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ABSTRACT 

 
 

Maporal Hantavirus β-integrin Utilization and Sensitivity to Favipiravir 
 
 

by 
 
 

Kristin K. Buys, Master of Science 

Utah State University, 2010 
 
 

Major Professor: Brian B. Gowen 
Department: Animal, Dairy and Veterinary Science 

 
 Hantaviruses are members of the Bunyaviridae family of viruses. Pathogenic 

hantaviruses are the etiologic agents of hemorrhagic fever with renal syndrome 

(HFRS), a disease principally endemic in the Old World, and hantavirus pulmonary 

syndrome (HPS), a disease primarily restricted to the Americas. Maporal virus 

(MPRLV), a recently isolated hantavirus, has been found to cause disease in 

hamsters that resembles HPS in humans. However, the virus has not been linked to 

human cases of HPS. Considerable evidence suggests that β-integrin usage 

mediating infection may serve to distinguish hantaviruses pathogenic to humans 

from nonpathogenic, but this receptor usage pattern information is not yet available 

for MPRLV. Although ribavirin has been shown to be effective in treating HFRS, it 

lacks specificity and has toxicity.  Moreover, there are no effective antivirals for the 

treatment of HPS. Considering the above, we have investigated MPRLV 1) β-

integrin-mediated mechanism of entry, 2) genetic determinants of pathogenicity, 



 iii 
and 3) susceptibility to the promising antiviral, favipiravir (T-705). Using 

antibodies targeting specific integrin chains, we found infection of Vero E6 cells with 

MPRLV to be dependent on β3-integrins, similar to that reported for other 

pathogenic hantaviruses such as Dobrava virus (DOBV) included in our studies.  β1-

integrin chain-specific antibodies and fibronectin did not block MPRLV or DOBV 

infectivity as observed with the nonpathogenic Prospect Hill Virus (PHV). 

Phylogenic analysis of characteristic degron sequences and ITAM motifs in the G1 

cytoplasmic tails of MPRLV and other hantaviruses emphasizes the close genetic 

proximity of MPRLV to other HPS-causing hantaviruses. Favipiravir, a pyrazine 

derivative reported to be active against related bunyaviruses, was found to be active 

against MPRLV, DOBV, and PHV (EC50 = 65 - 93 µM) with therapeutic indexes of 74, 

52, and 58, respectively. The data presented suggests that MPRLV may be 

pathogenic to humans and that it and other hantaviruses tested are sensitive to 

favipiravir in cell culture.  

(59 pages) 
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CHAPTER 1 

 

INTRODUCTION  

 

 

Pathogenic hantaviruses cause two medically important diseases; 

hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary 

syndrome (HPS).   HPS is a severe disease that primarily affects the lungs, but can 

cause residual damage in the cardiac and renal systems (Hallin et al., 1996; Jonsson 

et al., 2008; Peters et al., 1999).  Certain hantaviral disease in humans, such as HPS 

caused by the Sin Nombre and Andes hantaviruses, have mortality rates as high as 

50 percent (Doyle et al., 1998; Milazzo et al., 2002).  Consequently, effective 

countermeasures for the prevention and treatment of hantavirus infections are 

much needed. 

The hantaviruses that cause HPS are restricted geographically to the 

Americas, while HFRS-causing hantaviruses are mainly found in Europe and Asia 

and, thus, are separated into two categories; New World (NW) and Old World 

hantaviruses, respectively (Plyusnin and Morzunov, 2001).   The focus of my 

research has been Maporal virus (MPRLV), a recently isolated NW hantavirus that 

has been found to cause disease in hamsters that is symptomatically and 

pathologically similar to HPS (Milazzo et al., 2002).  Because there have been no 

documented HPS cases associated with MPRLV infection, it is unclear as to whether 

the virus is a human pathogen.  

Critical to the success of my project was establishing a focus forming unit 

(FFU) assay to measure MPRLV, Dobrava (DOBV), and Prospect Hill virus (PHV) 
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replication in cell culture.  Once able to quantify viral replication, I was able to test 

the susceptibility of these viruses to experimental (favipiravir) and licensed 

(ribavirin) drugs, and study their β-integrin receptor utilization for infection.  PHV 

and DOBV were used as controls representing nonpathogenic and pathogenic HFRS-

causing hantaviruses, respectively.  I also developed a quantitative reverse 

transcriptase polymerase chain reaction (qRT-PCR) assay for MPRLV to verify the 

FFU assay findings.  Phylogenetic analysis comparing MPRLV to other known 

hantaviruses at regions conserved across pathogenic hantaviruses was also 

performed to gain insights into the possible pathogenicity of MPRLV.  

 

LITERATURE REVIEW  

 

 

Hantaviruses 

Hantaviruses are members of the Bunyaviridae virus family, divided into 5 

genera: Nairovirus, Orthobunyavirus, Phlebovirus, Tospovirus, and Hantavirus.  

Hantaviruses are named after the first isolated virus in its genus, Hantaan, 

discovered near the Hantaan river, South Korea in 1976 (Lee et al., 1978).  

Hantaviruses are generally transmitted to people through aerosols from rodent 

feces, saliva, and urine, as well as through bites.  Recent data has shown that person-

to-person transmission may occasionally occur with the Andes hantavirus (ANDV) 

in Argentina (Padula et al., 1998); however, there is no evidence that this occurs 

with any other hantaviruses.  Although asymptomatic in their rodent hosts, 

hantaviruses cause a spectrum of serious disease in humans.  Ease of propagation 

and infectivity through aerosol exposure contribute to pathogenic hantaviruses 
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being on the NIAID Category A pathogens list as potential bioterror agents and HPS 

and HFRS are recognized as a global public health problems (Borio et al. 2002; 

Bronze et al., 2002; Jonsson et al., 2008).   

Within the last few decades, a considerable number of hantaviruses have 

been identified throughout the world, with many being human pathogens (Table 1). 

Maporal virus (MPRLV) is a newly discovered hantavirus isolated from a fulvous 

pygmy rice rat in Venezuela (Fulhorst et al., 2004).  It has not been determined 

whether MPRLV is a human pathogen, but previous studies have shown MPRLV to 

be phylogenetically related to and cause clinical and pathologic disease that 

resembles HPS in animal models (Milazzo et al., 2002; Peters et al., 1999).  In a study 

done with hamsters, MPRLV-infected animals showed signs of cardiac depression 

and diffuse pulmonary edema with rapid onset comparable to findings in clinical 

cases of HPS.  The prolonged incubation time typical of hantaviruses was also seen 

(Milazzo et al., 2002). 

  

Virus genome and structure 

Hantaviruses are enveloped, segmented negative-sense RNA viruses.  

