under warming temperatures and showed

that evolution allowed the insect to adapt to climate change as long as stable fixed

points of the Gα map existed within the window of adaptive emergence times.
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Next, we developed a development time-oriented model of temperature-dependent

phenology that accounts for both variation in development time that persists through-

out a life stage and random variation. Persistent variation was modeled by incorpo-

rating a developmental phenotype that varies within a population, similar to the phe-

notype in the evolution model, and random variation was modeled using a diffusion

term. The phenology model was fit to development time data for MPB collected in

constant temperature laboratory experiments using a maximum likelihood approach.

The incorporation of random variation did not improve fits to laboratory data. The

phenology model also included a description of temperature-dependent distributed

oviposition for MPB. We used the phenology model to predict emergence distribu-

tions given attack distributions for the previous generation and phloem temperatures

measured in the field. The predicted mean emergence times agreed well with field

observations, while the predicted variances were significantly greater than those ob-

served in the field, further supporting the conclusion that random variation does not

improve the MPB phenology model (although it may be an important factor in other

insects).

Finally, we incorporated the temperature-dependent phenology model for MPB

into the evolution model framework that we had developed. This evolution model

also contained a realistic selection function based on a phenology-demography model

for MPB developed by Powell and Bentz [33]. We simulated the evolution of MPB

phenology under two stable phloem temperature series measured in central Idaho and

southern Utah. In both cases populations evolved to steady distributions that were

closely related to those predicted by the earlier analytical results; the mean pheno-

type at time t in a steady distribution closely followed the phenotype that resulted

in a fixed point at time t (αt) for the median egg. This suggests that the control-

ling effect of fixed points on evolutionary dynamics is a fairly robust phenomenon,
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and that evolutionary dynamics can be approximated using a median oviposition

model rather than a distributed oviposition mode. We also simulated the evolution

of MPB phenology under warming temperatures by starting with a population that

was well-adapted to central Idaho temperatures and shifting from the central Idaho

temperature series to the southern Utah series at various rates. At rapid rates, the

population went extinct, whereas at moderate and slow rates the population was able

to persist. This suggests that the rate of climate change is an important factor, as

well as the degree of climate change, in determining whether a population will be able

to adapt.

Our approach to modeling the evolution of insect phenology can be adapted to

study other insect species. The general approach presented in Chapter 2 can be

extended to incorporate specific aspects of life-cycle and phenology for a particular

species. For example, the evolution model presented in Chapter 4 extends the general

approach to incorporate specific details about MPB (e.g. distributed oviposition, the

necessity of mass-emergence within a specific time widow, and a realistic phenology

model). Although the general model is based on the assumption of direct tempera-

ture control of phenology, it can be extended to incorporate diapause or photoperiod

sensitivity if either of these synchronizing mechanisms are apparent in a particular

species. Under truncation selection on emergence time, the analytical steady distri-

bution results in Chapter 2 hold under two conditions: First, phenology under a given

temperature series is described in terms of a one parameter map (i.e. the Gα-function)

that is differentiable with respect to the parameter. Second, selection acts directly

on variation in phenology (i.e. the output of the map) rather than variation in the

parameter. Consequently, the analytical steady distribution results are independent

of our assumption that the phenotype α scales a base development time curve in a

single life-stage. These results also hold if, for example, the single parameter α scales
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development time across multiple life stages or represents a variable developmental

threshold within a stage; offering a great deal of flexibility in describing variation in

phenology.

In general, our results suggest that the ability of an insect population to adapt to

climate change is largely dependent on its ability to maintain stable univoltine fixed

points. This points to the need to develop phenology models that accurately describe

temperature-dependent development and to understand the extent and heritability of

variation in development time. Future modeling efforts should also focus on describing

potential fitness trade-offs associated with the evolution of development time. For

example, if development time is correlated with body size, it is likely that individuals

that take longer to develop will also have higher fecundities because they are larger.

Also, future models should allow for the possibility for adaptive semivoltine and

bivoltine phenology.
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Numerical implementation of the
phenology model

A typical goal of phenology modeling is to predict the distribution of times at

which a population will complete a life stage given the distribution of times at which

it began the life stage. If pb(t) is the distribution of times at which the population

begins the life stage (at a = 0), and pc(t) is the distribution of times at which the

population completes the life stage (at a = 1), then pb(t) = p(0, t) and pc(t) = p(1, t).

We define gi(t) to be the time that an insect completes stage i given that it entered

the stage at time t. Then, gi(t) = Γi(1, t). Setting ∆a = 1 and a = 0 in (3.6)

yields the following relationship between the distribution of stage completion times

and initiation times:

τi(t)pb(t) = τi(gi(t))pc(gi(t)). (7.1)

In practice the density of insects entering a stage at a particular time cannot be

measured directly. Instead the number of insects entering the stage over a specified

time interval (the integral of the density) is observed. Hence, the integral form of the

conservation law (3.4) may be more useful than the differential form (the advection

equation (3.3)). In this case, the number of insects entering the stage between times

t1 and t2 is the same as the number of insects completing the stage between times

gi(t1) and gi(t2); from (3.4),

∫ t2

t1

pb(s)ds =

∫ gi(t2)

gi(t1)

pc(s)ds. (7.2)

This equation is particularly useful for numerical solution of the advection phenology

model and is the primary phenology relationship used in Chapter 2.

As in the advection model, the phenotype-dependent advection equation can be

solved analytically if the distribution of times at which a population entered a stage
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is known. If pb(t;α) is the distribution of times at which the population begins the

life stage (at a = 0), and pc(t;α) is the distribution of times at which the population

completes the life stage (at a = 1), then pb(t;α) = p(0, t;α) and pc(t;α) = p(1, t;α).