Typically spherical, they have a diameter of 100 nm with 6 nm glycoprotein 

membrane projections (McCaughey and Hart, 2000).  The genome consists of three 

RNA segments; the small (S) segment coding for the viral nucleocapsid protein, the 

medium (M) segment coding for the glycoprotein precursor, and the large (L) 

segment coding for an RNA-dependant RNA polymerase (Antic et al., 1992; Plyusnin 

and Morzunov, 2001).  Electron micrographs of Puumula virus show the genome  
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ND: none documented   
HPS: Hantavirus pulmonary syndrome. 
HFRS: Hemorrhagic fever with renal syndrome. 
(Adapted from:  McCaughey and Hart, 2000; Monroe et al., 1999; Schmaljohn and 
Hjelle, 1997; Zeier et al., 2005) 
 

 

Table 1. Hantavirus types, locations, and disease 
Hantavirus Location Disease 
Andes Argentina HPS 
Bayou North America HPS 
Bermejo South America ND 
Black Creek Canal North America HPS 
Bloodland Lake North America ND 
Caño Delgadito South America ND 
Calabazo South America HPS 
Central Plata South America HPS 
Choclo North America HPS 
Dobrava Balkans HFRS 
El Moro Canyon North America ND 
Hantaan Asia/Africa HFRS 
Isla Vista North America ND 
Khabaroovsk Asia ND 
Laguna Negra South America HPS 
Lechiguanas South America HPS 
Maporal South America ND 
Muleshoe North America ND 
New York North America HPS 
Pergamino South America ND 
Prospect Hill North America ND 
Puumala Europe HFRS 
Rio Mamore South America HPS 
Saaremaa Europe HFRS 
Seoul World-wide HFRS 
Sin Nombre North America HPS 
Topografov Siberia ND 
Thailand Thailand ND 
Thottapalayam India ND 
Tula Europe ND 
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segments to have a coiled-bead appearance due to segments being complexed with 

the nucleocapsid protein to form ribonucleocapsid structures (Knipe and Peter, 

2001). 

  
Cell targets and mechanism of entry into cells 

Integrins are cell receptors that mediate binding to the extracellular matrix 

(ECM) and other cells.  Composed of a combination of two subunits, α and β, they  

specify ECM interaction, and cell-to-cell adherence (Hynes, 1987).  Different 

combinations of the subunits have distinct binding and signaling properties.  There 

are fifteen α, and eight β subunits that have been defined, and though some subunits 

have specific partners, many α and β subunits can associate with more than one 

subunit (Table 2)(Breuss et al., 1995; Hynes, 2002). 

It has been found that hantaviruses enter host cells via interaction of the viral 

G1 glycoprotein and specific integrins on the host cell (Gavrilovskaya et al., 1998, 

1999; Jonsson et al., 2008).  Nonpathogenic viruses, such as PHV, utilize a β1-

integrin, whereas pathogenic viruses such as New York virus (NYV), Sin Nombre 

virus (SNV), or Dobrava virus (DOBV), use a β3-integrin (Gavrilovskaya et al., 1998, 

1999).  In addition to the β-integrins, researchers have determined that 

hantaviruses also require a glycosylphosphatidylinositol (GPI)-anchored protein 

decay-accelerating factor (DAF) to be present on the host cell surface as a cofactor 

for entry (Buranda et al., 2010; Krautkramer and Zeier, 2008).  At present, receptor 

utilization appears to be a good predictor of whether a hantavirus may be 

pathogenic to humans.  
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(Adapted from Plow et al., 2000; Van der Flier and Sonnenberg, 2001) 

 

 

 

 

Table 2. Integrins and primary ECM ligands 
Integrin ECM ligand(s) 
α1β1 Collagens, Laminin  
α2β1 Collagens 
α3β1 Laminin  
α4β1 Fibronectin, Invasin,  
α4β7 MAdCAM-1, VCAM-1, Fibronectin  
α5β1 Fibronectin, Fibrinogen, Collagen,  
α6β1 Laminin, Invasin, Sperm fertilin 
α6β4 Laminin 
α7β1 Laminin 
α8β1 Cytotactin/tenascin-C, Fibronectin  
α9β1 Osteopontin, Cytotactin/tenascin-C,  
α10β1 Collagens  
α11β1 Collagens  
αvβ3 Vitronectin, von Willebrand factor Osteopontin, Laminin, 

Prothrombin, Thrombospondin, Fibronectin, Fibrinogen,  
αvβ5 Adenovirus penton base protein 5, Fibronectin, HIV Tat protein, 

Vitronectin  
αvβ6 Cytotactin/tenascin-C, Fibronectin, vitronectin  
αvβ8 Vitronectin, Fibronectin 
αIIbβ3 Fibrinogen, Fibronectin, von Willebrand factor, Plasminogen, 

Prothrombin, Thrombospondi, Vitronectin,  
αLβ2 ICAM-1 through 5 
αMβ2 Fibrinogen, Factor X, iC3b, ICAM-1 
αxβ2 Fibrinogen, iC3b  
αEβ7 E cadherin 
αIbβ3 Collagens  
αvβ1 Fibronectin, Vitronectin  
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Reservoirs and transmission  

Each hantavirus is associated with a specific rodent species, and causes life-

long, persistent infection in that species.  The primary reservoir of MPRLV has been 

found to be the fulvous pygmy rice rat (Oligoryzomys fulvescens) in Venezuela, which  

is also a host for Choclo virus (CHOV) in Panama (Fulhorst et al., 2004; Vincent et al., 

2000).  Most primary reservoir hosts of pathogenic hantaviruses have been 

determined (Table 3)(Childs et al., 1994; Khan et al., 1996; Monroe et al., 1999; 

Nichol et al., 1993; Ravkov et al., 1995; Schmaljohn and Hjelle, 1997).  Humans are 

considered incidental hosts. 

Table 3. Selected hantaviruses and their primary rodent hosts 

Virus Host Disease 

Andes Oligoryzomys longicaudatus HPS 

Bayou Oryzomys palustris HPS 

Black Creek Canal Sigmodon hispidus HPS 

Choclo Oligoryzomys fulvescens HPS 

Dobrava Apodemus flavicollis HFRS 

Hantaan Apodemus agrarius HFRS 

Maporal Oligoryzomys fulvescens ? 

New York Peromyscus leucopus HPS 

Prospect Hill Microtus pennsylvanicus Nonpathogenic 

Puumala Clethrionomys glareolus HFRS 

Sin Nombre Peromyscus maniculatus HPS 
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Knowledge of primary reservoirs is important in understanding the 

geographical constraints and potential for transmission of individual hantaviruses.  

In the example of the North American outbreak of HPS in 1993, increased rainfall 

and resulting forage availability that spring resulted in substantial growth of the 

rodent population, demonstrating that environmental and ecological changes can 

play a significant role in outbreaks of such diseases (Khan et al., 1996; Parmenter 

RR, 1993).  To reduce risk of hantavirus infection, educational efforts for teaching 

at-risk populations about awareness of rodent infestation and precautions are 

needed.  