Let gi(t;α) be the time that an insect with phenotype α completes stage i given that

it began at time t. Then, gi(t;α) satisfies

α =

∫ gi(t;α)

t

ds

τi(s)
.

By analogy to (7.1), the density of insects beginning the stage and the density of

insects completing the stage are related by

τi(t)pb(t;α) = τi(gi(t;α))pc(gi(t;α);α). (7.3)

Furthermore, the number of insects with phenotype α entering the stage between

times t1 and t2 is the same as the number of insects with phenotype α completing

the stage between times gi(t1;α) and gi(t2;α),

∫ t2

t1

pb(s;α)ds =

∫ gi(t2;α)

gi(t1;α)

pc(s;α)ds. (7.4)

We use (7.4) to develop a numerical scheme for implementing development of a

population of insects using the phenotype-dependent advection equation (3.8). This

scheme was used to simulate mountain pine beetle phenology. Development of a

population through each life stage is treated separately and sequentially. Define

pb,i(t;α) to be the density of insects with phenotype α that begin stage i at time t

and pc,i(t;α) to be the density of insects with phenotype α that complete stage i at

time t. We assume that phenotype is independent of time at the beginning of each

stage. In particular, pb,i(t;α) is gaussian in α with mean 1 and variance σ2 at each
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time t. We also impose the requirement that the same density (with respect to time)

of insects begin stage i at time t as complete stage i− 1 at time t, i.e.

∫ ∞
−∞

pb,i(t;α)dα =

∫ ∞
−∞

pc,i−1(t;α)dα.

Instead of tracking pi(t;α) directly, we track integrals of pi(t;α) over small time

intervals (finite volumes) along characteristics, i.e. forward tracking from t to gi(t;α)

or backtracking from t to g−1
i (t;α). With this in mind, we use slightly modified form

of the conservation law (7.4),

∫ t2

t1

pc,i(t;α)dt =

∫ g−1
i (t2;α)

g−1
i (t1;α)

pb,i(t;α)dt. (7.5)

Recall that this conservation law follows from the assumption that insects with phe-

notype α that complete stage i between times t1 and t2 must have began the stage

between times g−1
i (t1;α) and g−1

i (t2;α). Finite volume methods are conservative, so

there is no loss of population density due to truncation error. The benefit of us-

ing a characteristic method is that development is tracked from the beginning of a

stage to the end of the stage in one step. We define an equally-spaced time grid

spanning three years consisting of full-nodes, {1 = t0, t1, t2, . . . , tw = 1095}, and an

equally-spaced time grid consisting of half-nodes, {t−1/2, t1/2, t3/2, t5/2, . . . , tw+1/2}. In

both cases ty = 1 + y∆t, where ∆t = 1094/(w − 1). Let τj be the time interval

τj = (tj−1/2, tj+1/2], noting that tj is its midpoint. In the α direction, the popu-

lation is represented at regularly spaced grid points on a finite phenotype domain,

{α1, α2, . . . , αu}. Let P b,i
j,k be the number of insect with parameter αk that begin stage

i during the time interval τj:

P b,i
j,k =

∫ tj+1/2

tj−1/2

pi(t;αk)dt. (7.6)
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Similarly, we define P c,i
j,k be the number of insect with parameter αk that complete

stage i during the time interval τj.

The conservation law (7.5) provides a map between P c,i
j,k and pi(t;αk),

P c,i
j,k =

∫ tj+1/2

tj−1/2

pi+1(t;αk)dt,

=

∫ g−1
i (tj+1/2;αk)

g−1
i (tj−1/2;αk)

pi(t;αk)dt,

=

∫ tq−1/2

g−1
i (tj−1/2;αk)

pi(t;αk)dt+

q+m−1∑
l=q+1

(∫ tl+1/2

tl−1/2

pi(t;αk)dt

)

+

∫ g−1
i (tj+1/2;αk)

tq+m−1/2

pi(t;αk)dt, (7.7)

where tq−1/2 through tq+m−1/2 make up all of the half-nodes strictly between g−1
i (tj−1/2;αk)

and g−1
i (tj+1/2;αk). The first and last integrals on the right hand side of (7.7) are

approximated, noting that pi(t;αk) ≈ P b,i
j,k/∆t for tετj. The other integrals in (7.7)

are of the form in (7.6) so that

P c,i
j,k ≈

(
tq−1/2 − g−1

i (tj−1/2;αk)

∆t

)
P b,i
q−1,k +

q+m−1∑
l=q+1

P b,i
l,k

+

(
g−1
i (tj+1/2;αk)− tq+m−1/2

∆t

)
P b,i
q+m,k. (7.8)

This equation is used to find the number of insects that complete a stage during the

time interval τj given information about insects entering the stage. We use equation

(7.8) as the basis for our numerical method.

We compute g−1
i (tj−1/2;αk) in (7.8) by first computing the number of age units

accumulated by an individual with phenotype αk between times t−1/2 and tj−1/2 for

each half node (i.e. for j = 1, 2, . . . , w + 1). This cumulative age, Aj,k, is computed
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by numerically evaluating the integral

Aj,k =

∫ tj−1/2

t−1/2

ds

αkτi(s)
,

using the trapezoidal rule. We find the first l such that Aj,k − Al,k ≥ 1, since then

g−1
i (tj−1/2;αk) is in the time interval τl, and use linear interpolation to approximate

g−1
i (tj−1/2;αk).
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