Hantavirus determinants of 

pathogenicity 

 

Hantaviruses infect human endothelial, and immune system cells such as 

dendritic cells and lymphocytes (Geimonen et al., 2003b; Raftery et al., 2002; 

Temonen et al., 1993).  Lymphocytes are activated by recognition of specific 

antigens through binding of their receptors and subsequent intracellular signaling 

cascades.  These B-cell and T-cell receptors contain conserved amino acid motifs 

consisting of paired tyrosine residues in the cytoplasmic domain known as 

immunoreceptor tyrosine-based activation motifs (ITAMs) (Geimonen et al., 2003b; 

Razzaq et al., 2004).  ITAMs participate in intracellular signaling that directs cellular 

activation and proliferation.  Some viruses can possess ITAM domains and regulate 

signaling responses of host cells.  This is seen with a number of viruses including 

Epstein-Barr virus, bovine leukemia virus, Kaposi’s sarcoma-associated herpes 

virus, human immunodeficiency virus and hantaviruses (Geimonen et al., 2003b; 

Lee et al., 1998; Miller et al., 1995; Willems et al., 1995; Xu et al., 1999).  
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Within the hantavirus genome, the M segment is translated into a 

polyprotein that is cleaved into N-Terminal G1 and C-terminal G2 glycoproteins 

(Antic et al., 1992; Sen et al., 2007).  The G1 glycoprotein contains a long 

cytoplasmic tail that contains a conserved ITAM in all HPS-causing hantaviruses, but 

not in HFRS or nonpathogenic viruses (Geimonen et al., 2003b).  Also associated 

with the conserved ITAM motifs, hantavirus G1 cytoplasmic tails can contain a C-

terminal hydrophobic domain that directs proteasomal degradation.  This ‘degron’ 

as it is called, directs ubiquitination and degradation of the cytoplasmic tail and is 

linked to the virulence of hantaviruses (Alff et al., 2006; Geimonen et al., 2003a; Sen 

et al., 2007).  Reportedly, G1 tails of pathogenic hantaviruses facilitate proteosomal 

degradation, while the nonpathogenic viruses have G1 tails that are stable (Sen et 

al., 2007).  The hantavirus degron has been shown to consist of tyrosines that reside 

within the ITAM (Y619 and Y632) as well as an additional eight residues (Geimonen 

et al., 2003a).  Comparison of the G1 sequence of known pathogenic hantaviruses 

with that from a new virus such as MPRLV would be useful to provide insights into 

potential human pathogenicity.  

 

Disease and clinical signs 

Recognized as Korean hemorrhagic fever (KHF) since 1951, hemorrhagic 

fever with renal syndrome (HFRS) was first described in Europe and Asia in the mid 

20th century (Lahdevirta, 1971; Lee et al., 1978; Myhrman, 1951).  Many names 

were previously used to describe the diseases we now know are caused by Old 

World hantaviruses.  These include hemorrhagic nephroso-nephritis in the Soviet 

Union, nephropathia epidemica in Scandinavia, Churilov’s disease, and hemorrhagic 
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fever.  HFRS was endemic in Korea from 1951 to 1976 wherein over 8000 

hospitalized cases, including over 2000 cases among US troops, were documented 

(Lee et al., 1978).  Today HFRS is prevalent in Europe and Asia with up to 200,000 

hospitalized cases reported each year and a case fatality rate of 1-15% (Schmaljohn 

and Hjelle, 1997).   

In the Americas, hantavirus pulmonary syndrome (HPS) was first recognized 

in 1993 when an outbreak of respiratory disease with high mortality was reported 

in the Four Corners region of the United States (Nichol et al., 1993).  Before this 

time, hantaviruses had not been associated with severe respiratory illness, or with 

an outbreak of human disease in the Americas.  Over 2000 cases of HPS have been 

confirmed in the Americas since 1993 with a mortality rate of over 40%. SNV and 

ANDV are the etiologic agents that cause the most severe and lethal HPS disease 

(Padula et al., 2004; Raboni et al., 2009; Schmaljohn and Hjelle, 1997).    

HPS is characterized by the onset of fever, malaise and myalgia that progress 

with additional gastrointestinal complaints (vomiting and abdominal pain), other 

flulike symptoms, and dyspnea (Peters and Khan, 2002; Peters et al., 1999).  

Additional physical findings in HPS patients include tachypnea, tachycardia, and 

hypotension, with the clinical trademark being rapidly developing pulmonary 

edema caused by noncardiogenic vascular leakage (Duchin et al., 1994; Moolenaar 

et al., 1995).   

Pathological studies conducted after autopsy of fatal HPS cases showed 

significant pulmonary edema and pleural effusions indicative of the lungs being the 

primary organ targeted by the disease (Duchin et al., 1994; Moolenaar et al., 1995; 
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Nolte et al., 1995; Zaki et al., 1995). This separates HPS from HFRS diseases that 

typically target the kidney, although minor amounts of plural edema and effusions 

have been found in some HFRS cases (Earle, 1954; Lukes, 1954).  In HPS patients, 

the tissues of the kidney are histologically normal (Mori et al., 1999; Nolte et al., 

1995; Zaki et al., 1995).  

Due to the protein-rich nature of the fluid found in the lungs of HPS patients, 

capillary leakage has been considered responsible for the edema (Mori et al., 1999).  

Cytokine production by monocytes and T-lymphocytes may trigger the vascular 

leakage.  Studies have shown high numbers of cytokine-producing cells in these 

edematous lungs of HPS patients producing cytokines such as IL-1α, IL-1β, IL-6, 

TNF-α, IFN-γ, IL-2, IL-4, and TNF-β (Mori et al., 1999).  TNF (tumor necrosis factor) 

and interleukin (IL)-2 are particularly significant.  TNF is produced by monocytes 

and macrophages, and studies have shown that high levels of TNF-α lead to 

increased pulmonary vascular permeability and edema (Stephens et al., 1988).  

Endothelial cells have a large amount of TNF receptors, so the large endothelial 

surface of lung may enhance effects of this particular cytokine (Mori et al., 1999; 

Stephens et al., 1988; Tracey and Cerami, 1993).   

IL-2 has been shown to cause vascular leak syndrome, or microvascular 

permeability after infusion to cancer patients.  It causes excessive fluid transport 

demonstrated by rapid clearance of radiolabeled albumin from circulation resulting 

in pulmonary edema (Thijs et al., 1990).  This response has been observed in a 

number of experiments with mice, rats, and sheep (Klausner et al., 1989; Rabinovici 

et al., 1996; Welbourn et al., 1990), in addition to several human clinical trials (Lee 
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et al., 1989; Mier et al., 1988; Rabinovici et al., 1996; Thijs et al., 1990).  IL-2 

injection in cancer patients has also been observed to cause a release of TNF-α into 

circulation (Mier et al., 1988). There is evidence that TNF-α perpetuates its own 

production through a positive feedback mechanism, giving more explanation as to 

the sustained levels in pulmonary tissues, and a possible connection with IL-2 in 

causing lung disease (Rabinovici et al., 1996; Sherry and Cerami, 1988).  It is not yet 

clear if TNF-α or IL-2 directly cause vascular permeability, but it is likely that they 

are central factors.  Activated macrophages, lymphocytes, and complement 

components, have been recognized in IL-2 infused patients and implicated in 

vascular permeability, but as secondary players (Lee et al., 1989; Schoefl, 1972).  

In fatal HPS cases, death consistently resulted from cardiogenic shock (Hallin 

et al., 1996; Saggioro et al., 2007).  The main concern is that HPS is rarely diagnosed 

until in its advanced stages, and progression to respiratory failure and cardiogenic 

shock may occur within a couple days, or even hours.  The incubation time and slow 

onset of initial symptoms may contribute to delayed diagnosis.  With ANDV and 

SNV, time from exposure to onset of symptoms was 11-32 and 9-33 days, 

respectively (Mertz et al., 2006; Young et al., 2000).  Due to this length of time, 

patients tend to seek medical care well after exposure as the viral load begins to 

decrease, rendering some antiviral treatments targeting viral replication largely 

ineffective (Jonsson et al., 2008).  Mean time from first symptoms to 

cardiopulmonary failure is five days, illustrating the need for better physician 

awareness and early detection (Hallin et al., 1996; Peters et al., 1999).   
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Vaccines and Therapeutics 

The high rate of mortality and lack of effective therapies for HPS underscores 

the need for effective therapies and vaccines.  In Korea and China, vaccines for HFRS 

have been approved since the early 1990’s.  These vaccines are primarily 

inactivated HTNV and have been shown to be somewhat effective in clinical trials, 

but lack long-term persistence of antibody levels (Sohn et al., 2001).  More recent 

studies have shown vaccinia virus (VACV) vaccines to enhance neutralizing 

antibodies to HTNV in VACV naive people, as well as produce seroconversion 

(McClain et al., 2000).  Other modes of vaccination under investigation include 

vaccinia-vectored vaccines that express segments of the genome, DNA vaccines, and 

baculovirus-vectored vaccines (McClain et al., 2000; Sohn et al., 2001). 

Using a lethal Syrian hamster model of HPS, adenovirus vectors expressing 

hantavirus nucleocapsid or envelope glycoprotein proteins were shown to confer 

immunity to ANDV.  The study showed that all hamsters vaccinated with vectors 

expressing both glycoproteins had no detectable ANDV RNA in the blood or lungs 

after nine days of infection (Safronetz et al., 2009).  Another promising study by 

Custer and co-workers describes the construction of a DNA vaccine containing the M 

genome segment of ANDV (Custer et al., 2003).  Rhesus macaques injected with the 

vaccine developed neutralizing antibodies against ANDV that cross neutralized SNV.  

Serum taken from the monkeys conferred protection in Syrian hamsters when 

injected before, or even 5 days after, infection with ANDV (Custer et al., 2003).  

Clinical trials have yet to be initiated with either of these HPS vaccination strategies. 
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As with effective vaccines, robust therapeutics to treat hantaviral infections 

are needed.  Ribavirin (1-β-D-ribofuranosyl-1, 2,4-triazole-3-caboxamide) is a 

broad-spectrum antiviral drug effective against both RNA and DNA viruses, and has 

been found to have antiviral activity against several members of the Bunyaviridae 

family (Huggins, 1989; Sidwell et al., 1972, 1988).  It has been shown that against 

RNA viruses, ribavirin causes lethal mutagenesis by increasing the mutation rate of 

the virus and causing a “genetic meltdown” (Crotty et al., 2000, 2001; Day et al., 

2005).  It does this by forming ribavirin triphosphate (RTP), which acts as a 

nucleotide and is used by the viral RNA polymerase (Crotty et al., 2001; Crotty et al., 

2000).  When incorporated, RTP produces the antiviral effect through error 

catastrophe.  Several other mechanisms may contribute to the antiviral activity of 

ribavirin including inhibition of viral capping by effecting or inhibiting the viral 

guanylyltransferase or viral methyltransferases, inhibition of viral helicase activity, 

and inhibition of inosine monophosphate dehydrogenase (IMPDH) that depletes 

nucleotide supply necessary for synthesis of viral progeny (Leyssen et al., 2008).  

Ribavirin is effective against HFRS and HPS viruses in vitro (Huggins, 1989; 

Kirsi et al., 1983; Medina et al., 2007; Severson et al., 2003).  It has been shown that 

against HTNV, and likely other HFRS viruses, ribavirin causes lethal mutagenesis of 

the virus (Chung et al., 2007; Severson et al., 2003; Sun et al., 2007). Nevertheless, 

ribavirin lacks specificity and reduces cellular RNA and DNA pools through its 

potent IMPDH inhibitory activity (Streeter et al., 1973).  Some ribavirin derivatives 

are being studied against hantaviruses and show promise of less toxicity and similar 

efficacy (Chung et al., 2008; Kirsi et al., 1983).  
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In preparation for in vivo experiments, Medina and coworkers. demonstrated 

ribavirin’s ability to inhibit SNV infection in Vero E6 cells (Medina et al., 2007). In a 

suckling mouse model, ribavirin effectively reduced viremia and mortality caused 

by HTNV challenge (Huggins et al., 1986; Kim and McKee, 1985).  Ribavirin also 

reduced viral loads and inhibited seroconversion of deer mice (natural host) when 

infected with SNV (Medina et al., 2007).  Although these studies demonstrate in vivo 

efficacy, these models are not considered to be reflective of human disease 

(Holbrook and Gowen, 2008).  Moreover, toxicity is considered a problem at the 

concentrations required for effective therapy (>15mg/kg) (Booth et al., 2003; 

Chapman et al., 1999; Huggins et al., 1986; McKee et al., 1988).  

Based on the limited success of in vitro and in vivo findings, the use of 

ribavirin was explored for treatment of HFRS.  In a double-blind controlled study, 

ribavirin was shown to reduce the chance of mortality of a person with HFRS by 

seven-fold (Huggins et al., 1991). Clinical trials have been unsuccessful in evaluating 

ribavirin’s efficacy in treating HPS.  Out of the two trials attempted, one was not able 

to recruit enough subjects, and the other lacked a placebo control resulting in 

neither study having the statistical power to determine therapeutic effect (Chapman 

et al., 1999; Jonsson et al., 2008; Mertz et al., 2004).   

Other than ribavirin, there are few antiviral treatment options for diseases 

caused by hantaviruses.  Favipiravir (T-705; 6-flouro-3-hydroxy-2-

pyrazinecarboxamide) is a novel pyrazine compound found to have inhibitory 

antiviral activity against a number of RNA viruses, including members of the 

Bunyaviridae family (Furuta et al., 2009; Gowen et al., 2007, 2010).  The mechanism 
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of action of favipiravir varies from ribavirin in that it appears to specifically inhibit 

the viral RNA polymerase while having little to no effect on nucleic acid pools 

(Furuta et al., 2005).  Studies evaluating the activity of favipiravir against 

hantaviruses have yet to be performed and are warranted. 

In addition to favipiravir, other drug candidates including lactoferrin, FGI-

106, and nitric oxide (NO) continue to be developed and are being evaluated against 

hantaviruses. Tested against the Seoul HFRS-causing hantavirus, bovine lactoferrin 

was found to inhibit virus to 15% of infected controls, and completely inhibit viral 

growth when used in combination with ribavirin (Murphy et al., 2000).  Lactoferrin 

is also a protein commonly found in human saliva. One study found human saliva 

inhibited HTNV replication by 75%, and the salivary protein mucin was up to 90% 

effective (Hardestam et al., 2008).  FGI-106, a small molecule compound that is 

postulated to interfere with viral egress has an antiviral effect on a number of 

bunyaviruses.  The compound reduces HTNV and ANDV virus yield by at least 1 

log10 PFU/mL and shows promise against HPS viruses based on preliminary findings 

that indicate FGI-106 enrichment within lung tissue at levels that may block 

hantavirus infections (Smith et al., 2010). 

NO has shown strong antiviral activity against a number of viruses in vitro 

(Croen, 1993; Klingstrom et al., 2006; Lin et al., 1997), most likely through inhibition 

of viral proteases (Saura et al., 1999). HNTV was inhibited by NO in one in vitro 

study resulting in 85% less viable virus than in controls (Klingstrom et al., 2006). 

Perioxynitrate, an oxidizing reactive oxygen intermediate, also was shown to be 
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effective against HTNV in vitro inhibiting virus replication by 40% (Klingstrom et al., 

2006). 

An encouraging single patient case showed rapid improvement of 

oxygenation status in a 16 year old patient with HPS after treatment with NO 

(Rosenberg et al., 1998).  As treatment for acute respiratory distress syndrome, 

persistent pulmonary hypertension of the newborn, and other conditions of 

pulmonary distress, NO is used to directly vasodilate vascular smooth muscle of the 

lungs and reduces pulmonary artery pressure without producing systemic 

hypotension (Frostell et al., 1991; Pepke-Zaba et al., 1991; Roberts et al., 1992; 

Rossaint et al., 1993). Reduction in vascular resistance may reduce pulmonary 

edema and with its additional antiviral effects, inhaled NO may be a promising 

treatment of HPS, especially in combination with a traditional antiviral that directly 

targets the viral replicative machinery such as favipiravir. With the lack of effective 

antiviral therapy for HPS, the growing incidence of the disease, the potential 

weaponization of viruses that cause HPS, and the significant case fatality rate of the 

disease, the development of effective countermeasures is paramount. 

 

OBJECTIVES 

 
 It is not known if MPRLV is pathogenic to humans. In order to investigate 

this possibility, we compared known traits of pathogenic, and more specifically HPS-

causing hantaviruses, which have been linked to pathogenicity.  First, we tested the 

hypothesis that MPRLV infectivity would be mediated by the β3-integrin receptor as 

with other pathogenic hantaviruses (Gavrilovskaya et al., 1998, 2002).  We also 
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hypothesized that MPRLV would contain conserved ITAMs as well as the degron 

sequence within the G1 cytoplasmic tail, further supporting likelihood of 

pathogenicity.  We examined these sequences at the amino acid level to measure 

phylogenetic relatedness to other known HPS-causing hantavirus.  Lastly, we 

evaluated favipiravir against MPRLV, DOBV, and PHV in cell culture comparing its 

activity to ribavirin using FFU and qRT-PCR assays.
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CHAPTER 2 

 

METHODS AND RESULTS 

 

 

MATERIALS AND METHODS 

 

 

Cells and viruses 

 Vero E6 (African green monkey) cells were purchased from American Type 

Culture Collection (ATCC, Manassas, VA).  Cells were maintained in minimal 

essential medium (MEM) supplemented with 10% fetal bovine serum (FBS), and 

gentamicin (Sigma, St. Louis, MO).  All media and serum were from HyClone 

Laboratories (Logan, UT) unless otherwise stated.  PHV (MP40 TVP6042), DOBV 

(Sotkama), and MPRLV (HV9021050) were provided by Dr. Robert Tesh (World 

Reference Center for Emerging Viruses and Arboviruses, University of Texas 

Medical Branch, Galveston, TX).  All three viruses were propagated in vero E6 cells 

and confirmed by quantitative RT-PCR (data not shown).  Infections were 

performed in DMEM with 2% FBS and gentamicin.  Biosafety level 3 (BSL-3) 

facilities were used for studies with DOBV and MPRLV, while BSL-2 containment 

was used for work with PHV. 

 

Ligands, antibodies, and staining reagents 

 SNV hyperimmune mouse serum, kindly provided by Dr. Robert Tesh, was 

used as the primary anti-hantavirus antibody for FFU detection.  The secondary 

antibody used was a goat anti-mouse horseradish peroxidase conjugated antibody 

from Kirkegaard & Perry Laboratories (KPL, Gaithersburg, MD).  Both were used at 

a 1:500 dilution.  Antibodies directed at β1 and β3-integrins for receptor usage 
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determination studies were purchased from Millipore (Chemicon, Temecula, CA) 

and used at 1 μg/ml concentrations.  Fibronectin and vitronectin were purchased 

from Sigma and used at concentrations of 20 and 1 μg/ml, respectively.  Acidin and 

biotinylated horseradish peroxidase complex (ABC) and 3,3’-diaminobenzidine 

(DAB) staining kits were purchased from Vector Laboratories (Burlingame, CA).  

 

Integrin usage 

To determine the β-integrin receptor used to mediate hantavirus infection, 

96-well plates were seeded with Vero E6 cells.  After culture for 24 hours, cells were 

pretreated with known β-integrin ligands or function-blocking antibodies for 1 hour 

(h) at 37⁰C before viral infection.  Ligands or antibodies were removed, monolayers 

were washed with warm phosphate buffered saline (PBS), and 1.1 × 104 FFUs of 

MPRLV or 4.25 × 104 FFUs of DOBV or PHV were adsorbed onto the cells for 90 

minutes.  After adsorption, virus inocula were removed, monolayers were washed 

with warm DMEM, and incubated an additional 24 h for MPRLV, 72 h for DOBV, and 

5 days for PHV.   

Immunoperoxidase staining of the nucleocapsid protein in infected cells has 

been previously described (Gavrilovskaya et al., 1998).  In brief, cell monolayers 

were fixed with 100% methanol (100 µl/well) at 4⁰C for 10 minutes, then washed 

gently with 0.2 ml warm DPBS.  Cells were permeabilized with 0.25% Triton X-100 

in PBS for 10 minutes, washed with DPBS, then blocked with 4% goat serum in 1% 

BSA in PBS for 60 minutes.  Blocking sera were removed and monolayers were 

incubated with primary antibody, diluted in 1% BSA in PBS, for 90 minutes at 37⁰C 

and subsequently with secondary antibody for 90 minutes.  Following the antibody 
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incubation and washing steps, the ABC kit was used to prepare cells for staining.  

Monolayers were washed with 0.2 ml warm DPBS and stained with the working 

DAB solution for 5 to 30 minutes.  After staining, monolayers were washed with 

water, FFUs quantified and integrin antibody or ligand treated experimental groups 

were compared to untreated controls. 

 

Phylogenetic analysis 

 To determine the genetic relationship of MPRLV to other hantaviruses, 

comparisons of conserved motifs present in pathogenic hantaviruses were made.  

Amino acid sequences from the Genbank database were compared using Molecular 

Evolutionary Genetics Analysis (MEGA) software (Center for Evolutionary Medicine 

and Informatics, Tempe, AZ).  Analysis of phylogenetic relationships were made 

using the neighbor-joining and bootstrap consensus methods (Saitou and Nei, 1987) 

analyzing only the ITAM/degron coding regions (Geimonen et al., 2003a, 2003b) of 

the M segment of the genome at the protein level.  The evolutionary distances were 

computed using the poisson correction method and are in the units of the number of 

amino acid substitutions per site (Zuckerkandl, 1965).  All positions containing gaps 

and missing data were eliminated from the dataset (complete deletion option). 

There were a total of 30 positions in the final dataset.   

Hantavirus M segment Genbank sequence accession numbers were as 

follows:  Andes (AAO86638.1), Bayou (AAA61690.1),  Bermejo (AAB87911), Choclo 

(ABB90558.1), Dobrava (AAY27875.1), Hantaan (AAK27683.2),  Laguna 

(AAB87603), Maporal (AAR14889.1), New York-1 (AAC54560), Prospect Hill 



 22

(CAA38922.1), Puumula (AB297666.2), Seoul (NP_942557.1), Sin 

Nombre (AAG03036.1), and Tula (NP_942586). 

 

Drug efficacy   

 Favipiravir was provided by the Toyama Chemical Co. (Toyama, Japan).  

Ribavirin was obtained from (ICN Pharmaceuticals, Costa Mesa, CA).  The antiviral 

activity of favipiravir and ribavirin was determined as follows.  Vero E6 cells were 

seeded in 96-well plates and incubated for 24 hours prior to the addition of drugs 

and viruses.  Cells were then infected with hantavirus FFUs as specified above.  

MPRLV and DOBV inoculums were adsorbed for one hour, and PHV was absorbed 

for six hours.  After infection, virus was removed and cell monolayers were treated 

with eight serial half-log10 dilutions of the drugs.  Plates were incubated at 37°C with 

5% CO2 in DMEM with 2% FBS and gentamicin for 24 h - 5 days depending on the 

virus.  Additional experiments were done with non-infected cells to determine drug 

toxicity under the same experimental conditions.   

 Drug efficacy was determined by quantification of infected cells and finding 

the 50% effective concentration (EC50), defined as the concentration of the drug 

required to reduce viral FFUs by 50%.  The 50% cell cytotoxic concentration (CC50) 

was defined as the concentration of the drug that resulted in a 50% decrease in cell 

viability when compared to cell controls.  The selectivity (or therapeutic) index (SI) 

is defined as the ratio of the CC50 to the EC50.   

 Quantitative RT-PCR was also used to determine drug efficacy against MPRLV 

by measuring relative viral RNA concentrations after incubation of infected cells 

with the drugs.  Triplicate wells of a 24-well plate were infected with MPRLV for six 
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hours after which virus innocula was removed and the cells were treated with log10 

dilutions of ribavirin or favipiravir.  After three days in culture, RNA was collected 

using an RNeasy kit following the manufacturer’s recommendations (Qiagen, 

Germantown, MD).   

 The MGB Eclipse probe system from Epoch Biosciences (Bothell, WA) was 

used in combination with the SuperScript III Platinum One-Step Quantitative RT-

PCR system from Invitrogen (Carlsbad, CA) following manufacturers’ 

recommendations.  The MPRLV primer and probe combination was designed using 

the MGB Eclipse Online Design software and targeted the nucleocapsid coding 

sequence.  The forward primer used was 5’-GGA CAT TTC CAT AAC GCA GTG-3’ and 

the reverse primer was 5’-TGG CAG CTC AGA AAC TGG CTT CAA A-3’.  The probe 

target sequence was (MGB EDQ)-5’-GTC ATC AGG TTC AAG C-3’-(FAM).  All 

reactions were performed in multiplex with β2-microglobulin primers and probe 

set for normalization of RNA loading.  Reactions were run on a DNA Engine Opticon 

2 Real-Time PCR detection system (Bio-Rad, Hercules, CA) using the following 

cycling conditions: 50°C for 20 min, 95°C for 2 min, 40 cycles of 95°C and 56°C, 

followed by a melting curve reading every 0.2° C from 50°C to 95°C.  

 

Statistics 

Statistical analysis was done using GraphPad Prism software (GraphPad 

Software, La Jolla, CA). Differences between untreated virus control infections and 

treated infections were evaluated by two-way analysis of variance (ANOVA) with 

Bonferroni post-test. 
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RESULTS 

 

 

β3-Integrin chain-specific 

antibodies and the extracellular 

matrix protein vitronectin, 

block MPRLV infectivity 

β3-integrin usage is a characteristic feature shared by pathogenic 

hantaviruses. We hypothesized that MPRLV would also require β3-integrin 

receptors to mediate cell entry and infection. To assess MPRLV integrin usage, Vero 

E6 cell monolayers were treated with antibodies or integrin antagonists to block 

hantavirus infectivity. Following incubation, infected cells were quantified by FFU 

assay and experimental treatment groups were compared to untreated virus-

infected controls.  PHV infection was significantly inhibited by β1-specific integrin 

antibodies (P < 0.001), but not β3-integrin antibodies (Figure 1). Pretreatment of 

Vero E6 cells with polyclonal antibodies to β3-integrins significantly decreased 

MPRLV and DOBV infectivity. 

We next assayed the ability of specific integrin ligands to inhibit MPRLV 

infectivity.  Vitronectin and fibronectin are ECM proteins with high affinity for αVβ3-

and α5β1-integrins, respectively.  Consistent with the antibody studies, pretreatment 

of Vero E6 cells with vitronectin (1 μg/ml) significantly reduced MPRLV and DOBV 

infectivity (P < 0.001). In contrast, PHV infection was not significantly inhibited with 

vitronectin, only fibronectin (20 μg/ml) (P < 0.001) (Figure 2).  Collectively, these 

data suggest that MPRLV host cell infection is facilitated principally by β3-integrins, 

similar to the known pathogenic DOBV. 
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Figure 1.  Hantavirus infection is dependent on specific integrins as receptors. 

Duplicate wells of Vero E6 cells were pretreated with integrin-specific 

antibodies (at 1 μg/ml) for 1 hour prior to viral infection. After infection and 

incubation for 1-5 days (depending on virus) cell monolayers were fixed and 

stained for FFUs. Viral FFUs were quantified and compared to infected and 

uninfected controls.  Data are representative of three independent 

experiments.   ***P < 0.001.  
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Figure 2. The effect of endogenously added extracellular matrix proteins on hantavirus 

infection.  Duplicate wells of Vero E6 cells were pretreated with extracellular matrix 

proteins vitronectin and fibronectin (at 1 and 20 μg/ml, respectively) for 1 hour prior 

to viral infection.  Virus was quantified by FFU assay.  Data are representative of three 

independent experiments.  ***P < 0.001. 
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Phylogenetic analysis 

 MPRLV shares ITAM and Degron sequence 

homology with pathogenic hantaviruses 

 We performed phylogenetic analysis to compare MPRLV gene sequences at 

the protein level with thirteen other hantaviruses, as a means to obtain insights into 

potential pathogenicity.  Pathogenic hantaviruses have been found to contain 

conserved ITAMs in the G1 cytoplasmic tail, while nonpathogenic viruses lack this 

feature (Geimonen et al., 2003b).  Pathogenic hantaviruses also contain a degron 

sequence that directs proteosomal degradations, whereas nonpathogenic 

hantaviruses have stable cytoplasmic tails (Sen et al., 2007).  Alignment of 

hantavirus sequences obtained from Genbank that contain the overlapping ITAM 

and degron regions is shown (Figure 3).  

The alignment, conducted using ClustalW, indicated that the G1 cytoplasmic 

tail of MPRLV contained the characteristic ITAM sequence found in all HPS-causing 

hantaviruses (Figure 3).  The comparison also indicated that MPRLV does not 

contain the conserved residues that stabilize the G1 tail in nonpathogenic 

hantaviruses, but does contain residues consistent with pathogenic hantaviruses 

(Figure 3).  In looking at the entire sequence alignment of 30 amino acids, MPRLV 

was found to be more closely related to the HPS-causing hantaviruses (Figure 4).  

These findings suggest that MPRLV shares motifs characteristic of pathogenic HPS-

causing hantaviruses. 
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Figure 3. Amino acid comparison of ITAM/degron motifs. Alignment of G1 protein 

cytoplasmic tail of hantaviruses.  
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Figure 4.  The phylogenetic relationships among the ITAM/degron 

sequences of thirteen different hantaviruses. The analysis was done 

with MEGA4 software using the neighbor-joining and bootstrap 

consensus methods. The bootstrap consensus tree inferred from 500 

replicates is taken to represent the evolutionary relationships of the 

taxa analyzed (Felsenstein, 1985). The percentage of replicate trees 

in which the associated taxa clustered together in the bootstrap test 

(500 replicates) is shown next to the branches (Felsenstein, 1985). 

The tree is not drawn to scale, but indicates branch lengths (next to 

the branches) in the same units as those of the evolutionary distances 

used to infer the phylogenetic tree. 
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Drug efficacy studies 

 
Efficacy of ribavirin and favipiravir against MPRLV  

The inhibitory activity of ribavirin and favipiravir against hantaviruses was 

determined by infectious FFU assay (Table 4) and qRT-PCR (Figure 5).  Ribavirin, 

known to be active against HFRS- and HPS-causing hantaviruses in vitro (Murphy et 

al., 2000; Severson et al., 2003; Sun et al., 2007), inhibited MPRLV infectivity in a 

dose-dependant manner, with an EC50 of 47 μM and therapeutic index of 22 (Table 

4).  As expected, ribavirin was also active against DOBV and PHV.  Favipiravir, a 

pyrazine derivative reported to be effective inhibiting related bunyaviruses (Gowen 

et al., 2007) was also found to be active against MPRLV with an EC50 of 65 μM and 

therapeutic index of 74 (Table 4).  Notably, favipiravir was also effective against 

DOBV and PHV. 

QRT-PCR was also employed to evaluate the anti-MPRLV activities of 

ribavirin and favipiravir.  As shown in Figure 5A, ribavirin reduced MPRLV RNA 

levels in a dose-dependent manner and with an EC50 of 16 µM, lower than with the 

FFU assay data.  The activity of favipiravir was also verified by the qRT-PCR assay 

with an EC50 less than the lowest tested dose of 8 µM (Figure 5B). 
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    Virus 

 
 
 

 
Favipiravir  

 
  

Ribavirin  

CC50± SDb 
 

EC50 ± SDb 

 

 
SIc 

 
 CC50± SDb 

 
EC50 ± SDb 

 

 
SIc 

 
 

PHV 
 

 
3819 ± 64 

 
66 ± 26 

 
58  1018 ± 866 

 
23 ± 1.9 

 
44 

 
DOBV 

 
 
 

4816 ± 662 
 

93 ± 18 
 

52  1215 ± 628 
 

72 ± 2.4 
 

17 
 

MPRLV 
 

 
 

4795 ± 1186 
 

65 ± 17 
 

74  1051 ± 135 
 

47 ± 2.9 
 

22 

a Data are the mean and standard deviations from three separate data sets in Vero E6 
cells 

b CC50 and EC50 values are in µM. 
c SI (selectivity index) = CC50/EC50 
 
 

 

   TABLE 4.  In vitro inhibitory effects of favipiravir and ribavirin against hantavirusesa (FFU) 
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Figure 5.  MPRLV sensitivity to favipiravir. MPRLV RNA was measured by qRT-

PCR from total RNA extracted from infected Vero E6 cells and treated with 

varying concentrations of ribavirin (A) and favipiravir (B).  
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CHAPTER 3 

 

DISCUSSION AND CONCLUSIONS 

 

 Worldwide, hantaviruses cause over 200,000 hospitalized cases of illness 

annually with mortality rates exceeding 40% in HPS cases (Schmaljohn and Hjelle, 

1997).  The need for further research into therapeutic interventions increases as 

exposure to rodent hosts is ever present and person-to-person transmission has 

been documented in the case of ANDV (Padula et al., 1998). Although there are 

several high-profile hantaviruses that receive the most attention, new serotypes are 

continually being discovered as awareness of the genus grows. MPRLV is a recently 

discovered member identified in Venezuela. It has not yet been determined if 

MPRLV is a pathogenic hantavirus capable of infecting and causing severe disease in 

humans.  However, MPRLV has been reported to cause HPS-like disease in a hamster 

model (Milazzo et al., 2002) similar to that caused by ANDV (Hooper et al., 2001).  In 

the present study, we have presented data that supports the hypothesis that MPRLV 

may be a human pathogen.  We also describe data on the susceptibility of MPRLV 

and other representative hantaviruses to a licensed (ribavirin) and an 

investigational new drug (favipiravir), with known activity against related 

Bunyaviridae family members (Gowen et al., 2007, 2010) 

Previous studies have shown that hantavirus infection of host cells is 

mediated through interaction of the viral G1 glycoprotein with specific integrins 

(Gavrilovskaya et al., 1998, 1999; Jonsson et al., 2008).  Importantly, pathogenic 

hantaviruses utilize β3-integrins, while their nonpathogenic counterparts use β1-
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integrins.  In our studies characterizing MPRLV, pretreatment of cells with function-

blocking β3-integrin antibodies and vitronectin significantly reduced infectivity.  

Nevertheless, complete inhibition could not be achieved, suggesting other 

mechanisms of virus entry are likely. 

 Antibodies against integrins have been used to inhibit viral entry into cells 

(Vero, Vero E6, and rhabdomyosarcoma) (Chu and Ng, 2004; Gavrilovskaya et al., 

1998, 1999; Heikkila et al., 2009; Medina et al., 2007).  Effective concentrations of 

integrin-blocking antibodies against β3-integrins with hantaviral infection were 

previously found to be between 1-20 µg/ml (Gavrilovskaya et al., 1998). Therefore, 

the amounts used for blocking in the present experiments were within the effective 

range.  In previous work (Gavrilovskaya et al., 1998), and our optimization 

experiments, there was a dose dependent response with inhibition decreasing at 

lower concentrations of blocking antibody.  We did not see greater inhibition using 

concentrations higher than 1 µg/ml in our studies.  Similarly, previous ECM protein 

blocking studies used a concentration range of 1-40 µg/ml (Gavrilovskaya et al., 

1998).  We found that 20 µg/ml of fibronectin and 1 µg/ml of vitronectin were 

optimal for blocking β1- and β3-integrin interaction with hantaviruses, respectively. 

Recent studies have shown that in addition to the β-integrins, hantaviruses 

also exploit DAF to successfully infect cells (Buranda et al., 2010; Krautkramer and 

Zeier, 2008). This may explain why, after incubation with ECM proteins or 

antibodies to the β-integrins, viruses still were able to infect cells with ‘blocked’ 

receptors resulting in less than complete inhibition. Studies blocking both β-integrin 

and DAF proteins would presumably result in more complete blockage of hantaviral 
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infection.  Partial inhibition of pathogenic hantavirus following treatment of cells 

with β1-integrin-specific blocking antibodies may also be attributed to steric 

hindrance of viral binding due to conformational change of the integrin as seen in 

experiments with West Nile virus and other hantaviruses (Chu and Ng, 2004; 

Gavrilovskaya et al., 1998).  Notably, experimental methods by Gavrilovskaya et al. 

differed slightly from ours, including the use of fewer FFUs of virus for infections, 

staining reagents, and timing of infections. 

 In addition to integrin utilization pattern as a predictor of pathogenicity, 

several motifs present in the cytoplasmic tail of the G1 glycoprotein of hantaviruses 

can also be distinguishing features.  Our comparative analysis of the stretch of 

amino acids encompassing both the ITAM and degron sequences clearly 

demonstrate extensive similarity between MPRLV and other HPS-hantaviruses.  

ITAM motifs participate in intracellular signaling that directs cellular mechanisms. 

Viruses can mimic, contain, or even regulate ITAM signaling responses of host cells 

(Geimonen et al., 2003a). The presence of such motifs almost exclusively in 

pathogenic HPS-causing hantaviruses may suggest an additional mechanism by 

which virulence and host cell function can be regulated by the virus.  Notably, the 

apathogenic hantavirus, Tula, contains the ITAM sequence.  However, its G1 tail is 

missing an adjacent cysteine residue conserved in all other hantaviruses that likely 

alters the conformation of the ITAM in the Tula G1 tail (Geimonen et al., 2003b). The 

degron sequence is a c-terminal hydrophobic domain of the G1 cytoplasmic tail that 

directs proteasomal degradation and is also linked to the virulence of hantaviruses 

(Geimonen et al., 2003a, 2003b).  Experiments to confirm tail-directed proteasomal 
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degradation of the MPRLV sequence would further support the idea that MPRLV 

may emerge as a human pathogen.   

In our analysis restricted to the ITAM and degron sequences, Puumala, a 

hantavirus that causes a mild form of HFRS (Elliott, 1997), segregates with the 

apathogenic PHV.  Phylogenetic analysis not only serves to reveal relationships 

between hantaviruses that cause the same disease, but also a correlation with the 

phylogeny of their rodent hosts (Antic et al., 1992; Monroe et al., 1999; Plyusnin et 

al., 1996).  To this end, the sharing of rodents hosts such as that of PHV and Puumala 

virus hantaviruses (Arvicolinae) likely drives these associations. MPRLV had 

significant similarities with pathogenic, and more specifically HPS-causing, 

hantaviruses such as SNV and ANDV.  With population growth and spreading of 

urbanization in regions of Venezuela where the virus is harbored in rodents may 

ultimately result in human cases of HPS.  At present, the lack of medical 

infrastructure, and awareness by physicians of HPS disease likely contribute to the 

lack of cases reported.  As occurred in the four corners region of the southwestern 

United States with the initial SNV outbreak, the potential for a disease outbreak 

certainly exists based on the evidence collected thus far by our characterization of 

MPRLV. 

There are currently no effective antivirals or other therapies for clinical 

treatment of HPS, and ribavirin is the only antiviral somewhat effective against 

HFRS. Ribavirin is licensed for the treatment of hepatitis C and respiratory syncytial 

virus infections in infants, but considered to be relatively nonspecific and is 

associated with toxicity primarily in the form of hemolytic anemia (Leyssen et al., 
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2008).  Clinical trials have been unsuccessful in evaluating the efficacy of ribavirin 

treatment of HPS (Chapman et al., 1999; Jonsson et al., 2008; Mertz et al., 2004). The 

results from our studies with the investigational new drug, favipiravir, are very 

encouraging as they indicate susceptibility of MPRLV and DOBV in cell culture. First 

described as an anti-influenza agent (Furuta et al., 2002), the spectrum of 

favipiravir’s antiviral activity has since grown to include arenaviruses, and several 

bunyaviruses (Furuta et al., 2002; Gowen et al., 2007, 2010).  Here we have 

expanded the spectrum to include in vitro antiviral activity against hantaviruses. 

We found favipiravir to be active against representative hantaviruses, DOBV, 

PHV, and MPRLV, in a dose-dependant manner with EC50 values in the range of 

those reported for other bunyaviruses including La Crosse virus, Punta Toro virus, 

Rift Valley fever virus, and sandfly fever virus (EC50 range of 32 to 191 µM) (Gowen 

et al., 2007).  The variation in EC50 values between different viruses may be 

attributed to differences in favipiravir phosphorylation to the active triphosphate 

form of the drug; a process that can vary between cell lines used in the assays 

(Furuta et al., 2005), as well as differences in methodologies.  In comparison to 

ribavirin, the data indicate that favipiravir is comparably active, but far less 

cytotoxic in our hantavirus experimental systems.  The present study supports 

future pre-clinical development of favipiravir in the hamster ANDV or MPRLV 

infection models or the mouse HNTV infection model as proof-of-concept for in vivo 

efficacy. 

  ANDV and MPRLV are the only pathogenic hantaviruses for which there is an 

animal model that closely resembles human disease (Hooper et al., 2008; Milazzo et 
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al., 2002). The Syrian golden hamster produces symptoms very similar to human 

HPS when infected with these viruses. Both MPRLV and ANDV have been shown to 

cause disease when infected intramuscularly, with subcutaneous, intranasal, and 

intragastric injections also effective with ANDV (Hooper et al., 2008; Milazzo et al., 

2002).  Using these animal models, challenge efficacy studies with ANDV or MPRLV, 

or alternatively, the mouse HNTV infection model will provide important data 

towards advancing a much needed antiviral candidate towards the clinic to combat 

HPS.  Ultimately, favipiravir or other antiviral drug therapy would need to be 

combined with a biological response modifier that curtails the vascular leak that 

contributes to disease severity and lethality in the HPS hantavirus hamster models. 

In summary, MPRLV shares distinctive qualities with other pathogenic, and 

especially HPS-causing hantaviruses, suggesting that human infection with the virus 

could result in severe disease. Though the clinical significance of effective in vitro 

compounds such as favipiravir is uncertain at present, studies in animal models and 

clinical trials may prove them to be effective in the future. Considering together the 

continued discovery of new pathogenic hantaviruses, the lack of effective therapies, 

and potential weaponization of these viruses (Borio et al., 2002), a better 

understanding of hantaviral disease and the development of prophylactic and 

therapeutic treatments is urgently needed. 
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